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Abstract 

Colorectal cancer (CRC) is one of the most common cancers worldwide. It has some of the 

highest rates in New Zealand, exacerbated by short-comings in available diagnostic tools and 

survival discrepancies between Maori and non-Maori demographics. In this project, a 

bioinformatics workflow was developed to make “high confidence” single nucleotide 

polymorphism (SNP) variant calls from transcriptomics/RNA-seq data. While calling variants 

from whole genome and exome sequencing is common, standard workflows for calling variants 

from RNA-seq data do not exist. 

Here, we aimed to use two common RNA-seq pre-processing methods which we then 

complemented with an ensemble of variant calling tools, improving confidence in any variants 

called. We then applied this pipeline to two independent CRC datasets with the hope that those 

variant calls could improve our understanding of the disease, one of the most significant 

aggregators of cancer-related mortality. 

Variant calls were made including those with clinical implications, such as the same KRAS gene 

variant being called between both geographically distinct populations. Multiple “novel” variants, 

or those lacking clinically significant annotations, were also obtained for known oncogenic 

targets (e.g. MAPK1 and AKT1).  

RNA-seq variant calling remains problematic. The results of this study have provided us with 

some direction and considerations for future work, such as including normal samples to better 

distinguish between germline and somatic variants, permit the use of more somatic variant 

calling tools, etc. Future work is also needed to understand how or if those novel variant calls 

could improve our understanding of CRC. 
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1.0 – Introduction. 

Colorectal cancer (CRC) is one of the most common cancers worldwide. It is the second most 

common in females (behind breast cancer) and third in men (behind lung and prostate cancer)  

[1-4]. Setting aside the sex-specific cancers, CRC is the second most common cancer in the 

world. Over 140,000 new cases were estimated to have occurred in 2018 alone [5]. CRC is also 

the cause of the second-most cancer-related deaths in the world, more than 8% of the total [6-8], 

primarily due to metastasis of the disease [9-11]. The US National Cancer Institute estimated that 

a total of over 1.5 million people (akin to the population of New Zealand’s largest city) were 

diagnosed with the disease, and over 500,000 died from CRC in 2016 [12]. In 2006, the New 

Zealand Ministry of Health (MIH)’s “Colorectal Cancer Screening Advisory Group” found 

short-comings regarding the diagnostic tools for CRC available in New Zealand. They also found 

that Maori people have disproportionately worse post-diagnosis survival rates than non-Maori 

[13]. More recently, the MIH’s “Cancer: New Registrations and deaths 2013” revealed that 3075 

people had been diagnosed with CRC while 1252 people had died from the disease. 

 

1.1 – CRC between demographics. 

The prognosis for CRC is generally favourable, especially in “developed” countries like North 

America, Western Europe, Australia, New Zealand, and Japan [1, 14].  This may not be the case 

in developing countries where CRC prevalence may be increasing, possibly as these populations 

adopt a more “Western” lifestyle [15, 16]. Regardless of prognosis, CRC has higher rates in 

developed regions, with some of the highest being in Australia and New Zealand [16-18]. For 

comparison, the age-standardized rate (ASR) for these regions is as high as 44.8 (men) and 32.3 

(women) per 100,000 person-years. Conversely the lowest rates are found in Western Africa 

(ASR of 4.5 and 3.8 for men and women, respectively [17]). As CRC is often observed in older 

demographics and our populations continue to age, it is thought that as many as 2.2 million new 

cases will develop over the next two decades [9]. 

Even in countries where CRC prognosis is favourable, both socioeconomic backgrounds [19] 

and poor patient compliance with screening recommendations (e.g. invasive colonoscopies) can 

lead to less favourable outcomes [6, 20-22]. Effective screening has been shown to be 

particularly important with regards to CRC prognosis. Stage I survival rates can be as high as 

91% but can drop to 11% by stage IV [6, 22-24]. Effective screening likely also contributed to a 

reduction in  CRC-related mortality over the last decade, reportedly more than 50% [25]. This is 

despite the availability of the faecal occult blood test (FOBT), an un-invasive, economical, and 

generally effective screening method. Poor adoption of the FOBT screen may be because of its 

reduced accuracy when compared to colonoscopies [6, 22].  
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1.2 – Genes with known CRC implications. 

As with most cancers, between 70-90% of CRC cases are due to sporadic, somatic mutations of 

the genome [5, 8, 16, 22, 26, 27]. More than 80% of CRC cases reportedly involve inactivation of 

the adenomatous polyposis coil (APC) tumour suppressor gene. This gene is a major component 

of the β-catenin destruction complex [8] and it inhibits the canonical/β-catenin dependant 

wingless/integration-1 (wnt)-signalling pathway [28-30]. As with other cancers [31], 

upregulation of this pathway results in more proliferative, “stem cell-like” cells,  which are able 

to perpetuate their lineage [8, 32, 33]. Around 80% of somatic APC gene mutations are found 

within codons 1285-1580, known as the APC “mutation cluster region”, which constitutes only 

8% of its genetic code [8]. The frequency of this gene’s mutation in CRC means that patients 

without variants for APC may suffer worse prognoses, as a wnt-signalling independent process 

likely drives the disease, thus requiring alternative therapeutic approaches [8]. 

Most of the remaining CRC cases belong to hereditary forms of the disease, such as familial 

adenomatous polyposis (FAP). FAP is characterized by the formation of numerous adenomatous 

polyps in the colonic epithelium. FAP cases, 70-90% of which involve germline variants, 

typically have an earlier age of onset than in sporadic cases. Some novel variants involved in 

FAP have been identified as recently as 2018 [34]. Both classical FAP and attenuated FAP (a 

milder form of the disease) are autosomal dominant diseases involving APC, 95% of which are 

caused by truncating nonsense or frameshift mutations in the gene [35]. 

An autosomal recessive form of the disease also exists. This disease involves the DNA damage 

repair gene mutY DNA glycosylase (MUTYH). This disease is sometimes referred to as MUTYH-

associated polyposis or MAP [34]. There is also a non-polyposis autosomal dominant disorder, 

Lynch syndrome, which gives people a predisposition towards developing CRC and other 

cancers. Rather than APC, Lynch syndrome involves germline defects in one of the following 

four mismatch-repair (MMR) genes: mutL homolog 1 (MLH1), mutS homologs 1 and 6, and 

post-meiotic segregation increased 1 homolog 2 [36, 37]. For heterozygous carriers of these 

defects, subsequent somatic mutation or epigenetic changes affecting the remaining functional 

allele then leads to cancer formation, also known as carcinogenesis, oncogenesis, or 

tumourigenesis. Interestingly, MMR deficiency usually occurs in only a small fraction of 

advanced CRC cases [38]. 

 

1.3 – The genetic diversity or “heterogeneity” of CRC. 

CRC is a complex heterogenous genetic disease [39] that develops as the colonic epithelium 

acquires adenomas (such as the benign polyps described above). These adenomas then transition 

into malignant carcinomas in a process known as the “adenoma-carcinoma sequence” [8]. The 

accumulation of somatic mutations or “variants” in the tumour (point mutations, gene fusions, 

etc.) drive both this adenoma-carcinoma transition and a tumour’s on-going evolution [40]. Even 

the immune system, which would normally destroy cells with pathogenic variants, can be 

utilized by a tumour as it develops. For example, tumour-associated macrophages can promote 

hallmarks of cancer, like cell proliferation (the generation of new cells), metastasis (the 
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development of secondary malignancies from a primary tumour), and angiogenesis (the 

formation of new blood vessels that “feed” a growing tumour) [23]. 

A CRC tumour’s position can profoundly influence a tumour’s heterogeneity. Whether it 

originated on the right of the colon (which includes the caecum, ascending colon, hepatic flexure 

and the right side of the transverse colon) or left (left half of the transverse colon, splenic flexure, 

descending colon and sigmoid) can result in distinct molecular profiles. These different 

molecular profiles can also require different clinical approaches. 

Tumours on the right side of the colon, for example, often have much worse prognoses, and can 

include gene-inactivating hypermethylated CpG islands. These islands are a biomarker that are 

indicative of massive gene inactivation, also referred to as the CpG island methylator phenotype 

or CIMP-high. Right-side tumours are also often enriched for hypermutable microsatellite 

instabilities (MSI), a result of silencing the MLH1 MMR gene. Meanwhile, tumours on the left 

are more likely to have chromosomal instability, involving more chromosomal duplications or 

deletions, but such tumours are also less likely to be affected by hypermutation [41]. 

This heterogeneity gives rises to as many as three to six different CRC subtypes or endotypes 

[42-44]. The CRC Subtyping Consortium recently unified previously independent classifications 

into a single cohesive system with demonstrated prognostic value. This system details four 

biologically distinct consensus molecular subtypes or CMS: CMS1 (MSI immune), CMS2 

(classical/canonical CRC), CMS3 (metabolically dysregulated CRC), and CMS4 (CRC with 

epithelial-mesenchymal transitions) [41, 45-48]. 

 

1.4 – The significance of the microbiome pertaining to CRC. 

CRC’s sporadic nature suggests that environmental factors contribute greatly to its development. 

Age [9, 22], smoking [9, 16, 49], alcohol consumption [9, 22, 49], obesity [5, 7], low physical 

activity [5, 9], chronic inflammation [7, 22] and diet [16, 50] are all factors likely to increase 

CRC risk [5, 7, 9, 16, 22, 49, 51]. These factors can also have a dramatic effect on one’s 

microbiome. For example, one study has shown that more “Westernized” diets, which include 

more saturated fats, animal proteins, dietary additives, and less fibre, have seen microbiomes 

with less α-diversity (intra-microbial richness) and more β-diversity (inter-microbial richness 

[10]). A growing body of evidence has suggested that such “gut dysbiosis”, the mal-adaptation of 

microbial communities within the colon, may contribute to the initiation and development of 

CRC [7, 10, 22, 24, 26, 41].  

One specific example of gut dysbiosis is the increased occupation of oral microbes in the gut. 

This includes species like Fusobacterium nucleatum which has already been associated with 

CRC [22, 52]. Antibiotic-treated mice, implanted with adenocarcinomas and then intra-

gastrically administered with Escherichia coli to simulate gut dysbiosis, have developed bigger 

tumours and more hepatic metastases [10]. Both F. nucleatum and enterotoxic Bacteroides 

fragilis (ETBF) are bacterial species are thought to play a role in the adenoma-carcinoma 

sequence [6, 14, 16, 21, 22, 25, 51, 53, 54]. For example, F. nucleatum encodes for the 
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fusobacterium adhesion protein A, a virulence factor that can activate wnt-signalling. This is akin 

to the inactivation of the APC gene [54-56], and ETBF has been found to function similarly [4]. 

The human microbiome can also host bacteria which are beneficial for patients with CRC. 

Members of the Lactobacilli genus have been suggested to improve the results of chemotherapy, 

and work synergistically with prebiotic short-chain fatty acids (SCFAs) that have been 

administered to treat cancer [5-7, 16, 57]. Clostridium butyricum has been associated with the 

apoptosis, or programmed cell death, of CRC cells [51]. The commensal form of B. fragilis has 

also been observed in mouse models to discourage the carcinogenesis [39]. 

In 2014, a CRC classifier based on microbial “operational taxonomic units” to classify bacterial 

groups, was found to be more accurate compared to the FOBT. Combining both this classifier 

and FOBT resulted in both higher specificity and increased sensitivity [6, 22]. A study on 2015 

found it possible to diagnose CRC using microbial structures found in faecal matter [6, 16]. 

Correlations between cancer-related mutations (specifically loss-of-function/LOF mutations) and 

defined sets of microbial communities have been used to predict a tumour’s mutational profile 

[58]. For the first time in 2017, individual bacterial species were associated with three CRC 

CMS groups, with associations for the fourth CMS likely not made due to the sample size (n=34) 

of the study [59]. These associations were achieved in part via a bioinformatic method known as 

transcriptomics or RNA sequencing (RNA-seq), from which this study’s data was obtained. 

 

1.5 – The versatility and limitations of NGS and RNA-seq data. 

Next generation sequencing (NGS) technologies have greatly contributed to the development of 

personalized medicine. This means that clinical therapies can be adjusted based on an 

individual’s genetic make-up [60]. RNA-sequencing (RNA-seq) is a technique where the RNA 

transcripts of a biological sample (the “transcriptome”) are sequenced. This allows us to study 

any transcript (such as premature and mature messenger, micro, ribosomal, and non-coding 

RNAs, etc.) by adjusting the strategy used to isolate specific transcripts. For example, thymidine 

homopolymers can be used as probes that hybridize to the poly-adenine tail of a messenger RNA 

(mRNA). 

RNA-seq is often used to compliment other techniques [61, 62], such as validating the findings 

of whole-genome or whole-exome sequencing studies (WGS and WES, respectively [63]), but is 

primarily used for studying gene expression. While publicly available RNA-seq datasets are not 

necessarily paired with WGS or WES data, RNA-seq can be used directly to study biological 

processes beyond gene expression, such as transcript splicing [64, 65]. The versatility and 

relative cost of RNA-seq, compared to other methods, means this technology is one of the most 

popular high-throughput technologies used. In fact, it is becoming increasingly common to use 

RNA-seq in medical settings to understand both rare Mendelian diseases and cancers [61, 66-

68]. 

As mentioned above, changes in gene expression [69] is one of the most common uses for RNA-

seq. One such study described how the protein arginine methyltransferase 1 (PRMT1) gene 
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could contribute to CRC malignancy. For example, reduced expression or downregulation of 

PRMT1 following propionate treatment (an SCFA produced via dietary fibre fermentation [70]) 

correlated with induced apoptosis in a HCT116 CRC cell line [71]. Incidentally, other SCFAs 

(such as the fermentation products of C. butyricum) have been shown to have similar anti-cancer 

effects [7, 70, 71]. 

In another study, increased expression of transforming growth factor beta receptor II was 

associated with right-sided CRC tumours. Meanwhile, the left side was associated with 

overexpression for ligands of the epidermal growth factor receptor (EGFR)’s protein, and the 

vascular endothelial growth factor 1 (VEGF) gene [41]. A 2016 study by Kim et al. discovered 

that overexpression of aldehyde dehydrogenase 1 family member A1, and insulin-like growth 

factor receptor-binding protein 1, had significant and time-dependant suppressive effects on a 

colorectal carcinoma cell line, for both cell proliferation and tissue invasiveness [72]. Induced 

tissue inflammation studies have shown gene expression profiles akin to CMS4, which 

comprises nearly a quarter of all CRC cases. These expression profiles included both β-catenin 

hyperactivity and down-regulation of the MYC proto-oncogene’s targets [73]. 

RNA-seq can also be used  in other ways, such as to identify splice isoforms [74, 75]. This is the 

process of “splicing” together a gene’s exons, which form a final mature mRNA which results in 

functionally different proteins [76]. Such transcripts cannot be studied easily, if at all, using other 

non-RNA NGS techniques. It is thought that approximately 75% of all human genes produce 

multiple splice isoforms. This can make accurate analysis of data involving splice sites difficult 

[77]. 

Aberrant spliced isoforms are also common and often overexpressed in cancer, and these novel 

splicing events may serve as diagnostic biomarkers. Such biomarkers could indicate 

chromosomal rearrangements, such as the “Philadelphia chromosome”. This chromosome is an 

abnormally short chromosome 22, caused by a translocation with chromosome 9, and causes 

chronic myeloid leukaemia. While not pertaining to human disease, a recent 2016 study by 

Jakhesara et al. discovered 14 transcripts that may serve as horn cancer biomarkers for the Indian 

cattle species Bos indicus [78]. 

While all NGS methods are reasonably accurate, there is still a risk of sequencing biases or 

artefacts resulting from errors being reported for given nucleotide positions [79]. For example, 

the Illumina platform, one of the most popular second-generation NGS technologies, uses a 

method known as “sequence-by-synthesis”. This method possesses both a low error rate (<1%) 

and reasonable costs (possibly being the technology that results in the USD1000 genome [80]). 

Despite its low error rates, Illumina can still struggle when sequencing low complexity regions 

or LCRs, such as tandem repeats (the repetition of the same short nucleotide sequence, such as 

“GATA”). Illumina struggles with such sequences due to the relatively short length of its’ 

sequencing reads, hundreds of base pairs or bp [81], which could consist entirely of a tandem 

repeat. Illumina is not alone in this regard, as Ion Torrent sequencing also struggles with LCRs 

[82]. While other third-generation technologies like PacBio produce significantly longer read 

lengths (thousands of bases or kb), they also possess both significantly higher error rates 

(between 5-20%), and increased costs [68, 83]. 
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The Guanine-Cytosine content (GC%) of a sequence can also influence biases and artefacts. This 

can be especially problematic for RNA-seq data, where GC% can also affect read amplification 

during sequencing [84, 85]. Another RNA-specific issue is the use of reverse transcriptase 

enzymes, which synthesises complimentary DNA (cDNA) for an RNA sequence prior to 

sequencing, which are thought to have increased error rates compared to DNA polymerases [86]. 

The differences between technologies may also require different computational or 

“bioinformatic” pipelines for downstream analysis, which may or may not be validated [82]. 

While these technologies continue to improve and reduce these artefacts [87], they have not yet 

been completely resolved. As so much “big data” is being generated from these techniques, 

robust and rigorous standards are required to better process this data, and not burden current 

knowledge with false-positive reporting [60, 79, 88]. 

 

1.6 – RNA-seq in the study of coding and non-coding regions. 

Genetic variation, or the differences between individuals regarding a specific genomic nucleotide 

sequence, can exist anywhere in the genome. However, some of the more pathological changes 

often occur in protein-coding regions. RNA-seq can be particularly useful when studying such 

pathological variants, such as if a variant perturbs splice-sites with putative regulatory functions 

[63]. Malignant hyperthermia susceptibility, for example, is a pharmacogenetic disorder which 

appears to only be caused by missense mutations in coding exons [89]. However, protein-coding 

genes constitute less than 2% of the human genome [4], and 80% of the entire genome is thought 

to possess some biochemical or regulatory function. Variants in these non-protein coding 

regulatory regions, like gene enhancers or promotors [27], are thought to be responsible for as 

much as 30% of the known disease-causing variants. This is because non-coding variants can 

influence a gene’s expression and/or the processing of its’ protein product [90]. As a result, 

many non-coding RNAs, like micro RNAs (miRNA, which mostly downregulate genes [63]) and 

long non-coding RNAs (lncRNA), are often mutated and dysregulated in cancers [27]. 

Fortunately, these variants can also be studied using RNA-seq data [61]. 

Such studies have shown that lncRNAs can serve as diagnostic markers [91], and have been 

shown to regulate oncogenic processes like increased cell “stemness”, oxidative stress response 

and cell death, and inflammation [4, 50]. Perturbations to miRNAs and lncRNAs (defined as 

being below 30 or over 200 nucleotides long, respectively [92]) have been linked to specific 

CRC-related processes. These include wnt-signalling described previously, the mammalian 

target of rapamycin (mTOR) pathway which regulates the cell cycle [3, 5, 50]), and specific 

genes like MYC and apoptosis-inducing factor [2]. 

One example of a lncRNA being involved in disease pathogenesis is the B. fragilis-associated 

lncRNA1 (BFAL1). BFAL1 has been found highly expressed in CRC tissues, upregulated in 

ETBF-treated cells, promote tumour growth via the mTOR pathway, and act as a “sponge” for 

the microRNAs miR-155-5p and miR200a-3p. Both miR-155-5p and miR200a-3p would 

otherwise regulate the Ras homolog enriched in brain gene, also involved in the mTOR pathway 

[4]. RNA-seq can also be used to investigate allele imbalance and more complex diseases 
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governed by mechanisms like allele-specific expression, imprinting, or X chromosome-

inactivation [90, 93]. Other documented uses of RNA-seq include studies on gene fusions [94], 

inferring unannotated gene function [95], cancer drug resistance [56], and variant calling [96-

102] for which there is currently no standard methodology. 

 

1.7 – The impact and distribution of genetic variants in CRC. 

Some common variants found in innate immune receptors are considered significant risk factors 

both within and between diseases. For example, there are genetic variants which affect both 

inflammatory bowel disease and CRC [103]. Many genes are frequently oncogenic targets, like 

the tumour suppressor p53 (TP53), Kirsten rat sarcoma homolog (KRAS), serine/threonine-

protein kinase B-raf (BRAF), neuroblastoma RAS viral oncogene homolog (NRAS), and EGFR 

[19, 49, 67, 104]. Cancerous variants often play a role in various signalling pathways [19] like 

those above, and others like the mitogen-activated protein kinase (MAPK) pathway that regulates 

cell proliferation. Mutated genes involved in these pathways can cause them to be constitutively 

activated, aggravating oncogenesis and tumour progression. Reportedly, more than 40% of CRC 

patients possess mutations in the above MAPK pathway [23]. 

Genetic variants can worsen CRC cases in a multitude of other ways. Polymorphisms in the 

interleukin 17 family members IL17A, IL17E, and IL23, all involved in the adaptive immune 

system, have been associated with both increased CRC risk and poor prognoses [14]. Another 

example involves activating transcription factor 6 (ATF6), a gene involved in regulating the 

unfolded protein response which, if prolonged, typically drives pro-apoptotic pathways. Mice 

with a more active variant of ATF6 have demonstrated caecum microbiome dysbiosis, increased 

epithelial cell proliferation, and loss of the mucus barrier that lubricates and protects the 

epithelium. These events all occurred prior to spontaneous tumour formation within the mice 

[105]. As recently as 2019, another study on mice has shown that deletion of the mutated in 

colorectal cancer gene, close in proximity to APC gene on chromosome 5, may promote CRC by 

failing to repair DNA damage caused by inflammation [73]. 

