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S U M M A R Y
Bayesian methods, powered by Markov Chain Monte Carlo estimates of posterior densities,
have become a cornerstone of geophysical inverse theory. These methods have special rel-
evance to the deep Earth, where data are sparse and uncertainties are large. We present a
strategy for efficiently solving hierarchical Bayesian geophysical inverse problems for fixed
parametrizations using Hamiltonian Monte Carlo sampling, and highlight an effective method-
ology for determining optimal parametrizations from a set of candidates by using efficient
approximations to leave-one-out cross-validation for model complexity. To illustrate these
methods, we use a case study of differential traveltime tomography of the lowermost mantle,
using short period P-wave data carefully selected to minimize the contributions of the upper
mantle and inner core. The resulting tomographic image of the lowermost mantle has a rela-
tively weak degree 2—instead there is substantial heterogeneity at all low spherical harmonic
degrees less than 15. This result further reinforces the dichotomy in the lowermost mantle
between relatively simple degree 2 dominated long-period S-wave tomographic models, and
more complex short-period P-wave tomographic models.
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1 I N T RO D U C T I O N

The core–mantle boundary (CMB) is the most pronounced inter-
nal boundary of the Earth, separating the turbulently convecting,
well mixed, iron alloy outer core (Stevenson 1981) from the highly
heterogeneous silicate lower mantle (Helffrich & Wood 2001). The
lowermost few hundred kilometres of the mantle exhibit particu-
larly pronounced, high amplitude heterogeneity in the spectra of
high resolution S-wave tomographic images (Dziewonski et al.
2010; Meschede & Romanowicz 2015), and is also found in the
spectra of geodynamic modeling (Becker & Boschi 2002). In par-
ticular, S-wave tomographic images give strongly concordant im-
ages of large slow velocity provinces (LLSVPs) underneath Africa
and the Pacific Ocean (Li & Romanowicz 1996; Ritsema et al.
2011; Lekić et al. 2012; Garnero et al. 2016; McNamara 2018), and
faster regions correlated with subduction zones (Garnero & Mc-
Namara 2008). Evidence from both P and S upper and mid-mantle
tomography appear to show subducting slabs penetrating through
the transition zone into the lower mantle (despite generally poor
agreement in the mid-mantle; van der Hilst et al. (1997), Ritsema
et al. (2011), Simmons et al. (2012), Fukao & Obayashi (2013),
Tesoniero et al. (2015), Cottaar & Lekić (2016), Moulik & Ekström
(2016) and Shephard et al. (2017)), suggesting that these fast zones

are relatively colder remnants of lithospheric material (Tan et al.
2002). Additional evidence for recycled material contributing to a
strongly heterogeneous lowermost mantle comes from imaged in-
terfaces that constitute the upper surface of the D” layer (Lay &
Helmberger 1983; van der Hilst et al. 2007; Shang et al. 2014) that
may be formed by the Bridgmanite—Post-Perovskite phase tran-
sition within colder regions (Bower et al. 2013) and the presence
of high frequency scatterers at small length scales further suggest-
ing recycled crustal material (Frost et al. 2017). Consequently, the
lowermost mantle forms a highly inhomogeneous boundary condi-
tion for outer core heat transfer, chemical transfer and mechanical
coupling.

Within the outer core, the pattern of overturning convection is
thought to be influenced by this boundary condition. In particular,
thermal anomalies of the lowermost mantle and radial pertubations
of the CMB act on outer core flow at the CMB (an isothermal bound-
ary) by changing the heat flux through the CMB and deflecting the
gravitational equipotential from isotherms. Order of magnitude cal-
culations by Bloxham & Gubbins (1987) indicated that relatively
small perturbations to heat flux could act to force persistent patterns
in outer core flow, explaining static features in the inferred pattern
of reconstructed CMB magnetic flux, especially the Siberian and

1630
C© The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved. For
permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/3/1630/5905724 by Australian N

ational U
niversity user on 02 N

ovem
ber 2020

http://orcid.org/0000-0003-2617-3420
http://orcid.org/0000-0001-7072-490X
mailto:jmuir@caltech.edu
mailto:journals.permissions@oup.com


Probabilistic lowermost mantle P-wave tomography 1631

Canadian flux patches (Jackson et al. 2000). Further quantitative de-
velopment (e.g. Gibbons & Gubbins (2000); Gubbins et al. (2007))
has indicated that candidate geodynamo solutions forced by inferred
heat fluxes computed by S-wave tomography produce realistic in-
ferred CMB magnetic flux maps. Analyses of this type have further
been extended to include the effect of the post-Perovskite phase
transition and heterogeneous chemical compositions (Nakagawa &
Tackley 2008; Amit & Choblet 2009, 2012). Amit et al. (2015) have
used tomographic images that have been further inverted for ther-
mal and chemical heterogeneity using mineral physics data (Mosca
et al. 2012) to show that decoupling thermal perturbations from
seismic observations, rather than using a simple linear relationship
between them, may have a large effect on the inferred CMB heat
flux, further emphasizing the strong control that CMB and lower-
most mantle properties have on the perturbation of the geodynamo
away from a dipole. The inner core is in turn thermally coupled
to the CMB through the rapidly convecting outer core, which may
result in different patterns of crystallization (Aubert et al. 2008)
or even patches of melting on the inner core boundary (Gubbins
et al. 2011). Observational studies have long shown very large scale
hemispherical heterogeneity in inner core seismic behaviour (e.g.
Tanaka & Hamaguchi 1997). More recent studies of the inner core
show that the inner core is laterally heterogeneous with substan-
tial complexity at more regional scales, both in anisotropic seismic
velocity (Attanayake et al. 2014; Yee et al. 2014; Irving & Deuss
2015; Burdick et al. 2019), and in seismic attenuation (Pejić et al.
2017, 2019), with the general trend being towards an increasing
recognition of the complex structure of upper layers of the inner
core, which is heavily controlled by the CMB heat flux boundary
condition.

