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Summary. Generalized linear latent variable models (GLLVMs) offer a general framework for flexibly analyzing data involv-
ing multiple responses. When fitting such models, two of the major challenges are selecting the order, that is, the number
of factors, and an appropriate structure for the loading matrix, typically a sparse structure. Motivated by the application
of GLLVMs to study marine species assemblages in the Southern Ocean, we propose the Ordered Factor LASSO or OFAL
penalty for order selection and achieving sparsity in GLLVMs. The OFAL penalty is the first penalty developed specifically
for order selection in latent variable models, and achieves this by using a hierarchically structured group LASSO type penalty
to shrink entire columns of the loading matrix to zero, while ensuring that non-zero loadings are concentrated on the lower-
order factors. Simultaneously, individual element sparsity is achieved through the use of an adaptive LASSO. In conjunction
with using an information criterion which promotes aggressive shrinkage, simulation shows that the OFAL penalty performs
strongly compared with standard methods and penalties for order selection, achieving sparsity, and prediction in GLLVMs.
Applying the OFAL penalty to the Southern Ocean marine species dataset suggests the available environmental predictors
explain roughly half of the total covariation between species, thus leading to a smaller number of latent variables and increased
sparsity in the loading matrix compared to a model without any covariates.
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1. Introduction

Generalized linear latent variable models (GLLVMs) offer a
general and attractive framework for model-based dimension
reduction and parsimoniously modeling correlations between
multiple responses (Skrondal and Rabe-Hesketh, 2004). This
article is motivated by the analysis of multivariate abun-
dance data in ecology, collected as part of the Southern ocean
continuous plankton recorder (SO-CPR) survey on marine
assemblages using vessels traversing the Indian sector of the
Southern Ocean (Hosie et al., 2003). We use GLLVMs to
study the correlations between species in the marine assem-
blage, for example, unobserved covariates, biotic interactions,
phylogeny, and to understand the influence of environmental
variables driving the species community while accounting for
these correlations (see Warton et al., 2015, 2016, for other
recent applications of GLLVMs in ecology).

One of the major challenges when fitting and performing
inference with GLLVMs is selecting the order of the model,
that is, the number of factors or latent variables. The num-
ber of latent variables is rarely known a priori, and instead
a data-driven approach is required to select the appropriate
order. A considerable amount of research has been devoted
to this problem, ranging from heuristic methods such as
selecting the minimum order which ensures the overall pro-
portion of variance explained by the factors exceeds some

arbitrary threshold (Smith et al., 2015), to statistically driven
approaches such as hypothesis tests and information criteria
(Bai and Ng, 2002). Approaches such as information criteria
are well-grounded, but a potential weakness is that they treat
the order selection problem as a discrete process: a range of
orders are tried and the one optimizing the proposed criterion
is selected. Like subset selection in regression then, this dis-
creteness may lead to high variability and instability in the
selection (Hastie et al., 2009).

Aside from selecting the order, sparsity in the loading
matrix is also often desirable for reasons of interpretation, for
example, if the factors are regarded as unobserved environ-
mental covariates, then each species may only be influenced
by a subset of these unobserved variables. Traditionally, spar-
sity in the loading matrix is obtained after estimation as part
of a two stage approach. The order of the GLLVM is first
selected and the associated, unstructured loading matrix is
estimated using maximum likelihood, for instance. Afterward,
some rotation is applied to the matrix to achieve structure
and sparsity, with the most popular being the varimax rota-
tion (Kaiser, 1958). In the context of maximum likelihood
estimation, which we focus on in this article, any orthogonal
rotation does not change the value of the likelihood for the fit-
ted model, and thus the choice of rotation matrix is, in many
ways, arbitrary. To overcome this problem, and motivated
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by the rising popularity of methods such as the least abso-
lute selection and shrinkage operator (LASSO, Tibshirani,
1996) for regression modeling, there has been growing inter-
est in using penalized likelihood methods to achieve sparsity
in the loading matrix (e.g., Choi et al., 2010; Hirose and
Konishi, 2012; Hirose and Yamamoto, 2014, 2015). Such an
approach is computationally and conceptually attractive: effi-
cient coordinate-wise optimization algorithms can be used to
construct the regularization path, while the inclusion of a
penalty leads to a single stage method where estimation and
sparsity is achieved simultaneously. Empirical studies have
also shown that penalized likelihood tends to outperform rota-
tion methods at recovering the true underlying structure of
the loading matrix (Hirose and Yamamoto, 2015). On the
other hand, while penalties has been proposed for achiev-
ing sparsity, none have explicitly addressed the critical issue
of order selection. That is, while some penalties can achieve
dimension selection as a by-product, for example, if all the
individual coefficients corresponding to a factor are shrunk to
zero (Choi et al., 2010), no penalty has been developed so far
which directly performs order selection in GLLVMs.

