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Abstract.

Climate sensitivity represents the global mean temperature change due to
changes in the radiative balance of climate, and is studied for both
present/future (actuo) and past (palaeo) climate variations. Palaeo-estimates are
often considered informative for assessments of actuo-climate change due to
anthropogenic greenhouse forcing. But this utility remains debated because of
concerns about the impacts of uncertainties, assumptions, and incomplete
knowledge about controlling mechanisms in the dynamic climate system with its
multiple interacting feedbacks. This is exacerbated by the need to assess actuo-
and palaeo-climate sensitivity over different timescales, with different drivers,
and with different (data and/or model) limitations. Here we visualise these
impacts with idealised representations that graphically illustrate the nature of
time-dependent actuo- and palaeo-climate sensitivity estimates. Thus, we
evaluate strengths, weaknesses, agreements, and differences between the two
approaches. This highlights priorities for future research to improve the use of
palaeo-estimates in evaluations of current climate change.

Keywords: Climate sensitivity; present climate; palaeoclimate; idealised
scenarios; feedbacks.

1. Introduction

Studies of past and future climate change often centre on some “climate
sensitivity” to changes in the radiative balance of the Earth. It appears in many
guises. The equilibrium climate sensitivity (ECS) is the equilibrium global annual
mean temperature rise caused by a doubling of atmospheric CO2 concentration
(Charney et al 1979, Knutti & Hegerl 2008, IPCC 2013, Forster 2016, Stevens et al
2016), or a radiative forcing of about 3.7 Wm~2 (c.f,, Myhre et al 1998, Byrne &
Goldblatt 2014, Etminan et al 2016), which can be further amplified or
dampened by a number of feedbacks within the climate system acting on many
different timescales (e.g., von der Heydt et al 2016). The amount of global annual
mean temperature change in response to a given change in the Earth’s radiative
balance is either called “climate sensitivity parameter” or “specific climate
sensitivity” (in K/(Wm=2) or °C/(Wm~2)). The transient climate response is the
global annual mean temperature rise at the time of CO2 doubling; i.e., before the
system fully re-equilibrates with the imposed forcing (IPCC 2013).

No matter which definition or timescale is considered, the response (or
sensitivity) of climate (or temperature) to a perturbation in the radiative balance
(or forcing) is an important metric for evaluating the potential outcomes of
anthropogenic impacts on the radiative balance, such as greenhouse-gas
releases, land-use changes, and aerosol emissions. The radiative balance, in turn,
represents the sum of radiative forcings and feedbacks, where the latter occur
over a wide range of timescales (Figure 1), and which collectively determine the
surface temperature on Earth. Feedbacks are commonly categorised as “fast”
when acting within less than 100 years, or “slow” when acting over longer
timescales, although this timescale-based distinction is somewhat blurry in
reality (Figure 1) (see overview in PALAEOSENS 2012).
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Attempts at constraining climate sensitivity have been made throughout the past
century and before, and despite advances in our understanding of the physical
processes that govern the Earth’s climate, the estimates have not changed much
from the very earliest ones (Arrhenius 1896, Callendar 1938, IPCC 2013, Stevens
et al 2016). Current estimates of climate sensitivity remain within a 66%
probability range of 1.5 K to 4.5 K (Charney et al 1979, IPCC 2013, Stevens et al
2016). But research into this climate metric has intensified in recent years,
notably because of increasing concerns about our future global warming
trajectory and implementation of mitigation strategies (Mann 2014). Climate
sensitivity has been extensively investigated in modelling studies for both past
climates (e.g., Lunt et al 2010) and projections into the future (e.g., Fasullo &
Trenberth 2012, Sherwood et al 2014), while another intensive branch of
research is based on climate sensitivity estimates from past climate
(palaeoclimate) reconstructions (Hansen & Sato 2012, PALAEOSENS 2012,
Skinner 2012, Royer 2016, von der Heydt et al 2016). An emerging property of
recent investigations into present-day ECS is some apparent non-linearity or
climate-background-state dependence (Knutti & Rugenstein 2015). In the typical
approach to calculate ECS, extrapolating transient climate simulations following
an abrupt doubling of CO2 to the point when surface temperature change
becomes zero, it turns out that a linear relationship is not the best approximation
(Bloch-Johnson et al 2015), and also the so-called fast feedbacks are still
changing after more than 150 years (Rugenstein et al 2016). These are key issues
for further research. In addition, there is interest in better understanding climate
sensitivity and the forcing and feedback processes that control Earth’s climate
through past episodes of climate change, such as Plio-Pleistocene glacial-
interglacial cycles and earlier Cenozoic events and sustained episodes of global
warming. Also in this field, potential state dependence is a key focus.

Palaeoclimate data can be used to evaluate climate sensitivity in several ways,
which include the analysis of: (i) time series of the recent past, such as the last
millennium (Hegerl et al 2006); (ii) comparing the present (preindustrial) with
specific time slices, such as the Last Glacial Maximum (Hansen et al., 1984,
Schneider von Deimling et al 2006, Schmittner et al 2011), or Cenozoic intervals
that were warmer and had higher-than-preindustrial atmospheric CO-
concentrations (Pagani et al 2010, Hansen et al 2013b, Anagnostou et al 2016);
or (iii) multiple climate cycles, such as the repeated alternation between glacial
and interglacial periods that characterised the Pleistocene Epoch (Hansen et al
2007, Rohling et al 2012, von der Heydt et al 2014, Kohler et al 2015; Friedrich
et al 2016) or the Pliocene (Martinez-Boti et al 2015). These approaches suffer
from relatively large uncertainties that are inherent to the use of proxy data,
from a shortage of globally distributed datasets of past temperature changes that
span the desired timescales, and from problems in obtaining consistent
chronologies for the various time series of climate forcing and responses.
Regardless, climate sensitivity estimates from palaeoclimate data have the
merits of being based on real data and being calculated through a full range of
climate states, including those colder and warmer than preindustrial.

Climate sensitivity to changes in climate forcing depends on numerous response
(feedback) processes - all with their own (uncertain) timescales (Figure 1) and
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(uncertain) relative radiative contribution, or efficacy (Hansen et al 2005, Bony
et al 2006). The conceptual background has been previously discussed, both in
relation to modern/future (hereafter referred to as “actuo”) climate change and
to palaeoclimate change (e.g., Charney et al 1979, Hansen et al 1984, 2005, 2007,
2008, 2013b, Skinner 2012, Marvel et al 2016, von der Heydt et al 2016). In
PALAEOSENS (2012), discussions were synthesised, and relationships
mathematically evaluated.

Here we outline the PALAEOSENS (2012) framework, and consider its
implications as well as challenges. We then formulate some simple, purely
theoretical, graphical representations to illustrate and evaluate the nature of the
probability distributions for climate sensitivity in response to anthropogenic
forcing and through episodes of climate change in the palaeoclimate record. We
use these schematic representations to investigate how climate sensitivities from
actuo- and palaeo-studies can best be assed to make them comparable to one
another. Finally, we consider implications of the results for the potential of
narrowing down the climate sensitivity range and/or its dependence on climate
background states.

2. Framework

PALAEOSENS (2012) outlined an approach that uses reconstructions of key
climate parameters in the geological past to approximate the equilibrium fast-
feedback climate sensitivity term that applies to actuo-climate studies (5% i.e.,
the equilibrium climate sensitivity calculated when all fast feedbacks and surface
ocean warming have completed). The main issue that needed to be addressed in
aligning climate sensitivity estimates from palaeoclimate studies with those from
actuoclimate studies concerns the contrasting timescales involved - natural
climate change is much slower than anthropogenic climate change (Crowley
1990, Zeebe et al 2016). Natural change therefore includes the action of
feedbacks that are too slow to be relevant over the next 100-200 years, and/or
relate to processes that are not (yet) included in climate models due to
computational limits (e.g. continental ice sheets).

One way to address this issue uses the so-called “time-dependent climate
sensitivity” approach, which accounts for both fast and slow feedbacks, and
which allows evaluation of climate sensitivity continuously over timescales that
are relevant both to the imminent future and to the distant geologic past (Zeebe
2013). It builds on the notion that fast and slow feedbacks operate continuously
in the climate system, thereby modulating the evolution of climate and its
sensitivity to forcing through time. The fast feedback climate sensitivity is set (to
3 K), while the evolution of the slow feedbacks (carbon cycle, vegetation, low-
latitude glaciers, and polar ice sheets) is modelled using constraints from the
palaeoclimate record. The strength of this approach for future climate
projections lies in the comprehensive estimates of anthropogenic warming (and
its duration) that it delivers. For example, it accounts for the impacts of warming
on the solubility of COz in the ocean, which further enhance global warming by
increasing atmospheric COz concentrations (Zeebe 2013). Note that this
approach relies on linearization of the climate response around the background
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climate, and only applies to cases where the climate system (after a very long
time) reaches a unique and true equilibrium. In reality, the climate system may
instead: (a) exhibit variability on many different timescales (interannual to
orbital) with potentially different characteristics under CO2 forcing; and (b) cross
tipping points that imply highly nonlinear climate responses (e.g. Drijfhout et al
2015).

