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Simulating facet-dependent aggregation and
assembly of distributions of polyhedral
nanoparticles†

George Opletal, *a Shery L. Changb and Amanda S. Barnard c

Coarse-grained molecular dynamics simulations of diamond nanoparticles were performed to investigate

the effects of size polydispersity on three polyhedral shapes chosen to span a diverse space of surface

interactions. It was found that the resulting self-assembly was size dependent as the simulations were

quenched, with the largest nanoparticles providing a clustered scaffold for subsequent smaller nano-

particle assembly. Additionally, facet–facet interactions were dominated by the {111} surface and the

resulting aggregate was dominated by meso-sized porosity for monodisperse systems, broadening to

larger diameters for polydisperse systems.

Introduction

Individual nanoparticles are often credited with remarkable
properties exploited in applications including catalysis, drug
delivery, optoelectronics and composites, but individual nano-
particles tend to aggregate into clusters up to several microns
in size.1–3 While this is often considered a hindrance, motivat-
ing numerous processes designed to separate aggregates into
primary nanoparticles, 4–6 the size, porosity, strength and com-
plexity of aggregates play an important role in determining
reactivity, toxicity, transport and efficiency7–13 and can present
us with a new range of degrees of engineering freedom to
create application-specific “designer” nanoparticle-based
systems.

Many of the functional properties of nanoparticle systems
are due to the collective behaviour or order of multiple nano-
particles, rather than the properties of the individual nano-
particles themselves. Examples include the tribological pro-
perties of powders,14 the toxicological properties of colloids,15

the mechanical properties of composites,16 the collective elec-
tromagnetic properties exhibited in surface plasmon reso-
nances and nanoporous materials formed via aggregation or
self-assembly.17 The superstructure of the aggregate, character-
ised by the number density, the porosity and/or the degree of

local or long-ranged order, is often the design parameter
responsible for performance. This is certainly the case in
nanodiamond-based drug delivery platforms, where the struc-
ture of nanodiamond aggregates is used to tune the dose and
dose rate chemotherapeutic delivery,18–23 as well as some other
treatments.24–26 The optimisation of platforms such as these
requires a detailed understanding of the global structure of an
aggregate as a whole and the local structure surrounding each
nanoparticle (including inter-particle interfaces and “free”
facets) and the ability to predict these parameters based on
the sample composition. Much like a recipe, we need to be
able to anticipate the outcome when we mix and relax a set of
nanoparticle “ingredients”.

Predicting the meso-structure of aggregated nanoparticles
is an ideal problem for computer simulations (that can control
the sample composition and characterise the outputs exqui-
sitely), but historically the aggregation of large systems of
nanoparticles has required practical simplification of a variety
of parameters. Nanoparticles challenge the limits of colloid
science due to their small size, variable shape and complex
surface structure. In the past, the majority of studies on the
impact of nanoparticle aggregation had begun by applying
colloid science principles, based on the classical Derjaguin–
Landau–Verwey–Overbeek (DLVO) theory,27–29 and focused on
qualitative interpretation of the observed agglomeration
behavior.11,30 However, numerous important factors, such as
steric, geometric, hydrodynamic and hydration, are not con-
sidered by the classical DLVO theory and can have an impor-
tance that can impact nanoparticle agglomeration. In short,
the diverse properties of the various facets, which can be
exposed surfaces or enclosed interfaces, need to be included.

Alternatively, quantitative simulations can account for the
surface science of the particle–particle interactions, and dyna-
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mical studies have reported details of the agglomeration kine-
tics and agglomeration morphology of a variety of nano-
particles. This includes the use of computationally inexpensive
methods, such as classical molecular dynamics,31 Brownian
dynamics32 and Monte Carlo methods;33–36 but many of these
types of studies approximate nanoparticles as either homo-
geneous37 or inhomogenous38 spheres, or shapes approxi-
mated by strategically placed spheres.39 Chemical and geo-
metric realism is often sacrificed to accommodate the larger
number of nanoparticles required to capture long-range effects
and sufficient statistical diversity to overcome the impact of
the imposed translational symmetry of the simulation environ-
ment. Ideally, we need to reintroduce more of this realism,
such as polyhedral shapes, heterogeneous surface properties
and nanoparticle specific interactions, without giving up the
advantages afforded by approximate simulation methods.