In this article, we propose the Ordered FActor LASSO
(OFAL) penalty for order selection and achieving sparsity in
GLLVMs. The proposed approach is novel in two important
ways: it is the first penalty developed specifically for order
selection in GLLVMs. This is achieved by utilizing a group
sparsity approach which encourages all the coefficients corre-
sponding to a particular latent variable to be shrunk to zero
simultaneously. To deal with the added complication of the
arbitrary ordering of the factors, the OFAL penalty further
imposes a hierarchical structure such that a particular col-
umn of the loading matrix is entirely shrunk to zero only if
all the so-called higher order loadings have already been set to
zero. This hierarchical structure in OFAL ensures the fitted
GLLVM is concentrated on the lower order loadings, that is,
first few factors. Similar to Choi et al. (2010) and Hirose and
Yamamoto (2015), we also incorporate a component in the
OFAL penalty which encourages individual coefficient spar-
sity in the loading matrix, in order to facilitate interpretation
and improve prediction. A second key contribution, motivated
by our application, is that we develop our penalty in a broader
context to cover non-normal responses. Previous research,
including those reviewed above, have exclusively assumed nor-
mally distributed responses. We first develop a result which
allows us to reparameterize the OFAL penalty into a elastic-
net type regularization problem (Zou and Hastie, 2005), thus
facilitating the use of coordinate-ascent algorithms. We then
combine this result with an Expectation–Maximization (EM)
algorithm (Rubin and Thayer, 1982), where for dealing with
overdispersed species counts assumed to be negative binomi-
ally distributed, we develop novel minorizing functions which
lead to closed form updates of the loading matrix and regres-
sion coefficients.

Regarding the critical choice of the tuning parameter in
the OFAL penalty, we propose using the Extended Regular-
ized Information Criterion (ERIC, Hui et al., 2015b), which
employs a dynamic model complexity penalty to promote
“aggressive” shrinkage of the latent variable coefficients. This
is appropriate because, for order selection, we anticipate most
of the elements of the loading matrix to be shrunk to zero and

thus a relatively high degree of sparsity. Simulation studies
show that the OFAL penalty, in conjunction with ERIC, per-
forms strongly compared with traditional methods and other
penalties for order selection, sparsity, and prediction. Apply-
ing the OFAL penalty to the SO-CPR survey reveals that
environmental predictors explain roughly half of the total
covariation between species (as based on the change in the
trace of estimated residual covariance matrix), thus leading
to a smaller number of latent variables and further spar-
sity in the loading matrix compared to a model without any
covariates.

To summarize, the main contributions of this article are as
follows: 1) we propose the first penalized likelihood method
for simultaneous order selection and achieving sparsity in
GLLVMs. The OFAL penalty utilizes both group and hier-
archical sparsity to shrink entire columns of the loading
matrix to zero, while concentrating the non-zero elements
on the lower order loadings; 2) we propose an estimation
procedure based on reformulating the OFAL penalty as a
elastic-net type regularization problem ; 3) we develop com-
putationally efficient updates for the specific case of negative
binomial responses; 4) simulations demonstrate that, when
combined with an aggressive information criterion for choos-
ing the tuning parameter, OFAL performs strongly compared
to other currently available methods for order selection and/or
achieving sparsity in GLLVMs. We provide R code for fitting
GLLVMs with the OFAL penalty in Web Appendix F.

2. Latent Variable Models

We first introduce the basic GLLVM before discussing the
specific application to overdispersed species counts in ecology.
Consider a set of n observational units {(xi, yi); i = 1, . . . , n},
where yi denotes a p-vector of responses and xi is a q-
vector of covariates, including an intercept term as its first
element. Conditional on a set of d � p latent variables ui,
the elements of yi, denoted here as yij, are assumed to be
independent observations from the exponential family of dis-
tributions with mean μij and dispersion parameter ψj. We
assume the p elements are of the same response type, although
the developments below can be straightforwardly extended to
the case of mixed responses, for example, combining multi-
variate abundance datasets involving presence–absence and
species counts. The mean is regressed against the covariates
and latent variables as g(μij) = ηij = x�

i βj + u�
i λj, where g(·)

is a known link function, βj is a q-vector of response-specific
coefficients associated with the covariates xi, and λj is a d-
vector of loadings for response j. The latent variables are
assumed to come from a multivariate standard normal dis-
tribution, ui ∼ Nd(0, Id), where the zero mean vector and
identity covariance matrix are used to fix the location and
scale of the model. Importantly, the latent variables induce
a correlation between the responses on the linear predic-
tor scale: if we let � = (λ1 . . . λp)

� denote the p × d loading
matrix and ηi = (ηi1, . . . , ηip), then Cov(ηi|xi) = ���. That is,
the covariance between responses is modeled parsimoniously
via rank reduction with rank d.

The standard factor analytic model is a special case
of GLLVMs where the responses are assumed to be nor-
mally distributed. We write yij = x�

i βj + u�
i λj + εij, where
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εi = (εi1, . . . , εip) ∼ Np(0, �) and � = Diag(ψ) with ψ =
(ψ1, . . . , ψp). It follows that Cov(yi|xi) = ��� + �.

