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Abstract

This dissertation provides a synthesis technique for the design of thickness-customizable

high-order (N ≥ 2) bandpass frequency selective surface (FSS) and its application in real-

izing versatile multi-layered FSS and absorbers. Admittance inverters layers are used to

synthesize the transfer response of the filter given desired characteristics such as filter type,

center frequency, and bandwidth. These inverter layers are essentially electromagnetic

coupling interlayers that can be adjusted to customize the thickness of multilayered FSS

without degrading the desired filter performance. A generalized equivalent circuit model

is used to provide physical insights of the proposed design. This synthesis technique is

adopted to deliver a versatile implementation capability of high-order FSS filters using

various dielectric spacers with arbitrary thicknesses. Such technique enables the realiza-

tion of spatial filters with variable size, while maintaining the desired filter response. To

highlight the significance of the proposed synthesis technique, its concept is applied to two

practical problems including the design of compact switchable FSS and adaptive/tunable

microwave absorbers as it may allow simpler integration of active components that require

specific physical dimensions.

In the first practical problem, the feasibility of deploying plasma switchable compact

spatial filter in harsh electromagnetic radiation environments is investigated. The proposed

FSS integrates contained plasma (plasma-shells) as active tuning elements. These ceramic,

gas-encapsulating shells are ideal for high-power microwave and electromagnetic pulse

protection because they are rugged, hermetic, operable at extreme temperatures, and

insensitive to ionizing radiation. A 2D periodic second-order switchable spatial filter is

implemented. It is composed of electrically small Jerusalem cross structures embedded

with discrete plasma shells strategically located to effectively switch the transfer function

of the filter. This technique is used to realize compact low profile second order band pass

spatial filter operating at S-band. It also has the ability to switch its transfer function



within 20 to 100 ns while enabling in-band shielding protection for aerospace or terrestrial

electromagnetic systems subjected to high power microwave energy (HPME) and high

electromagnetic pulse (HEMP) in harsh space environment. Experimental results are

shown to be in good agreement with simulation results.

The second practical problem is addressed by deploying a large-scale adaptable

compressed Jaumann absorber for harsh and dynamic electromagnetic environments.

The multilayered conductor-backed absorbers are realized by integrating ceramic gas-

encapsulating shells and a closely coupled resonant layer that also serves as a biasing

electrode to sustain the plasma. These active frequency-selective absorbers are analyzed

using a transmission line approach to provide the working principle and its frequency

tuning capability. By varying the voltage of the sustainer, the plasma can be modeled

as a lossy, variable, frequency-power-dependent inductor, providing a dynamic tuning

response of the absorption spectral band. To study the power handling capability of the

tunable absorber, dielectric and air breakdowns within the device are numerically emu-

lated using electromagnetic simulation by quantifying the maximum field enhancement

factor (MFEF). Furthermore, a comprehensive thermal analysis using a simulation method

that couples electromagnetics and heat transfer is performed for the absorber under high

power continuous microwave excitations. The maximum power level handling capability

of the microwave absorber has been numerically predicted and validated experimentally.
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Chapter 1

Introduction

1.1 Overview of Frequency-Selective Surfaces

Frequency Selective Surfaces (FSSs) are periodic structures arranged in a one or two dimen-

sional lattice, designed to filter electromagnetic (EM) spectrum ranging from microwave to

terahertz technology [2, 4]. They are constructed of arbitrary conductive geometry using

single or stacked layer backed by dielectric material and designed to reflect, transmit or

absorb EM wave based on frequency, angle of arrival and polarization. Consequently,

depending on their physical construction, material and geometry, they can be categorized

into low-pass, high-pass, band-pass and band-stop spatial filters.

These artificial surfaces are widely used in defense and wireless applications such as in

designing radomes [5] and dichroic surfaces for reflectors and sub-reflectors [6]. In fact,

early work concentrated on the design of FSS as hybrid radomes mounted at the front of

an aircraft or terrestrial military vehicle. In such case, FSSs are used as a front-end filter

to control EM waves before they couple with the antennas or sensors in the system. By

doing so, the FSS layers protect the enclosed antennas from the outside environment using

a bandpass FSS that is transparent within the operation frequencies of the antennas and

opaque at other frequencies [7–9]. The concept has also begun to transfer to commercial

sectors for cyber security purposes and the design of novel electromagnetics devices such

as microwave lenses [10, 11], polarizers [12, 13] and remote sensors [14]. For example, FSS-

based wallpapers have been recently researched to contain private Wi-Fi signals within the

desired residential/industrial buildings while permitting radio and emergency waves to

pass through [15, 16]. Unlike a microwave guided filter where the electromagnetic waves

propagate through transmission lines or waveguides, FSSs are used to filter free-space
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Figure 1.1. FSS building blocks composed of patch and wire grid. A capacitance is formed between
the adjacent edges of two coplanar patches while inductance is associated with a metallic strip for a
TEM wave as illustrated in the picture. Figure reproduced from [1].

(unguided) propagating EM wave. In its simplest form, the constituent periodic elements

of FSS can be divided in two metallic building blocks (wire grid or patch type) as shown in

Figure 1.1. A capacitance is formed between the adjacent edges of two coplanar patches for

a transverse electromagnetic (TEM) wave with the electric field perpendicular to the gap

while inductance is associated with a metallic strip for a TEM wave in which the electric

field is parallel to the wire. The value of the capacitance and inductance is related to the

geometrical parameter of the metallic patch and wire grid using approximated analytical

solution given in [17] as:

C =
2a
π

ε0εre f f ln
(

csc(
πs
2a

)
)

; L =
2a
π

µ0µre f f ln
(

csc(
πw
2a

)
)

, (1.1)
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Figure 1.2. Common FSS elements unit cell (a) dipole; (b) cross dipole; (c) Jerusalem cross; (d)
four-legged loaded element; (e) tripole; (f) square loop. Figure reproduced from [2]

Figure 1.3. Common resonator (bandpass) elements unit cell (a) slot dipole; (b) cross dipole slot; (c)
Complementary Jerusalem cross; (d) Complementary four-legged loaded element; (e) tripole slot;
(f) square loop slot. Figure reproduced from [2]

where ε0, µ0 are the free space permittivity and permeability, εre f f , µre f f are the effective

permittivity and permeability of the substrate, a is the periodicity of the FSS, s is the

separation between two adjacent patches, and w is the width of the wire grid. A variety of

FSS elements were introduced for bandpass and bandstop applications using combination

of the two building blocks. A complete list of bandstop elements is shown in Figure 1.2.

Their complementary topologies constitute a bandpass counterpart as shown in Figure 1.3.

1.2 Background

Traditional FSSs, at resonance frequency, have their constituent elements with effective

length that are multiple of half the wavelength λ/2. The dependence of the FSS frequency

response with respect to these factors could be a major drawback for some applications.
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For example, the size of each element becomes problematics as it enables early grating

lobe (harmonics) of the intended frequency which themselves depend upon the incidence

angle. In general the desired properties for FSS are as follows:

• Sub-wavelength unit lattice dimensions (periodicity � λ) provide a more stable

filtering response to the wave incident from oblique angles and avoid early onset of

the grating lobes.

• Multi-pole (multi-layer) FSSs are preferred in applications requiring broadband

operation with sharper band skirts and higher out-of-band rejections.

• Controllable spacing between the layers: thinner spacing between the layers help sta-

bilize the filtering responses of multi-layered FSSs for waves impinging from oblique

angles. Low profile design also adds benefits in improving overall aerodynamics,

conformability, and weight loss. However, flexible design thickness is more desired

to applications that demand requirements on the physical features of the constituent

subcomponents.

• Polarization insensitive FSSs minimize polarization mismatch loss and help reduce

the total insertion loss of the filter. This feature is also best suited for randomly

moving and/or rotating systems.

• Simple and low cost realization solutions such as scalable, planar or conformal

topologies without grounding vias help improve the versatility of the spatial filters

while relaxing fabrication requirements. FSSs based on non-exotic materials can

further reduce overall fabrication complexity and cost.

However, simultaneously optimizing all above mentioned properties has been a challeng-

ing engineering task. Furthermore, one of the more challenging design requirements is to

simultaneously obtain multipole FSS response in a low-profile design.
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1.3 Motivation

FSSs are typically designed using classical filter synthesis techniques [2]. In general,

steepness of a filter response curve is controlled based on the filter order. Thus, the higher

order filter responses are preferred for practical application demanding flat in-band top

and sharper band skirt for higher out-of-band suppression. In analogy of the design of

high-order guided microwave filter using inverters, multipole FSS design can also be

implemented using spatial inverters. However, the use of quarter-wavelength separations

to implement inverters between adjacent resonant FSS layers [2] not only results in a

relatively thick structure but also often deteriorates the filter performance, in particular

for waves impinging from oblique angles. An Nth-order filter using this approach has

an overall thickness in the order of (N − 1)λg/4. To address this issue, a closely coupled

three layers FSS arranged as resonator–aperture–resonator configuration [18, 19] has

demonstrated stable second-order filter response for broad range of incident angle in

a compact form. A miniaturized multipole spatial filter is also realized by alternating

non-resonant patches and wire grid layers [1, 20, 21]. These compact designs also provide

stable filtering performance for waves impinging from oblique angles and can achieve the

overall thickness of about (N − 1)λ0/30. Although such design method may be ideal in

realizing low-profile and/or conformal FSSs applications, it may not lend much freedom

in adjusting the separation between each metallic layer. A general design method that

enables thickness control of multipole (multilayered) FSSs is yet to be explored. Thus, this

thesis provides a new multilayered FSS design technique that can be applied for different

thickness FSSs, while maintaining the desired filter responses. We envision the presented

synthesis technique would bring a practical alternative design solution for future FSS

applications requiring precise thickness specifications.
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1.4 Concept of the Thickness-Customizable Multilayer Band-

pass FSS

Figure 1.4. Topology of three-pole FSS bandpass filter using coupling interlayers.

Recently, we have introduced the feasibility of realizing miniaturized three-pole band-

pass FSS based on inverter interlayers. The design was realized by sandwiching coupling

interlayers between three bandpass FSS layers comprised periodic miniaturized comple-

mentary Jerusalem cross structures as shown in Figure 1.4. The total thickness of the

design can be adjusted between λ0/4 and λ0/10. Although the initial studies served

well in indicating the possibility of transforming the concept to design thickness variable

multilayered FSS, a comprehensive and systematic design guide to simultaneously control

filter characteristics and overall filter thickness has not been presented. The filter responses

to the incident waves were obtained through brute-force optimization-based techniques

using High-Frequency Structure Simulator (HFSS) from the ANSYS Corporation. Also, the

filters deliver maximally flat bandpass response for various FSS thicknesses, but in doing
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so, the filter characteristics including operation frequency and fractional bandwidth are

unintentionally altered (see Figure 1.5). This was due to the lack of a synthesis procedure

that can be employed to compensate the detuning of desired filter characteristics.

Figure 1.5. Three-pole bandpass FSS with coupling interlayer that deliver highly selective bandpass
response with (a) total thickness d = 7.7mm ≈ λ0/4; (b) total thickness d = 3.175mm ≈ λ0/10.

