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Summary 

1. Ecologists often investigate co-occurrence patterns in multi-species 

data in order to gain insight into the ecological causes of observed co-

occurrences. Apart from direct associations between the two species of 

interest, they may co-occur because of indirect effects, where both 

species respond to another variable, whether environmental or biotic 

(e.g. a mediator species). 

2. A wide variety of methods are now available for modelling how 

environmental filtering drives species distributions. In contrast, 

methods for studying other causes of co-occurence are much more limited. ǲGraphicalǳ methods, which can be used to study how mediator 
species impact co-occurrence patterns, have recently been proposed for 

use in ecology. However, available methods are limited to 

presence/absence data or methods assuming multivariate normality, 

which is problematic when analysing abundances. 

3. We propose Gaussian copula graphical models (GCGMs) for studying 

the effect of mediator species on co-occurence patterns. GCGMs are a 

flexible type of graphical model which naturally accommodates all data 

types, e.g. binary (presence/absence), counts, as well as ordinal data 

and biomass, in a unified framework. Simulations demonstrate that 

GCGMs can be applied to a much broader range of data types than the 

methods currently used in ecology, and perform as well as or better 

than existing methods in many settings. 

4. We apply GCGMs to counts of hunting spiders, in order to visualise 

associations between species. We also analyse abundance data of New 

Zealand native forest cover (on an ordinal scale) to show how GCGMs 

can be used analyse large and complex datasets. In these data, we were 

able to reproduce known species relationships as well as generate new 

ecological hypotheses about species associations. 
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INTRODUCTION 

The study of how and when species co-occur is central to understanding large scale 

patterns in biodiversity, ecosystem services such as pollination and seed dispersal, and 

in helping scientists to predict how communities might re-assemble in response to 

climate change. There are three important drivers of co-occurrence: (1) Two species 

may cooccur because they both respond to the same (or similar) environmental 

variables. For example, they might both be more abundant in warmer climates (Hawkins 

et al., 2003). (2) The two species may both respond to the presence or abundance of 

another species (hereafter referred to as mediator species), for example, they may both 

be hunted by the same predator (Gilinsky, 1984), but have no direct association between 

them. (3) The two species might have a direct association, such as facilitation, seed 

dispersal, or pollination (Freestone, 2006). 

Model–based methods for quantifying the effect of environmental variables on speciesǯ 
occurrence and abundance are relatively well-established. The impact of measured 

environmental variables can be investigated using multivariate extensions of 

generalised linear models (GLMs), like in Pollock et al. (2014) and Hui et al. (2013). The 

impact of unmeasured environmental variables can be inferred using generalised linear 

latent variable models for multivariate count and biomass data in ecology (Warton et al., 

2015; Ovaskainen et al., 2017). Covariance matrices obtained after controlling for 

environmental variables using these methods can be used to deduce if species co-occur 

more or less frequently than predicted by the environment. 

Simulation based methods for investigating species associations in ecology are most 

commonly based on null models ȋGotelli & †lrich, ʹͲͳͲ; Strong Jr et al., ʹͲͳͶ; DǯAmen et 
al., 2017). These aim to test if matrices of species co-occurrence or abundances are 

consistent with a null hypothesis of no association (sometimes controlling for 

environmental gradients). They can also be used to investigate pairwise species 

association (Ulrich, 2008). 

The above methods do not take into account whether species co-occur due to the 

presence or abundance of mediator species, that is, they cannot be used to differentiate 

between driver (2) and (3) of co-occurrence. The consequence of this can be far ranging, affecting estimates of speciesǯ ranges, co-distribution of species, and relationships with 

environmental variables (see Morales-Castilla et al., 2015, and references therein). To 
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determine whether co-occurrence patterns between a pair of species are a result of 

relationships with mediator species, we must instead examine conditional dependence 

relationships between all the species by examining residual precision matrices (the 

inverse of the correlation matrix). Conditional dependence describes how pairs of 

species are related, after controlling for all the other species in the dataset. 

Markov models for investigating conditional dependence in ecology for 

presence/absence data (Harris, 2016; Clark et al., 2018) have recently been developed. 

These add a crucial dimension to investigating interspecies associations, as they are able 

to tease apart drivers (2) and (3) of co-occurrence for the first time (see Figure 1 for a 

demonstration). Comparisons between Markov models and null models convincingly 

demonstrate that null models are indeed unable to account for indirect effect of 

mediator species, while Markov models can (Harris, 2016). 