Let θ = (β1, . . . , βp, vec(��), ψ) denote the vector of all
parameters. Based on the formulation above, the marginal
log-likelihood for the GLLVM is then given by �(θ) =∑n

i=1
log(

∫ ∏p

j=1
f (yij|ui, xi, θ)f (ui) dui). For estimation pur-

poses (see Section 4), we will also make use of the complete
log-likelihood, which, ignoring constants with respect to the
parameters, is given by

�c(θ) =
n∑

i=1

p∑
j=1

log f (yij|ui, xi, θ) +
n∑

i=1

log f (ui)

=
n∑

i=1

p∑
j=1

{
1

ψj

{
yijκij − b(κij)

} + c(yij, κij)

}

−1

2

n∑
i=1

u�
i ui, (1)

for known functions b(·) and c(·) and canonical parameter
κi, such that E(yij|ui, xi) = μij = b′(κij) and Var(yij|ui, xi) =
ψjb

′′(κij).

2.1. Multivariate Abundance Data

Due to most species being rarely observed, multivariate abun-
dance data in ecology are characterized by discrete responses
with lots of zeros. For example, the SO-CPR survey comprises
records of 27 marine species, with 16 of those species found
at less than 20% of the 54 sites. Let the n observational
units be the sites visited and the p responses correspond
to the species recorded. Also, let xi represent a vector of
environmental covariates which we want to perform inference
on while accounting for additional correlation between the
p species. To apply GLLVMs to multivariate abundance
data, we can adopt the general formulation in Section 2 with
species-specific regression coefficients βj for j = 1, . . . , p. Fur-
thermore, for the case of overdispersed counts in the SO-CPR
survey, we assume a negative binomial distribution with a
log link function, such that Var(yij|ui, xi) = μij + ψjμ

2
ij and

�c(θ) = ∑n

i=1

∑p

j=1
{yij log(ψjμij) − (yij + ψ−1

j ) log(1 + ψjμij)

+ log �(yij + ψ−1
j ) − log �(ψ−1

j )} − 2−1
∑n

i=1
u�

i ui, ignoring
constants, where log �(·) is the log-Gamma function and
μi = exp(ηi).

3. The Ordered Factor LASSO Penalty

For the developments below, we focus on the general form
of the GLLVM defined in Section 2. The extension to the
case of negative binomial responses is straightforward and
only requires additional tedious algebra. Let λjk denote ele-
ment (j, k) in the loading matrix �, which corresponds to
the coefficient relating response j = 1, . . . , p to latent variable
k = 1, . . . , d. To simultaneously select the dimension of the
model and achieve sparsity in the loading matrix, we propose
the following penalized likelihood approach.

Definition 1. Consider the latent variable model defined
in Section 2. Then for a single tuning parameter s > 0, the

Ordered FActor LASSO (OFAL) estimator is defined as

θ̂ = arg max
θ

�(θ) − ns

d∑
l=1

w1l

(
d∑

k=l

p∑
j=1

λ2
jk

)1/2

− ns

p∑
j=1

d∑
k=1

w2jk|λjk|.

where �(θ) is the marginal likelihood, with the corresponding
complete likelihood given by (1), and {w1l; l = 1, . . . , d} and
{w2jk; j = 1, . . . , p; k = 1, . . . , d} are two sets of positive adap-
tive weights constructed a priori.

The OFAL penalty is additive in design, and consists of two
components designed to achieve dimension and sparsity in the
loadings, respectively. Note these two goals can be achieved
using other types of penalty designs, for example, single bi-
level penalties (e.g., Huang et al., 2012; Hui et al., 2015a).
However, we choose to work with an additive structure and
two convex penalties as this lends itself to a computationally
efficient estimation algorithm; see Section 4.

The first component of the OFAL penalty aims to achieve
order selection by exploiting the group structure of the load-
ings in the columns in �. That is, by encouraging all the
coefficients in a particular column k of the loading matrix
to be shrunk to zero simultaneously, it amounts to remov-
ing factor k from the model. However, there is an additional
complication brought about by the fact that the GLLVM
is invariant with respect to the order of the columns in �

(and correspondingly, the order of the elements in uk). To
overcome this, the OFAL penalty imposes an additional hier-
archical structure which ensures that elements in column k of
� are simultaneously shrunk to zero only if all the elements
in columns k′ = k + 1, . . . , d, that is, the so-called higher order
loadings, are shrunk to zero as well. A simple illustration
of this can be seen if we consider the case of d = 2. Ignor-
ing the tuning parameter, the first component of OFAL is

given by w11

(∑p

j=1
λ2

j1 + λ2
j2

)1/2 + w12

(∑p

j=1
λ2

j2

)1/2
. From

this, we can see that either the second factor is removed from
the model, that is, λj2 = 0 for all j = 1, . . . , p , or both fac-
tors are removed from the model, that is, λj1 = λj2 = 0 for
all j = 1, . . . , p. That is, by design the penalty does not per-
mit the first factor to be removed while retaining the second
factor in the model. This hierarchical design of OFAL guar-
antees the resulting latent variable model is concentrated on
the first few or lower order loadings. For practical applica-
tions, we may regard d as the maximum number of latent
variables we want in the model, and set it to some suffi-
ciently large integer based on scientific and/or interpretation
grounds. The estimated GLLVM from Definition 1 will then
select d ′ ≤ d factors. For example, with the SO-CPR dataset
containing p = 27 species, it is believed that species responses
are heavily driven by the few available environmental predic-
tors, and so we expect d = 8 is more than sufficient to model
any residual covariation. We point out that choosing a very
high value of d can be problematic as the estimates from the
(close to) unpenalized GLLVM fit may be unstable due to
overfitting.
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The second component of the OFAL penalty applies a
weighted L1 norm on the loading matrix � in order to achieve
sparsity. Such individual coefficient sparsity has been pro-
posed for factor analysis before by Hirose and Yamamoto
(2015) among others, and reflects the idea that each response
may only be informed by a subset of latent factors, that is,
the true loading matrix is sparse. It is also an attractive way
to produce a unique solution in the model, as the L1 penalty
and hence θ̂ is not invariant under an orthogonal rotation of
the loadings (Choi et al., 2010).