In Chapter 2, a generalized technique for synthesizing bandpass FSS filters of arbitrary

order (N ≥ 2) that allows simultaneous control of the thickness and transfer response for

multilayered FSS filters is propesed. Our approach provides the capability to control the

thickness to arbitrary dimensions that might be needed for a particular application. The use

of equivalent circuit model (ECM) provides the physical insight behind the simultaneous

control of the filter response and thickness. Thickness customizability allows realization

of multilayered FSS filters with desired dimensions in order to flush mount FSS filters

onto arbitrary surrounding structures, or to allow the use of readily available dielectric

substrates. Commercial dielectric slabs (e.g., from Rogers Corp.) are typically available in

limited thickness options (e.g., h = 0.127, 0.254, 0.381, 0.508, 0.76, 1.524, 1.27, 1.9, 2.5, and

3.175 mm). In order to validate the design’s versatile implementation capability, a high

order bandpass FSS is synthesized using the proposed technique and implemented in four

different predefined thicknesses while maintaining the same desired filter characteristics.
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1.5 Potential Applications

1.5.1 Plasma-Enabled Compact Switchable FSS for the Protection of

Electromagnetic Systems against High Power Microwave

In modern communication systems, high power microwave (HPM) energy constitutes a

serious threat for the survival of the electronic and navigation system including satellite,

guided missile, manned or unmanned aircraft, ground vehicle, submarines, etc. Intensive

research toward the feasibility of electromagnetic shielding surface to protect electronic

systems in harsh EM/RF environment in order to provide secure space sensors has been

the focus in electronic warfare. FSSs can be used as spatial microwave limiters to control

EM waves before they couple with the antennas or sensors in many systems [8]. But a

passive bandpass FSS can only protect the system from out-of-band high intensity field

because they behave as a transparent medium within the operation spectrum. As a result,

jamming attacks, nuclear blasts or high power microwave weapon within the operation

band constitute a potential threat for the survival of these systems. Reconfigurable FSSs are

therefore required to protect both in-band and out-of-band against this vulnerability. These

types of FSSs have been previously investigated using RF MEMS switch, semiconductor

varactors, PIN diode, liquid crystal polymers, etc. [9, 22]. However, the use of existing

reconfigurable technologies requires trade-offs in terms of design tuning range/speed,

cost, reliability, large scale integration, power handling/consumption, and linearity.

In Chapter 3, a switchable electronic protection structure based on plasma-shell technol-

ogy is implemented. The applicability of voltage controlled plasma as a tuning component

embedded in FSS renders this technology achievable. The behavior of the electric field

intensity within the operating band of a switchable band pass spatial filter based on plasma

is illustrated in Figure 1.6 for both OFF and ON states. The electric field is transparent to
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Figure 1.6. (a) Switchable FSS with layers separated by quarter-wavelength. (b) Compact Switch-
able FSS design using coupling inter-layers.

the spatial filter when the plasma is OFF state. When the plasma is turned ON, transition

from lossless dielectric shell to a lossy conductive plasma is rapidly achieved and produces

strong shielding effectiveness for the transmission of the electric field. Based on this

concept, we demonstrate a switchable second order FSS based on plasma technology. Two

topologies (as shown in Figure 1.6) are adopted to provide a fast switchable passband

response with both in-band and out-of-band protection. In the first topology (Figure 1.6(a)),

a second order bandpass FSS is realized by cascading two single pole FSS layers about

quarter wavelength apart from each other. By introducing inverter inter-layer between

two resonators, the design thickness can be considerably reduced. For the second topology,
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this technique is used to design an alternative switchable FSS in a much compact manner

(Figure 1.6(b)). The specification and performance of the proposed designs are detailed in

Chapter 3.

1.5.2 Plasma-Enabled Compact Adaptive/Tunable Absorber for the Pro-

tection of Electromagnetic Systems against High-Power Microwave

The need for tunable, low-profile, light-weight, and high-power handling absorbers has in-

creased significantly as aerospace applications demand reliable radio-frequency/microwave

radar cross section (RCS) reduction devices that can rapidly adapt to harsh and dynamic

electromagnetic environment while enabling a more agile flight maneuverability [23, 24].

These camouflage systems, used particularly for stealth applications, have the capability

to alter the RCS of a target [25, 26]. Among many, conductor-backed absorbers are used

extensively in military and aerospace applications to reduce or deflect the backscattered

EM signal from their defense equipment (manned or unmanned aircrafts, ground vehi-

cles, naval vessels, guided missiles, etc.) that can be detected by hostile radar [26]. Such

absorbers comprised of various materials, shapes, sizes, and design patterns are intended

to dissipate the incident wave at the spectrum of interest while reflecting the out-of-band

frequency waves. Absorbers can be broadly categorized into material-based and structural-

based. The most well-known material-based absorber is the pyramidal absorber, which

presents a gradual transition in impedance from air to absorber. However, it can only be

used in limited applications, such as in anechoic chambers because the material used is

fragile and bulky.

On the other hand, structural-based absorbers use resonant behavior to absorb the

EM wave. The Salisbury screen [27], which uses a lossy homogenous sheet backed by

a completely reflective plane at quarter-wavelength distance at the operating center fre-
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quency, is one of the most basic resonant type absorbers. This single layer design has

limited bandwidth due to its resonant behavior. To improve the absorption bandwidth,

the Jaumann absorber [28] uses multiple resistive layers cascaded quarter-wavelengths

apart. However, this technique is impractical in most applications due to its large design

thickness. Also, the sheet resistance values of the layers increase exponentially from the

ground outward to the free space, which leads to manufacturing limitations. Another

type of multilayers absorber based on the quarter wavelength resonator concept is named

after Dallenbach [29]. Dallenbach absorber depends on the permittivity and permeabil-

ity of lossy substrates cascaded quarter-wavelengths apart. With the evolution of FSS

designs, new radar absorbers including circuit analog absorber [2, 30] and metamaterial

absorbers [31–34] have been introduced. Circuit analog absorbers use cascaded lossy

bandstop FSS sheets about quarter-wavelength between layers, similar to the Jaumann

absorber, but with better performance. In contrast to all aforementioned absorbers that are

limited to quarter-wavelength spacers between adjacent layers, metamaterial absorbers

based on high impedance surfaces offer designs with flexible thickness from near contact to

quarter-wavelength. These periodic structures provide artificial boundaries to the electro-

magnetic waves and can be used to implement either very thin narrow-band absorbers or

thick wideband absorbers. Nevertheless, the performance of passive absorbers with fixed

reflectivity-bandwidth characteristics cannot withstand modern frequency agile radar

(FAR) systems.

In Chapter 4, we investigate the feasibility of devising electronically tunable compressed

Jaumann absorbers based on plasma electrical properties to address critical limitations

encountered in harsh and dynamic electromagnetic environments. The technical approach

relies on applying thickness controlling inter-coupling layers and integrating tiny plasma-

shells to enhance the performance and tunability of the absorber (as shown in Figure 1.7).

This Inter-coupling layer concept has recently proven to be useful in realizing low-profile
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Figure 1.7. Topology of the plasma-based tunable compact adaptive/tunable absorber using
coupling interlayer

multi-layered FSS bandpass filter and has also demonstrated dual-purpose capability by

serving as a biasing network for the active components. Encapsulated-plasmas are unique

among all competing technologies because they provide a reliable control element to the

devices operating under electromagnetically harsh conditions. Due to the vulnerability

of microwave absorber when exposed to high power microwave/electromagnetic pulse

(HPM/EMP), the power handling capability of the tunable plasma-based multilayer

absorber is studied using multiphysics analysis, then validated by experimental data.

Fabricated prototype absorbers are measured using standard low power and relatively

high power measurement setup in free space. Then, we suggest design options that are

more resilient to thermal stress to help maintain a more stable operation when applied for

systems that are subjected to HPM.
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Chapter 2

Synthesized Technique for the Design of Thickness

Customizable High-Order Bandpass FSSs

2.1 Chapter Introduction

The revolutionary concept of engineering structures to emulate the atomic lattice with

controllable electrical properties was first proposed by J. B. Pendry et al [35, 36] in the

late nineties. After successful experimental demonstration of negative index of refraction

phenomena using metamaterials (materials engineered to have properties that have not

yet been found in nature) by R. A. Shelby et al [37], various novel microwave and optical

devices have been realized. In recent years, the extraordinary properties of metasurfaces

(two-dimensional equivalent of metamaterial) have stimulated the interest of research

community. Metasurface broadly refers to two dimensional artificial structures that en-

able extreme control of electromagnetic fields [4]. These synthetic surfaces are realized

by arranging subwavelength metallic and/or dielectric structures in an array fashion.

However, the modern microwave and RF systems demand ever more stringent design

requirements on the physical features of the constituent subcomponents. For example,

flexible implementation solutions that can deliver desired element size and weight present

important design challenges. In this Chapter, advanced design techniques is devised to

address theses issues.
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2.2 Filter Theory Concept and Configuration of the Proposed

Multipole FSS

Coupled filter theory has been widely applied and used to design waveguide filters,

dielectric resonator filters, ceramic combline filters, and microstrip filters [38–42], and has

served as an extremely powerful tool in both synthesizing and optimizing guided filters [43,

44]. As for traditional guided filters, inverters enable various alternative implementation

options to achieve the same desired transfer responses. Recently, coupled-resonator

filter theory based on impedance inverter [45] was used to synthesize multipole FSS

composed of dielectric slab and wire grid array. However, in this design, the dielectric

spacers are used as resonators with half-wavelength electric thickness. Not only does

the design implementation prevent overall thickness customizability but also will result

in relatively thick structure at lower operating frequency, which often deteriorates the

filter performance. Such performance degradation becomes more pronounced when the

waves impinge the FSS from oblique angles. In order to compress the total thickness of

the multipole FSS filter, coupling interlayers can be integrated with subwavelength or

half-wavelength [18, 46] resonator-based periodic structures. Coupling interlayers are

essentially inverter layers. When applied to FSS filters, this concept allows one to replace

quarter-wavelength spacers (a type of inverter) to a more compact or even thickness

adjustable artificial inverter layers. A maximally flat bandpass response can be realized by

placing single-pole FSS layers quarter-wavelength apart [2]. However, if one tries to reduce

the separation between the FSS layers, the filter performance degrades due to increased

coupling strength between the resonant layers. FSS based on aperture coupling interlayers

is a powerful method that allows control of the coupling strength, thus enabling the design

of selective filtering response for multilayered FSS filters with desirable separation between
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successive layers.

Figure 2.1. Unit cell representation of the topology of the Nth-order spatial bandpass filter based
on aperture coupling (inverter) interlayers.

The proposed multilayered bandpass spatial filter is shown in Figure 2.1, where the

design is symmetrical about the transverse xy plane located at the middle of the structure.

An Nth-order multilayered FSS is comprised N metallic bandpass resonators layers, (N− 1)

aperture coupling interlayers and 2N dielectric slabs. For the purpose of demonstration,

we selected a relatively simple square loop bandpass resonator and fixed the dielectric

constant (εr) to the same values in all the dielectric slabs, with relative permeability µr

= 1. In this example, the magnetic coupling is dominant since the center of the aperture

is located away from the square loop slot (where the electric fields are predominant)

[47]. Thus, the nonresonant aperture layers placed between pairs of resonators behave as

inductively coupled interlayers. For this implementation, the major magnetic coupling

contribution comes between adjacent resonant layers linked by direct coupling. Cross-

coupling and mixed coupling may be useful in designing more complex multipole FSS

configurations to improve its performance as it was demonstrated for guided filter to

introduce additional transmission zeros (TZs) and reduce insertion loss [48–50]. However,
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adopting this technique can unveil a much more complicated synthesis level for the design

of multipole FSS as the model will become more cumbersome. This was the case in our

previous approach design where both electric and magnetic coupling coexist.