As mentioned, a tumour’s position can also have specific variant profiles. Tumours on the right 

side have been associated with mutations in mismatch repair genes, both KRAS and BRAF, the 

tumour suppressive microRNA-31, and mutations involving the RAS and mTOR pathways. 

Tumours originating on the left side meanwhile have been associated with chromosome 

instability and mutations in genes TP53, NRAS, APC, small/mothers against decapentaplegic 

family member 4 (SMAD4), KRAS without BRAF, and the microRNAs -146a, -147b, and -1288 

[41]. Despite all this information, more work is still required to understand the pathogenesis of 

diseases like CRC to improve both detection and treatment [106-108]. 

 

1.8 – Identifying genetic variants, or “variant calling” with RNA-seq data. 

Variant calling is the process by which we aim to identify genetic variants, many of which could 

be implicated with disease risk. Reference-based variant calling is one of the more common 
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bioinformatic methods for identifying genetic variation. Essentially this process involves: 

processing NGS reads , i.e. removing low quality bases and artificially ligated adapters; aligning 

or “mapping” the reads to complimentary sequences within a reference genome; identifying or 

“calling” nucleotide variation between the reference and the sample, and; applying variant filters, 

which help distinguish true positives and negatives from erroneous sequencing artefacts [86]. 

Reference-base variant calling has some benefits over reference-free methods, such as requiring 

fewer computational resources and having higher sensitivity [109]. The kinds of variants that can 

be identified using bioinformatic techniques are diverse, from simple single nucleotide variants 

or polymorphisms (SNVs/SNPs), to increasingly complex variants more likely to have functional 

roles in disease [63]. Examples of more complex variants include multiple nucleotide 

variants/polymorphisms (MNVs/MVPs), structural variants (SVs), insertions and deletions 

(collectively known as “indels”), and chromosomal rearrangements [19, 87]. 

With regards to RNA-seq variant calling, there has been some success identifying frequently 

mutated target genes in CRC [110]. In cases where a variant increases gene expression, RNA-seq 

may be better than other NGS technologies in calling these variants, as increased expression can 

improve RNA-seq coverage [86, 99]. This also means the opposite is true for variants which 

reduce expression. Such variants would require deeper sequencing, which refers to how many 

reads overlap at a given position, to distinguish low frequency variants from erroneous 

sequencing artefacts [19]. However, deeper sequencing also increases sequencing costs [86, 

100]. 

In some cases, more accurate reference-based variant calling can be achieved by using the most 

recent release of the human genome. This is currently GRCh38, which has various improvements 

over the previous release, GRCh37. For example, the GRCh37 release lacks sequences 

surrounding chromosome centromeres, known as peri-centromeric sequences. These centromeric 

sequences were omitted  as they consist of “alpha satellites”: dinucleotide tandem repeats, 

approximately 171bp in length, which can be difficult to sequence [111]. Exclusion of these peri-

centromeric sequences means that genes within these regions, even those with known disease-

causing variants, cannot be called using a GRCh37-based variant calling method [112]. 

Another consideration for variant calling pertains to all NGS methods that relying on the 

polymer chain reaction, or PCR, which is likely to produce optical duplicates. These are 

sequencing reads produced by the amplification of the same polynucleotide during sequencing 

[113]. Without identifying duplicates prior to variant calling, the depth for these sequences could 

be artificially inflated. This could lead to erroneous variant calls if the original sequence contains 

a sequencing artefacts. 

The length of sequencing reads can also affect variant calls, as demonstrated by a recent study in 

plant genetics where longer reads (as few as 25 bp more) significantly reduced the false positive 

rate [66]. Longer read lengths also mean fewer ambiguously multi-mapping reads, i.e. reads that 

map to multiple genomic locations purely by chance, but this again increases sequencing costs. 

The samples themselves, be they fresh, formalin-fixed, paraffin-embedded, etc. can also 

influence error rates during sequencing [86].  
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Which variant calling tool to use is another issue, regardless of the NGS technology is used, as 

many variant callers are developed independently. This may mean different variant calls could be 

made from the same data [60, 114]. Different variant callers may also represent the same variant 

in different ways [60, 115]. Consider this example provided by Tan et al. [116], which describes 

a 14-bp reference sequence (REF) of “GGGCACACACAGGG” and a 2-bp deletion in the 12-bp 

alternative sequence (ALT) “GGGCACACAGGG”. This seemingly simple variant could be 

represented in a myriad of ways. For example, the second pair deleted at the sixth position could 

be represented as ALT = C. Alternatively, the first pair deleted after the third position could be 

represented as ALT = GCA. Incidentally, deletion of that first pair could also be represented as 

ALT = G. While none of these representations are incorrect, this lack of a standardised format 

means that both calling variants and then annotating them with different variant databases, which 

themselves may be formatted differently, could lead to confounding results [117].  

One of the most difficult challenges to overcome for RNA-seq variant calling concerns 

eukaryotic splice sites. If an RNA-seq read contains a splice junction, i.e. it consists of two or 

more exons that have been “spliced” together, then mapping tools that are “splice unaware” may 

try to map this read as if it was a sequence of DNA. This would result in either one exon being 

mapped correctly while the other or others are falsey identified as variant sequences, or (more 

likely) the tool will fail to align the read entirely [86]. 

This has necessitated the development of “splice-aware’ sequence aligners, such as the STAR 

tool, as well as pre-processing RNA-seq data for specific applications like variant calling [64, 86, 

101, 118-120]. Pre-processing RNA-seq data is one way to improve a variant calling pipeline’s 

sensitivity (the ability to make variant calls) and specificity (being able to distinguish them from 

false positives) [86]. 

If we consider the above issue regarding splice junctions, one method to improve RNA-seq 

variant calling is to split such reads into their exon segments. This makes the reads more “DNA-

like” and avoids some of the issues when making calls around splice junctions. This “DNA-like” 

approach is currently being used by the Broad Institute as part of their “best practises” for RNA-

seq variant calling. This methodology, currently still in development, uses the popular Genome 

Analysis Toolkit (GATK) [40, 86, 120-124] to make variant calls. 

However, the current GATK RNA-seq variant calling workflow makes several compromises to 

consider. For example, the GATK DNA-seq workflow uses the “Variant Quality Score 

Recalibrator”. This is a tool that uses “truth sets” available for DNA-seq to improve downstream 

analysis. Such truth sets are not currently available for RNA-seq data, and so the GATK team 

has instead relied on a series of “hard filters” for making RNA-seq variant calls. These filters 

aim to exclude likely false positives based on the annotations provided by variant calling tools. 

Unfortunately, this means some true positives will be lost while some false positives are retained, 

simply because their annotated scores are sufficient for the filter being used [125]. 

While the GATK RNA-seq best practises are certainly an improvement over making raw variant 

calls, they are still a far cry from being of a “gold standard”. Often in bioinformatics, these “gold 

standard” set of tools are difficult to ascertain. This is especially true for RNA-seq variant calling 
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[60, 66] partly because, like the aforementioned truth sets, there are no validated RNA-seq data 

sets available like Illumina’s platinum genomes [126]. Validating RNA-seq variant calling 

pipelines is therefore reliant on synthetic datasets (which can never truly simulate real data), 

comparing performance to existing pipelines [60], or via orthogonal methods like Sanger 

sequencing [60, 86]. This is also the case for other NGS methods, although it appears that 

orthogonal methods are becoming increasingly less useful as these technologies improve [127-

129]. 

It is also possible to never truly achieve one gold standard for all instances, given the breadth and 

depth of bioinformatic subjects worth studying. For example, low-frequency variants may 

require modern variant callers which can assess variant allele frequencies (VAF), which refers to 

how often a variant is observed in a sample at a given position. This is unlike “traditional” 

variant callers that rely on probable genotypes, such as whether a sample is homozygous or 

heterozygous at a given position [86]. 

Low frequency variants also require significantly more depth to distinguish them from 

sequencing artefacts [68]. Often traditional tools are not designed for such depths and so may 

arbitrarily remove some sequences, a process known as “down sampling”. This may omit low 

frequency variants entirely if they are among those sequences that were down sampled. 

Traditional variant callers also struggle with identifying more complex variants, for example 

they may confuse the individual nucleotides of an MNP (e.g. GCA) as separate SNPs (G, C, and 

A). 

Reliance on any one tool or methodology could have significant clinical implications. If we 

consider the above confusion surrounding MNPs and SNPs, a therapy that targets a SNP variant 

could be administered to a patient who in fact carries an MNP [67]. Variant calling pipelines 

may therefore benefit by incorporating multiple variant callers, a methodology known as 

consensus or ensemble variant calling. The Consensus Variant Calling System (CoVaCS) is one 

example which uses three variant callers (VarScan, HaplotypeCaller, and Freebayes [130]). This 

example demonstrated more specificity and slightly more sensitivity than when using these tools 

individually [131]. This study also demonstrated how ensemble methods, like CoVaCS and the 

Consensus Genotyper for Exome Sequencing [132], are most effective when one tool 

compliments another’s weakness, e.g. if one tool better calls SNP variants and another better 

calls indels [131]. This ensemble method of variant calling has also been demonstrably used 

when using RNA-seq in a recent study for the black poplar, Populus nigra [133]. 

As with most cancer studies [27, 54, 55, 64, 86], often normal-tumour paired tissues samples are 

compared when using variant calling to better understand cancer pathogenesis [19, 134]. This 

allows researchers to better distinguish germline and somatic variants [86, 135]. Any biological 

sample could become “contaminated” with cells from different tissue, for example if normal 

tissue is sampled near an invasive tumour or if the tissue has already been infiltrated during 

metastasis [136, 137]. Sampling both normal and cancerous tissue, therefore, helps avoid this 

concern. 
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Being aware of these processes during experimental design helps reduce the false discovery rate 

[138], as germline variants are both frequently observed between individuals and are often 

clinically insignificant. This is especially true for individuals from more genetically diverse 

ancestries, such as those from African or recently admixed populations [88]. For example, the 

1000 Genomes Project (1KGP), originally based on GRCh37, found that on average one variant 

is expected for every eight bases within a person’s exome [124]. An individual’s genome may 

differ from GRCh37 by as many as 5 million sites, mostly from SNPs and approximately 2100-

2500 being SVs [87]. Most individuals are thought to possess over 100 LOF genes, over 10,000 

genes with peptide-altering sequences, and around half a billion variants that overlap known 

regulatory regions [87, 139-141]. Additionally, current efforts to update the 1KGP with the more 

accurate GRCh38 reference may find these initial estimates to be conservative [142]. 

 

1.9 – Our study’s aims and objectives. 

Here, we present a bioinformatic workflow which has been developed upon existing RNA-seq 

variant calling methodologies. Our study aims to develop a workflow to reliably call variants 

from existing samples for which clinical diagnoses may be too late. As a result, we favoured a 

pipeline that would minimise the number of false positive variant calls over speed of analysis. 

We then aimed to use the workflow to make high confidence RNA-seq variant calls for two sets 

of RNA-seq data which included both primary CRC tumours and their subsequent liver 

metastases (an organ not commonly affected by primary tumours [143]). Any variants called as 

part of this pipeline could further our understanding of CRC. To achieve this aim we will: 

1) Map RNA-seq reads to the most recent release of the human genome, GRCh38; 

2) Pre-process mapped RNA-seq reads via two different methods to try minimising 

bias/artefacts; 

3) Use an ensemble of variant calling tools to call variants; 

4) Select variants based on “intersecting” calls from all our variant calling methods (a 

method being defined as a combination of a pre-processing method from 2) and a variant 

caller from 3) above; 

5) Annotate high confidence calls with known variant database annotations to support a 

variant’s status (such as germline, somatic, pathogenic, true positive, etc.), to compensate 

for our lack of normal samples for one data set; 

6) Perform gene set enrichment analysis and prediction of deleteriousness to provide focus 

on variants, which may include unannotated or “novel” variants, that are more likely to 

be oncogenic, and; 

7) Use gene expression data to understand possible mechanisms by which these variants 

could exacerbate carcinogenesis. 

While the significance of this specific work is aimed toward developing a better understanding of 

CRC pathogenesis, the wider significance of this work will be to establish a reproducible and 

automated computational methodology that can be use for other cancerous samples and similarly 

improve how these diseases can be understood. 
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2.0 - Materials and Methods. 

Our study intended to make high confidence variant calls from the RNA-seq data from a cohort 

of patients from New Zealand (NZ) and South Korean (SK). Both data sets contained sequencing 

data for colorectal primary tumours (the original location where the cancer developed) and their 

subsequent secondary liver metastases, while the SK data also contains a set of normal samples. 

We opted to develop a reference-based variant calling pipeline using the most recent release of 

the human genome, GRCh38. This means that the RNA-seq data is aligned to the reference so 

that discrepancies between the reference and the data can be “called out” in the output files 

produced after sequencing alignment. As this study used RNA-seq data, the alignment files then 

need to be pre-processed to improve variant calling sensitivity and specificity. Pre-processing 

occurred before making variant calls from an ensemble of calling tools. 

Finally, variant calls were filtered to further improve confidence of these variants being true 

positives. The remaining “high confidence” variants were analysed using various techniques to 

try and determine any pathological impacts they may have pertaining to CRC pathogenesis. 

These various steps are detailed in the following section. 

 

2.1 – The “NZ” and “SK” RNA-seq data sets. 

The primary data set was a collection of deeply sequenced RNA-seq data (Illumina-based, 

paired-ended, 150-bp RNA-seq reads) derived from 13 paired biological samples (primary-

metastasis). These biological samples were obtained as part of the Purcell et al. study [59] and 

are referred to as the “New Zealand/NZ” data. This data was adapter-cleaned using “fastq-mcf” 

[144], and “SolexaQA++” was used to dynamically trim sequencing bases of low quality [145].  

The NZ data set was not available at the beginning of the study. This necessitated the 

development of the pipeline using a second publicly available data set (Illumina-based, paired-

ended, 100bp RNA-seq reads) accessed via the “National Center for Biotechnology Information” 

(NCBI, accession PRJNA218851, ID 218851 [72, 146]) while the NZ data completed 

sequencing. The SK data was derived from 56 samples (18 normal-primary-metastasis triplets) 

and was referred to as the “South Korean/SK” data. Normal, colorectal and liver metastatic 

samples are referred to as NRM, CRC, and LM respectively. 

Unlike the SK data, the NZ data lacked NRM samples that would normally be sequenced in 

variant calling studies along with cancerous samples. The sequencing of NRM samples would 

have helped distinguish between germline and somatic variants. NRM samples were not obtained 

for the NZ data set, as the original study did not pertain to making germline/somatic variant calls.  

The aim of the pipeline, therefore, was to call both somatic and germline variants using a 

combination of different RNA-seq pre-processing methods, an ensemble of variant callers, and 

then using database annotations to help distinguish between germline and somatic variants.  
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2.2 – Computational workflow management using Snakemake. 

The current workflow used “Snakemake” [147], a scalable workflow engine based on the Python 

programming language. This tool allowed us and will allow future users to automate and 

reproduce the workflow for multiple samples. Incorporating Snakemake into the workflow 

required writing a “Snakefile” (Appendix 1) that contained a series of rules with shell commands 

that connect tasks to each other. In these commands, various inputs and outputs (e.g. 

“sample.file”) were substituted with generic “wildcard” terms (e.g. “[SAMPLE].file”) which 

Snakemake could then use to automate the various rule’s inputs and outputs. Snakemake also 

allowed us to run rules in parallel, given we had access to multiple CPU cores, by first producing 

an ordered graph of rules that could be executed automatically as input became available. 

We also created “tool environment” YAML-files for each of the rules to make the workflow 

more easily reproducible on other systems. These YAML files allowed Snakemake to download 

and install the same tool versions used in the workflow before execution. This meant that a 

“hard-coded” and controlled bioinformatic environment can be recreated for each run 

automatically without having to install tools manually. The “GATK Best Practises for variant 

calling on RNAseq, in full detail” [97, 148-150] was used as the basis upon which the pipeline 

was developed. However, some changes were made to this methodology, discussed below, to 

increase confidence in the variants called. 

 

2.3 – Choice of reference genome and preparation for read alignment. 

We chose the “GRCh38_no_alt_plus_hs38d1_analysis_set” reference genome [151], referred to 

as “our reference”. GRCh38 has been described as a more accurate representation of the human 

genome with improved alignment and fewer false positives in other studies [152]. In comparison 

to GRCh37, GRCh38 has over 80 million fewer unannotated (“N”) nucleotides, reduced 

sequencing gaps (including centromeric regions), decreased GC% for 17 of the 24 autosomes, 

and a significantly increased (over 20 million nucleotides) exome [153]. GRCh38 also includes 

the rCRS mitochondrial sequence [142, 154, 155], while the GRCh37 mitochondrial sequence 

includes a 2 bp insertion which may complicate alignment [156]. The 

“GRCh38_no_alt_plus_hs38d1_analysis_set” reference also contains sequences for the Epstein-

Barr virus and some human decoy sequences. These act as “sinks” that reduce false positives as 

described in our introduction. 

Before executing the workflow, a “sequence dictionary” was generated using Picard’s [157] 

“CreateSequenceDictionary”. This output was then updated with the Single Nucleotide 

Polymorphism Database (DBSNP [158], specifically its “00-All” release) with Picard’s 

“UpdateVcfSequenceDistionary”. This avoided downstream incompatibility between the original 

DBSNP file header and some downstream tools. The resulting file was then “block gzipped” 

using Tabix [159]. A “genome fasta file index” (different from the genome’s index detailed 

below) was also required for the GATK [160] tool “SplitNCigarReads” before the execution of 

the workflow, which was achieved using Samtools’ “faidx” function [161]. 
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2.4 – Genome indexing and sequence read alignment. 

We elected to use the Spliced Transcript Alignment to a Reference (STAR) alignment tool. This 

is a fast, efficient, and splice-aware RNA-seq mapping tool with comparable performance to 

other aligners such as GSNAP, GSTRUCT, and MapSplice [162]. STAR also has a higher 

tolerance for accepting mismatched and “soft-clipped” reads by default. This means that bases at 

the beginning and end of a read weren’t included in alignment as they are prone to sequencing 

artefacts. However, these bases can still provide useful information for a read’s sequence when 

calling variants. This allowed STAR to align more reads than other aligners [163]. STAR is also  

recommended for various GATK best practise workflows [121], including its RNA-seq best 

practises workflow [164]. 

Before aligning sequencing reads to the reference, the pipeline first generated a “genome index” 

via STAR’s “genomeGenerate” function. This genome index is required by STAR and speeds up 

sequencing alignment. To produce a genome index, both the reference and its annotations 

(“GRCh38_full_analysis_set.refseq_annotation”, gtf file format [165]) were required as inputs. 

While indexing was time consuming and genome indexes were available for download, STAR 

users are also recommended to generate their own indexes using up-to-date assemblies and 

annotations [166].  

After indexing, STAR’s “multi-sample 2-pass mapping” protocol was used to align and map the 

sequencing reads to the reference. This ran STAR twice for each sample, where the first run 

produced a list of splice junctions for a sample that then improves alignment during the second 

pass. While the current pipeline generates output files for the first pass, providing use with files 

for extra statistics, this was not required.  

We did not use the basic 2-pass option recommended by the GATK workflow and instead 

compiled a list of splice junctions found for all samples using a custom “AWK” script. 

Compiling this list meant that all samples would be made aware of more splice junctions than if 

they had only considered those found during an individual sample’s first pass. This can improve 

alignments and allow more sequences to be mapped. 

We also did not include GATK’s recommended “FastqToBam” or “MergeBamAlignment” steps. 

These steps would have converted information contained within a samples’ unaligned RNA-seq 

FASTQ reads into a BAM file (the binary equivalent to the “Sequence Alignment/Map file). 

This would have then been merged with the samples’ STAR-produced BAM file. Instead the 

STAR option “—outSAMunmapped Within” was used which both retained unmapped RNA-seq 

data and bypassed incompatibility between both the “FastqToBam” and “MergeBamAlignment” 

tools and the SK data.  

The output BAM option “sorted-by-coordinate was required for downstream tool compatibility. 

The pipeline then added read group annotations as per the GATK best practises workflow, 

achieved via Picard’s “AddOrReplaceReadGroups” tool. 
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2.5 – Pre-processing prior to RNA-seq variant calling. 

Before making RNA-seq variant calls, the output BAM files were pre-processed to increase 

variant calling sensitivity and specificity. GATK’s currently in development best practises 

workflow for calling variants in RNA-seq relies on hard filters with known issues, especially in 

the absence of truth sets for human RNA-seq data sets. To address this, a second pre-processing 

step was included in the pipeline using the Opossum tool (OP, [167]). While OP was primarily 

designed to improve RNA-seq variant calling with the Platypus variant caller (PT, [109]), OP is 

also compatible with other tools like GATK’s “HaplotypeCaller” (HC) included in our ensemble 

variant calling methodology. Variants that could be called from both types of pre-processed 

BAM files are less likely to be false-positives, as this would require these independently 

developed tools and methods to give rise to the same artefact. While OP was a single tool and 

required only one non-default setting (command line option “--SoftClipsExist True”), the GATK 

best practises involved several tools discussed below. 

First, Picard’s “MarkDuplicates” tool was used to mark duplicate reads, broadly defined as 

“reads with identical sequences or starting position with regards to the reference sequence” [85]. 