Conditional dependence relationships in count abundance data have been investigated 

in Morueta-Holme et al. (2016), by applying Gaussian graphical models to log 

transformed counts. Similarly to the Markov models above, this method was able to 

tease apart the different drivers of co-occurence, including indirect associations. 

Unfortunately, transforming count data can have undesirable effects on analyses (OHara 

& Kotze, 2010; Warton et al., 2016). This is especially the case for multi-species data 

(Warton & Hui, 2017) because counts are often small or zero, and most species are 

found at only a small number of sampling occasions. Aside from transforming the 

responses, there are currently no methods for investigating conditional dependence in 

ecology that are capable of modelling ordinal or biomass data, both of which are 

commonly collected in ecology. What is needed now are tools for modelling conditional 

dependence capable of handling a broader range of distribution types, including the 

previously studied presence/absence and counts, but also ordinal and biomass data, 

such that they can be directly applied to multi-species data without the need for data 

transformation. 

In this paper we will demonstrate the use of Gaussian copula graphical models (GCGMs; 

Popovic et al., 2018) to uncover conditional relationships among species from 

abundance data, and hence untangle the impact of mediator species on the co-

occurrence patterns between pairs of species. Gaussian copulas have exciting potential 

in ecology for the analysis of multivariate non-normal data (Anderson et al., 2019). 

Copula graphical models can naturally accommodate a wide variety of data types in a 
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unified framework, including: binary variables (presence/absence); overdispersed 

counts; ordinal data; and biomass data. They do this by extending GLMs to accommodate 

multivariate data, essentially, by mapping GLM residuals onto the multivariate normal 

distribution. Using simulations, we show that GCGMs can be applied to a much broader 

range of data types than the methods currently used in ecology, and perform well in 

most settings. We then demonstrate this method on a count dataset of spider 

abundances, and a dataset of ordinal cover categories of plants in New Zealand native 

forests. The latter dataset is particularly challenging due to its size (1311 taxa recorded 

at 964 sites) as well as the ordinal nature of the response; neither feature can be 

accommodated in any graphical modelling method previously used in ecology. 

MATERIALS AND METHODS 

We start with a note on terminology. Throughout this manuscript we use the term 

association to refer to correlations between species occurrence or abundance. We 

further distinguish between indirect associations, which are observed correlations 

between two species without reference to other species (marginal), from direct 

associations, which are correlations that are still present after controlling for effects of 

other species (conditional). In the ecology literature, species associations as defined 

here are often referred to as species interactions (Harris, 2016; Clark et al., 2018; Ulrich, 

2008). We distinguish between these concepts, as associations do not necessarily imply 

interactions (Dormann et al., 2018, see Discussion). 

Graphical models and co-occurrence 

The concept of conditional dependence will be familiar to most applied researchers who 

have fitted linear models, where the term is typically used to refer to controlling for 

variables using a covariate. To measure if there is, for example, an effect of temperature 

on leaf width, after controlling for altitude, we can simply put both temperature and 

altitude in a model predicting leaf width, and test for an effect of temperature. This is the 

same to asking whether leaf width is conditionally dependent on temperature given 

altitude. 

A similar strategy can be employed to uncover conditional dependence relationships 

between species, by using the species of interest as the response, and all the other 
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species as predictors. This node-wise method is in fact how Gaussian graphical models 

were first conceived and fitted (see: Banerjee et al., 2006; Meinshausen & Bühlmann, 

2006). Modern methods for Gaussian graphical modelling use a LASSO-penalised 

likelihood approach (Friedman et al., 2008; Hastie et al., 2015) to estimate these 

conditional dependence relationships in Gaussian data simultaneously for all species, as 

they have better power and interpretability, but the intuition remains the same. Both 

estimation methods have been used in ecology, with Clark et al. (2018) implementing a 

node wise method which more easily scales to a large number of species, while Harris 

(2016) and Morueta-Holme et al. (2016) estimate the graph jointly for all species, thus 

allowing for greater accuracy. 

Figure 1 demonstrates how graphical models can be used to disentangle whether 

correlations between species are due to indirect relationships via mediator species or 

direct relationships between the species of interest. Here we are interested in the 

relationship between two species A and B, which we observe to be negatively correlated 

(red, i and iv) in both scenarios given by the top and bottom rows. After controlling for a 

third species C (ii and v), we either find A and B are still related (top, ii), or that their 

relationship was completely explained by both species responding to the mediator 

species C (bottom, v). It is important to emphasise that the only way to distinguish 

between these scenarios is to look at conditional relationships as given by the middle and right columns of Figure ͳ. The ǲgraphǳ in figures iii and vi, after which graphical 

models are named, is nothing but a convenient and visually appealing way to display 

these conditional dependence relationships. Conditional relationships are inferred from 

the matrix of partial correlations, which for Gaussian data is given by the inverse of the 

correlation matrix, known as the precision matrix. 