The inclusion of adaptive weights w1l and w2jk serves two
main purposes. First, it allows us to employ only a single
tuning parameter in constructing the OFAL estimator, which
simplifies computation when building the regularization path
compared to other potential penalties that will require two or
more tuning parameters. That is, if weights are not included
(or equivalently w1l = w2jk = 1 for all j, k, l), then separate
tuning parameters will be required for the two component
penalties to ensure differential regularization (analogous to
the original elastic-net penalty, Zou and Hastie, 2005). Sec-
ond, and related to the first point, is that the inclusion
of adaptive weights facilitates order and sparsity selection
consistency, although we reserve any formal asymptotic devel-
opment for future research (although we expect the proofs
and results to be similar to Zou, 2006, for instance). In par-
ticular, we design the adaptive weights to exhibit differing
asymptotic behavior for truly zero versus non-zero loadings
and loading elements; see Section 4 for further details on their
construction.

Along the same lines as above, we acknowledge that
it is possible to include an additional, “mixing” tun-
ing parameter in the OFAL penalty to balance the ratio
between the two penalty components. That is, analogous to
the implementation of the elastic-net in the glmnet pack-
age (Friedman et al., 2010), we can extend Definition 1

to be of the form nsα
∑d

l=1
w1l

(∑d

k=l

∑p

j=1
λ2

jk

)1/2

− ns(1 −
α)

∑p

j=1

∑d

k=1
w2jk|λjk| where α ∈ [0, 1]. Note α = 1 corre-

sponds then to pure order selection penalty, while α = 0
corresponds to an adaptive LASSO penalty. However, we
have chosen not to include α (or equivalently, fix α = 2−1)
for two reasons. First, similar to why adaptive weights are
included, the computational burden of having to perform a
two or higher dimensional grid search to find the optimal set
of tuning parameters may be impractical for some applica-
tions. Second, we point out that the α parameter has a specific
role in the elastic-net penalty, namely to balance out sparse
(LASSO) and non-sparse (ridge) penalties acting on the same
coefficient. By contrast, the OFAL penalty is an additive com-
bination of two sparse penalties which are acting on groups
of and individual coefficients, respectively. Therefore, there is
arguably less motivation for its inclusion.

4. Estimation

To facilitate estimation of latent variable models with the
OFAL penalty, we make use of the following result, whose
proof may be found in the Web Appendix A.

Lemma 1. The OFAL estimates given in Definition 1
can be obtained by solving the equivalent optimization

problem

(θ̂, τ̂) = arg max
θ,τ≥0

�(θ) − (ns)2

4

d∑
l=1

w1l

τl

d∑
k=l

p∑
j=1

λ2
jk

− ns

p∑
j=1

d∑
k=1

w2jk|λjk| −
d∑

l=1

w1lτl,

where τ = (τ1, . . . , τd). That is, if θ̂ is a local maximizer of
Definition 1 then there exists a local maximizer (θ̃, τ̃) of the
above such that θ̃ = θ̂. Similarly, if (θ̂, τ̂) is a local maximizer
of the above then θ̂ is also a local maximizer of Definition 1.

The above result reformulates OFAL into an elastic-net type
regularization problem, and means that conditional on τ, we
can employ coordinate-wise optimization to obtain sparse
loading estimates. Specifically, we combine Lemma 1 with an
Expectation–Maximization (EM) algorithm as follows. Define
the penalized complete log-likelihood as �c,pen(θ) = �c(θ) −
4−1(ns)2

∑d

l=1
τ−1
l w1l

∑d

k=l

∑p

j=1
λ2

jk − ns
∑p

j=1

∑d

k=1
w2jk|λjk|

− ∑d

l=1
w1lτl, where �c(θ) is given by equation (1). Note that

if we let νk = ∑k

l=1
w1lτ

−1
l , then we can rewrite the second

term in the above as 4−1(ns)2
∑d

k=1

∑p

j=1
νkλ

2
jk. This form

makes explicit the hierarchical nature of the penalty: the
quantities νk satisfy 0 < ν1 < ν2 . . . < νd , ensuring that the
higher order factors are penalized more heavily than their
lower order counterparts.

The proposed EM algorithm then involves iterating
between two steps until convergence, as summarized in Algo-
rithm 1. We provide details of the E- and M-steps in Web
Appendix B, focusing on negative binomial GLLVMs. Specif-
ically, to perform the E-step we use Monte-Carlo integration,
while in CM-steps 1 and 3, in order to overcome the non-linear
nature of �c(θ) with respect to the βj’s and λjk’s, respectively,
we propose minorizing functions which allow computation-
ally efficient, tractable updates based only on the posterior
expectation of relatively simple quantities.