These “markdup” BAM files then required indexing which we achieved via SAMBAMBA’s 

“index” function [168]. GATK version 3, rather than version 4 (referred to as GATK3/GATK4 

respectively [121]) of the tool “SplitNCigarReads” was then used in this pipeline. This tool both 

splits RNA-seq reads into exon segments to avoid errors surrounding splice junctions and 

removed or “clipped” sequences that overhung into intronic segments. GATK3’s version of this 

tool was used as GATK4’s version at the time of the pipeline’s development had not been 

validated [169]. SplitNCigarReads also reassigned the BAM file’s STAR mapping quality scores 

into GATK-equivalent values for downstream compatibility. The optional “AnalyzeCovariates” 

step was omitted before performing “base quality score recalibration (BQSR)” with GATK4’s 

“BaseRecalibrator”. BaseRecalibrator required both DBSNP as input and for the DBSNP to be 

indexed specifically with Tabix. The recalibration table output by BQSR was then used as input 

for GATK4’s “ApplyBQSR” tool, completing GATK RNA-seq pre-processing. 

 

2.6 – Ensemble Variant Calling. 

We used an ensemble variant calling strategy in conjunction with the two pre-processing 

methods to reduce false positives and improve confidence in the variants called. For both the 

GATK and OP pre-processed BAM files, we used GATK4’s HC, GATK4’s Mutect2 (MT2 

[170]), and Freebayes (FB [130]). For the OP-only BAM files we also used the PT variant caller, 

which we found was incompatible with the GATK RNA-seq pre-processing method. 

For both FB and PT tools, we used their default settings as no publications have provided 

settings specific for RNA-seq variant calling. However, for HC we included the following 

command line options as recommended by GATK’s RNA-seq best practises: include the DBSNP 

as an input, “dont-use-soft-clipped-bases”, and “stand-call-conf 20.0”. For MT2 we also included 

“dont-use-soft-clipped-bases” and used the genome aggregation database (GNOMAD, 

specifically the “af-only-gnomad.hg38” release [171]) as the input for MT2’s “germline-
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resource” option. Other options for variant filtration were included for both HC and MT2, 

described below. 

Finally, each of our seven different variant calling “methods” (defined as a combination of either 

GATK or OP RNA-seq pre-processing and one variant calling tool) produced a single output file 

in the “Variant Calling Format/VCF” format [172]. Each method’s output will be referred to as 

GATKFB, GATKHC, GATKMT2, OPFB, OPHC, OPMT2, and OPPT. 

 

2.7 – Variant Filtering. 

Variant filtration is a method of improving confidence in the variants called and removing 

potential false positives [173]. Specific filters for RNA-seq data, the HC variant caller, and SNP 

variants were provided by the GATK best practises and included in the pipeline. These filters 

were: a “SNP cluster”, described as three or more SNPs that occurred within a sequence window 

of 35bp; a Fischer-Strand (FS) bias score of below 30.0, which filters out sequencing artefacts 

that occurred predominantly on one of the sequenced strands, and; a Quality-by-Depth (QD) 

value of above 2.0, which is a normalized quality score based on the sequencing depth 

supporting a variant. GATK4’s “VariantFiltration” tool was used to apply these filters 

specifically to the HC VCF files. For the MT2 VCF files we used the MT2-specific filtering tool, 

GATK4’s “FilterMutectCalls”. 

Variants that passed these filters were annotated with a ‘PASS’ in their respective VCF files, 

which allowed us to remove all other variants without this annotation using SnpSift’s “Filter” 

function [174]. These filters needed to be applied before merging a sample’s VCF files as, after 

merging, some variant calling tool-specific annotation, such as HC’s QD values, etc. were lost. 

The OPPT output file also required sorting via Picard’s “SortVCF” to be compatible with 

GATK3’s “CombineVariants” tool, which we used to merge the VCF files produced by each of 

our variant calling methods. 

Within a sample’s “merged” VCF file (which was then “block gzipped” compressed and indexed 

via Tabix), variants that were called by all seven methods possessed the unique annotation “set = 

Intersection”. This annotation was then used to filter for our “highest confidence” variant calls 

further in the pipeline. To first filter for SNP variants, the focus of this study, GATK4’s 

“SelectVariants” tool was used with the command line option “select-type-to-include SNP” on 

the merged VCF files. 

The variants that remained were then annotated with SnpEff to predict their functional impact 

[174, 175], with frame-shift mutations being an example of variants with a putative “high” 

impact. The SnpSift “Annotate” function was used to add variant annotations from known 

variant databases: the “Clinical Variants” database, specifically the available “clinvar” and 

“clinvar_papu” releases (referred to collectively as “ClinVar” [176]); the Exome Aggregation 

Consortium, specifically the “ExAC.r0.3.1.sites.vep” release (referred to as ExAC [177]); the 

Catalogue of Somatic Mutations In Cancer, specifically the “CosmicCodingMuts” release 

(referred to as COSMIC [178]), and; the above mentioned releases for DBSNP and GNOMAD. 
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These annotations were added to help distinguish between germline and somatic variations, e.g. 

variants with COSMIC annotations were more likely to be somatic, etc. 

“SnpSift Filter” was then used remove all variants which lacked the “set = Intersection” 

annotation described above leaving only the highest confidence calls. Given our interest in 

clinically significant variants, “SnpSift Filter” and the command line option “(ANN[0].IMPACT 

has ‘HIGH’)” was used to isolate variants with predicted “high” impact annotation as provided 

by SnpEff. The final VCF files therefore contained only SNP variants called in high confidence 

with putative high impact SnpEff annotations. 

A custom script was then used to compile each variant’s QUAL score to produce a tab-delimited 

text file for further analysis using Microsoft Excel. Finally, statistical outputs for the 

unprocessed, GATK-processed, and OP-processed BAM files were produced using the 

Samtools’ “stats” and “flagstat” functions for comparison. 

 

2.8 – Gene set enrichment analysis with “Enrichr”. 

Gene set enrichment analysis can be defined as a “computational method that determines 

whether a priori defined set of genes shows statistically significant and concordant differences 

between two biological states [179]”. Enrichr [180, 181], is a web-based tool that allowed us to 

perform such an analysis. This was achieved by uploading a gene set that is then compared to 

various databases of existing biological libraries. Enrichr then reported back, giving users 

functional categories in which genes from the input set appear statistically more often than by 

chance. Each of these results were ranked based on a p-value, adjusted p-value, a z-score, and a 

“combined” score. 

Our gene sets consisted of only variant-affected genes that were supported by more than 2 

samples and had an average QUAL score above that of the median QUAL across all variants for 

that data set. For the SK data the following gene sets were produced:  “All” (all variant-affected 

genes across all samples), “CRC” (genes affected by variants in CRC samples), “LM” (as 

previous for LM samples), and “cancerous” (genes whose variants were not observed in NRM 

samples but may have been shared across CRC and LM samples). As the NZ data lacked NRM 

samples, only two gene sets were produced for “CRC” and “LM” as described above, with the 

LM gene set effectively also serving the same purpose as the “All” gene set. 

As well as noting the functional categories that were enriched as part of our analysis, we also 

made a tally or count each time a gene was observed for an Enrichr functional category. The 

tally/count was made provided that entry: could be associated with cancer, such as when an 

Enrichr entry considered cancerous cell lines, signalling pathways relating to cancerous 

hallmarks (e.g. proliferation, angiogenesis, etc.), proto/oncogenes (e.g. TP53, KRAS, etc.); 

pertained to human entries, e.g. provided human gene names and descriptions, etc. and; 

possessed the lowest p-value (<0.01) within that database. For brevity, we only considered genes 

among the highest three tallies for each gene set, our logic being that this would allow us to 
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focus on genes observed frequently in cancerous-related functional categories. These genes and 

their variants are therefore more likely to be involved in oncogenesis. 

 

2.9 – Deleterious SNP predictions with “PredictSNP2”. 

PredictSNP2 is a web-based tool that allowed us to upload a variant’s details in a simplified 

format, allowing deleteriousness to be predicted by a collection of tools [182]. These tools 

included: the Combined Annotation Dependent Depletion (CADD), Deleterious Annotation of 

genetic variants using Neural Networks (DANN), and Functional Analysis through Hidden 

Markov Models (FATHMM), among others. 

PredictSNP2 was specifically used to assess the deleterious nature of the “novel” variant calls, 

defined as “variant calls made in high confidence that lacked clinically significant or explicit 

annotations provided by known databases”. Each of the tools that encompass PredictSNP2 

provided an expected accuracy for their deleterious predictions, with an overall scored based on 

the combined output of these tools. PredictSNP2 was included in our analysis given its ease of 

use, accurate prediction of known pathogenic variants described in our results, as well as 

providing support for the SnpEff high impact annotation where appropriate. 

 

2.10 – Gene expression analysis with Subread’s “featureCounts” and DESeq2. 

To further investigate those novel variants described above, gene expression was analysed using 

a combination of bioinformatic tools. First, gene expression was quantified using the 

unprocessed BAM files after Star2Pass alignment as input for the “featureCounts” software 

[183], found within the Subread 2.0.0 package [184]. This tool outputs the number of reads 

assigned to features or “meta-features” such as exons or genes and some statistical information 

from the overall summation of the results. 

Differential gene expression was then achieved using DESeq2 [185] and reported back as the 

log2 fold change (log2FC) between two compared sample sets. Differential expression was also 

accompanied by an adjusted p-value to indicate statistical significance in the log2FC, for which 

we only considered adjusted p-values below 0.05 as being significant. The computational 

methodology for reproducibility is available at the following link [186]. We then compared the 

average of a gene’s expression across all samples for a given data set against that of the 

“variant’s expression”, i.e. we compared the TPM values for the samples from which a variant 

was obtained against that of the average for that gene’s expression across all samples of the 

relevant data set. 
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3.0 – Results. 

We will first describe the number of reads obtained for each data set after sequencing, providing 

some preliminary statistics that were obtained from the data. Next we show results of comparing 

the performance between the GATK and Opossum (referred to as OP) pre-processing methods 

and our ensemble of variant callers. Our focus then begins to shift towards specific variant calls 

made during our analysis and how they may or may not influence CRC pathogenesis. Table 1 

provides some general statistics obtained from both data sets. 

 

Table 1 – Summary of the NZ and SK data sets. * refers to the exclusion of a problematic sample (CRC335, 50.5 million mapped reads) and its 

paired metastasis (LM335, 213.5 million reads mapped), which would have lowered the average reads mapped per sample to 182.8 million. 

 

3.1 – Statistical and GATK/OP performance comparisons. 

Section 3.1 primarily compares the statistical outputs between the two pre-processing methods in 

order to compare the performances of both the GATK and OP pre-processing methods, to inform 

future studies. This section will also compare the outputs for our various variant calling methods 

that made up our ensemble of variant callers, to justify our use of the “set = Intersection” filter to 

obtain our “high confidence” variants, described below. 

 

3.1.1 – Preliminary statistics obtained for both data sets. 

Here we shall describe some statistics obtained from the NZ and SK data sets, to inform us as to 

any discrepancies between their results. For the SK data (56 samples, 18 normal-tumour-

metastases triplets), over 1.3*109 reads were obtained that were uniquely mapped to the 

reference. This corresponded to between 68.0-83.6% of a samples’ total reads (average 2.41*107 

reads per sample, supplementary material 1). 

Also, we found the average runtime for this data set to be 46 hours, 43 minutes, and 5 seconds 

(46h:43m:05s, supplementary material 1). Runtime was roughly linear with the number of 

uniquely mapped reads and no notable differences had been observed between sample types 

(CRC, NRM, or LM, Figure 1a). After pre-processing, variant calling, and variant filtration, over 

3.70*107 variants (including non-SNP variants) were called for the SK data (supplementary 

material 2). 

Our NZ data (26 samples, 13 tumour-metastatic pairs) included one sample (CRC335) with far 

fewer reads than all other samples. This sample was therefore excluded from further analysis 

along with its paired LM sample (LM335). Despite the removal of these samples, approximately 

1.15*109 reads were uniquely mapped to the reference genome which corresponded to  

Table 1

Data No. of No. of Primary (CRC) Metastatic (LM) Normal (NRM) Reads mapped Average reads mapped

set patients samples samples samples samples (million) per sample (million)

NZ 12* 24* Yes Yes No 120.2*-288.7 187.0*

SK 18 56 Yes Yes Yes 43.7-128.3 90.2
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Figure 1 – Runtime data for the SK data set. 1a – Variant calling runtime appeared roughly linear with number of uniquely mapped RNA-seq 

reads. 1b – On average, GATK RNA-seq pre-processing took longer than OP pre-processing. 1c –The “SplitNCigar” or “HardClip” tool 

contributed most notably to GATK pre-processing runtime. 1d – Generally OP variant calling “methods” (defined as a combination of one pre-

processing method and one variant caller) were quicker to process than their GATK contemporaries, with OPPT being substantially quicker than 

all other methods. 

 

Figure 2 – Runtime data for the NZ data set. 1a – Variant calling runtime again appears roughly linear with number of uniquely mapped RNA-seq 

reads, with the reduced linearity likely because of the reduced number of NZ samples compared to SK. 1b – GATK RNA-seq pre-processing 

again took longer than OP pre-processing on average. 1c –The “SplitNCigarReads/HardClip” tool again contributed most notably to GATK pre-

processing runtime. 1d – As with the SK variant calls, generally the same trends were seen for GATK vs. OP variant calling methods with one 

exception, as OPMT2 took substantially longer than all other methods. OPPT remained the fastest combination in comparison. 
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between 70.8-87-8% of a samples’ total reads. An average of 4.79*107 reads were obtained per 

sample with an average runtime of 97h:47m:48s (supplementary material 3), and over 2.79*107  

SNP and non-SNP variants were called across these samples (supplementary material 4). 

Runtime again appeared roughly linear to the number of uniquely mapped reads (Figure 2a). 

 

3.1.2 – More differences were noted between GATK and OP pre-processed files than between 

CRC, NRM, and LM sample types. 

To inform future studies on RNA-seq variant calling, we compared the performance of the two 

RNA-seq pre-processing methods. For the SK data, on average OP pre-processing took 

2h:41m:03s while GATK pre-processing took 3h:50m:20s (Figure 1b). Similar was seen for the 

NZ data (GATK’s average of 7h:23m:11s vs. OP’s average of 4h:53m:32s, Figure 2b). For both 

data sets the step “SplitNCigarReads” (referred to as “HardClip” in Figures 1c and 2c) 

contributed the most to the GATK pre-processing runtimes. Variant calling for GATK BAM 

files also took longer generally for both data sets than for the OP BAM files with one exception 

described below. For both data sets, the variant calling “method” (defined as a combination of 

one pre-processing method and one variant calling tool) of OP pre-processing and the Platypus 

or “PT” (referred to as OPPT) was notably quicker in calling variants than all other methods. 

This method average runtime was 00h:03m:30s for the SK data and 00h:18m:52s for the NZ 

data, while all other methods took at least four hours to call variants (Figures 1d and 2d). The 

one exception described above was the variant calling method which combined OP with Mutect2 

(referred to as OPMT2) which took over five hours longer than its contemporary method 

(GATKMT2) for the NZ data (17h:24m:06s vs.11h:39m:58s, Figure 2d). 

We then investigated the statistical outputs provided by the Samtools “stats” and “flagtstat” 

options. When detailing a Samtools output, the tool that provided the output (i.e. stats or flagstat) 

will be used to prefix that output (e.g. “flagstat: properly paired”, “stats: reads properly paired”, 

etc.). For the SK data, the unprocessed BAM file outputs for “flagstat: properly paired”, 

“flagstat: both in a pair mapped”, “stats: reads mapped”, “stats: reads mapped and paired”, and 

“stats: reads properly paired” were of equal value. This value differed for GATK BAM files but 

was shared across the same outputs described above (supplementary material 5). Similar was 

observed for the NZ data: “flagstat: properly paired”, “flagstat: both in a pair mapped”, “stats: 

reads mapped and paired”, and “stats: reads properly paired” were equal values within a sample, 

however the output for “stats: reads mapped” differed numerically (supplementary material 6). 

Regardless of data set, both the unprocessed and OP BAM file outputs for “Stats: reads 

duplicated/Flagstat: duplicates” was 0, while the GATK BAM files provided a different value for 

each sample. Similarly, the OP BAM files also reported 0 values for: “Stats: non-primary 

alignments/Flagstat: secondary”, “Stats: reads paired/Flagstat: paired in sequencing”, “Stats: 

reads properly paired/Flagstat: properly paired”, “Stats: reads mapped and paired/Flagstat: both 

in a pair mapped”. This meant that some more meaningful comparisons between GATK and OP 

BAM files required using different outputs between pre-processing methods, e.g. GATK’s “stats: 

reads mapped and paired” output against the OP output for “stats: reads mapped”.  
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Figure 3 – Comparison of statistical outputs for the SK data’s CRC, NRM, and LM BAM files. For all comparisons (3a – Averages of raw total 

reads, 3b – Averages of reads mapped, 3c – Averages of bases mapped (cigar), 3d – Averages of read length, and 3e – Averages of read quality), 

little if any differences appeared to exist between different sample types. Error bars display one standard deviation where available. 

 

Figure 4 – Comparison of statistical outputs for the NZ data’s CRC and LM BAM files. Like the SK data above, little if any differences were 

observed between different the two sample types for all comparisons (4a – Averages of raw total reads, 4b – Averages of reads mapped, 4c – 

Averages of bases mapped (cigar), 4d – Averages of read length, and 4e – Averages of read quality). Error bars display one standard deviation 

where available. 
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Figure 5 – Comparison of statistical outputs for the SK data’s unprocessed, GATK pre-processed, and OP pre-processed BAM files. 5a – OP 

produced lower average of raw total reads compared to both GATK and unprocessed with GATK producing more. 5b – Similar was seen for 

averages of mapped reads as for raw total reads, likely because of GATK splitting reads. 5c – OP provided the lowest average for bases mapped 

(cigar). 5d – Both GATK and OP averages of read length were reduced compared to unprocessed data. 5e – OP produced a higher average of 

read quality, with GATK producing less than when unprocessed. Error bars display one standard deviation where available. 

 

Figure 6 – Comparison of statistical outputs for the NZ data’s unprocessed, GATK pre-processed, and OP pre-processed BAM files. Previous 

trends seen for the SK data’s averages for raw total reads (6a), mapped reads (6b), and bases mapped (cigar, 6c) were more notable for the NZ 

data, possibly due to increased sequencing depth. Averages of read length (6d) and read quality (6e) were like what had been seen previously. 
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Regardless of pre-processing, no major differences appeared to exist between sample types 

(CRC, LM, or NRM, Figures 3a-e, 4a-e). Greater differences were observed when comparing 

averages between the unprocessed and pre-processed files. For the SK data, GATK consistently 

produced a higher average for “raw total reads”, “reads mapped”, and “bases mapped (cigar)” 

than OP for both data sets (Figures 5a-c, 6a-c). GATK’s averages for “raw total reads” and 

“reads mapped” was also higher, though less notably, in comparison to the unprocessed averages 

(Figures 5a-b, 6a-b). GATK also output slightly lower averages for “bases mapped (cigar)” than 

the unprocessed BAM files (Figures 5c and 6c). Both GATK and OP had reduced averages for 

“read length” compared to the unprocessed files, with OP files showing a slightly higher average 

than GATK (Figures 5d and 6d). OP also displayed notably higher averages of “read quality” 

than GATK. For the NZ data’s unprocessed and OP BAM files, the averages were more similar 

than for the SK data. GATK also produced slightly lower averages for “read quality” than the 

unprocessed files (Figures 5e and 6e).  

The starkest difference between pre-processing methods were the values for “maximum read 

length”. GATK allowed for much longer maximum lengths (SK data average 9.83*105, NZ data 

average 1.57*106) while OP appeared to have a hard threshold at 201 for the SK data, roughly 

double the SK data’s RNA-seq 101bp read length (supplementary material 5). Like the OP BAM 

files, the unprocessed files also had a hard threshold for the length of the reads at 101bp. A 

similar but not identical observation was made for the NZ data, whose sequencing read length 

was 151bp. While the unprocessed BAM files reflected this (maximum read length 150bp), the 

OP files maximum read length ranged from 297-299bp (supplementary material 6). 

 

3.1.3 – GATK pre-processing appears less specific/more sensitive than OP pre-processing. 

To complement our above results assessing differences between pre-processing methods, we 

then compared the variant calling performance after pre-processing to inform future studies. We 

first wanted to justify our use of using an intersection of seven different methods to increase our 

confidence in the variants called. One way we could demonstrate this is how our intersection 

increased variant calling specificity which likely also limited the number of false positive calls in 

our results. 

A custom script was used to count how many variants were called by the 127 different 

combinations of methods employed in our methodology. This allowed us to then count the total 

number of variants called for each sample, which methods contributed to those calls, and how 

many variants were annotated by the DBSNP. As an example, when investigating the number of 

variants called by the GATKFB method, we searched each of the different combinations or 

“sets” which included this tool (“set = gatkfb”, “set = gatkfb | gatkhc”, “set = Intersection”, etc. 

supplementary materials 7-11). 

Tables 2 and 3 show the number of variant calls, including non-SNP variants, made by a single 

tool in comparison to the intersection of all seven tools for the NZ and SK data sets, respectively. 

However, it must be noted that while the Freebayes (FB), HaplotypeCaller (HC), and Mutect2 

(MT2) tools all had access to both pre-processed BAM files, PT only had access to one kind of  
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Tables 2 and 3 – Comparison of variant calls made by individual tools compared against the intersection of seven methods for the SK and NZ 

datasets, respectively. Here we see that the intersection of all seven methods reduced the number of variants (which likely included false 

positives) in comparison to the individual variant callers. 

 

pre-processed file (OP). With this in mind, we see that our intersection of seven callers did 

increase specificity and limited the number of calls in comparison to the calls made by the FB, 

HC, and MT2 tools. FB provided vastly more variant calls than all other tools. 

Satisfied that our intersection of variant calling methods had increased specificity, we then 

considered how many of these variants would be likely true positives. As RNA-seq data lacks 

any truth sets, we decided to use existing annotations provided by the DBSNP (which can 

annotate both known SNP and non-SNP variants) as support for a variant being more likely a 

true positive call. 