Towards providing better constraints on the effect of lowermost
mantle structures on the dynamics of both the outer core and the
mantle, our study performs an inversion of lowermost mantle Vp per-
turbations using handpicked body wave differential traveltimes. Past
body wave inversions have typically relied on absolute traveltimes
for P phases. Because of the potentially significant accumulated per-
turbations to absolute traveltimes, large residuals in absolute data
are not uncommon. Use of differential traveltimes provides bet-
ter specificity to the area of interest, and typically smaller starting
residuals, at the expense of reduced spatial coverage (e.g. Cormier
& Choy (1986); Tkalčić et al. (2002); Tanaka (2010); Young et al.
(2013)). We use a combination of two data sets (PcP–P, PKPab–
PKPbc) chosen to allow relatively high sensitivity to the lowermost
mantle whilst reducing the effect of the crust, upper mantle and
core (under the assumption that the seismic velocity of the upper
core is laterally homogeneous at long length scales). Because the
relative quality of the data sets, as well as the appropriate scales
of the velocity and radius perturbations, are a priori unknown,
we use a hierarchical Bayesian formulation (Malinverno & Briggs
2004; Bodin et al. 2012) to quantify these scales within our in-
verse framework. We use the Markov Chain Monte Carlo (MCMC)
method to sample the posterior distribution of our inverse problem.
The hierarchical structure of our inverse problem makes the poste-
rior non-linear; consequently we use a highly efficient Hamiltonian
Monte Carlo (HMC) sampler, as well as a non-centred hierarchi-
cal parametrization, to allow for full exploration of the posterior.
We furthermore investigate the meta-problem of determining opti-
mal model complexity from a data-driven perspective by utilizing
an efficient approximate leave-one-out cross-validation (LOO-CV)
approach (Vehtari et al. 2017) for maximum degree of spherical
harmonic expansion utilized in the model.

2 DATA

The data for this study consist of two sets of differential P-wave
traveltime measurements with strong sensitivity to the lowermost
mantle. The phase pairs used were PcP–P and PKPab–PKPbc. Initial
residuals were calculated with respect to the ak135 1-D velocity
model (Kennett et al. 1995). Following Young et al. (2013), residuals
from all data sets were then corrected for mantle structure above the
study region using the P-wave velocity model of Della Mora et al.
(2011), and for the Earth’s ellipticity (Dziewonski & Gilbert 1976).
For the remainder of this paper, the resulting corrected residual
differential traveltimes will be denoted as �tA − B where A and B
are the two phases used in the measurement. A global view of the
phases used in this study are shown in Fig. 1.

2.1 PcP–P

The PcP–P data set was taken from Tkalčić et al. (2002) and Young
et al. (2013). It consists of 680 differential traveltime measurements,
with an epicentral distance of 55◦ to 70◦. PcP–P data were con-
structed via hand-picked waveform matching of PcP and P phases
to maximize the accuracy of measured differential times. Data were
picked using either the raw waveform, or waveforms bandpass fil-
tered at 1–3 Hz. PcP–P measurements for distances less than 55◦

were not used as the increased separation between the ray paths
in the crust and bulk mantle reduces the relative sensitivity to the
lower mantle, and because restriction to wider epicentral distances
reduces the potential effect of CMB topography on the PcP reflec-
tion. Even with this distance restriction in place, the PcP–P data
set is the most affected by heterogeneity in the upper mantle. The
PcP–P data set provides the best global coverage of the lowermost
mantle in our data set, and does not suffer from a trade-off between
the contributions of velocity and CMB topography perturbations on
the source versus receiver side of the mantle as is the case in the
PKPab–PKPbc data set.

2.2 PKPab–PKPbc

The PKPab–PKPbc data set was created by combining the PKPab–
PKPdf and PKPbc–PKPdf data sets of Tkalčić et al. (2002), Leykam
et al. (2010), and Young et al. (2013). These data sets consist of
meticulously hand picked phases. Both data sets pick the unfiltered
waveforms; in the case of PKPab–PKPdf, a Hilbert transform is
performed to the PKPab phase to correct the waveform phase shift
associated with this path. In order to generate a PKPab–PKPbc
data set, pairs of PKPab–PKPdf and PKPbc–PKPdf measurements
were identified that corresponded to the same source/receiver pair.
The PKPab–PKPbc differential traveltime was then calculated by
subtracting the PKPbc–PKPdf from the PKPab–PKPdf, to cancel
the PKPdf component. The PKPbc phase only exists at an epicen-
tral distance of 145◦ to 155◦, and PKPab and PKPbc phases are
not always both identifiable on for a particular event even within
this epicentral distance range. Hence only a subset of the original
data sets could be used to generate PKPab–PKPbc differential trav-
eltime measurements; specifically, from 1871 PKPab–PKPdf and
1292 PKPbc–PKPdf measurements, 385 PKPab–PKPbc measure-
ments could be made. This represents a loss of measurements of
88 per cent. Nevertheless, in our opinion it is important to consider
PKPab–PKPbc measurements only, as the PKPdf phase samples
the inner core, which is expected to affect traveltimes both through
possible isotropic and anisotropic velocity heterogeneity.
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(a)

(b)

Figure 1. (a) Seismic phases used in this study. Depth LM represents the top of the lowermost mantle inverted in this study. (b) Ray paths within the lowermost
mantle used in this study.

3 T H E I N V E R S E P RO B L E M D E F I N I T I O N

In this work we use the Bayesian, or probabilistic, formulation of the
inverse problem (Tarantola 2005). In this formulation the solution
is defined by a posterior probability density function

p(q, σ |d) = p(d|q, σ )p(q|σ )p(σ ), (1)

where d is the measured data, q are some model parameters of in-
terest and σ are hyperparameters that are not necessarily of direct
interest (such as the unknown level of data noise) but which nev-
ertheless impact the structure of the posterior. To better understand
high-dimensional posterior distributions, we are normally interested
in computing expectation values in respect to the posterior, such as
the mean over domain �

E[q] =
∫

�

qp(q, σ |d)d�. (2)

Other typical expectation values studied are the variance or standard
deviation, histograms and quantiles of interesting parameters, etc.
Computation of expectation values becomes very difficult in high
dimensions when analytical results are not available, as is typically
the case in geophysical applications. Therefore, we use MCMC
methods to sample from the posterior to estimate these expectation
values. In particular, in this work we will use the HMC method that
is particularly efficient in high dimensions (Neal 2011). Note that
we have chosen to not use bold-font ‘vector’ notation in describing
our Bayesian model, to emphasize that the final models are the
product of many independent scalar distributions on the data and

model parameters, due to the assumption of diagonal covariance
matrices for these quantities.