Another way, which has been more extensively applied, explicitly resolves
radiative forcing due to the slow feedback processes (e.g., ice-sheet albedo,
vegetation albedo, and/or greenhouse-gas concentrations), and then removes
their influences from the calculated climate sensitivity (Hansen et al 2007,
Kohler et al 2010, Masson-Delmotte et al 2010, PALAEOSENS 2012, Rohling et al
2012, Martinez-Boti et al 2015). PALAEOSENS (2012) proposed the parameter S¢
for palaeoclimate sensitivity in terms of temperature change relative to forcing
due to COz change only, which is equivalent to their specific climate sensitivity
term Sjcoz) (also known as Earth System Sensitivity). Similar specific climate
sensitivity terms can be formulated relative to other (combinations of) slow
feedback processes; e.g., relative to CO; and land-ice changes (Scoz, ij), or to
changes in overall greenhouse-gas levels, land-ice albedo, and vegetation albedo
(SteHg, 11, vg))- Conceptually, the PALAEOSENS (2012) approach assumes that SP
can be “corrected” for all processes that are either slow or not included in
models, such that one ends up with an approximation of $2. The subscripts then
identify the slow feedbacks that are “corrected” for, or that - in other words - are
effectively considered as climate forcings. This is a pragmatic approach that
requires knowledge about the radiative impacts of all processes at any moment
in the past, which then becomes the real challenge. Here we evaluate
comparability between “actuo” and “palaeo” examples, following the
PALAEOSENS (2012) approach of focussing on specific radiative contributions of
the various processes, since this approach can be relatively easily illustrated in
graphical examples.

In more specific terms, PALAEOSENS (2012) argues that the observed relatively
low rates of temperature change imply that climate remained close to
equilibrium, especially in the preindustrial past. In general, global annual mean
temperature changes are small relative to the 288 K (15°C) absolute
temperature of Earth’s surface. Temperature change (warming) over the past
several decades amounts to between 0.01 K/y (IPCC 2013) and 0.015 K/y
(Hansen et al 2010). During Pleistocene deglaciations, it was an order of
magnitude slower (Masson-Delmotte et al 2010, Shakun et al 2012, Friedrich et
al 2016, Snyder 2016), and during the dramatic onset of the Palaeocene-Eocene
Thermal Maximum, 56 million years ago, rates of global warming were
somewhere in between those two (Zachos et al 2006, Zeebe et al 2009, Kemp et
al 2015). Today, climate is affected by an external forcing (notably greenhouse-
gas release) that is increasing faster than all but the fastest climate processes can
respond. Thus, the climate remains in a state of disequilibrium until sufficient
time has elapsed for the slower processes to adjust, where completion of
centennial-scale surface ocean heat uptake is commonly used to denote
“equilibrium”. Indeed, the “energy imbalance” caused by ocean heat uptake is
widely used as a measure of the overall disequilibrium state (e.g., Hansen et al
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2011, 2013, 2016). During most of the pre-industrial past, climate feedbacks
were close to equilibrium with the global temperature, given that these
processes themselves were driving the climate changes.

For close-to-equilibrium changes in the past, radiative impacts of the global
mean external climate forcings (negligible annual mean global insolation
changes), slow feedbacks (including carbon-cycle processes), and fast feedbacks
must have been almost, if not precisely, balanced. Hence, ARy + ARy = 0, where
AR stands for radiative change, sf stands for the sum of all (slow feedback)
forcings, and ff stands for the sum of fast feedbacks (for more detail, see:
PALAEOSENS 2012, von der Heydt et al 2014, von der Heydt & Ashwin 2016).
Thus, for a given (small) temperature change AT, the equilibrium fast-feedback
climate sensitivity parameter S = AT/ AR|; may be approximated by S = AT/
AR[s. Estimates following this approach throughout the Cenozoic Era
consistently fall within a distribution of about of 0.3-1.9 or 0.6-1.3 K/(Wm™—) at
95% or 68% probability, respectively (Kohler et al 2010, Masson-Delmotte et al
2011, PALAEOSENS 2012, Rohling et al 2012, Martinez-Boti et al 2015, Friedrich
et al 2016). The latter scales to a warming of 2.2-4.8 K per doubling of
atmospheric CO2, in agreement with IPCC estimates (IPCC 2013).

A major question that remains open is whether this distribution reflects: (1)
reconstructed climate sensitivity values that are scattered randomly through the
range that is determined (i.e. random uncertainty); or (2) - more likely - a
combination of different, narrower palaeoclimate sensitivity ranges from
different time periods, and in particular from different background climate
states, which would therefore represent a “systematic” source of uncertainty
(see also Stevens et al 2016, von der Heydt et al 2016). Indeed, model-based
process studies and theoretical considerations drive an expectation that the
value of climate sensitivity should depend on the prevailing climate background
state, as contributing feedback processes may become more or less effective (i.e.,
their efficacy may change) under different background climate conditions (e.g.,
Crucifix 2006, von der Heydt et al 2016, for an attempt to define different types
of state dependence). Recent work using palaeoclimate observations (von der
Heydt et al 2014, 2016, Kohler et al 2015) suggests that state-dependence may
be detectable with model-based interpretation of the data, but the matter has not
yet been conclusively resolved due to the uncertainties involved in the data and
in the (chronological) comparisons between records. In detail, the state-
dependence identified in Kohler et al (2015) mainly resulted from calculation of
the land-ice albedo radiative forcing, AR, based on deconvolution of the global
deep-sea benthic oxygen isotope record with 3D ice-sheet models. Another,
relatively minor contribution resulted from latitudinal dependence of changes in
incoming insolation, I. Combined, these drove a non-linear relationship between
AR and sea level. Earlier approaches used either simpler 1D ice-sheet models
(van de Wal et al 2011), did not similarly account for the latitudinal dependence
of I (Kohler etal 2010, PALAEOSENS 2012), or approximated ARy as a linear
function of sea level (Hansen et al 2008, Martinez-Boti et al 2015), and therefore
were primed to miss the state-dependence detected by Kohler et al (2015). More
recently, a similar non-linear relationship between global temperature change
and radiative forcing was found in 784-kyr-long simulation results from an Earth
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system model of intermediate complexity, which also suggests state dependence
of climate sensitivity (Friedrich et al 2016).

A key cause of state dependence of climate sensitivity — especially with respect to
slow feedbacks - concerns change in the efficacy of one or more of these
feedbacks under different climate states, meaning that the radiative contribution
of these processes changes through time. For example, a similar unit area of ice
has a stronger radiative impact at lower latitudes than at higher latitudes; i.e., the
efficacy of the ice-albedo feedback may be noticeably stronger for lower-latitude
ice than for higher-latitude ice. This notion has implications for palaeoclimate
sensitivity studies in which maximum versus intermediate glaciation states are
considered. In another example, large-scale clustering of continental mass at low
latitudes in the Neoproterozoic supercontinent of Rodinia is thought to have
amplified the difference between continental reflection and sea-surface
absorption of incoming solar radiation, relative to distributions with more
continental mass at higher latitudes, which facilitated major global cooling that
eventually led to Snowball Earth (Kirschvink 1992), although this influence
remains contested (Poulsen et al 2002). But state dependence of climate
sensitivity may also result from less obvious changes that - in particular for fast
feedbacks - are not necessarily well approximated in terms of efficacy changes.
Among these, variations in cloud coverage and types are among the least
understood parameters in palaeoclimate studies, even though they likely exerted
a major control on both albedo, and retention of outgoing long-wave radiation
(e.g., Bony et al 2015, Zhou et al 2016).

So far, it is virtually impossible to develop a comprehensive view of past efficacy
changes for most feedbacks. This complicates reconstruction of state
dependence in palaeodata-based studies. A pragmatic solution is therefore
needed. One approach assumes constant efficacies for all feedbacks, and then
assesses whether calculated equilibrium climate sensitivities appear to have
been constant or variable with climate background state. Any inferred variations
subsequently become targets for investigating potential variability of feedback
efficacies. Alternatively, hybrid approaches are possible, in which feedback
efficacies through time are assessed with climate models. But this introduces
potential model bias into the primarily observation-based estimates, so that
subsequent comparisons with model-based results become somewhat circular.

