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ABSTRACT 
The research presented in this article aimed to provide a full quarternary structure of 

human matrix metalloproteinase 9 (MMP9) enzyme with a ligand in the catalytic site for 

structure-based virtual screening. The enzyme plays an important role in wound healing of 
diabetic foot ulcer. By employing the primary structure of the enzyme obtained from UniProt 

database (UniProt:P14780), the theoretical structure of full apoenzyme of the human MMP9 

(PDB:1LKG), the crystal structures of the catalytic domain (PDB:4H3X) and the hemopexin 
domain (PDB:1ITV) of the human MMP9, homology modeling studies have been performed. The 

ligand N-2-(biphenyl-4-yl-sulfonyl)-N-2-(isopropyloxy)-acetohydroxamic acid (CC27) or N-
hydroxy-2-[(4-phenylphenyl)sulfonyl-propan-2-yloxyamino]acetamide (IUPAC version) from 

PDB:4H3X was embedded in the catalytic site of the enzyme. The modeling made use of the 

modules of homology modeling in YASARA structure. Subsequently, molecular dynamics (MD) 
simulations in YASARA structure were performed to examine the stability of the enzyme. The 

homology model was found stable after 5.05 ns and the lowest energy of the model was found at 
the 6.40 ns of the MD production run. This lowest energy snapshot was then energetically 

minimized and analyzed for its applicability for virtual screening. This optimized model was then 

stored in Mendeley Data (DOI: 10.17632/4gsb4p75gz.1).   
  

Keywords: homology modeling; matrix metalloproteinase 9; molecular dynamics simulations; 
virtual screening; YASARA structure. 

 

 

INTRODUCTION 

Enzyme matrix metalloproteinase 9 

(MMP9) becomes a molecular target of 
interest in the discovery of therapeutic agents 

for a diabetic foot ulcers and cancer (Hariono 
et al., 2018). The enzyme comprises a 

catalytic domain and a hemopexin-like 

domain, which have different roles (Roeb et 
al., 2002). The catalytic domain degrades the 

damaged matrix membrane in the wound 
healing processes (Vandooren et al., 2017). 

Uncontrolled enzyme activity causes the 

membrane degradation and formation balance 
disruption in the wound healing processes 

(Ayuk et al., 2016). Inhibitors in the catalytic 

domain are required to control the balance 

(Jones et al., 2019). On the other hand, 

although existed in the same MMP9 enzyme, 
the hemopexin domain has a different role 

(Dufour et al., 2010). Hemopexin domain acts 
as a messenger receptor by forming dimers 

(Ezhilarasan et al., 2009). The interaction 

between the hemopexin domain with cell 
surface receptors triggers cell proliferation 

(Delozier et al., 2011). The growth of cancer 
cells could, therefore, be inhibited by 

inhibitors for the hemopexin domain (Alford 

et al., 2017).  
 The available 3D structures can assist 

the visualization of the ligand and protein 
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interactions in structure-based drug design 

(SBDD) approaches (Wang et al., 2018). The 
homology comparative modeling method is an 

approach to predict the 3D structure of 
protein-based on its amino acid chain. Three-

dimensional structures in this approach are 

made using other similar proteins that the 3D 
structures are already known as the templates 

(Cavasotto and Phatak, 2009). The processes 
of building the structure of the 3D protein 

model include: (1) Other similar proteins with 

known the 3D structures are used as templates; 
(2) The amino acid sequences of protein target 

are aligned to the templates; (3) The 3D 
structures of the target are constructed based 

on the 3D structure of the templates; (4) The 

MMP9 model resulted are then evaluated, 
validated, and remodelled until appropriate 

models are obtained (Mart et al., 2000).  

 There is one publicly available of full 

MMP9 model (PDB:1LKG). Unfortunately, 

there is no ligand in the model, which then 
create difficulties in the binding pocket 

identification. The aim of the research 
presented in this article was to provide 

validated virtual target to discover inhibitors 

for MMP9. Therefore, homology modeling 
approaches to construct a 3D structure of full 

MMP9 with ligands followed by molecular 
dynamics simulations to examine the stability 

of the model were performed. The optimized 

model resulted in this research could be 
downloaded from Mendeley Data (DOI: 

10.17632/4gsb4p75gz.1).    