It must be noted that the sporadic nature of somatic variants means that they are less likely to be 

annotated, and so unannotated variants are not definitively false positives. This is especially true 

for MT2, which is more specifically a somatic variant caller and so is more likely to make calls 

that would not be annotated. We considered making a similar comparison using the Catalogue of 

Somatic Mutations in Cancer (COSMIC) annotations but the preliminary results for this 

approach (not included in this study) resulted in far fewer variant annotations, and showed little 

if any differences in the trends seen when focusing on the DBSNP annotations. For example, the 

variant calling method with the most DBSNP annotations was the same when looking for the 

most COSMIC annotations, etc. 

Figure 7 shows the percentage of annotated variants (including non-SNP variants) for each of our 

methods against that of the intersection. Each data set (SK and NZ) were separated into sample 

subtypes (e.g. CRC, NRM, and LM where appropriate). Figure 7 shows that the intersection 

retained a reasonable percentage of annotated variants (over 60% and 40% of the known SK and 

NZ variants, respectively) compared to our other methods. A higher percentage of variants were 

annotated by both the HC and PT tools, but they also lacked the specificity of the intersection 

annotation. This is perhaps best demonstrated by the FB tools’ lower percentage for the SK data, 

which was sequenced at a shallower depth compared to the NZ data, whereas our intersection’s 

percentage increased as depth decreased. As expected, the MT2 tool provided the fewest number 

of annotated variants. 
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Figure 7 – Percentage of DBSNP annotated variants called by our ensemble of variant calling methods. For all comparisons, GATKHC, OPHC, 

and OPPT had a higher percentage of variant calls in comparison to the intersection. For the NZ samples specifically (Figs 7a, 7b), The 

percentage of annotated GATKFB variants was comparable to the intersection, with the OPFB method having a higher percentage of annotated 

variants. This changed for the SK samples (Figures 7c-e), with the lower sequencing depth seeming to influence the number of variants that could 

be annotated by FB. MT2 consistently annotated the fewest variants for all samples. As MT2 is primarily a somatic variant caller, it is more likely 

to make novel variant calls that have not been annotated by any database. While the intersection did not annotate as high a percentage of variants 

as some individual tools, it possessed the increased specificity discussed above and would include somatic variant calls thanks to the inclusion of 

MT2. 

 

After this comparison, we then compared SNP variant calls specifically and found that, for the 

SK data, FB again contributed most calls to the total, approximately 2.24*107. HC called an 

order of magnitude fewer SNP variants than FB (4.39*106), while MT2 contributed the fewest 

(2.83*106). Interestingly for the SK data, PT contributed the third highest number of variants 

(2.89*106) despite its runtime and calling variants from only OP BAM files, while all other tools 

had access to both pre-processed BAM files (Figure 8a). 

We then considered how many of the SK SNP variants had been called in concordance between 

both pre-processing methods, rather than being exclusive to one method. For example, variants 

with both “gatk” and “op” annotations ( “set = gatkfb | gatkhc | opfb”, “set = Intersection”, etc.) 

were considered “concordant” variant calls between pre-processing methods. Conversely, those 

with annotations like “set = gatkfb | gatkc”, “set = opfb | ophc”, are examples of “GATK only” 

or “OP only” exclusive variants, respectively. 

This was followed by investigating how many SNP variants had been called by individual tools. 

If we used FB as our example again, a call was considered in concordance if both of that tool’s 

methods contributed to the call (e.g. any set annotation with both “gatkfb” and “opfb”). 

Discordant calls, meanwhile, possessed only one of these methods. This comparison could not be 

made for the PT tool which could only be used with OP pre-processed BAM files. 
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Figure 8 – SK variant calls and GATK/OP concordance. 8a – FB outperformed all other tools regarding the number of variant calls made. PT 

performed well despite having access to only the SK OP BAM files. 8b – All variant calls made between GATK and OP BAM files. Most calls 

(52%) were made in concordance between BAM files. GATK again seems more sensitive (28%) and OP more specific (19%). 8c - HC variant 

calls showed the highest consensus between pre-processing (77%), likely because of the HC-specific filters available to both pre-processing 

methods. GATK remained more sensitive than OP (19% vs. 3% respectively). 8d - FB variant calls were like the results seen for all variants: 56% 

in concordance, 31% GATK only and 13% OP only. 8e – Despite being part of the GATK set of tools, an overwhelming number of MT2 variant 

calls came from the OPMT2. 

 

When considering all SK SNP variants, most (52%) were concordant between pre-processing 

methods, with 28% being GATK only and 19% OP only (Figure 8b). When considering variants 

that were called by HC, a much higher number were called in concordance than any other 

method (77%), leaving 19% as GATKHC only and 3% OPHC only (Figure 8c). The FB tool’s 

results were akin to comparing all SNP variant calls: 56% were concordant, 31% were GATKFB 

only, and 13% OPFB only (Figure 8d). Despite OP being designed primarily for PT, and MT2 is 

a component of the Genome Analysis Toolkit, most MT2 SNP variant calls where OPMT2 only 

(72%), leaving 16% in concordance and 7% GATKMT2 only (Figure 8e). 

For the NZ data, FB again contributed the highest number of SNP variant calls (1.57*107), which 

was followed by MT2 at 8.74*106. HC contributed the third highest number of variants 

(8.22*106), and PT called the least at 4.16*106 variants, roughly half that of MT2 and HC 

(Figure 9a). Less concordance was seen for the NZ data compared to the SK data. 40% of all 

variants were concordant between pre-processing methods, with both GATK-only and OP only 

variant calls making up 30% of the total each (Figure 9b). HC again provided the highest 

concordance between methods, but the NZ result was much lower than the SK result at 57%, 

leaving 37% as GATKHC only and 6% for OPHC only (Figure 9c). For FB, the OPFB only 

variants were also just 6%, with concordant calls making up 49% of the total leaving 45% to 

GATKFB only (Figure 9d). Little changed for the NZ MT2 variant calls compared to the SK  
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Figure 9 – NZ variant calls and GATK/OP concordance. 8a - FB again contributed the most variants calls to the NZ total. PT performance 

dropped to roughly half the values seen for HC and MT2. 8b – Most variants were still made in concordance between pre-processing methods, 

but not to the same extent seen previously. 8c – HC-specific variant calls maintained higher concordance between pre-processing methods, but 

was again lower compared to previous results. 8d – OP retained its specificity for FB-specific variant calls, while GATK only and consensus 

variant calls were now more comparable than for the SK data. 8e – The majority of MT2 variant calls still came from OP-MT2. 

 

data with most calls being OPMT2 only (78%), leaving 12% in concordance and 10% for 

GATKMT2 only (Figure 9e). 

 

3.1.4 – The ClinVar, COSMIC and DBSNP data bases helped discern between variant types and 

true positives. 

Despite using an ensemble of seven different methods which must intersect to be considered 

variants of “high confidence”, our results still returned a high number of SNP variant calls. We 

then applied various additional filters to try and limit this to a more reasonable number of 

variants for analysis. To achieve this, we selected for variants which: possessed high impact 

annotations provided by SnpEff, had been called in high confidence for at least two samples, and 

possessed an average QUAL value (an annotation provided by HC, retained after merging VCF 

files, and is indicative of variant quality) that was above that of the median QUAL score for all 

variants within a data set that were supported by multiple samples. 

For the SK data, this returned 333 intersecting SNP variant calls that were also annotated with a 

“high impact” annotation via SnpEff, 167 of which were supported by more than one sample. 84 

variants remained after filtering based upon the SK data’s median QUAL value (QUAL = 

586.9333), 73 of which were found in CRC samples, 54 in NRM, 78 in LM, and 30 were shared 

between both CRC and LM but not NRM (supplementary material 12). For the NZ data set’s 
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variants, 342 were intersecting SNPs with “high impact” annotations. 107 of these variants were 

supported by more than one sample. 54 of these variants possessed an average QUAL value 

above that of the median QUAL scores for the NZ data set (QUAL = 412.7679), of which 47 of 

these variants were obtained in CRC samples and 53 from LM samples (supplementary material 

13). 

Like when we used the DBSNP to support a variant call as a likely true positive, we could also 

use this and other databases, such as the Clinical Variants (ClinVar) and Catalogue of Somatic 

Mutations in Cancer (COSMIC), to help us distinguish between germline and somatic variant 

calls and assess our variant calling methodology. When describing these database annotations 

below, DBSNP IDs were prefixed with “rs”, COSMIC IDs prefixed with “COSM”, while 

ClinVar IDs were a purely numerical value. 

As well as explicitly describing known variants as germline/somatic or benign/pathogenic based 

on their annotations, the absence of any annotations and the samples from which they were 

called could also be useful. For example, variants called only in the SK data’s NRM samples 

were more likely to be benign germline variants, whereas those only called in cancerous samples 

were more likely to be somatic and pathogenic. 

Of the SK data’s 54 NRM variants, which were more likely germline and benign rather than 

somatic and pathogenic, 11 had ClinVar annotations that were all were described as germline 

(three “benign”, four “likely benign”, three of “uncertain significance”, and one “pathogenic”). 

Seven of the remaining 43 variants possessed COSMIC annotations (three with multiple IDs), 

five of which had been excluded from the COSMIC website as part of the COSMIC team’s 

efforts to reduce noise from hypermutated samples [187]. For the remaining two, one had been 

observed as somatic but also neutral with regards to pathogenicity, while the other had been 

observed both somatic and pathogenic. 

This left 36 variants, of which 30 possessed DBSNP IDs, leaving the remaining six unannotated. 

One DBSNP ID (rs1021487491) had been merged with another (rs477171), the latter of which 

also possessed a ClinVar ID (129251) suggesting this variant was germline. While none of the 

remaining DBSNP annotations provided any clinical information, they did support these variant 

calls as being true positives. 

 

3.2 – Notable variants called during analysis. 

Section 3.2 shifts our focus towards specific variants that were called as part of this analysis, and 

how they may pertain to CRC pathogenesis. We first noted frequent variant calls made to 

understand if they are likely pathogenic or benign. We then considered the possibility that, for 

the SK data, variants may have been called in “cancerous” (CRC, LM) samples with high 

confidence, but less stringently (in that they possessed a “set” annotation other than the 

Intersection) in its paired normal sample. This could then be investigated by searching for a 

“cancerous” variant’s position within the NRM VCF file before applying the intersection filter. 



30 

 

We then used gene set enrichment analysis via Enrichr to assess if our gene sets likely pertain to 

cancer, as well as observing which genes were frequently observed in Enrichr’s oncogenic 

functional categories. We then used PredictSNP2 to make deleterious predictions about some of 

our more “novel” variant calls which lacked more definitive clinical annotations (i.e. 

ClinVar/COSMIC annotations explicitly stating if they were somatic and/or pathogenic) before 

more closely studying the individual VCF entries for those novel variants. Finally, we used 

differential gene expression to further investigate these more novel variants to interpret possible 

mechanisms by which they could exacerbate CRC pathogenesis. 

 

3.2.1 – Some of the most frequent variant calls were germline and benign across both data sets. 

We first considered genes that were frequently called for as variants in our analysis. These 

variants could either be common germline benign SNPs with no involvement in CRC, or somatic 

variants with pathogenic implications so profound that they are common to CRC cases. 

Gene variants called in high frequency for the SK data set were for the HECT, UBA and WWE 

domain containing E3 ubiquitin protein ligase 1 (HUWE1, 51 samples), glucose-6-phosphate 

dehydrogenase (G6PD, 50 samples), and KIAA1161 (also known as myogenesis regulating 

glycosidase or MYORG, 11 samples) genes. The HUWE1 and G6PD gene variant’s ClinVar 

annotations (129251 and 470162 respectively) were both described as benign. The KIAA1161 

gene variant also seems unlikely to be pathogenic given how frequently it was observed in our 

SK samples (19.6%) and yet possessed only a DBSNP annotation. A somatic, pathogenic variant 

this frequent would be unlikely to lack a clinically significant annotation. 

The TP53 gene was affected by the most diverse variants that were called in high confidence 

(five different for the SK data and two for the NZ data). All these SNP variants occurred between 

positions 7,673,793-7,674,948, and for the SK data were also absent from any SK NRM samples. 

One KRAS gene variant (position 25,245,347) was observed in high confidence for five 

cancerous samples for both data sets and was also absent from SK NRM samples. This result 

suggests that this is likely a somatic variant, which was also called less stringently in other 

cancerous samples. These variants for the TP53 and KRAS genes will be described in more detail 

in sections 3.2.2 and 3.2.3 below. 

The second-most frequent variant that was called exclusively in SK cancerous samples and 

pertained to the fatty acid synthase gene (four samples, position 82,084,074). However, this 

variant was both annotated with a germline and benign ClinVar annotation (462162) and was 

found less stringently called in six NRM samples before filtering. All other variants were 

supported by one CRC and one LM sample. Two of these variants were both annotated with 

benign ClinVar IDs and called less stringently in their respective NRM sample. Of the 13 

variants with COSMIC IDs (excluding the TP53/KRAS variants above), six were called in NRM 

samples before filtering, five of which had also been excluded from the COSMIC website as 

described previously. 
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Of the seven variants that remained, five possessed DBSNP IDs (including one for kinesin-like 

protein 9 or KIF9). However, only one variant for aldehyde dehydrogenase 1 family member A2 

(ALDH1A2) had not been called less stringently in any NRM samples and so was putatively 

somatic. The remaining two unannotated variants were called in the calpin 2 (CAPN2) and scm 

polycomb group protein homolog 1 (SCMH1) genes. While the CAPN2 gene variant was called 

less stringently in the respective patient’s NRM sample, the SCMH1 gene variant was not and so 

was also putatively somatic. Two additional gene variants were exclusive to LM samples: one 

for itchy E3 ubiquitin protein ligase or ITCH (position 34412548), and one for cytoplasmic 

FMR1 interacting protein 1 (position 22914854). That said, the ITCH variant’s ClinVar ID 

(538759) suggested it was both germline and benign, and both variants had been called less 

stringently in their respective NRM VCF files.  

As the NZ data lacked NRM samples to help identify putative germline/benign variants, we 

became reliant on database annotations in this regard. Of the 54 NZ variants, 37 possessed 

DBSNP annotations, 15 possessed COSMIC annotations, and nine with ClinVar annotations. 

Four of the most frequently affected gene for the NZ data set (With the fifth being TP53) 

included the same HUWE1 (24 samples) and G6PD (23 samples) gene variants described above. 

Other frequent variants for the NZ data set included ones for the cytochrome p450  family 3 

subfamily A member 5 (CYP3A5, 20 samples), and DExD-box helicase 52 (DDX52, 9 samples) 

genes, which were also annotated by the DBSNP. Like the KIA1161 gene variant above, the 

frequency of both the CYP3A5 and DDX52 gene variants and their lack of clinically significant 

annotations could suggest they are not somatic and pathogenic. 

Of the seven with ClinVar annotations (excluding HUWE1 and G6PD above), two were 

described as benign, one likely benign, one of uncertain significance, one likely pathogenic, and 

two pathogenic. Of the 15 COSMIC annotations, two had been excluded from the COSMIC 

website, one of which also possessed a benign ClinVar annotation. For the remaining 13 

COSMIC IDs, all but one (COSM4640837) were described as having been observed somatic 

while all were predicted to be pathogenic. None of the DBSNP IDs readily helped identify any of 

the NZ data’s variants as being germline, somatic, benign, or pathogenic. More specific details 

for some of these variants are available in Table 4. 

 

3.2.2 – Various oncogenic processes were enriched following gene set enrichment analysis. 

In order to better understand what oncogenic processes were driving CRC and LM in our data 

sets, and focus on variant-affected genes that more likely to contribute to oncogenesis, we used 

the web-based gene set enrichment analysis tool Enrichr [180, 181]. 

Before compiling our sets of genes required for Enrichr analysis, genes affected by variants 

annotated with benign ClinVar annotations and those with COSMIC IDs that had been excluded 

from the COSMIC website were removed. For the SK data set, this resulted in the following 

gene sets: “All” (60 genes), “CRC” (54 genes), and “LM” (57 genes, supplementary material 

14). The NZ data’s lack of normal samples meant only two gene sets were produced for  
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Table 4 – Germline/somatic and benign/pathogenic variant calls supported by known databases. Variants with coloured backgrounds were the 

same across both data sets. TP53* acknowledges that multiple TP53 variants were called for both data sets with only one given as an example for 

this table. ** refers to only high confidence calls, with lower confidence calls having been made for the respective samples highlighted. 

 

CRC and LM samples, consisting of 42 and 46 genes respectively (supplementary material 15, 

Table 4). One other gene set for the SK data was proposed (“cancerous” variants shared between 

CRC and LM samples) but as it contained so few genes (17) we found it could not provide a 

meaningful gene set for enrichment analysis. 

Table 5 details the functional categories that were observed as part of our Enrichr analysis. These 

functional categories possessed one of the lowest, if not the lowest, p-value for that functional 

category. We can see from this table that various cancers that were explicitly stated by Enrichr, 

with others having clear connotations with either the hallmarks of cancer (e.g. Panther 2016: 

Apoptosis signalling pathway Homo sapiens) or CRC specifically (e.g. Jensen TISSUES: 

Intestine). 

For brevity, we then considered the three most observed genes for each Enrichr functional 

category. Genes involved in multiple oncogenic processes were more likely to play an important 

role in CRC pathogenesis. Details for how these observations were recorded are described in 

section 2.8. 

For all gene sets, TP53 was consistently among the most observed variant-affected genes, while 

the MAPK1 gene was among the most observed for three gene sets (SK all, SK CRC, and SK 

LM). The tyrosine-protein kinase Met (MET) and SWI/SNF related matrix associated actin  

Table 4

Gene Variant Total samples CRC samples LM samples NRM samples Known IDs Germline/Somatic Benign/Pathogenic

HUWE1 X:53534126,T>C 51 18 17 16 rs1021487491/rs477171;129251 Germline Benign

G6PD X:154532439,A>G 50 16 17 17 rs2230037;470162 Germline Benign

KIAA1161 9:34372875,G>C 11 4 4 3 rs4879782 Unknown Unknown

KRAS 12:25245347,C>T 5 2 3 0 rs112445441;COSM1140132;12580 Somatic Pathogenic

FASN 17:82084074,G>A 4** 1 3 0** rs45557233;462063 Germline Benign

TP53* 17:7674230,C>T 2 1 1 0 rs28934575;COSM121035;12365 Somatic Pathogenic

KIF9 3:48288340,C>A 2** 1 1 0** rs76198671 Unknown Unknown

ALDH1A2 15:58138445,A>G 2 1 1 0 rs1230944831 Unknown Unknown

CAPN2 1:223755650.G>T 2** 1 1 0** . Unknown Unknown

SCMH1 1:41113329,G>A 2 1 1 0 . Unknown Unknown

ITCH 20:34412548,T>C 2 0 2 0** rs3761146;538759 Germline Benign

CYFIP1 15:22914854,C>T 2 0 2 0** rs147012760 Unknown Unknown

Gene Variant Total samples CRC samples LM samples NRM samples Known IDs Germline/Somatic Benign/Pathogenic

HUWE1 X:53534126,T>C 24 12 12 - rs1021487491/rs477171;129251 Germline Benign

G6PD X:154532439,A>G 23 12 11 - rs2230037;470162 Germline Benign

CYP3A5 7:99672916,T>C 20 11 9 - rs776746 Unknown Unknown

DDX52 17:37628628,T>C 9 4 5 - rs7224513 Unknown Unknown

TP53* 17:7675088,C>T 6 2 4 - rs28934578;COSM10648;12374 Germline Pathogenic

KRAS 12:25245347,C>T 5 3 2 - rs112445441;COSM1140132;12580 Somatic Pathogenic

KIAA1161 9:34372875,G>C 4 2 2 - rs4879782 Unknown Unknown

ABHD12 20:25300697,G>A 2 1 1 - rs1046073;337987 Germline Benign

AMFR 16:56326967,C>T 2 1 1 - rs759617526;COSM5513199 Somatic Pathogenic

CARM1 19:10920494,C>T 2 1 1 - COSM7270215 Somatic Pathogenic

DSP 6:7584384,C>T 2 0 2 - rs2076300;COSM150043;44947 Germline Benign

KDM6A X:45089908,T>C 2 1 1 - rs142238688;471949 Germline Benign

SK Data

NZ Data



33 

 

 

Table 5 – Notable enriched functional categories obtained from Enrichr gene set enrichment analysis. The 60 and 46 genes included for the SK 

and NZ gene sets respectively excluded variants annotated as benign/likely benign from their ClinVar annotations of COSMIC IDs that had been 

excluded from the respective website. The gene names specified in the right-most column are those that become more relevant in later sections of 

our analysis. 

 

dependant regulator of chromatin subfamily A member 4 (SMARCA4) genes were one of the 

most observed for two different gene sets each. MET being frequently observed for the SK all 

and SK LM gene sets, while SMARCA4 was frequently observed for both NZ gene sets. This left 

the Janus kinase 1 (JAK1), histone deacetylase 1 (HDAC1), and the RAC-alpha serine/threonine 

protein kinase 1 (AKT1) genes, which all were among the most observed affected genes for one 

gene set each (SK CRC, NZ CRC, and NZ LM respectively, Table 6). 

The TP53 gene was found to possess multiple variants in our results. For the SK data, all but one 

of the five TP53 variants possessed both DBSNP and ClinVar IDs, while all possessed COSMIC 

annotations. For those five variants with ClinVar annotations (12365, 127814, 127819, 182935, 

and 376617), all but one SNP was described as either pathogenic or likely pathogenic, containing 

a mix of germline and somatic submissions. The variant that was not explicitly stated as either 

pathogenic or likely pathogenic (182935) possessed five submissions described as germline 

(three likely pathogenic, one pathogenic, and one unknown), and five somatic (all likely 

pathogenic). 