A convenient compromise can be achieved by adding more
details and heterogeneity to the surface of coarse-grained
nanoparticles. Recently, a new software package has been
released to model the Simulated Nanoparticle Assembly with
Protoparticles (SNAP),40,41 and overcome the need to make
approximations regarding the nanoparticle size and shape,
and to eliminate assumed monodispersity. This package is
capable of modelling the aggregation of a large number of
complex polyhedra of any size, accounting for heterogenous
facet-dependent interactions and allowing for distributions of
sizes. This package was designed to allow users to define any
polyhedral shape and then automatically decorate the surface
with protoparticles encoded with specific types of user-defined
physicochemical properties.

In the present study, we have used the SNAP package to
investigate the impact of size distributions on the meso-struc-
ture of aggregated faceted polyhedral nanodiamonds in a
vacuum. We have used this approach previously57 to gain
useful insights into experimental self-assembly in aqueous
solutions by hypothesizing that the assembled structures
resulted from a competition between the short-ranged electro-
static forces and solvent-mediated forces. Here, we focus solely
on the assembly resulting from the facet dependent electro-
static interactions mediated by having pristine facets. As men-
tioned above, the applications of this material depend on the
properties of the entire aggregate (as well as individual nano-
particles), but they also represent an ideal case study for a
variety of other reasons. They are known to form tight aggre-
gates or self-assembled filaments, depending on the storage
conditions.42,43 The polyhedral shapes are known to have low
index facets with distinctly different chemical structures (aro-
matic or aliphatic) and electrostatic surface potentials (posi-
tive, negative or near neutral).44 The multi-polar facet-depen-
dent surface electrostatic potential has implications and their
use45 is responsible for the aggregation and self-assembly.46,47

From a computational perspective this is interesting since
these properties can be calculated,48 and the interaction
between different combinations of surface facets can be used
to parameterise SNAP.49,50 As we will see, the availability of
surface facets on lining the inside of pores, and the overall

ordering of the aggregate, is strongly affected by the size of the
positive (aliphatic) and negative (aromatic) facets. The porosity
and packing efficiency can be affected by including polydisper-
sity with the smaller nanoparticles likely to line the inside of
the pores regardless of the nanoparticle shape.

Methods

SNAP is divided into three programs that represent the various
stages of preparing, running and analysing a given
simulation.40,41 The Generator builds user-defined nano-
particle sizes and shapes, prepares the surface mesh to
describe the surface properties, and establishes the initial con-
figuration of nanoparticles in the simulation cell. The
Simulator takes in the initial configuration, potential para-
meters and simulation conditions defined by the User to run
molecular dynamics (MD). The Analyser takes the outputs of
the simulation and performs some basic structural, numerical
and statistical analyses.

Sample generation

A SNAP simulation requires the input of an initial configur-
ation of nanoparticles along with their velocities. A nano-
particle is generated by defining its facets using a collection of
normal vectors defining each of the nanoparticle’s facet
planes, akin to the Wulff construction. The surface enclosed
by the intersection of these facet planes is calculated and rep-
resented by the generation of an equidistant surface mesh of
interaction points known as protoparticles. The protoparticles
decorating different facets are encoded with different physico-
chemical properties (as mentioned above) and are the origins
of the force fields describing the interactions between nano-
particles. A surface mesh density of 0.2 protoparticles per Å2

has been used in this study to stop nanoparticle overlap and is
governed by the range of the repulsive part of the Morse poten-
tial, as described elsewhere.41 The mass of each nanoparticle
is equally distributed over the surface protoparticles so that
the subsequent simulation represents an approximation where
the moment of inertia differs from a realistic mass distri-
bution. Once the protoparticle meshes are generated for each
nanoparticle shape, the nanoparticles are duplicated into a
simulation cell on a grid to produce a required number
density. Random initial rotations, random initial switching of
nanoparticles of the chosen sizes, and an initial high-tempera-
ture MD equilibration then randomize the starting configur-
ation, eliminating the initial grid.

