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Abstract
Behavioral variant frontotemporal dementia (bvFTD) has been predominantly considered as a fronto-

temporal cortical disease, with limited direct investigation of frontal–subcortical connections. We aim

to characterize the grey and white matter components of frontal–thalamic and frontal–striatal circuits

in bvFTD. Twenty-four patients with bvFTD and 24 healthy controls underwent morphological and

diffusion imaging. Subcortical structures were manually segmented according to published protocols.

Probabilistic pathways were reconstructed separately from the dorsolateral, orbitofrontal and medial

prefrontal cortex to the striatum and thalamus. Patients with bvFTD had smaller cortical and subcorti-

cal volumes, lower fractional anisotropy, and higher mean diffusivity metrics, which is consistent with

disruptions in frontal–striatal–thalamic pathways. Unexpectedly, regional volumes of the striatum and

thalamus connected to the medial prefrontal cortex were significantly larger in bvFTD (by 135% in

the striatum, p5 .032, and 217% in the thalamus, p5 .004), despite smaller dorsolateral prefrontal

cortex connected regional volumes (by 67% in the striatum, p5 .002, and 65% in the thalamus,

p5 .020), and inconsistent changes in orbitofrontal cortex connected regions. These unanticipated

findings may represent compensatory or maladaptive remodeling in bvFTD networks. Comparisons

are made to other neuropsychiatric disorders suggesting a common mechanism of changes in frontal–

subcortical networks; however, longitudinal studies are necessary to test this hypothesis.
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Stat rosa pristina nomine, nomina nuda tenemus –

“Yesterday’s rose stands only in its name, we hold only

empty names”

The Name of the Rose - Umberto Eco

1 | INTRODUCTION

Behavioral variant frontotemporal dementia (bvFTD) is the most com-

mon frontotemporal dementia subtype, with deficits in executive func-

tioning, social cognition, and alterations to behavior (Piguet,

Hornberger, Mioshi, & Hodges, 2011). Although frontal and temporal

cortical lobar degeneration is a defining and diagnostic criterion of the

disease (Rascovsky et al., 2011), atrophy of the caudate, putamen, and

thalamus is also well described (Chow et al., 2008; Garibotto et al.,

2011; Gordon, Rohrer, & Fox, 2016; Halabi et al., 2013; Landin-

Romero et al., 2016; Looi et al., 2008, 2009; O’Callaghan, Bertoux, &

Hornberger, 2014). Given this degeneration across nodes in frontal-

striatal-thalamic circuits (Alexander, DeLong, & Strick, 1986), bvFTD

has progressively been recast as a disorder of cortical–subcortical cir-

cuits, rather than isolated cortical disease alone (Bertoux, O’Callaghan,

Flanagan, Hodges, & Hornberger, 2015; Looi et al., 2012; Schroeter,

Raczka, Neumann, & von Cramon, 2008; Schroeter et al., 2014; Seeley,

Crawford, Zhou, Miller, & Greicius, 2009).

Frontal–striatal and frontal–thalamic circuits are well described in

healthy populations and have associations with behavioral alterations

in disease. Frontal–striatal tracts have been segmented with both struc-

tural (Draganski et al., 2008) and functional (Choi, Yeo, & Buckner,

2012) imaging, with separate divisions of these tracts demonstrated

depending on their cortical origin. Striatal and thalamic terminations of

these tracts can be mapped in a topographic manner in both exclusive

(Draganski et al., 2008) and overlapping (Jarbo & Verstynen, 2015)

regions. Similarly, frontal–thalamic tracts can also be divided based on

cortical origin (Klein et al., 2010) and terminate in different regions of

the thalamus (Behrens et al., 2003; Jang & Yeo, 2014). These frontal

subcortical structural connections are implicated in varied neurodege-

nerative disease processes. Although the frontal cortex is implicated in

execution of goal-directed behavior (Piray, Toni, & Cools, 2016), break-

down in either subcortical nodes or the frontal–subcortical connections

is associated with similar behavioral deficits (Bhatia & Marsden, 1994).

Thus, our interest expands to the different subdivisions of frontal–striatal

and frontal–thalamic pathways.

Despite the established cortical effects of bvFTD and the known

topographical correspondence between cortical and subcortical struc-

tures, the cortical–subcortical connectivity in bvFTD is incompletely

investigated. A voxel based morphometry study examined indirect cort-

ical–striatal connectivity and found correlated atrophy between frontal

regions (ventromedial and dorsolateral prefrontal cortex) and con-

nected striatal regions (Bertoux et al., 2015) using atlas-based divisions

of the striatum. However, this atlas-based measure may not distinguish

between different frontal–striatal divisions. Similarly, our previous stria-

tal morphology analysis in bvFTD demonstrated striatal atrophy pre-

dominantly in anterior regions of the caudate (Macfarlane et al., 2015).