3.1 Forward model

We modeled perturbations to the slowness relative to the AK135
(Kennett et al. 1995) reference model using a spherical harmonic
expansion up to maximum degree l

′
. While there has been recent

success in using adaptive transdimensional Bayesian parametriza-
tions for global tomography from the upper mantle to the inner core
(Young et al. 2013; Burdick & Lekić 2017; Burdick et al. 2019;
Pejić et al. 2019), the geodynamic community typically engages
with tomographic results expressed in spherical harmonics, so we
are motivated to develop robust tomographic methods that operate
by directly using that parametrization. We calculated linear kernels
relating these perturbations to the differential traveltimes using rays
drawn using the AK135 reference model by the Obspy taup mod-
ule (Beyreuther et al. 2010). Similarly to Young et al. (2013), we
perturbed slowness in the lowermost 300 km of the mantle only,
and assumed that slowness varied only laterally. Motivated by the
statistical analysis of Garcia et al. (2009), which found the highly
heterogeneous layer of the lowermost mantle to be approximately
350 km thick, Young et al. (2013) performed inversions using a
variety of different layer thicknesses, settling on 300 km as the op-
timal parametrization, which we have maintained for consistency.
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This parametrization results in a linear forward model
[

�tPcP−P

�tP K Pab−P K Pbc

]
=

[
Gδτ

PcP−P

Gδτ
P K Pab−P K Pbc

]
qδτ , (3)

where the Gδτ and qδτ are the kernels and model parameter vec-
tors for slowness perturbations, respectively, and �tPcP−P and
�tPKPab−PKPbc are the residual differential traveltime data used for
this study. This linearized forwards model is simple but appropriate
for the low volume of data and resolution target used in this study.
To better scale the problem, we use units of s (106m)–1 for slowness.
Using a linear forward model is essentially free in comparison to the
MCMC sampling process as the Gs are precomputed. However, this
linear formulation does introduce potential theory errors, of which
the most significant are the lack of ray tracing updates through a
potentially highly heterogeneous model, inconsistencies between
the background mantle model used for corrections and the model
used for inversion, lack of correction for CMB topography and as-
sumption of a single layer for the lowermost mantle. The use of
differential data that contains both reflected and transmitted phases
is designed to mitigate the theory errors caused of background
model and CMB topography effects. Furthermore, our inversion
utilizes relatively coarse spherical harmonics, which ensure that at
the finest resolutions tested the effective ‘voxel’ aspect ratio at the
CMB induced by our assumption of a 300-km-thick layer is of or-
der one, so that we are not inverting for an unrealistic vertically
elongated parametrization. Current software developments are in-
creasingly allowing for more complex, large scale non-linear Monte
Carlo inversions (Gebraad et al. 2020), however robust, well-tested
implementations are currently limited to linear models such as the
one considered here for performance reasons.

3.2 Data likelihood model

If the residual differential traveltime data after inversion are ex-
pected to be identically independently distributed (i.i.d.) as a Gaus-
sian around zero, it is appropriate to use a Gaussian noise error
model for the likelihood of the data; for example, indexing the
NPcP−P differential PcP–P ray paths by i, we have

p(�tPcP−P |qδτ , σPcP−P ) =
NPcP−P∏

i=1

1√
2πσ 2

PcP−P

× exp

[
− (�tPcP−P − Gδτ

PcP−P qδτ )2
i

2σ 2
PcP−P

]

(4)

and similarly for PKPab-PKPbc. In this case, assuming that the data
variance parameters σ PcP−P, and σ PKPab−PKPbc are known, the result
for the posterior distribution of qδτ is analytic and given by a suitably
multivariate Gaussian (Tarantola 2005), from which the mean and
covariance of the posterior are immediately apparent. When the
data standard deviations σ PcP−P and σ PKPab−PKPbc are not known a
priori, we may treat them as hyperparameters, including them in
the inversion. Formulating the model in this way typically results
in a posterior for which MCMC sampling methods are required for
the computation of expectations (such as the mean and covariance
of the posterior). When using hierarchical parametrizations, we are
therefore motivated to use a highly efficient sampler, such as HMC,
to draw samples from the posterior and from them to compute the
expectations of interest.

3.3 Prior distributions for model parameters

The choice of prior is an essential component of any Bayesian ap-
proach to geophysical inverse problems. In our case, we have a clear
motivation for the prior for model variables qδτ . As a result of many
decades of extensive study, we have high quality 1-D models of the
Earth (e.g. Dziewonski & Anderson 1981; Kennett et al. 1995). We
have used the ak135 reference model for this study; consequently we
are strongly motivated to assume perturbations away from these ref-
erence models are small. The appropriate prior for this assumption
is a normal distribution, centred on zero, for qδτ . As we do not know
the appropriate scales of these distributions a priori, we introduce
another hyperparameter σ δτ , for a total of three hyperparameters.
The choice of prior for hyperparameters is difficult. A common
approach has been to use the non-informative, or Jeffries, prior, an
improper prior that takes the form 1/σ for scale parameters. The
intuition behind this prior is that all potential magnitudes of scales
are equally likely, or equivalently that the distribution of scales is
log-uniform. The Jeffries prior has extremely long tails, and blows
up near σ = 0. Current best practice in the statistical community
suggests non-informative priors, such as the Jeffries prior, are in
fact poor choices for hyperparameters as they tend to bias hyper-
parameters to extreme values, and that more restrictive priors such
as the half-Cauchy or even half-Normal are better choices (Gelman
2006). We use a half-Normal prior for our scale parameters as we
have a strong intuition as to a maximum unacceptable scale for ve-
locity perturbations. Additionally, the lightly tailed half-Normal is
significantly more efficient to sample from than the heavier tailed
half-Cauchy. The choice of scale of these hyperpriors is set to an
arbitrary, large value, such that all likely scales are contained within
the area of high prior density to avoid unduly biasing the posterior.
Concretely, the prior is therefore set to be

p(qδτ |σδτ ) =
l ′∏

l=0

l∏
m=−l

1√
2πσ 2

δτ

exp

[
−qδτlm

2

2σ 2
δτ

]
(5)

p(σδτ ) =
√

2√
π 2(ν1)2

exp

[
− σ 2

δτ

2(ν1)2

]
, σδτ > 0 (6)

p(σPcP−P ) =
√

2√
π 2(ν2)2

exp

[
−σ 2

PcP−P

2(ν2)2

]
,

σPcP−P > 0 (7)

p(σP K Pab−P K Pbc) =
√

2√
π 2(ν2)2

exp

[
−σ 2

P K Pab−P K Pbc

2(ν2)2

]
,

σP K Pab−P K Pbc > 0 (8)

with ν1 = 5 and ν2 = 1 setting the scales of the hyperpriors.