The SK TP53 gene variant with only COSMIC annotations (e.g. COSM10756) was described as 

observed both somatic and pathogenic. For the NZ data, one TP53 gene variant possessed 

DBSNP, COSMIC and ClinVar IDs (ID 12374) which had been called in six samples and 

described as both germline and pathogenic. The remaining TP53 variant was annotated with only 

COSMIC IDs (e.g. COSM5755152) was both observed somatic and pathogenic. 

Data set No of genes Functional category Notable entry p-value Genes involved Including

SK 60 BioPlanet 2019 Pathways in cancer 5.47E-06 8 MAPK1, TP53, MET, JAK1

WikiPathways 2019 human TCA Cycle Nutrient Utilization and Invasiveness of Ovarian Cancer 8.80E-04 2 MAPK1, JAK1

KEGG 2019 Human Pathways in cancer 2.67E-05 9 MAPK1, TP53, MET, JAK1

BioCarta 2016 Stat3 Signalling Pathway Homo sapiens 2.45E-04 2 MAPK1, JAK1

Reactome 2016 TNFR1-induced NFkappaB signalling pathway Homo sapiens 6.35E-05 3 OTUD7B

NCI-Nature 2016 IFN-gamma pathway Homo sapiens 2.34E-04 3 MAPK1, JAK1

Panther 2016 Apoptosis signalling pathway Homo sapiens 1.37E-05 5 MAPK1, TP53

GO Biological Process 2018 Negative regulation of apoptotic process 1.33E-05 9 TP53, MET, JAK1

GO Cellular Component 2018 Focal adhesion 1.06E-05 8 CAPN2, MAPK1, JAK1, TP53, MET

Jensen TISSUES Intestine 3.58E-09 38 CAPN2, MAPK1, TP5, MET

ClinVar 2019 Heptocelular carcinoma 2.13E-06 3 MET, TP53

DisGeNET Mammary neoplasms 1.02E-09 26 CAPN2, MAPK1, JAK1, TP53, MET

OMIM Expanded Hepatocellular carcinoma 1.24E-04 4 TP53, MET, JAK1

Rare diseases GeneRIF ARCHS4 Predictions Malignant cylindroma 7.95E-09 9 CAPN2

Rare Diseases GeneRIF Gene Lists Malignant mesothelioma 2.10E-06 6 MAPK1, TP53, MET

Rare Diseases AutoRIF Gene Lists Primary effusion lymphoma 3.94E-05 5 MUM1, MAPK1, TP53, JAK1

NZ 46 BioPlanet 2019 Wnt signaling pathway 4.13E-07 7 AKT1, TP53

WikiPathways 2019 human Oncostatin M Signaling Pathway 1.50E-05 4 AKT1, KRAS, TP53

KEGG 2019 Human Central carbon metabolism in cancer 1.50E-05 4 AKT1, KRAS, TP53

BioCarta 2016 Apoptotic Signaling in Response to DNA Damage Homo sapiens 4.07E-06 3 AKT1, TP53

Reactome 2016 Deactivation of the beta-catenin transactivating complex Homo sapiens 2.57E-06 4 XPO1, AKT1

NCI-Nature 2016 Glucocorticoid receptor regulatory network Homo sapiens 1.23E-06 5 AKT1, TP53

Panther 2016 p53 pathway feedback loops 2 Homo sapiens 1.51E-04 3 AKT1, KRAS, TP53

GO Cellular Component 2018 Chromatin 5.69E-05 6 TP53, MET, JAK1

Human Phenotype Ontology Transitional cell carcinoma of the bladder 1.70E-05 3 AKT1, KRAS, TP53

Jensen TISSUES Intestine 1.11E-08 31 XPO1, AKT1, SHISA5, KRAS, TP53

Jensen DISEASES Thyroid cancer 9.07E-06 3 AKT1, KRAS, TP53

ClinVar 2019 Neoplasm of the breast 3.20E-05 3 AKT1, KRAS, TP53

DisGeNET Granulosa cell tumour 1.36E-07 5 AKT1, KRAS, TP53

OMIM Disease Breast cancer 1.88E-03 2 AKT1, TP53

Rare Diseeases GeneRIF ARCHS4 Predictions Rectosigmoid neoplasm 6.23E-06 6 XPO1, AKT1

Rare Diseases GeneRIF Gene Lists Pancreatic cancer 6.65E-08 7 AKT1, KRAS, TP53

Table 5
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Table 6 – Enrichr counts between the SK all, SK CRC, SK LM, NZ CRC, and NZ LM gene sets.  Gene names were counted if observed within 

the Enrichr functional category that pertain to human genes, cancer or related processes, and with a p-value below 0.01. TP53 was the most 

frequently observed gene across all gene sets, followed by MAPK1. TP53 also possessed the most variants for those genes and so possessed 

multiple annotations (mostly somatic, with one germline variant) with explicitly pathogenic annotations. While MET and SMARCA4 are both 

genes with proto-onco implications, both variants appear to be under investigation given their uncertain significance annotation. No other 

frequently observed variants possessed explicitly pathogenic annotations. 

 

All the remaining genes with high Enrichr counts were affected by only one high confidence 

variant. The MET gene variant possessed DBSNP, COSMIC, and ClinVar annotations. The 

COSMIC annotation (COSM3995297) described the variant as having been observed both 

somatic and pathogenic, while its ClinVar ID (411875) described it as both germline and of 

uncertain significance. The SMARCA4 gene variant’s ClinVar annotation (486461) was also 

observed as germline and of uncertain significance. Of the remaining four gene variants without 

COSMIC/ClinVar annotations, both JAK1 and HDAC1 possessed only DBSNP annotations 

(rs758343641 and rs779483240 respectively), leaving the MAPK1 and AKT1 gene variants 

completely unannotated. Both the MAPK1 and AKT1 gene variants were seemingly “novel” 

given their lack of explicitly pathogenic annotations, i.e. ClinVar/COSMIC IDs that explicitly 

stated some degree of pathogenicity. 

 

3.2.3 – Some variant calls were “unanimously” predicted deleterious by PredictSNP2. 

After finding some putatively “novel” variants described above, i.e. those affecting known 

oncogenic targets and which lacked explicitly pathogenic annotations provided by COSMIC and 

ClinVar, we then used the absence of these annotations as an opportunity to find more novel 

variants which may play a role in CRC pathogenesis. 

For variants without the above annotations, we used PredictSNP2 [182], a web-based tool that 

predicts the deleteriousness of genetic variants, to compliment the functional impacts already 

predicted by SnpEff. As this tool uses an ensemble of tools to predict deleteriousness, variants 

that were predicted as deleterious by all of PredictSNP2’s tools were referred to as 

“unanimously” deleterious.  

Initially we assessed the accuracy of PredictSNP2 by using two known pathogenic variants for 

the KRAS and TP53 genes. Our logic was that if PredictSNP2 predicted these known pathogenic 

variants as deleterious, this would support the accuracy of the tool. Table 7 shows that both the 

TP53 and KRAS gene variants were predicted as deleterious with the same expected accuracy of 

87%. Of the five individual tools comprising PredictSNP2, TP53 gene variant was  

Table 6

Gene SK All SK CRC SK LM NZ CRC NZ LM Annotations Significance

TP53 19 20 22 18 23 DBSNP, COSMIC, ClinVar Mostly somatic*, pathogenic

MAPK1 22 17 18 - - - -

MET 21 - 21 - - DBSNP, COSMIC, ClinVar Both germline/somatic, pathogenic/uncertain significance

SMARCA4 - - - 21 1 DBSNP, ClinVar Germline, uncertain signifiance

JAK1 - 16 - - - DBSNP -

AKT1 - - - - 27 - -

HDAC1 - - - - - DBSNP -
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Table 7 – Initial assessment of PredictSNP2’s deleterious predictions. Two known pathogenic gene variants for KRAS and TP53 were used to 

assess the accuracy of the PredictSNP2 tool, which were both correctly predicted to be deleterious. When then included the SCMH1, ALDH1A2, 

and MAPK1 gene variants for assessment as the former two variants were found exclusive for the SK data’s cancerous samples regardless of 

variant filtering, the latter was called in NRM samples but also affected a known oncogenic target, and all three lacked explicitly pathogenic 

database annotations. While the SCMH1 and ALDH1A2 gene variants were predicted non-deleterious (indicating PredictSNP2’s ability to make 

predictions that are not deleterious), the MAPK1 variant was predicted as deleterious as both the KRAS and TP53 gene variants. This table 

accurately reflects the output of PredictSNP2, which did not provided any functional details for the ALDH1A2 gene variant. 

 

unanimously predicted deleterious, while the KRAS gene variant was predicted deleterious by 

four tools with the fifth providing an ambiguous prediction. 

Table 7 also provides deleterious predictions for the MAPK1, SCMH1 and ALDH1A2 gene 

variants previously described. The unannotated MAPK1 gene variant was included in this initial 

analysis as it affected a known oncogenic target but lacked a clinically significant annotation. 

The latter two variants were included as they were also unannotated and putatively somatic 

genetic variants. 

We found that not only was the MAPK1 gene variant predicted as deleterious as the known 

pathogenic TP53 and KRAS gene variants described above, it also possessed the same expected 

accuracy of deleteriousness (87%). With regards to the SCMH1 and ALDH1A2 gene variants, 

both returned overall non-deleterious predictions, although this result was not unanimous among 

PredictSNP2’s individual tools. 

All the novel high confidence variant calls from both the SK and NZ data sets were then 

retrieved and had their deleteriousness predicted by PredictSNP2. This included COSMIC 

variants excluded from the website and ClinVar annotations either of uncertain significance or 

conflicting reports of pathogenicity. 

For the SK data, 57 variants were obtained that lacked explicitly pathogenic annotations. Five of 

these variants were found to be incompatible with PredictSNP2 (including the previously 

described and frequently observed HUWE1, G6PD, and KIAA1161 gene variants) due to 

conflicting reference alleles between our reference and the available GRCh38 references used by 

PredictSNP2. For the remaining SK novel variants, 28 were overall predicted non-deleterious, 

one of uncertain deleteriousness, leaving 23 predicted overall as deleterious (supplementary 

material 16). 

Of those 23, nine gene variants were predicted unanimously by PredictSNP2 as deleterious: 

filamin A (FLNA, ClinVar 452140), multiple myeloma oncogene 1 (MUM1, also known as 

interferon regulating factor 4 or IRF4), CAPN2, MAPK1, JAK1, KIF9, MET (ClinVar 411875), 

ovarian tumour deubiquitinase 7B (OTUD7B), and receptor-type tyrosine-protein phosphatase F  

Table 7

Gene Variant Region Function PredictSNP2 CADD DANN FATHMM FunSeq2 GWAVA

MAPK1 22:21769268,T>C exonic nonsynonymous 87% 53% 67% 83% 62% 51%

KRAS 12:25245347,C>T exonic nonsynonymous 87% 84% 70% 76% 62% ?

TP53 17:7674230,C>T exonic nonsynonymous 87% 84% 71% 83% 61% 52%

SCMH1 1:41113329,G>A exonic synonymous 93% 88% 95% 92% 93% 66%

ALDH1A2 15:58138445,A>G UTR5 - 88% 80% 75% 91% 83% 84%
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Table 8 – PredictSNP2 deleterious predictions for both data sets more novel variants. Variants called in high confidence for both datasets which 

lacked explicitly pathogenic database annotations provided by ClinVar and COSMIC were considered further with PredictSNP2. This table 

details only the variants with unanimous deleterious predictions for each dataset, i.e. predicted as deleterious by all tools that encompass 

PredictSNP2: seven for the SK data (MUM1, CAPN2, MAPK1, JAK1, KIF9, OTUD7B, and PTPRF) and four for the NZ data (PHYH, XPO1, 

PHF23, and SHISA5). 

 

(PTPRF). As the FLNA and MET variants both had ClinVar IDs of uncertain significance and so 

are likely being investigated elsewhere, they were not considered further in this study. 

For the NZ data, 37 variants lacked explicitly pathogenic annotations, of which six (including the 

CYP3A5 and DDX52 gene variants) were found to be incompatible with PredictSNP2 for the 

same reasons as described above. Of the remaining 31, 16 were predicted non-deleterious and 

three of uncertain deleteriousness. This left 12 variants overall predicted as deleterious 

(supplementary material 17), of which four were predicted unanimously deleterious by 

PredictSNP2: phytanoyl-CoA 2-hydroxylase (PHYH), exportin 1 (XPO1), plant homeodomain 

finger protein 23 (PHF23), and shisa family member 5 (SHISA5). Table 8 below provides the 

PredictSNP2 results for each of the novel and unanimously predicted deleterious variants 

considered for this analysis. 

 

3.2.4 – Most novel variants were described as either “stop gained” or “structural interaction” 

variants often affecting multiple transcripts. 

Following the PredictSNP2 results, the VCF entries for each unanimously predicted deleterious 

variant were inspected more closely. The details contained within these files, when coupled with 

the expression data further below, would help inform us as to how these variants could advance 

oncogenesis, i.e. if the expression data matches the impact annotation afforded that variant. 

General details for these variants can be found in Table 9. Often a file possessed annotations  

Table 8

SK data Region Function PredictSNP2 CADD DANN FATHMM FunSeq2 GWAVA

MUM1 exonic synonymous 99% 82% 99% 57% 99% 58%

CAPN2 splicing - 89% 50% 54% 55% 74% 66%

MAPK1 exonic nonsynonymous 87% 53% 67% 83% 62% 51%

JAK1 exonic nonsynonymous 87% 60% 60% 62% 61% 51%

KIF9 exonic nonsynonymous 87% 84% 71% 56% 62% 51%

OTUD7B exonic stopgain 81% 65% 73% 62% 65% 76%

PRPTF exonic nonsynonymous 87% 84% 75% 83% 62% 51%

NZ data Region Function PredictSNP2 CADD DANN FATHMM FunSeq2 GWAVA

PHYH exonic nonsynonymous 87% 77% 66% 63% 61% 52%

XPO1 exonic nonsynonymous 87% 84% 77% 83% 62% 50%

PHF23 exonic stopgain 81% 58% 61% 60% 65% 76%

SHISA5 exonic stopgain 81% 55% 57% 67% 65% 65%
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Table 9 – VCF file entry and SnpEff impact annotation details for unanimously predicted deleterious variants. The PTPRF gene variant’s 

COSMIC annotation had been excluded from the website, and one of the available DBSNP annotations had been linked with ClinVar. 

Discrepancies were observed between some variants that shared the same high impact annotation (e.g. “stop gained”) but lacked other details 

such as expected “NMD” annotations. 

 

for multiple “transcripts”, which could refer to different splice isoforms, different starting 

positions, overlapping genes, etc. Occasionally the VCF files also provided details regarding the 

crystal structure of the gene’s protein product. 

For the SK variants (supplementary material 18), the MUM1 gene variant had 13 transcripts of 

which two were annotated as a high impact “stop gained” variants. These both described the 

same protein change (“Gln730*”). One other transcript was annotated as a “low” impact 

synonymous variant, leaving the remaining ten transcripts annotated as “modifier” variants, 

unevenly split between an upstream gene variant, a downstream gene variant, and a non-coding 

Table 9

SK variant DBSNP High Impact Other annotations

MUM1 rs1323312366 Stop gained: Synonymous low impact: Tyr677Tyr;

Gln703* Modifier impacts with NMD

CAPN2 - Splice Donor LOF

MAPK1 - Structural interaction: Missense moderate impact: Lys340Arg/Lys296Arg;

 1TVO/1WZY/406E Sequence feature with low impact

JAK1 rs758343641 Structural interaction: Missense moderate impact: Asp895Glu

3EYG/4E4L/4E4N/

4E5W/4EHZ/4EI4/

4FK6/4I5C/4IVB/

4IVC/4IVD/4K6Z/

4K77

KIF9 rs76198671 Structural interaction: Missense moderate impact: Arg12Leu/Arg26Leu;

3NWN Sequence feature with low impact

OTUD7B rs782649998 Stop gained:

Arg490*

PTPRF rs17849101 Structural interaction: Excluded from COSMIC webite

COSM7244022 4N5U Missense moderate impact: Arg635Cys;

NZ variant DBSNP High Impact Other annotations

PHF23 - Stop gained: Modifier impacts with NMD;

Arg58* LOF

Arg63*

Arg67*

Arg71*

SHISA5 rs769953108 Stop gained: Synonymous low impact: Cys14Cys;

Gln91* Modifier impacts with NMD;

Gln163* LOF

Gln187*

Gln194*

XPO1 - Structural interaction: Missense moderate impact: Arg417Cys

3GB8 Modifier impacts with NMD;

PHYH rs200245065 Structural interaction: Missense moderate impact: Val231Leu/Val314Leu/Val331Leu

2A1X
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transcript exon variant. Three of these modifying variants (two downstream gene and one non-

coding transcript exon) also pertained to a different gene, AC004623.2. 

Our results for the CAPN2 gene variant had six transcripts, three of which were annotated as 

high impact “splice donor and intron” variants, with the other three all being modifying upstream 

gene variants. The CAPN2 variant was also annotated with an additional loss-of-function (LOF) 

for this gene after its list of transcript annotations (“LOF=CAPN2|ENSG00000162909|12|0.17”). 

The MAPK1 gene variant had results for 12 different transcripts. Six of these detailed a high 

impact “structural interaction variant” for one of three different crystal structures: “1TVO:A_59-

A:340”, 1WZY:A_59-A340”, and “406E:A_60-A340”. Three other MAPK1 gene transcripts also 

had three “moderate” impact missense mutation describing one of two different amino acid 

changes, Lys340Arg and Lys296Arg. 

The JAK1 gene variant’s results had 28 transcripts with 24 providing annotations for high impact 

“structural interaction variants”. These 24 transcripts were unevenly divided between 13 

different crystal structures: 3EYG, 4E4L, 4E4N, 4E5W, 4EHZ, 4EI4, 4FK6, 4I5C, 4IVB, 4IVC, 

4IVD, 4K6Z, and 4K77. The JAK1 variant’s VCF file also described a moderate impact 

missense variant for a “Asp895Glu” amino acid change. The remaining three transcripts were all 

modifying variants. 

Our results for the KIF9 gene variant had 26 transcripts with 12 detailing high impact “structural 

interaction variants”. There were  evenly split between three KIF9 “2NWN” crystal structures: 

“A_12-A_315”, “A_12-A_64”, and “A_12-A_66”. Nine of the remaining transcripts also 

described a “moderate” impact missense variant with an “Arg12Leu” amino acid change. One of 

these moderate variants (ENST00000443784.5) also provided an annotation for nonsense-

mediated decay (NMD). Two transcripts were of a “low” impact and provided an annotation 

describing a “nucleotide phosphate binding region” sequence feature, while the remaining 

transcripts were all modifying variants. 

The remaining SK gene variants to consider pertained to the OTUD7B and PTPRF genes. The 

OTUD7B gene variant’s results had two transcripts, one of which was a high impact stop gained 

variant. This annotation detailed an “Arg490*” change, while the remaining transcript was a 

modifying downstream gene variant. The results for the PTPRF gene variant possessed nine 

transcripts, two of which provided annotations for a high impact “structural interaction variant” 

for the same “4N5U:A_606-A_635” crystal structure. Three other transcripts described moderate 

impact missense variants split between two different amino acid changes, “Arg635Cys” and 

“Arg291Cys”, leaving the remaining modifying transcripts evenly split between an upstream 

gene variant and an intron variant. 

For the NZ data’s variants (supplementary material 19), the PHYH gene variant’s results 

provided only four transcript annotations which all related to PHYH. Only one annotation was 

given a high impact, which was a structural interaction for the crystal structure “2A1X:A_151-

A_331”. The remaining three transcripts were all missense variants with a moderate impact for 

three different amino acid changes: “Val331Leu”, “Val231Leu”, and “Val314Leu”. 
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The XPO1 gene variant’s results provided annotations for 17 transcripts. Six of these were high 

impact structural interaction variants split evenly across two different changes for the 3GB8 

crystal structure (“A_417-A_464”, and “A_417-A_471”). Three transcripts detailed the same 

moderate missense variant for the amino acid change Arg417Cys. XPO1 was also annotated with 

NMD for two specific transcript: a modifying 3’ UTR variant, and downstream gene variants. 

However, NMD was not provided as an annotation at the end of the list of annotated transcripts 

as seen for the PHF23 and SHISA5 gene variants described below. 

The PHF23 gene variant results pertained to 26 transcripts, with 13 referring to other genes (six 

for segment polarity protein dishevelled homolog DVL-2, six for gamma-aminobutyric acid 

receptor-associated protein, and one for CTD-2545G14.7). Of the transcripts regarding PHF23, 

five were annotated as high impact “stop gained” variants with four different changes: “Arg67*” 

(two transcripts), “Arg63*”, Arg58*”, and “Arg71*”. The PHF23 gene variant’s results were 

also annotated with LOF and NMD annotations. This NMD annotation differed from what was 

seen for the KIF9 gene’s results in that it was it was found at the end of the list of annotations 

and was not associated with any one transcript. 

Finally, the SHISA5 gene variant’s results provided 31 transcripts, 17 of which related to 

SHISA5, with the others all being modifying downstream gene variants for the ataxia 

telangiectasia and Rad3 related-interacting protein gene and the three prime repair exonuclease 

1 gene. A “Stop gained” high impact variant were provided for six of the SHISA5 transcripts, 

which provided details on four different amino acid changes: “Gln194*”, “Gln91*”, “Gln163*”, 

and “Gln187*”. The SHISA5 results also provided annotations for both LOF and NMD 

annotations. Unlike previous NMD annotations, the SHISA5 gene variant’s results provided an 

NMD annotation both at the end of its list of transcripts and for specific transcripts: a 3’ UTR 

transcript, and two downstream gene variants, which were all modifying variants. 