In the next section, we use highly idealised examples to graphically illustrate: (a)
the controls on palaeoclimate sensitivity probability distributions; (b) the
limitations due to data availability issues that affect approximations of S? using
Stsn in palaeodata-based studies; and (c) how state-dependence due to temporal
changes in feedback efficacy may factor into the reconstructed probability
distributions.

3. Actuo- versus palaeo-climate sensitivity

As a first step toward more precise assessments of climate sensitivity,
PALAEOSENS (2012) advocated strict adherence to specific definitions, to avoid
conflating information that applies over different timescales and different
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climate background states, as tends to occur in broadly generalised approaches
(Pagani et al 2010, Snyder 2016). However, while the PALAEOSENS (2012)
framework may ensure like-for-like comparisons, it still involves choices and
assumptions that may affect the outcome (e.g., Skinner 2012). In consequence,
climate sensitivity is more a “moving target” than a unique fixed number,
depending on the choices and assumptions made, and on the timescales and
climate background states over which it is considered. Also from the point of
view of dynamical systems theory, climate sensitivity is more likely a probability
distribution than a single number (von der Heydt & Ashwin 2016), where the
distribution arises not from randomness or observational errors, but from the
actual climate system dynamics that exhibit state-dependent behaviour through
their fast feedback processes. Thus, pertinent questions remain about the extent
to which a determination of S[;g may provide insight into the S¢ that is relevant to
anthropogenic forcing. We explore this with simple, schematic and idealised
graphic example scenarios.

Different from most modelling approaches to climate sensitivity, we consider
here a time-dependent climate sensitivity S(t) to reflect both short-term
variations and longer-term background-state dependence of S. We follow the
general principles laid out before (PALAEOSENS 2012), where S is determined
by the radiative balance of the planet and different feedbacks enhance or
dampen the initial temperature response:

AT -1

AR 2p+3N Af43M 28

(1)

Here the A terms refer to the strength of different feedback processes (in terms
of a “feedback factor,” in Wm-—2K-1), sorted by the time scale on which they act: Ap
reflects the change in long-wave radiation in the absence of other feedbacks (the
so-called “Planck” feedback), and superscripts fand s denote N fast and M slow
feedback processes, respectively. Note that equation (1) includes the sum of slow
feedbacks (third term in the denominator), which is the version applicable for
calculating palaeo-climate sensitivity in the PALAEOSENS (2012) framework. For
actuo-climate sensitivity, that sum of slow feedbacks is omitted from the
denominator.

Generally, feedback factors are assumed to be constant. However, to reflect state
dependence of feedbacks, a time-dependent climate sensitivity S(t) results from
the fact that both AYand As can be time dependent. For example, state dependence
of fast feedback processes as inferred between glacial and interglacial periods
(von der Heydt et al 2014) may be represented by a (long time-scale) variation of
M(t). The different response times in all feedback factors can be reflected by a
delayed growth of the feedback factors for those processes with slower
timescales. First details in this direction were published by Zeebe (2013), where
the slow feedback processes (A5) were assumed to grow from zero to their full
strength after a certain time delay.
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We adopt a similar approach with focus on changes in the time-domain.
However, our schematic scenarios build up the argument in terms of simple
prescribed functions for the radiative contributions (4R) from the various
processes, rather than in terms of feedback responses. This is done because we
aim to graphically compare palaeo- with actuo-scenarios, and for palaeo-
scenarios the data more directly resolve 4R contributions (Hansen et al 2007,
2008, Kohler et al 2010, Masson-Delmotte et al 2010, Rohling et al 2012).

Our actuo-scenario (section 3.1) and palaeo-scenario (section 3.2) represent
processes that control changes in the radiative balance of climate by means of
simple prescribed sigmoidal response functions, with random, uniformly
distributed, uncertainty ranges that are evaluated in a Monte-Carlo-style
approach of 1000 separate instances. Each response function describes a
schematic time-dependent development of a radiative anomaly, in which a phase
of exponentially increasing growth from zero is followed (in a symmetrical
manner through time) by a phase of exponentially decreasing growth until
settling at the stipulated maximum radiative impact of the process considered.
The various response functions are then summed up, giving a median record of
total radiative change over time, and an uncertainty range, based on percentile
ranges across all Monte-Carlo instances. A rough scaling is worked out for each
instance to calibrate the record of total radiative change to one of total
temperature change over time. This temperature record is then used in a ratio
relative to the records for component sums AR and AR, to estimate the
implied $? and Sjs, respectively.

Although our radiative response functions are simple prescribed functions
rather than fully interactive feedback processes, we aim to use reasonably
realistic amplitude scalings (efficacies) for the contributing radiative (feedback)
processes in both the actuo- and palaeo-scenarios, based on published numbers
for modern climate and for Pleistocene glacial-interglacial cycles. Yet we
emphasise that the scenarios may not be viewed as in-depth analyses, since they
do not comprehensively represent the interactive physics of the climate system.
Including the latter would deeply entangle the idealised results shown here, and
confound relationships between the various climate sensitivity definitions and
their underlying processes. This would make it more difficult to visualise the
potential impacts of issues such as limited data availability, unknown past
processes, and fundamental uncertainties. Our idealised example scenarios guide
the discussion by visualising such impacts (sections 4.1 and 4.2). Finally, given
that our approach - which draws on proxy-based palaeo-reconstructions of
radiative forcing anomalies (4R) to calculate temperature change (4T) and
climate sensitivity (S) - may be less familiar to climate modellers, we end the
discussion with an illustration of how the importance of the time-domain might
be addressed in a feedback-focussed analysis framework (section 4.3).

3.1. lllustrative scenario for actuo-climate sensitivity

For the actuo-climate scenario, we consider that - for any given trigger (e.g.,
greenhouse-gas emissions) - a sequence develops of delayed temperature
responses (indicated with §) and radiative feedback responses (indicated with
AR), all with their own timescales and amplitudes. Key responses to be taken into
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account are the direct warming effect of the emissions, the associated outgoing
long-wave radiation cooling response (the Planck response), and other typical
“very fast feedbacks” that include changes in water-vapour content, atmospheric
lapse-rate, and cloud albedo. All of these operate quasi-immediately and are here
rolled into one term that also includes the impact of a single greenhouse gas
introduction within the first year (4R[rz)), since separating these impacts is not
needed for the simple scenarios considered.

We scale the total of the initial forcing to 3.7 Wm~2, based on the sum of the
modern effective climate forcings for CO2, CH4, CFCs, N20, and O3 through 2015
(Hansen et al 2016) (Figure 2). Note that this is different in nature - but
confusingly similar in magnitude - to common estimates given for the radiative
forcing of a doubling of CO2 concentrations. We assign to this forcing a uniformly
distributed uncertainty range of £10% to span the reported £0.3 Wm-2 range of
observations (Figure 2). We partition this 3.7 Wm~2 (£10%) in a simple manner,
into: (a) a virtually instantaneous response of 60% (4R[t2; = 2.2 Wm~2) in year 1;
(b) a somewhat slower response of (arbitrarily set) 10% due to snow and sea-ice
albedo adjustment over a few decades (4Rssij = 0.4 Wm~2); and (c) a delayed
temperature response of 30% caused by surface ocean and deep ocean heat
uptake (8(so) + Opoj = 1.1 Wm~2) (Table 1). The latter is based on an observed
cumulative ocean heat uptake of about 125x1021 ] between 2000 and 2010 (IPCC
2013, Whitmarsh et al 2015). We simply partition this 50:50 between surface
and deep, although in reality the observed (and CMIP5 simulations confirmed)
cumulative ocean heat uptake over the industrial era is unequally distributed,
with about 33x1022 ] in the upper 700 m of the ocean, and 10x1022 J and 7x1022 ]
in 700-2000m and deeper, respectively (Gleckler et al 2016). The final fast
feedback considered (4R[ag)) involves the albedo impacts of aerosol and land-
surface changes, with timescales up to a few decades. We scale AR to -1.2
Wm-~2 based on the effective climate forcing of aerosol and surface albedo
through 2015 (Hansen et al 2016), and we capture the reported uncertainties
with a generous, uniformly distributed, uncertainty range of +50% (Figure 2;
Table 1). Note that, by including the present-day effect of aerosols, our approach
is not easily comparable with GCM-based results for ECS (typically obtained from
2xCO02 experiments), since aerosol impacts are not commonly included in those
simulations. But aerosols are an important aspect of real-life climate change, and
ignoring them would skew results.

