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ABSTRACT
Aggregation of large databases in a specific format is a frequently
used process to make the data easily manageable. Interval-valued
data is one of the data types that is generated by such an aggrega-
tion process. Using traditional methods to analyze interval-valued
data results in loss of information, and thus, several interval-valued
data models have been proposed to gather reliable information
from such data types. On the other hand, recent technological devel-
opments have led to high dimensional and complex data in many
application areas, which may not be analyzed by traditional techni-
ques. Functional data analysis is one of the most commonly used
techniques to analyze such complex datasets. While the functional
extensions of much traditional statistical techniques are available,
the functional form of the interval-valued data has not been studied
well. This article introduces the functional forms of some well-known
regression models that take interval-valued data. The proposed
methods are based on the function-on-function regression model,
where both the response and predictor/s are functional. Through
several Monte Carlo simulations and empirical data analysis, the
finite sample performance of the proposed methods is evaluated
and compared with the state-of-the-art.
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1. Introduction

Due to recent technological advances, the process of collecting data has become compli-
cated, causing high dimensional and complex data structures. Symbolic data analysis is
one of the commonly used methods in modeling such complex and large datasets, see
Billard (2011) and Noirhomme-Fraiture and Brito (2011) for recent developments in
symbolic data analysis. Contrary to single-valued observations in p-dimensional space
where classical statistical methods work on, symbolic data may be in the form of hyper-
cubes in p-dimensional space. There are many symbolic data types, for example, list,
histogram, modal-valued, and interval-valued data. In this research, we restrict our
attention to the interval-valued data only. The data expressed in an interval format
(minimum and maximum values of the data) is called the interval-valued data. Such
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datasets are frequently encountered in daily life, for example, air and/or surface tem-
perature, wind speed, energy production, blood pressure, and exchange rates. The main
problem encountered during the modeling of the interval-valued data with classical stat-
istical techniques is “how the variability of observations within the range is involved in
modeling?”. Traditional methods analyze interval-valued data using its summary (i.e.,
mid-points), and this approach results in loss of information. Therefore, interval-valued
data analysis techniques are needed to obtain more accurate information.
The early studies about the interval-valued data regression were conducted by Billard

and Diday (2000), who extended traditional statistical techniques to the interval-valued
data. Billard and Diday (2002) extended several classical regression models to interval-
valued data and they proposed a regression equation for fitting histogram-valued
symbolic data; Neto, de Carvalho, and Tenorio (2004) proposed two interval-valued
regression models using the mid-points and ranges of the interval values; Alfonso,
Billard, and Diday (2004) suggested a regression model for fitting taxonomic variables;
Billard and Diday (2007) suggested several interval-valued regression models; Billard
(2007) proposed a covariance function for the interval-valued data; Maia and Carvalho
(2008) introduced an interval-valued regression model based on least absolute deviation;
Neto and de Carvalho (2008) suggested an interval-valued data regression model
inspired by the work of Neto, de Carvalho, and Tenorio (2004) and Neto et al. (2009)
proposed a bivariate generalized linear model for interval-valued symbolic data; Neto
and de Carvalho (2010) presented a constrained interval-valued linear regression model;
Neto, Cordeiro, and de Carvalho (2011) introduced a bivariate symbolic regression
model that considers the interval-valued variables as bivariate random vectors; Ahn
et al. (2012) proposed a resampling based interval-valued regression model; Lim (2016)
suggested a nonparametric additive approach for analyzing interval-valued data that
allows a nonlinear pattern; and Neto and de Carvalho (2017) introduced a nonlinear
regression model for interval-valued data and estimated the model parameters by several
optimization algorithms.
The datasets repeatedly measured over discrete time points provide more information

than those obtained from a single time point, where most of the interval-valued data
regression studies have focused on in the pertinent literature. Available regression mod-
els may not be able to model such data type due to some common regression problems,
such as high dimensionality, multicollinearity, and the high correlation between the
sequential observations. On the other hand, functional data, which considers the data in
the form of curves, can characterize this kind of data that is sampled over continuum
measures. Functional Data Analysis (FDA) techniques reduce the problem of high
dimensionality and focus on temporal dependence between the curves. It provides sev-
eral advantages over the classical methods: for example, it is possible to look at the data
as a whole; FDA is not affected by the missing data and the high correlation problem
between the repeated measurements and minimizes the data noise by smoothing techni-
ques. Consult Ramsay and Silverman (2002, 2005), Ferraty and Vieu (2006), and
Kokoszka and Reimherr (2017) for more information about the FDA.
In this paper, we extend some well-known interval-valued data regression models to

the functional data context. Functional regression models have become important ana-
lytical tools to explore the relationship between the response and predictor variables. In

