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Summary: Multivariate spatial data, where multiple responses are simultaneously recorded across spatially indexed4

observational units, are routinely collected in a wide variety of disciplines. For example, the Southern Ocean Continu-5

ous Plankton Recorder survey collects records of zooplankton communities in the Indian sector of the Southern Ocean,6

with the aim of identifying and quantifying spatial patterns in biodiversity in response to environmental change. One7

increasingly popular method for modeling such data is spatial generalized linear latent variable models (GLLVMs),8

where the correlation across sites is captured by a spatial covariance function in the latent variables. However, little is9

known about the impact of misspecifying the latent variable correlation structure on inference of various parameters10

in such models. To address this gap in the literature, we investigate how misspecifying and assuming independence for11

the latent variables’ correlation structure impacts estimation and inference in spatial GLLVMs. Through both theory12

and numerical studies, we show that performance of maximum likelihood estimation and inference on regression13

coefficients under misspecification depends on a combination of the response type, the magnitude of true regression14

coefficient and the corresponding loadings, and, most importantly, whether the corresponding covariate is (also)15

spatially correlated. On the other hand, estimation and inference of truly non-zero loadings and prediction of latent16

variables is consistently not robust to misspecification of the latent variable correlation structure.17
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temporal
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1. Introduction18

Multivariate spatial data, consisting of multiple responses recorded simultaneously across19

spatially indexed observational units, are routinely collected in a variety of disciplines.20

Such data are characterized by spatial correlations whose strength depends inversely on the21

geographic distance between units, and between response correlations for which we usually22

have little information a priori regarding their structure. This article is motivated by the23

Southern Ocean Continuous Plankton Recorder (SO-CPR) survey, an annual survey that24

collects count records of zooplankton communities using vessels traversing the Indian sector25

of the Southern Ocean (Hosie, 2020). Alongside species records, we have covariate information26

pertaining to the physical habitat and oceanographic environment, and one of the primary27

aims of the SO-CPR survey is to identify and quantify spatial patterns in biodiversity in28

response to environmental change.29

In community ecology, one of the most popular emerging methods for analyzing mul-30

tivariate spatial data is spatial generalized linear latent variable models (Thorson et al.,31

2015; Warton et al., 2016; Ovaskainen et al., 2016; Bjork et al., 2018; Shirota et al., 2019).32

This model is an extension of generalized linear latent variable models (GLLVMs, Skrondal33

and Rabe-Hesketh, 2004) for analyzing multi-response data, where the latent variables are34

given additional structure to model the spatial correlations, on top of their usual role in35

accounting for between species correlation. For instance, the latent variables are drawn36

from a multivariate normal distribution with zero mean vector and a correlation matrix37

parameterized using a Matérn correlation function based on some distance metric between38

sites. Outside of community ecology, such analyses are also referred to as spatial factor39

analysis (e.g., Zhu et al., 2005; Lopes et al., 2011).40

Compared to the standard independence assumption for latent variables i.e., when the41

correlation matrix is set to the identity matrix, assuming a structured correlation matrix42
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has two major implications. From a modeling perspective, it is evident that in the presence43

of spatial correlations, assuming independence in the latent variables results in clear model44

misspecification. There has been some research into the impacts of misspecifying the latent45

variables for estimation and inference in GLLVMs. However, the literature so far has focused46

on misspecification of the latent variable distribution rather than of the correlation structure,47

and the consequences on estimation and inference of the loadings and prediction of latent48

variables rather than the impact on regression coefficients (e.g., Ma and Genton, 2010;49

Irincheeva et al., 2012). Furthermore, the large sample theory developed in such previous re-50

search on misspecification in GLLVMs was motivated by non-spatial data. As such, assuming51

independence in the latent variables across units was a reasonable foundation on which to52

base developments. By contrast, with spatial data such theory does not carry over directly:53

one requires alternative asymptotic frameworks e.g., increasing domain, fixed domain infill,54

and it is not guaranteed that properties such as consistency can be necessarily achieved within55

all these frameworks The asymptotics of spatial and spatio-temporal modeling remains an56

active area of research (e.g., Lu and Tjostheim, 2014; Kurisu, 2019), and to our knowledge57

there has been no theoretical research into the large sample effects of misspecifying the58

correlation structure in spatial GLLVMs (although related empirical work has been done on59

this by Shirota et al., 2019).60

From a computational perspective, and focusing on maximum likelihood estimation, spatial61

GLLVMs involve a high-dimensional integral and, usually, the inversion of a high-dimensional62

matrix during the estimation process. By contrast, estimation and inference assuming inde-63

pendence is substantially faster since the dimension of the integral in the likelihood is reduced64

and there are no covariance parameters to estimate. While considerable progress has been65

made into more efficient likelihood-based estimation and inference in GLLVMs and mixed66

models in general (Niku et al., 2019), as well as on computationally faster approaches for67
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modeling spatial data in general, the substantial reduction in computation time brought68

about by assuming independence remains.69

Motivated by the potential tradeoff between computation time and model misspecifica-70

tion, this article studies the consequences of assuming independence for the latent variable71

correlation structure on estimation and inference in GLLVMs applied to multivariate spatial72

data. We develop some large sample results for point estimation of regression coefficients73

in GLLVMs under misspecification of the correlation structure, and complement this with74

an extensive simulation study to examine how finite sample performance is affected by75

response type, the magnitude of the regression coefficient and corresponding loadings, and76

whether the measured environmental covariates are spatially correlated. The main findings77

and contributions of this article may be summarized as follows:78

• For normally distributed responses, maximum likelihood estimates of all regression co-79

efficients excluding the intercept are estimation consistent. For non-normally distributed80

responses, only a weaker zero consistency result can be obtained. The exception is responses81

that are uncorrelated with all other responses, for which we (also) obtain estimation82

consistency of all the regression coefficients (Section 3).83

• For covariates that have little to no spatial correlation, empirical studies show that for84

normal, negative binomial, and Tweedie distributed responses, point estimation of re-85

gression coefficients is largely robust to misspecification, and sandwich-based confidence86

intervals are close to their the nominal significance level (Sections 4.2–4.3). For binary87

responses, point estimation and sandwich-based confidence intervals only perform well88

under misspecification when either the magnitude of the true regression coefficient or the89

magnitude of its corresponding loadings are not especially large (Sections 4.4).90