The fast responses AR|r2), AR[ssi;, and AR|ag), are followed by the influences of
delayed surface-ocean (upper 2000 m) heat uptake (dsoj) and carbon-cycle
feedbacks such as permafrost or wetland releases of methane (4Rcrg)), over
timescales of up to a few centuries. Then follow even slower responses, related
to deep-ocean (> 2000 m) heat uptake over a millennium or two (dpoj), albedo
changes due to large-scale reorganisations of vegetation that may occur over
many centuries (4R[vgy), and multi-century to millennial-scale (Grant et al,, 2014)
continental ice-sheet albedo adjustments (4R[Lyj). The amplitudes of §so) and
Omo) were discussed above, AR(crp is arbitrarily set to 5% of AR(rz), and 4AR[vq) is
arbitrarily set to 5% of the sum AR[r2;+ AR[ag}. Both AR(cre) and AR|vc) are
assigned uniformly distributed uncertainty ranges of +50%.
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For ARy, we rely on suggestions that — as long as CO2 levels remain well below
about 750 ppm (DeConto & Pollard 2016) - ice-sheet changes affect sea levels up
to about 20 m above the present (Foster & Rohling 2013, Rohling et al 2013,
Gasson et al 2016). We use a median adjustment of 10 m sea-level rise for our
scenario, in agreement with peak values for the previous (Eemian) interglacial
when temperatures rose to around 1 °C above present (see discussions in
Hansen et al 2013a, 2016, Hoffman et al 2017). Reconstructions for palaeo-
scenarios infer that the radiative impacts of ice-sheet decay equal about 3 Wm~
per 125 m equivalent sea-level rise (Hansen et al 2008, Kohler et al 2010,
Rohling et al 2012). There remains considerable uncertainty with this number.
Using 3D ice-sheet models, Kohler et al (2015) find 4 Wm-2. Friedrich et al
(2016) report only 1.5 Wm~2, likely related to a smaller simulated albedo change
between land-ice-covered conditions and no-ice conditions relative to that used
in Kohler etal (2015). We use a uniformly distributed uncertainty of +50% to
ARy, to allow a uniform range between 1.5 and 4.5 Wm-2 for a 125-m-
equivalent sea-level change, which spans the estimates in the literature. Hence,
we set the median ARy in the actuo-scenario to 3x(10/125) Wm™2, for sea-level
rise up to +10 m. We accept that use of this linear approximation of AR from
sea-level change obscures a potentially important non-linearity of the climate
system, which may underpin state-dependence in Sicoz,L over the last 2 Myr
(Kohler et al 2015).

For each process, the aforementioned idealised signal-development curve uses
the standard functional form

(h+ep)

AR = )

(2)

Here h is the total signal amplitude (Table 1, with range as stated), t is time, 7 is
the timescale of full response (Table 1, with range as stated), @ is a translation
constant (set to 0.5) to ensure that signals start at t = 0, and c is an acuteness
constant (set to 14) to ensure that full signal amplitude is achieved over
timescale 7. We run equation (2) for each process in a Monte-Carlo-style manner
(n=1000), with random perturbations over the uniformly distributed uncertainty
ranges to both h and 7 (&5 and &; in Table 1). Note that we chose uniform
distributions because the uncertainties do not so much represent standard
random error distributions around a mean, as ranges within which parameter
values may systematically shift (efficacy changes) in relation to changes in the
climate background state. We then add all instances up across all processes to
yield the cumulative radiative response, and determine the median along with
the 2.5t and 97.5t percentiles that delineate the 95% probability bounds
(Figure 3a - note that probability bounds are only shown for the cumulative
total, to avoid clutter).

Next, we roughly scale the cumulative radiative response distribution, ARto(t),
to a distribution of total temperature change through time, AT(t) (Figure 3b),
assuming a constant amount of temperature change per Wm-2 of radiative
change, regardless of the process. A rough scaling is sufficient because we are not
attempting to model reality, but only to create a graphic illustration scenario.
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Our approach scales each individual Monte-Carlo instance’s sum of completed
radiative contributions by fast forcings/feedbacks (ARysn = AR[r2) + AR[ssn) +
AR[ag)) at the time-point of calibration (tc.;, where all fast responses are
completed; blue bar in Figure 3a), to a prescribed temperature change, AT¢ca. In
the actuo-scenario, AT is randomly drawn from a normal distribution with a
mean of 1 °C and 1o of 0.1°C, in approximation of the current amount of global
warming in response to the net radiative change due to forcing (greenhouse-gas
emissions) and fast feedbacks (Hansen et al 2016, 2013a, IPCC 2013). This yields
Steal = AT¢cal / AR eca, Which in turn gives the time-series of temperature change
using AT(t) = ARty (t) * Stca, With propagation of all uncertainties in the various
ARterms and in AT¢cq across all Monte-Carlo instances (Figure 3b).

We now have ARy (t) and AT(t) (Figure 3a,b). This allows estimation of time-
dependent climate sensitivity parameter S(t) = AT(t) / AR, (t) (Figure 3c).
Because AT(t) develops in response to the action of all forcings/feedbacks
(ARroy(t) = AR (t) + ARsp(t)), while S(t) depends only on ARy (t), the
reconstruction of S(t) continues to vary after completion of the fast processes.
The conceptual “equilibrium” value S? is achieved when surface-ocean warming
has completed, while slow feedbacks have not yet become important
(PALAEOSENS 2012), hence S? is best identified at t = 200 y in our scenario. Its
range reflects propagation of all uncertainties in all input variables, and we
constrain 95% probability bounds using 2.5t and 97.5t percentiles across all
1000 instances. Histograms for S are given in red in Figure 4.

However, there is a complication. By t = 200 y, the scenario’s relatively rapid
carbon-cycle feedbacks (4R(crs)) have come into play. This illustrates the
complexity of using a stationary definition to diagnose a complex, dynamic, and
interconnected system. At t = 200, we therefore read values of §¢ calculated with
(dashed red in Figure 4) and without (solid red in Figure 4) explicitly accounting
for AR|crp}. While possible in our simple scenario, explicitly accounting for AR|crg;
is difficult in reality because it requires knowledge of the proportion of carbon
derived from feedbacks, relative to that of anthropogenic external carbon input
into the climate system. Hence, the solid red line in Figure 4 is more relevant
practically. The real climate system contains more of such processes, including
changes in oceanic carbon uptake efficiency in response to changes in the
oceanic temperature and carbon cycle: our simple scenario illustrates the
impacts of such issues, but is not all-inclusive.

S@at about t = 200 y still does not reflect the actuo-scenario’s full development in
response to the initial forcing discussed above. Even without further external
forcing, temperature continues to change (first increase, then decrease) because
the impacts of slow processes come into play. In our scenario, the key slow
processes (dpoj, 4R[vc), and AR[yj) reach completion after about 1000 years (for
the land-ice-volume component in reality, this may be too fast, given that
adjustment over ~3000 years has been suggested by modelling studies; Clark et
al 2016). From about t = 3000 years, carbonate compensation becomes a player
as the first of the very slow Earth system responses (eventually including also
weathering) that slowly remove the carbon. We portray the “peak” value of 5(t)
(here named $™) using the distribution between t = 1000 to 3000 y. Results are
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presented as solid/dashed blue histograms in Figure 4 (without/with explicitly
accounting for AR[crs), respectively). If the AR|Lij adjustment time were stretched
to ~3000 years (cf., Clark et al 2016), S would be a narrower peak of similar
amplitude, centred on t = 3000 y.

3.2. lllustrative scenario for palaeo-climate sensitivity

Palaeo-climate sensitivity is approached differently. It relies on quantification of
the slow feedbacks; notably those associated with carbon-cycle changes as
expressed in greenhouse-gas records (4RcuHc]), with continental land-ice albedo
changes (4Ry), and with vegetation-albedo changes (4R[vq]). As outlined before,
these slow feedbacks are effectively considered as forcings, and their sum (4Rs7)
is used to approximate the sum of fast feedbacks (4Rg). The development with
time in palaeo-climate sensitivity is then estimated as Sisp(t) = AT(t) / ARsa(t)-
Within that time-series, equilibrium palaeo-climate sensitivity is identified as
Stsn, and is reached after all slow feedbacks have reached completion.