2 U. BEYAZTAS ET AL.



this context, several regression models have been proposed depending on whether
response and/or predictor/s are scalar or functional; (i) functional response-scalar
predictors; (ii) scalar response-functional predictors; and (iii) functional response-
functional predictors. For the cases (i) and (ii), examples include Cardot, Ferraty, and
Sarda (1999, 2003), James (2002), Hu, Wang, and Carroll (2004), M€uller (2005), Amato,
Antoniadis, and De Feis (2006), Hall and Horowitz (2007), Ferraty and Vieu (2009),
Cook, Forzani, and Yao (2010), Chen, Hall, and M€uller (2011), Dou, Pollard, and Zhou
(2012), Febrero-Bande and Gonzalez-Manteiga (2013), and Goia and Vieu (2015). For
the case (iii), see Ramsay and Dalzell (1991), Fan and Zhang (1999), Şent€urk and
M€uller (2005, 2008), Yao, M€uller, and Wang (2005), Harezlak et al. (2007), Matsui,
Kawano, and Konishi (2009), Valderrama et al. (2010), M€uller and Stadtmuller (2005),
Jiang and Wang (2011), Ivanescu et al. (2015), Chiou, Yang, and Chen (2016) and
Zhang et al. (2018). Also, M€uller and Stadtmuller (2005), Horvath and Kokoszka (2012),
and Cuevas (2014) present an excellent overview of research on functional regression
models and their applications. In this study, we consider the case (iii), which is called
function-on-function regression. As a summary, the interval-valued functional regres-
sion models proposed in this study work as follows. First, the discretely observed inter-
val-valued data are converted to functional form using a B-spline basis, and the
function-on-function regression model is used to investigate the relationships between
the intervals of the response and predictors. The parameter surfaces are estimated using
the maximum likelihood (ML) method, and finally, the lower and upper limit functions
of the response variable are obtained using the smoothing step. Throughout this study,
the primary attention is paid for the prediction performance of the proposed methods.
The finite sample performance of the proposed methods is evaluated numerically via
Monte Carlo simulations and an empirical data example.
The remainder of this article is organized as follows. Section 2 reviews the classical

interval-valued data regression models considered in this study and discusses their func-
tional data extensions. In Sec. 3.1, Monte Carlo simulations are conducted to examine
the finite sample performance of the proposed methods. An empirical data is analyzed,
and the results are reported in Sec. 3.2. Section 4 concludes the article.

2. Methodology

For i ¼ 1, :::, n and j ¼ 1, :::, p, consider the following linear regression model with p

predictor variables X ¼ ðX1, :::,XpÞ>; Xij ¼ ð1,Xi1, :::,XipÞ> and a response variable Y ¼
ðY1, :::,YnÞ>, which are the realizations of intervals so that Xij ¼ ½Xl

ij,X
u
ij �; Xl

ij � Xu
ij and

Yi ¼ ½Yl
i ,Y

u
i �; Yl

i � Yu
i :

Y ¼ Xbþ �, (2.1)

where b ¼ ðb0, b1, :::, bpÞ> is a ðpþ 1Þ � 1 vector of unknown parameters and � ¼
ð�1, :::, �nÞ> denotes the error vector of dimension n� 1: The first extension of the
regression model given in (2.1) to the interval-valued data was suggested by Billard and
Diday (2000). Their extension, called center method (CM), uses the mid-points of the
intervals to fit a regression model as follows:
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Yc ¼ Xcbc þ �c, (2.2)

where Yc
i ¼ ðYl

i þ Yu
i Þ=2 and Xc

ij ¼ ðXl
ij þ Xu

ijÞ=2, for i ¼ 1, :::, n and j ¼ 1, :::, p: The

model parameters bc are estimated using least squares (LS) method. Let bbc
¼

ðbbc

0,
bbc

1, :::,
bbc

pÞ
> denote the estimate of bc, then the lower and upper limits of the inter-

val Y ¼ ½Y l,Yu� are predicted as follows:

bY l ¼ Xlbbc
, bY u ¼ Xubbc

:

However, the CM does not take into account the internal variations of the intervals
when estimating the model parameters, see Neto and de Carvalho (2008) and Ahn
et al. (2012).
To overcome this problem, Neto, de Carvalho, and Tenorio (2004) suggested the cen-

ter-range method (CRM) by fitting two distinct regression models using the mid-points
(as in (2.2)) and half-ranges of the intervals. Let Yr

i ¼ ðYu
i � Yl

iÞ=2 and Xr
ij ¼ ðXu

ij �
Xl
ijÞ=2, for i ¼ 1, :::, n and j ¼ 1, :::, p, denote the half-ranges of the intervals of

ðX1, :::,XpÞ and Y, respectively. Then, the regression equation of the half-ranges is given
as follows:

Yr ¼ Xrbr þ �r, (2.3)

where br ¼ ðbr0, br1, :::, brpÞ
> and �r ¼ ð�r1, :::, �rnÞ

>: The model parameters are estimated

by the LS method. Let bY r ¼ Xrbbr
denote the predicted half-ranges of the intervals.

Then, the predictions of the lower and upper limits of the response variable are
obtained as follows:

bY l ¼ bY c � bY r
, bY u ¼ bY c þ bY r

:

As pointed out by Ahn et al. (2012), the CRM assumes that mid-points and half-ranges
are independent, which may not hold in general.
Billard and Diday (2007) proposed bivariate center and range method (BRCM) to

take into account the effects of intervals widths. It constructs two distinct regression
models using mid-points and half-ranges of the intervals. However, unlike the CRM,
both the mid-points and half-ranges are used as predictors in the regression models. Let

Xcr
i ¼ ð1,Xc

i1, :::,X
c
ip,X

r
i1, :::,X

r
ipÞ

>: Then, the regression equations for the BCRM are given

as follows:

Yc ¼ Xcrbc þ �c, Yr ¼ Xcrbr þ �r, (2.4)

where bc ¼ ðbc0,bc1, :::,bc2pÞ
> and br ¼ ðbr0, br1, :::, br2pÞ

> denote the parameter vectors. As

in CRM, the regression parameters are estimated using the LS method, accordingly the
lower and upper limits of the response variable are predicted as follows:

bY l ¼ bY c � bY r
, bY u ¼ bY c þ bY r

:

All three regression models (CM, CRM, and BRCM), are not appropriate for statistical
inference, such as coefficient and model significance tests. Ahn et al. (2012) proposed a
resampling based interval-valued data regression model (MCM), which enables making
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inferences on the model. Let B denote the number of Monte Carlo simulations. Then,
the MCM works as follows:

Step 1. Generate single-valued predictor/s X�
ij and response Y�

i variables uniformly
from the intervals Xij ¼ ½Xl

ij,X
u
ij � and Yi ¼ ½Yl

i ,Y
u
i �, respectively, to get a ran-

dom vector ðY�
i ,X

�
i1, :::,X

�
ipÞ

>, for i ¼ 1, :::, n and j ¼ 1, :::, p:

Step 2. Construct a linear regression using the generated single-valued observations
Y� ¼ ðY�

1 , :::,Y
�
nÞ and X�

j ¼ ðX�
1j, :::,X

�
njÞ in Step 1 as follows:

Y� ¼ X�b� þ ��:

Step 3. Estimate the regression coefficients bb�
¼ ðbb�

0,
bb�
1, :::,

bb�
pÞ using the LS method:

bb�
¼

�
ðX�Þ>X�

��1
ðX�Þ>Y�:

Step 4. Repeat Steps 1–3 B times to obtain B sets of estimates, bb�
¼ ðbb�1

, :::, bb�B
Þ:

Let bb�
¼ B�1PB

b¼1
bb�b

be the final estimate. Then, the lower and upper values of the
response variable are predicted as follows:

bY l ¼ bb�
Xl, bY u ¼ bb�

Xu:

Note that, for CM and MCM, the lower bound bY l
may produce higher values than

the upper bound bY u
: Thus, the authors suggested to use bY l ¼ minðbY l

, bY uÞ and bY u ¼
maxðbY l

, bY uÞ to obtain logical predictions.

2.1. Functional response model

A functional data fX iðtÞ : i ¼ 1, :::,N, t 2 T g comprises random functions which are
sample elements recorded at discrete times t ¼ ft1, :::, tJg � T : Let ðH, h�, �iÞ denote a
separable Hilbert space, where h�, �i represents the inner product which generates the
norm k � k : Then, the functional random variable X is defined as X : ðX,R,PÞ ! H
where X, R, and P represent the sample space, r-algebra and the probability measure,
respectively. Throughout this research, we consider L2ðT Þ-Hilbert space of square inte-
grable functions f : T ! R satisfying

Ð
T f

2ðtÞdt < 1 with an inner product hf , gi ¼Ð
T f ðtÞgðtÞdt, 8f , g 2 L2: In addition, we assume that the random variable XðtÞ 2 L2ðXÞ
with finite second order moment is a second order stochastic process so

that E½jXj2� ¼
Ð
XjXj2dP < 1:

The functional relationship between a functional response YiðtÞ and M functional pre-
dictors X imðsÞ; fðYiðtÞ,X imðsÞÞ; i ¼ 1, :::,N,m ¼ 1, :::,M, s 2 T m, t 2 T g, where T � R

and T m � R are the ranges of response and predictors, respectively, can be formulated by
the following multiple functional linear regression model (Ramsay and Silverman 2005):

YiðtÞ ¼ b0ðtÞ þ
XM
m¼1

ð
T m

X imðsÞbmðs, tÞdsþ �iðtÞ, (2.5)

where b0ðtÞ is the mean function, bmðs, tÞ is the bivariate coefficient function of the
mth predictor, and �iðtÞ is the random error function. Without loss of generality, the
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mean function can be eliminated from the model (2.5) by centering the functional
response and predictors as follows:

Y�
i ðtÞ ¼ YiðtÞ � �YðtÞ,

X�
imðsÞ ¼ X imðsÞ � �XmðsÞ,

where �YðtÞ ¼ N�1 PN
i¼1 YiðtÞ and �XmðsÞ ¼ N�1 PN

i¼1 X imðsÞ denote the mean of the
functional response and mth functional predictor, respectively. Consequently, the func-
tional regression model (2.5) can be re-written as follows:

Y�
i ðtÞ ¼

XM
m¼1

ð
T m

X�
imðsÞbmðs, tÞdsþ ��i ðtÞ, (2.6)

where ��i ðtÞ ¼ �iðtÞ � ��ðtÞ is the centered error function. The estimation process of the
regression coefficient function bmðs, tÞ consists of three steps: (i) First, discretize the
estimation problem, (ii) solve for a matrix, say B, and (iii) apply smoothing step to
obtain coefficient function.
A function x(t) can be approximated by a linear combination of basis functions and

associated coefficients for a sufficiently large number of basis functions K:

xðtÞ ¼
XK
k¼1

ck/kðtÞ,

where, for k ¼ 1, :::,K,/kðtÞ and ck denote the basis functions and corresponding coeffi-
cients, respectively. The popular basis functions include Fourier, B-spline, and Gaussian
basis functions (Ramsay and Silverman 2005; Matsui, Kawano, and Konishi 2009). In
this study, we consider the B-spline basis to approximate functions.
The centered functional response and functional predictors, as well as the bivariate

coefficient function, can be written as basis function expansions as follows:

Y�
i ðtÞ ¼

XKY

k¼1

cik/kðtÞ ¼ c>i UðtÞ, 8t 2 T ,

X�
imðsÞ ¼

XKm,X

j¼1

dimjwmjðsÞ ¼ d>imWmðsÞ, 8s 2 T m,

bmðs, tÞ ¼
X
j, k

wmjðsÞbmjk/kðtÞ ¼ W>
mðsÞBmUðtÞ,

where UðtÞ ¼ ð/1ðtÞ, :::,/KY ðtÞÞ
> and WmðsÞ ¼ ðwm1ðsÞ, :::,wmKm,X ðsÞÞ

> represent the

vector of basis functions, ci ¼ ðci1, :::, ciKY Þ
> and dim ¼ ðdim1, :::, dimKm,X Þ