The main distinction between graphical modelling methods and other methods 

commonly implemented in ecology to investigate species associations, like null models 

and latent variable models, is in the kind of relationship they model, calculate or 

estimate from the data. Previously, dependence relationships (or correlations) have 

been modelled, which confound direct and indirect associations. By contrast, modelling 

conditional dependence relationships can untangle direct and indirect associations. For 

presence-absence data this is illustrated in Harris (2016), who showed that null models 

can have false positive rates as high as 100% for associations between species which are 

not directly related, but are correlated due to associations with mediator species. While 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

graphical models are very rarely used in ecology, they are increasingly used in many 

other disciplines, from modelling gene networks (Krämer et al., 2009) to brain 

connectivity (Huang et al., 2010) and traffic flows (Sun et al., 2012). 

 

Figure 1: Left (i and iv): correlations between species A, B, and C (red dashed for negative and blue for 

positive), which include both direct associations and indirect mediator species effects. Middle and right: 

partial correlations between each pair of species, after controlling for the other species, which show direct 

associations only. The middle column (ii and v) plots partial correlations in a matrix, while the right 

column (iii and vi) plots this same information in a ǲgraphǳ. Correlations ȋleftȌ between species A and B are the same ȋρAB = −Ͳ.ʹͷȌ in both scenarios ȋtop and bottomȌ. To see if this relationship is explained by 
both A and B responding to C, a mediator species, we can examine the conditional relationships (ii and v). 

In the bottom row (iv – vi), the relationship between A and B is fully explained by them both responding to 

C, while in the top row (i – iii), A and B are related, even after controlling for C. We cannot untangle these 

without looking at conditional relationships in either the precision matrix (ii and v) or graph (iii and vi).  

 

 

Gaussian copula graphical models 

Multi-species data (also known as multivariate abundance data) consist of 

measurements of abundance of plants or animals (most commonly presence/absence, 
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counts, cover or biomass) simultaneously collected for a large number of taxa, classified 

to species or another taxonomic level. Gaussian graphical models cannot be directly 

used to model multi-species data, as the responses are most often discrete or, in the case 

of biomass, semi-continuous. Gaussian copula graphical models provide a way to apply 

graphical models to any random variable, given a model for the statistical distribution of 

each species (its marginal distribution). 

Copula models are so named because they couple a multivariate distribution (e.g. 

multivariate Gaussian) with any set of marginal distributions. For abundance data in 

ecology, which are generally discrete, the most useful marginal distributions are the 

binomial for presence/absence, the Poisson, negative binomial or binomial for counts, a 

multinomial (often using a cumulative link model) for ordinal data and the Tweedie 

distribution for biomass data. Copulas allow us to combine these into one model with 

the correlation structure of a multivariate Gaussian, which in turn allows us to indirectly 

apply Gaussian graphical models with all these data types. Figure (2) demonstrates visually how copula models work. The term ǲGaussianǳ in Gaussian copula graphical 
models refers only to the copula part of the model, the responses are modelled by the 

appropriate discrete distribution (e.g. negative binomial for counts). The Gaussian 

copula will be used here in preference to other copulas (e.g. vine copulas or 

archimedean copulas) as it allows the application of Gaussian graphical modelling 

algorithms in the estimation of the GCGMs (Popovic et al., 2018). Details of the model-

fitting algorithm can be found in the Supplementary material, but briefly, it uses a Monte 

Carlo EM algorithm (Wei & Tanner, 1990), where repeated sets of Dunn-Smyth residuals 

(Dunn & Smyth, 1996) from the marginal model are used to estimate the copula 

likelihood, via importance sampling, with importance weights updated iteratively 

following each graphical lasso fit to (re)weighted data, until convergence (when the 

estimate of the precision matrix stabilises). Graphical lasso places a LASSO penalty on 

the elements of the precision matrix, which describes the conditional dependences. This 

penalty plays two roles. Firstly, it stabilises precision matrix estimates when the number 

of sites is not large compared to the number of species. Secondly, when this penalty is 

large, it shrinks some elements of the precision matrix to zero, thereby estimating which 

pairs of species are conditionally independent, i.e. have no direct association. Gaussian 

copulas and Gaussian graphical models are used together for ease and speed of 

estimation. An R package ecoCopula implementing GCGMs is available on github. 
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The GCGM model can easily incorporate any set of marginal distributions, including any 