Conceptually, no immediate agreement might be expected between actuo- and
palaeo-climate sensitivity estimates because they are determined from processes
operating over very different time scales, with different assumptions and
uncertainties. For example, past climate variations were not adjustments to very
rapid, high-amplitude perturbations along the lines of actuo-climate
adjustments, but were triggered by slowly developing processes such as orbital
forcing, with timescales of many thousands of years. Hence, palaeoclimate
records reflect co-evolving changes in all climate-regulating processes (bar the
very slowest ones, such as plate-tectonics) either in, or near to, equilibrium with
the changing forcing. In consequence, most studies based on time-series of
temperature and slow-feedback change directly find the equilibrium value S,
although this may not be true in highly resolved studies over centennial-to-
millennial-scale climate fluctuations (see below). In addition, palaeoclimate
records represent an integration of all feedback processes; e.g., not only is the
temperature response to CO; changes included, but also the COz response to
temperature changes. Our simple palaeo-scenario allows such complications to
be teased apart, to gauge over what timescales signals need to be considered to
approximate the desired “equilibrium sensitivity”, and what the consequences
would be of pushing reconstructions from palaeodata into shorter timescales.

For scale and duration of the processes in our palaeo-scenario, we draw on
studies of glacial cycles of the last 800,000 years. As such, this scenario may be
seen as a rough approximation of a deglaciation. Deglaciations were triggered by
orbital forcing of climate, and in particular by changes in northern hemisphere
summer insolation (Hays et al 1976). Orbital forcing involves minor annual-
mean global-mean forcing (<<0.5 Wm-~2), but sets up considerable gradients on
spatial (latitudinal) and seasonal scales. For very long, it was not exactly
understood how these triggered deglaciations (Shackleton 2000, Denton et al
2010, Abe-Ouchi et al 2013), although the timing relationship was reasonably
clear (Hays et al 1976, Cheng et al 2016). Recently, a simple model has related
every deglaciation of the last one million years to the crossing of summer
insolation through a simple threshold (Tzedakis et al 2017).
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Our palaeo-scenario considers an idealised sequence of events inspired by data
for the penultimate glacial termination (Marino et al 2015, Holloway et al 2016)
because this termination avoids the greater complexity of the last deglaciation,
yet still has the requisite chronological control for the relevant climate records
(Billups 2015, Marino et al 2015). Following the initial perturbation (orbital
forcing) and fast responses, continental ice-volume changes over thousands of
years drove the further feedback responses mainly through bipolar temperature
see-saw processes (Stocker 1998, Stocker & Johnsen 2003) that led to rapid
Southern Ocean warming and sea-ice reduction, CO2 outgassing, warming and
vapour feedbacks, etc. Here we include aerosol changes in that suite as well,
despite a lack (so far) of unequivocal empirical evidence of that particular
coupling. There is no unambiguous empirical evidence about the phase
relationship of global mean vegetation responses to ice-volume changes, either.
But given that we seek only to formulate an illustrative, idealised scenario, we
simply assume that key vegetation changes take place within centuries following
land-ice changes.

The orbital-forcing component is ignored here because of our focus on annual-
mean global-mean forcing. But it is important in that it triggers feedback
responses in the climate system that start directly when climate begins to
change; some develop rapidly and others develop slowly. For example, small,
regionally/seasonally focussed warming due to orbital forcing triggers sea-ice
retreat as well as changes in surface albedo and air-sea carbon exchange, which
drive further warming, etc. Thereafter, the slow feedbacks come into action, such
as land-ice and vegetation albedo changes. When that happens, fast processes
keep interacting with slow feedbacks. Palaeo-reconstructions cannot distinguish
fast responses associated with slow processes from the slow processes
themselves, or indeed the acceleration of slow processes due to associated,
superimposed fast responses. Note that similar interactions occur in actuo-
climate changes, but our simple actuo-scenario avoids this issue by pragmatically
viewing the stipulated slow feedback influences as effective net impacts. Doing
so in the palaeo-scenario would divorce our scenario too much from the palaeo-
reconstructions, in which temperature (and fast feedbacks) closely co-evolve
over thousands of years with the slow feedbacks (e.g., Rohling et al 2009, Grant
etal 2012, Grant et al 2014). Because our simple palaeo-scenario cannot resolve
such interactions (a dynamic model would be needed), we instead include a
crude representation by evaluating the contribution of fast feedbacks to
palaeoclimate change as a two-staged development. One stage stands for the
initial responses (indicated in Table 2 with i in the parameter names), and the
other is the subsequent fast-feedback response (indicated with r) associated
with development of the dominant slow continental land-ice feedback (4R[.y).
We tentatively set 0.15:0.85 proportionalities for this, respectively. The
proportionality is crudely inspired by early (initial) CO; jumps that pre-date
significant ice volume/sea level responses, at around 16.3, 14.8, and 11.7
thousand years ago, with COz levels in each case jumping abruptly by about 15%
of the total deglacial change (Lambeck et al 2014, Marcott et al 2014).

To obtain Sis, slow feedbacks are effectively considered as climate forcings in
the PALAEOSENS (2012) framework. Our scenario considers the total
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greenhouse-gas forcing component AR[gxc)- In palaeodata studies, this can be
determined from records of greenhouse-gas changes (notably from ice cores).
These integrate all carbon-cycle feedbacks, including carbonate compensation
and weathering, which therefore need not be considered separately. We then
add the continental land-ice albedo effect, which can be found from sea-level
reconstructions, giving 4AR|cuc) + AR[L1- Finally, the slow vegetation-albedo
feedback (4Rvc)) should be similarly accounted for, but this is substantially
challenged by an absence of good, global data coverage, which definitely needs
addressing through future research. To date, hardly any palaeostudies have
accounted for ARv¢) (Friedrich et al (2016) is an exception), and we assess the
implications by showing results that either include or exclude AR|vq).

We roughly “calibrate/scale” our palaeo-scenario on the basis of values for the
radiative forcings and feedbacks compiled by Rohling et al (2012) and (Ko6hler et
al 2010) (Table 2), with a total median value of 3 Wm-2 for ARy (see section 3.1
for discussion) and 2.5 Wm~2 for 4AR|cuc)- We use 4ARvg; = 1 Wm~?, in agreement
with Friedrich et al (2016). We assume that the PALAEOSENS (2012)
assumption that ARy is proportional AR5 holds true over timescales of more
than a few thousand years. On shorter timescales, it cannot be correct since fast
feedbacks dominate at first, while slow feedbacks become important at a later
stage (our results illustrate this). Proportional contributions of individual fast
responses are irrelevant here because our assessment always considers their
summed value, but just for illustration’s sake we have made an attempt at
reasonably apportioning them (Table 2). The total median range of ARag; is
estimated at around 1.5 Wm-~2, and for snow and sea-ice albedo we use ARssij = 2
Wm-2, based on discussions in Rohling et al (2012) and (Kohler et al 2010). This
leaves 3 Wm-~2 for the outgoing long-wave radiation response, water-vapour
content, atmospheric lapse-rate, cloud albedo, etc. (all captured within one term,
AR(t21). All radiative terms are assigned +50% uncertainties using uniform
distributions. The palaeo-scenario omits §jsoj and 8poj because palaeodata only
yield total temperature response, which includes these factors.

The median and 95% uncertainty limits (2.5t and 97.5% percentiles) are
determined from our Monte-Carlo statistics (n=1000) for the sum of all
completed forcings/feedbacks (4Rwt = ARy + AR[sp) (Figure 5a). From this, we
determine AT(t) (Figure 5b), assuming a constant amount of temperature
change per Wm~2 of radiative change. To do so, we scale each Monte-Carlo
instance’s sum of all completed radiative contributions (4R|tw), taken at tca =
10,000 y (blue bar in Figure 5a), to a temperature change ATca. The latter is
randomly drawn from a normal distribution set to a mean of 5 °C and 106 of 1°C.
This gives Stcat = ATtcar / AR[to] teal, and thus the temperature time series AT(t) =
ARto)(t) x Stcar, With propagation of all uncertainties in the various 4R terms and
in ATa1 across all Monte-Carlo instances (Figure 3b). The final range of
temperature uncertainties (Figure 5b) spans the entire range of proposed, and
still debated, glacial-interglacial temperature-change estimates of Margo (2009),
Annan and Hargreaves (2013), Schmittner et al (2011), Rohling et al (2012),
Hansen et al (2007), Kohler et al (2010), Masson-Delmotte et al (2010), and
Snyder (2016).
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Based on the time-series ARy (t), AR|sn(t), and AT(t), we calculate Sisn(t) = AT(t) /
ARsn(t) as per PALAEOSENS (2012), as well as Sy (t) = AT(t) / ARy (t), which is
more directly comparable to $? from the actuo-scenario (Figure 5c). Comparison
between Sps(t) and Sy (t) highlights the controls on their similarities and
differences. Note that calculating Sy (t) is possible in this simple scenario, but
not in real palaeodata studies. There also is a complication, in that part of AR|s
consists of AR|vg), which is still poorly understood in real palaeodata studies.
Hence, most of such studies use a pragmatic approximation of ARs, which is just
ARcHg) + ARy Here we determine both versions, one with and one without
AR[vq), to illustrate how this limitation affects results.