Figure 2.2. ECM of the Nth-order spatial bandpass filter consisting of shunt parallel resonators and
shunt inductors separated by short transmission lines.

2.3 Equivalent Circuit Model and General Design Guide

The equivalent circuit model (ECM) of the Nth-order multipole FSS in Figure 2.1 is illus-

trated in Figure 2.2. Individual bandpass FSS layers are modeled as parallel L”
pi, C”

pi (1≤

i ≤ N) resonant tanks and the aperture layers as shunt inductors Lr
i,i+1 (1 ≤ i ≤ N − 1).

Each substrate is modeled by a short transmission line with characteristic impedance

Zd = Z0 ×
√

µr/εr, and length h[i,i+1]L/R. The lengths h[i,i+1]L and h[i,i+1]R represent the

thickness of the dielectric slabs sandwiched between the ith and the (i + 1)th bandpass

resonator layers, placed on the left and right sides of the aperture layer, respectively. The

length of the outer dielectric slabs is denoted by hA1 and hNB. The semi-infinite spaces

on each side of the multilayered structure are represented by semi-infinite transmission

line with characteristic impedance Z0. The goal of our design guide procedure is to obtain

electrical parameter combinations shown in Figure 2.2 given specific filter response charac-

teristic. Most importantly, it will be demonstrated that predetermined thickness values of

dielectric slabs can be used to simultaneously obtain desired total thickness and transfer
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function of multilayered FSS filters.

(a)

(b)

(c)

(d)

Figure 2.3. (a) Generalized ECM of bandpass filter based on admittance inverters. (b) Admittance
inverters are modeled as lumped component (inductive networks). (c) Coupling networks at the
source and load are further modified to avoid the vegetative inductance at the terminations. (d)
Simplified model after all the negative inductances are absorbed by adjacent resonators.

Our synthesis technique begins with the generalized ECM of a bandpass filter of order

N using admittance inverters (J0,1, J1,2, · · · , JN−1,N , JN,N+1). Given an Nth-order bandpass

filter with center frequency f0 and fractional bandwidth ∆ = BW/ f0, its ECM can be

modeled as shown in Figure 2.3(a). The parallel Lpi, Cpi tanks denote the self inductance

and self capacitance of the uncoupled resonators, whereas Ji,i+1 (1≤ i ≤ N − 1) represent

17



the mutual coupling between two consecutive bandpass FSS layers due to the effect of

the inverter layer and dielectric slabs. The coupling at the source and load is denoted

by J0,1 and JN,N+1, respectively. The electrical parameters of the equivalent circuit can be

obtained using the following equations in [51]:

Lpi =
∆Z0

ω0gi
; Cpi =

1
ω2

0Lpi
. (1≤ i ≤ N) (2.1)

Ji,i+1 = ∆ω0

√
CpiCp(i+1)

gigi+1
. (1≤ i ≤ N − 1) (2.2)

where ω0 = 2π f0 denotes the center angular frequency, and gi (0 ≤ i ≤ N + 1) are the

normalized parameters of the low-pass prototype filter type (e.g., Butterworth or Cheby-

shev response). These normalized values are used to find the required inductances and

capacitances of the bandpass filters using frequency and element transformation [51]. For

the predefined size of the outer substrates, the coupling at the source and the load are set

to

J0,1 = Y0

√
1

1 + (µ0µrhA1ω0Y0)2
(2.3)

JN,N+1 = Y0

√
1

1 + (µ0µrhNBω0Y0)2
(2.4)

The lumped equivalent circuit of each Ji,i+1 inverter consists of the series inductor Li,i+1

between two shunt inductors of negative value (−Li,i+1) such that Ji,i+1 = 1/(ω0Li,i+1),

as it is shown in Figure 2.3(b). The coupling network at the source and load is further

modified to avoid the negative inductance value at the terminations, which cannot be

absorbed by adjacent shunt elements [see Figure 2.3(c)]. The new inductance values

18



obtained at both terminals are

LA,1 =
1

ω0Y0

√(
Y0

J0,1

)2

− 1 = µ0µrhA1 (2.5)

LN,B =
1

ω0Y0

√(
Y0

JN,N+1

)2

− 1 = µ0µrhNB (2.6)

L
′
A,1 =

1 + (ω0LA,1Y0)
2

LA,1(ω0Y0)2 ; L
′
N,B =

1 + (ω0LN,BY0)
2

LN,B(ω0Y0)2 (2.7)

It should be noted that, when the outer substrates are not needed we have J0,1 = JN,N+1 =

Y0. Then from Equations (2.5) to (2.7), the series inductances at both terminals are shorted

(LA,1 = LN,B = 0) while the shunts inductances are opened (L
′
A,1 = L

′
N,B = ∞). The simpli-

fied version of the ECM after absorption of the negative inductance values by adjacent

resonators is shown in Figure 2.3(d). The inductance values obtained in Figure 2.3(d) are

obtained as follows:

1
L′p1

=
1

Lp1
− 1

L′A,1
− 1

L1,2
(2.8)

1
L′pN

=
1

LpN
− 1

LN−1,N
− 1

L′N,B
(2.9)

1
L′pi

=
1

Lpi
− 1

Li−1,i
− 1

Li,i+1
. (2≤ i ≤ N − 1) (2.10)

By predefining the size of the intersubstrates, the ECM in Figure 2.3(d) can be trans-

formed to the one in Figure 2.4. This new model is obtained by converting the π-inductor

network between consecutive resonators to T-network such that

L[i,i+1]L/R = µ0µrh[i,i+1]L/R. (1≤ i ≤ N − 1) (2.11)
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Figure 2.4. π-inductor network between adjacent resonators is used from Figure 2.3(d) and con-
verted to T-inductor network.

The other required constituting elements in the modified ECM can be obtained as follows:

1
L”

p1
=

1
L′p1
−

L1,2 − L[1,2]L − L[1,2]R

L1,2 × L[1,2]L
(2.12)

1
L”

pN
=

1
L′pN
−

LN−1,N − L[N−1,N]L − L[N−1,N]R

LN−1,N × L[N−1,N]R
(2.13)

1
L”

pi
=

1
L′pi
−

Li−1,i − L[i−1,i]L − L[i−1,i]R

Li−1,i × L[i−1,i]R
−

Li,i+1 − L[i,i+1]L − L[i,i+1]R

Li,i+1 × L[i,i+1]L
.

(2≤ i ≤ N − 1)

(2.14)

1
Lr

i,i+1
=

Li,i+1 − L[i,i+1]L − L[i,i+1]R

L[i,i+1]L × L[i,i+1]R
. (1≤ i ≤ N − 1) (2.15)

In order to reflect the topology of the bandpass spatial filter proposed in Figure 2.1, the

series inductors and their required shunt capacitances are used to model each transmission

line [52] with characteristic impedance Zd = Z0 ×
√

µr/εr, as shown in Figure 2.2. This

transformation is accurate as long as the electric length of each transmission line is small

such that their phase θ = βh < 30◦ within the operation band of the filter. The effective

shunt capacitance values shown in Figure 2.2 are obtained from telegrapher’s equation of

the short transmission lines

C”
p1 = Cp1 −

ε0εrhA1

2
−

ε0εrh[1,2]L

2
(2.16)
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C”
pN = CpN −

ε0εrhNB

2
−

ε0εrh[N−1,N]R

2
(2.17)

C”
i = Ci −

ε0εrh[i−1,i]R

2
−

ε0εrh[i,i+1]L

2
. (2≤ i ≤ N − 1) (2.18)

The calculated (L”
pi, C”

pi, Lr
[i,i+i]) combinations provide the desired filter response for pre-

defined dielectric thickness between the metallic layers for the design of multilayered FSS.

It should be emphasized that the design flexibility for various dielectric thicknesses is com-

pensated by adjusting the resonators and the aperture features [i.e., for different predefined

dielectric electrical lengths, different values of resonators features (L”
pi, C”

pi, Lr
[i,i+i]) will be

obtained from the synthesis]. This is due to the fact that the coupling coefficient between

two consecutive resonators not only depends on the aperture size but also the resonator

features as well as the dielectric slabs. This scenario explains the unintentional change

in the filter response obtained in our previous approach due to the lack of a synthesis

procedure that should be used to compensate the detuning of desired filter characteristics.

The final implementation step maps these electrical parameters to the physical dimen-

sions of the FSS. For the example structures, the dimensions of the bandpass FSS layers

shown in Figure 2.1 can be obtained from approximate resonance equations of the array of

square loop slots using their constituent elements (L”
pi, C”

pi) [53]. The associate reactance

XL”
pi

and susceptance BC”
pi

, of the inductance and capacitance, respectively, are obtained

using

X
Z0

= ωpiL”
pi = cos(θinc)F(ai, ai − bi, λi, θinc) (2.19)

B1

Y0
= 4sec(θinc)F(ai, bi, λi, θinc) (2.20)

B2

Y0
= 4F(bi − si, si, λi, θinc) (2.21)
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B
Y0

= ωpiC”
pi =

(
1.75

B1

Y0
+ 0.6

B2

Y0

)
εre f f (2.22)

where λi, ωpi, and F are given by [53]

λi =
2π

ωpi
√

ε0µ0εre f f
; ωpi =

1

2π
√

L”
piC

”
pi

(2.23)

F(ai, u, λi, θinc) =
ai

λ1

[
ln
(

csc
πu
2ai

)
+ G(ai, u, λi, θinc)

]
(2.24)

G(ai, u, λi, θinc) =
1
2
×

(1− β2)2
[(

1− β2

4

)
(A+ + A−) + 4β2A+A−

]
(

1− β2

4

)
+ β2

(
1 + β2

2 −
β4

8 (A+ + A−) + 2β6A+A−
) (2.25)

with

A± =
1√[

1± 2ai sinθinc
λi

− ai cosθinc
λi

] − 1
(2.26)

β = sin
(

πu
2ai

)
. (2.27)

In the above equations, ε0 and µ0 are the free space permittivity and permeability, εre f f

is the effective relative permittivity of the dielectric surrounding the metallic bandpass

resonator layer, and θinc is the angle of incidence of the EM wave. The effective relative per-

mittivity εre f f ≈ εr, since the metallic FSS is embedded on both sides by the same substrate.

However, an accurate expression of εre f f that depends on the substrates’ thicknesses and

the period of the FSS can be found in [54].

Since the aperture layer is a wire grid, the physical size ri,i+1 of the apertures can be

approximated using [17] where a is the unit cell size, and µre f f is the effective permeability
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of the medium.