We now discuss one approach to constructing the adaptive
weights w1l and w2jk. As discussed in Section 3, the weights
both help to simplify computation (we require only one tun-
ing parameter), and facilitate potential selection consistency
properties (the weights are designed to exhibit differing large
sample behavior for truly zero versus non-zero loadings).
Unlike standard adaptive lasso regression, it is not immedi-
ately obvious that we can build these weights based on the full
model with d candidate factors, since without any constraints
or penalization the loading matrix � is unidentifiable due
to rotational invariance. Therefore, weights constructed from
the estimated � may conflict with the hierarchical nature of
the OFAL penalty because the columns of � from the full
model are not ordered in any way, and so (for example) they
may be arranged such that the dense loadings are concen-
trated on the higher order columns instead of the lower order
columns. This is inconsistent with the design of the OFAL
penalty, where we want the dense (sparse) loadings to be con-
centrated on the lower (higher) order columns. To overcome
this problem, we propose the following approach to building
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Algorithm 1 EM algorithm for estimation GLLVMs with
the OFAL penalty.

repeat
E-step Calculate the Q-function Q(θ) = E(�c(θ)|y,

x, θ̂
(r)

), where the expectation is with respect to the poste-

rior distribution f (u|y, x, θ̂
(r)

).

M-step Obtain updated estimates θ̂
(r+1)

based on max-
imizing

Q(θ)− (ns)2

4

d∑
l=1

w1l

τl

d∑
k=l

p∑
j=1

λ2
jk−ns

p∑
j=1

d∑
k=1

w2jk|λjk|−
d∑

l=1

w1lτl.

This can be achieved using the following conditional
maximization steps, for instance.

CM-step 1 Update the dispersion parameters ψ̂
(r+1)

and coefficients β̂
(r+1)

j based on maximizing Q(θ).

CM-step 2 For l = 1, . . . , d, update τ̂
(r+1)
l =

2−1ns

(∑d

k=l

∑p

j=1
λ̂
(r)2
jk

)1/2

. Then for k = 1, . . . , d, calcu-

late ν̂
(r+1)
k = ∑k

l=1
w1l(τ̂

(r+1)
l )−1.

CM-step 3 For j = 1, . . . , p and k = 1, . . . , d,

update the loadings λ̂
(r+1)
jk coordinate-wise based on solv-

ing an elastic-net type optimization problem, Q(θ) −
4−1(ns)2ν̂

(r+1)
k λ2

jk − nsw2jk|λjk|.
until Convergence criterion met e.g., ‖θ̂(r+1) − θ̂

(r)‖ < ε for
some small ε > 0.

the adaptive weights. First, we fit the full GLLVM and obtain
the estimated loading matrix, denoted here as �̌. Next, we
perform an eigendecomposition on the associated covariance

matrix �̌�̌
� = Q̌ĎQ̌

�
. By definition, only the first d eigen-

values of the diagonal matrix Ď will be positive (and arranged
in descending order), while the remaining p − d eigenvalues
will be zero. We thus calculate a new loading matrix �∗ by

taking only the first d columns of Q̌Ď
1/2

. Let λ∗
jk denote ele-

ment (j, k) of �∗. Then, we construct the adaptive weights
as

w1l =
(

d∑
k=l

p∑
j=1

(λ∗
jk)

2

)−1/2

=
(

d∑
k=l

Ďkk

)−1/2

; l = 1, . . . , d

w2jk = |λ∗
jk|−1; j = 1, . . . , p; k = 1, . . . , d,

where Ďkk is the k-th eigenvalue in Ď. Note it is possible for
the weights to also depend on an additional power param-
eter γ > 0, for example, w2jk = |λ∗

jk|−γ . However based on
empirical testing, we found the above forms for the adaptive
weights worked quite well, but acknowledge the possibility of
this extension in future research (although this will increase
computational burden due to heaving to search over multi-
ple tuning parameters). More generally, future research could
also examine other approaches to constructing the adaptive
weights, such as choosing d in a data driven manner and
applying a varimax rotation to �̌ to induce some prior struc-
ture. More importantly, by performing an eigendecomposition

before constructing the adaptive weights, it ensures that the
weights are consistent with the hierarchical nature of the
OFAL penalty, for example, it is straightforward to show that
0 < w11 < . . . < w1d .

To build the regularization path, we first determine a value
smax for which the OFAL penalty shrinks all the loadings λjk

to zero. Then, we construct a decreasing sequence of values
on the log scale on the interval from smax to 0.001smax (in
the simulations and applications we used a grid of 1000 val-
ues), and calculate the OFAL estimates for each value on the
sequence. The most appropriate value of s, and hence the
best fitted GLLVM is then determined using the information
criterion detailed in Section 4.1.