Results for Spsp(t) and Sy (t) only begin to fully converge at around t = 5000 y
(Figure 5c). This results from a predominance of the fast feedbacks on short
timescales, and increased relative importance of slow feedbacks on longer
timescales. We read estimates for equilibrium palaeo-climate sensitivity
parameter Sys; as the average of values between ¢t = 8000 and ¢ = 10,000 years.
Histograms are shown in Figure 6. The exact convergence between Sis(t) and
Sim(t) in the scenario with ARsf = AR[gHg) + AR[L1) + AR|vc) results from the
PALAEOSENS (2012) argument that ARy approximates AR[s;5. However, Figures
5c and 6 show that the common pragmatic limitation of AR5y = AR[cHe) + ARy
(without ARve)) will overestimate long-term values for Sys(t).

4. Discussion

4.1. Comparison between S° and S

[t stands out strongly from Figure 3 for the actuo-scenario that any reported 5@
value needs to be carefully referenced to the processes that are included.
Commonly, this is done using a rather arbitrary timescale of 100 years, which is
then considered to give the equilibrium climate sensitivity that includes all fast
processes and surface ocean warming, but excludes slow processes
(PALAEOSENS 2012). It is interesting, however, to compare this approach with
models, where one can check when equilibrium is reached. For example, Hansen
et al (2011) show that, in the GISS ModelE-R, surface-ocean equilibration to
instantaneous forcing is just 60% complete after 100 years, only reaching
~100% after as much as 2000 years (their Figure 3). In addition, in runs longer
than 100 years in most models, the relationship between energy imbalance and
temperature change that is used to extrapolate ECS (the so-called Gregory
method; Gregory et al 2004) breaks down from an assumed linear relationship to
anon-linear one (Bloch-Johnson et al 2015, Rugenstein et al 2016). In addition,
as mentioned earlier, any comparison of our number for S with GCM-based ECS
estimates is complicated by the fact that model simulations typically start with a
perturbation of CO, but omit the observed negative radiative impacts from
anthropogenic aerosol/land surface changes (Figure 2), which act to reduce the
temperature rise.

Clearly, even our simple scenario does not neatly separate processes in time.
Uncertainties in the various processes’ timescales, and potential operation of
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AR(crp) on similar timescales to §jso), make climate sensitivity a moving target
through time (Figure 3). For the example set up here, t = 200 years seems more
suitable for determining S? because all included responses (fast feedbacks) have
completed (although this is not fully the case in the more realistic model of
Hansen et al 2011). However, even in our simple scenario, “t = 200 y” does not
provide a clear-cut criterion because the estimate then includes AR|crg}, which
then should be corrected for to match the definition of equilibrium climate
sensitivity (Figures 3c and 4). And in reality, there will be further carbon-cycle
processes causing similar issues, as discussed in section 3.1. So, while exact
definitions of included processes, and better determination of the timescales of
the different contributing response functions, are needed to obtain S? estimates
that are as precise as possible (and as comparable between studies as possible),
it is not obvious that such a level of distinction will always be possible in a
natural system.

Figure 3c also shows that, if an arbitrarily selected cut-off time for S? assessment
causes partial inclusion of ongoing slow processes (e.g., surface ocean warming),
then this may cause extended tails to the probability distribution function (pdf)
of the climate sensitivity estimate. Especially if this pdf were made by collating
information from different climate models, each with different representations of
the myriad processes and their timescales, then the combined pdf may become
very broad. A narrower combined pdf might be obtained by identifying the
contributions of each process to climate sensitivity in each model, and to then
compare results not at a certain time-step, but instead at a certain well-defined
point that is based on exactly which processes are included and which are not.
This point may occur at different time-steps in different models. This would be a
more process-oriented manner of comparing between models than a simple
comparison between their results at an arbitrarily selected moment in time,
where different processes contribute to different degrees in different models.
Also note that our use of uniform distributions for the various parameter
uncertainties limits the potential skew and the potential for long tails in the
calculated final pdfs (Figure 3), relative to results based on ratios between of
gaussian-shaped pdfs for AT and AR (Kohler et al 2010). We consider our
approach justified by the fact that most uncertainties concern not random error
around mean estimates, but ranges of potential systematic (e.g., state dependent)
shifts of the means for many feedback efficacies. In reality, the uncertainty
ranges may be more complicated, combining both systematic and random
components.

Now we get to the critical question about which process-based definitions would
be needed for best comparison of S% from actuo-studies with S5 in palaeo-
studies. One issue concerns the aforementioned impacts of relatively fast carbon-
cycle feedbacks (4R|cr), and similar additional ones in reality; see section 3.1) on
how §¢is estimated in actuo-studies. In addition, Figures 5c and 6 illustrate how
a lack of explicit accounting for AR|vc) in the most commonly used specific
palaeo-climate sensitivity term (Sicuc,Lij) risks a considerable overestimate of the
inferred climate sensitivity value (almost 20% in our simple scenario), making it
an inaccurate approximation of Sy, and therefore S2. This clearly illustrates why
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resolving vegetation-albedo impacts on the radiative balance of climate needs
priority in data-based reconstructions of palaeo-climate sensitivity.

Next, Figure 5c suggests that - regardless of the definition used - pushing
palaeo-climate sensitivity reconstructions from time-series of palaeodata to
temporal resolutions of less than 5000 years may result in overestimates of
palaeo-climate sensitivity, because of transient behaviour in the solution. This
suggests that palaeo-climate sensitivity reconstructions through, for example,
North Atlantic Heinrich events or the Younger Dryas may yield unstable results,
with potential anomalies to high values. Yet it may be instructive to carefully
reconstruct time-series of palaeo-climate sensitivity in high temporal
resolutions, to see if such transient anomalies are actually found and when/how
they settle toward equilibrium values. Accurate reconstruction of global mean
temperature changes will be vital to such assessments, since a large component
of the temperature swings through such events may concern energy re-
distribution around the globe (Stocker 1998), rather than global mean change.
[f/when transient behaviour of palaeoclimate sensitivity could be thus
established, then this might uncover interesting clues about the critical real-
world processes involved, and their timescales.

Finally, palaeoclimate studies can only measure the full temperature response,
which includes the delayed ocean responses d[soj and (part or all of) 6poj. For a
sound like-with-like comparison, a truly equilibrated actuo-scenario should
therefore include these as well. We saw already that inclusion of §jso) brings a
conflict with potential contributions of AR|crp] in the actuo-scenario (Figure 3). In
time-series-based palaeoclimate studies, individual carbon-cycle components
cannot be distinguished, so the best comparison between 5 from actuo-studies
and palaeo-Ss estimates would require exclusion of any 4R|crp) influences
(and/or similar carbon-cycle changes; see section 3.1) from the S? estimate. The
situation is worse with respect to the slow §poj. Including this in an 57 estimate
from actuo-studies would require consideration over thousands of years, by
which time carbonate compensation, continental land-ice influences, and long-
term vegetation adjustments would have become important players in the
temperature developments as well (Figure 3). Also, inclusion of §jpo; would
increase the timescale of evaluation to a few thousand years, rather than a
century or two into the future, which reduces the apparent relevance to society.
For pragmatic reasons, 5¢ is defined to include ARr2), AR|ss1;, AR[aE), and J[so}, and
it is inevitable that this imposes some limitations to precise comparability with
palaeoclimate-based S5 estimates.

4.2. Dependence of palaeoclimate sensitivity on feedback efficacy changes
Efficacies of the various processes (in essence, their contributing amplitudes) are
reasonably understood for the present day, where there are many observations
to constrain the inferred ranges of variation. But, as we transition into a much
warmer world, the potential for efficacy changes in key feedbacks cannot be
excluded and must be considered. For example, the efficacy of the snow and ice
albedos may change as latitudinal distributions of snow and ice change, affecting
the amount of (latitude-dependent) insolation reflection per unit area, while
efficacies of the fast water-vapour and cloud feedbacks may also change with
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background temperature (e.g., von der Heydt et al 2014, 2016, Kohler et al
2015). The uncertainty ranges allowed in the actuo-scenario yield wide tails in
the climate sensitivity distributions, especially at the high end (Figures 3 and 4).
A possible approach to constrain the width of the tails would be by performing
large ensembles of runs over wide parameter spaces with a more representative
climate model over the historical period, excluding runs that do not agree with
historical time-series of climate data, and then determining climate sensitivity
from the remaining runs.