Lr
[i,i+1] =

a
2π

µ0µre f f ln
[

csc
(

π(a− ri,i+1)

2a

)]
(2.28)

This reverse engineering technique provides a better understanding of the physics behind

the proposed structure. For this synthesis technique, the periodicity (a) of the design

can be fixed in order to find the remaining physical dimensions of the design. Thus, it is

noteworthy to mention that the set of solutions (bi, si, ri,i+1) are not unique. This flexibility

of the synthesis process allows the designer to obtain feasible physical dimensions. As

a proof of concept, this design guide will be used in the next section for the design

of Butterworth multilayer filters of order N = 3 with various predefined (customized)

thicknesses.

Figure 2.5. Topology of the proposed third-order bandpass FSS.
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2.4 Proof of the Proposed Synthesized Technique

2.4.1 Synthesis of a Third-Order Bandpass FSS with Customized Thick-

ness

In order to validate the procedure described in the previous section, a third-order Butter-

worth response-type bandpass FSS filter operating at center frequency f0 = 10 GHz and

fractional bandwidth of ∆ = 10%, is chosen to be implemented with various design total

thicknesses comprised between λ0/12 and λ0/6 (where λ0 is the free space wavelength at

f0). Following the design approach, four different configuration thicknesses of the FSS are

implemented. RT/duroid 6010 from Rogers Corp. with available standard thicknesses is

used as dielectric slabs. This substrate has a relative permittivity value of εr = 10.2 and

loss tangent of tanδ = 0.0023. The third-order bandpass spatial filter is shown in Figure 2.5.

The design has a symmetrical architecture due to the Butterworth response type.

Table 2.1. Low-pass (Butterworth) prototype normalized element and electrical parameters of the
third-order bandpass FSS for the ECM shown in Figure 2.3(a).

Parameter g1 = g3 g2 J0,1(Ω−1) J1,2(Ω−1)

Value 1 2 0.0026 0.0027

Parameter J2,3(Ω−1) J3,4(Ω−1) Lp1(nH) Lp2(nH)

Value 0.0027 0.0026 0.60001 0.30001

Parameter Lp3(nH) Cp1(pF) Cp2(pF) Cp3(pF)

Value 0.60001 0.42216 0.84432 0.42216

The synthesis procedure begins by finding the electrical parameters of a third-order

bandpass filter from admittance inverters shown in Figure 2.3(a) using Equation (2.1)-(2.4).

The results are accessible in Table 2.1. By following the procedure described in Section

2.2, Equations (2.5)-(2.18) are then used to find the electrical parameters (L”
pi, C”

pi, Lr
[i,i+i])
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Table 2.2. Summary of the four design configurations (physical parameters are in mm).

Design # Total
Height

h1 h2 = h3 a b1 b2 s1 = s2 r1,2 f0(GHz) ∆(%)

1 (Sim.) λ0/12 0 0.635 4.5 4.30 3.95 0.19 1.75 10 10

2 (Sim.) λ0/10 0.254 0.635 4.4 3.84 4.10 0.24 1.60 10 10

3 (Sim.) λ0/8 0.635 0.635 4.1 3.45 3.90 0.20 1.66 10 10

4 (Sim.) λ0/6 0.760 0.760 4.0 3.40 3.80 0.24 1.78 10 10

in Figure 2.2 for four different configuration design total thicknesses comprised between

λ0/12 and λ0/6 using only available standard thicknesses. Thus, different values of the

resonators and aperture layers features (L”
pi, C”

pi, Lr
[i,i+i]j) for 1≤ j ≤ 4, where j is denoted

for each customized FSSs design, are obtained. The next step of the procedure is to map

these electrical parameter values to the physical dimensions of the resonators and aperture

layer using Equations (2.19)-(2.28). However, these initial values are used as a starting

point because approximate equations for the constituent elements of the square loop

slot and the wire grid are used. Taking away the intense computational time, a simple

fine-tuning process using HFSS is carried out to achieve the desired response.

Figure 2.6. FW simulation results for transmission and reflection coefficients of the four configura-
tion designs FSSs along with the ECM results.
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Figure 2.7. Frequency response of Design #4. Simulated ECM (Figure 2.5) and FW result using
initial physical parameters compared with the one after the fine-tuning process.

The detailed final physical dimensions resulting from the above steps are summarized

in Table 2.2. As expected, when the structure is compressed down to a thinner thickness,

stronger coupling occurs between resonators, requiring smaller aperture dimensions to

compensate the coupling strength for selective filtering response. The frequency response

of all four design configurations based on full-wave (FW) EM-simulation along with the

ECM results is illustrated in Figure 2.6. The results obtained show that the design can be

scaled to different thicknesses while virtually maintaining the same filter characteristics

(center frequency and bandwidth) and clearly abide to our expectations. As can be noticed

that all the dielectric thicknesses used for the four designs are commercially available. In

order to perceive the accuracy of the synthesis process, the ECM result and the FW result

using initial physical parameters are compared with the one after the fine-tuning process

for Design #4. As can be seen from Figure 2.7, the margin of error is almost imperceptible.
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Figure 2.8. FSS filter measurement setup.

2.4.2 Fabrication and Measurement Results

Both Design #2 and Design #4 are fabricated and then tested to experimentally validate

our design technique. RT/duroid 6010 laminated with 1-oz copper is used for all dielectric

layers. However, beforehand, the dielectric substrates are bonded together using the 4-mil

Rogers RO4450F (εr = 3.52 and tanδ = 0.004) bonding layer, as shown in inset of Figure 2.8.

The inserted bonding layers have a noticeable effect on the frequency response of the

design since it adds extra length to the design thickness. So it is convenient to take into

account their presence during the synthesis process. Only the capacitive gap between

the resonators and the aperture size are modified to accommodate this perturbation. The

new dimensions for the prototype #2 are: s1 = s2 = 0.2;r1,2 = 1.8 (in millimeters). For the

prototype #4, we obtained: s1 = s2 = 0.15;r1,2 = 2 (in millimeters).

The performance of the FSSs (Design #2 and Design #4) with the bonding layer is
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(a) (b)

Figure 2.9. Simulated filter response of Design #2 at various oblique angles of incident wave. (a)
TE polarization. (b) TM polarization.

(a) (b)

Figure 2.10. Simulated filter response of Design #4 at various oblique angles of incident wave. (a)
TE polarization. (b) TM polarization.

investigated across different angles of incidence for both transverse electric (TE) and

transverse magnetic (TM) polarizations. Figures 2.9 and 2.10 predict a robust filter response

when the spatial filters are illuminated from various polarizations and oblique angles

(0◦ ≤ θ ≤ 60◦). A total array size of 120 mm × 120 mm corresponding to 4λ0 × 4λ0 (where

λ0 is the free space wavelength at 10 GHz) is fabricated for both designs. Two frames using

3-D printer (uPrint SE Plus) are fabricated to align the multilayers and clamp each FSS

prototype. A pair of PE9887-11 horn antennas is used to obtain the frequency response

of the design in free-space measurement setup. A large metallic wall is used to block

direct coupling between the transmitting and receiving antennas. A small aperture of

the size of the FSS is carved out at the center to mount the FSS, as shown in Figure 2.8.
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Figure 2.11. Transmission coefficient of the FSSs showing simulated ECM and FW results taking
into account the bonding layers along with the experimental measurement (Exp. Meas.) results for
TEM plane wave.

The calibration of the system is carried out by first measuring the transmission coefficient

without the device under test, and then the reflection coefficient is also obtained when the

aperture is covered by a thick conductive sheet. Gating window is applied to reduce ripples

in the measurement caused by multiple reflections of the waves. The actual frequency

response of the spatial filters is obtained by normalizing their measured results obtained

in the presence of the FSSs with the calibrated values. As can be seen from Figure 2.11, a

good agreement between simulation (ECM and FW) and measurement results from both

configuration designs is obtained. Although slight discrepancies between measured and

simulated filter response can be observed, these minor inconsistencies are mainly due to

fabrication tolerance and imperfect assembly of the multilayers. However, the important

design parameters (center frequency and bandwidth) are well maintained. The measured

performance of the designs across different angles of incidence (0◦ ≤ θ ≤ 60◦) for both TE

and TM polarizations is also experimentally investigated. Results obtained (Figures 2.12

and 2.13) show robust and stable filter response for both prototypes. Although at 60◦, a

slight deviation of the center frequency is obtained. The average insertion loss obtained
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within the scan angle is about 1.5 dB as shown in the inset of Figures 2.12 and 2.13. The

increase of the insertion loss compared to the simulated result can be due to the finite size

of the prototypes.

(a) (b)

Figure 2.12. Measured filter response of Prototype #2 at various oblique angles of incident wave.
(a) TE polarization. (b) TM polarization.

(a) (b)

Figure 2.13. Measured filter response of Prototype #4 at various oblique angles of incident wave.
(a) TE polarization. (b) TM polarization.

The responses of the proposed design show a good filter performance for practical

applications demanding flat in-band top and sharper band skirt for higher out-of-band

suppression. Although no TZ is generated neither at the lower or upper sideband, at

least 20-dB out-of-band suppression is obtained at frequencies less than 9 GHz and above

11 GHz for all designs which show better passband selectivity compared to the results

obtained in [21]. For our previous approach, TZs are located at the upper side of the

passband due to the presence of the mixed electric and magnetic coupling but the synthesis
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would be very complicated. A more robust response (compared to [45]) is achieved for a

wide range of angle of incidences up to 40◦ for both TE and TM.

2.5 Design Profile and Fabrication Tolerance

Through our analysis, we have provided a degree of conformity for thickness customizable

high-order bandpass FSS. However, some limitations are required for the design of a

very thin profile. During the synthesis process, we have neglected the coupling between

adjacent resonator layer and aperture layer and only consider the direct coupling between

the resonators. However, for much closer proximity between the metallic layers, (in the

order of ≤ λ0/100), the mutual coupling between the aperture layer and the resonator

layer caused by the evanescent higher order Floquet modes, can be high and should be

taken into account. This is not the case for all four designs, as the separation between

adjacent resonators and aperture layer was thick enough (≥ λ0/47). This assumption is

validated since no perceptible difference is obtained between the FW simulation response

and the ECM response. For the design of very thin bandpass filter with much closer

proximity between adjacent metallic layers (≤ λ0/100), two major problems can arise.

First, the ECM needs to be adjusted. Second, the larger capacitance or inductance will be

required which can limit the fabrication process.

While the complexity of the fabrication is pertained by the dielectric profile, the sensitiv-

ity of the filter response to its design parameter should also be investigated. Uncertainties

in the property of the material used can affect the response of the FSS in terms of center

frequency, bandwidth, and insertion loss. A parametric study is provided to show the

variation of the response against unavoidable tolerance in the dielectric constant, thick-

ness, and the dielectric loss tangent of the substrate used. The sensitivity analysis is also

performed for a slight change in the aperture size which can be due to the technology
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used for the fabrication process. Note that this feature is chosen because the aperture size

mainly controls the external quality factor which depends on the coupling between the

resonators.