GLMs, with and without covariates, and more complex models like generalised additive 

models, and cumulative link models for ordinal data. When using these models, we can 

apply standard tools for residual analysis and model selection to choose the appropriate 

marginal model for each species. Flexibility is the main advantage of GCGM over 

graphical modelling techniques previously used for multi-species data. The method 

implemented in Harris (2015) for example can only be used on presence/absence data, 

while the method of Morueta-Holme et al. (2016) requires multivariate normal data, or 

data that can be transformed to approximately satisfy multivariate normality. 

 

Figure 2: A visual illustration of copulas for discrete data, and their estimation. We have ten observations 

from two species, A and B, with abundances given by the histograms (panel a and e). For each species we 

calculate the cumulative distribution function (CDF; panel b and d). This can be accomplished based on the empirical, Ǯnon-parametricǯ CDF, although generally in GCGMs, the CDF is calculated assuming a 
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parametric model, e.g. a Poisson regression model for counts. These CDFs give the estimated (marginal) 

distributions of each species separately. To model and estimate associations between species, we use 

these CDFs to jointly project each observation (site) onto the unit square (or unit (hyper)cube when there 

are more species). The dashed arrows represent the process of projection for one site/observation, at 

which we observe 1 individual of species A and 2 individuals of species B. Looking firstly at the species A, 

we project the observed count onto the region between the CDF value at our observed value (0.2) and the 

previous CDF value (0.1). We then generate a random uniform value inside this region. By doing the same for the observed count for species B, we thus calculate a randomised ǲresidualǳ ȋred pointȌ. )f we do this 

for all the observations, we obtain the pattern of red points in panel c, suggesting negative association 

between species A and B. To estimate the joint distribution between species A and B, we then assume a 

form (for example Gaussian copula) for the distribution in panel c (background shading), and use the 

points to estimate the correlation parameter ρ of this distribution (in this case ρ = −Ͳ.46). 

 

Data 

We use two datasets in our analysis and simulations. The first is a dataset consisting of 

counts of hunting spiders caught in pitfall traps, with 12 species found at 28 sites (van 

der Aart & Smeenk-Enserink, 1974). The primary aim of this study was to identify the 

main environmental factors associated with the distribution of the species studied. The 

hunting spider data is a well known ecological dataset popularised in ter Braak (1986). 

The data contain six covariates thought to be associated with spider abundance, namely: 

dry soil mass; percent cover of bare sand; percent cover of fallen leaves or twigs; percent 

cover of moss; percent cover of herb layer and reflection of the soil surface with a 

cloudless sky. 

Manaa 

Simulations 

For each data type (presence/absence, counts, ordinal and biomass), we simulated data 

from competing models able to assign conditional relationships (direct associations) to 

such data, with 9 species and 50 sites used in all simulations. We simulated a 

heterogeneous environment by including a binary environmental covariate in 

simulations, and a homogeneous environment by excluding this covariate. All species 

association matrices were generated randomly. We then fitted a range of methods 
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currently available in ecology to the simulated data, and assessed how well they were 

able to recover these relationships. Simulation code is available in the supplementary 

material (S2). 

In order for associations to be interpretable, their sign and magnitude should be 

meaningful, such that if there is a larger negative association between species A and B 

compared to between species D and E, then we want this ordering to be reflected in the estimates of these associations. The Spearmanǯs correlation coefficient ȋcorrelation of 
the order of associations) assesses the degree of correlation between the order of the 

two variables, and we will use it to gauge how well the methods perform in all the 

simulations below. We do not assess the actual estimates, as the different models are on 

very different scales, and we would not be able to straightforwardly compare across competing models. A Spearmanǯs correlation of 1 here means the order of the estimated 

associations is identical to the order of the true associations used to generate the data. 

As most of the methods we compared do not incorporate shrinkage of the (partial) 

correlation parameters, we implemented GCGMs without any shrinkage in all 

simulations, though by default the ecoCopula package does choose a shrinkage 

parameter with BIC. 