In the present study, we have used complex polyhedra
enclosed by low index {100}, {110} and {111} facets, known to
have characteristic positive, near-neutral and negative surface
electrostatic potentials, respectively. The three polyhedra
included here are the great rhombicuboctahedron (GRO),
which is dominated by positive {100} surface area (Fig. 1(a));
the small rhombicuboctahedron (SRO), which is dominated by
near-neutral {110} surface area (Fig. 1(b)); and the modified
truncated octahedron (mTO), which is dominated by negative
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{111} surface area (Fig. 1(c)). In all of the following results and
analysis, the {100}, {110} and {111} facets, and shapes domi-
nated by them, are encoded with red, green and blue color
channels.

Once the nanoparticle shapes and protoparticle meshes are
constructed, the nanoparticles in our simulations were dis-
persed in various ways. For each nanoparticle shape, we have
simulated 5800 nanoparticles monodispersed at 2.7 Å, with
the size distributions indicated in Table 1. In this way, we can
model compound shapes with a mixture of facets, compare
the aggregation of different shapes (simulations 1, 2 and 3)
and investigate the impact of size distributions on each shape
(1 and 4, 2 and 5, 3 and 6). These results go well beyond the
demonstrative Platonic and Catalan solids presented in ref. 41.
Future work is planned to investigate the impact of mixing the
three shapes in various ways.

Sample computation

Two force fields are employed within the MD simulation, as
described in detail elsewhere.41 The first is a harmonic poten-
tial between neighbouring protoparticles on the same nano-
particle used to preserve nanoparticle shape. The primary
parameter is the spring constant which determines the
stiffness of the protoparticle mesh with respect to defor-
mation. A value of 320 N m−1 (reduced unit spring constant of
20) was used which is approximately on the order of the spring
constant for molecular bonds. The second force field is a
Morse potential used to model the interaction between pairs
of protoparticles on two different nanoparticles. Since the
nanodiamonds in this work have three types of facets, {100},

{111} and {110}, there are a total of six unique interactions and
therefore six sets of parameters are required for this potential.

In the present study, these are obtained via Density
Function Tight Binding (DFTB) calculations of the separation-
and orientation-dependent potential energy binding curve
between pairs of atomistic nanodiamond models,49,50 but they
can similarly be obtained from any reliable electronic structure
or classical computational method. The atomistic nano-
particles were unpassivated and as such, contained facet
dependent couloumbic interactions which are in contrast to
passivated nanodiamonds.50 These facet–facet curves were
then converted to the point to point interaction parameters for
the surface mesh of protoparticles via a fitting Monte Carlo
routine prior to the MD simulation, as describe elsewhere.40,41

The potential is smoothly truncated between 4 Å and 6 Å using
a quadratic damping function.

A Verlet integration algorithm with a time step of 3 fs was
employed using a simple velocity rescaling thermostat. The
temperature, T, in SNAP can be defined using either the nano-
particle centre of mass velocities or the protoparticle velocities
and both of these are approximately equal after sufficient equi-
libration due to energy equipartition. However, due to the
coarse-grained nature of the protoparticle mesh, the numerical
values of temperature are not physical and we, therefore, use
the term pseudo-temperature to refer to this quenching para-
meter. Additionally, similar care must be taken while interpret-
ing time scales. Although the order of the time-dependent
results is still valid, their absolute values may not be entirely
accurate. The simulations are performed in a vacuum. This
results in very distinct facet dependent interactions which are
diminished in solutions as the surfaces become passivated.
The number density was selected to conform with experi-
mental observations.51

Sample analysis

The SNAP analyser module provides several tools for character-
ising the energy, orientation and position of nanoparticles
using the MD trajectory and the final frame. Since nanodia-
mond aggregates are potential drug delivery platforms, and
drug loading depends sensitively on the availability of certain
facets and the porosity of the system, we have calculated the
inter-particle probabilities, the interfacial probabilities with
the SNAP analyser along with the nanoparticle coordination.
The pore size and pore size distributions were calculated using
another compatible package PorosityPlus, which is also avail-
able for download.52 The Lindemann index was calculated
using a development code that will be released in the future.