• For covariates that have moderate to strong spatial correlation, assuming independence of91

the latent variables almost always leads to poor estimation and inferential performance92
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for regression coefficients, irrespective of the response type and the magnitude of the93

true coefficient. The one exception is coefficients corresponding to responses that are94

uncorrelated with all other responses, which remain robust to misspecification when the95

covariates are spatially correlated (Sections 4.2–4.4).96

• Irrespective of the response type, estimation and inference of the non-zero loadings and97

prediction of latent variables in the GLLVM is not robust to misspecification of the98

latent variable correlation structure. The one exception is responses that have entirely99

zero loadings i.e, responses that are independent of all other responses, for which a zero100

consistency result can be obtained for the estimates of the loadings under misspecification101

(Sections 4.2–4.4).102

The results we obtain bear some resemblance to existing research on estimation and103

inference for spatial data as well as correlated data more generally. One article of particular104

relevance here is Shirota et al. (2019), who empirically found that spatial GLLVMs consis-105

tently outperform independent GLLVMs when it comes to prediction of the linear predictor106

and estimation of the residual covariance matrix (formed from the loading matrix). The107

findings here are concordant with these previous results, although in this article we perform108

a broader investigation to develop large sample results as well as examine the critical issue109

of estimation and inference of the regression coefficients (which Shirota et al., 2019, did110

not focus on). In the more general spatial regression setting, several methods proposed for111

variable selection (usually assuming spatially uncorrelated covariates) have demonstrated112

that assuming independence across sites does not affect large sample selection consistency113

results, although in finite samples the loss of efficiency and overall consequences can be114

pronounced (Hoeting et al., 2006; Wang and Zhu, 2009; Xu et al., 2015). Also, previous115

research into generalized linear mixed models has largely shown that estimation and inference116

on fixed effects is fairly robust to misspecification of the random effects distribution, but117
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that random effects inference is not robust to the same sort of misspecification (Hui et al.,118

2020). This article builds on such exisiting research, and presents several new findings and119

consequences. For instance, the lack of robustness under misspecification for inference on120

spatially correlated covariates has major implications on how multivariate spatial data should121

be analyzed. In most spatially indexed observational studies in ecology, it is either known122

a priori or evidence is uncovered empirically that both the responses and one or more123

of the environmental predictors are spatially correlated. When analyzing such data, our124

results demonstrate that it is imperative that spatial correlation in the latent variables be125

taken into account. Otherwise, one risks inference being incorrect for regression coefficients126

corresponding to the spatially correlated covariates e.g., coverage probabilities of confidence127

intervals substantially below the nominated level, as well as poor predictive performance of128

the model as a whole (see also Yoon and Welsh, 2020, for similar results in the context of129

linear mixed models). We conclude our comparison by applying both a spatial GLLVM and a130

standard GLLVM assuming independence of the latent variables to the SO-CPR survey. For131

both models, we obtained some but not entirely similar results with regards to identifying132

the effects of key environmental covariates on the distributions of 24 zooplankton species133

across 3,900 spatial locations.134

2. Spatial GLLVMs135

We establish the notation of spatial GLLVMs with ecological data in mind. Let yj(si) denote136

the observed response for species j = 1, . . . , p at site (observational unit) si ∈ D; i = 1, . . . , n137

in some spatial domain D. The spatial domain can be continuously (e.g., geostatistical138

data) or discretely (e.g., lattice data) spatially indexed, or both, and we make no explicit139

restrictions on this (subject to Assumption 1 discussed below).We also observe a q-vector140

of covariates at each site, x(si) = (x1(si), . . . , xq(si))
>, representing physical environment141
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or habitat. We assume x1(si) = 1 for i = 1, . . . , n to represent an intercept term, while the142

other terms are centered to have expectation zero, EX{xk(s)} = 0 for all k = 2, . . . , q.143

The responses are assumed to be generated from a spatial GLLVM as follows: conditional144

on a d-vector of latent variables u(s) with d� p, as well as the covariates, the elements of the145

response vector y(s) = (y1(s), . . . , yp(s))> are independent observations from the exponen-146

tial family of distributions. That is, f{yj(s)|x(s),u(s)} = exp{φ−1j [yj(s)ϑj(s)−a{ϑj(s)}] +147

c(yj(s), φj)} for known functions a(·) and c(·, ·), where ϑj(s) is the canonical parameter and148

φj is species-specific dispersion parameter. The mean, EY |U,X{yj(s)|x(s),u(s)} = µj(s) =149

µj(s) = a′{ϑj(s)}, is modeled as g{µj(s)} = ηj(s) = x(s)>βj + u(s)>λj for a known link150

function g(·), where βj is the vector of species-specific regression coefficients and λj is the151

vector of species-specific loadings.152

Write the full nd-vector of latent variables generically as u(S), where S indexes all sampled153

locations. Let β = (β>1 , . . . ,β
>
p )>, φ = (φ1, . . . , φp)

>, and λ = (λ>1 , . . . ,λ
>
p )> denote the154

full vector of regression coefficients, dispersion parameters, and loadings respectively. The155

marginal likelihood for the spatial GLLVM is given by156

L(β,φ,λ,θ) =

∫ n∏
i=1

p∏
j=1

f{yj(si)|x(si),u(si)}f(u(S)|θ)du(S), (1)

where the latent variables are assumed to come from a multivariate normal distribution157

with zero mean vector and a correlation matrix parameterized by a vector θ, that is,158

f(u(S)|θ) = Nnd{0,Σ(θ)}. Note Σ(θ) is a correlation (as opposed to a covariance) matrix159

to avoid scale invariance in the GLLVM. It is the combination of covariance parameters160

θ and loadings λj in (1) which models the between species and spatial correlations in161

the data; see the end of the following section for more discussion on the role of corre-162

lations between species versus spatial correlation. On the linear predictor scale, we have163