These regions connect to the prefrontal cortex, and thus also provide

indirect structural evidence of localized node atrophy in frontal–striatal

pathways. Nevertheless, direct examination of structural white matter

pathways between the frontal cortex and striatum in bvFTD is lacking.

The white matter microstructure of frontal–thalamic connections has

been explored with diffusion tensor imaging (DTI), with bvFTD patients

demonstrating lower fractional anisotropy (FA), and higher axial diffu-

sivity (AD), radial diffusivity (RD) and mean diffusivity (MD) (Daianu

et al., 2016; Mahoney et al., 2014; M€oller et al., 2015; Zhang et al.,

2009). However, quantification of the metrics across different divisions

of the anterior thalamic radiation has not been explored. Lastly, evi-

dence from functional imaging in bvFTD is conflicting. Zhou et al.

(2010) found increased default mode network activity, yet decreased

Salience Network activation between the cortex, putamen, and thala-

mus. More recently Farb et al. (2013) reported increased functional

activity between the medial prefrontal cortex and the striatum. In sum-

mary, there is fragmentary evidence of altered frontal–striatal and fron-

tal–thalamic pathway integrity and functioning in bvFTD, although the

integrity of these pathways has not been sufficiently investigated.

The aim of this study is to comprehensively describe the structural

frontal–striatal and frontal–thalamic pathways in bvFTD at an individ-

ual level by using probabilistic tractography. We hypothesize that

bvFTD patients, compared to controls, will (a) have impaired white mat-

ter microstructure, as measured via diffusion tensor imaging metrics, in

frontal–striatal and frontal–thalamic pathways; (b) exhibit atrophy of

regions of the striatum and thalamus which connect to prefrontal areas;

and (c) these imaging findings are associated with clinical and behav-

ioral measures.

2 | MATERIAL AND METHODS

2.1 | Participants

Participants were from the Lund Prospective Frontotemporal Dementia

Study, a longitudinal study of patients with any of the frontotemporal

dementia spectrum disorders. We used data collected at the baseline

for this study. Clinical work up included a clinical examination, neuro-

psychological examination, structured caregiver interview (see below),

MRI, and cerebrospinal fluid analysis. Behavioral variant frontotemporal

lobe degeneration consensus criteria (Rascovsky et al., 2011) were

used for diagnosis at diagnostic conference (six definitive, 18 probable).

Cerebrospinal fluid biomarkers consistent with Alzheimer’s disease

(Blennow, Hampel, Weiner, & Zetterberg, 2010) were used as exclusion

criteria. Healthy controls underwent the same procedures as the

patients, and showed no signs of neurological or psychiatric conditions.

Participants included some from previously published works on this

cohort (Macfarlane et al., 2015; Santillo et al., 2013, 2016) where valid

MRI data was available.

Informed consent was obtained from participants. However, if any

doubt over capacity for consent was present, then consent was also

sought from the participant’s primary caregiver. In all cases, participants

could cease participation at any time. Ethics approval was granted by

Regional Ethical Review Board, Lund, Sweden. Ethics approval for the
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analysis via the Australian National University Medical School was

granted by the Australian National University Human Research Ethics

Committee.

2.2 | Behavioral assessment

Disease severity was rated by an experienced clinician based on an

interview with the patients’ primary caregiver using the Frontotemporal

Lobar Degeneration modified Clinical Dementia Rating Scale (Knopman

et al., 2008), which assess cognitive and global functioning, including

behavior, and language. We utilized the sum of boxes (FTLD-CDR-SB)

score as a continuous variable in analyses. Additionally, behavioral dis-

turbance was assessed in the same interview using the Frontal Behav-

ioral Inventory (FBI; Kertesz, Davidson, & Fox, 1997), a 24-item rating

scale capturing a broad range of prefrontal syndrome behavior, the

total sum of which was used in this study.

2.3 | Image acquisition

A Philips Achieva 3 T scanner with an eight-channel head coil was used

for all acquisitions. T1 images used an MPRAGE sequence with

TR58.3 ms, TE 3.845ms, FOV5256 3 256 3 175 mm3 and 1 mm3

isotropic voxels. FLAIR sequences were utilized to examine for cere-

brovascular lesions by a senior neuroradiologist. DTI sequences were

obtained in transverse slice orientation using a single-shot echo planar

imaging sequence (TR57,881 ms, TE590 ms) with 48 encoding direc-

tions (one b50 and 48 b5800 s/mm2 volumes) using 2 mm isotropic

voxels in 50 slices.