Binary co-occurrence (presence/absence) data 

For binary data, we simulated from two models for conditional independence 

relationships between binary variables: the Markov model fitted in Harris (2015) and 

Clark et al. (2018), using the simulation method found in Appendix S2 of the former; and 

the GCGM with binary marginal distribution. We then fitted five methods to the data to 

see how well they were able to recover the direct species associations: GCGMs as 

implemented in the ecoCopula package; the rosalia package which implements the 

method of Harris (2015); the MRFcov package which implements the method of Clark et 

al. (2018); the gllvm package which implements the latent variables models with 

estimation as outlined in Hui et al. (2017); and the Fortran package Pairs which 

implements the approach of (Ulrich, 2008). The gllvm and Pairs packages do not estimate 

conditional dependence, so are unable to distinguish between direct and indirect 

associations. 
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Count data 

For count data, we simulated from two methods that model conditional independence 

relationships between count variables: the Markov model proposed in Yang et al. (2015, 

hereafter yang), the GCGM assuming Poisson marginal distributions. We then compared 

the following five methods to assess how well they were able to recover direct species 

associations: GCGMs are implemented in the ecoCopula package; graphical lasso on log 

transformed counts as demonstrated in Morueta-Holme et al. (2016, hereafter ggmlog); 

the MRFcov package using the Poisson family argument, which transforms counts with a 

root mean square transformation before applying a Gaussian graphical model; the gllvm 

package; and the rosalia package with counts transformed to presence/absence. 

Ordinal and biomass data 

For both ordinal and biomass data, we simulated from the GCGM with cumulative link 

marginal models for ordinal data, and Tweedie marginal models for biomass data. We 

then compared the following two methods to assess how well they were able to recover 

direct species associations: GCGMs as implemented in the ecoCopula package; and the 

rosalia package, with the data transformed to presence/absence. 

 

RESULTS 

Simulation results 
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 Figure ͵: Average Spearmanǯs correlation coefficient between estimated and true pairwise associations for 
each estimation method across 50 simulations of each combination of simulation method and 

environment (uniform and heterogeneous). Shading is standardised per scenario such that the highest 

correlation coefficient (best method) is always dark green. White cells without text indicate this 

combination of simulation and estimation methods was not implemented. While other estimation 

methods perform best in certain scenarios (e.g. rosalia for the binary Markov simulation model and ggmlog 

for the count GCGM simulation model, both in a uniform environment), ecoCopula consistently performs 

well, especially when the environment is heterogeneous, where it is the best performing estimation 

method in all scenarios. The methods which do not estimate direct associations (gllvm and Pairs) generally 

have the poorest performance. 
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For binary co-occurrence (presence/absence) data, the methods that do not differentiate 

between direct and indirect associations (gllvm and Pairs) performed poorly at 

recovering direct species relationships relative the other three methods, which do model 

indirect associations (Figure 3). This result was consistent with that of Harris (2016). 

For count data, as with the binary data, gllvm, which does not differentiate between 

direct and indirect associations, performed worse at recovering direct species 

relationships relative to other methods (Figure 3). The Markov model as estimated by 

the roselia R package, which requires the data to be transformed to presence/absence 

but does model direct associations, performed poorly relative to the other methods 

(with the exception of gllvm). This was not surprising as truncating data to 

presence/absence potentially loses a lot of information, especially for abundant species. 

For all simulation methods in a uniform environment, the three estimation methods 

which modelled abundance and direct associations (ecoCopula, ggmlog, and MRFcov) 

produced similar results. However, in the presence of (known) environmental 

heterogeneity, ecoCopula notably outperformed the other methods. 

For both ordinal and biomass data, the Markov model as estimated by the roselia R 

package, which requires the data to be transformed to presence/absence, performed 

poorly relative to the ecoCopula, which models the abundance data directly. 

Overall the ecoCopula package performs very well in the simulations. This is consistent 

with the observation that methods which estimate both direct associations, and model 

the data directly without transformations, are best able to estimate direct species 

associations. In addition, the ecoCopula package can control for measured environmental 

gradients, which the other methods do not, and so performs particularly well relative to 

other methods in the presence of environmental heterogeneity. 

Data analysis results 

GCGM analysis of counts 

The first dataset we analyse are counts of hunting spiders (described in Methods). For 

these data we used negative binomial marginal distributions, as these can account for 

the overdispersion often observed in abundance count data. We can include predictors 
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in these marginal distributions, and so will consider partial correlation between species 

both before and after accounting for observed environmental variables. 