The inter-particle probability is calculated using the first
nearest neighbour coordination distribution, and decompo-
sition of this coordination is based upon nanoparticle sizes
and shapes in polydispersed simulations. A cut-off distance
which corresponds to the minimum between the first and
second peaks in the radial distribution (another property cal-
culated by SNAP) was chosen in each case. The interfacial
probability is determined by counting each protoparticle parti-
cipating in a facet and recording the closest protoparticle on a

Fig. 1 Compound shapes including (a) the great rhombicuboctahedron
(GRO), (b) the small rhombicuboctahedron (SRO), and (c) the modified
truncated octahedron (mTO), each enclosed by {100} (red), {110} (green)
and {111} (blue) facets.

Table 1 Specifics of the shapes and size distributions used in the simu-
lations described herein. All simulations chain a total of 5800 nano-
particles in a simulation supercell of 290 000 nm3, giving a density of
2.0 × 1019 nanoparticles per m3

Fig. 2.2 nm 2.7 nm 3.2 nm GRO SRO mTO

2(a) 0 5800 0 5800 0 0
2(b) 0 5800 0 0 5800 0
2(c) 0 5800 0 0 0 5800
2(d) 1160 2900 1740 5800 0 0
2(e) 1160 2900 1740 0 5800 0
2(f) 1160 2900 1740 0 0 5800
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neighbouring nanoparticle within the attractive distance of the
Morse potential. Both procedures are described in ref. 40 and
41.

The Lindemann index is a simple measure of the mobility
of nanoparticles in the system and is often used to find the
transition between the solid and liquid phases. It represents
the time-averaged root-mean-square of the relative displace-
ment of nanoparticles. The Lindemann Criterion states that
solids have a value of approximately below 0.1 due to the rela-
tively small displacements from vibrations within a solid and
liquid are found above this value.

PorosityPlus characterizes the pore geometry within an
atomic or particle configuration by calculating the porosity,
internal surface area and pore size distribution (PSD) using a
variety of Monte Carlo (MC) based integration methods. This
begins with random trial point insertions to determine the
maximum sphere size which both encompasses the original
insertion point at the centre of the sphere but does not overlap
any system particles. The software then finds the maximum
sphere diameter by a random walkaway from the original
insertion point and once found, the point is binned into the
sphere diameter histogram at the maximum discovered value.
This is repeated over many insertion points to calculate the
PSD, as described and demonstrated in ref. 53.

Results and discussion

The final configurations of the six simulations described above
are illustrated in Fig. 2. In all cases, visual inspection reveals
the presence of pores, disordered aggregation and ordered
domains that have self-assembled. Fig. 2(a), (b) and (c) show
the results of the monodisperse GRO, SRO and mTO (respect-
ively) at 2.7 nm. The monodisperse GRO sample (Fig. 2(a)),
which appears red due to the dominance of the {100} facets in
this morphology, exhibits distinctly crystalline domains where
the packing of the nanoparticles is almost perfect. These
domains are not aligned with respect to each other, but in
each case, the inter-particle alignment is the same. These
near-perfectly packed regions are not as prevalent when a size
distribution is introduced, as we can see in Fig. 2(d). A similar
degree of ordering is not evident in the monodisperse SRO
(Fig. 2(b)) or the monodisperse mTO (Fig. 2(c)), nor their poly-
dispersed counterparts (Fig. 2(e) and (f), respectively),
although some small domains are seen in the monodisperse
mTO sample. This clearly indicates that the shape, character-
ised by the relative area of different crystallographic facets, is
important for self-assembly, which appears negatively
impacted by size distributions. Each of these issues is analysed
in the following sections.

Size distributions

Considerable effort in the nanoparticle community has been
directed to creating samples of nanoparticles that are mono-
disperse in size. While advances have been made, most
samples still retain a narrow size distribution, which has an

important impact on the local and global structure of any
assemblies. For this reason, it is essential that nanoparticles
of various sizes are included in the study of nanoparticle
aggregation, and that the relative size differences are
comparable with (or ideally identical to) experimental obser-
vations. One of the advantages of using SNAP is the ability to
represent nanoparticles with realistic sizes, so that the inter-
facial distances have the correct scale with respect to the
nanoparticle diameters. This means that we can simulate
different sizes within the one simulation and characterise the
distribution of small and large nanoparticles within the final
aggregate. In the case of nanodiamonds, this narrow distri-
bution is asymmetrically centred around 2.7 nm (as men-
tioned above) with a slightly larger proportion of >2.7 nm
nanoparticles than <2.7 nm nanoparticles,47 and this has been
reflected in the mixture and distributions summarized in
Table 1.