> are the corre-
sponding coefficient vectors, and Bm ¼ ðbmjkÞj, k denotes the coefficient matrix of dimen-

sion Km,X � KY : Accordingly, the regression model (2.6) can be re-expressed as follows:

c>i UðtÞ ¼
XM
m¼1

d>imfwm
BmUðtÞ þ ��i ðtÞ,

¼ z>i BUðtÞ þ ��i ðtÞ,
(2.7)

where fwm
¼

Ð
T m

WmðsÞW>
mðsÞds is a Km,X � Km,X matrix, zi ¼ ðd>i1fw1

, :::, d>iMfwM
Þ> is a
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vector of length
PM

m¼1 Km,X and B ¼ ðB1, :::,BMÞ> is the coefficient matrix with

dimension
PM

m¼1 Km,X � KY:

Suppose now that the error function ��i ðtÞ in (2.7) can be approximated as basis func-

tion expansion, ��i ðtÞ ¼ e>i UðtÞ, where ei ¼ ðei1, :::, eiKÞ> is a vector of independently
and identically distributed Gaussian random variables with mean 0 and variance-
covariance matrix R: Then, the regression model in (2.7) has the following form:

c>i UðtÞ ¼ z>i BUðtÞ þ e>i UðtÞ: (2.8)

Multiplying both sides of Eq. (2.8) from the right by U>ðtÞ and integrating with respect
to T yields:

c>i UðtÞU>ðtÞ ¼ z>i BUðtÞU>ðtÞ þ e>i UðtÞU>ðtÞ,ð
T
c>i UðtÞU>ðtÞdt ¼

ð
T
z>i BUðtÞU>ðtÞdt þ

ð
T
e>i UðtÞU>ðtÞdt,

c>i fU ¼ z>i BfU þ e>i fU,

ci ¼ B>zi þ ei,

since fU is nonsingular. The probability density function of a functional response Yi

given a functional predictor X i and parameter vector h ¼ ðB,RÞ can be written as fol-
low:

f ðYijX i; hÞ ¼
1

ð2pÞK=2jRj1=2
exp f� 1

2
ðci � B>ziÞ>R�1ðci � B>ziÞg,

since ei 	 Nð0,RÞ: Then, the log -likelihood function ‘ðYijX i; hÞ ¼
PN

i¼1 log f ðYijX i; hÞ
is obtained as:

‘ðYijX i; hÞ ¼ �N
2
log jRj � 1

2
trfR�1ðC � ZBÞ>ðC � ZBÞg,

where C ¼ ðc1, :::, cNÞ> and Z ¼ ðz1, :::, zNÞ>: By equating the derivatives of the log -like-

lihood function with respect to h ¼ ðB,RÞ to 0, the ML estimators bh ¼ ðbB, bRÞ are
obtained as follows:

bB ¼ ðZ>ZÞ�1ZC,

bR ¼ 1
N
ðC � ZbBÞ>ðC � ZbBÞ:

Finally, the fitted values of the response function YðtÞ ¼ ðY1ðtÞ, :::,YNðtÞÞ> are obtained
as follows:

bYðtÞ ¼ ðZbBÞUðtÞ þ �YðtÞ:

2.2. Functional response model for interval-valued functional data

The interval-valued functional data consist of functions that define the interval-valued
data as functions. In other words, an interval-valued functional data consist of two

functions; a lower limit function X lðtÞ and an upper limit function XuðtÞ such that

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 7



XðtÞ ¼ ðX lðtÞ,XuðtÞÞ,X lðtÞ � XuðtÞ: Denote by X cðtÞ ¼ ðXuðtÞ � XlðtÞÞ=2 and

X rðtÞ ¼ ðXuðtÞ � XlðtÞÞ=2 the center and half-range functions, respectively. Let UlðtÞ ¼
ð/l

1ðtÞ, :::,/l
KlðtÞÞ,UuðtÞ ¼ ð/u

1ðtÞ, :::,/u
KuðtÞÞ,UcðtÞ ¼ ð/c

1ðtÞ, :::,/c
KcðtÞÞ, and UrðtÞ ¼

ð/r
1ðtÞ, :::,/

r
KrðtÞÞ denote the vectors of basis functions of the lower limit, upper limit,

center, and half-range functions, respectively. Then, they can be expressed as the linear
combinations of basis functions as follows:

X lðtÞ ¼
XKl

k¼1

clk/
l
kðtÞ, XuðtÞ ¼

XKu

k¼1

cuk/
u
kðtÞ, XrðtÞ ¼

XKr

k¼1

crk/
r
kðtÞ, XcðtÞ ¼

XKc

k¼1

cck/
c
kðtÞ,

where clk, c
u
k , c

c
k, and crk denote the coefficient vectors of the lower limit, upper limit,

center, and half-range functions, respectively.
Before introducing the functional forms of the interval-valued data regression models,

we note that for an interval-valued functional data XðtÞ ¼ ðX lðtÞ,XuðtÞÞ, one needs to
find a common vector of basis functions UcmðtÞ that works for all the components in
the interval; lower limit, upper limit, center, and half-range functions. Otherwise,
the regression model may not be constructed since different components may have a
different number of basis functions.
Suppose now that the (centered) interval-valued random functional response Y�

i ðtÞ and
functional predictors X�

imðsÞ, for i ¼ 1, :::,N and m ¼ 1, :::,M, be the realizations of the

intervals Y�
i ðtÞ ¼ ðY�l

i ðtÞ,Y�u
i ðtÞÞ and X�

imðsÞ ¼ ðX�l
imðsÞ,X�u

imðsÞÞ: Denote by Y�c
i ðtÞ and

X�c
imðsÞ the center functions of the response andmth predictor variables, respectively. Then,

the CM defined in (2.2) can be extended to the functional data as follows:

Y�c
i ðtÞ ¼

XM
m¼1

ð
T m

X�c
imðsÞbcmðs, tÞdsþ ��ci ðtÞ: (2.9)

Let Cc ¼ ðBcÞ>Zc þ ec denote the multivariate regression model constructed using the
basis function expansions of the functional objects given in (2.9) and following Section

(2.1). Let also bBc
denote the ML estimate of Bc: Then, the predictions of the lower

and upper limit functions of the interval-valued functional response variable using the
functional CM are obtained as follows:

bY lðtÞ ¼ ðZlbBcÞUcmðtÞ þ �Y lðtÞ, bYuðtÞ ¼ ðZubBcÞUcmðtÞ þ �YuðtÞ,

where �Y lðtÞ ¼ N�1 PN
i¼1 Yl

iðtÞ, �Y
uðtÞ ¼ N�1 PN

i¼1 Yu
i ðtÞ,Zl and Zu denote the matrices

(see (2.7)) obtained using the basis function expansions of the lower and upper limit
functions of the predictors, respectively, and UcmðtÞ is the vector of basis functions used
to approximate the components of the response variable.
Similarly to the traditional case, the functional CRM is based on two distinct func-

tion-on-function regression models: the regression models of the center and half-range

functions of the variables. Let Y�r
i ðtÞ ¼ ðY�u

i ðtÞ � Y�l
i ðtÞÞ=2 and X�r

imðsÞ ¼ ðX�u
imðsÞ �

X�l
imðsÞÞ=2 denote the half-range functions of the centered functional response and pre-

dictor variables, respectively. Then, the functional regression equation of the functional
half-range variables is given by:
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Y�r
i ðtÞ ¼

XM
m¼1

ð
T m

X�r
imðsÞb

r
mðs, tÞdsþ ��ri ðtÞ:

Denote by Cr ¼ ðBrÞ>Zr þ er the multivariate regression model obtained using the basis

function expansions of the half-range functions, and let bBr
be the ML estimate of Br:

Then, the predicted half-range of the functional response variable is obtained as follows:bY rðtÞ ¼ ðZrbBrÞUcmðtÞ þ �Y rðtÞ,
where Zr is a matrix obtained by the basis function expansions of the half-range func-

tions of the predictor variables and �Y rðtÞ ¼ N�1 PN
i¼1 Yr

i ðtÞ: Subsequently, the predic-
tions of the lower and upper limit functions of the response variable using the
functional CRM are obtained as follows:

bY lðtÞ ¼ bY cðtÞ � bY rðtÞ, bYuðtÞ ¼ bY cðtÞ þ bY rðtÞ,
where bY cðtÞ ¼ ðZcbBcÞUcmðtÞ þ �Y cðtÞ with �Y cðtÞ ¼ N�1 PN

i¼1 Yc
i ðtÞ:

The functional extension of the BCRM can be obtained similarly to (2.4) but using
the functional variables as follows:

Y�c
i ðtÞ ¼

XM
m¼1

ð
T m

X�cr
im ðsÞbccrm ðs, tÞdsþ ��ccri ðtÞ, (2.10)

Y�r
i ðtÞ ¼

XM
m¼1

ð
T m

X�cr
im ðsÞbrcrm ðs, tÞdsþ ��rcri ðtÞ, (2.11)

where X�cr
im ðsÞ ¼ ðX�c

imðsÞ,X�r
imðsÞÞ, for i ¼ 1, :::,N and m ¼ 1, :::,M: Let us denote by

Cccr ¼ ðBccrÞ>Zccr þ eccr and Crcr ¼ ðBrcrÞ>Zrcr þ ercr the regression models constructed
by the basis function expansions of the functional objects given in (2.10) and (2.11),

respectively. Let bBccr
and bBrcr

denote the ML estimates of Bccr and Brcr, respectively.
Then, the predictions of the lower and upper limit functions of the response variable
using the functional BCRM are obtained as follows:

bY lðtÞ ¼ bY cðtÞ � bY rðtÞ, bYuðtÞ ¼ bY cðtÞ þ bY rðtÞ,

where bY cðtÞ ¼ ðZcrcbBcrcÞUcmðtÞ þ �Y cðtÞ and bY rðtÞ ¼ ðZrrcbBrrcÞUcmðtÞ þ �Y cðtÞ:
To extend the traditional MCM to the functional case, we provide the follow-

ing algorithm.

Step 1. For i ¼ 1, :::,N and m ¼ 1, :::,M, generate a functional response YiðtÞ and N
sets of M functional predictors X imðsÞ uniformly from their intervals,
ðYl

iðtÞ,Yu
i ðtÞÞ and ðX l

imðsÞ,Xu
imðsÞÞ:

Step 2. Center the generated functional response and functional predictors and con-
struct a functional regression model as follows:

Y�
i ðtÞ ¼

XM
m¼1

ð
T m

X�
imðsÞbmðs, tÞdsþ ��i ðtÞ:
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Step 3. Obtain the multivariate regression model C ¼ ðBÞ>Z þ e using the basis func-
tion expansions of the centered functional objects. Then, apply the ML
method to estimate the regression coefficients matrix, bB ¼ ðZ>ZÞ�1ZC as
explained in Sec. 2.1.