After controlling for the effect of other species (Figure 4, b and e), partial correlations 

between species tend to be smaller than in the correlation matrices (a and d), with many 

pairs of species being estimated to be conditionally independent. For these species, their 

correlation is explained by relationships with other species in the data. In addition, 

environment can explain some of the (partial) correlation between species, with 60% 

(22/36) less non-zero partial correlations between species after controlling for 

environment. 

 

Figure 4: Raw and partial correlation between spider species. Correlations are positive (blue) if species co-

occur more often than expected by their prevalence, negative (red, dashed) if they co-occur less often, and 

zero (white) if they co-occur at the rate expected by their prevalence. Correlations are plotted for the raw 

abundances (a – c) and after controlling for measured environmental variables (d – f). The left column (a 

and d) shows raw correlations. Middle and right columns both display partial correlations, after additionally controlling for mediator species, with ǲgraphsǳ on the right (c and f), which are plots of the 

network of conditional dependence. Names are abbreviations based on the first four letters of the genus, 

then the first for letters of the species names (see Supplementary Material 1 Appendix B for details). 
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Interpreting the graph of spiders, we observe that Pardosa lugubris (Pardlugu) has 

negative associations with both Alopecosa accentuata (Alopacce) and Pardosa monticola 

(Pardmont), who are positively associated, before controlling for covariates (Figure 4, a – c). However, these negative associations are absent after controlling for covariates 

(Figure 4, d – f). Looking at Figure 5, we can see that Pardlugu has increased abundance 

in the presence of bare soil, while both Alopacce and Pardmont have the opposite 

response. These differences in environmental response seem to be the main reason for 

the perceived negative associations seen in Figure 4 (a – e), rather than direct negative 

associations between the species. 

Abundance by presence of bare soil 

 

Figure 5: Spider abundance plotted against the presence of any bare soil. Notice that many of the species 

abundances differ according to the presence of any bare soil. For example, Pardosa lugubris (Pardlugu) has 

increased abundance in the presence of bare soil, while both Alopecosa accentuata (Alopacce) and Pardosa 

monticola (Pardmont) have decreased abundance. 

GCGM analysis of large ordinal dataset 

We applied GCGMs to the New Zealand forest cover data (see Methods for description), a 

complex dataset that could not have been analysed using pre-existing methods. In New 

Zealand, podocarp-broadleaf forest and beech forests tend not to co-occur, but are not 

obviously separated by geography or climate (Wardle, 2002, p.672). We therefore 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

predicted that these two main forest types would form separate groupings in our 

analysis. 

In order to investigate associations between species in New Zealand native forests, we 

fitted a GCGM with cumulative link (Agresti, 2010) marginal distributions to these data. 

We fit models with different values of the shrinkage parameter, with large values giving 

very sparse graphs with few direct associations, and small values giving dense graphs, 

but all including slope and altitude as covariates, we then chose the value of the 

shrinkage parameter with BIC. 

Due to the large number of species, the graph of all correlated species (Figure 6) is fairly 

complex, nevertheless we can see some important patterns. For the 1311 New Zealand forest species in the data, there are ͺͷͺ,͹Ͳͷ ȋͳ͵ͳͳ × ȋͳ͵ͳͳ − ͳȌ/2) possible pairwise 

direct associations between them. We estimated the vast majority (857,968, > 99%) of 

species pairs to have no direct association. There are an estimated 656 (< 1%) positive 

direct associations (blue lines), with the two ends of this gradient of positive association 

linked by a small number (22, < 1%) of direct negative associations. This gradient is seen 

as a U-shaped group of blue positive associations on Figure 6. The dominant species at 

one end of the gradient tend to be associated with silver beech forest (Lophozonia 

menziesii (NOTMEN), Raukaua simplex (RAUSIM), Myrsine divaricata (MYRDIV), 

Blechnum procerum (BLEPRO), Coprosma foetidissima (COPFOE), and Notogrammitis 

billardierei (GRABIL)), while the other end of the gradient is dominated by species 

associated with the early-mid stages of regeneration of disturbed lowland forest 

(Cyathea dealbata (CYADEA), Melicytus ramiflorus (MELRAM), Knightia excelsa (KNIEXC) 

and Uncinia uncinata (UNCUNC)). This is partially consistent with our initial expectation 

that there would be a separation between the two main forest types of New Zealand. 