As mentioned above, the inter-particle coordination
number is a useful measure of the packing of the nano-
particles and the distribution of different nanoparticles with
respect to each other. We performed this analysis on each
sample and partitioned the coordination number for each
shape into contributions from each size within the mixture.
Fig. 3 shows the impact size distributions have on the coordi-
nation numbers for (a) GRO nanoparticles, (b) SRO nano-
particles, and (c) mTO nanoparticles, respectively. Here, we
can see that most GRO nanoparticles are surrounded by 6
other nanoparticles, which is consistent with the fact that this
shape is dominated by {100} facets. However, not all the sizes
pack the same way. The 2.7 nm nanoparticles coordinate with
6 other nanoparticles, the larger 3.2 nm nanoparticles are
likely to coordinate with 8 neighbouring nanoparticles,
suggesting interfaces involving {111} facets, and the smaller
2.2 nm nanoparticles are likely to coordinate with 5 other
nanoparticles. A coordination number of 5 is inconsistent with
the symmetry of the GRO suggesting that these nanoparticles
may be adjacent to pores, which is consistent with visual
inspection.

When the shape of the nanoparticle in the sample
changed, we observe a different coordination profile, even
though each of these shapes is enclosed by the same facets (in
the same configuration, but with different areas). The {110}
dominated SRO nanoparticles (Fig. 3(b)) are coordinated with
other 4 or 5 surrounding nanoparticles, driven mostly by the
majority of 2.7 nm nanoparticles in the sample. Once again
the larger 3.2 nm nanoparticles are likely to coordinate with
more neighbouring nanoparticles (in this case 6), and the
smaller 2.2 nm nanoparticles are likely to coordinate with
fewer other nanoparticles (in this case 4), supporting the
hypothesis that smaller nanoparticles line the pores. The {111}
dominated mTO nanoparticles (Fig. 3(c)) are coordinated with
other 5 or 6 surrounding nanoparticles, with 2.7 nm nano-
particles centred on the same values, larger 3.2 nm nano-
particles coordinate with 8 neighbouring nanoparticles and
the smaller 2.2 nm nanoparticles mostly coordinate with 4 or 5
other nanoparticles. The trends with respect to the sizes in the
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samples are entirely consistent, with some clearly shape-
dependent preferences for different coordination numbers.

To further enlighten the issue of packing among the nano-
particles we have also calculated the relative population of
different interfaces present in the aggregates. There are six

different types of interfaces possible, given the three shapes,
but only three types of interfaces are formed: {111}|{111},
{100}|{110} and {100}|{111} (see Fig. 4). The majority of inter-
faces between GRO nanoparticles involve {100} (Fig. 4(a)),
which is consistent with this being the dominant facet for this

Fig. 2 Examples of the results obtained from the SNAP molecular dynamics simulations for (a) the great rhombicuboctahedron (GRO) at 2.7 nm, (b)
the small rhombicuboctahedron (SRO) at 2.7 nm, (c) the modified truncated octahedron (mTO) at 2.7 nm, (d) the GRO with a distribution of sizes, (e)
the SRO with a distribution of sizes, and (f ) the mTO with a distribution of sizes.
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shape, and the majority of interfaces between mTO nano-
particles involve {111} (Fig. 4(c)), which is consistent with this
being the dominant facet for this shape. The SRO nano-

particles are dominated by {110} facets, and while this shape
produced more interfaces involving the {110} facet than the
alternative shapes (Fig. 4(b)), these interfaces do not dominate
the sample. Regardless of the shapes and the sizes, the inter-
faces between nanoparticles are always dominated by {111}
facets, which corresponds to the deep wells in the Morse
potential for these interactions as detailed in the ESI.† This is
also supported experimentally as shown in Fig. 4(e). Here, we
see the cryo-TEM image of a representative nanodiamond
aggregate with dominating interfaces of {111}|{100} and {111}|
{111}, indicated by the arrows. The red arrows indicate the
presence of {111} lattice fringes of a diamond. The image was
taken using a cryo-TEM, Krios with a direct electron camera,
operating at 300 kV. The TEM specimen was made by plunge-
freezing of nanodiamond suspensions in water onto a TEM
grid. This is significant, as on nanodiamonds these facets are
known to graphitize and present as curved aromatic fullerene-
like cages44,46 that are less reactive to surrounding
molecules.54–56