Cov{ηj(si), ηj′(si′)} = λ>j Cov{u(si),u(si′)}λj′ for i, i′ = 1, . . . , n and j, j′ = 1, . . . , p, where164
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Cov{u(si),u(si′)} depends on the precise structure of Σ(θ). Thus we see that the between165

species correlation also depends on the two spatial locations of interest. One common choice166

for Σ(θ) in community ecology is to assume the d latent variables are independent and use167

a spatial covariance function for each latent variable (e.g., Thorson et al., 2015; Ovaskainen168

et al., 2016). If we let ul(si) denote the l-th element in u(si), then for l = 1, . . . , d we use169

the Matérn correlation function, Cov{ul(si), ul(si′)} = ρ(D(si, si′), ν, αl), where ρ(h, ν, αl) =170

{2ν−1Γ(ν)}−1(hα−1)νKν(hα−1l ) for smoothness ν > 0 and spatial scale parameters αl > 0,171

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second kind,172

and D(·, ·) is some distance metric. Note the scale parameter, but not the smoothness173

parameter, is allowed to be different across the latent variables. The vector of covariance174

parameters is given by θ = (ν, α1, . . . , αd)
>, although the smoothness may be fixed a priori175

e.g., ν = 1 is a recommended choice when D = R2 (Lindgren and Rue, 2015). .176

2.1 Assuming Independence177

Of the various structures which can be imposed on the latent variables, the simplest one is178

to assume the correlation matrix is equal to the identity matrix, Σ(θ) = Ind. The latent179

variables are then assumed to be independently standard normally distributed, and the180

marginal log-likelihood for the GLLVM reduces to181

LInd(β,φ,λ) =
n∏
i=1

{∫ p∏
j=1

f{yj(si)|x(si),u(si)}h{u(si)}du(si)

}
=

n∏
i=1

LInd,i(β,φ,λ),

(2)

where h{u(si)} = Nd(0, Id). Equation (2) is equivalent to the standard GLLVM advocated182

for use by Warton et al. (2016) for community ecology data, and is a common choice for183

modeling multivariate data in other disciplines (Skrondal and Rabe-Hesketh, 2004). With184

the independence structure, the latent variables can only model between species correlation:185

Cov{ηj(si), ηj′(si′)} = 0, unless i = i′ in which case Cov{ηj(si), ηj′(si)} = λ>j λj′ .186
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It is clear that assuming spatial independence makes the likelihood function computa-187

tionally much easier to maximize: the product over the n observational units is pulled188

outside the integral and there are no covariance parameters to estimate in (2). Of course the189

computational gain comes with a cost, and the presence of spatial correlation means that190

equation (2) is misspecified in the second moment. In fact, as seen above the independence191

assumption means that the expected counts of two species may be correlated at any particular192

site, but are otherwise uncorrelated across different sites. In Appendix A, we elaborate193

more on the two correlation structures present in a spatial GLLVM, noting that the focus194

of this article is misspecification of the spatial correlation structure, and not (also) on195

misspecification of the between species correlation.196

3. Estimation Under Misspecification197

For the set of observed data, consider logL(β,φ,λ,θ) in (1) as the log-likelihood correspond-198

ing to the true model. Define `(β,φ,λ,θ) = log{
∫ ∏p

j=1 f{yj(s)|x(s),u(s)}f(u(s)|θ)du(s)},199

and denote the full vector of true parameters as (β0,φ0,λ0,θ0) which satisfies200

EX,Y {∇`(β0,φ0,λ0,θ0)} = 0. Next, consider logLInd(β,φ,λ) in (2) as the log-likelihood201

corresponding to the misspecified GLLVM assuming independence, and let202

`Ind(β,φ,λ) = log{
∫ ∏p

j=1 f{yj(s)|x(s),u(s)}h{u(s)}du(s)}. We define the Kullback-Leibler203

distance DKL(β,φ,λ) = EX,Y {`(β0,φ0,λ0,θ0)− `Ind(β,φ,λ)}, and consequently the vector204

of pseudo-true parameters (β∗,φ∗,λ∗) = arg minβ,φ,λDKL(β,φ,λ) which satisfy205

EX,Y {∇`Ind(β∗,φ∗,λ∗)} = 0.206

Let (β̂, φ̂, λ̂) = arg maxβ,φ,λ logLInd(β,φ,λ) denote the maximum likelihood estimator207

of the misspecified GLLVM. We base our large sample developments under the following208

general regularity condition.209

Assumption 1: The appropriate conditions are assumed to be satisfied to ensure weak210
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consistency of the maximum likelihood estimator under the misspecified GLLVM. That is,211

(β̂, φ̂, λ̂)
p−→ (β∗,φ∗,λ∗) as n→∞.212

The above assumption is rather general, and is chosen with reason. As reviewed in Section 1,213

large sample theory in spatial modeling remains an active area of research and is dependent214

both on the related asymptotic framework and the structure of the model itself (e.g., most215

theory has been developed assuming a univariate normal or continuous response with additive216

error structure, and some sort of expanding domain framework; Mardia and Marshall, 1984;217

Lu and Tjostheim, 2014). Our aim is to study misspecification in spatial GLLVMs irrespective218

of the framework selected, by starting from a general position where consistency of the219

maximum likelihood estimator towards a set of pseudo-true parameters (true parameters in220

the case of the true GLLVM) can be attained. By doing so, the results we develop will apply221

to any framework provided estimation consistency within that framework can be achieved.222

In Appendix B, we elaborate on this and provide a more concrete example under which223

Assumption 1 holds.224

3.1 Regression Coefficients225

We first consider the case of conditionally normally distributed responses and the identity226

link, µj(s) = ηj(s).227

Theorem 1: For conditionally normal responses, the regression coefficients satisfy β∗ =228

β0. Thus under Assumption 1, the maximum likelihood estimator of the misspecified GLLVM229

satisfies β̂
p−→ β0 as n→∞, irrespective of the values of λ0.230

All proofs are provided in Appendix B. With non-normal responses, a weaker zero consis-231

tency result can be obtained as follows. For a nonempty subset A ⊆ {2, . . . , q}, let xA(s) and232

xAc(s) denote the vectors of covariates corresponding to A and its complement respectively.233