2.4 | Image processing

T1 scans were parcellated using Freesurfer 5.3 software (http://surfer.

nmr.mgh.harvard.edu). Reconstructions were examined and manually

corrected by DJ as per the troubleshooting guide, predominantly for

excess inclusion of grey matter in dural sinuses. Cortical masks were

extracted based on parcellation regions of interest (ROI) using the Desi-

kan–Killiany atlas (Desikan et al., 2006) and are displayed in Figure 1.

We utilized ROIs as defined by Petrides and Pandya (2002) and Dra-

ganski et al. (2008) by extracting the DLPFC (from the rostral middle

frontal ROI), MPFC (combined rostral anterior cingulate and medial

orbitofrontal ROIs), and OFC (lateral orbital frontal ROI). The estimated

total intracranial volume measure was utilized to normalize for head

size.

Striatal and thalamic volumes were manually defined using estab-

lished protocols with excellent reliability. The caudate (Looi et al.,

2008) and putamen (Looi et al., 2009) were segmented separately in

ITK-SNAP software (Yushkevich et al., 2006). We used the combined

segmentation of the caudate and putamen for subsequent analyses as

their connectivity and function are closely related (Draganski et al.,

2008). Thalamic segmentations were performed using ANALYZE soft-

ware (Mayo Biomedical Imaging Resource, Rochester, MN) using T1

sequences (and inversed T1 images) to delineate the boundaries (Power

et al., 2015).

Volume registration was performed to correct for eddy current dis-

tortion using FSL eddy_correct script (Smith et al., 2004; Woolrich

et al., 2009), and b vectors rotated accordingly (Leemans & Jones,

2009). Diffusion maps (FA, AD, RD, and MD) were created with FSL

DTIFIT package.

Nonlinear registration was performed between structural, diffu-

sion, and standard space images using FSL FNIRT tool (Andersson, Jen-

kinson, & Smith, 2012). The T1 images were registered to diffusion

images, acquired with b50 s/mm2, using nonlinear registration to

account for distortions in the echo planar imaging volumes. Addition-

ally, T1 images were registered to standard MNI152 images also using

nonlinear registration to account for increased ventricle size in bvFTD

participants. These transforms were inverted and concatenated to

transform images between spaces. Segmentations transformed to MNI

space were manually checked for accuracy.

2.5 | Tractography

Probabilistic tractography was performed within each participant’s dif-

fusion space. For each target structure (striatum and thalamus), we

FIGURE 1 Cortical regions extracted from Freesurfer ROIs for a sample participant’s left hemisphere, showing lateral (left), inferior
(middle), and medial (right) views. Regions selected are the dorsolateral prefrontal cortex (yellow), medial prefrontal cortex (red), and
orbitofrontal cortex (orange) [Color figure can be viewed at wileyonlinelibrary.com]
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generated streamline probability distribution maps from each frontal

region (DLPFC, MPFC, and OFC). In each map the frontal region was

specified as seed, striatum or thalamus as target, and contralateral

white matter as exclusion mask. Frontal regions and subcortical seg-

mentations were obtained by transforming them from standard and

structural space, respectively, into diffusion space using previously

generated registrations.

For computation of DTI metrics of pathways, we adapted the

methodology of Nakamae et al. (2014). Briefly, probabilistic tractogra-

phy was performed using BedpostX (Jbabdi, Woolrich, Andersson, &

Behrens, 2007) with default parameters. Pathway probability maps

were normalized for seed size by dividing the probability maps by the

total number of successfully generated streamlines (the “waytotal”),

and spurious connections were removed by thresholding the resulting

maps by 10%. Thresholded probability maps were then binarized and

overlaid on DTI metric maps (FA, AD, RD, and MD) from which average

values were extracted.

For analysis of subcortical regional volumes, we used diffusion tar-

get classification (as in Behrens et al., 2003). That is, probabilistic trac-

tography was carried out between frontal seeds and striatal and

thalamic targets, separately. This allowed us to determine which areas

within the striatum and thalamus were predominantly connected to

which frontal area. To remove false-positives, we thresholded the con-

nectivity maps by the top 10% (as in Bohanna, Georgiou-Karistianis, &

Egan, 2011) before calculating the final volume. We also conducted

analyses with threshold levels of 5% and 20% with similar findings.

2.6 | Statistical analysis

Statistical analyses were performed in SPSS 23.0 (IBM Corp. Released

2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY:

IBM Corp.). Demographic measures were compared with an independ-

ent t test, Mann–Whitney U test, or Chi-squared tests as appropriate.

Mixed models were utilized for all subsequent analyses, with hemi-

sphere treated as a repeated factor to examine for structural asymme-

try. In all analyses, age, gender, and years of education were

standardized and included as covariates. For volumetric analyses, we

utilized estimated total intracranial volume as a covariate to normalize

for brain volume.