3.4 Centred versus non-centred hierarchical
parametrizations

A well known pathology in MCMC sampling in which scale hyper-
parameters σ are used is the ‘funnel’ effect (Neal 2003), in which
the curvature of the posterior increases steeply as the σ become
small. The funnel pathology has the tendency to drastically increase
rejection rates for all common MCMC samplers in the vicinity of
low σ areas of the posterior distribution. In turn, lack of samples
with low σ has the effect of biasing any estimators of expecta-
tion values computed for MCMC chains of finite length, even if
asymptotic convergence to the true posterior is theoretically guaran-
teed (Betancourt & Girolami 2015). Advanced posterior-curvature
aware samplers such as Riemannian HMC methods may ameliorate
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1634 J. B. Muir and H. Tkalčić

these issues (Girolami & Calderhead 2011), however these methods
are computationally expensive and robust implementations are not
readily available. In certain cases, reparametrization of the model
can also remove the issue. The formulation of the prior in eq. (5)
supposes that the qδτ are a priori normally distributed with standard
deviation σ τ . It is apparent from this formulation that the funnel
effect occurs when these σ become small, so that the range of q
acceptable under the prior is limited and difficult to search using
MCMC. This form of parametrization is typically known as the cen-
tred form. Alternatively, we may use the mathematically equivalent
non-centred form

qδτ = q̄δτ + σδτ q ′
δτ , (9)

where the variable q̄δτ represent the mean bias for qδτ , respectively
and the auxiliary variables q ′

δτ have prior standard (zero mean, unit
standard deviation) normal distributions. As previously indicated,
we believe that our 1-D reference model is good enough that we
expect the mean bias terms to be zero, so we discount them. Global
static corrections may still be included by the Y00 component of
our forward model. Whilst the centred and non-centred forms give
rise to the same posterior, the funnel effect is transferred from the
prior (in the centred form) to the likelihood (in the non-centred
form). If the data noise is relatively large, as is typically the case
in global geophysical applications, the funnel is smeared out in the
likelihood and correlations between the non-centred parameters are
reduced, allowing MCMC to efficiently sample the full posterior in
non-centred coordinates (Betancourt & Girolami 2015).

3.5 Selection of model complexity

The family of models proposed in this study are characterized by
their maximum degree of spherical harmonic expansion l

′
. Higher

l
′

allows the model to be more expressive, at the expense of po-
tentially overfitting the data. This trade-off induces a metaproblem
of model selection into the inverse scheme (Claeskens 2016). The
model selection problem is ubiquitous in geophysical inverse theory,
and consequently many methods have been developed to chose the
‘optimal’ model when there is not a good geophysical justification
for preferring a particular one. Broadly speaking, these can be cate-
gorized into two classes; first adaptive methods, such as split-block
models (e.g. Tkalčić et al. 2002; Auer et al. 2014), transdimensional
Bayesian sampling (e.g Bodin & Sambridge 2009; Dettmer et al.
2011; Sambridge et al. 2013) and random or directed model sub-
space probing methods (e.g Fang et al. 2020), in which the model
parametrization itself changes before or during the inversion to re-
flect data distributions. The second class consists of post hoc selec-
tion methods in which multiple models are fitted, and then compared
using some scoring function to determine the optimal one. These
methods include information criteria applied to the maximum a pos-
teriori point such as the Bayesian and Akaike information criterion
(Pachhai et al. 2014; Muir & Tkalčić 2015), information criterion
applied to MCMC chains such as the deviance information criterion
(Kowsari et al. 2019), and cross-validation methods. This class also
conceptually includes the class of highly underdetermined problems
for which selection of damping and smoothing parameters via the
l-curve, cross-validation or discrepancy principle methods (Aster
et al. 2018) or correction of the model towards a preferred form via
the null-space shuttle (Deal & Nolet 1996; Fichtner & Zunino 2019)
acts as a form of effective post hoc selection of model complexity,
whilst the explicit number of parameters does not change. Whilst

these post hoc methods typically require inversion of multiple mod-
els, robustly fitting adaptive parametrizations may be extremely
challenging and costly. Additionally, global basis functions such
as spherical harmonics do not naturally fit into adaptive schemes.
Consequently in this study we have used a particular post hoc se-
lection method to determine the optimal degree of expansion l

′
. In

particular, we use LOO-CV to evaluate models with different l
′
. We

chose LOO-CV as its estimates are relatively robust and produce
unbiased estimates of the predictive power of the model, compared
to information criteria methods when the number of data is low (Ve-
htari & Ojanen 2012). In classical LOO-CV, each individual data
point is removed from the data set, the inverse problem is solved
and then the posterior predictive distribution for the left out data
point is computed (Vehtari et al. 2017). The final LOO-CV score is
the sum of the estimated loss relative to the predictive distribution
for every data point; that is for data y

LOO-CV(y) = ∑
i log p(yi |y j �=i ) (10)

p(yi |y j �=i ) = ∫
p(yi |q)p(q|y j �=i )dq. (11)

In practice, explicit computation of the posterior predictive
p(yi|yj �= i) for every data point is prohibitively expensive, so we
use Pareto-Smoothed Importance Sampling (PSIS) using MCMC
results for all data to estimate the LOO-CV scores (Vehtari et al.
2017). For particularly influential data points, the PSIS-LOO es-
timate may be poorly constrained, and for those data points we
perform explicit LOO computations as suggested by Vehtari et al.
(2017).