Theorem 2: Suppose there exists a subset of covariates A ⊆ {2, . . . , q} with A 6= ∅, such234
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that for all j = 1, . . . , p we can write β0
j = (β0

j,A = 0,β0
j,Ac)>. Assuming xA(s) and xAc(s)235

are independent, then the corresponding subset of β∗j will also equal zero i.e., β∗j,A = 0. Thus236

under Assumption 1, the maximum likelihood estimator of the misspecified GLLVM satisfies237

β̂j,A
p−→ 0 for all j = 1, . . . , p, as n→∞, and irrespective of the values of λ0.238

The above result ensures that for any covariates which are truly uninformative for all239

species, the corresponding estimates of the misspecified GLLVM will consistently estimate240

these zero coefficients. While weaker than the full consistency result for conditionally normal241

responses, Theorem 2 may serve as a useful basis for studying variable selection in spatial242

GLLVMs e.g., establishing selection consistency of information criteria or penalized likelihood243

methods for choosing covariates driving the entire species community. Note that for the244

above result to hold, we require the strong assumption of independence between the truly245

informative and truly uninformative covariates. Such an assumption has been made previ-246

ously in order to establish consistency when studying misspecification in generalized linear247

mixed models (e.g., Litire et al., 2007), and is similar to the partial orthogonality condition248

imposed in high-dimensional variable selection (e.g., Huang et al., 2008). In Section 4, we249

shall empirically assess the generality of Theorem 2 in settings with correlated covariates.250

It is important to note that Theorem 2 demonstrates zero consistency only for completely251

uninformative covariates: for a partly informative covariate that is important for some but252

not all species, zero consistency cannot be guaranteed for species whose responses are not253

related to this covariate. Intuitively, this is because there remains an indirect dependence on254

this covariate through the combination of the direct dependence on the covariate for some255

species and the correlation between species induced by the latent variables. In Section 4, we256

shall empirically study the effects of misspecification on estimation and inference for partly257

informative covariates.258
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3.2 Loadings259

Since the loadings directly relate to the correlation structures in the GLLVM, then one would260

expect that misspecifying the correlation structure in the latent variables should adversely261

affect their estimation and inference. This is largely the case, although a zero consistency262

result can be achieved.263

Theorem 3: Suppose there exists a subset B ⊆ {1, . . . , p} with B 6= ∅, such that λ0
j = 0264

for all j ∈ B. Then the corresponding subset of λ∗j will also equal zero i.e., λ∗j = 0. Thus265

under Assumption 1, the maximum likelihood estimator of the misspecified GLLVM satisfies266

λ̂j
p−→ 0 for all j ∈ B, as n→∞.267

While Theorem 3 may not be important in community ecology, since we do not expect268

many (if any at all) species to be completely uncorrelated to other species, it may still play269

a useful role in other applications of GLLVMs where such independence can arise (e.g.,270

Hirose and Konishi, 2012). Intuitively, any species that is uncorrelated with all others in271

the model remains uncorrelated under misspecification of the latent variable correlation272

structure. Therefore, we cannot borrow strength from other species to improve estimation273

and inference of the parameters specific to this species. This leads to the following result.274

Corollary 1: For any species j ∈ B that is independent of all other species on the275

linear predictor scale of the model, as defined in Theorem 3, the regression coefficients satisfy276

β∗j = β0
j . Thus under Assumption 1, the maximum likelihood estimator of the misspecified277

GLLVM satisfies β̂j
p−→ β0 for all j ∈ B, as n→∞.278

4. Simulation Study279

We conducted a simulation study to assess the finite sample performance of misspecified280

GLLVMs, relative to GLLVMs where the true spatial correlation structure for the latent281
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variables was known. Specifically, we simulated data from a spatial GLLVM with p = 20282

species, q = 7 covariates including the intercept, and d = 3 latent variables. The full details283

of the simulation design are provided in Appendix C, and we only provide some of the284

defining features below. Specifically, the n sites were arranged in a square lattice to reflect285

an expanding domain framework. Excluding the intercept, the covariates x(si) included three286

spatially structured covariates and three spatially independent (but correlated to each other)287

covariates. The covariates were also generated in a way such that the conditions required288

for Theorem 2 are not satisfied, thereby allowing us to assess performance under a more289

realistic setting. The regression coefficients βj varied both in magnitude and sign, and were290

constructed so that two covariates were informative for all species, two were informative for291

half of the species, and two were uninformative for all species. Similarly, the loadings λj in292

the spatial GLLVM were constructed such that species 16 to 20 were independent of all other293

species, while the remaining fifteen species had loadings varying in magnitude and size.294

We generated multivariate spatial data with four possible response types i.e., four possi-295

ble choices for the conditional distribution f{yj(si)|x(si),u(si)}: 1) continuous responses296

from the normal distribution; 2) overdispersed counts from the negative binomial distri-297

bution; 3) non-negative continuous responses from the Tweedie distribution; 4) presence-298

absence responses from the Bernoulli distribution. We considered grids of dimension n1/2 =299

7, 10, 14, 22, 32, and simulated 400 datasets for each value of n. The grid sizes were chosen300

such that the total number of sites approximately doubled with each grid.301

4.1 Model Fitting and Performance Assessment302

We fitted two models to each simulated dataset: a spatial GLLVM with marginal likelihood303

given by (1) and assuming the true spatial correlation structure for the latent variables is304

known, and a misspecified independent GLLVM with marginal likelihood given by (2). In305

addition to point estimates, we calculated 95% Wald confidence intervals for the regression306
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coefficients and loadings using both models. For the true model, this was based on stan-307

dard errors obtained from the inverse of the observed information matrix, Î(β̂, φ̂, λ̂, θ̂) =308

−∇2 logL(β̂, φ̂, λ̂, θ̂) where (β̂, φ̂, λ̂, θ̂)> generically denotes the corresponding maximum309

likelihood estimates. For the misspecified model, we calculated standard errors based on the310

inverse of the sandwich information matrix. Let LInd,i(β,φ,λ) =311 ∫ ∏p
j=1 f{yj(si)|x(si),u(si)}h{u(si)}du(si) denote the likelihood for the misspecified GLLVM312

for site i. Then we define Îsand(β̂, φ̂, λ̂) = Ĥ(β̂, φ̂, λ̂)Ĵ(β̂, φ̂, λ̂)−1Ĥ(β̂, φ̂, λ̂) where313

Ĥ(β̂, φ̂, λ̂) = − 1

n

n∑
i=1

∇2 logLInd,i(β̂, φ̂, λ̂)

Ĵ(β̂, φ̂, λ̂) =
1

n

n∑
i=1

∇ logLInd,i(β̂, φ̂, λ̂){∇ logLInd,i(β̂, φ̂, λ̂)}>.