Aggregation and self-assembly

Although the inter-particle coordination and the population of
different types of interfaces are useful ways to characterize the
local structure of nanoparticle aggregates, it is also insightful
to investigate the dynamical time-line of self-assembly to
produce long range order. For this task, we have calculated the
Lindemann index over the entire length of the MD simulation
for each sample as a function of time, as shown in Fig. 5 for
(a) the GRO nanoparticles, (b) the SRO nanoparticles, and (c)
the mTO nanoparticles, respectively. Each figure includes the
monodisperse and the polydispersed samples; the latter has
been partitioned into contributions from each of the sizes in
the distribution.

From Fig. 5(a) and (c), we can see that the GRO nano-
particles and the mTO nanoparticles exhibit almost identical
ordering behavior, packing into more ordered superstructures at
approximately the same stage of the quench. Polydispersed
samples are slower to order than the monodisperse counterparts,
but the overall relationship is independent of the size in the distri-
bution. This is due to the size-dependent mobility observed in the
simulations whereby the largest nanoparticles order first, which
leads to less efficient packing and more excluded volume than for
the monodisperse systems. The SRO nanoparticles, however, are
different, as shown in Fig. 5(b). This shape moves from a liquid-
like superstructure to a solid-like superstructure at a later stage in
the quench compared to the other shapes, but once initiated, the
transformation proceeds at the same rate. Polydispersivity is not as
important for this shape; the difference between the monodisperse
and polydispersed samples is significantly less than in other
shapes, as is the difference between the smaller and larger nano-
particles within the sample.

In general, regardless of the shape, the smaller nano-
particles remain more mobile for longer than the larger nano-
particles. This tends to result in some size segregation with
the larger nanoparticles tending to pack together first before
the medium and finally the smallest nanoparticles losing their

Fig. 3 Impact of polydispersivity on the coordination numbers for (a)
great rhombicuboctahedral nanoparticles (GRO), (b) small rhombicu-
boctahedral nanoparticles (SRO), and (c) modified truncated octahedral
nanoparticles (mTO). The relative magnitude of each type of inter-par-
ticle coordination is a reflection of the relative fraction of 2.2 nm, 2.7 nm
and 3.2 nm nanoparticles in the sample (see Table 1).
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mobility. This size-dependent mobility is caused by the stron-
ger attraction due to the larger facets containing more interact-
ing protoparticles. The smaller nanoparticles remain more

mobile because their smaller number of interacting protoparti-
cles lowers the energy barrier for separation, particularly at
higher pseudo-temperatures. This observation is supported

Fig. 4 Impact of size on the interfacial probabilities for the monodisperse (a) great rhombicuboctahedral (GRO), small rhombicuboctahedral (SRO)
and modified truncated octahedral (mTO) nanoparticles at 2.7 nm, (b) GRO nanoparticles with different sizes, (c) SRO nanoparticles with different
sizes, and (d) mTO nanoparticles with different sizes. The legend in (a) applies to all histograms. Note that {100}|{100} interfaces are typically zero,
whereas {111}|{110} and {110}|{110} interfaces are less than 1%. (e) Cyro-TEM image of a representative nanodiamond aggregate showing the domi-
nating interfaces (indicated by arrows). The red arrows indicate the {111} lattices of the diamond.

Paper Nanoscale

19876 | Nanoscale, 2020, 12, 19870–19879 This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 3
1 

A
ug

us
t 2

02
0.

 D
ow

nl
oa

de
d 

by
 A

us
tr

al
ia

n 
N

at
io

na
l U

ni
ve

rs
ity

 o
n 

10
/2

0/
20

20
 1

1:
47

:5
8 

PM
. 

View Article Online

https://doi.org/10.1039/d0nr03470c


experimentally via nanodiamond suspensions in water,57

where it was observed that from a distribution of nanoparticle
sizes, it was the larger nanoparticles that formed chains while

the smaller nanoparticles tended to only take part in clusters.
Within our simulation, these larger nanoparticles would form
an initial stable aggregate backbone for the subsequent
packing of the smaller nanoparticle sizes.