Assumptions of normality were upheld for all diffusion indices,

DLPFC-striatum and DLPFC-thalamus connected volumes. Other vol-

umes were significantly (Kolmogorov–Smirnov test <0.05) right

skewed. Thus, we utilized linear mixed models for normally distributed

variables and generalized mixed models with a Gamma distribution and

log-linked function for the remainder. Models were specified with ran-

dom intercepts. Hemisphere was included as a repeated factor consid-

ering possible lateralization in bvFTD (Gordon et al., 2016) and to

reduce the number of comparisons, thus allowing us to test for abnor-

mal lateralization utilizing a group-by-hemisphere interaction term. We

calculated an effect size measure comparable to Cohen’s d using the

difference between estimated marginal means proportional to the esti-

mated standard deviation of control participants.

DTI metrics and volumes were compared between groups with

statistical significance considered when p< .05. For bvFTD patients

only, we specified models which predicted DTI metrics or volumes

based on FTLD-CDR-SB measure and FBI total score predictors using

mixed models. Due to the number of comparisons with these behav-

ioral tests, we used a more stringent p value of .004 (.05 divided by

four different measures for three different pathways).

3 | RESULTS

3.1 | Participants

A total of 54 participants were recruited for this study; however, six

patients were excluded (three due to no DTI data; one each due to

excessive motion during scanning, severe echo planar imaging distor-

tions, and inadvertent exclusion of a portion of the brain from the T1W

volume). One patient had a small lacunar infarct in the right putamen;

TABLE 1 Participant characteristics

Demographics Control bvFTD p value

n 24 24

Male 13 11 .564

M SD M SD

Age 66.0 11.6 68.6 8.5 .017

Education (years) 11.6 2.7 9.6 2.6 .009

eTICV (voxels 3104) 15.1 1.4 14.5 9.9 .168

MMSE 29.5 0.5 23.5 4.6 <.001

FTLD-CDR-SB 8.8 3.7

FBI Total 26.8 8.3

Note. Abbreviations: bvFTD5behavioral variant frontotemporal demen-
tia; eTICV5 estimated total intracranial volume; FBI5 frontal behavior
inventory total score; FTLD-CDR-SB5 frontotemporal lobar degenera-
tion modified clinical dementia rating scale sum of boxes; MMSE5Mini-
Mental State Examination.
Significant statistical difference was assessed using Chi-squared test for
gender and independent t tests for other variables.

TABLE 2 Group differences in number of voxels between frontal
and subcortical volumes

Control bvFTD

Structure M SD M SD p value Effect size

DLPFC 14,054 1,521 11,759 1,487 <.001 1.53

MPFC 3,359 407 2,786 398 <.001 1.42

OFC 6,508 837 5,380 819 <.001 1.36

Striatum 5,286 655 5,201 652 <.001 0.13

Thalamus 4,555 612 4,138 586 .029 0.70

Note. Abbreviations: bvFTD5 behavioral variant frontotemporal demen-
tia; DLPFC5dorsolateral prefrontal cortex; MPFC5medial prefrontal
cortex; OFC5 orbitofrontal cortex.
Estimated marginal mean voxels and significance test from separate lin-
ear mixed models, controlling for hemisphere, age, gender, education,
and intracranial volume.
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however, given the aggregation of striatal structures, this participant

was included in subsequent analyses. Demographic details of included

participants are provided in Table 1.

3.2 | Comparison of cortical and subcortical volumes

Smaller volumes were observed in patients compared with controls for

both cortical regions and subcortical structures (Table 2). There were

no significant group-by-hemisphere interaction effects.

3.3 | Frontal–striatal and frontal–thalamic connectivity

The frontal–striatal and frontal–thalamic streamlines are visualized in

Figure 2. There was a clear inferior–superior gradient between tracts,

with tracts from the OFC running lower than MPFC tracts, MPFC

tracts sitting more medially, and DLPFC tracts taking a more superior

and lateral course. Frontal–striatal streamlines were successfully gener-

ated for all participants and regions. Frontal–thalamic tracts streamlines

could not be generated for from the MPFC in the right hemisphere in

one bvFTD patient, and five tracts from the OFC (two each from

bvFTD patients in each hemisphere, one in a control participant’s left

hemisphere).

Diffusion tensor imaging metrics between tracts generally differed

between groups for both frontal–striatal tracts (Table 3) and frontal–

thalamic tracts (Table 4). Decreased FA, and increased AD, RD, and

MD were noted across all tracts and indices. No group-by-hemisphere

interactions were statistically significant.