Some of the relationships we found were surprising, and can be used to generate 

hypotheses for further investigation. In Figure 6, the separation between the two main 

forest types of New Zealand was not supported for the three species in Fuscospora, the 

other genus of southern beech present in New Zealand (Fuscospora solandri (NOTSOL), 

F. cliffortioides (NOTCLI), F. fusca (NOTFUS)). The three Fuscospora species fell in 

different parts of the graph rather than clustering together or with Lophozonia menziesii, 

and were not associated with many other species (either negatively or positively). 
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Figure 6: Graph for all species after controlling for covariates (slope and altitude) and mediating species. 

There are a range of positive (blue) and negative (red) partial correlations between species. The colour of 

the dot corresponds to growth form; herbs (red), shrubs (green), trees (blue), vines (magenta) and tree 

ferns (cyan). To simplify the display for all plots, we excluded species that were conditionally independent 

of all other species. We employ the Fruchterman Reingold algorithm (Fruchterman & Reingold, 1991) to 

position nodes on the graphs in two dimensions. Some species codes reflect outdated taxonomy (e.g. 

Nothofagus menziesii has been renamed Lophozonia menziesii, but retains the NOTMEN label in the 

dataset). Species at one end of the spectrum (NOTMEN, RAUSIM, MYRDIV, BLEPRO, COPFOE, and GRABIL) 

are associated with silver beech forest, while the other end of the gradient is dominated by species 

associated with the early-mid stages of regeneration of disturbed lowland forest (CYADEA, MELRAM, 

KNIEXC, and UNCUNC). 
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For more informative plots, we can ǲzoom inǳ on certain subsets of species, to better 
examine relationships between individual species. These subset graphs can display 

partial correlation between the species after accounting for covariates and all mediator 

species (including those not in the subset displayed). 

We are able to distinguish between exotic herb species (Trifolium repens (TRIREP), 

Digitalis purpurea (DIGPUR), Holcus lanatus (HOLLAN), Agrostis capillaris (AGRCAP), 

Lotus pedunculatus (LOTPED), Anthoxanthum odoratum (ANTODO), Hypochaeris 

radicata (HYPRAD) and Libertia pulchella(LIBPUL)), which are mostly positively 

correlated with one another, and negatively correlated with the native species (green 

text) by simply looking at the plot of raw correlations (Figure 7a). This pattern is 

consistent with the fact that these exotic species tend to have poor performance in low 

light conditions (e.g. Devkota et al., 1997), and thus differ from many of the native 

herbaceous species (a group which includes a range of understorey ferns) in being 

uncommon in forest understoreys (pers. obs. A. Moles). 

In addition to discerning the same group of exotic herbaceous species (purple) on the 

graph (Figure 7c) we can additionally see that there is no evidence that these exotic 

species are associated or interacting with natives, as they are estimated to be 

conditionally independent of them (Figure 7b), a point which was not clear from the 

negative correlations of Figure 7a. We can also see that one of the exotic species, Libertia 

pulchella(LIBPUL) is more closely associated with the native species. This may indicate 

that while the other exotic species are growing separate to native species, possibly in 

disturbed habitats, the Libertia pulchella is co-occurring with native species. 

Curiously, we found that Hymenophyllum sanguinolentum (HYMSAN) and 

Hymenophyllum villosum (HYMVIL) have a negative partial correlation, even though they 

can cooccur (Brownsey & Perrie, 2014). These two species are often confused with each 

other. This negative relationship may therefore be an artefact of misclassification rather 

than a true negative relationship. Field ecologists may identify one or the other of these 

species, and assume everything similar in a plot is the same fern. The result would be 

that these species be recorded to co-occur less often than expected by chance. 
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Figure 7: Herbs: partial correlations (b and c) and correlations (a). The graph clearly shows a group of 

exotic (purple) herbaceous (Trillium repens (TRIREP), Digitalis purpurea (DIGPUR), Holcus lanatus 

(HOLLAN), Agrostis capillaris (AGRCAP), Lotus pedunculatus (LOTPED), Anthoxanthum odoratum 

(ANTODO) and Hypochaeris radicata (HYPRAD)) that are positively associated with one another, and not 

associated with any native (green) species. While all the plots reveal that the exotic species are distinct 

from the native species (rightmost eight species on plots a and b), partial correlations (b and c) 

additionally show that one exotic species Libertia pulchella (LIBPUL) is more closely related to the native 

species, than the other exotic species. 