Characteristics of the frequency response include the center frequency, the bandwidth,

and the insertion loss. The physical dimensions for the Design #2 (see Table 2.2) are used as

the nominal dimension for the analysis. Based on the coupled-resonator filter topology, the

insertion loss of the FSS is usually dependent on the coupling level of the resonators and

the material losses including the dielectric and metallic losses. For this parametric study,

the coupling level is satisfied and we obtained the transmission coefficient of the FSS for

various dielectric losses (tanδε). The impact of the variation of the dielectric loss from 0.002

to 0.02 is shown in Figure 2.14(a). It can be seen that by increasing the dielectric loss within

that range, the insertion loss in the passband is mainly affected while the bandwidth is

slightly reduced leaving the location of the center frequency virtually unchanged. With no

dielectric loss the insertion (tanδε = 0), loss is about 0.4 dB, which is due to the metallic

loss. When the dielectric loss increases to 0.02 (typical dielectric loss for FR4 substrate),

the insertion loss in the passband increases to 3.2 dB which is unacceptable for practical

application. Therefore, a low-loss dielectric is required for this design.

For most available commercial substrates, the tolerance of the dielectric constant is

at most ±0.25 and about ±0.05 mm for the thickness. The analysis on the uncertainty of

the dielectric constant [see Figure 2.14(b)] shows that the center frequency of the spatial

filter is only affected as it slightly changes from 9.9 to 10.2 GHz. Then, a variation of all

the substrates thickness within the range of their tolerance is investigated. The results

shown in Figure 2.14(c) predict a slight deviation of the center frequency from 9.9 to 10.1

GHz. Finally, the variation of the aperture size from 1.5 to 1.7 mm shows that the required

external quality factor for the Butterworth response-type bandpass filter is disturbed. As

a result, when the aperture size increases, the bandwidth of the FSS also increases, as
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(a) (b)

(c) (d)

Figure 2.14. Impact of the parametric analysis on the frequency response of the third-order
bandpass FSS. The nominal dimension (in millimeters) of Design #2 is used except for the parametric
variable. (a) Effect of the dielectric loss from the substrate. (b) Uncertainty of the dielectric constant
(εr ± 0.25). (c) Uncertainty of the substrates thickness (h± 0.05). (d) Imprecision of the aperture
size due to fabrication issues.

shown in Figure 2.14(d). The slight discrepancy in the bandwidth that were obtained in

Figure 2.11 could be due to this fabrication error. All these behaviors obtained from the

parametric analysis are normal as it also happens for microwave filters. However, the

sensitivity level of our proposed design is within a norm that can be tolerated by most

practical applications.

2.6 Chapter Conclusion

Advanced design techniques for high-performance FSSs are implemented in this chapter.

A design synthesis based on microwave filter theories and inverters is develop to realize

compact/size controllable high order bandpass FSS for radiative applications. With
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a better design control of various artificial surfaces, researchers and engineers will be

equipped with alternate design tools to meet and exceed the technological demands of

future electromagnetic devices for wireless applications. The proposed technique is by no

means limited to FSSs as it can be applied to any applications (spatial filters, absorbers,

and antennas) that require high-performance size-control on the physical features of the

constituent subcomponents.
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Chapter 3

Plasma-Enabled Reconfigurable Low-Profile Frequency

Selective Surface for Harsh EM/RF Environment

3.1 Chapter Introduction

Reconfigurable FSSs have been investigated using RF MEMS switch and semiconductor

varactors. Unfortunately, they suffer from complex biasing control; they also have a limited

tunable range capability and are not well suited to handle high power intensity field. The

technology of using plasma to attenuate high power microwave energy is investigated to

address these issues. The proposed active FSS is implemented to stand up to the harshness

of aerospace, military, or satellite applications and therefore improve the state of the art

in power dependent frequency-selective protection to provide a secured space sensor

operating in harsh EM/RF environments. Various applications may require different

specification, but the desired performances for abovementioned EM radiation protection

systems are as follows:

• low profile plasma based reconfigurable band pass spatial filter centered at 3 GHz

with the ability to integrate into existing structures

• switchable passband response with fast turn-on times

• greater than 30 dB out of band shielding effectiveness at OFF state and negligible

in-band insertion loss at OFF state

• greater than 30 dB in-band transmission suppression at ON state with low power

consumption
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• fractional bandwidth (BW): > 5%, selected as trade off between selectivity and

insertion loss

• polarization independent (this feature is best suited for randomly moving and/or

rotating systems as it minimizes polarization mismatch loss

• scan angle capability up to 45◦

• material thickness expected to be less than 50 mm

• capable of withstanding ionizing radiation, shock, vibration and temperature range

of –90 to +90°C.

In this chapter, we demonstrate a switchable second order FSS based on discrete plasma-

shells technology. Two designs are investigated for this purpose to provide a fast switchable

passband response with both in-band and out-of-band protection. In the first topology,

a second order bandpass FSS is realized by cascading two single pole FSS layers about

quarter wavelength apart from each other. A much compact and flexible design is adopted

for the second topology by introducing inverter inter-layer between two resonators such

that the design thickness can be considerably reduced.

3.2 Plasma-shells Concept and its Electrical Properties

Plasma’s electrical properties and its advantages in stealth applications have been exten-

sively studied [55, 56]. Theoretically, plasma medium can be manipulated at the appropri-

ate frequency to transmit/delay, reflect, or absorb electromagnetic wave. Notably, it has

the unique property to withstand high power microwave energy [57, 58]. However, the

realization of a practical large scale plasma device has presented challenges in integrating

the plasma with the EM device [59–61], and assuring control over its properties (plasma
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density, gas composition, and pressure). Often plasma devices previously employed have

been bulky, fragile and not hermetic. Mostly, there is no control over the gas content and

pressure. Consequently, they have a short operating life and will not stand up to the rigors

of aerospace, military, or satellite applications.

(a) (b)

Figure 3.1. (a) Plasma-shells cutaway showing internal plasma. (b) IST manufacturing capability
produces shells of various size, shape, and texture [3]

Recently, controlled gas encapsulating ceramic chambers patented and commercially

available by Imaging Systems Technology Inc. circumvents the aforementioned prob-

lems. These plasma-shells generate plasma when properly biased. The ceramic, gas-

encapsulating shells are ideal for high-power microwave and electromagnetic pulse protec-

tion because they are rugged, hermetic, operable at extreme temperatures, and insensitive

to ionizing radiation. When energy is applied across the exterior surface of the plasma-

shell, the encapsulated gas ionizes as shown in Figure 3.1(a). Ionized gas can emit, reflect,

or absorb EM energy. Standard sizes of plasma-shells range from 0.5 to 10 mm, and are

compatible with surface-mount technology assembly techniques. Shells are extremely

lightweight and can be manufactured in different shapes: spheres, cylinders, cubes, oblate

spheroids, rectangular prisms, and other complex shapes as shown in Figure 3.1(b). Pri-

mary materials of shells include: Y2O3, ZrO2, SiO2, Al2O3, carbon steel, and various

37



glasses. Noble gases (helium, neon, argon, krypton, xenon) are often used as a mixture

inside the hermetic shell. The ability to customize the shells (material, size, shape, texture,

density) allows them to be easily integrated into many enabling applications. We will use

these plasma-shells as real-time fast electronic switches in the design of practical large scale

switchable electromagnetic field blocking FSS for the protection of EM systems subjected

to high power microwave.

The internal gas volume can be modeled as a complex frequency dependent material,

with the permittivity εp expressed as follows [62]:

εp = ε0(ε
′
r − j

σp

ωε0
), (3.1)

where ε0 = 8.854× 10−12F/m is the permittivity of free-space, ε′r the real part of relative

permittivity, σp[S/m] is the conductivity and ω[rad/s] is the operating angular frequency.

ε′r = 1−
ω2

p

ω2 + ν2 and σp =
ω2

p · ν · ε0

ω2 + ν2

[
S
m

]
, (3.2)

where ωp [rad/s], and ν [rad/s] are plasma frequency and electron collision frequency,

respectively. It is noted that the plasma frequency ωp depends on the electron density

ne [m−3] as:

ωp =

√
ne · e2

ε0 ·me
= 56.4

√
ne, (3.3)

where e is the electron charge (e = 1.6 × 10−19 C), and me is the electron mass (me =

9.1× 10−31 Kg). The electron density of the ionized plasma is electrically controlled by
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applied voltage. The electron collision frequency for a noble gas is obtained from [63]:

ν[s−1] =
8

3× π2 N
(

me

2KBTe

)5/2 ∫ ∞

0
ϑ5Q(m)(ϑ)exp

(
− meϑ

2

2KBTe

)
dϑ, (3.4)

where Te [K], N [cm−3], KB [J · K−1], ϑ [m · s−1], and Q(m)(ϑ) are temperature, gas number

density, Boltzmann’s constant, velocity, and momentum transfer cross section of the

electrons, respectively. The gas number density N [m−3] is obtained from the ideal-gas

equation of state as:

N =
P

KBTe
. (3.5)

where P [Pa] is the gas pressure. It can be seen that while the electron collision frequency

can be controlled by the gas contents, the plasma frequency is controlled by the biasing

voltage. Thus, for fixed gas contents, the real part of relative permittivity of the plasma

medium can be altered by adjusting the biasing voltage.

Generally, a plasma medium can be treated as a conductor with conductivity σp or

as a dielectric with permittivity εp based on its electron collision frequency, its plasma

frequency and the operating frequency of the system [62]. The first scenario is met for

frequencies where ω� ωp,ν. The conductivity of the plasma is then reduced to its dc

form such that σp→ σdc =
ω2

p·ε0
ν . Such characteristics of the plasma is used in this Chapter

to design switchable frequency selective surfaces for electronic protection in the following

sections. For the second scenario regime, where the bulk plasma is used as a dielectric

with variable permittivity, we have ν < ω < ωp which is practical for plasma driven at RF

discharge.
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3.3 Plasma-based ON-OFF Switchable Second Order FSS

(Quarter Wavelength Concept)

3.3.1 Detail Specification

Figure 3.2. Unit cell representation of the first order switchable plasma-shell integrated FSS design.
Units are in mm

In [64], plasma-shells have been used to demonstrate a tunable second order large

area band pass FSS operating in X-band. In this example, however, only 7 dB in-band

suppression is achieved when plasmas were sustained with 1400 V peak-to-peak square

voltage. An alternative design that gives more flexibility and agility implementation has

been proposed to improve switchable in-band and out of band suppression in the S-band.
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For example in [64], plasma- shells about quarter wavelength height are sandwiched

between two FSS layers that serve as plasma excitation. Thus, this topology requires

relatively long plasma shell when the design is to be scaled to low frequencies. Plasma

shells with such thickness are in general more challenging to realize. Also in case where

few shells breakdown or not functional, it will be impossible to replace them.

Figure 3.3. Simulated first order band pass filter response in OFF state at various oblique angle of
incident wave. (a) TE polarization; (b) TM polarization.

First we proposed, a single pole FSS with top layer composed of miniaturized Jerusalem

cross structure enclosed by inductive metallic loop arranged in two dimensional periodic

lattice. As shown in the unit cell (Figure 3.2), each Jerusalem cross structure is connected

to the metallic wire by a micro plasma shell. The optimized shell dimension used in this

design is 6 x 2.2 x 2.2 mm. Each shell is filled with 0.1 % Argon - 99.9 % Neon mixture at

300 K electron temperature. The electron collision frequency is set to ν = 4.85× 1010 rad/s.

The bottom layer is a high impedance sub-wavelength metallic wire grid. This layer is

connected to the JC layer through conductive vias and mainly serve as biasing network

for the active components. FR4 dielectric with εr = 4.4, loss tangent of tanδ = 0.017 and a
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Figure 3.4. Simulated first order filter response in ON state (ne = 3.6× 1012cm−3) at various oblique
angle of incident wave. (a) TE polarization; (b) TM polarization.

thickness of t = 1.524 mm is used as substrate. The model utilizes a three-layers stack-up

FR4 in order to accommodate the biasing traces within the electrically insulating materials.