Interestingly, all but one of these NZ variants came from the same patient (samples 

CRC337/LM337). Closer inspection of the variant calls for the NZ data’s different samples and 

patients revealed that the CRC/LM337 samples provided far more variants in comparison to 

other samples. With an average of 7.96 variants per sample, both the CRC337 and LM337 

samples possessed 28 high confidence, high impact SNP variant calls each. 

 

3.2.5 – More differential expression was seen between normal and primary tumour samples. 

Given the nature of our data (RNA-seq) for both data sets, we investigated the expressions for 

those genes which had been affected by the above novel variants called in our analysis. 

Differential gene expression was performed using a combination of Subread’s “featureCounts” 

for gene expression quantification and DESeq2 for calling statistically differentially expressed 

genes. Comparisons were made between the SK data’s CRC vs. NRM, CRC vs. LM, and the NZ 

data’s CRC vs. LM. 

9651 genes were found to have significantly disrupted expressions for the SK data’s CRC vs. 

NRM comparison (29.1%). Meanwhile, only 3316 genes (10.0%) were significantly disturbed 
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for the SK data’s CRC vs. LM comparison and only 1373 genes (4.4%) whose expression was 

significantly disrupted for the NZ data’s CRC vs. LM comparison (supplementary materials 20 

and 21). 

Tables 10 and 11 show the fold changes of expression between the SK data’s NRM vs. CRC, and 

the NZ data’s CRC vs. LM, respectively. Using an adjusted p-value threshold of 0.05, we found 

that none of the genes affected by the novel NZ variants were significantly different in their 

expression. Similar was observed for the SK CRC vs. LM comparison. We did see a significant 

difference (i.e. adjusted p-values below 0.05, highlighted in red in Table 10) for each of the 

genes affected by novel variants for the SK data (MUM1, referred to as IRF4 in Table 10, 

CAPN2, MAPK1, JAK1, KIF9, OTUD7B and PTPRF). 

 

Tables 10 and 11 – Variant expression for the SK and NZ data sets, respectively. These tables provide some of the statistics obtained during our 

differential expression analysis. We see that for all the novel variants obtained from the SK data, the genes that were affected by those variants 

had their expression disrupted for the SK data, suggesting that are targets for CRC oncogenesis. For the NZ data there were no significant 

changes in the log fold of expression for those genes for which novel variants had been called, with their adjusted p-values highlighted to as they 

were below 0.05. Adjusted p-values below 0.05 are highlighted in red. For Table 10, IRF4 refers to MUM1. 

 

As seen in the supplementary materials 20 and 21, we did also find that for the SK data’s CRC 

vs. NRM comparison, the SHISA5, XPO1, and PHYH gene expressions were significantly 

perturbed with adjusted p-values of 1.66*10-6, 7.71*10-6, and 9.12*10-3, respectively. While the 

SK data did not appear affected by variants for these genes, these were all genes for which a 

novel variant had been called for within the NZ data. For the NZ data, both the MUM1 (adjusted 

p-value 5.53*10-3, also referred to as IRF4 in the supplementary material 21) and KIF9 (adjusted 

p-value 1.80*10-2) genes, which lacked the variant calls as found in the SK data, also had 

significantly perturbed expressions. 

As all SK data’s novel variants found their expressions were significantly disrupted when 

comparing the SK data’s CRC and NRM samples, we then compared the expression for the 

samples containing those variants against the averages of expression for that gene within the SK 

SK baseMean log2FoldChange lfcSE stat pvalue padj weight

IRF4 406.2584002 1.81088047 0.37078192 5.235522892 1.65E-07 3.09E-06 1.633191834

CAPN2 6760.106822 0.935180641 0.187040778 5.067723109 4.03E-07 8.75E-06 1.121150765

MAPK1 2350.091977 0.232021937 0.085232488 2.72693636 6.39E-03 2.10E-02 1.271268855

JAK1 3252.021424 0.244909352 0.088984193 2.758516494 5.81E-03 2.20E-02 1.091160255

KIF9 161.9234794 -0.612232848 0.16686869 -3.627968682 2.86E-04 1.79E-03 1.130335945

OTUD7B 1104.776539 0.46170555 0.098938519 4.677958263 2.90E-06 3.57E-05 1.443894561

PTPRF 14440.35052 0.870560297 0.161259654 5.4709404 4.48E-08 1.53E-06 1.091160255

NZ baseMean log2FoldChange lfcSE stat pvalue padj weight

PHF23 817.4975312 0.303658128 0.164423648 1.836611616 6.63E-02 2.97E-01 1.554095305

SHISA5 5245.358612 0.21715024 0.197965193 1.131390155 2.58E-01 5.93E-01 1.522691836

XPO1 4935.542661 0.048776901 0.088533469 0.5529768 5.80E-01 8.80E-01 1.33810142

PHYH 845.5732747 -0.106638021 0.206265096 -0.520404864 6.03E-01 7.89E-01 1.842669537

Table 10

Table 11
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data set. Units provided were “transcripts per million” or “TPM” (supplementary material 22, 

with the NZ expression values also being available in supplementary material 23). 

As all seven of these novel variants were putatively germline variants, it was unlikely that they 

alone would notably disrupt normal gene expression. That said, it is possible that these more 

minor alleles could also be risk alleles. We therefore considered it possible that these gene 

variants could be aggravated following oncogenesis and lead to more significant differences in 

gene expression. 

However, Figure 10 shows that most of the samples which contained their respective novel 

variant possessed expression values within one standard deviation of the average. One exception 

to this trend was the JAK1 gene variant, whose gene expression was more than one standard 

deviation below that of the JAK1 gene’s mean expression for both the NRM and CRC samples. 

We also saw that for the NRM sample affected by the CAPN2 gene variant, its expression was 

slightly above one standard deviation of the average of CAPN2 gene expression, although this 

difference was not observed for its paired CRC sample. 

 

 

Figure 10 – Differences in expression for the SK genes affected by novel variants. 10a – average of expression vs. variant for NRM samples. We 

see that little difference is seen in expression between our variant samples and the average for that gene obtained from the data set. That said, 

CAPN2 gene variant expression does seem slightly elevated and JAK1 gene variant expression does seem slightly below that seen for their 

respective averages. 10b – Average of expression vs. variant for CRC samples. Again, we see little difference between a variant’s sample and the 

average obtained from the SK data’s CRC samples. CAPN2 variant expression now exists within one standard deviation of the average, whereas 

the JAK1 gene variant continues to be below that seen for the average of expression. These results suggest that these genes for samples not 

affected by novel variants may be similarly disrupted by other means. 
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4.0 – Discussion. 

CRC is one of the most prevalent cancers worldwide. Even in developed regions like New 

Zealand, CRC rates of incidence remain high. Despite this, the pathogenesis of this disease 

remains not well understood. Therefore, we have used two RNA-seq data sets, one from a cohort 

of NZ patients and the other from a publicly available South Korean data set, to try to identify in 

high confidence genetic variants that may further understanding of the disease. 

We developed an RNA-seq variant calling pipeline with an emphasis on making high confidence 

variant calls, using two different RNA-seq pre-processing steps. These were the “GATK best 

practises” (referred to as GATK) and the Opossum pre-processing tool, referred to as OP. We 

also employed an ensemble of variant calling “methods”, defined as a combination of one of the 

above pre-processing methods and one of the following variant calling tools: Freebayes (FB), 

HaplotypeCaller (HC), Platypus (PT), or MuTect2 (MT2). This ensemble helped increase our 

confidence in the variants called with those that intersected, i.e. called by all seven variant 

calling methods, being considered as our variants of “highest confidence”. 

The pipeline was also developed to make variant calls without a reliance on normal samples. 

Such samples, often used for variant calling studies in cancer, were not available for the NZ data 

set. However, normal samples were available for the SK data. Their inclusion helped us to assess 

if our current methodology, using known variant databases (including the DBSNP, COSMIC, 

and ClinVar), helped to distinguish between germline, somatic, benign, and pathogenic variants. 

Unfortunately, no variants were identified as being exclusive to metastatic samples, which we 

had hoped would improve knowledge of the metastatic process. However, we did have success in 

calling known germline and somatic variants, annotated with the above data bases, for known 

cancer targets such as TP53, KRAS, etc. Some high confidence variant calls were also made for 

some more “novel” variants for both data sets, i.e. those with annotations not explicitly 

pathogenic, or those that lacked annotations entirely. We will now discuss in detail both the 

performance of our two employed pre-processing methods, our ensemble of variant callers, and 

some noteworthy variant calls made as part of our analysis.  

When discussing performance, we will first consider the statistical outputs obtained from both 

data sets, then compare pre-processing methods. We then conclude discussing performance by 

considering the individual tools, their strengths and weaknesses, and help justify our use of the 

intersection of all seven methods. When considering the noteworthy variants, we will describe 

how we came to focus on a handful of variants from numerous calls, how these variants were 

annotated, how expression for those variant-affected genes may or may not have been perturbed, 

before considering how these variants specifically may or may not be involved in CRC 

pathogenesis. 

 

4.1 – Overview of the current RNA-seq high confidence variant calling pipeline. 

As variant calling from RNA-seq data alone remains a developing field where no standard exists, 

making high confidence variant calls required us to develop the pipeline using a strict set of 
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filtering criteria. The purpose of this was to have the highest confidence in the variants called as 

being true positives and avoid errors brought about by sequencing artefacts, known short 

comings in current best practises, or tool biases. Not addressing these issues could distract us 

from considering variants that are potentially involved in carcinogenesis. We decided to use a 

reference-based variant calling method, which aligns RNA-seq reads with a reference genome, 

so that variants between the data and the reference can be identified. This alignment produced a 

sequence/alignment map file (SAM) for each sample and, in our case, we used the binary 

equivalent (BAM) to minimise our footprint on the available computer resources. 

Which reference to use depended partly on which bioinformatic tools we employed. We 

ultimately decided upon the most recent release of the human genome, GRCh38 reference. More 

specifically, we used the “GRCh38_no_alt_plus_hs38d1_analysis_set” which we refer to as the 

“reference” or “chosen reference”. GRCh38 alone has several benefits over the older release, 

GRCh37, already described in our introduction, while our chosen reference also has other 

benefits relevant to our interests. The “GRCh38_no_alt_plus_hs38d1_analysis_set” for example 

includes masks for the two pseudo-autosomal regions (PAR) on chromosome Y. As these PAR 

regions are already represented on chromosome X, representing both would mean any reads that 

map to these areas would be considered ambiguous multi-mapping reads. Regardless of such 

reads containing true positive variants, these reads would likely be disregarded from variant 

calling because of their ambiguous nature. 

While the chosen reference contains masks to hide duplicate regions, GRCh37 also has its own 

masked regions such as for the centromeric arrays for chromosomes 5, 14, 19, 21, and 22. The 

repetitive nature of these regions in this older reference meant that originally, they were difficult 

to accurately sequence resulting in them being masked. The improved sequencing technologies 

available when constructing the GRCh38 build, including the chosen reference, meant that 

GRCh38 now more accurately represents these arrays and allows for more true positive variants 

to be called in these regions [112, 153, 156]. 

Additionally, the chosen reference contained non-human sequences for the Epstein-Barr virus 

(EBV) which is sometimes obtained during sequencing, either because of natural infection or if 

EBV was used to immortalise a cell line. The chosen reference also contained “human decoy 

sequences”, either partially assembled sequences missing from the primary GRCh38 assembly 

[112] or repetitive non-centromeric sequences that are, again, difficult to align reads to. Both the 

EBV and decoy sequences acted as “sinks” for false positive variant calls. Without these 

sequences available, some sequencing reads may partially and incorrectly aligned to similar 

sequences elsewhere in the genome, again increasing the number of ambiguous multi-mapping 

reads. 

The “full analysis set” GRCh38 release was not chosen, as this contained alternative contigs as 

detailed in the reference’s “README” file [151]. These alternative contigs are not currently 

compatible with our chosen read alignment tool, the Spliced Transcripts Alignment to a 

Reference (STAR [142]). This tool was chosen given its popularity with regards to mapping 

RNA-seq reads, its recommendations for some RNA-seq best practises with GATK, and our 

existing familiarity with the tool. Researchers interested in using the “full analysis set” reference 
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would therefore need to use an alternative alignment tool like HISAT2 [188] or BWA-MEM 

[189]. The benefits the “full analysis” reference may have over our chosen reference is that it 

provides known germline variants that exist between populations, reducing false positives. 

Once the reference was decided upon and our BAM files were produced, we then required 

variants to be present in BAM files that had been pre-processed specifically for RNA-seq variant 

calling using two independent methods: the Broad Institute’s “GATK best practises”, and the 

“Opossum” (OP) pre-processing tool. The Broad Institute has begun developing a set of “best 

practises” for calling variants from RNA-seq data using their Genome Analysis Toolkit (GATK). 

However, their methodology, currently still in development, is reliant on the use of hard filters 

that can arbitrarily include false positives or exclude true positives. The OP tool offers an 

alternative method of RNA-seq pre-processing for variant calling, more specifically designed for 

the Platypus (PT) variant caller but is also compatible with other variant calling tools. It was 

therefore less likely (though still possible) that variants present in BAM files pre-processed by 

two different RNA-seq pre-processing methods would be false positives. 

An ensemble of up to four different variant calling tools was then used to call variants between 

the different BAM files. Like using two pre-processing methods, if the same variant is called 

between two independent variant calling tools, it is less likely to be a false positive call, with 

more tools adding more support for that variant. Additionally, as variant calling tools use BAM 

files to call variants, and for each sample we had two BAM files (one GATK pre-processed and 

the other OP), each of our variant calling tools (except for PT explained below) could call 

variants from two different BAM sources. 

Following the logic that a variant’s presence in multiple pre-processed BAM files, and called by 

multiple variant callers, to be more likely true positives, we therefore considered variants that 

had been called by an “intersection” of all our variant calling “methods” (defined as a 

combination of one pre-processing method and one variant calling tool) as our variants of 

“highest confidence”. Seven methods were used in this study: GATKFB, GATKHC, 

GATKMT2, OPFB, OPHC, OPMT2, and OPPT. Initially an eighth method was considered 

which would have combined both GATK pre-processing and the PT variant caller. However, we 

found that GATK pre-processing alone could not overcome the fundamental compatibility issues 

between PT and RNA-seq data, for which the OP tool was explicitly designed. Each of these 

methods produced a single “Variant Calling Format” (VCF) file for each sample. These VCF 

files we then merged into one single VCF per sample. This merger then annotated variants based 

on which combination or “set” of methods made their call, with the highest confidence variants 

called by all seven methods possessing the unique annotation “set = Intersection”. 

We decided upon SNP variants as the primary focus of this study as their simplicity make them 

easier variants to identify. Variants were filtered further based on possessing a “high functional 

impact” annotation, provided by the SnpEff tool, which would be more likely to contribute to 

CRC development. Variants were then annotated with multiple known variant databases: the 

Single Nucleotide Polymorphism Database (DBSNP, which also includes small-scale multi-base 

deletions or insertions, retrotransposons, and microsatellite repeat variants), the Catalogue of 

Somatic Mutations in Cancer (COSMIC), the Clinical Variants database (ClinVar), the Exome 
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Aggregation Consortium (ExAC), and the Genome Aggregation Database (GNOMAD). With 

regards to our study, it became apparent that the DBSNP, COSMIC, and ClinVar databases were 

more relevant to our needs. As a result, the ExAC and GNOMAD databases shall not be 

referenced again and should be excluded from future pipelines to reduced sample processing 

time. 

Despite all our filtering efforts so far, we still managed to call a substantial number of variants 

from both our data sets, As a result we made further filtering efforts. We first selected for 

variants that were present in multiple samples (>1) for three reasons. First, these variants could 

be germline variants or “risk alleles” that worsen oncogenesis. Second, if these variants are 

frequently observed between different patients, they could serve as biomarkers or even 

therapeutic targets. Third, these variants could be so significant to pathogenesis of the disease 

that they are actively preserved through various stages. 

We then decided to filter the remaining variants based upon if their average QUAL score (a HC 

annotation retained after VCF merger that also indicates a variant’s quality) was above that of 

the median QUAL score for all variants within a data set (SK median QUAL = 586.9333, NZ 

median QUAL = 412.7679). 

We appreciate that this high specificity (i.e. likelihood of true positive variant calls) likely makes 

high sacrifices for variant calling sensitivity (i.e. the ability to make variant calls). Future efforts 

can be made to better increase the pipeline’s sensitivity whilst also maintaining high specificity. 

Future work will also benefit from the ongoing development of RNA-seq calling best practises 

and software when making variant calls from such data. 

 

4.2 – Different sequencing depth had notable outcomes on our results. 

Both the SK and NZ data sets produced over one billion reads each, with between 68-87.8% of 

those reads being mapped uniquely to the chosen reference. Our variant calling pipeline was able 

to call almost 3.70 million variants across the 56 SK samples, while the NZ data produced nearer 

2.79 million from 26 samples (supplementary materials 2 and 4). The NZ data’s samples were 

more deeply sequenced in comparison to the SK data. This explains why so many variants were 

called for the NZ data despite having far fewer samples compared to the SK data. 

That said, the NZ sequencing depth did vary considerably. One NZ sample, CRC335, produced 

notably fewer sequencing reads (11.8 million) than other samples within the NZ data set 

(average 46.4 million). This discrepancy led to this sample’s exclusion from further analysis, 

along with its paired metastases (LM335), which left us with 24 NZ samples. 

A samples’ runtime was roughly linear with the number of sequencing reads for that sample, 

regardless of data sets. Figures 1a and 2a illustrate this relationship and compares a sample’s 

uniquely mapped reads to its runtime. Our stringent variant calling pipeline, developed to 

overcome known issues when calling variants with RNA-seq, resulted in a computationally 

expensive pipeline. Average run times for the SK and NZ data sets were approximately 46 and 
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98 hours respectively. The result for the NZ data demonstrates one of the more dramatic effects 

the increased sequencing depth, with average runtime almost doubling as a result.  

Considering the average runtime for our data sets, we then broke down which components of our 

pipeline contributed most to these result. Figures 1b and 2b show the difference in average 

runtime between pre-processing methods, with OP being notably quicker for both data sets. OP 

pre-processing appeared to be much more efficient with an average runtime of 2h:41m:03s and 

4h:53m:20s for the SK and NZ data sets, respectively. 

Meanwhile, the GATK best practises had notably longer average runtimes, at 3h:50m:20s for the 

SK data and 7h:23m:11s for the NZ data. The NZ data’s longer runtimes are again likely because 

of the increased depth at which it was sequenced. Considering the individual components of the 

GATK best practises for RNA-seq variant calling, the “SplitNCigarReads” tool (referred to as 

“HardClip” in Figures 1c and 2c) contributed the most to GATK’s pre-processing runtime. This 

tool is responsible for splitting reads into exonic segments, to avoid some issues with making 

variant calls around splice junctions. 

“SplitNCigarReads” is likely also responsible for the increased number of reads for the GATK 

pre-processed BAM files, described below. However, it is worth noting that we used an older 

version of this tool, available in version 3.8 of GATK. While a new version of this tool is 

available in version four of GATK, and may perform better in comparison, we could not find any 

documentation supporting version four of the tool as having been verified [169]. 

We also compared the average runtime for each of our variant calling methods (Figures 1d and 

2d). Generally, all the OP pre-processed methods called variants quicker than their GATK 

contemporaries, with one exception. The OPMT2 method took much longer to process than 

GATKMT2 for the NZ data set (17h:24m:06s vs. 11h:39m:58s, Figure 2d). This was also 

notably longer to process than all other methods, regardless of data set. As MT2 is primarily a 

somatic variant caller, and the NZ data was sequenced more deeply than the SK data, this 

difference in depth is likely the cause of the increased runtime for this set of  tools. 

For both data sets, the OPPT method took substantially less time to process than all other 

methods, taking a matter of minutes to call variants compared to the hours taken by other tools. 

This quick processing speed initially made us sceptical as to how many variants could have been 

called in such a short period of time and will be discussed further below. 

 

4.3 – Opossum pre-processing appears both more specific/less sensitive than GATK and less 

computationally expensive. 

As part of our GATK vs. OP comparisons, we compared the general statistics obtained by the 

Samtools “stats” and “flagtstat” options for both data sets. This was to see if there were any 

notable differences between the results obtained for each sample type, i.e. primary colorectal 

cancer tumours (CRC), liver metastases (LM) or normal samples (NRM) where appropriate, 

between the pre-processed and unprocessed BAM files. 
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At times, comparing GATK and OP BAM files could be difficult due to different methodology 

for these approaches to RNA-seq pre-processing. For example, one aspect of RNA-seq pre-

processing is the marking of “duplicates”, i.e. where the same RNA-seq fragment is duplicated 

multiple times during sequencing amplification. As such, a duplicate value of 0 for the 

unprocessed files is expected. However, for the OP pre-processed files a value of 0 was also 

reported, meaning that duplicate reads are discarded from OP’s outputs. This differs from the 

GATK approach, whose output retains marked duplicates for further processing downstream. OP 

also reported 0 values for the Samtools stats/flagstat outputs for: “non-primary 

alignments/secondary reads”, “reads paired/paired in sequencing”, “reads properly 

paired/properly paired”, and “reads mapped and paired/both in a pair mapped”. This meant a 

more meaningful comparison between OP and GATK statistics could require different outputs, 

i.e. OP’s “raw total sequences” against GATK’s “reads mapped/mapped and paired/properly 

paired”. 