 

We observe negative partial correlations between Fuscospora cliffortioides (NOTCLI) and 

other species when not controlling for any covariates (Figure 8a), which are lost after 

controlling for altitude and slope (Figure 8b). This is consistent with out understanding 

that Fuscospora cliffortioides occurs in montane and subalpine forest that tend to occur 

at altitudes between 400 m - 1380 m above sea level, whereas Prumnopitys ferruginea 

(PRUFER), Weinmannia racemosa (WEIRAC) and Raukaua simplex (RAUSIM) occur in 

lower altitude forest types, that range from sea-level up to 700 m in the south island and 

up to 1100 m in the north island (Wiser et al., 2011). 

a) b ) c ) 
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Figure 8: Partial correlation graph of trees before (a) and after (b) controlling for covariates. Looking at 

these graphs can suggest which correlations are explained by the covariates modelled. Negative partial 

correlations between Fuscospora cliffortioides (NOTCLI) and other species are not present after 

controlling for covariates (slope and altitude), presumably because Fuscospora cliffortioides tends to occur 

at higher altitudes. 

 

DISCUSSION 

We have demonstrated a new method for exploring whether co-occurrence patterns 

between species may be explained by indirect mediator species relationships, by 

response to environmental variables, or by neither. GCGMs can be used to analyse a 

wide variety of data types commonly observed in multi-species data in ecology, and can 

accommodate datasets with large numbers of sampling units and/or species in a 

computationally efficient manner. Simulations showed that GCGMs perform as well or 

better than competing methods in most scenarios, especially when the data are ordinal 

or biomass, or when there is known environmental heterogeneity. They are able to 

reproduce known relationships between species, and can generate hypotheses based on 

surprising partial correlation patterns, as demonstrated in our analysis of the New 

Zealand native forest cover data. 

Ecologists have long been studying direct and indirect species interactions using 

manipulative experiments (e.g. Strauss, 1991; Dill et al., 2003) where for a small number 

of species, presences and abundances are manipulated to measure the effect on other 

a ) b ) 
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species. Such manipulative experiments can tease apart direct and indirect species 

interactions. Studies using observational co-occurrence or co-abundance data have 

sometimes also been interpreted as species interactions, including in Harris (2015) and 

Morueta-Holme et al. (2016). However, some care has to be taken with this 

interpretation (Dormann et al., 2018). Species which appear to interact may both be 

responding to unmeasured environmental variables. In addition, when species appear 

not to be interacting (partial correlation is zero), this should not be interpreted as 

evidence of no interaction without some consideration of power and effect size, because 

perhaps we do not have sufficient data to estimate these interactions (e.g. rare species 

had fewer connections in Figure 6, probably for this reason). 

While being generally more flexible than other methods, GCGMs do not have all the 

functionality of existing methods. In particular, as noted in Clark et al. (2018), the sign 

and strength of direct associations can change with environmental gradients (e.g. He et 

al., 2013). Some methods, including the Mrfcov package we evaluate in this paper, are 

able to model such changing associations. GCGMs could be extended to model these by 

using a similar node-wise algorithm applied to the Dunn-Smyth residuals with an 

iterative weighting scheme, and this is an avenue of future research. 

With these caveats in mind, we recommend GCGMs as a method for visualising 

multivariate data, to be used in combination with other visualisation methods like 

ordination. While species interactions cannot be directly inferred from observational 

data, GCGMs can be used as an exploratory tool to generate hypotheses about 

relationships between species, to inform further research. 

Gaussian copulas, as used here, have exciting potential in ecology for the analysis of 

multivariate non-normal data (Anderson et al., 2019). For example, the algorithm used 

to construct GCGMs here is quite general, and can be used to fit any desired covariance 

model on iteratively reweighted data (Popovic et al., 2018). Thus copulas can be readily 

used for ordination, using an iteratively reweighted factor analysis, as a fast, large-

sample alternative to the hierarchical methods currently used for model-based 

ordination (Warton et al., 2015). Copulas can also be used as a simulation model (as in 

Warton et al., 2017), and have potential as a tool for likelihood-based inference about 

multivariate data. 
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Undirected networks, such as those simulated and estimated by GCGMs and Markov 

models (e.g. Figure 8) also hold potential for further research in ecology. They can, for 

example, be analysed with graph centrality measures like degree (the number of edges 

connecting the node/species) and betweenness (the degree to which the path between 

other nodes/species must pass though the node in question) among many others 

(Freeman, 1978). It may be possible to use these to determine the importance of species 

in the ecosystems modelled We look forward to seeing further progress using a copula 

approach and graph theory for multivariate analysis in ecology. 
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