As is, our simple actuo-scenario’s estimates for S¢ are reached after about 200
years, and range over a 95% probability envelope of 0.8 to 1.6 K/(Wm~2) around
a median value of 1.1 K/(Wm™2) for the case that doesn’t explicitly account for
ARcrp), and 0.7 to 1.4 K/(Wm-~2) around a median of 1.0 K/(Wm-~2) for the case
that does explicitly account for AR|crp). The “equilibrium” value therefore is about
1.5 times the scenario’s “transient” climate sensitivity value before §jso;
involvement, which has a 95% range of 0.5 to 0.9 K/(Wm-2) around a median of
0.7 K/(Wm™2) (blue bar in Figure 3a,c).

Our actuo-scenario’s peak values, which mark the time when slow feedbacks
have also made their maximum contribution (§m%), have a 95% probability
range of 1.0 to 2.3 K/(Wm~) around a median value of 1.5 K/(Wm-2) for the case
that doesn’t explicitly account for ARcrg), and 1.0 to 2.1 K/(Wm™2) around a
median of 1.4 K/(Wm-2) for the case that does explicitly account for AR|crg;.
These values are achieved after about 1000 years, and indicate a level of about
2x the scenario’s “transient” climate sensitivity value.

For the palaeo-scenario, efficacies are notably less constrained, and may depend
considerably on the background climate state (K6hler et al 2015, Friedrich et al
2016, von der Heydt et al 2016). Our scenarios, using either Sicue,Li,vc] Or SicHa LI,
include the cumulative impacts of efficacy variations in all feedbacks over +50%
ranges (uniformly distributed) (Figures 5c and 6). For Sicue,Livg), we find an
“equilibrium” 95% probability range of 0.4 to 1.3 K/(Wm~2) around a median of
0.8 K/(Wm™2). For the more common approximation in palaeo-studies, SicHe L1,
we find an “equilibrium” 95% probability range of 0.5 to 1.6 K/(Wm-2) around a
median of 0.9 K/(Wm~2) (Figures 5c and 6). The latter estimate is the most useful
one for comparison with published equilibrium palaeoclimate sensitivity
estimates, since those typically were not corrected for 4Ry either.

With total 95% bounds of 0.4-1.6 K/(Wm-2), our assessments for Sicuc,Lyj and
SicHa L1, va) closely approximate the 95% bounds of 0.3-1.9 K/(Wm-2) for similarly
defined, observation-based estimates for the last 65 million years (PALAEOSENS
2012) (Figure 6). We infer, in agreement with Kéhler et al (2015), that the wide
range of PALAEOSENS (2012) likely results from integration of observations
across a range of state-dependent palaeo-climate sensitivity values through time.
This is an important point: it would seem that the width of previously
reconstructed palaeo-climate sensitivity distributions is not so much a function
of random (proxy-based) measurement uncertainties, but instead is primarily
driven by integration of numerous, hitherto unrecognised, narrower state-
dependent distributions. Given that the width of our simple scenario’s range
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agrees well with that found from observations, we tentatively infer that overall
efficacy changes through time likely remained within roughly #50%.

Finally, we compare results between Figures 4 and 6. At 0.7-1.6 K/(Wm™2)
around a median of 1.0 to 1.1 K/(Wm~2), §? from our actuo-scenario appears
slightly higher than S5 from the palaeo-scenario, at 0.4-1.6 K/(Wm~2) around a
median of 0.8 to 0.9 K/(Wm~2). However, this slight offset likely results from
differences in the way the calculations have been constrained between the
scenarios. With respect to the distribution width difference, we see potential for
palaeo-studies to provide S5 distributions that portray real total climate-system
responses that represent real-world realisations of climate change, and for
careful work (especially with respect to chronological relationships between
time-series of data) to eventually deconvolve the overall probability
distributions into narrower ones that account for climate-state dependence.
Thus, palaeodata studies may provide key templates (“prior” distributions) for
exercises to select best-matching subsets from model mega-ensemble
assessments of future climate developments.

Finally, we consider the question of how to tease out state dependence from
palaeodata using very carefully designed experiments (Figure 5). [t cannot be
excluded that this will be possible, but the apparent size of the 95% probability
envelope to individual scenarios suggests that estimates for different climate
states are likely to overlap, except in extremely contrasting cases.

4.3. Comparison with other approaches

While the above conceptual framework is different in its focus on the time-
domain, it follows the general principles laid out before in PALAEOSENS (2012)
and further explored in Royer (2016). Yet the framework’s focus on radiative
forcing anomalies to calculate temperature change and climate sensitivity may
be less familiar to climate modellers. Therefore, we here assess the implications
of a focus on the time-domain in a framework of feedback analysis.

Classically, a perturbation of the radiative forcing ARy, for example by an
instantaneous doubling of atmospheric CO; concentrations, leads to a
temperature anomaly AT(t) = -ARr/2Ai(t), where the sum of feedback parameters
consists of the Planck feedback (Ap = -3.2 Wm~2K-1) responsible for a rise in the
outgoing long-wave radiation (OLW), the sum of all other fast feedbacks (Aother;
for surface albedo, water vapour, lapse rate, and clouds) and contributions from
ocean heat uptake efficiency (k) to the surface and deep ocean. The latter are in
the classical framework (Dufresne & Bony 2008) not called feedbacks, but still
can be calculated as such. In our example demonstration of how this framework
works (Figure 7), these feedbacks are parameterised based on multi-model
results from CMIP3 (Dufresne & Bony 2008). Although newer (CMIP5) results
have been published (Vial et al 2013), these include forcing adjustment, which
we prefer to ignore here because it complicates the system and might be
negligible in the palaeo-framework.

We thus end up with a time-dependent term for Aotherr = +1.9 Wm=—2K-1, which is
modulated with signal-development similar as given in Equation (2) to obtain

20



913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

full amplitude with t = 10 years. The pure Planck feedback then leads to a
temperature rise of about 1 K after the initial year and together with theses fast
feedbacks to about 2 K after a decade, in agreement with recent estimates of the
transient climate sensitivity (Storelvmo et al 2016). Adding the ocean heat
uptake efficiency to the surface ocean (k; or Aso=-0.67 Wm~2K-1 with 7 =100
years) then leads to a temperature rise of 3 K after a century, and to a rise in the
time-dependent specific climate sensitivity S(t)= AT/ARr from 0.52 K/(Wm-~2)
after a decade to 0.79 K/(Wm-~2) after a century, in agreement with the estimate
of ECS in CMIP3. Taken furthermore into account that model simulations
underlying the classical calculations of ECS are not in full equilibrium (Gregory et
al 2004, Hansen et al 2011, Bloch-Johnson et al 2015, Rugenstein et al 2016), one
might define deep ocean heat uptake efficiency as another feedback parameter
(k2 or Apo= 0.5 Wm=—2K-1 with t = 2000 year) that leads to a further temperature
rise to a AT of up to 5 K on a multi-millennial timescale.

Similar to this 2xCO2 example, one might translate the radiative forcing
anomalies for our actuo- and palaeo-scenarios (as summarised in Tables 1 and 2)
into a framework of feedback analysis. This would yield figures similar to Figure
7, but no new insights with respect to the time-dependence of S, and therefore is
not further evaluated here.

5. Summary points and future issues

We analyse and compare approaches for determining climate sensitivity in
studies of modern/future (“actuo”) and past (“palaeo”) climate, using graphical
illustrations based on highly idealised scenarios. This reveals problems with
determining a unique value for equilibrium climate sensitivity in both actuo and
palaeo scenarios, since the processes involved are not strictly separated in time,
and/or are insufficiently understood for a sound quantification. In addition,
there are issues with understanding the efficacies of the dominant processes
(particularly for the palaeo), which likely underpin state dependence of climate
sensitivity and the length of the “tails” of reconstructed climate sensitivity
probability density functions. The analysis presented here suggests that the
width of previously reconstructed palaeo-climate sensitivity distributions likely
reflects the integration of numerous state-dependent distributions.

We identify several key requirements for advancing the debate. These are: (1)
that precise chronological control is needed when comparing different proxy
records of global temperature changes and forcings/feedbacks; (2) that new
approaches/strategies to reconstruct mean global temperature changes from
palaeostudies are needed, given that even reconstructions through the LGM
disagree over a wide range; (3) that model-independent ways of evaluating the
records are needed, to avoid introducing model-dependent artefacts in the
calculated climate sensitivities (i.e., circular reasoning). Further, we find
continued need for: (4) refined understanding of how certain parameters (e.g.,
mean global temperature, or CO2 concentrations) are estimated with different
proxies (method inter-comparison studies); (5) detailed description of
assumptions and uncertainties, and transparent and complete propagation of
these into the calculated sensitivity distributions; (6) careful and transparent
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960  definition of which terms exactly are being compared between case studies; and
961  (7) elaboration of high-quality records for the major missing slow feedback

962  (vegetation).