The sandwich information matrix is generally used as the basis for quantifying uncertainty314

for maximum likelihood estimates under misspecified models, and we refer the reader to315

(White, 1982; Verbeke and Lesaffre, 1997) on its use in misspecified models.316

All GLLVMs were estimated using Template Model Builder (TMB, Kristensen et al., 2015),317

which uses a combination of automatic differentiation and the Laplace approximation to318

produce functions for efficiently calculating the gradient and Hessian of the (Laplace approx-319

imated) marginal log-likelihood. For the spatial GLLVM, we made use of R-INLA (Lindgren320

and Rue, 2015) to construct a stochastic partial differential equation approximation to the321

distribution of the spatial latent variables, which ensured the computation remained feasible322

for large n (see also Thorson et al., 2015). To assess performance of the regression coefficients,323

we calculated the empirical bias and root mean squared error (RMSE) averaged across324

the simulated datasets, and the empirical coverage probability and mean interval width325

of the 95% confidence intervals. To assess performance of the loadings and latent variables326

predictions, we calculated the Procrustes errors between the estimated and true loading327

matrix, and between the estimated and true latent variable matrix (which is formed by328
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stacking the n sets of vectors u(si) as rows). Finally, we recorded the computation time329

(in minutes) used to fit the GLLVM and calculate the associated 95% confidence intervals.330

We present these results in Appendix C since, as to be expected, the simpler misspecified331

independent GLLVM was always faster and scaled better with increasing sample size across332

all response types.333

4.2 Setting 1: Normal Responses334

With regards to the regression coefficients, the biggest factor determining performance for335

misspecified GLLVMs was whether the corresponding covariate was spatially correlated or336

not (Figure 1). Thus we shall discuss our results based on these two cases separately.337

For spatially uncorrelated covariates, both the bias and RMSE of the regression coefficients338

tended to zero for misspecified GLLVMs as sample size increased (Figure 1 left and middle339

columns, solid circles). However the RMSE for misspecified GLLVMs was consistently higher340

than for true GLLVMs, suggesting more variability in the estimates under misspecification.341

There was also little difference between the true and misspecified GLLVMs in terms of342

coverage probability for coefficients corresponding to spatially uncorrelated covariates, with343

the intervals for both models tending to the nominal level irrespective of the size of the344

regression coefficient and the norm of the corresponding loadings (Figure 1 right column).345

The sandwich based confidence intervals from the misspecified GLLVM tended to be wider346

than the intervals based on the true GLLVM, especially for small to medium sized regression347

coefficients (see Appendix C).348

It is startling to see how much the performance deteriorated for coefficients corresponding349

to spatially correlated covariates under misspecification: the empirical bias and RMSE were350

substantially larger compared to both estimates from the true GLLVM, as well as esti-351

mates corresponding to spatially uncorrelated covariates (Figure 1 left and middle columns,352

empty circles). The sandwich based confidence interval suffered severe undercoverage, with353
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performance becoming worse with increasing sample size. This poor performance occurred354

irrespective of the true magnitude of the regression coefficient, but did depend on the norm355

of the corresponding loadings.356

The difference in performance between spatially correlated versus uncorrelated covariates,357

under misspecification, can be attributed to the former exhibiting a strong correlation to358

the spatially structured latent variables. Specifically, a non-negligible proportion of the359

variation in each spatially correlated covariate can be explained by a linear combination of360

the eigenvectors of the spatial covariance matrix Σ(θ). Under misspecification, because the361

latent variables are assumed to be independent, the independent GLLVM then erroneously362

attributes part of this spatial correlation in the latent variables to the covariates. This causes363

estimation and inference for the corresponding elements of βj to deteriorate as the estimated364

coefficients become affected by the values of λj. By contrast, spatially uncorrelated covariates365

(in general) exhibit little correlation to spatially structured latent variables, and so the366

erroneous attribution does not occur and estimation and inference for the corresponding367

coefficients are largely unaffected. This difference in performance has close connections to368

the issue of spatial confounding, and we expand upon this issue in Section 6 and in Appendix369

F.370

[Figure 1 about here.]371

Neither estimation of the loadings nor prediction of the latent variables was robust to372

misspecification of the correlation structure, with the Procrustes errors for the misspecified373

GLLVM being consistently higher than those from the true GLLVM (Figure 2 top row).374

Additional analyses (not shown) of the results for loadings reveal that, consistent with the375

zero consistency result of Theorem 3, it was the non-zero loadings (from species 1 to 15) that376

were poorly estimated under misspecification, while the truly zero loadings (from species 16377

to 20) were estimated well under misspecification of the latent variable correlation structure.378
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Of course, given the above results a natural question to ask is whether performance of the379

misspecified independent GLLVM would improve if we were to fit a model with a larger380

number of latent variables. In Appendix C, we perform such additional simulations where381

we fit independent GLLVMs with d = 5, 7, 9, noting that true number of latent variables in382

the simulation is d = 3. In summary, results for normal responses show that estimation and383

inference on the regression coefficients is hardly affected by increasing the number of latent384

variables, while prediction performance actually deteriorates (as quantified by the Frobenius385

norm between the matrix of estimated and true linear predictor component u(si)
>λj).386