3.4 | Striatal and thalamic connectivity parcellation

and volumetrics

Thalamic and striatal connectivity maps in patients and controls are dis-

played in Figure 3 and volumetrics are compared between groups in

Table 5. The size of DLPFC connected regions decreased in bvFTD

while MPFC connected regions increased in volume in bvFTD patients

compared to controls. OFC connection volumes were significantly

decreased in the striatum and nonstatistically significantly increased in

the thalamus. There was no significant group-by-hemisphere effect.

3.5 | Associations with behavioral measures

There were few significant associations of behavioral measures with

prefrontal areas, subcortical structures, diffusion indices or regional vol-

umes. All results are presented in Supporting Information, Table 1. Sig-

nificant findings at a revised statistical threshold of p< .004 were

present for the total OFC volume with FTLD-CDR-SB scale (unstandar-

dized B52179.472, p5 .003). Significant diffusion associations were

present between the FDR-CDR sum of boxes scale and DLPFC-striatal

FIGURE 2

FIGURE 2 Frontal–striatal (top three rows) and frontal–thalamic
(bottom three rows) pathways in controls (left column) and bvFTD
participants (right column). Horizontal view of pathways aligned to
MNI152 space and superimposed on standard MNI152 brain.
Colors reflect extent of overlap between participants, with red
indicating at least 50% overlap and yellow indicating 100%.
bvFTD5 behavioral variant frontotemporal dementia;
DLPFC5dorsolateral prefrontal cortex; MPFC5medial
prefrontal cortex; OFC5orbitofrontal cortex [Color figure can be
viewed at wileyonlinelibrary.com]
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FA (unstandardized coefficient 20.028, p5 .001) and AD (unstandar-

dized coefficient 0.076, p5 .004), and MPFC-striatal AD, RD, and MD

(unstandardized coefficients, respectively, 0.111, 0.106, and 0.108,

p5 .001 for all tests)

4 | DISCUSSION

In this study, we utilized individual probabilistic pathway reconstruc-

tions in a novel demonstration of altered frontal–striatal and frontal–

thalamic connectivity in bvFTD. The key findings are the alteration of

the frontal–striatal and frontal–thalamic white matter in bvFTD, and

despite this, there is a selective increase of the MPFC connected

regions in the striatum and thalamus. Our findings not only broaden

the conceptual understanding of the specific neuro-pathophysiology of

bvFTD, but may also illustrate neural circuit phenomena that may be

common to frontal network system disorders.

We have demonstrated substantively altered white matter micro-

structure, as measured via diffusion tensor imaging metrics, for most

divisions within the frontal–striatal and frontal–thalamic pathways.

Fibers from the three frontal regions pass either directly to the striatum

or within the anterior thalamic radiation to the thalamus. As a whole,

altered white matter microstructure of the anterior thalamic radiation

has been found in previous work (Daianu et al., 2016; Mahoney et al.,

2014; M€oller et al., 2015; Zhang et al., 2009). Moreover, we found that

altered white matter microstructure, as measured via DTI metrics, was

found in a similar magnitude and across all anatomical divisions in fron-

tal–striatal projections, which to our knowledge, has yet to be empiri-

cally demonstrated in bvFTD. These frontal–striatal pathways involve

predominantly cortical efferent projections, as opposed to the mixed

cortical–thalamic efferent and afferent projections within the anterior

thalamic radiation. These findings may stem from direct neuropatholog-

ical afflictions of white matter, which are present in the dominant

bvFTD proteinopathies (i.e., tau and TDP-43) (Mackenzie & Neumann,

2016), or alternatively via direct and indirect deafferentation (i.e.,

downstream structural change in a brain region secondary to the inter-

ruption of afferent neuronal stimulation; Looi & Walterfang, 2013).

Regardless of the pathological mechanisms, these findings highlight the

importance of conceptualizing bvFTD as a dysfunction of cortical and

subcortical transmission, in contrast to the prevailing cortico-cortical

transmission focus.

Our gross volumetric findings reproduced the well-known atrophy

of prefrontal and subcortical volumes in bvFTD (Chow et al., 2008;

Garibotto et al., 2011; Gordon et al., 2016; Halabi et al., 2013; Landin-

Romero et al., 2016; Looi et al., 2008, 2009; O’Callaghan et al., 2014).

Our innovation is in demonstrating connectivity through the parcella-

tion of striatal and thalamic regions which connect to prefrontal regions

in bvFTD. As hypothesized, we demonstrate smaller DLPFC connected

regions in the striatum and thalamus, and smaller OFC connected

regions in the striatum only.