Fig. 5 Impact of polydispersivity on the Lindemann index for (a) great
rhombicuboctahedral (GRO) nanoparticles, (b) small rhombicuboctahe-
dral (SRO) nanoparticles, and (c) modified truncated octahedral (mTO)
nanoparticles, as an indicator of the degree of self-assembly. The liquid-
like to solid-like transformation boundary is traditionally located at a
value of 0.1 (liquid-like above 0.1, and solid-like below 0.1).

Fig. 6 Impact of polydispersivity on the pore size and presize distri-
bution of (a) great rhombicuboctahedral (GRO) nanoparticles, (b) small
rhombicuboctahedral (SRO) nanoparticles, and (c) modified truncated
octahedral (mTO) nanoparticles. Both monodisperse (open symbols)
and polydispersed (closed symbols) samples are shown.
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Porosity and pore size distributions

A common theme that has arisen many times during the ana-
lysis described above is the impact of porosity. This is an
important issue since nanoporous aggregates are functional
primarily because the pores can capture, store or deliver small
molecules. In the case of nanodiamonds, the efficacy of drug
delivery platforms is strongly influenced by the porosity of the
samples, as the size and distribution of the pores is an impor-
tant design parameter in tuning the doses and dose rates for
different therapies.18,20,23–26

Fig. 6 provides the results of the pore size and the pore size
distribution of (a) the GRO nanoparticles, (b) the SRO nano-
particles, and (c) the mTO nanoparticles, respectively. Each
figure includes the monodisperse and the polydispersed
samples; the former is shown using open symbols, and the
latter by closed symbols. We can see from Fig. 6(b) that the
SRO produces smaller pores, with a larger pore size distri-
bution than the other shapes. This is not evident from the
visual inspection of Fig. 2(a)–(c) but corroborates the other
local and global characterisation methods discussed above. In
all cases, the impact of introducing a distribution of sizes is to
increase both the size of the pore and the pore size distri-
bution, i.e. to reduce the packing efficiency. This indicates that
producing monodisperse samples, either through selective
synthesis or via post-processing, will reduce the capacity of
nanoporous nanodiamond aggregates to carry drugs and other
functional moieties.

Published work on experimental equivalents for the simu-
lated systems is impossible to find but a recent study on nitro-
gen adsorption isotherms of detonation produced nanodia-
monds, which resulted in an average nanoparticle diameter of
4.5 + −0.7 nm, has found that the porosity is dominated by
nanoparticle sized mesopores of 4–5 nm in size along with a
small population of micropores.58 While their experimental
samples were at a higher nanoparticle density (2.2 × 1019 nano-
particles per m3 compared to 2.0 × 1019 nanoparticles per m3

in the simulations), the PSD are similar including the micro-
pore shoulder at small diameters.

Conclusions

Using the new Simulated Nanoparticle Assembly with
Protoparticles (SNAP) package, we have investigated the impact
of size distributions on the meso-structure of aggregated
faceted polyhedral nanodiamonds in a vacuum. We have
reported on three different compound morphologies enclosed
by different fractions of low index {100}, {110} and {111} facets,
known to exhibit positive, near-neutral and negative surface
electrostatic potential, respectively. We have compared simu-
lations of monodisperse (2.7 nm) nanodiamonds with polydis-
persed samples containing three different sizes in each case.
We find that the porosity and packing efficiency can poten-
tially be controlled by tuning the polydispersivity, rather than
eliminating it, but the smaller nanoparticles are likely to dec-
orate the inside of pores regardless of the nanoparticle shape.

Additionally, the multi-polar facet-dependent surface electro-
static potential, which is a unique feature of nanodiamonds,
has an important effect on the availability of surface facets
lining the inside of pores, as well as the overall ordering of the
aggregate. Nanoparticles dominated by near-neutral facets
form more disordered aggregates, even though closed packed
lattices are possible. This indicates that deliberate mixtures of
shapes may provide a path to engineering the meso-structure
of nanodiamond aggregates, regardless of the size distri-
butions. Additionally, solution-based assembly with surface
functionalization is a topic of future work.
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