[Figure 2 about here.]387

4.3 Setting 2: Negative Binomial Counts388

The overall patterns seen for the normal response case largely carry over to this setting. For389

spatially uncorrelated covariates, the empirical bias and RMSE of the regression coefficients390

tended to zero for misspecified GLLVMs (Figure 3 left and middle columns, solid circles). This391

finding expands the zero consistency result of Theorem 2 to the case of covariates that are392

correlated with each other, and to truly zero coefficients coming from partly informative as393

well as completely uninformative covariates. There was also little difference between the true394

and misspecified GLLVMs in terms of the coverage probability of the confidence intervals for395

coefficients corresponding to spatially uncorrelated covariates, with intervals for both models396

tending to the nominal level irrespective of the size of the coefficient and the corresponding397

norm of the loadings (Figure 3 right column). By contrast, for spatially correlated covariates,398

estimation and inference of regression coefficients suffered severely under misspecification,399

with considerably higher RMSE and major undercoverage especially for coefficients that400

also had a large corresponding norm of the loadings. Again, the poor performance can be401

explained by the spatially correlated covariates exhibiting a strong correlation to the spatially402

structured latent variables, and so the misspecified GLLVM erroneously attributes part of403
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the latent variable component of the model to the covariates, leading to poor estimation and404

inference on the corresponding coefficients.405

[Figure 3 about here.]406

Estimation of the loadings and prediction of the latent variables both suffered under407

misspecification of the correlation structure for negative binomial GLLVMs (Figure 2 bottom408

row), with additional analyses again revealing that it was the non-zero loadings that were409

particularly poorly estimated under misspecification, while the truly zero loadings were410

estimated relatively well.411

Simulation results for the Tweedie response GLLVM presented similar trends to those for412

the negative binomial counts and normal responses seen above, and the results for these413

are presented in Appendix C. In particular, estimation and inference on the regression414

coefficients was largely robust to misspecification for spatially uncorrelated variables, but415

suffered severely misspecification for spatially correlated variables. Estimation of the loadings416

and prediction of the latent variables performed consistently poorly under misspecification417

of the latent variable correlation structure.418

4.4 Setting 3: Binary Responses419

In contrast to previous settings where estimation and inference of coefficients correspond-420

ing to spatially uncorrelated covariates was largely robust to misspecification, for binary421

responses we observe that the degree of robustness also depended heavily on whether the422

true value of the coefficient was itself close to or exactly equal to zero. In the left and423

middle columns of Figure 4, we observe eight notably outlying regression coefficients (four424

corresponding to spatially uncorrelated covariates and four corresponding to spatially corre-425

lated covariates) that were both large in their true magnitude and had large corresponding426

norm of the loadings, which performed especially poorly under misspecification. These eight427

coefficients also had coverage probabilities for the corresponding sandwich based confidence428
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intervals that were notably below the nominal level (Figure 4 right column). This is despite429

the fact that the sandwich based confidence intervals tended to be relatively wide in this430

setting overall (see Appendix C).431

[Figure 4 about here.]432

Comparing against results from previous simulating settings, this suggests that for binary433

responses, misspecification of the latent variable correlation structure can have a major434

impact on inference for non-zero βj’s (even for spatially uncorrelated covariates), if the435

corresponding norm of the loadings is also relatively large. For coefficients corresponding436

to spatially correlated covariates, misspecification again led to poor performance overall437

(Figure 4 empty circles).438

The results for estimation of the loadings and prediction of the latent variables were similar439

to those seen with the other response types in Sections 4.2 and 4.3, and so for brevity we440

present them in the Appendix C.441

5. Application to SO-CPR Survey442

We fitted negative binomial GLLVMs to data collected in season 2007–2008 of the SO-443

CPR survey, with the aim being to quantify the relationship between the species responses444

and select environmental covariates. The data consisted of n = 3, 875 sampling locations445

irregularly spaced across the Southern Ocean. Furthermore, we focused on p = 24 species446

detected at more than 5% of the sites (see Appendix D for a figure of the sampling locations447

and the species included in the analyses). We included two environmental covariates that were448

a priori considered to be important in influencing one or more of the species distributions:449

salinity (which is highly correlated with temperature) and photosynthetically active radiation450

(PAR). The latter is a measure of amount of light available for photosynthesis. Using451

orthogonal polynomials, we entered both covariates into the GLLVMs as linear and quadratic452
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terms, and also considered a pairwise interaction term between them. Along with an intercept453

term, this produced a total of q = 6 covariates in x(si) and pq = 144 coefficients in β. We454

fitted GLLVMs with d = 3 latent variables and considered two possible spatial correlation455

structures: 1) a Matérn covariance function with ν = 1; 2) an independence correlation456

structure.457

The results are presented in Appendix D, from which we observe that many of the estimated458

coefficients from the two fitted models were similar in magnitude and sign, revealing that459

salinity and PAR, along with the quadratic and pairwise interactions terms, were important460

factors in driving many of the species responses. There were however some notable differences:461

focusing on whether the 95% confidence intervals contained zero or not, each covariate462

had several species that produced differing conclusions across the two models (5 for the463

linear effect of salinity, 3 for the quadratic effect of salinity, 3 for the linear effect of PAR,464

6 for the quadratic effect of PAR, and 5 for the interaction between salinity and PAR).465

The majority of species had a negative coefficient of the quadratic effect of salinity, thus466

supporting the idea of a “niche” in this environment space and consequently of particular467

water masses between Tasmania and Antarctica. By contrast, many species had significant468

negative linear effects and significant positive quadratic effects of PAR, suggesting almost all469

marine species for analysis tended to prefer low light environments. Regarding computation470

time, the independent GLLVM took 3.70 hours to complete (on an Intel Xeon E5-2680 V3471

at 2.50 GHz with 5 CPUs), while the spatial GLLVM took 15.5 hours to fit.472

6. Discussion473

We explored the consequences of misspecifying the spatial correlation structure of the latent474

variables in GLLVMs. If the aim of the analysis centers on estimation and inference for the475

regression coefficients, our findings show that by far the strongest determinant of performance476

is whether the covariate is spatially correlated or not. For spatially uncorrelated covariates,477
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estimation and inference for the coefficients is largely robust to misspecification, with the478

exception of binary responses. But for spatially correlated covariates, which arise quite479

frequently in observational studies in ecology, assuming independence of the latent variables480

leads to poor performance for the corresponding regression coefficients. It is also important481

to account for potential spatial correlation if the aim of the analysis centers on estimation482

and inference for loadings, and for prediction from the GLLVM as a whole.483

In our simulation study, we only generated covariates that were either spatially independent484

or covariates with a fixed spatial scale. This raises the question of what happens if we were485

to consider covariates with varying degrees of spatial correlation. To answer this question,486

we conducted a new set of simulations where multivariate spatial data were generated from487

a spatial GLLVM where the covariates possessed varying strengths of spatial strengths.488