3.6 Hamiltonian Monte Carlo

The essential idea of HMC is to exploit currently existing high per-
formance algorithms of classical mechanics to improve the per sam-
ple efficiency of Monte Carlo over traditional Metropolis–Hastings
or Gibbs methods. HMC variants exploit geometry of the posterior
likelihood to propose MCMC samples that have a higher acceptance
ratio and lower integrated trace autocorrelation length than tradi-
tional MCMC samplers such as random-walk Metropolis–Hastings
(Neal 2011; Betancourt et al. 2017). Through the proliferation of
domain-specific languages such as STAN (Carpenter et al. 2017)
that define and assemble statistical models, compute log-posterior
gradients and tune sampling parameters automatically, HMC is be-
coming increasingly popular as a general-purpose MCMC sampler.
In geophysical contexts, HMC has been applied to uncertainty quan-
tification in source inversion problems (Fichtner & Simutė 2018)
and 1D acoustic impedance inversion (Sen & Biswas 2017), data
exploration (Muir & Tsai 2020), and some tomography problems
(Biswas & Sen 2017; Fichtner et al. 2019), but overall utilization of
the method is limited. An essential requirement for HMC is that the
log-posterior be differentiable; this limits its applicability to popu-
lar geophysical MCMC sampling techniques such as reverse-jump
MCMC in which the number of parameters changes (Bodin & Sam-
bridge 2009) to the parts of the model that are differentiable, with
non-differentiable components handled using the normal random-
walk Metropolis-Hastings step method (Sen & Biswas 2017). In
a linearized tomography problem such as the one discussed here,
the data likelihood and priors are almost certainly differentiable,
making the problem very well suited to the HMC method.

The Hamiltonian of a system with coordinates q and momenta p
is

H (q, p) = U (q) + K (p), (12)
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Probabilistic lowermost mantle P-wave tomography 1635

Figure 2. Estimated difference in Leave-one-out cross-validation (LOO-CV) predictive performance relative to a maximum expansion degree l
′ = 15—higher

is better. Error bars are shown at the 2σ level.

where U is the potential energy of the system and K is the kinetic
energy. The equations of motion for the system are

∂q

∂t
= ∂ H

∂p
(13)

∂p

∂t
= −∂ H

∂q
. (14)

Setting

U (q) = − log [p(q|d)] = − log [p(d|q)p(q)] (15)

results in a potential that reflects the desired posterior distribution.
The kinetic energy is set using arbitrary symmetric positive-definite
mass matrix M as

K (p) = 1

2
pT M−1 p. (16)

In the context of the geophysical inverse problem, the conjugate
momenta p have no physical significance, they merely serve to facil-
itate the HMC algorithm; similarly the choice of mass matrix affects
the efficiency of sampling but not the asymptotic behaviour of the
Markov chain, that is guaranteed to converge to the posterior (Neal
2011). The HMC step algorithm begins with the current vector of
parameter coordinates q. A momentum vector p is drawn randomly
with a multinomial distribution with identity covariance matrix and
zero mean; p ∼ N(0, I). The equations of motion are then integrated
with starting conditions (q, p) for some time period to produce new
coordinates (q

′
, p

′
). The momentum reversed coordinates (q

′
, −p

′
)

are then accepted as the next element of the MCMC chain with
probability

min
[
1, exp(H (q, p) − H (q ′,−p′))

]
. (17)

The results of Bayesian geophysical inverse problems are almost
always given as various expectation values (e.g. mean, variance,
marginal probability distributions), which are integrals over the full
posterior. For a particular model, the computation of these integrals
is dominated by the typical set, which counterintuitively is often far
from the maximum a posteriori (MAP) point. The volume of the
typical set decreases relative to that of all model space drastically
as the dimensionality of the problem increases, so samplers that do
not account for its structure tend to become increasingly inefficient
as a function of dimension—this is the problem of concentration

of measure. HMC guides the sampling to draw efficiently from the
typical set, allowing it to scale well with dimension (Betancourt
2017). The HMC algorithm is conceptually intuitive, and a naive
implementation of the algorithm is easily produced if gradients
of the log posterior are available. In practice, however, tuning the
step size and mass matrix for efficient sampling of the problem
is difficult; as such we use the well tested STAN sampler, which
automatically handles tuning, to perform HMC sampling for this
study.

4 R E S U LT S

We determined the optimal maximum degree of spherical harmonic
expansion l

′
from the range 0 ≤ l

′ ≤ 25 using the PSIS-LOO method
applied to the posterior predictive derived from MCMC sampling.
We explicitly computed the posterior predictive distribution using
HMC for the data points for which the PSIS estimates failed. In both
these cases, 1000 burn in samples were used to initialize the chain,
followed by 1000 saved samples. Six chains were run in parallel
and combined to produce 6000 final samples, as well as to check
that the chains were well mixed and that the HMC convergence
diagnostics provided by STAN were satisfied. As with any model
selection method with noisy data, comparisons between the model
scores are inherently noisy. Applying Occam’s razor to model se-
lection suggests that we should choose the simplest model for which
adequately describes the data—that is, the improvement from more
complex models is not statistically significant. Using a 2σ level of
significance, l

′ = 15 is the smallest l
′

for which no other models
performed significantly better, as shown in Fig. 2.

Once a maximum degree of l
′ = 15 was selected, a final HMC

run with 6 chains of 2500 burn in samples and 2500 saved samples
each was performed, for a final total of 15 000 samples. Residuals
from the inversion with l

′ = 15, shown in Fig. 3 show a signifi-
cant improvement compared to the data, with a variance reduction
of 28.5 per cent for PcP–P and 29.4 per cent for PKPab–PKPbc.
Fig. 4 shows the spatial distribution of mean residual differential
traveltimes, and indicate that there is no significant spatial coher-
ence in the remaining residuals, as projected into the ray bottoming
points. Posterior distributions of the scale parameters are shown
in Fig. 5, with resulting posterior means of 0.12 s (106m)–1 for
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Figure 3. Traveltime residuals for the two data sets used in this study. Black
histograms show the initial distribution of residuals, and purple/orange his-
tograms show the quantiles of remaining residual distributions after inver-
sion with maximum l

′ = 15.