Due to the symmetrical layout of the design, this filter is insensitive to the polarization

of the electric field. Physical dimensions of the unit cell are optimized to provide a first

order band pass response centered at f0 = 3 GHz when the plasma is in OFF state. The

simulated filter response with an incident plane wave illuminated from various incidence

angles (0◦ ≤ θ ≤ 45◦), for both TE and TM polarizations in Figure 3.3 demonstrates a

stable filter response. The results show a first order band pass response centered at 3 GHz

with 1.2 dB in-band insertion loss across the scan angle. The 3 dB bandwidth is about

9 %. For TE case, transmission peak is formed around 3.6 GHz as the incidence angle

is increased. This is due to the crooked mode that is emblematic of the Jerusalem cross

structure. For plasma ON state, the plasma electron density value is approximated to

ne = 3.6× 1012 cm−3 equivalent to ωp = 1.07× 1011 rad/s. The simulated transmission

and reflection response for various angle of incidence for both TE and TM polarization

(Figure 3.4) exhibit robust switchable average effective shielding of about 20 dB for both in
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band and out of band operation.

Figure 3.5. Unit cell representation of the second order switchable plasma-shell integrated FSS de-
sign by cascading two of the single pole FSS layers apart from each other about quarter wavelength
(12.7 mm). Total thickness is about λ0/5. Units are in mm

The multi-poles FSS is realized by cascading two of the single pole FSS layers about

quarter wavelength apart from each other to realize a traditional second order bandpass

filter. The topology of the second order tunable FSS is shown in Figure 3.5. The total

thickness of the structure is about 21 mm (equivalent to λ0/5) and the periodicity in the

order of 0.15λ0. Although the overall thickness of the device is much thicker than the first

proposed design, it still meets the design specifications in term of thickness. At OFF state

(ωp = 0), the filter response is characterized for wave incident from normal and oblique

angles (Figure 3.6). The simulated results show highly selective second-order bandpass

response centered at 3 GHz with 1.9 dB in-band insertion loss. The results also show

sharper band transition and higher out-of-band rejection when the filter is illuminated
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Figure 3.6. Simulated second order band pass filter response in OFF state at various oblique angle
of incident wave. (a) TE polarization; (b) TM polarization.

Figure 3.7. Simulated second order filter response in ON state (ne = 3.6× 1012 cm−3 equivalent
to ωp = 1.07× 1011 rad/s) at various oblique angle of incident wave. (a) TE polarization; (b) TM
polarization.

from various oblique angles for both TE and TM waves compared to previous prototypes.

The 3 dB bandwidth is about 6 %. The simulated transmission and reflection response

for various angle of incidence for plasma ON state (ne = 3.6× 1012 cm−3) are shown in

Figure 3.7. The in-band and out-of-band transmission coefficient is suppressed about 40
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dB average. The performances of this second order FSS meet the design requirements.

3.3.2 Fabrication and Experimental Results

Figure 3.8. Illustration of one fabricated panel at OFF and ON state.

Two large panels of size 12 in. × 12 in. each (array of 19 × 19 unit cells) are fabricated

on FR4 dielectric substrates. Each panel hosts 1,400 discrete plasma shell filled with 0.1 %

Argon – 99.9 Neon mixture at 300 K electron temperature. The value of the gas pressure (P

= 240 Torr) is estimated by solving a simple theoretical expression for neon gas derived in

[65] at 300 K electron temperature:

ν[s−1] = 8.63× 10−18 ×
(

P
KBTe

)
× T0.833

e f or 102K ≤ Te ≤ 5× 103K, (3.6)

Plasma-shell are manually bonded to the metallic layers with 0.5 mm thickness low

resistivity epoxy. One fabricated panel is shown in Figure 3.8 at OFF state. The panel is

excited with boost DC-AC converter used to generate the power and sustain the plasma.

The transformer steps up the DC voltage by a factor of 12 and produces a square wave

output with a low driving frequency ranging from 25 kHz to 1 MHz. The excited panel

is also shown in Figure 3.8. Two panels are cascaded about quarter wavelength (12.7
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(a) (b)

Figure 3.9. (a) Photograph of the test setup (free space) for the FSS measurement. Two panels are
cascaded about quarter wavelength; (b) Measured second order band pass filter response in OFF
state for both TE polarization and TM polarization.

mm) and the test setup is illustrated in Figure 3.9(a). A pair of S-band horn antennas is

used to obtain the frequency response of the design in free-space measurement setup. A

large metallic wall is used to block direct coupling between the transmitting and receiving

antennas. An aperture of the size of the FSS is carved out at the center of a large metallic

frame to mount the test sample as shown in Figure 3.9(a). The calibration of the system

is carried out by first measuring the transmission coefficient without the device under

test, and then the reflection coefficient is also obtained when the aperture is covered by a

thick conductive sheet. Gating window is applied to reduce ripples in the measurement

caused by multiple reflections of the waves. The actual frequency response of the spatial

filters is obtained by normalizing their measured results obtained in the presence of the

FSSs with the calibrated values. Transmission scatter (S)-parameters were measured with a

Hewlett-Packard/Agilent 8720B vector network analyzer (VNA) with through calibration

and smoothing over 0.3 GHz to remove ringing. The response of the FSS for both TE and

TM wave at OFF state is illustrated in Figure 3.9(b). At OFF state, the structure achieved

a second order bandpass filter centered at 2.7 GHz and achieved a sharper roll off and

higher out of band rejection. The shift of the center frequency from 3 GHz to 2.7 GHz is

due to fabrication errors tolerance. The 3 dB bandwidth is about 7%. Also the insertion
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loss has increased about 4.5 dB. This increase is due to the overall dielectric and Ohmic

loss from the stacked boards and also the lossy conductive epoxy used as electrodes.

(a) (b)

Figure 3.10. Measured second order filter response at ON state for both TE polarization and TM
polarization. (a) with 900 V peak voltage; (b) with 1200 V peak voltage

Both layers are then biased in parallel connection with low-frequency (1 MHz) square

wave of maximum 900 V peak voltage. The plasma activation response time is less than 100

ns and switchable protection level of about 35 dB is obtained for both TE and TM modes

as shown in Figure 3.10(a). Another test was conducted with a new power supply that

allows maximum voltage up to 1200 V peak voltage. The second order design performance

is again characterized using the free space measurement setup. The data obtained are

illustrated in Figure 3.10(b). At ON state, the device responds strongly to the EM field and

switchable passband attenuation level exceeding 45 dB is obtained for both perpendicular

and parallel polarization of the EM wave. The improved shielding effectiveness compared

to the previous measurements is due to the increase of the plasma electrons density as a

result of the higher input voltage.
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3.4 Plasma-based ON-OFF Compact Switchable Second Or-

der FSS (Inverter Inter-Layer Concept)

3.4.1 Detail Specification

An alternative FSS design is realized by inserting metallic wire grid in between two identi-

cal band pass FSS layers composed of periodic miniaturized complementary Jerusalem

cross structure. Discrete tunable plasma-shells are incorporated between the metallic layers

to add configurability feature to the spatial filter. The design model shown in Figure 3.11

is optimized to provide a maximum flat band pass response around 3 GHz when the

plasma is in OFF state. Available plasma shells with dimension of 4.4 x 4.4 x 2.6 mm

are used. The shells are filled with 0.1 % Argon - 99.9 % Neon mixture at 300 K electron

temperature. The electron collision frequency is set to ν = 4.85× 1010 rad/s. The electron

density ne of the ionized internal volume is electrically controlled by the sustainer voltage.

The plasma shells are strategically located where the electric field is maximum in order

to effectively switch the transfer function of the filter for plasma ON state. The model

utilizes the three-layer stack-up FR4 in order to accommodate waveguide measurements.

Specifically, this configuration is used in a way to avoid the shorting of the FSS structures

to the waveguide and also maintain the symmetry of the structure to achieve polarization

independence of the structure. Plasmas are sustained with low-frequency (1 MHz) square

waves voltage connected in parallel configuration. Detail dimensions of the unit cells

of each layer of the model are also denoted in Figure 3.11. The periodicity and overall

thickness of the structure are both in the order of λ0/10, where λ0 is free space wavelength

at 3 GHz.

The simulated filter response for plasma OFF state with an incident plane wave illumi-
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Figure 3.11. Topology of the proposed design unit cell including detailed unit cells of each layer
(Top view of the CJC resonator and Top view of the inverter inter-layers in contact with the plasma
shells); All unit are in mm. Total thickness is about λ0/10

nated from various incidence angles (0◦ ≤ θ ≤ 45◦) for both TE and TM polarizations are

shown in Figure 3.12. The results show a second order band pass response centered at 3

GHz with 1.3 dB in-band insertion loss across the scan angle. Both material and conductor

losses were included in the simulation. The 3 dB bandwidth is about 15 %. Simulated

results show a stable filter response with high out-of-band rejection when the structure is

illuminated from θ = 0 to 45 degrees.

For plasma ON state, the electron density value ne = 3.6× 1012cm−3 is approximated

using plasma shell properties obtained from preliminary work. The simulated transmission

and reflection response for various angles of incidence for both TE and TM polarization

are shown in Figure 3.13. The structure provides robust average effective shielding of over

25 dB for both in band and out of band operation.
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Figure 3.12. Simulated second order band pass filter response in OFF state at various oblique angle
of incident wave. (a) TE polarization; (b) TM polarization.

Figure 3.13. Simulated second order filter response in ON state (ne = 3.6× 1012 cm−3) at various
oblique angle of incident wave. (a) TE polarization; (b) TM polarization.

3.4.2 Fabrication and Experimental Results

An array of 6 x 6 elements is fabricated using FR4 dielectric substrates. These dielectric

slabs have relative permittivity value of εr = 4.4 and loss tangent of tanδ = 0.017. The

finite dimension of the FSS is 63 x 63 mm (equivalent to 0.6λ0 × 0.6λ0). Plasma-shells
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(a) (b)

Figure 3.14. (a) Assembled two-pole FSS and Plasma-shell primed with conductive electrode on
the top side of the shells. (b) Photo showing the tunable FSS at ON state

Figure 3.15. sketch and photograph of the flanges spacers and waveguide measurement set up.

are carefully bonded to the metallic layers with 0.5 mm thickness low resistivity epoxy.

The biasing network is sandwiched between both outer FSS layers using a fine alignment

method. The assembled board along with plasma shells primed with electrode are shown

in Figure 3.14(a) and the excited device is shown in Figure 3.14(b).

A waveguide experiment is adopted in this case by enabling a controlled measurement

environment and overall cost reduction. A sketch and photograph of the waveguide

measurement set up is shown in Figure 3.15. The cut off frequency of the dominant

mode (TE10 or TE01) is 2.4 GHz which is below our operating frequency. For a fair

comparison, a waveguide simulation model of the finite array element is evaluated prior
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(a) (b)

Figure 3.16. Waveguide simulated result of the finite size second order band pass filter response at
(a) OFF state ne = 0; (b) ON state ne = 3.6× 1012 cm−3 equivalent to ωp = 1.07× 1011 rad/s

to the measurement test. Wave ports are used to transmit and receive the electromagnetic

wave. The four boundaries are assigned as perfect conductor to relax the computational

time. The simulated transmission and reflection coefficient of the wave propagation at

dominant mode is shown in Figure 3.16 for both OFF and ON state (ne = 3.6× 1012 cm−3).