963

964  Finally, we infer that the main focus in current work concerns potential climate
965  background-state dependence of climate sensitivity. Our analysis suggests that it
966  will be challenging to statistically robustly confirm this using palaeodata. No

967  doubt this problem will continue to receive a lot of attention within the next few
968  years - hopefully innovative approaches will be developed to constrain this

969 critical aspect. In our view, a better understanding of feedback efficacy changes
970  through time will be critical to reducing uncertainties sufficiently for statistical
971  distinction of state-dependence in climate sensitivity.
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Table 1. Parameter values used in the idealised actuo-climate sensitivity scenario.

Description Code Estimated Full range Full amplitude (h, in Full range
duration for (&g uniform Wm-2)a (£n; uniform
full response distribution) distribution)
(z, in y)b (84]

Direct responses, AR[r2) 1 +50% 2.2 +10%

incl. vapour and

cloud feedbacks

Aerosol & land- ARjag) 10 +50% -1.2 +50%

surface feedbacks

Snow & sea-ice ARyssy 20 +50% 0.4 +10%

albedo feedback

Carbon cycle ARcr; 150 +50% 0.05 ARyrz +50%

feedbacks

Surface ocean 87so] 150 +50% 0.55 +10%

temperature

equilibration

Continental ice ARpy 750 +50% 3(10/125) +50%

albedo feedback

Deep ocean 8oy 1500 +50% 0.55 +10%

temperature

equilibration

Vegetation albedo  ARpq 500 +50% 0.05 (ARpag)+ AR[2)) +50%

Carbonate ARcq) 10,000 +50% -0.5 (ARcre1+0.5 ARrz1)  +50%

compensation

Weathering ARwe; 200,000 +50% -0.5 (ARcre1+0.5 AR[2) = 50%

aValues are set in relation to a total effective greenhouse-gas radiative forcing of 3.7 Wm-2 with
associated negative aerosol and land-surface feedback of -1.2 Wm-2 (Figure 2, and explanation
in main text section 3.1). Argumentation for the most important amplitude settings was given
in the main text. In addition, the impacts of carbonate compensation and weathering are

arbitrarily set in a very simple manner to each remove the forcing and immediate feedbacks

related to half of the carbon emissions.
bValues for most parameters are discussed in the text. The 105 years timescale for weathering is

after Lord et al (2016).
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Table 2. Parameter values used in the idealised palaeo-climate sensitivity scenario.

Description Codea Estimated Full range Full Full range
duration for (&£7; uniform amplitude (h,  (&n; uniform
full response  distribution) in Wm-2)b distribution)
(r,iny)

Initial carbon cycle AR[GHGi]  TIeHe = 50 *50% ¢ 2.5 +50%

(greenhouse-gas)

feedbacks

Initial direct AR[T2i] T[GHG] +1 +05y ®3 +50%

responses, incl.

vapour and cloud

feedbacks

Initial snow & sea- ARssti] T[GHG] +20 +10y @2 +50%

ice albedo feedback

Initial aerosol & AR[AEi] T[GHG] +10 +5y ¢ 1.5 +50%

land-surface

feedbacks

Continental ice AR Ty = 6000 +50% 3 +50%

albedo feedback

Snow & sea-ice AR(ssir] Ty +20 +10y (1-¢p) 2 +50%

albedo feedback

Carbon cycle AR[GHGr]  TISS1 +200 +100y (1-¢) 2.5 +50%

(greenhouse-gas)

feedbacks

Direct responses, AR[T2r] T[GHG] +1 +05y (1-¢) 3 *50%

incl. vapour and

cloud feedbacks

Aerosol & land- AR[AEr] Ty +10 +5y (1-¢p) 1.5 +50%

surface feedbacks

Vegetation albedo AR[VGr] Ty +500 +250y 1 +50%

aForcing amplitudes are based on a typical deglaciation within the late Pleistocene glacial cycles
as discussed by (Kohler et al 2010) and Rohling et al (2012), as outlined in main text section

3.2. Our scenario apportions values to fast feedback contributions within a total AR that is

held proportional to the total of slow feedbacks contributions, AR[sf, after PALAEOSENS (2012).
The radiative subdivisions used for the various fast feedbacks is irrelevant - it’s used only for
illustration. For AR[cuc), AR[t21, ARssiy, and AR[ag), we incorporate a schematic representation of
an initial, rapid response to the onset of deglaciation (indicated in the code with i), and a
second, remaining component (indicated in the code with r) that is delayed as it co-evolves with
ice-volume reduction (see section 3.2).
bThe proportion of the initial responses is set by factor ¢, which we tentatively determined at
0.15 (see text). Changing ¢ does not materially change our conclusions. Initial responses are set
to start with initial carbon cycle responses within 25 to 75 years after the initial (orbital
insolation) perturbation (see text). Changing this does not materially affect the conclusions.
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Figure 1. Timescales of processes involved in climate sensitivity. After
PALAEOSENS (2012).

Timescale
Years Decades Centuries Millennia Multi-Millennia // Myrs
_—
Clouds, water vapour,
lapse rate, snow/sea ice
Upper ocean
— e mmmm e m >
CH, CH, (major gas-hydrate
feedback; e.g., PETM)
Vegetation
_______________ %
Dust/Aerosol Dust (vegetation mediated)

Entire oceans

Land ice sheets

Carbon cycle

Weathering
—
Plate tectonics

_
Biological evolution
of vegetation types

Figure 2. Estimated effective climate forcings for the “actuo”-scenario
(update through 2015 of Hansen et al 2005). Forcings are based on observations
of each gas, except simulated CHs-induced changes of O3 and stratospheric H20
included in the CH4 forcing. Aerosols and surface albedo change are estimated
from historical scenarios of emissions and land use. Oscillatory and intermittent
natural forcings (solar irradiance and volcanoes) are excluded. CFCs include not
only chlorofluorocarbons, but all Montreal Protocol Trace Gases (MPTGs) and
Other Trace Gases (OTGs). Uncertainty (for 5-95% confidence) is 0.6 W/m? for
total GHG forcing and 0.9 W/m? for aerosol forcing (Myhre et al 2013). After
Hansen et al (2016).

Effective forcing (1750-2015)

Aerosols and
surface albedo

CFCs  N,O

Effective forcing (Wm~2)

-1.2
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Figure 3. Assessment of $? in our main scenario. (a) Relative radiative
contributions per process (medians shown only), and their total sum along with
95% probability bounds. This follows the parameters outlined in Table 1. The
number of randomly perturbed (see Table 1) iterations is N = 1000. Note that
ARwg) shows as a flat line at 0 Wm~2 because it only becomes important at ¢ >
100,000 y. To avoid clutter, parameters are indicated in the legends with names
of ‘XX’, in shorthand for ‘AR|xx).” (b) Total temperature development through
time, in relation to total radiative change given in (c), with 95% probability
bounds. Blue bar indicates interval where “scaling/calibration” was determined
(see text). (c) Calculated S(t) with 95% probability bounds. For comparison,
results are shown for two cases: one including carbon-cycle feedback (4R[crs))
influences (blue); and one excluding these influences (red). Arrow demarcates
where S7 is measured, and the bracket show the interval where the Smex estimate
is taken, as discussed in the text.
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Figure 4. Histograms for “actuo-scenario.” The various curves are determined
att =200y for S? and as the average of 1000 < t < 3000 y for $™%, as indicated in
Figure 3c and described in section 3.1.
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Figure 5. Assessment of Sjs; in our main palaeoscenario. (a) Relative
radiative contributions per process (medians shown only), and their total sum
along with 95% probability bounds. This follows the parameters outlined in
Table 2. The number of randomly perturbed (see Table 2) iterations is N = 1000.
To avoid clutter, parameters are indicated in the legends with names of ‘XX’, in
shorthand for ‘ARxx)’. (b) Total temperature development through time, in
relation to total radiative change given in (c), with 95% probability bounds. Blue
bar indicates interval where “scaling/calibration” was determined (see text). (c)
Calculated palaeoclimate sensitivity with 95% probability bounds, for different
definitions as discussed in the text.
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Figure 6. Histograms for the palaeo-scenario. The various curves are
determined as the averages of 8000 <t < 10,000 y, as indicated in Figure 5c and

described in section 3.2. The grey shading represents a scaled version of the

distribution from PALAEOSENS (2012; their Figure 3c).
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Figure 7. Analysing the classical 2xCO: experiment in a feedback analysis
framework. An initial perturbation in the radiative forcing ARrleads without
any further feedbacks to the Planck response (change in outgoing long-wave
radiation, OLW), which are enhanced by further time-dependent feedback terms

Ai(t).
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