4.1. Tuning Parameter Selection

Given both the large number of parameters available for selec-
tion (pd) and the aim being to select only a small number of
latent variables, that is, we anticipate most the d columns of �

will be shrunk to zero, then we advocate using an information
criterion for choosing the tuning parameter s which facilitates
aggressive shrinkage and aims for a higher degree of spar-
sity. Specifically, we propose using the Extended Regularized
Information Criterion for choosing s, which takes the form

ERIC(s) = −2�(θ̂) − log (s)

p∑
j=1

d∑
k=1

1(λ̂jk �= 0), (2)

where �(θ̂) is the marginal log-likelihood of the GLLVM eval-
uated at the OFAL estimates in Definition 1, and 1(λ̂jk �= 0)
equals one if the estimate loading λ̂jk is not shrunk zero, and
zero otherwise. Note the original form of ERIC proposed by
Hui et al. (2015b) included an additional parameter in the
model complexity term to increase the severity of penalization
for high-dimensional regression. However we have chosen to
fix this additional parameter (equal to 0.5), but acknowledge
that future research should explore the potential inclusion
of this parameter. We provide a justification for the use of
ERIC in the case of the OFAL penalty in Web Appendix C.

The central feature of ERIC is the dynamic model com-
plexity penalty which depends on the tuning parameter itself.
This contrasts to the static complexity penalties in the Akaike
and Bayesian Information Criteria (AIC and BIC) as well as
modifications of these such as the Extended BIC (see Hirose
and Yamamoto, 2014, 2015, e.g., of information criteria used
previously in penalized sparse factor analysis). For a given
dataset, all these criteria penalize a fixed amount for every
non-zero parameter in the model. By contrast, the degree
of penalization induced by ERIC differs depending on how
complex the model is already, as captured by the value of
s. The penalty − log(s) becomes more severe the smaller s

is, and since small values of s correspond to larger models,
this implies ERIC tends to produce more aggressive shrink-
age and generally sparser models. As discussed above, such
aggressive shrinkage is advantageous given we expect most of
the elements λjk to equal zero. Empirically, based on extensive
simulations we found that the aggressive shrinkage flavor of
ERIC produced substantially better performance in terms of
achieving sparsity in GLLVMs compared to other information
criteria for selecting s.
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5. Simulation Study

We considered two simulation designs to study the perfor-
mance of OFAL. The first design is a factor analytic model
where the performance of OFAL can be compared against
other publicly available penalized likelihood software. The
second design involves negative binomial GLLVMs based on
our application to the SO-CPR survey. For brevity, we only
present results from the first design. Results from the second
simulation design (see Web Appendix D) exhibited simi-
lar trends, namely that for negative binomial GLLVMs, the
OFAL approach performed best overall in terms of estima-
tion and selection of the loadings, latent scores predictions,
and estimation of the linear predictor overall, as compared
to unpenalized fits and using an information criterion plus
varimax rotation approach.

5.1. Setting 1: Factor Analysis

We adapted the standard factor analytic model simulation
design of Hirose and Yamamoto (2015), and compared the
performance of OFAL against the penalized likelihood method
proposed in that article. The true model is assumed to consist
of two factors. We first simulated the latent scores ui based on
three groups, with each group comprising n/3 observational
units. The scores for the three groups were generated from a
bivariate normal distributions with respective means (−2, 1),
(0, 1), and (2, −1), and with all the covariances set equal to
an identity matrix. In doing so the true latent variables thus
display a location pattern, being clustered into three groups.
Next, we constructed a 30 × 2 loading matrix � with form

� =
(

0.9515 0.915 0.815 0115

0115 0.815 0.7515 0.715

)�
,

where 1k denotes a k-vector of ones. Finally, we set � =
Ip − ���, and then for i = 1, . . . , n simulated responses as
yi ∼ N30(λui, �). We considered the number of observational
units n = 50, 100, 200, and for each value of n simulated 500
datasets.

We compared OFAL, in conjunction with ERIC for choos-
ing the tuning parameter, to: 1) three versions of the penalized
likelihood approach proposed in Hirose and Yamamoto
(2015), which is implemented in the R package fanc (Hirose
et al., 2016). We considered the MC+ penalty and used AIC,
BIC, and EBIC to select the tuning parameter, as these
tended to be the combinations which worked best in Hirose
and Yamamoto (2015); 2) a popular approach where the
number of factors is chosen using information criteria and
then a varimax rotation is applied to the estimated loading
matrix. For all the methods considered, and with given p = 30
responses, we set an upper limit of d = 8 factors, remembering
that only the first two loadings are truly non-zero. We also
conducted additional testing with a higher value of d, but
found that it made little difference to the simulation results.

We assessed performance in two ways. For estimation per-
formance, we considered the Procrustes error (PE) between
the estimated and true �, and between the true and predicted
latent scores. For selection, we considered the percentage of
datasets where the correct number of factors (two) is chosen,
the mean false positive rate or FPR (the proportion of truly

zero loadings that are estimated as non-zero), and the mean
false negative rate or FNR (the proportion of truly non-zero
loadings that are estimated as zero). The Procrustes error was
used since it can be regarded as a mean squared error between
two matrices after accounting for differences in rotation, sign,
and scaling, and is a commonly used measure in ecology to
assess ordination accuracy (Legendre and Legendre, 2012).