In contradistinction to the primarily atrophic changes, the regions

of the striatum and thalamus which connect to the medial prefrontal

cortex are significantly increased in size. This is despite a globalized

decrease in volume, largely similar in magnitude, across all prefrontal

and subcortical regions of interest in the bvFTD group (Table 2), and a

similar degree of affliction of tracts generated from these regions

(Tables 3 and 4). As explained more fully below, we chose to interpret

this as structural hyperconnectivity, either as a primary pathological

phenomenon, or more probably, as either compensatory or maladaptive

phenomenon.

TABLE 4 DTI metrics for frontal–thalamic pathways

Control bvFTD

Cortical seed M SD M SD p value Effect size

DLPFC

FA 0.41 0.03 0.36 0.03 <.001 1.53
AD 1.20 0.41 1.34 0.41 <.001 0.33
RD 0.64 0.24 0.79 0.24 <.001 0.61
MD 0.83 0.07 0.97 0.06 <.001 2.19

MPFC

FA 0.36 0.15 0.33 0.15 .002 0.20
AD 1.41 0.73 1.45 0.73 .369 0.06
RD 0.85 0.73 0.92 0.73 .119 0.09
MD 1.04 0.78 1.10 0.78 .180 0.07

OFC

FA 0.39 0.03 0.33 0.03 <.001 1.60
AD 1.31 0.58 1.46 0.58 <.005 0.25
RD 0.76 0.45 0.93 0.45 <.001 0.38
MD 0.94 0.33 1.10 0.34 <.001 0.48

Note. Abbreviations: AD5 apparent diffusivity; bvFTD5behavioral vari-
ant frontotemporal dementia; DLPFC5dorsolateral prefrontal cortex;
FA5 fractional anisotropy; MD5mean diffusivity; MPFC5medial pre-
frontal cortex; OFC5 orbitofrontal cortex; RD5 radial diffusivity.
Estimated marginal mean DTI metrics (AD, RD, and MD all 31023) and
significance tests from separate linear mixed models, controlling for
hemisphere, age, gender, and education.

TABLE 3 DTI metrics for frontal–striatal pathways

Control bvFTD

Cortical seed M SD M SD p value Effect size

DLPFC

FA 0.36 0.17 0.29 0.17 <.001 0.38
AD 1.19 0.83 1.34 0.08 <.001 0.27
RD 0.69 0.08 0.88 0.08 <.001 2.25
MD 0.86 0.08 1.03 0.08 <.001 2.13

MPFC

FA 0.27 0.03 0.24 0.03 <.001 1.09
AD 1.29 0.69 1.40 0.69 .008 0.16
RD 0.89 0.50 1.01 0.50 .002 0.24
MD 1.03 1.24 1.14 1.24 .003 0.09

OFC

FA 0.34 0.17 0.29 0.17 <.001 0.31
AD 1.21 0.08 1.31 0.07 <.001 1.37
RD 0.73 0.43 0.87 0.43 <.001 0.33
MD 0.89 0.07 1.10 0.07 <.001 2.89

Note. Abbreviations: AD5 apparent diffusivity; bvFTD5 behavioral vari-
ant frontotemporal dementia; DLPFC5 dorsolateral prefrontal cortex;
FA5 fractional anisotropy; MD5mean diffusivity; MPFC5medial pre-
frontal cortex; OFC5orbitofrontal cortex; RD5 radial diffusivity.
Estimated marginal mean DTI metrics (AD, RD, and MD all 31023) and
significance tests from separate linear mixed models, controlling for
hemisphere, age, gender, and education.
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Our novel finding of increased volume in MPFC connected regions

requires consideration of possible confounding factors. The recurrent

frontal–striatal–thalamic–cortical circuitry is a structurally complex seg-

regated parallel system which limits the extent in which it can be

imaged in its full. The DLPFC pathways predominantly aggregate in the

Muratoff bundle to the caudate, whereas the OFC and MPFC path-

ways predominantly traverse the external capsule to the putamen

(Forkel et al., 2014; Schmahmann & Pandya, 2009). This corresponds

with the pathways seen in Figure 2. For the frontal–thalamic connec-

tions we used, these proceed via the anterior thalamic radiation and

our divisions match those previously published (Jang & Yeo, 2014).

Thus, on visual inspection, these pathways are correctly specified.

Moreover, our frontal connectivity-based parcellation of striatal and

thalamic subregions is generally consistent with previous studies for

both structures (Behrens et al., 2003; Draganski et al., 2008; Tziortzi

et al., 2013), thus providing validation to our tractography methodol-

ogy. Moreover, obtained DTI metrics are comparable to frontal proba-

bilistic tractography in other conditions (Nakamae et al., 2014).