The full details are presented in Appendix E, but in brief, results exhibited a general489

and consistent trend across all four response types, such that estimation and inference490

on the regression under the misspecified independent GLLVM gradually worsened as the491

corresponding covariate became more strongly spatially correlated. By contrast, estimation492

and inference from fitting the true spatial GLLVM were largely unaffected by the strength493

of spatial correlation for the covariates. These results provide further evidence that, if there494

is a priori information covariates are spatially correlated, then it is imperative to account495

for the spatial correlation when specifying the latent variable structure.496

Comparing across empirical and theoretical results, there may appear to be some disagree-497

ment in terms of point estimation of the regression coefficients: Theorems 1 and 2 state that498

consistency is achievable under misspecification for all or some of the coefficients respectively,499

yet our simulations suggest issues with consistency for coefficients corresponding to spatially500

correlated covariates. While not definitive, and we encourage future research into the large501

sample properties of maximum likelihood estimation for misspecified spatial GLLVMs, this502
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discordance may be because spatially correlated covariates possibly do not entirely satisfy503

the conditions underlying Assumption 1. As discussed in Section 4.2, there may be potential504

issues surrounding the identifiability of coefficients for spatially correlated covariates when505

a misspecified independent GLLVM is fitted, and the problems bears similarity to the issue506

of spatial confounding. We expand upon this connection in Appendix F, noting that while507

spatial confounding has been investigated in some detail for univariate spatial regression,508

there is very little research on its impact for spatial GLLVMs (see Shirota et al., 2019, for509

a recent exception that presented an interesting discussion on this topic), let alone what it510

means to “correct” for spatial confounding in misspecified independent GLLVM where the511

latent variables are, by definition, spatially independent.512

While the above results have focused on the most extreme type of misspecification in the513

latent variable correlation structure (by assuming independence), a natural avenue of research514

is to examine cases of “slight misspecification” e.g., we include spatially correlated latent515

variables but the form of the spatial covariance is misspecified, or the true spatial correlation516

structures differ across the latent variables and but we misspecify and assume the same517

structure. Of course, we must be mindful that there is a limitless number of ways one can518

“mix and match” different types of spatially structured latent variables (e.g., we could have519

latent variables included at different scales to reflect a nested design, similar to Ovaskainen520

et al., 2016, and misspecify the correlation structure at one scale but not another), let alone521

the issue of what happens if we misspecify any combination or set of combinations of these.522

In Appendix G we present results from an additional simulation study where we generate523

data from a spatial GLLVM, and compare the performance of an independent GLLVM versus524

a “slightly misspecified” spatial GLLVM where the wrong smoothness parameter ν in the525

Matérn correlation function is assumed. Overall, and not surprisingly, the performance of526

the slightly misspecified spatial GLLVM is generally better than the independent GLLVM.527
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However there is effectively zero computational gain from fitting this slightly misspecified528

spatial GLLVM, and so in some sense is against the motivation and spirit of this article i.e.,529

our aim is to examine the consequences on estimation and inference when we are far away530

from the true spatial structure, where this is traded off against substantial reductions in531

computation time.532

Finally, in our simulations we assumed that the true number of latent variables is known,533

when in practice this also has been chosen (e.g., Hui et al., 2018). How misspecifying the534

latent variable correlation structures affects the number of latent variables chosen is an avenue535

of future research to pursue, along with the more general topic of how misspecification of536

the latent variable correlation structure affects variable selection as well as other aspects of537

inference for GLLVMs as a whole (see Hoeting et al., 2006; Xu et al., 2015, for examples of538

related research on variable selection in geostatistical models when the spatial correlation is539

misspecified).540

Acknowledgements541

Both FKCH and AHW were supported by Australia Research Council Disovery Grants.542

Thanks to Noel Cressie, Anders Nielsen, and Graham Hosie for useful discussions.543

Data Availability Statement544

The data that support the findings in this paper are openly available as part of the “Aus-545

tralian Antarctic Data Centre, at http://dx.doi.org/doi:10.26179/5ee84f77cc4ec, cited546

as Hosie (2020).547

References548

Bjork, J. R., Hui, F. K. C., O’Hara, R. B., and Montoya, J. M. (2018). Uncovering the549

drivers of host-associated microbiota with joint species distribution modeling. Molecular550



Misspecification in Spatial Latent Variables 23

ecology 27, 2714–2724.551

Hirose, K. and Konishi, S. (2012). Variable selection via the weighted group lasso for factor552

analysis models. Canadian Journal of Statistics 40, 345–361.553

Hoeting, J. A., Davis, R. A., Merton, A. A., and Thompson, S. E. (2006). Model selection554

for geostatistical models. Ecological Applications 16, 87–98.555

Hosie, G. (2020). Southern Ocean Continuous Plankton Recorder Zooplankton Records.556

Australian Antarctic Data Centre. Version 8. 10.26179/5ee84f77cc4ec .557

Huang, J., Horowitz, J. L., and Ma, S. (2008). Asymptotic properties of bridge estimators558

in sparse high-dimensional regression models. The Annals of Statistics 36, 587–613.559

Hui, F. K. C., Mueller, S., and Welsh, A. H. (2020). Random effects misspecification can have560

severe consequences for random effects inference in linear mixed models. International561