σ dτ , 0.61 s for σ PcP−P and 0.54 s for σ PKPab−PKPbc. Fig. 6(a) shows
a mean model that is comparable to similar short-period VP inver-
sions of the lowermost mantle, in particular Houser et al. (2008) and
Young et al. (2013). Many features are also similarly placed to the
geodynamically coupled joint CMB topography/lowermost mantle
P-wave inversion of Soldati et al. (2012). Similarity to Young et al.
is unsurprising as the data set is a subset of Young et al.’s, repro-
cessed to avoid contamination by the inner core, although the model
parametrization is very different. We find an RMS velocity pertur-
bation of 0.71 per cent, significantly smaller than Young et al.’s
value of 0.87 per cent, which may be a byproduct of our global ba-
sis functions and assumed priors inducing greater regularization of
the inverse problem—noting that a spherical harmonic expansion
of l

′ = 15 induces a minimum half-wavelength resolution scale of
approximately 12◦. The most consistent feature across short-period
VP inversions of this depth is the large positive perturbation under-
neath Asia, coupled with a decreases in velocity mainly underneath
the Pacific and Africa in regions roughly concordant with the large
low shear wave velocity provinces found in longer period VS inver-
sions (Houser et al. 2008; Soldati et al. 2012, 2014; Obayashi et al.
2013; Young et al. 2013; Tesoniero et al. 2015; Moulik & Ekström
2016; Hosseini et al. 2020). The lateral extent of P-wave velocity
reductions in the Pacific and Africa is relatively inconsistent when
compared to LLSVPs revealed by comparable S-wave studies. In

particular, a significantly more complicated pattern of perturba-
tions seems to be required by inversions utilizing short period data,
such as that used in this study (e.g. Tkalčić et al. (2015)).

Fig. 6(b) shows that due to to lack of ray path coverage, the model
main in the Southeastern Pacific, Southern Indian and Southern
oceans are generally unreliable, but that there is low uncertainty
underneath most continental regions (except Antarctica) as well as
in the West/Northwestern Pacific and Atlantic oceans. The marginal
distributions for spectral power in each degree show that the power
is spread relatively evenly between degrees 1–15 with degree 2
not a dominant contributor to the inversion. The strong degree 0
component can be explained as a byproduct of assuming a constant
reference velocity throughout the lowermost 300 km of the mantle
that is different to the true ray path averaged velocity as encountered
by the rays in our data set.

5 R E S O LU T I O N T E S T S

In order to confirm that our model selection criterion was per-
forming adequately, we posed a synthetic resolution test using the
same phases and source/receiver locations as in our real data set.
We constructed a model by initially constructing a binary velocity
perturbation image (shown in Fig. S4), and then filtering it at a
maximum harmonic degree l

′ = 10. The purpose of this model is to
explore the algorithm’s ability to successfully recover structures at
various spatial scales, starting from a simple degree 2 and including
higher harmonic degrees superimposed onto it. In order to avoid an
‘inversion crime’, we used separate ray tracing and perturbation in-
tegration codes for creating the synthetic data and for generating the
data kernel matrix G. After constructing synthetic differential trav-
eltime data, we imposed Gaussian noise on the differentials with
a standard deviation of 0.5 s, which represents a ‘realistic’ noise
contribution for depth-range restricted global tomography equal to
65 per cent of the true differentials and which is similar to the re-
maining residuals for our real data inversion, as seen in Fig. 5.

Once the synthetic data were created, we performed model se-
lection using the same methodology as in our real data results, with
the LOO-CV curve shown in Fig. 7, which shows that a maximum
harmonic degree of l

′ = 9 is preferred by the data, with the true
l
′ = 10 within 2σ standard error in the difference. Given the large

proportion of noise in the data, it is to be expected that model se-
lection may favour a simpler model than the true model, especially
where large parts of the model domain are poorly sampled by rays,
as is the case with our data set. The resultant tomographic test at l

′

= 9 is shown in Fig. 8. These results indicate that the PSIS-LOO
method can obtain a good approximation of the true structure for
our problem under realistic amplitudes of noise that are a substantial
proportion of the overall initially measured residuals.

As a further test of the resolution of the two data sets we used in
this study, we performed a synthetic inversion utilizing the DETOX-
P3 synthetic model (Hosseini et al. 2020), evaluated at a depth of
2741 km using the SubMachine webtool (Hosseini et al. 2018).
The DETOX-P2/3 models represent the current state-of-the-art in
global P-wave tomography, with the full DETOX-P3 model utiliz-
ing ∼10.7 million traveltimes in multiple frequency bands, notably
including the lesser used Pdiff and PP phases. The inclusion of large
amounts of Pdiff data, in particular, allows for heightened sensitiv-
ity to the lowermost mantle, although we note that the diffraction
process inherently smooths Pdiff wavefields, effectively limiting the
temporal resolution of Pdiff picks deep into the shadow zone (Hos-
seini & Sigloch 2015). For our resolution test, we again assumed
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Figure 4. Posterior mean residual differential traveltimes for PcP−P/PKPab−PKPbc in purple/orange, respectively. The posterior mean residual is mean(�tobs

− �tpred). Symbols are plotted at the bottoming points of the PcP and PKPbc rays.