Step 4. Repeat Steps 1–3 B times to obtain B sets of coefficient matri-

ces bBMCM ¼ ðbB1
, :::, bBBÞ:

Let bBMCM
¼ B�1 PB

b¼1
bBb

be the final estimate of the functional MCM. Then, the lower
and upper limit functions of the response variable are predicted as follows:

bY lðtÞ ¼ ðZlbBMCM
ÞUcmðtÞ þ �Y lðtÞ, bYuðtÞ ¼ ðZubBMCM

ÞUcmðtÞ þ �YuðtÞ:

Similarly to the traditional case, for the functional CM and MCM, the calculated lower

limit functions of the response variable, bY l

iðtÞ may be greater than the upper limit func-

tions, bYu

i : To overcome this problem, we recommend to take the pointwise minimum
and maximum values of the functions as follows:

bY l

iðtjÞ ¼ min
�bY l

iðtjÞ, bYu

i ðtjÞ
�
, bYu

i ðtjÞ ¼ max
�bY l

iðtjÞ, bYu

i ðtjÞ
�
,

for i ¼ 1, :::,N and j ¼ 1, :::, J:
The functional MCM can also be used to construct prediction intervals for the lower

and upper limit functions of the response variable. Let b�lðtÞ ¼ YlðtÞ � bY lðtÞ and b�u ¼
YuðtÞ � bYuðtÞ, respectively, denote the estimated error functions for the lower and
upper limits obtained using the functional MCM. Then, for b ¼ 1, :::,B, one can calcu-

late B sets of fitted lower ðbY l, 1
, :::, bY l,BÞ and upper ðbYu, 1

, :::, bYu,BÞ limit functions as fol-
lows:

bY l, b ¼ ðZlbBbÞUcmðtÞ þ �l, � þ �Y lðtÞ, bYu, b ¼ ðZubBbÞUcmðtÞ þ �u, � þ �YuðtÞ,

where, �l, � and �u, � denote random samples from b�l and b�u, respectively. Denote by

Ql
aðtÞ and Qu

aðtÞ the ath quantiles of the generated B sets of MCM replicates of the fit-
ted lower and upper limit functions, respectively. Then, the 100ð1� aÞ% functional

MCM prediction intervals for YlðtÞ and YuðtÞ can be computed as ½Ql
a=2ðtÞ,Ql

1�a=2ðtÞ�
and ½Qu

a=2ðtÞ,Qu
1�a=2ðtÞ�, respectively.

3. Numerical results

Various Monte Carlo simulations and empirical data analysis were conducted to investi-
gate the finite sample performance of the proposed interval-valued functional data
regression models. We note that in our calculations, the generalized inverse was used to
estimate the model parameter matrix B to avoid the singular-matrix problem. All the
numerical analyses were performed using R 3.6.0 (an example R code can be found at
https://github.com/UfukBeyaztas/FLM_interval_valued_data).
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3.1. Simulation studies

Throughout the simulations, the multiple function-on-function regression model with
M¼ 3 functional predictors was considered, and the following process was used to gen-
erate interval-valued functional variables.

a. For i ¼ 1, :::,N ¼ 200 and m¼ 1, 2, 3, use the following process to generate cen-
ter functions of the predictors X c

mðsÞ; X c
mðsÞ ¼ 10þ VmðsÞ, where s 2 ½0, 1� and

VmðsÞ s are generated from the Gaussian process with zero mean and a positive
variance-covariance function RVðs, s0Þ ¼ exp ð�100ðs� s0ÞÞ2:

b. Generate the center functions of the error process; �cðtÞ, where t 2 ½0, 1�, from
the normal distribution with zero mean and variance four; N(0, 4). Then, gener-
ate the center functions of the response variable as follows:

YcðtÞ ¼
X3
m¼1

ð1
0
X c

mðsÞbcmðs, tÞ þ �cðtÞ,

where

bc1ðs, tÞ ¼ ð1� sÞ2ðt � 0:5Þ2

bc2ðs, tÞ ¼ exp ð�3ðs� 1Þ2Þ exp ð�5ðt � 0:5Þ2Þ
bc3ðsitÞ ¼ exp ð�5ðs� 0:5Þ2 � 5ðt � 0:5Þ2Þ þ 8 exp ð�5ðs� 1:5Þ2 � 5ðt � 0:5Þ2Þ

c. Generate the range functions of the response YrðtÞ and predictors X r
mðsÞ as fol-

lows:

YrðtÞ ¼ YcðtÞ þ Uða, bÞ, X r
mðsÞ ¼ X r

mðsÞ þ Uðc, dÞ:

For the range functions, four different cases were considered:

ða, bÞ ¼ ½ð1, 1:5Þ, ð1, 3Þ, ð3, 5Þ, ð8, 20Þ�andðc, dÞ ¼ ½ð1, 1:5Þ, ð1, 3Þ, ð5, 8Þ, ð6, 15Þ�:

d. Calculate the lower and upper limit functions of the response and predictors as
follow:

YlðtÞ ¼ YcðtÞ � YrðtÞ=2, YuðtÞ ¼ YcðtÞ þ YrðtÞ=2,
X l

mðsÞ ¼ X c
mðsÞ � X r

mðsÞ=2, X l
mðsÞ ¼ X c

mðsÞ � X r
mðsÞ=2:

All the components of the functional variables were generated at 100 equally spaced
points in the interval [0,1], and the components of the generated predictor variables
were distorted by the Gaussian noise uðsÞ 	 Nð0, 4Þ before fitting the interval-valued
functional regression models. A graphical display of the generated lower and upper limit
functions are presented in Figure 1.
For each simulation setting, MC ¼ 250 Monte Carlo simulations were performed. For

each simulation, the first 100 functions of the generated functional variables were used
to construct the interval-valued functional regression models. Note that for each simula-
tion setting, eight number of basis functions was used to convert all the components of
the generated noisy data to their functional forms. The last 100 functions of the data
were used to evaluate the prediction performances of the proposed methods. The
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prediction performance of the methods was evaluated using the average mean squared
errors (AMSE) of the lower (AMSEl) and upper (AMSEu) limit functions as follows:

AMSEl ¼ 1
100

X100
i¼1

jjYl
iðtÞ � bY l

iðtÞkL2 ,

AMSEu ¼ 1
100

X100
i¼1

jjYu
i ðtÞ � bYu

i ðtÞkL2 ,

where jj � kL2 is the L2 norm, which is approximated by the Riemann sum (Luo and Qi
2019). Note that, for the functional MCM, the results were obtained based on a B¼ 100
re-sampling procedure. The nominal significance level a was set to 0.05 to construct
functional MCM-based prediction intervals for the lower and upper limit functions. The
coverage probabilities (CP) for the prediction intervals of lower (CPl) and upper (CPu)
limit functions were calculated to evaluate the accuracy of the constructed prediction
intervals:
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Figure 1. Plots of the generated 20 lower (gray lines) and upper (black lines) limit functions when
ða, bÞ ¼ ð3, 5Þ and ðc, dÞ ¼ ð5, 8Þ:
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CPl ¼ 1
100� 100

X100
i¼1

X100
j¼1

1fQl
a=2, i, j � Yl

iðtjÞ � Ql
1�a=2, i, jg,

CPu ¼ 1
100� 100

X100
i¼1

X100
j¼1

1fQu
a=2, i, j � Yu

i ðtjÞ � Qu
1�a=2, i, jg,

where 1f�g denotes the indicator function. The finite sample performance of the pro-
posed methods was compared with the classical functional linear model (FLM). While
doing so, two FLMs for the lower and upper limit functions of the response and pre-
dictor variables were constructed as follows:

Yl
iðtÞ ¼

ð1
0
X l

imðsÞb
l
mðs, tÞdsþ �liðtÞ,

Yu
i ðtÞ ¼

ð1
0
Xu

imðsÞbumðs, tÞdsþ �ui ðtÞ:

Our findings showed that functional CRM and BCRM produce very close results for
each other, and thus, we presented the results of the functional BCRM only. The results

Figure 2. Calculated AMSE values of the FLM, CM, BCRM, and MCM for the lower limit function of the
response variable in all cases: Case-1: ða, bÞ ¼ ð1, 1:5Þ, ðc, dÞ ¼ ð1, 1:5Þ, Case-2: ða, bÞ ¼ ð1, 3Þ, ðc, dÞ ¼
ð1, 3Þ, Case-3: ða, bÞ ¼ ð3, 5Þ, ðc, dÞ ¼ ð5, 8Þ, and Case-4: ða, bÞ ¼ ð8, 20Þ, ðc, dÞ ¼ ð6, 15Þ:
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for the lower and upper limit functions are presented in Figures 2 and 3, respectively.
The results demonstrate that, for the lower limit functions, the proposed interval-valued
functional regression models outperform the FLM for all cases. Compared with

Figure 3. Calculated AMSE values of the FLM, CM, BCRM, and MCM for the upper limit function of the
response variable in all cases: Case-1: ða, bÞ ¼ ð1, 1:5Þ, ðc, dÞ ¼ ð1, 1:5Þ, Case-2: ða, bÞ ¼ ð1, 3Þ, ðc, dÞ ¼
ð1, 3Þ, Case-3: ða, bÞ ¼ ð3, 5Þ, ðc, dÞ ¼ ð5, 8Þ, and Case-4: ða, bÞ ¼ ð8, 20Þ, ðc, dÞ ¼ ð6, 15Þ:

Figure 4. Calculated coverage probabilities of the MCM-based prediction intervals for the lower and upper
limit functions in all cases: Case-1: ða, bÞ ¼ ð1, 1:5Þ, ðc, dÞ ¼ ð1, 1:5Þ, Case-2: ða, bÞ ¼ ð1, 3Þ, ðc, dÞ ¼
ð1, 3Þ, Case-3: ða, bÞ ¼ ð3, 5Þ, ðc, dÞ ¼ ð5, 8Þ, and Case-4: ða, bÞ ¼ ð8, 20Þ, ðc, dÞ ¼ ð6, 15Þ:
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functional BCRM, the functional CM and MCM produce better AMSE values (see
Figure 2). On the other hand, for the upper limit functions, the functional CM performs
less among others for all cases. The FLM, BCRM, and MCM tend to produce similar
AMSE values when the range between the lower and upper limit functions is small
(Case-1 and Case-2) while the FLM and BCRM produce better results compared to the
MCM as the range increases (Case-2 and Case-3). The results presented in Figures 2
and 3 also show that the FLM and proposed interval-valued functional regression mod-
els (except functional MCM) are not affected by the range when predicting lower and
upper limit functions. Only the performance of the functional MCM gets worse as the
range increases when predicting upper limit functions.
The coverage performances of the functional MCM-based prediction intervals are

presented in Figure 4. It is clear from this figure that the functional MCM is capable of
producing valid prediction intervals for upper limit functions and generally produces
coverage probabilities close to the nominal significance level. On the other hand, for the
lower limit functions, over-coverage is observed for all cases.