 

METHODS 

Materials and Instrumentations 
The human MMP9 primary sequences 

(UniProt:P14780) were obtained from The 
Universal Protein Resource (UniProt; 

https://www.uniprot.org/). Three-dimensional 

structures from The Protein Data Bank (PDB; 
https://www.rcsb.org/) with identity 

PDB:1LKG, PDB:4H3X, and PDB:1ITV were 
used as the 3D structure templates of human 

MMP9. The software mainly used was 
YASARA Structure version 19.1.27 (license 

number of 394125786). Computational studies 

for homology modeling were performed in a 

workstation with Intel® Pentium® Silver 

N5000 as the processor, 4 GB random access 
memory (RAM), and Windows 10 Home 64-

bit as the operating system. The molecular 
dynamics simulations and re-docking 

simulations were performed in a workstation 

with Intel® CoreTM i5-7500 as the processor, 
8 GB RAM, and Windows 10 Professional 64-

bit as the operating system. 

Procedures 

 The homology model of the human 

MMP9 was constructed by employing 
P14780.fasta obtained from UniProt as the 

source of the primary sequences and 
PDB:1LKG (sequences 1 to 93 and 445 to 

511), PDB:4H3X (sequences 94 to 444), and 

PDB:1ITV (sequences 512 to 707) from PDB 
as the templates. The module homology 

modeling in YASARA Structure was 
employed to construct the initial full model of 

the human MMP9. Subsequently the ligands 

from PDB:4H3X, and PDB:1ITV were 
incorporated by aligning the chain A of the 

structures to the initial model and followed by 
removing the protein parts of the crystal 

structures. Focused on the side chain residues 

of the model, the quarternary structure was 
then subjected to molecular dynamics 

simulations with fixed atoms in the main chain 
of residues number 94 to 444 and 512 to 707. 

All ligands were also fixed during molecular 

dynamic simulations. The molecular dynamic 
simulations were performed in YASARA 

Structure by employing a modified macro 
from the default macro md_run.mcr from 

YASARA Structure (Krieger and Vriend, 

2009). The modification was done in line 67, 
from duration=’forever’ to duration=1000. 

The molecular dynamics simulations were 
followed by trajectory analysis using 

md_analyse.mcr. The final scene file from 

molecular dynamic simulations resulted from 
the analysis was unfix and then subjected to 

energy minimization using energy 
minimization module. The scene resulted from 

energy minimization was then saved as 
mmp9_final.sce. Objects 2 and 3 in the scene 

were then joined to object 1 by using module 

Join in YASARA. The object 1 was then 
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stored in YASARA object and pdb formats as 

mmp9_final.yob and mmp9_final.pdb, 
respectively. The model of the human MMP9 

was then analyzed by employing module 
check in YASARA structure and AMBER14 

as the force field. 

The file mmp9_final.pdb was 
subsequently employed as the starting point 

for 20 ns MD simulations using YASARA 
Structure (Krieger and Vriend, 2009) ⁠ . The 

default macro md_run.mcr from YASARA 

Structure was used with modification in line 
67, from duration=’forever’ to 

duration=20000 and in line 109, from 
saveinterval=100000 to saveinterval=10000. 

The MD simulations were followed by 

trajectory analysis using md_analyse.mcr. The 
structure of the complex enzyme-inhibitor is 

considered stable if the deviation of the root-
mean-squared-deviation (RMSD) values of at 

least 5 ns duration of the MD simulations is 

less than or equal to 1 Å (Liu et al., 2017). 
The first 5 ns of the MD simulations were 

considered as the production run. The free 

energy of binding (G) of all snapshots during 

the production run was calculated by 
employing a method published by Prasasty 

and Istyastono (2019). The snapshot with the 

lowest G value was then minimized and 
selected to be analyzed for its applicability for 

being the target in structure-based virtual 

screening campaigns by performing 1000 

times redock simulations using VINA 
embedded in YASARA Structure. The 

docking configuration was embedded to the 
macro file dock_run_1000.mcr developed in 

this research. The file could be obtained from 

Mendeley Data ((DOI: 
10.17632/4gsb4p75gz.1). The model was 

considered as applicable for virtual screening 
if the RMSD values of at least 95% redocking 

result of the ligand are less or equal to 2 Å.    

 

RESULTS AND DISCUSSION  

The research presented in this article 
aimed to publicly provide a full quarternary 

structure of human MMP9 with a relevant 

ligand in the catalytic site to be used further in 
drug discovery for diabetic wound healing. 

The result of the homology modeling is 
available in 3 formats: YASARA scene 

(mmp9_final.sce), YASARA object 

(mmp9_final.yob), and PDB file 
(mmp9_final.pdb). These files were then 

stored in Mendeley Data 
(doi:10.17632/xj7yt48jwb.1). The final model 

applicable for virtual screening is available as 

a pdb file (mmp9.pdb), which was also stored 
in Mendeley Data (DOI: 

10.17632/4gsb4p75gz.1). 