Statistical Review In Press,.562

Hui, F. K. C., Tanaka, E., and Warton, D. I. (2018). Order selection and sparsity in latent563

variable models via the ordered factor LASSO. Biometrics 74, 1311–1319.564

Irincheeva, I., Cantoni, E., and Genton, M. G. (2012). Generalized linear latent variable565

models with flexible distribution of latent variables. Scandinavian Journal of Statistics566

39, 663–680.567

Kristensen, K., Nielsen, A., Berg, C., Skaug, H., and Bell, B. (2015). TMB: Automatic568

Differentiation and Laplace Approximation. Journal of Statistical Software 70, 1–21.569

Kurisu, D. (2019). On nonparametric inference for spatial regression models under domain570

expanding and infill asymptotics. Statistics & Probability Letters 154, 108543.571

Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of572

Statistical Software 63, 1–25.573

Litire, S., Alonso, A., and Molenberghs, G. (2007). Type I and Type II Error Under Random-574

Effects Misspecification in Generalized Linear Mixed Models. Biometrics 63, 1038–1044.575



24 Biometrics, 000 0000

Lopes, H. F., Gamerman, D., and Salazar, E. (2011). Generalized spatial dynamic factor576

models. Computational Statistics & Data Analysis 55, 1319–1330.577

Lu, Z. and Tjostheim, D. (2014). Nonparametric estimation of probability density functions578

for irregularly observed spatial data. Journal of the American Statistical Association579

109, 1546–1564.580

Ma, Y. and Genton, M. G. (2010). Explicit estimating equations for semiparametric581

generalized linear latent variable models. Journal of the Royal Statistical Society Series582

B 72, 475–495.583

Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation of models for584

residual covariance in spatial regression. Biometrika 71, 135–146.585

Niku, J., Brooks, W., Herliansyah, R., Hui, F. K. C., Taskinen, S., and Warton, D. I. (2019).586

Efficient estimation of generalized linear latent variable models. PloS one 14, e0216129.587

Ovaskainen, O., Roy, D. B., Fox, R., and Anderson, B. J. (2016). Uncovering hidden spatial588

structure in species communities with spatially explicit joint species distribution models.589

Methods in Ecology and Evolution 7, 428–436.590

Shirota, S., Gelfand, A. E., and Banerjee, S. (2019). Spatial joint species distribution591

modeling using Dirichlet processes. Statistica Sinica 29, 1127–1154.592

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel,593

Longitudinal, and Structural Equation Models. CRC Press.594

Thorson, J. T., Scheuerell, M. D., Shelton, A. O., See, K. E., Skaug, H. J., and Kristensen,595

K. (2015). Spatial factor analysis: a new tool for estimating joint species distributions596

and correlations in species range. Methods in Ecology and Evolution 6, 627–637.597

Verbeke, G. and Lesaffre, E. (1997). The effect of misspecifying the random-effects distri-598

bution in linear mixed models for longitudinal data. Computational Statistics & Data599

Analysis 23, 541–556.600



Misspecification in Spatial Latent Variables 25

Wang, H. and Zhu, J. (2009). Variable selection in spatial regression via penalized least601

squares. Canadian Journal of Statistics 37, 607–624.602

Warton, D. I., Blanchet, F. G., OHara, R., Ovaskainen, O., Taskinen, S., Walker, S. C., and603

Hui, F. K. C. (2016). Extending Joint Models in Community Ecology: A Response to604

Beissinger et al. Trends in Ecology & Evolution 31, 737–738.605

White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica606

50, 1–26.607

Xu, L., Wang, Y.-G., Zheng, S., and Shi, N.-Z. (2015). Model selection with misspecified608

spatial covariance structure. Journal of Statistical Computation and Simulation 85,609

2276–2294.610

Yoon, H.-J. and Welsh, A. H. (2020). On the effect of ignoring correlation in the covariates611

when fitting linear mixed models. Journal of Statistical Planning and Inference 204,612

18–34.613

Zhu, J., Eickhoff, J., and Yan, P. (2005). Generalized linear latent variable models for614

repeated measures of spatially correlated multivariate data. Biometrics 61, 674–683.615

Supporting Information616

Web Appendices, figures, and additional details and discussion referenced in Sections 3 to 5617

are available with this paper at the Biometrics website on Wiley Online Library. Additionally,618

template R scripts for estimating GLLVMs and for performing all simulations are provided.619



26 Biometrics, 000 0000

Figure 1. Simulation results for empirical bias (left column), root mean squared error
(middle column), and coverage probability (right column) of regression coefficients βj, for
normal response GLLVMs. Points are differentiated by shape (‘•’ for misspecified GLLVM
coefficients corresponding to spatially uncorrelated covariates; ‘◦’ for misspecified GLLVM
coefficients corresponding to spatially correlated covariates; ‘4’ for true GLLVM coefficients)
and shading (darker shades are coefficients with larger corresponding norms of the loadings).
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Figure 2. Simulation results showing comparative boxplots (left and red for misspecified
GLLVM, right and blue for true GLLVM) for the Procrustes error of the estimated loadings
Λ(left column) and Procrustes error of the predicted latent variables u(si) (middle right
column), for GLLVMs with normal response (top row) and negative binomial response
(botom row).
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Figure 3. Simulation results for empirical bias (left column), root mean squared error
(middle column), and coverage probability (right column) of regression coefficients βj, for
negative binomial GLLVMs. Points are differentiated by shape (‘•’ for misspecified GLLVM
coefficients corresponding to spatially uncorrelated covariates; ‘◦’ for misspecified GLLVM
coefficients corresponding to spatially correlated covariates; ‘4’ for true GLLVM coefficients)
and shading (darker shades are coefficients with larger corresponding norms of the loadings).
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Figure 4. Simulation results for empirical bias (left column), root mean squared error
(middle column), and coverage probability (right column) of regression coefficients βj, for
Setting 3 with binary GLLVMs. Points are differentiated by shape (‘•’ for misspecified
GLLVM coefficients corresponding to spatially uncorrelated covariates; ‘◦’ for misspecified
GLLVM coefficients corresponding to spatially correlated covariates; ‘4’ for true GLLVM
coefficients) and shading (darker shades are coefficients with larger corresponding norms of
the loadings).
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