For the SK data’s CRC, LM, and NRM samples (Figures 3a-e) and for the NZ data’s CRC and 

LM samples (Figures 4a-e), no notable differences were observed between the averages of a 

samples’ “raw total reads”, “reads mapped”, “bases mapped (cigar)”, “read length”, or “read 

quality”. Contrasting this, comparisons between the unprocessed, GATK pre-processed, and OP 

pre-processed BAM files using the same statistical outputs above did reveal some differences. 

For both data sets, the averages for the OP BAM files “raw total reads”, “reads mapped”, and 

“bases mapped (cigar)” were consistently less than the average values for both the unprocessed 

and GATK BAM files (Figures 5a-c, 6a-c). Meanwhile, for both data sets the averages of “read 

length” were higher for unprocessed BAM files (Figures 5d and 6d), and the averages of “read 

quality” were higher for the OP BAM files (Figures 5e and 6e). 

As mentioned above, the GATK pre-processed files had more reads than both the OP pre-

processed and unprocessed BAM files. This was again likely because of the GATK method of 

splitting reads into exons. This increased number of reads also likely contributed to the GATK 

variant calling runtimes being longer than OP. Understandably, more reads would require more 

time to process, and suggests the GATK method of pre-processing is more sensitive while OP is 

more specific. This sensitivity vs. specificity is also reflected in the average quality of a pre-

processed read, with GATK often being a lower quality than both OP and the unprocessed BAM 

files. 

Another notable difference between GATK and OP BAM files were the average and maximum 

read lengths. The read lengths during sequencing were 100bp for the SK data, and 150bp for the 

NZ data. This was reflected in the unprocessed files, i.e. an average/maximum read length of 

101bp/101bp for the SK data, and 149bp/150bp for the NZ data. However, while for both the 

GATK and OP pre-processed files average read length never exceeded the actual length, the 

maximum read lengths differed significantly between pre-processing methods. For OP, 

maximum read length was always roughly double that of the actual read length (e.g. 201bp for 

the SK data, and approximately 303bp for the NZ data), however the GATK maximum read 

lengths were well into the millions of bp. This is again likely a result of GATK splitting reads 
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into exons which may then mapped to distant parts of the genome, and further demonstrates 

GATK’s sensitivity vs. OP’s specificity in pre-processing. 

 

4.4 – Retaining likely true positives using intersections vs. individual variant calling tools. 

Before discussing some of the more notable variants called in our analysis, we wished to justify 

our use of the “set = Intersection” filter for these variant calls. We used this filter as it was 

intuitive that more variant calling methods making the same variant call would support this call 

being a true positive. However, given the sheer number of variants called, the intersection filter 

was also a way of drastically limiting the number of variants we would consider, as well as 

avoiding distraction from false positive calls. 

As RNA-seq data lacks any “truth sets” akin to those available for methods based on DNA-seq 

data, we had to develop an alternative form of testing. We decided to use annotations provided 

by the DBSNP as support for variant calls being true positives. It was unlikely that a false 

positive variant, called as part of our analysis, would also be annotated with a known DBSNP 

ID. That said, it must be noted that many true positives likely exist that are yet to be known by 

any database, and so the absence of any annotations is not indicative of a variant being a false 

positive. This is especially true for somatic mutations given their sporadic nature, and so is also 

true for variants called by MT2, which is more specifically a somatic variant caller. 

We also considered using the COSMIC database in much the same way to provide support for 

any true positive somatic variants calls. However, preliminary tests found that COSMIC 

annotated variants showed the same trends as was seen when annotating with the DBSNP (i.e. 

PT methods had the higher percentage of annotated variants, MT2 methods the fewest, etc. 

Tables 2, 3, and Figure 7). Additionally, far fewer variants were annotated when using the 

COSMIC database, and we also found some COSMIC annotations had been excluded from the 

COSMIC website. It was revealed that these excluded annotations came from hypermutated 

cancerous samples (over 15,000 mutations). Their exclusion was part of the COSMIC team’s 

efforts to reduce noise in this database, given the difficulty distinguishing between variants that 

have arisen from hypermutation, germline variation, or technical artefacts [187]. 

Tables 2 and 3, respective to the SK and NZ data sets, show the number of variants called by our 

individual variant calling tools and our intersection filter. We see that this filter lowered the 

number of variants called by at least an order of magnitude than when using an individual tool. 

The FB tool also demonstrated a sensitivity that is somewhat notorious in the variant calling 

community. That said, it must be noted that the FB tool lacked any kind of variant filtering that is 

available for these other tools. HC benefited from the RNA-seq and SNP variant calling best 

practises developed by the Broad Institute/ Meanwhile, MT2 has its own filtering tool included 

in the GATK tool set (“FilterMutectCalls”), and the OP pre-processing method was designed 

specifically for the PT variant caller. Any variants called by FB alone, therefore, may suffer from 

the tool’s high sensitivity and likely includes many false positives. This result helps justify the 

use of an ensemble of variant callers, which can complement each tools’ strengths and 

weaknesses, such as improving specificity for overly sensitive tools. 
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While these results demonstrated that the intersection filter increased specificity, Figures 7a-e 

demonstrate how this filter also retains a reasonable number of annotated variants, i.e. putative 

true positives, when compared to our seven different variant calling methods. It is also 

noteworthy that the intersection retained similar percentages of annotated variants regardless of 

data set and sequencing depth. Meanwhile, both FB methods underperformed for the SK data 

when compared to the NZ data. While both HC methods and the OPPT method had a higher 

percentage of annotated variants compared to the intersection, they also lack the specificity 

discussed above. As expected, both MT2 methods had the lowest percentage of annotated 

variants, likely because of the sporadic nature of somatic mutation. This could also partly explain 

why the intersection did not perform as well as the HC and PT methods, as the intersection 

includes calls made by MT2, and so also included novel somatic variants that, despite being true 

positives, my lack any known variant annotations. 

As mentioned above, OPPT’s quick runtime initially seemed suspicious and made us sceptical as 

to how many variant calls it could have made. However, Tables 2 and 3 show that, despite its 

runtime, a reasonable number of variants, including non-SNP variants, were called using that 

tool. Also, for the SK data, PT contributed the third highest number of SNP variants 

(approximately 2.88*106) toward the total, below the number of calls made by HC 

(approximately 4.39*106) but above that of MT2 (approximately 2.83*106). FB again 

demonstrated its high sensitivity here, calling an order of magnitude more SNP variants than 

these other tools (approximately 2.24*107, Figure 8a). This result for PT was surprising, not only 

considering its runtime, but also because PT only had access to the OP BAM files. All other 

variant calling methods had access to both GATK and OP BAM files. 

While not as impressive, for the NZ data OPPT still made approximately 4.16*106 SNP variant 

calls. This was roughly half of the HC and MT2 results (approximately 8.22*106 and 8.74*106 

SNP variants respectively, Figure 9a). FB again called notably more SNP variants than the other 

tools (approximately 1.56*107). OPPT calling roughly half the variants of the HC and MT2 tools 

is at least comparable in terms of performance, if we again consider OPPT had access to only 

half of the BAM files. This does call into question why OPPT’s performance differed so greatly 

between the SK and NZ data. It is possible that the OPPT method retains the same level of 

sensitivity and specificity regardless of sequencing depth, meanwhile the HC and MT2 tools’ 

sensitivity increases as depth also increases. It is worth mentioning that the original OP 

publication also found their combination of OP and PT was faster (7 hours) than when 

combining HC with either GATK and OP pre-processing methods (14h:45m and 15h:35m, 

respectively [167]). 

To assess OP and GATK pre-processing method performance, the number of “concordant” 

variant calls was compared between these methods. This was done for all variants called within a 

data set, and between individual variant callers within a data set. Considering the sheer number 

of calls made, for brevity we first considered a variant call as “concordant” if that call was made 

by any combination of GATK and OP pre-processing methods (e.g. possessed set annotations 

like the intersection”, “gatkfb-ophc”, etc.). Calls were therefore considered “discordant” if they 

had been made following only one pre-processing method (e.g. “set = gatkfb-gatkhc”  would be 
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a discordant “GATK only” call). When considering pre-processing concordance of an individual 

variant caller, variants were considered concordant if both of that tool’s methods made the same 

call, with “set = gatkfb-opfb” being an example of an FB concordant call. Discordant variant 

calls therefore were made following only one respective pre-processing method. 

For the SK data, a general concordance was observed with 52% of the variants being called by 

any combination of GATK and OP methods. More variants were called by only GATK methods, 

28%, with 19% being OP only (Figure 8b). The HC variant caller showed the highest 

concordance of any tool (77%, Figure 8c). This result was not unexpected, given that the GATK 

best practise filters for RNA-seq and SNP variant calling with HC could be applied to both of 

our pre-processed BAM files. The results seen for the FB tool were like when comparing all 

variant calls. This again demonstrates the sensitivity of the tool and how many variants it 

contributed to the total (Figure 8d). 56% of the variants called by FB were in concordance, with 

31% being “GATK only” and 19% being “OP only”. 

Juxtaposed with the general concordance seen with these other tools, we see that the number of 

variants called by the MT2 variant caller were overwhelmingly “OP only” at 77%. This left just 

16% called in concordance, with 7% being GATK only (Figure 8e). This is a cause for concern 

and could suggest there is a fundamental incompatibility between the OP pre-processing tool and 

the somatic MT2 variant caller. However, unlike the incompatibility seen between the GATK 

pre-processing method and the PT variant caller, no obvious errors were obtained as a result of 

using the OPMT2 variant calling method. 

Our comparisons for the NZ data where subtly different than those seen for the SK data. 

Considering all variants, more calls were still concordant, although this was less than half of all 

variant calls (40%, Figure 9b). The HC method still saw the highest amount of concordance but 

to a lesser extent than what was observed for the SK data, with 57% in concordance, 37% 

GATKHC only, and just 6% OPHC only (Figure 9c). FB’s result also changed considerably, 

with 49% in concordance, 45% GATKFB only, and only 6% OPFB only (Figure 9d) . This 

difference in results could be a result of the OPPT method’s poorer performance for the NZ data 

compared to the SK data. This would mean that less concordance could be obtained between 

methods. With the main difference between the SK and NZ data being sequencing depth, this 

could suggest that the OPPT method is more effective at shallower depths than the other tools. 

While HC and FB’s concordance results for the NZ data differed from the SK data, for the MT2 

tool little changed. The number of OPMT2 only variant calls was still notably higher (78%) than 

either those called in concordance (12%), or those called by GATKMT2 only (10%, Figure 9e). 

This again raises some concerns regarding the OPMT2 method as, for the NZ data, the OPMT2 

method took significantly longer to call variants than any other method as mentioned previously. 

This means that if these variant calls are problematic, the final output of the pipeline is also 

delayed possibly as a function of sequencing depth. Further work would then need to investigate 

this variant calling method thoroughly before including it in any future pipelines. 
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4.5 – Genes frequently affected by variations called during analysis were often benign germline 

variants or known oncogenic targets. 

On concluding our GATK vs. OP pre-processing comparisons and assessing our ensemble of 

variant calling tools, we then considered how to investigate the variants that we had been to 

understand how they could contribute to oncogenesis. With so many variants to consider, we first 

had to decide on which variants to focus on. Given that we had already used known variant 

databases to annotate our variants, this gave us the opportunity to disregard variants that had 

already been discovered to be benign in previous studies. Table 4 provides some variant details 

with noteworthy annotations obtained from our analysis. 

One result of interest was that two variants had been found in very high frequency (at least 88%) 

for both data sets. A T>C transition at position 53,534,126 for the HECT, UBA and WWE 

domain containing E3 ubiquitin protein ligase 1 (HUWE1) gene had been called in 51 of the 56 

SK data samples, while the same variant had been called in all 24 of the NZ data samples, 

excluding CRC335/LM335 as previously described. The other variant was a A>G transition at 

position 154,532,439 for the glucose-6-phopsphate dehydrogenase (G6PD) gene, which was 

called in 50 for the SK samples and 23 of the NZ samples. 

Both variants possessed a DBSNP (rs1021487491/rs477171 for HUWE1 and rs2230037 for 

G6PD) and a ClinVar annotation (129251 and 470162, respectively). The evidence on the 

ClinVar website for the HUWE1 gene variant suggested its frequency was too high to be a 

pathogenic mutation. Similar was said for the G6PD gene variant, whose allele frequency was at 

least 78.4% for the databases GNOMAD, ExAC, and the 1000 Genomes Project. Another variant 

had also been called in both data sets with a higher frequency for one of the data sets. A G>C 

transition at position 34,372,875 for the KIAA1161 gene , also known as myogenesis regulating 

glycosidase or MYORG, was obtained from 11 SK samples. This variant was also called in the 

NZ data (four samples). 

For only the SK data set, one other variant frequently observed (four samples) was for the fatty 

acid synthase (FASN) gene. However, this variant possessed a ClinVar annotation (462063) that 

explicitly described this variant as both germline and benign. For only the NZ data set, two other 

high frequency variants of note were a T>C transition at position 99,672,916 for the cytochrome 

P450 family 3 subfamily A member 5 (CYP3A5, 20 samples), and a T>C transition at position 

37,628,628 for the DExD-box helicase 52 (DDX52, nine samples). 

While the KIAA1161, CYP3A5 and DDX52 did not possess ClinVar IDs, all three did possess 

DBSNP IDs. The KIA1161 annotation (rs4879782) suggested this is a minor allele, i.e. the 

second most frequent variant for a given SNP [190], from the Korean Genome Project at 

approximately 5.35%. Similarly, both the CYP3A5 and DDX52 gene variants were reported as 

having minor allele frequencies, or MAF, of between 11.8-40.0% and 23.2-46.3% respectively. 

Given these frequencies, we believe these variants are also unlikely to contribute to CRC 

pathogenesis. 

The final frequently observed variant was a C>T transition at position 25,245,347 for the Kirsten 

rat sarcoma 2 viral oncogene homolog (KRAS). Like the HUWE1, G6PD, and KIAA1161 gene 
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variants, this KRAS gene variant was also called across both data sets with five samples each. 

This variant possessed annotations from all three databases. However, unlike the other variants, 

the KRAS gene variant was described explicitly as both somatic and pathogenic by both its 

COSMIC (COSM1140132) and ClinVar (12580) annotations. While KRAS is a known 

oncogenic target, this frequency in in our results, across geographically distinct demographics, 

could suggest that this KRAS variant may play a more specific role in CRC pathogenesis. 

While no one variant was as common as those described above, the tumour protein 53 (TP53) 

gene was frequently affected in that it it was affected by multiple different variants. Of the five 

different high confidence variants called for the SK data, all but one possessed DBSNP, 

COSMIC, and ClinVar IDs. The remaining variant possessed only COSMIC IDs that had not 

been excluded from the COSMIC website. The NZ data obtained two variants called in high 

confidence, one with annotations from DBSNP, COSMIC, and ClinVar, while the remaining 

again possessed only COSMIC annotations not excluded from the website. Most of these 

variants had been observed as both somatic and pathogenic, although there were some variants 

that were both germline and pathogenic. TP53 is one of the more quintessential oncogenic 

targets for any type of cancer, meaning the frequency of its variants, both in terms of the number 

of samples and the number of different variants, in our results was not surprising. 

The remaining variants to be discussed where not observed as frequently as those above, having 

been observed in no more than two samples each. Of those with ClinVar IDs, all had been 

described as both germline and benign. Those with COSMIC IDs had been described as 

observed both somatic and pathogenic. This left us with several genetic variants that lacked 

annotations with more clinically explicit annotations, i.e. those that described variants as 

germline/somatic/benign/pathogenic. This included variants for the kinesin family member 9 

(KIF9), calpin 2 (CAPN2), scm polycomb group protein homolog 1 (SCMH1), and cytoplastic 

FMR1 interacting protein 1 (CYFIP1) genes seen in Table 4. Of those examples with DBSNP 

annotations, all possessed MAF’s below 0.05. 

Table 4 also reveals that some germline/benign variants had been called, paradoxically, only in 

high confidence for cancerous samples. Given the highly specific nature of our variant calling 

pipeline, and the knowledge that hard filters can arbitrarily exclude true positive calls, we were 

aware the same could happen here. It was possible that the same variant may have been called in 

one sample by all seven variant calling methods and called in other samples with fewer methods. 

This would mean the “less stringently” called variants would have been filtered out after 

applying the high confidence filter. It is unlikely that the same variant called with high 

confidence for one sample (and so more likely a true positive) could also be a false positive in 

another sample because it was called less stringently. 

To investigate this, we returned to some of the VCF files that had been retained before applying 

our high confidence “set = Intersection” filter. For variants called in high confidence for the SK 

data’s cancerous samples, we could search within the respective NRM VCF file, using that 

variant’s nucleotide position, to confirm if it had been called only in cancerous samples. 

However, we could not do that same for the NZ data’s variants, given this data sets lack of 
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normal samples. As a a result, in this regard we entirely reliant on known database annotations 

for any paradoxical variant calls. 

This analysis revealed that of those SK variants detailed in Table 4, such as the KIF9, CAPN2, 

ITCH, and CYFIP1 gene variants, all been called for less stringently in their respective NRM 

samples. This suggests that these variants were germline, but this otherwise does not suggest if 

they are benign or pathogenic. For example, it is possible that these putative germline variants 

are also minor alleles, i.e. those with MAF below 50%, which may increase the likelihood that 

they are also risk alleles for disease [191]. Therefore, some of these variants were considered 

further as part of our analysis. 

 

4.6 – Enrichr showed an enrichment for oncogenic processes, with some oncogenic targets 

affected by novel variation. 

Given the number of variants obtained without clinically explicit annotations, we decided to use 

gene set enrichment analysis as a method to identify which of these variants may be more likely 

involved with cancer. For each data set, a list of genes affected by variants was compiled and 

uploaded to Enrichr, a web-based gene-set enrichment analysis program. The SK data’s gene set 

included 60 genes, while the NZ data provided a gene set of 46. These gene sets included 

variants without clinically explicit annotations, to ensure Enrichr was provided with enough 

genes to allow for meaningful enrichment analysis. Table 5 provides details on some functional 

categories that were observed as part of this analysis, with the p-value provided being one of 

lowest, if not the lowest, p-value seen for that functional category. We found several processes 

had become enriched for both gene sets, either with oncogenic features, or more specific to CRC 

(such as the Jensen TISSUES category “intestine”). 

As Enrichr allows users to observe which genes are involved in these functional categories, we 

then made counts for how often these genes were observed in these categories. The purpose of 

this was to find genes affected by variants which possessed a high number of counts. Those with 

higher counts could then be more involved in various cancerous processes. 

Table 6 shows the results of this analysis. The TP53, mitogen-activated protein kinase 1 

(MAPK1), MET (also known as the hepatocyte growth factor receptor or HGFR), SWI/SNF 

related matrix associated actin dependant regulator of chromatin subfamily A member 4 

(SMARCA4), Janus kinase 1 (JAK1), RAC-alpha serine/threonine protein kinase 1 (AKT1), and 

histone deacetylase 1 (HDAC1) genes all possessed some of the highest counts for our gene sets. 

Many are all genes with well documented oncogenic functions. Many also possessed known 

database annotations, however it was also interesting to find that some had been affected by 

variants which lacked database annotations. such as MAPK1 and AKT1. These could be 

examples of new or “novel” oncogenic variants worthy of further investigation.  
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4.7 – Some novel variants had possible pathogenic significance. 

Given that some novel variants had been found which lacked more clinically explicit annotations 

provided by the COSMIC or ClinVar databases, we considered the possibility that these could be 

new variants with possible implications in the pathogenesis of CRC. As a result, we investigated 

these variants more closely. 

For all variants called as part of our pipeline, the SnpEff tool to provide some putative impacts 

which we could filter against. For example, we considered those annotated with “high” impacts 

as being more likely involved in cancer development. However, as with most of our analyses we 

were concerned that relying on SnpEff’s functional predictions alone could be misleading, 

especially when considering novel variant calls not studied in-depth elsewhere. To address this 

issue, we used a second web-based deleterious prediction tool, PredictSNP2, to compliment the 

predictions provided by SnpEff. PredictSNP2 makes deleterious SNP predictions based on an 

ensemble of predictive tools, which includes the Functional Analysis Through Hidden Markov 

Models (FATHMM) used by COSMIC. 

Initially, PredictSNP2’s accuracy was assessed using two known pathogenic variants already 

called in our analysis. These variants were the KRAS gene variant (ClinVar 12580), and one 

TP53 gene variant (ClinVar 12365). As can be seen in Table 7, both variants were correctly 

identified as overall deleterious, demonstrating PredictSNP2’s ability to make accurate 

predictions of deleteriousness. 

Table 7 also provides the PredictSNP2 results for three other variants (MAPK1, SCMH1, and 

ALDH1A2) called in our analysis. The MAPK1 gene variant was included in this initial analysis 

as it was a putative germline variant without a clinically explicit annotation, and it affected a 

known proto-oncogene. The SCMH1 and ALDH1A2 gene variants where included as they were 

putatively somatic and lacked any clinically significant annotations. 

While the MAPK1 gene variant was described as unanimously deleterious by PredictSNP2, with 

the same expected accuracy found for the KRAS and TP53 gene variants, both the SCMH1 and 

ALDH1A2 gene variants were overall predicted non-deleterious. That said, their results were not 

unanimous among PredictSNP2’s encompassing tools. The SCMH1 gene variant was supported 

as being deleterious by two of PredictSNP2’s individual tools, while the ALDHA1A2 gene 

variant was also predicted deleterious by one tool. Given these results, we further studied only 

those novel variants predicted by PredictSNP2 as unanimously deleterious. 

We found that some of the variant calls (including the HUWE1, G6PD, KIAA1161, CYP3A5 and 

DDX52 gene variants) were incompatible with PredictSNP2. The error we received suggested 

that there were conflicting reference alleles between the GRCh38 references available to 

PredictSNP2 (which included the primary assembly and the p1, p2, and p6 patch releases) and 

our chosen reference. These conflicts may pertain to the EBV and human decoy sequences, 

previously described, which are not included in the primary assemblies. 