Figure 5. Posterior distributions of scale variables σ dτ , σPcP−P and
σPKPab−PKPbc for maximum l

′ = 15. Prior distributions were half-normal
for all three scale variables, with prior standard deviation ν1 = 5 for σ dτ

and ν2 = 2 for σPcP−P and σPKPab−PKPbc.

that perturbations were restricted to the 300 km depth slice used
in this study, which was assumed to have constant radial velocity.
Differential traveltimes were calculated and then contaminated with
0.2 s of additive Gaussian noise, which is the same ratio of noise to
velocity perturbation RMS as our final model. We then performed
a hierarchical HMC run with l

′ = 15.
The results of the inversion for a DETOX-P3 synthetic data set

are shown in Fig. 9, and show that nearly all major features of
the DETOX-P3 model are recovered, albeit smoothed by our lower
resolution inversion. The primary exception is the interior of the
Pacific low velocity province (LVP), although we note that this is
both flagged by a high uncertainty region by our method, and that
the boundaries of the province are recovered. Fig. S7 shows that
the input noise of 0.2 s is recovered by the hierarchical inversion,
while Fig. 9(d) and Fig. S5(d) show the low-degree weighted power
spectrum of DETOX-P3 is recovered, albeit with a reduced degree 2
component compared to the input model; we note that the recovered
power spectrum from the synthetics is substantially redder than that
recovered from our real data despite this, and our conclusions would
not change even if the degree 2 component of our real inversion was
doubled. The results of this inversion test show that our data set
is in principle capable of recovering the LVPs typically found in
lowermost mantle tomography derived from long period data sets,
suggesting that the flatter power spectrum recovered by our model
is a reflection of the details in our data, rather than a product of
insufficient ray coverage.
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Figure 6. Summary statistics for VP from combined HMC chains. (a) Mean,
(b) standard deviation and (c) power in each harmonic degree (black line
shows the median and grey bars show the 95 per cent credible interval).

6 D I S C U S S I O N A N D C O N C LU S I O N S

We have presented a joint inversion of lowermost mantle velocity
using a high quality, handpicked data set of PcP-P and PKPab-
PKPbc differential traveltimes, chosen to minimize the effects the
crust and upper mantle using coincident ray paths and tomographic
corrections, and independent of the inner core. Our inversion uses
a hierarchical Bayesian formulation to marginalize out the effect
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Figure 7. Estimated difference in leave-one-out cross-validation (LOO-
CV) predictive performance for the synthetic resolution test relative to a
maximum expansion degree l

′ = 9—higher is better. Error bars are shown
at the 2σ level.

(a)

(b)

(c)

Figure 8. Summary statistics for VP from combined HMC chains for the
synthetic test on the geometric model. (a) True model, (b) mean of recovered
modelled and (c) standard deviation of recovered model.

of unknown data noise and uncertain perturbation scales from the
inverse problem. To handle the high-curvature non-linear posterior
distribution, we used the HMC method, specifically the highly opti-
mized STAN sampler, which uses posterior gradient information to
dramatically improve sampling in high dimensions. Furthermore,
we used a non-centred parametrization to avoid the ‘funnel’ effect
that is a common pathology in hierarchical Bayesian models. Our
results show relatively strong RMS velocity perturbations of 0.71
per cent with the pattern of CMB velocity perturbations conforming
to the results of Houser et al. (2008) and Young et al. (2013). The
behaviour of the LOO-CV curve in Fig. 2, with values slowly in-
creasing after our selected degree 15 model, suggests there may be
additional complexity that is not adequately captured byproduct by
our forward model, noting that in contrast the synthetic LOO-CV
begins decaying immediately after the true model degree. The two
prime candidates for this complexity are contribution to the resid-
uals by the topography of the CMB, considering the phases that
we have used, and the use of a global P-wave tomographic model
to correct for the relatively homogeneous upper and mid-mantle,
which despite the use of differential traveltimes may integrate to
substantial values over the long ray paths used in this study. We ex-
pect the crustal corrections to be minor given the use of differential
traveltimes with paths that are very close in the crust.

Our results support a relatively complex lowermost mantle Vp

model, with significant spectral power at spherical harmonic de-
grees up to l = 15, although the Vp perturbations are smaller than
Young et al. (2013) from which a large part of our data is de-
rived. Large perturbations in Bayesian inversions have often been
ascribed to the lack of added damping to the inverse problem. We
have taken an alternative perspective in this study, which is that
given the existence of pre-existing high quality reference models, a
good a priori constraint on the data is that the perturbations should
be close to zero—the priors we have chosen to reflect this are equiv-
alent to standard L2 Tikhonov regularization (i.e. damping) when
the three scale parameters σ are fixed. The crucial difference is that
we have allowed these parameters to be set parsimoniously by the
data by using a hierarchical inversion (Malinverno & Briggs 2004).
The final reported spatial maps and power spectra are marginal-
ized over all values of these parameters that are compatible with
the data. The combination of explicit inclusion of a normal prior
on model parameters, along with the global low-degree spherical
harmonic expansion which induces implicit regularization by basis
truncation, means that our inversion is relatively conservative com-
pared transdimensional Bayesian inversions such as Young et al.
(2013). Despite this, large, spatially complex perturbations are re-
quired to account for the short-period residuals used in this study.
Given the intrinsically low resolution of lowermost mantle seismic
tomography, there is continued uncertainty as to whether velocity
heterogeneities may be described by a purely thermal model con-
taining a phase transition from bridgmanite to post-perovskite, or
whether additional chemical heterogeneity is required (Davies et al.
2012; Koelemeijer et al. 2018).

Following the analysis of Tkalčić et al. (2015), the velocity per-
turbation model derived in this study is only weakly dominated
by large scale degree 1–3 structure, which indicates compatibility
with the shorter wavelength lowermost mantle structures found in
thermally driven geodynamic models, and in previous tomographic
studies utilizing PKP and PcP data (Tkalčić & Romanowicz 2002;
Soldati et al. 2012). Recent large scale deterministic P-wave tomo-
graphic results with significant sensitivity to the lowermost mantle
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Figure 9. Summary statistics for VP from combined HMC chains for the synthetic test on the DETOX-P3 model. (a) True model, (b) mean of recovered model,
(c) standard deviation of recovered model and (d) power in each harmonic degree (black line shows the median and grey bars show the 95 per cent credible
interval, red dots show power of the input model).

obtained by Pdiff data sets, reported by Hosseini et al. (2020), have
also indicated substantial structural complexity with the most pre-
dominant features being a fast patch under East Asia and a wide,
quasihemispherical slow band that includes the locations of the

African and Pacific LVPs. Pdiff data sets provide the most com-
prehensive coverage of lowermost mantle Vp structure (Hosseini &
Sigloch 2015; Euler & Wysession 2017), however their maximum
frequency content is limited by the diffraction process and so our
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Figure 10. Comparison of power per degree between this study and three global P-wave tomography models evaluated at a depth of 2741 km: LLNL-G3Dv3,
DETOX-P3 and GAP P4, showing that the results of this study support a less red spectrum for VP perturbations in the lowermost mantle than those models.
Vertical lines indicate the 95 per cent credible interval for the results of our model.