3.2. Empirical data example: Oman weather data

The empirical data example represents the monthly Oman weather data spanning from
January 2017 to December 2018. The dataset contain three interval-valued variables:
monthly evaporation (mm), humidity (%), and temperature (
C), and were collected
from 48 stations across Oman (dataset is available from the National Center for
Statistics & Information: https://data.gov.om). The list of stations is reported in Table 1.

Table 1. Station names for the Oman monthly weather data.
Station Station Station Station Station

Adam Airport Bidiyah Khasab Port Muscat City Shalim
AIJubah Bowsher Liwa Qairoon Hairiti Sohar Airport
Al Amrat Bukha Madha Qalhat Sunaynah
Al Hamra Dhank Qumaira Mahdah Qarn alam Sur
Al Jazir Diba Majis Qurayyat Suwaiq
Al Mazyunah Duqum Airport Masirah Ras AlHaad Taqah
Al Mudhaibi Ibra Mina Salalah Rustaq Thamrayt
Al-Buraymi Ibri Mina Sultan Qaboos Sadah Yanqul
Bahla Izki Mirbat Salalah Airport
Bidbid Khasab Airport Muqshin Samail

Figure 5. Time series plots of the averaged minimum (gray lines) and maximum (black lines) monthly
Oman weather variables.
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The data were averaged for each interval-valued variable over the whole time, and the
observations were considered as the functions of months, 1 � s, t � 12: The plots of the
averaged interval-valued functional variables for all 48 stations are presented in
Figure 5.
We considered predicting monthly minimum and maximum evaporation using the

minimum and maximum temperature and humidity variables. For this purpose, the val-
ues of the discretely observed minimum and maximum variables (and their center and
range points) were first converted to functional forms by B-spline basis function expan-
sion using 10 number of basis functions. The following procedure was repeated 100
times to evaluate the predictive performance of the proposed interval-valued functional
regression models as well as the traditional FLM. In each repeat, the dataset was divided
into two parts; the models were constructed based on the functions of 40 randomly
selected stations to predict the minimum and maximum evaporations of the remaining
eight stations. For each model, the parameter matrix B was estimated using the ML
method, as explained in Sec. 2. For each replicate, the AMSEl and AMSEu values were
calculated. Our findings are presented in Figure 6.

Figure 6. Estimated AMSE values for the monthly Oman weather data.

Figure 7. Estimated AMSE values for the monthly Oman weather data.
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The results show that all the proposed methods outperform the FLM for the lower
limit functions. The functional CM and MCM produce slightly less AMSEl compared
with BCRM. On the other hand, for the upper limit functions, the functional BCRM
performs less, among others. The functional MCM and FLM produce slightly better
performances compared with the functional CM. Also, the functional MCM-based pre-
diction intervals were calculated, and the results are given in Figure 7. This figure shows
that the functional MCM generally produce valid prediction intervals for both lower
and upper limit functions. However, as it is seen from Figure 7, MCM produces low
coverage probabilities for some cases. Because the dataset includes some outlying obser-
vations, the performance of MCM is affected by the presence of outlying observations.
A robust estimation method may be used to overcome this problem.
An example of the constructed MCM-based prediction intervals is presented in

Figure 8.

4. Conclusion

Interval-valued data regression models have become a natural framework to analyze datasets
that are collected in an interval. On the other hand, recent technological advances in data col-
lection tools cause complex and high dimensional datasets, which may not be analyzed by

Figure 8. Plots of the observed lower and upper limit functions (black lines) and their calculated
MCM-based 95% prediction intervals for four stations; Al Amrat, Bowsher, Izki, and Liwa. Prediction
intervals for the lower and upper limit functions are given in blue and red colors, respectively.
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existing traditional methods. FDA tools are one of the frequently used methods for visualizing
and analyzing such data. Particularly, the FLMs have been one of the most commonly used
techniques to explore the association between the functional response and predictor variables.
Although the functional extensions of many traditional methods are available in the literature,
the functional forms of the interval-valued data regression models have not yet been studied.
In this study, we present the functional forms of some well-known interval-valued

data regression models and examine their prediction performances. The proposed meth-
ods are based on the function-on-function regression model, where both the response
and predictors are functions which is common in real-life situations. The finite sample
performance of the proposed interval-valued functional regression models is evaluated
via Monte Carlo simulations and an empirical data analysis. Also, we compare the finite
sample performance of the proposed methods with the traditional FLM. Our findings
show that the proposed regression models are superior to the traditional FLM when
predicting lower limit functions. Also, they produce competitive performance with FLM
when predicting upper limit functions. Moreover, the proposed functional MCM is used
to construct prediction intervals for both lower and upper limit functions of the
response variable. All the numerical analyses considered in this study have shown that
the functional MCM is generally capable of producing valid prediction intervals.
For future studies, the followings may be considered; (1) throughout this study, only the

function-on-function regression is considered, but the proposed methods can also be
extended to other functional regression models such as scalar-on-function and function-on-
scalar, (2) we consider only the B-spline basis function to convert discretely observed data to
functional form, other basis functions, such as Fourier, wavelet, and radial basis functions
may also be considered, and (3) the model parameters of the proposed interval-valued func-
tional regression models are estimated using the ML method, other estimation methods,
such as partial least squares and principal component regression, may also be used.
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