Table 8 provides the PredictSNP2 tool’s results for the eleven gene variants, across both data 

sets, that were predicted unanimously as deleterious. However, this table does exclude gene 
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variants for the FLNA an MET genes as both already possessed ClinVar annotations of uncertain 

significance (452140 and 411875, respectively). This suggests that these variants are already 

being studied more in-depth elsewhere. 

For the SK data, those variants that remained were for: multiple myeloma 1 (MUM1, also known 

as interferon regulatory factor 4, IRF4), CAPN2, MAPK1, JAK1, KIF9, ovarian tumour 

deubiquitinase 7B (OTUD7B), and protein tyrosine phosphatase receptor type F (PTPRF). For 

the NZ data, this include variants for: phytanoyl-coenzyme A 2-hydxoylase (PHYH), exportin 1 

(XPO1), plant homeodomain finger protein 23 (PHF23), and shisa family member 5 (SHISA5, 

also known as SCOTIN). 

 

4.8 – More significant changes in gene expression were observed between normal and primary 

samples. 

Gene expression was first quantified using the “featureCounts” tool available to the Subread 

package. Differential gene expression was then assessed using the DESeq2. More genes were 

found to have their expression disrupted significantly for the SK data’s CRC vs. NRM 

comparisons. Fewer significant differences were seen when comparing either data sets’ CRC vs. 

LM samples. This is not unexpected, given that the comparisons being made were between 

samples that had also undergone oncogenic transformations. 

Tables 10 and 11 show the results of this differential expression analysis. However, only the SK 

variants (MUM1, CAPN2, MAPK1, JAK1, KIF9, OTUD7, and PTPRF, Table 10) showed 

adjusted p-values below that of the 0.05 significance threshold we set for our analysis. None of 

the NZ data’s more novel variants (PHF23, SHISA, XPO1, and PHYH, Table 11) had adjusted p-

values below this 0.05 threshold. 

Interestingly for the SK data’s CRC vs. NRM comparison, three of the gene affected by novel 

NZ variants (SHISA5, XPO1, and PHYH) did have their expressions significantly perturbed 

(supplementary material 20). Similarly, despite the NZ data’s gene expression being compared 

against already cancerous states (CRC vs. LM), gene expression was also significantly perturbed 

for two genes which were affected by novel SK gene variants (MUM1 and KIF9, supplementary 

material 21). This suggests that these genes could be targets for oncogenic disruptions beyond 

the scope of this study, e.g. more complex variants, epigenetic modifications, etc. 

As only the novel SK variants were found to have their expressions perturbed significantly, we 

then compared the quantified expression values (given as tags per million or TPM) between the 

sample where that variant was obtained against the averages of that gene’s expression for the SK 

data set. As all the SK variants were putatively germline, we did not suspect them of having 

grossly altered gene expressions for the NRM samples. However, we did consider that these 

could be risk alleles that somehow facilitate oncogenesis. 

All but two of the samples that contained these gene variants displayed gene expression values 

within one standard deviation of the average of expression. The two exceptions pertained to the 

CAPN2 and JAK1 gene variants, with the CAPN2 gene’s NRM expression being just above that 
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of one standard deviation, whereas both the NRM and CRC samples with the JAK1 gene variant 

showed expression below that of one standard deviation of the mean. 

These results suggest that these SK novel variants do not seem to disrupt gene expression any 

more than what was seen in other cancerous samples, with possible exception for the CAPN2 and 

JAK1 gene variants. We will now consider each in more detail and speculate as to what role 

these variants and their genes may play in oncogenesis. 

 

4.9 – Noteworthy novel variant calls made for the SK and NZ data. 

As discussed, all the SK novel gene variants (MUM1, CAPN2, MAPK1, JAK1, KIF9, and 

OTUD7B) were putatively germline, i.e. they were either called in either in high confidence in 

NRM samples, or less stringently in NRM samples and in high confidence for cancerous 

samples. Unlike the SK data, the lack of normal samples for the NZ data means it was difficult to 

ascertain if the NZ novel variants were germline or somatic. However, as both types of variation 

could influence carcinogenesis in different ways, the NZ variants were considered regardless of 

knowledge of their germline/somatic status. 

For example, germline variants could be risk alleles that function normally until subsequent 

cellular stress impedes this function. As a result, germline variants can lead to a predisposition 

towards diseases like CRC. Somatic variants, meanwhile, are a direct result of carcinogenesis 

taking place, with somatic variants serving some oncogenic purpose being maintained as 

tumorous cells proliferate. Somatic variants could serve as important biomarkers for clinical 

diagnoses and prognoses. 

That said, the lack of normal samples also means it is difficult to understand how the expression 

may have changed as a tissue transitions from being normal to cancerous. This is likely why 

none of the NZ novel gene variants (PHYH, XPO1, PHF23, and SHISA5) showed a significant 

log fold change in gene expression as the comparison was being made between two already 

cancerous samples. We similarly saw little difference when comparing the SK data’s CRC and 

LM samples, with more perturbed expression seen when comparing the SK data’s CRC and 

NRM samples. 

With that in mind, had NRM samples been available to the NZ data, some or all the genes 

affected by novel variants could have seen significant changes in expression. Additionally, we 

found that for the SK data, the PHYH, XPO1, and SHISA5 genes did show perturbed expression 

(supplementary material 20). This was despite high confidence variants for these genes only 

being called in the NZ data and may support these genes as being oncogenic targets for diseases 

like CRC. Future work would clearly benefit from the inclusion of normal samples and will be 

discussed further in section 4.11. 

While we have noted 11 novel variants called during our analysis (MUM1, CAPN2, MAPK1, 

JAK1, KIF9, OTUD7B, PHYH, XPO1, PHF23, and SHISA5), for brevity we will only discuss 

one variant from each data set (MUM1 for the SK data and SHISA5 for the NZ data). A more in-

depth discussion for all novel variants can be found in supplementary material 24. 
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The multiple melanoma 1 (MUM1) gene was originally identified as a myeloma-associated 

proto-oncogene activated as a result of a translocation between chromosomes 6 (p25) and 14 

(q32). This gene, also known as interferon regulatory factor 4 or IRF4, can both positively and 

negatively regulate the expression of other genes [192]. 

In B-cell lymphoma/leukaemia, for example, MUM1 co-operates with the myeloid transcription 

factor PU.1, upregulating the monokine induced by interferon gamma gene (MIG). Also known 

as chemokine C-X-C motif ligand 9 (CXCL9), MIG itself plays contradictory roles in tumour 

suppression and progression. Regarding CRC specifically, high expression of MIG has been 

predicted to have better overall CRC survival rates [193]. 

The MUM1 gene variant found in this study was annotated by SnpEff with a “stop gained” 

mutation. This suggests that its protein product would be truncated and likely made non-

functional. This would normally be subject to nonsense-mediated decay (NMD) whereby the 

aberrant mRNA is degraded before protein translation. However, our MUM1 gene lacked any 

explicit NMD annotations as seen for other variants called as part of our analysis. 

MUM1 gene expression was found to be higher for NRM samples than for CRC (log fold change 

1.81, adjusted p-value 3.09*10-6, Table 10, Figure 10). While the CRC MUM1 variant’s gene 

expression did exist within one standard deviation of its CRC mean, it appeared to be one of the 

lower values for this deviation (Figure 10b). Additionally, we did not find that gene expression 

was significantly perturbed for the MIG gene (adjusted p-value 0.07 for CXCL9 in 

supplementary material 20). 

Given the lack of any NMD annotations, the early stop codon for this MUM1 gene variant could 

suggest that is somehow not subject to NMD. If this is the case, the resulting truncated protein 

may function in normal conditions but could become further repressed under stressful cancerous 

conditions. This could then impede the over-expression of more tumour suppressive genes. For 

example, we found that MIG expression for the relevant sample did not appear upregulated. This  

may suggest our MUM1 variant is worth investigating further. 

Literature pertaining to shisa family member 5 (SHISA5, also known as SCOTIN), has shown 

some involvement in oncogenesis. One study suggested that SHISA5 had pro-apoptotic 

properties and induced TP53 expression under conditions of DNA damage or cellular stress 

[194]. More recently, SHISA5 expression was found to be absent from a study using 

glioblastoma cell lines. This contrasted the expression seen in normal astrocytes, which regulate 

electrical signals in the brain. This study also found that SHISA5 modulated both apoptosis and 

autophagy as a result of DNA damage independent of TP53 [195]. 

The SHISA5 gene variant was annotated by both SnpEff and PredictSNP2 as having gained a 

stop codon. SnpEff also predicted this as having high functional impact while PredictSNP2 

described this variant as having occurred within an exonic region. The SHISA5 variant was 

annotated with both a loss of function (LOF) and, unlike the MUM1 gene variant above, also 

possessed an NMD annotation. We also found that, while no SHISA5 gene variant was called in 

high confidence for the SK data, this gene’s expression was significantly perturbed for this data 

set (log fold change -0.56, adjusted p-value 1.66*10-6, supplementary material 20). 
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If the SHISA5 gene is involved in tumour suppressive functions like those detailed above, then 

this variant could clearly exacerbate CRC pathogenesis. Loss of functional SHISA5 may no 

longer contribute to processes like apoptosis and terminate cancerous cells, nor induce remedial 

proteins like TP53 when a cell is subject to stress. This would clearly benefit cancerous cells by 

facilitating further somatic mutations, promoting cellular survival processes, and may be worth 

investigating further. 

 

4.10 - Future Work. 

Our efforts to make high confidence variant calls heavily compromised the current pipeline’s 

sensitivity and is perhaps one of the first issues that should be considered. While we were 

fortunate enough to make some putative novel variant discoveries after variant filtering, other 

studies in the future may not be as fortunate. Future work may then benefit from developing a 

more sensitive pipeline, as even those variants we have highlighted may be inconsequential in 

better understanding CRC. 

One change that we could make to improve sensitivity is to have a range of confidences 

regarding intersecting consensus calls. This is juxtaposed with the current pipeline that only 

considers variants of the “highest” confidence, i.e. called by all seven of our methods. Instead, 

variants called by five or six could still be considered variants of “high” confidence, especially 

when compared to calls made by only one tool, etc. 

Additionally, we also encountered instances were highest confidence calls were made for some 

samples and not others. This was because, although the same variant had been called, it lacked 

the same level of support as the highest confidence variant calls. As discussed, these variants are 

likely true positives supported by the fact that the highest confidence call had already been made 

in one sample. Also, samples where a variant had been called less stringently were often related 

to the sample where the high confidence call had been made, e.g. a tumour-normal pair. 

Like the known databases we have used to support a variant as being a true positive call, we 

could compile a VCF file containing all our highest confidence calls. This file could then be used 

to identify the same variants that may have been called less stringently in other samples. 

As well as considering variants called less stringently in other samples, it may also be worth 

being suspicious of samples with an apparently inordinate number of variant calls. For example, 

we found that three of the four NZ novel variants discussed were all present in the CRC/LM337 

samples. We then discovered that, after our filtering steps had been applied, 29 high confidence 

calls had been called in of these samples. Juxtaposed with this, an average of 8.96 had been 

called across all the SK samples (supplementary material 13). We also found that, before 

filtering based on a variant’s QUAL value or being supported by multiple samples, both CRC337 

and LM337 contained many more variants than all over samples (96 for CR337 and 90 for 

LM337, average 23.27). 

We performed a similar analysis for the SK data. Although we did not observe any obvious 

patterns of hypermutation for the high impact SNPs (supplementary material 12), for moderate 
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impact SNPs (data not shown) we did find two related CRC and LM samples with possible signs 

of hypermutation. Both samples, SRR975564 and SRR975600, possessed 498 and 472 high 

confidence moderate variants, respectively. This was more than double that of the average 

number of high confidence moderate impact SNPs obtained for this data set (210.06). 

Interestingly, the related NRM sample (SRR975582) returned only 186 high confidence 

moderate impact SNPs. 

This discovery made us reflect on some of the COSMIC annotations we have observed that had 

been removed from the COSMIC website. As discussed, these variants had been excluded as 

they came from samples suspected as “hypermutated” (defined initially as any samples with over 

15,000 variants [187]). This made it more difficult for COSMIC to distinguish any variants from 

background noise. That said, when considering the total number of variant calls regardless of 

intersections for both data sets (supplementary materials 2 and 4), we did not see any obvious 

signs of hypermutation. This may warrant the development of a better methodology for 

identifying hypermutated samples in future work. 

Other considerations for future work are which variant calling tools to use, and for which 

purpose. For example, the variants we ended up discussing for the SK data set were all called in 

their respective NRM samples, both in high confidence and less stringently. This might suggest 

there is some bias in our pipeline towards making germline variant calls, rather than calling 

somatic variants. This result is unsurprising given one of the primary focuses of this study was to 

make high confidence RNA-seq variant calls from the NZ data, which lacked normal samples. 

The lack of normal samples for the NZ data set meant we had to make several comprises 

regarding which tools we could use. We could only include tools that did not require normal 

samples, were compatible with RNA-seq data (preferably with literature supporting the tools use 

in this regard) and were simple to use to and so easier to automate with the Snakemake workflow 

engine. For example, any study interested in making variant calls from RNA-seq data is likely to 

consider the HC tool, given the Broad Institute’s “GATK best practises for calling variants on 

RNAseq”. However, unlike the MT2 tool, HC is not explicitly a somatic variant calling tool. 

With that in mind, seeking consensus between somatic variant callers and others could present 

conflicts further reducing variant calling sensitivity. For example, any call made by a non-

somatic variant caller also had to appear “somatic” enough to be detected by MT2. Even some of 

our putative somatic variants, including those observed as somatic in a known variant database, 

does not mean they were also somatic in our samples. A possible solution for future work would 

be to develop two separate variant calling pipelines: one pipeline specific for germline calls 

using tools like HC, and another for somatic calls using tools like MT2. 

From what we have seen so far, we would suggest using both HC and PT, coupled with both the 

GATK and OP pre-processing methods, as part of the germline pipelines methodology. To make 

RNA-seq variant calls, the data in question needs to be pre-processed and presently, these are the 

two pre-processing methods available. Fortuitously, both pre-processing methods also have 

variant calling tools to which they are specifically designed. 
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This would provide any future studies with a variant calling pipeline that includes an ensemble 

of at least three variant calling methods: GATKHC, OPHC, and OPPT. We would not consider 

using the FB tool at least until some filters have been formally developed for the tool. This is 

because the FB tool’s high sensitively suggests a lack of specificity and likely would result in 

many false positive calls. 

Developing both a germline and somatic variant calling pipelines presents us with another 

consideration for future work. As already discussed, the lack of normal samples for the NZ data 

compromised how many somatic variant callers we could use. That said, there is still merit from 

using an ensemble of variant callers, as we have seen given the sensitivity of tools like FB in 

making variant calls. Any future studies whereby using RNA-seq data to make variant calls 

would then benefit greatly from the inclusion of normal samples, which would have various 

benefits. 

Having access to normal samples would allow us to use other somatic variant callers. These tools 

often require normal samples as input, along with a cancerous sample. Providing these tools with 

normal samples would serve a similar purposes as to when we would manually inspect a 

sample’s NRM VCF file, verifying if a variant was absent from those samples. Using multiple 

somatic callers would also allow us to see which of these calls intersected and so provide more 

support for those variants being true positives in the absence of support from known variant 

databases. 

While the NZ data did lack normal samples, the increased depth at which it was sequenced 

would be beneficial for future studies. For example, while the OPPT method obtained enough 

variants to be compared to the HC and MT2 methods for the SK data, both HC and MT2 

obtained roughly double the number of variants called by OPPT for the NZ data. OPPT’s 

performance for the SK data was interesting, given it had access to only the OP pre-processed 

BAM files. Meanwhile, both HC and MT2 had access to both OP and GATK BAM files. The 

result seen for the NZ data, therefore, was more in line with what we expected. This might also 

suggest that the PT tool’s performance does not improve with this increase in depth and may be 

relevant depending on the depth of sequencing for future work. 

Another critique is the fact that our current methodology is both computationally expensive, 

requiring a significant investment in runtime. This appeared especially true when calling variants 

for the more deeply sequenced NZ data when using MT2. This may be because somatic tools, 

like MT2, make better use of this increased depth when making variant calls. As expected, this 

increased depth did increase average runtime (Figures 1a and 2a). However, the increased 

runtime for the NZ data’s OPMT2 variant calling method was substantial. Given the 

overwhelming number of MT2 variants that were only called after OP pre-processing (Figures 8e 

and 9e), this requires further investigation. The above result regarding the OPMT2 method may 

call into question the suitability of using pre-processing methods with somatic variant callers and 

may undermine any somatic variant calls we can make from RNA-seq data. 

Another possibility for future work would be to make variant calls from both RNA-seq and 

DNA-seq data. Concordant variant calls made in both RNA-seq and DNA-seq data would 
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provide support for each other’s calls as being true positives. Additionally, Sanger sequencing 

can also be used to verify that variant as a true positive, although this may be best reserved for 

the variants of the most interest to researchers. 

Regarding our pipeline’s runtime, it may be worthwhile prioritizing one germline and one 

somatic variant calling method, unlike the current pipeline which requires the whole ensemble to 

finish before obtaining data. For example, allowing the already quick OPPT method to make its 

variant calls and then annotated them with known variant databases, etc. would provide some 

preliminary data that could be analysed. Meanwhile, the rest of the ensemble of variant callers 

could continue to work in the background, providing support for some calls already made with 

OPPT. This may be especially useful in a more clinical setting where a quick turnaround of 

results could impact a patients’ treatment and prognosis significantly. 

Other limitations of this study include a focus on SNP variants, and the exclusion of more 

complex variants such as MNP’s, indels, etc. SNPs were initially chosen because their simplicity 

meant that more robust filters have been designed for making their calls. While SNPs may be 

easier to call, complex variants are also more likely to have more significant pathological affects 

because of the scale to which they can alter a genome [63]. 

To conclude our thoughts for future work, another consideration regarding SNP variants 

specifically is a biological process known as “RNA editing”. After a RNA molecule is generated 

within a cell, that cell may then make discrete post-translational edits or modifications to the 

molecule. Examples of such modifications include making insertions, deletions, and base 

substitutions, such as the common deamination of cytidine and adenosine to uridine and inosine, 

respectively [196]. At a surface level, this is not far removed from what a variant calling tool 

may interpret as a genetic variant or mutation. 

Unfortunately, there appears to be no RNA editing resource akin to the known variants databases 

we included in this study, that could be easily implemented into our pipeline. The closest we 

could find to such a resource was a text file, rather than a VCF file with which we could annotate 

our variants, from the Rigorously Annotated Database of A-to-I RNA editing website. 

Developing an RNA editing VCF file like the DBSNP, COSMIC, and ClinVar resources, which 

were all proven to be very useful in our study, could both limit any false positive variant calls 

and help identify aberrant RNA editing events. 
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5.0 – Conclusion. 

Developing an RNA-seq variant calling pipeline, without a reliance on normal samples, has 

proven to be an interesting academic exercise. However, the issues pertaining to RNA-seq 

variant calling have not been resolved in this study. Of the two RNA-seq pre-processing methods 

implemented in our pipeline, the Genome Analysis Toolkit/GATK best practises and the 

Opossum pre-processing tool, GATK appeared less specific/more sensitive in comparison to 

Opossum. 

The combination of Opossum with the Platypus variant caller (the tool for which Opossum was 

specifically designed and is also incompatible with GATK pre-processing) appeared to be a 

remarkably efficient variant calling method, considering the speed at which it called variants. 

That said, this combination may not make the best use of data sequenced at deeper depths. 

The GATK best practises, designed for their HaplotypeCaller, improved the number of 

concordant variant calls when using this tool following GATK and Opossum pre-processing. 

This likely limited the number of false positives we would have obtained otherwise. 

Meanwhile, MuTect2 was one of the few somatic variant callers we could use as it did not 

require normal samples as part of its input. This was a limitation we were forced to consider 

when developing the pipeline. The overwhelming number of variants called following the 

combination of Opossum with MuTect2 suggests there is a bias which future work will need to 

investigate. This may also call into question if any RNA-seq pre-processing method is suitable 

when making somatic variant calls. 

Freebayes appears to be an incredibly sensitive tool, not surprising given its reputation. Its lack 

of documented filters, akin to the GATK best practises or tools like Opossum, may burden 

researchers with false positives until this is addressed. 

Of the known variant databases used in this study (the SNP known variant database/DBSNP, the 

Catalogue of Somatic Mutations in Cancer/COSMIC, the database of Clinical Variants/ClinVar, 

the Exome Aggregation Consortium/ExAC, and the Genome Aggregation Database/GNOMAD), 

the DBSNP, COSMIC, and ClinVar databases proved most useful for our study’s aims. We also 

found that often the IDs annotated by those databases, and their accompanying websites, 

provided information made available by both ExAC and GNOMAD. 

Future work would benefit from various changes to the existing pipeline. For example, we could 

make separate germline and somatic variant calling pipelines. We could also prioritize one 

variant calling method, such as the quick Opossum/Platypus combination complete with known 

variant annotations. This would provide researchers with some preliminary variant calls which 

may be useful in situations where timely variant calls could have significant consequences. 

Also, we would recommend any future work to include normal samples, permitting the use of 

more somatic variant calling tools in any developed pipeline. We would also consider using 

RNA and DNA sequencing data to make variant calls. This would allow one set of results to 

support the other where the same variant call had been made. 
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Finally, we could develop a database of known RNA editing sites, akin to the known variant 

databases above, which could be included in our pipeline to further reduce any false positive 

variant calls. 
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