In terms of point estimation, OFAL almost always had the
lowest Procrustes error for both the loadings and prediction of
the latent scores (Table 1). Both OFAL and the information
criterion plus varimax rotation method performed strongly
at selecting the correct number of latent variables, while the
penalized likelihood method of Hirose and Yamamoto (2015)
using BIC performed poorly at n = 50 but much better at
the two larger sample sizes. Using AIC either to select the
tuning parameter in the penalized likelihood method, or to
directly select the number of latent variables, often led to
overfitting. This occurred because many of the non-true load-
ings that were meant to be in the second column of � were
allocated to high-order loadings, resulting in a comparably
high false negative rate. Furthermore, the overfitting worsened
with increasing sample size. Using the other two information
criteria (BIC, EBIC) led to similar strong performance to
OFAL in terms of identifying both truly zero and non-zero
loadings.

6. Application to SO-CPR Survey

We illustrate the application of the OFAL penalty to data
collected as part of the Southern Ocean continuous plankton
recorder (SO-CPR) survey. As introduced in Section 1, the
overall goal of the SO-CPR survey is to better understand
the relative influence of environmental, biotic, and human-
induced factors driving marine assemblages in the Southern
ocean, which in turn has important implications for (say)
biodiversity and fisheries management (Hosie et al., 2003).
We consider a subset of the survey containing observations of
p = 27 species collected at n = 54 sites in 2016 by the vessel
Umitaka Maru. Along with the species responses, we also have
information on a variety of environmental covariates including
water salinity and temperature, fluorescence, and phytoplank-
ton color index. An exploratory analysis based on scatterplot
matrices and correlations revealed many of these covariates
were strongly correlated.

We first fitted a pure negative binomial GLLVM, outlined
in Section 2.1, without any covariates. The goal of fitting
this model was to ordinate the sites on a low-dimensional
space representing species relative abundance. We set d = 8
as the maximum number of latent variables available for order
selection, with additional testing using higher values of up
to d = 12 led to the same number of latent variables being
selected. The OFAL penalty selected a sparse, three factor
model, with the (first) three columns of the resulting load-
ing matrix �̂ containing 16, 17, and 9 non-zero coefficients,
respectively (see Web Appendix E). From the resulting ordi-
nation plots, we observe that: 1) latent variables 1 and 2
display a location pattern for sites corresponding to a gra-
dient change in fluorescence and phytoplankton color index.
There is also a dispersion effect between sites with different
values of color index, 2) latent variable 2 displays a strong
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Table 1
Simulation results for setting 1 with a standard factor analytic model. The methods compared include: OFAL, three versions

of the penalized likelihood approach in Hirose and Yamamoto (2015), referred as fanc:AIC, fanc:BIC, fanc:EBIC, and
choosing the number of factors using information criteria followed by a varimax rotation on the estimated loading matrix
(AIC, BIC, EBIC). Performance was assessed in terms of Procrustes errors of loadings (PE-Loadings) and latent scores

(PE-scores), percentage of datasets where the correct number of factors is chosen, FPR, and FNR.

n OFAL fanc:AIC fanc:BIC fanc:EBIC AIC BIC EBIC

PE-Loadings∗ 0.068 0.828 0.231 0.070 0.140 0.095 0.095
PE-scores∗ 0.208 7.028 4.070 0.151 0.326 0.143 0.143

50 % correct LVs 96.8 1 16.6 100 90.0 100 100
FPR 0.035 0.069 0.046 0.059 0.027 0.016 0.016
FNR 0 0.398 0.317 0 0.034 0 0
PE-Loadings∗ 0.023 0.581 0.024 0.034 0.089 0.049 0.049
PE-scores∗ 0.127 6.142 0.198 0.150 0.379 0.144 0.141

100 % correct LVs 99.6 8.2 97.6 99.4 84.4 99.8 100
FPR 0.027 0.059 0.008 0.063 0.024 0.008 0.008
FNR 0 0.396 0.007 0.002 0.066 0.002 0
PE-Loadings∗ 0.012 0.389 0.017 0.020 0.108 0.025 0.025
PE-scores∗ 0.121 5.032 0.132 0.217 0.761 0.135 0.135

200 % correct LVs 100 20.4 99.8 99.8 60 100 100
FPR 0.028 0.048 0.002 0.057 0.046 0.001 0.001
FNR 0 0.344 0.001 0.001 0.211 0 0

∗All Procrustes errors are multiplied by 10 for ease of visual presentation.

site pattern reflecting a water temperature gradient, 3) latent
variable 3 does not display any pattern associated with the
available covariates (Figure 1). As mentioned above though,
many of the covariates are strongly collinear. A plot of the
resulting correlation matrix constructed from the model, that

is, �̂�̂
�
, showed a predominance of positive correlations, sug-

gesting many of the species share a similar response to the
latent variables and thus likely the environmental covariates
(see Web Appendix E).

Given the above results and the strong correlation between
the covariates, we decided to fit a second negative binomial
GLLVM with temperature and fluorescence included as lin-
ear terms in the model. Both covariates were standardized to
have mean zero and unit variance prior to their inclusion in
the model. This goal of this model was to infer which species
responses were significantly influenced by these two predic-
tors, while accounting for any residual correlation between
species due to other missing covariates as well as biotic factors.