The results show a second order band pass response centered at 3 GHz with 1.4 dB in-band

insertion loss at OFF state. Also, an average effective shielding of about 25 dB for both in

band and out of band operation is observed at ON state. The fabricated prototype perfectly

covers the entire aperture of an S-band waveguide to prevent the energy to leak near

the walls of the waveguide. Via holes are also added around the perimeter of the FSS to

electrically connect the waveguide to the metallic spacer thereby allowing proper current

flow along the waveguide walls. Prior to the measurement, R&S ZVB20 network analyzer

is accurately calibrated in the range of operation using a full two-port calibration kit. In

order to eliminate ripples, the normalized response is transformed to the time domain and

an 8-10 ns gating window is applied to the transmission and reflection coefficient. Then,

the gated data is transformed back to the frequency domain. The waveguide measurement

results of the structure for plasma OFF state are shown in Figure 3.17(a). The filter exhibits

a band pass response around 3.15 GHz with 2 dB insertion loss. The 3 dB bandwidth is
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(a) (b)

Figure 3.17. Waveguide measurement result of the prototype at ON state. (a) OFF state VP = 0; (b)
ON state VP= 600, 700 V peak voltage

about 12 %. The slight shift of the center frequency may be due to fabrication tolerance,

imperfect alignment of the three boards, placement error of the plasma shell, and flatness

of the final board. The small increase of the insertion loss can also be due to the lossy

epoxy which was not included in the simulation model. Nevertheless, measurement and

simulation results are in good agreement.

In order to switch the transfer function of the filter, the shells are biased with the low-

frequency (1 MHz) square wave with 600 V peak and 700 V peak voltage. For plasma ON

state, the electric field intensity is coupled through the conductive electrodes and excites the

confined gas to form a plasma. As a result the shells light up (Figure 3.14(b)). The plasma

activation response time is about 20 to 100 ns. When measured inside the waveguide,

switchable average attenuation of about 25 dB and 30 dB is achieved in the passband

(Figure 3.17(b)) for both biasing voltage. The measurement results prove to be in very

good agreement with simulation results. Characteristics of this alternative design reflect

compact low profile, insensitivity to polarization, tunable frequency-selective protection

with stable filter response. However it can be seen that the switchable attenuation level is

compromised by the overall reduction thickness of the device.
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3.4.3 Discussion

When the device is excited with 600 V peak voltage square wave, simulation and mea-

surement follow the same trend. The total power used to excite the second order FSS is

estimated about 150 watts. The power per unit volume for noble gas plasma dominated

by two-body recombination can be approximated using equation in [55]:

P
V

= kn2
e Ei ≈ k

(
ωp

5.64× 104

)4

Ei, (3.7)

where k [cm3/s] is the two-body dissociative rate constant, Ei [joules] is the energy required

to ionize a noble gas, and V [cm3] is the plasma volume. The value of k = 1.8× 10−7 cm3/s

and Ei = 36.2eV = 5.8× 10−18 joules can be found in [55]. The volume of each plasma

volume is about V = 0.05 cm3. Thus by using the electron density value (ne = 3.6 ×

1012 cm−3) estimated in the simulation, the power per unit shell-plasma is calculated to be

0.6765 watt/unit. Since 72 shells are used for the first experiment assembled board, the

total power absorbed by the device is found to be 48.7 watts. There is about 33 % efficiency

used of the RF power. The power loss can be due to the mismatch of the biasing network.

A proper network system can help increase the plasma density and improve the degree of

protection that the device can provide.

Besides using a matching biasing network to increase the switchable protection level

of the device, other variables can be optimized to improve the device performance. In

this study, the design was carried out by taking into account available shell’s size and gas

properties. Different sized plasma shells, gas mixture, and gas pressure give flexibility

design in order to further increase attenuation capability of the device. As an example,

plasma from low pressure noble gas mixture produce high conductivity at lower frequen-

cies. It can be seen from Equation (3.2), for a fixed electron density value, a lower electron
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collision frequency (or gas pressure) increases the conductivity of the plasma thus can

improve the shielding capability of the device. Additionally, instead of the FR4 dielectric

substrate, alumina material would be preferred because they can operate at extremely

high temperature environment, and have a better capability to handle high power mi-

crowave and electromagnetic pulse. Alumina dielectric also has lower dielectric loss and

can potentially reduce insertion loss of the device at OFF state.

3.5 Chapter Conclusion

In this Chapter, we demonstrated improved protection for RF/microwave systems using

switchable EM field blocking FSS based on plasma shells. The proposed design delivers a

very low profile solution where the total thickness of two-pole bandpass filter is around

10 mm corresponding to λ0/10. Due to its small periodicity and overall thickness of the

structure (both in the order of λ0/10), the filter response is less sensitive to the wave

impinging from oblique angles. Attenuation level in both in-band and out-of-band has

reached at least 30 dB. The controllability of the structure thickness is achieved by inserting

coupling layers between resonator layers. The proposed design can be further expanded

to a higher order to increase the attenuation level using the same technique design.
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Chapter 4

Plasma-Enabled Adaptable Low-Profile Absorber for Harsh

and Dynamic EM/RF Environments

4.1 Chapter Introduction

For target detection and tracking, the frequency agile radar (FAR) system performs multi-

functional measurement by sending signals through different carrier frequencies [66, 67].

In order to account for the operating frequency shift, wideband tunable/adaptive radar

absorbing materials are crucial in avoiding battlefield surveillance. Nowadays, many

existing tunable radar absorbers achieve variable impedance at their input by integrating

tuning elements such as PIN diodes, semiconductor and ferroelectric varactors, MEMS

switches, liquid-crystal polymers, graphene and liquid metal [68–77]. However, intrinsic

characteristics of these tunable components have repercussions on one or more device

performance factors, such as: tuning range or speed, reliability, linearity, polarization sen-

sitivity, cost, weight, and fabrication complexity. In terms of reliability, the aforementioned

tunable absorbers are vulnerable when operated in extreme environmental conditions

including high temperatures and EM radiation from HPME tracking radar systems. This

is because such tuning components have limited power handling capability. Moreover, the

choice of lossy material is important when the thermal stress due to time average Ohmic

losses is of primary concern. In a case where the temperature exceeds the combustion level

of the lossy material, burning will occur and the failure in the system will increase the

probability of detection.

Our goal is to investigate the feasibility of devising large scale tunable / adaptive
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absorbers that can maintain stable operation in harsh and dynamic electromagnetic battle-

field surveillance subject to high power microwave energy. The development of compact,

lightweight, and high-performance electromagnetic absorbers is vital for stealth appli-

cations against high power radar tracking systems. We propose a low-profile tunable

absorber based on discrete plasma-shells that provide a wide dynamic range of absorption

spectral band. The use of discrete plasma-shells allows the deployment of large-scale

prototypes in which the properties of the confined gas can be easily manipulated. For

demonstration purpose, the proposed tunable absorbers are deigned to meet the following

requirements:

• excellent in-band absorption greater than 90% (i.e. at least 10 dB absorptivity)

• real-time tunability of absorption spectral band that can dependably perform under

harsh EM environments, stable absorption response over wide incident angle (> ±

45 degrees)

• low-profile design (� λ/4 separation between adjacent FSS layers), and polarization

independent (this feature is best suited for randomly moving and/or rotating systems

as it minimizes polarization mismatch loss)

• capable of withstanding ionizing radiation, shock, vibration and temperature range

up to 250°C

• ability to integrate into existing structures to meet the needs of a broad range of Air

Force applications.

This chapter is organized into three sections elaborated as follows:

The first section covers the feasibility of devising a low-profile, practical, large scale,

electronically tunable/adaptive absorber based on plasma technology. We demonstrate
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the concept by integrating discrete plasma-shells with a well-designed metallic backed

absorber. The control of the absorption spectral band and energy level is allowed by

systematically changing the plasma density. The proposed FSS-based absorbers are loaded

with different types of resistive sheet (lossy inductive FSS, lossy capacitive FSS, and lossy

resonant FSS layer).

In the second section, we investigate potential implementations of the proposed ab-

sorber subjected to HPME and HEMP by selecting the core materials that are suitable for

higher-temperature service. A magneto-dielectric substrate is incorporated in the design

as a substitute for the resistive sheet to account for the loss. This alternate design allows

the EM energy to be dissipated in lossy magneto-dielectric substrates. Instead of relying

on exotic lossy materials to achieve good performance, our design simply makes use of

commercially available lossy magneto-dielectric substrate (from Laird’s Eccosorb MF500F

series) suitable for high power microwave compared to the resistive sheet used in the prior

design. In the first hand, a single pole FSS-based absorber using the magneto-dielectric

substrate is investigated. In the other hand, we expand the single pole FSS-based absorber

to a higher order spatial FSS based absorber to increase the absorption bandwidth. The

proposed multilayer absorber is based on a technique developed for the design of a thick-

ness customizable high-order bandpass frequency selective surface. Such technique allows

simple integration of the tuning elements, while simultaneously providing the design

option to realize the absorber with specific or desired thicknesses. These multi-layered

absorbers with potential integration of tuning components enable tunable/adaptable

operation modes by controlling the plasma density at each FSS layer.

And finally, in the last section, the performance of two-pole HPM absorber is investi-

gated under high power excitation. The maximum power level handling capability of the

device will be numerically predicted and validated experimentally.
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Figure 4.1. Unit cell representation of the dynamic plasma-based absorber along with the detailed
geometry (units are in mm). (a) Design #1 indicates the absorber with the inductive lossy layer. (b)
Design #2 is the one with the capacitive lossy layer. (c) Design #3 is the one with lossy resonator
layer.

4.2 Plasma-Based Tunable Absorber Loaded with Resistive

Sheet

4.2.1 Design Specification and Model Analysis

Unlike our previous designs where these plasma-shells’ electrical properties were ma-

nipulated and used to design spatial filter switches, in this project, they serve as tuning

components of reconfigurable absorbers. The topology of the proposed design is based on

a resistive metamaterial sheet absorber. A lossy inductive, capacitive or resonator layer,

which is embedded with discrete plasma-shells, and a practical biasing layer (as shown in

Figure 4.1) is investigated. The lossy layer is made of resistive film with specific surface re-

sistivity RS[Ω/Sq]. The pattern of the metallic biasing layer combines a square patch array

with a wire grid. In the proposed designs, the lossy layer and biasing network are printed

on RO4003C, a hydrocarbon ceramic laminate from Rogers Corporation’s RO4000 series

materials, which are known for their reliability when subject to severe thermal shocks.
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The thickness of the substrate is h1 = 0.813 mm and relative permittivity is εr1 = 3.38 with

±0.05 tolerance. The plasma shells (shell size: 4 mm × 4 mm × 3 mm), placed between the

ground plane and the biasing layer, are used not only as the tuning component, but also

for structural support. The shells are hollow ceramic dielectric (Al2O3) material with wall

thickness of 0.2 mm and dielectric constant of 9.6. The shells are bonded to the metallic

layers with 0.5 mm thickness of silver epoxy (not shown in the figure) used as electrodes

to facilitate the coupling of energy through the dielectric wall of the shell.