Nevertheless, it should be noted that our parcellations in Figure 3 are

not identical to previous studies due to the cortical regions (i.e., only

the DLPFC, MPC, and OFC) we chose to utilize for this study. Thus,

sensory, motor, and visual cortical regions are missing when compared

to more comprehensive cortical parcellation schemes (Behrens et al.,

2003; Draganski et al., 2008).

The other potential confounding factor for increased MFPC vol-

ume is the use of probabilistic tractography based on streamline propa-

gation and diffusion tensor imaging (Jones & Cercignani, 2010).

Increased volume in downstream regions may be attributed to

increased streamline generation; however, we note that all frontal areas

had a decrease in volume of equivalent magnitude in bvFTD (Table 2),

thus leading to fewer streamline generation for all frontal regions.

Nevertheless, we normalized all tracts by streamline counts. Addition-

ally, streamline propagation may be paradoxically increased when these

crossing fibers degenerate. However, all frontal–striatal and frontal–

thalamic tracts course approximately orthogonally to the corpus cal-

losum, the largest perpendicular interhemispheric fiber bundle. More-

over, change in the DTI metrics seen does not necessarily imply a

larger reduction of crossing fibers in the MPFC generated tracts (Jones

& Cercignani, 2010), as seen in Tables 2 and 3. Last, tract dispersion

from pathway degeneration may explain our paradoxical findings, how-

ever since the rise in isotropy (as measures by RD and MD metrics) is

larger in effect for DLPFC and OFC tracts rather than MPFC tracts,

this is less likely. To confirm this, we would recommend future research

employ specific measures of tract dispersion such as neurite orientation

dispersion and density index (Zhang, Schneider, Wheeler-Kingshott, &

Alexander, 2012) to characterize tracts further. Considered together,

the isolated effect of increased volume of the MPFC connections, rela-

tively lower isotropy of MPFC tracts, and the duplication of this effect

in both the striatum and thalamus, suggests a reliable finding.

There is limited evidence of increased MPFC structural connec-

tivity in other bvFTD literature. Our previous research in striatal mor-

phology found paradoxical inflation of the head of the caudate in

bvFTD patients (Macfarlane et al., 2015), although this was not

observed in the anterior regions of the putamen. A voxel based mor-

phometric analysis demonstrated opposite findings to our results,

instead showing a positive correlation between atrophy of the ventro-

median prefrontal cortex and connected striatal regions (Bertoux et al.,

TABLE 5 Volumes (voxels) of subcortical regions with unique con-
nections to frontal regions

Control bvFTD

Structure M SD M SD p value Effect size

Striatum

DLPFC 482 167 322 162 .002 0.961
MPFC 141 64 191 83 .032 0.785
OFC 195 157 117 88 .036 0.498

Thalamus

DLPFC 391 191 255 181 .020 0.712
MPFC 41 34 89 73 .004 1.400
OFC 43 64 45 69 .927 0.031

Note. Abbreviations: bvFTD5 behavioral variant frontotemporal demen-
tia; DLPFC5dorsolateral prefrontal cortex; MPFC5medial prefrontal
cortex; OFC5 orbitofrontal cortex.
Estimated marginal mean voxels and significance test from separate
linear mixed models, controlling for hemisphere, age, gender, education,
and intracranial volume.
Note that the relatively large SD of the MPFC and OFC tracts reflects
the positively skewed distribution, for which a Gamma-log link function
was used.

FIGURE 3 Parcellation of striatal and thalamic regions which
connect to prefrontal seed regions, aligned to MNI152 space and
superimposed on standard MNI152 brain. Top row, control
participants; bottom row bvFTD participants; left column, superior
views; right column, inferior views. Colors indicate cortical origin of
streamlines as in Figure 1 (yellow, DLPFC; red, MPFC; orange,
OFC). bvFTD5 behavioral variant frontotemporal dementia.
DLPFC5 dorsolateral prefrontal cortex. MPFC5medial prefrontal
cortex. OFC5orbitofrontal cortex [Color figure can be viewed at
wileyonlinelibrary.com]
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2015). However, the Bertoux et al. (2015) study was based upon atlas-

based segmentation of the striatum and voxel-based analysis, which, in

our view, does not account for overlapping regions of connectivity and

may have difficulty localizing finer details.

Findings from functional imaging provide support for our results

and our interpretation of selective structural hyperconnectivity. Poten-

tially congruent with our findings of selectively increased MPFC con-

nectivity, there has been demonstration of increased functional activity

of the default mode network in parallel with decreased salience net-

work activity in bvFTD (Zhou et al., 2010). Given that the default mode

network is characteristically anchored in the rostral anterior cingulum/

ventral-medial prefrontal cortex, which is included in our MPFC region

(Greicius, Krasnow, Reiss, & Menon, 2003), this correlates with our sug-

gestion of increased structural connectivity between MPFC and sub-

cortical structures. Moreover, despite expected reductions in salience

network connectivity in bvFTD, Farb et al. (2013) noted MPFC func-

tional hyperconnectivity, which was additionally related to apathy and

disinhibition.