Figure 1. Ordination plots from the negative binomial GLLVM fitted to the SO-CPR survey, with no covariates included in
the model. We observe that: 1) latent variables 1 and 2 display a location pattern for sites corresponding to a gradient change
in fluorescence and phytoplankton color index (PCI). There is also a dispersion difference between sites with different values
of color index (left), 2) latent variable 2 also displays a strong site pattern reflecting a water temperature gradient (center),
3) latent variable 3 does not display any pattern which is associated with any of the available covariates (right). This figure
appears in color in the electronic version of this article.
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With temperature and fluorescence included, OFAL selected a
two factor model (see Web Appendix E for the estimated load-
ing matrix). The resulting ordination plots of the two latent
variables (not shown) no longer exhibited any site patterns
corresponding to fluorescence, temperature, and color index.
To construct standard errors for the fitted species-specific
regression coefficients β̂j, we used numerical differentiation to
first calculate the observed Fisher information matrix based
on the marginal likelihood of the fitted model, I(θ̂) = ∇2�(θ̂),
where the differentiation was done only with respect to the
parameters not shrunk to zero, that is, the β̂j’s, the non-zero

elements of �̂, and ψ̂. Standard errors were then constructed
based on the diagonal elements of I(θ̂)−1. We acknowledge
this approach is ad hoc in that the construction of stan-
dard errors does not take into account the variable selection
process, but emphasize that the field of post-model selec-
tion inference remains an active area of research (e.g., Lee
et al., 2016). The resulting caterpillar plots showed six and
seven species, respectively, had coefficients to temperature
and fluorescence that were significantly less than zero, imply-
ing a preference for cooler temperature waters and waters
with low levels of chlorophyll, respectively. Four (Oithona.s,
Limacina, Ctenocalanus, and Calanoida) had significant neg-
ative responses to both predictors (Figure 2), thus providing
some idea of the specific environmental niche occupied by
these species. Given small copepods such as Oithona.s and
Ctenocalanus often dominate the grazing impact of many zoo-
plankton assemblages, a better understanding of the niche of
such species is useful for assessing their long term environmen-
tal impact on the wider marine community. When compared
to the model without covariates, the residual correlation
matrix from the GLLVM with the two covariates included

exhibited considerably less correlations, reflecting the fact
that a considerable proportion of the co-occurrences can be
explained by shared environmental responses to temperature
and fluorescence (see Web Appendix E). Indeed, comparing

the trace terms, trace(�̂�̂
�
), between the two models, we find

that 52% of the covariation between species can be explained
by temperature and fluorescence alone, suggesting that water
temperature and chlorophyll levels together are key environ-
mental filters for zooplankton assemblages.

7. Discussion

There are many avenues of future research which can be
undertaken in relation to the OFAL penalty. For instance,
the motivating dataset considered in this article was not
particularly high dimensional, although other applications of
GLLVMs may involve this (e.g., Bai and Li, 2012). Therefore,
it will be important to study the performance of OFAL for
high-dimensional GLLVMs with non-normal responses, where
both n and p may be in their hundreds or thousands. In partic-
ular, the OFAL penalty and ERIC (or any other information
criterion used) may need to be modified to penalize even more
heavily on the higher-order loadings to reflect this greater
degree of sparsity. Furthermore, the construction of adaptive
weights for high-dimensional GLLVMs also presents a chal-
lenge, as the initial, unpenalized model used to build these
weights may be unstable due to overfitting; see also the dis-
cussion in Section 3 on the choice of d. Future research can
thus look into alternative methods for constructing w1l and
w2jk, or even modifying the OFAL penalty such that weights
are not required (see the review of Huang et al., 2012, for
example).

Figure 2. Caterpillar plots (point estimates and 95% confidence intervals) of the species-specific coefficients β̂j for tem-
perature (left) and fluorescence (right) from the negative binomial GLLVM fitted to the SO-CPR survey, with these two
covariates included. The bolded and thicker intervals are those who confidence intervals do not contain zero. Six and seven
species, respectively, had coefficients to temperature and fluorescence significantly less than zero, with Oithona.s, Limacina,
Ctenocalanus, and Calanoida having strong negative responses to both predictors. This figure appears in color in the electronic
version of this article.
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Additionally, the computational methods proposed in this
article may not be feasible in such settings, and instead
we may need to combine OFAL with faster, approximate
likelihood-based estimation methods (Hui et al., 2017; Niku
et al., 2017). Such research into more computationally efficient
approaches will also be beneficial if we wanted to include more
tuning parameters in the OFAL penalty, for example, the mix-
ing parameter α discussed in Section 3. Yet another major
avenue of research is modifying the OFAL penalty for specific
types of GLLVM applications, for example, microarray studies
when we want to shrink entire rows as well as columns of the
loading matrix to zero to select only “informative” genes on
the latent space (e.g., Hirose and Konishi, 2012), and multi-
response data where the objective is to simultaneously achieve
sparsity in both the regression coefficients and loading matrix,
in which case OFAL can be combined with penalties on the
βj’s such as the adaptive LASSO and group LASSO penalties
(Yuan and Lin, 2006).

8. Supplementary Material

Web Appendices referenced in Sections 1 and 4–6 are available
with this article at the Biometrics website on Wiley Online
Library. The R code for fitting GLLVMs with the OFAL
penalty is also provided as part of the Web Appendices. The
SO-CPR survey data are freely available upon request from
https://data.aad.gov.au/aadc/cpr/.
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