high-frequency PcP-P and PKPab-PKPbc provide useful additional
constraints on the finer scale structure of the lowermost mantle re-
gion. Quantifying these observations, Fig. 10 shows a comparison
in power per degree between this study and three global VP tomogra-
phy methods—GAP P4 (Obayashi et al. 2013) and LLNL-G3Dv3
(Simmons et al. 2012), which are well established 3-D models
based principally on direct P-wave data in the lowermost mantle,
and DETOX-P3 (Hosseini et al. 2020), which as earlier stated uti-
lizes Pdiff to enhance sensitivity to the lowermost mantle. We find
that the preferred power spectrum of our model is significantly less
red than these global VP models, supporting the findings of signifi-
cant multiscale structure of Tkalčić et al. (2015) albeit now using a
data set that is free from any contribution from the inner core.

The most prominent similarity of our model with previous P-
wave tomography models of the lowermost mantle is also this high
speed feature obtained under the entire Asian continent. That faster
patch in our model, however, continues from Asia across Indonesia
and extends to Australia. This is different from previous models
(e.g. Tkalčić et al. 2002; Houser et al. 2008; Soldati et al. 2012;
Young et al. 2013) which all had moderate to low speeds in the area
between Asia and Australia. We attribute the difference between
heterogeneity maps obtained by Tkalčić et al. (2002) and Young
et al. (2013) and our model in that area to inner core structure, which
could be anomalously slow and thus affect PKPdf traveltimes that
were included in those studies, but are omitted from the inversion
here by considering PKPab-PKPbc traveltimes only. Aubert et al.
(2008) argued for the existence of a large downward motion of
chemically depleted liquid in the outer core beneath the southeast
Asia, which is compatible with the highest-rate growth of the inner
core. The fast growth would induce a small grain texture at the top
of the inner core, which could be responsible for anomalously low
speeds.

We note another significant change, beneath Americas, with re-
spect to the previous models. In the models that included the PKPdf
traveltime data, both North and South America, including the south-
ern parts of the Pacific Ocean had pronounced low speeds. We do
not observe this low speed area in the current model. At least part
of these anomalies in the previous models could be attributed either
to low speed of the inner core on the source side of the paths from
South America to east Asia and on the receiver side from the south-
ern Indian Ocean to the west coast of the United States (see fig. 8

in Tkalčić et al. (2002) and animation 3 in Tkalčić (2017) for more
details on those ray paths). Alternatively, a cylindrical anisotropy
in the inner core with a slow axis for intermediate angles w.r.t. the
Earth’s spin axis could be responsible for mapping into the previ-
ous models of the lowermost mantle. Such model of anisotropy had
been proposed before for the innermost part of the inner core (Ishii
& Dziewonski 2002).

The further interpretation of these features is contingent on fu-
ture joint tomographic imaging of the lowermost mantle and CMB
topography, ideally including phases with a high sensitivity to CMB
topography, such as P4KP, as well as better ray coverage, which will
give greater constraints on the relative contributions of isostasy and
dynamic topography at the CMB and hence our understanding of
the density and viscosity profiles of the deep mantle.

7 S U P P L E M E N TA RY M AT E R I A L

We also show a Pacific-centred version of Fig. 6 in Fig. S1. The
supplementary material also contains the results of an inversion
restricted to maximum degree l

′ = 6 in Figs S2 and S3, which
show long wavelength structures including dominant slow regions
underneath Africa and the southwest Pacific. Note that this model
is strongly unpreferred by PSIS-LOO analysis compared to our pre-
sented model at maximum degree l

′ = 15, which indicates strong
regional-scale heterogeneity is required to account for the short-
period data used in this study. The apparent uncertainty of these re-
stricted l

′
models is low—this is a reflection of the inexpressiveness

of the low degree parametrization being unable to correctly model
data, leading to high residuals and hence a strongly restricted likeli-
hood function. Fig. S4 shows the binary model used to generate the
filtered degree 10 model used in our geometric synthetic inversion
to test PSIS-LOO. Figs S5–S8 show additional results pertaining to
the synthetic test performed on the DETOX-P3 model.
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Supplementary data are available at GJI online.

Figure S1. Summary statistics for VP from combined HMC chains,
Pacific centred view. (a) Mean, (b) standard deviation and (c) power
in each harmonic degree (black line shows the median and grey bars
show the 95 per cent credible interval).

Figure S2. Summary statistics for VP from combined HMC chains
for an inversion restricted to l

′ = 6. (A) Mean, (b) standard deviation
and (c) power in each harmonic degree (black line shows the median
and grey bars show the 95 per cent credible interval).
Figure S3. Summary statistics for VP from combined HMC chains
for an inversion restricted to l

′ = 6, Pacific centred view. (a) Mean,
(b) standard deviation and (c) power in each harmonic degree (black
line shows the median and grey bars show the 95 per cent credible
interval).
Figure S4. Unfiltered binary synthetic model used for the geometric
synthetic test.
Figure S5. Summary statistics for VP from combined HMC chains
for the synthetic test on the DETOX-P3 model, including power
per degree, Pacific centred view. (A) Synthetic model, (b) mean
recovered model, (c) standard deviation and (d) power in each har-
monic degree (black line shows the median and grey bars show
the 95 per cent credible interval, red dots show power of the input
model).
Figure S6. Traveltime residuals for the 2 data sets used in this
study using the DETOX-P3 as a synthetic input model and 0.2 s
applied Gaussian noise. Black histograms show the initial distribu-
tion of residuals, and purple/orange histograms show the quantiles
of remaining residual distributions after inversion with maximum
l
′ = 15.

Figure S7. Posterior distributions of scale variables σ dτ , σ PcP−P

and σ PKPab−PKPbc for maximum l
′ = 15 using the DETOX-P3 as

a synthetic input model and 0.2s applied Gaussian noise. Prior
distributions were half-normal for all three scale variables, with
prior standard deviation ν1 = 5 for σ dτ and ν2 = 2 for σ PcP−P and
σ PKPab−PKPbc.
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