Our findings of increased target area volume of the MPFC connec-

tions require some consideration of possible underlying cellular

changes. In both the basal ganglia and thalamus, cortical representation

zones are not clear cut but overlap with neighboring ones (Draganski

et al., 2008), which provides a foundation for an expansion of apparent

connected volume without resorting to an increased number of axons.

Instead, most likely phenomena are increased myelination and/or axo-

nal remodeling/branching of existing neighboring connections, which

are plasticity phenomena present in the adult brain know to influence

DTI parameters (Zatorre, Fields, & Johansen-Berg, 2012). We propose

that the observed increase in MPFC connectivity to striatal and tha-

lamic regions provides structural evidence of this functional

hyperconnectivity.

Our findings may shed light on, and be informed by, conditions

which have common themes of behavioral dysregulation. Evidence

stems from conditions involving hyperconnective MPFC and/or corre-

sponding nodes in subcortical networks, implied either by increased

regional size or increased functional connectivity. Structurally, in Par-

kinson’s disease with impulse control disorders, Tessitore et al. (2016)

found increased medial prefrontal cortex thickness compared to

patients without impulse control disorders. Repetitive behaviors were

associated with increased caudate size in persons with autism (Hol-

lander et al., 2005). Furthermore, increased activity in “direct” frontal–

striatal–thalamic pathways are noted in obsessive compulsive disorder

(Pauls, Abramovitch, Rauch, & Geller, 2014) and unmedicated trichotil-

lomania (Chamberlain et al., 2008). Last, in disorders of addiction, over-

activity of the limbic cortical–subcortical loop is thought to be

responsible for the compulsivity of this disorder (Volkow & Morales,

2015). In summary, selective hyperfunctioning of frontal circuits are

likely involved in multiple pathophysiologic processes which result in

behavioral dysregulation (Peters, Dunlop, & Downar, 2016), and partic-

ularly compulsive behaviors (Fineberg et al., 2010); these behaviors are

signature clinical features of bvFTD.

Despite the findings of consistently altered diffusion metrics across

tracts, reduced DLPFC connected region size, and increased MPFC

connected region size, there were few significant correlations observed

with behavioral measures. No clear-cut correlation pattern emerged,

which may due to our divisions of cortical and subcortical regions being

too specific to capture the more comprehensive FBI scale. Further-

more, from a connectivity perspective, directionality of thalamic–corti-

cal and cortical–thalamic tracts cannot be separated by conventional

DTI imaging, and so may have confounded these correlations. Never-

theless, gross severity as measured by the FTLD-CDR-SB was signifi-

cantly associated with multiple MPFC–striatal tract diffusion metrics,

possibly highlighting the importance for this axis in the disease process.

A limitation of our current approach is the a priori neuroanatomical

and functional tripartite division of the frontal–striatal–thalamic circuits

in DLPFC, MPFC, and OFC based projections. This is reasonable since

this division is utilized in previous studies investigating the striatum,

globus pallidus, thalamus, and in tracts in-between (Behrens et al.,

2003; Bertoux et al., 2015; Draganski et al., 2008). Furthermore, we

were not able to correct for echo planar imaging distortions, since at

the time of study design additional sequences necessary for correction

(Smith et al., 2004) were not obtained. Instead, we utilized nonlinear

transformations to reduce distortions, and in control participants our

pathways and subcortical classification are consistent with previous

work (e.g., frontal seed probabilistic tractography in Nakamae et al.,

2014) and existing atlases (Behrens et al., 2003; Draganski et al., 2008),

suggesting that this methodological limitation was minimized.

5 | CONCLUSION

In conclusion, we have demonstrated that frontal-striatal and frontal-

thalamic pathways demonstrate similar altered white matter micro-

structure, as measured via diffusion tensor imaging metrics, as other

previously investigated white matter tracts in bvFTD. Dorsolateral pre-

frontal cortex connected regions of the dorsal striatum are affected by

atrophy as hypothesized in accordance with neuro-pathophysiology

underpinned by frontal–striatal and frontal–thalamic circuits. Interest-

ingly, and contrary to our original hypotheses, the medial prefrontal

cortex connected regions of the dorsal striatum and thalamus demon-

strate significantly increased volume compared to healthy controls.

Such increased volumes of connectivity may potentially represent

structural evidence of compensatory or maladaptive changes in frontal

neuronal network disorder. More broadly, it may indicate deficient

top–down modulation, which is a phenomenon that appears common

to a range of impulse control disorders.
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