 

Table 1. Quality of the final model of the full human MMP9.  

No Quality Criteria*) Value 
Reference  Value  

(Krieger et al., 2002) 

1 Correctness of enantiomers 0.000 > 0 is bad 

2 
Absence of cis-peptide 

bonds 

2.000 (at the N-terminus of PRO A 553 and of 

PRO A 598) 

> 0 is bad, but cis-prolines 

are OK 

3 
Adherence to naming 

conventions 
0.000 > 0 is bad 

4 Normality of bond lengths 0.700 < -2 is poor, < -4 is bad 

5 Normality of bond angles 0.014 < -2 is poor, < -4 is bad 

6 Normality of dihedral angles 0.057 < -2 is poor, < -4 is bad 

7 Normality of planar groups 0.573 < -2 is poor, < -4 is bad 
*)The criteria of “Normality of water locations” was not checked since the model does not contain any water 

molecule. 
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Figure 1. Visualization of the catalytic site of the homology model (A) and PDB:4H3X (B). The figures were built 

using YASARA Structure in default mode without shadow. The enzyme, the amino acid residues, the ligands, and 

zinc atom are depicted as ribbon style, stick style, ball-and-stick style and ball, respectively. Only important 

residues are shown for the shake of clarity. 

The analysis of the human MMP9 
homology model showed an acceptable 

deviation from the average structure in all 
aspects. The results and the details of the 

analyzed aspects are presented in Table 1. 

Based on the results, the model of the tertiary 
structure of the human MMP9 resulted from 

the homology modeling is acceptable for 
further application. However, visual 

inspection of the interactions between the 

protein, the ligands, and the cofactors should 
be performed and compared to those from the 

reference structures, i.e., PDB:4H3X and 
PDB:1ITV. 

The catalytic site of the model (Figure 

1A) is slightly different from the catalytic site 
of the crytal structure PDB:4H3X (Figure 1B). 

The histidine triad in the model is slightly 
away from the zinc atom compared to the 

crystal structure, while the glutamate residue 

remains similar. Nevertheless, the quantitave 
approach by aligning the backbone of the 

model to the backbone of the crystal structure 
showed the RMSD value of those residues in 

the model compared to the crystal structure 

was 0.817 Å. Figure 1 and the alignment show 
that the model could reproduce the essential 

interactions for ligands and cofactors with the 
protein. Unfortunately, the ligands in 

PDB:1ITV, which was used as one of the 
templates, are only sulfate ions. Therefore, 

further investigation in this hemopexin-like 

domain should be performed. 
The reliability of the model to be 

employed in a further virtual screening 
campaign will significantly be increased by 

employing a model with stable protein-ligand 

interactions (Liu et al., 2017). Therefore, 
further MD simulations for 20 ns with a 

snapshot in every 10 ps were performed. 
Figures 2A and 2B show the RMSD values of 

the backbone atoms during the simulations 

and the deviation of these RMSD values in the 
duration of 5 ns started from the initial point, 

respectively. As depicted in Figure 2, the 
MMP9-CC27 complex in this research was 

considered stable starting from 5.05 ns of the 

MD simulations. The G values of snapshots 
in 5 ns after the starting stable point were then 

calculated to identify the snapshot with the 

lowest G value. Figure 3 shows that the 

lowest snapshot was identified at the 6.40 ns 
of the MD production run. 
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Figure 2. The RMSD values of the MMP9 backbone atoms during MD simulations (A), and the deviation of the 

RMSD in every 5 ns from the starting point (B). 

 

 

 

 

 

 

 

 

Figure 3. The G values of MMP9-CC27 during the production run of the MD simulations.  

 

The MMP9-CC27 complex from the 

6.40 ns of the MD production run was then 
minimized and exported as a pdb file 

(mmp9.pdb). The applicability checks of this 
complex for virtual screening by employing 

1000 redocking simulations resulted in 

RMSD values of less than 2.0 Å for all 
redocking of CC27 poses. The highest 

RMSD value was 1.274 Å. Thus, the MMP9-

CC27 complex (mmp9.pdb) resulted in this 
research is highly suggested to be used in the 

further development of structure-based 
virtual screening protocols to discover drugs 

targeting human MMP9. 
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CONCLUSION 

Homology modeling studies 

followed by 20 ns MD simulations by 

employing YASARA Structure could 
result in a proper quaternary structure of 

full human MMP9 complexed with 

CC27. The availability of the model 

offers possibilities to perform structure-

based drug design targeting the catalytic 

site of the human MMP9. Further 

investigation in the hemopexin domain 

should be performed to study the 
inhibitor selectivity of the catalytic site 

over the hemopexin domain. 
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