Figure 4.2. Equivalent circuit model of the tunable absorbers for normal angle of incidence.

In this proposed active absorbers, the metallic resonators are used as practical biasing

network. As a result, the effective relative dielectric constant loading the FSS capacitors

can be controlled to add tunability to the system. To elucidate the working principle of

the absorption and its frequency tuning capability, a transmission line model approach is

adopted. The ECM of the design is shown in Figure 4.2. The biasing layer is modeled by a

parallel Lb, Cb resonant tank and the bulk plasma as a shunt component with admittance

YP. The biasing network and the ground plane are separated by a transmission line with

length h0 = 3 mm (height of the shell) and characteristic admittance Y0 (characteristic

admittance of free space). The lossy layer is also modeled as a shunt admittance YL,

which is separated from the biasing network by a short transmission line of length h1 and

characteristic admittance Y1 = Y0
√

εr1. For the first topology, the lossy layer is inductive

and is seen as a series RI , LI , and for the second topology it is capacitive, thus seen as
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a series RC, CC. on the other hand, for the third design, the lossy layer is a resonant

component seen as a series Rr, Lr, Cr. From the ECM, the input admittance of the circuit

can be obtained as follows:

Yin = YL + Y1
(Ybias + Yp + Yd) + jY1 tan(β1h1)

Y1 + j(Ybias + Yp + Yd) tan(β1h1)
, (4.1)

Yd = −jY0 cot(β0h0); Ybias = j(ωCb −
1

ωLb
), (4.2)

YL =


(RI + jωLI)

−1 for the lossy inductive sheet
(RC − j

ωCC
)−1 for the lossy capaciticesheet

(Rr + jωLr − j
ωCr

)−1 for the lossy resonator sheet

(4.3)

The bulk plasma is modeled based on parallel plane geometry and because equal

electrode area is used at each side of the shell, a symmetric discharge is adopted. As

we mentioned in the previous chapter, a plasma medium can be treated as a conductor

with conductivity σp or as a dielectric with permittivity εp based on its electron collision

frequency, its plasma frequency and the operating frequency of the system [62]. The first

scenario for frequencies where ω� ωp,ν, the conductivity of the plasma is then reduced

to its dc form such that σp→ σdc =
ω2

p·ε0
ν . Such characteristics of the plasma have been used

to design switchable frequency selective surfaces for electronic protection in the Chapter 2.

For this current chapter, the second scenario is considered where the bulk plasma is used

as a dielectric with variable permittivity such that we have ν < ω < ωp which is practical

for plasma driven at RF discharge.

The admittance Yp of the bulk plasma is given in [62] as:

Yp =
jωεp A

h0
, (4.4)
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where A is the effective cross-sectional area of the plasma. By assuming uniform electron

density, this expression is approximated to:

Yp = jωC0 + (jωLp + Rp)
−1. (4.5)

where C0 = ε0A/h0 is the capacitance of the vacuum chamber, Lp = ω−2
p C−1

0 is the induc-

tance of the plasma, and RP = νLp is the plasma resistance. As shown in Figure 4.2, the

shunt component with impedance Yp is modeled as a series (Lp, RP) in parallel with C0.

Theoretically, the resonant frequency ω0 of the absorber is obtained when Im[Yin(ω0)] = 0,

with a matching condition such that Re[Yin(ω0)] = Y0. Thus, the operating frequency of the

absorber can be simply tuned by adjusting its input impedance. This task can be achieved

with the variation of the bulk plasma admittance Yp. At OFF state (ωp = 0), the series

(LpRP) circuit is opened and the bulk plasma model is reduced to the shunt capacitance C0.

At ON state (ωp = 0), the admittance Yp of the plasma discharge is a parallel combination

of the shunt capacitance C0 with the series (LpRP) circuit. As the plasma frequency ωp

increases, the values of the inductance and resistance decrease. Therefore the effective

inductance of the system decreases leading to the tuning of the resonant absorption fre-

quency as it shifts to higher frequency. In fact, from Equation (4.5), it can be perceived

that for fixed electron collision frequency (gas content and pressure), the impedance of the

plasma can be controlled by either its plasma frequency or its cross-sectional area as will

be conveyed in the next section.

4.2.2 Implementation and Simulation Results

The tunable absorbers are designed to operate in the X-band (8 GHz – 12 GHz) as this

specific band is commonly used for radar and military electronic warfare applications,

as well as satellite, terrestrial and space-based communication. A full wave EM analysis
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Table 4.1. Physical/electrical parameters of the proposed absorber.

Phys. para. p (mm) a (mm) b (mm) ω (mm) g (mm) s (mm) RS (Ω/Sq.)

Design #1 13 11 · · · 9.55 0.25 · · · 110

Design #2 13 11 · · · 7.9 0.25 · · · 100

Design #3 15 10.9 12.6 9.35 0.25 1 9.3

Elec. para. Lb (nH) Cb (pF) LI (nH) Cc (pF) Lr (nH) Cr (pF) R (Ω)

Design #1 2.3 0.2 1.6 · · · · · · · · · 320

Design #2 2.6 0.08 · · · 0.1 · · · · · · 146

Design #3 8 0.09 · · · · · · 16.5 0.019 365

using ANSYS HFSS is utilized to characterize the response of the structures at OFF state

as shown in Figure 4.3. Based on the physical parameters and the full wave frequency

response of the absorber without the plasma-shells, the electrical parameters of the ECM

are extracted in conjunction with a circuit simulator (Keysight’s Advanced Design System).

Figure 4.3. Simulated FW simulation results for the reflectivity of the passive absorbers along with
the ECM results.

First, the values of the parallel Lb,Cb resonant tank are obtained using simple analytical

expressions for wire grid and patch array [17]. Next, only the lossy layers with the RO4003C

are simulated using full wave EM simulation and then the responses are matched to those
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obtained from their counterpart ECM comprised of a series RI , LI or RC,CC or Rr, Lr,Cr

followed by the short transmission line of length h1 using a curve fitting technique. The

value of the capacitance that accounts for the dielectric constant shells C0 is numerically

obtained from the full wave simulation of the design (in Figure 4.1) with and without

the plasma shells. Finally, by linking and slightly adjusting all the electrical parameters

obtained, the frequency responses of the complete ECM in Figure 4.2 are simulated for the

OFF state case. The physical and electrical parameters of the absorbers are provided in

Table 4.1. Both the full wave EM results and the ECM results are illustrated in Figure 4.3

and the comparison reveals the accuracy of the transmission line modeling. The total

thickness of each absorber is about 3.813 mm, corresponding to 0.11λ0, where λ0 is the

free space wavelength of the absorption center frequency ( f0 = 9 GHz). The results of the

passive absorber predict about 18%, 24% and 30% fractional bandwidth at 10 dB return loss

level for the lossy inductive, capacitive and resonant FSS layers design type, respectively.

The bandwidth over thickness performance of the proposed absorbers is computed and

compared with a Salisbury screen (operating at the same center frequency) by examining

their respective figure of merit (FoM), as depicted in Table 4.2. The FoM is found by using

the Rozanov [78] physical bound imposed on the thickness to bandwidth ratio for any

nonmagnetic metal backed absorber as:

FoM =
| ln(ρ0)|(λmax − λmin)

2π2d
, (4.6)

where ρ0 is the reflectivity, d is the total thickness of the absorber, and λmin and λmax are

the respective minimum and maximum wavelength in the spectrum range allowed by the

specific reflection coefficient. As given in Equation (4.6), a higher FoM indicates the design

with superior performance. Table 4.2 shows that beyond 20-dB absorption level (which

is typically preferred in most application), wider absorption bandwidth is obtained for
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Table 4.2. Comparison in FoM between the proposed absorbers and Salisbury screen.

Reflectivity ρ0 = 0.1(10 dB) ρ0 = 0.01(20 dB) ρ0 = 0.001(30 dB)

Salisbury 0.4064 0.2390 0.1123

Design #1 0.1851 0.1013 0.0473

Design #2 0.2483 0.1470 0.0677

Design #3 0.3130 0.3605 0.3115

Design #3. Although Design #1 and Design #2 have similar performance compared to the

Salisbury screen, their active counterparts will have superior overall characteristics.

(a) (b)

Figure 4.4. Simulated results of the plasma-based absorber (Design #1) subject to different plasma
frequencies. (a) Simulated ECM tuning response. (b) Simulated full wave (FW) tuning results.

At ON state, the admittance of the bulk plasma can be engineered to provide the

tunability capability to the design. The electron collision frequency of the plasma is set to

its optimal value ν = 3.6× 1010 rad/s. Then, the response of the absorbers is examined by

changing the plasma frequency within the range of 0 (OFF state) to 8× 1011rad/s. Both the

simulated ECM and the full wave (FW) EM results for all three designs are illustrated in

Figure 4.4, Figure 4.5 and Figure 4.6, respectively . By comparing the frequency response of

the absorber using full wave EM simulation to those obtained from the ECM, it is observed

that the ECM accurately predicts the behavior of the absorber at ON state. The results

show that the absorption center frequency increases from 9 GHz to 10 GHz, providing
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(a) (b)

Figure 4.5. Simulated results of the plasma-based absorber (Design #2) subject to different plasma
frequencies. (a) Simulated ECM tuning response. (b) Simulated full wave (FW) tuning results.

(a) (b)

Figure 4.6. Simulated results of the plasma-based absorber (Design #3) subject to different plasma
frequencies. (a) Simulated ECM tuning response. (b) Simulated full wave (FW) tuning results.

a dynamic tuning of the absorption spectral band for design #1 and design #2. Instead,

for Design #3, the increase of the plasma frequency mostly affects the higher resonance

frequency, thus providing a tuning of the absorption spectral bandwidth but at the expense

of the absorption rate.

The tuning range of the absorber can be further improved by increasing the cross-

sectional area of the shell. The size of plasma-shell that can be manufactured ranges from

0.5 mm to 10 mm. The response of the absorber is further explored using larger plasma-

shell size with dimensions 8 mm × 8 mm × 3 mm such that the thickness of the design

remains unchanged (i.e. only the cross-sectional area of the unit cell shell is increased). By

changing the plasma frequency, the center frequency of the absorber (design #2) can be
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(a) (b)

Figure 4.7. Simulated full wave (FW) results of the plasma-based absorber subject to different
plasma frequencies and larger shell size. Tuning capability observed for Design #2.

Figure 4.8. Fabricated sample. (a) Front side: lossy sheet. (b) Back side: biasing network. (c)
Assembled tunable absorber: side view.

increased with the size of the plasma shells from 9 GHz to 11 GHz (see Figure 4.7), which

is about double the tuning range previously obtained. Also the absorption bandwidth for

Design #3 has increased considerably under the same tuning procedure.

4.2.3 Fabrication and Measurement Results

To validate the numerical results, one of the prototype circuits (Design #2) is fabricated on

0.813 mm thick RO4003C substrate. An array of lossy capacitive patches made of RCS =

100Ω/Sq OhmegaPly resistive film (manufactured by Ohmega Technologies, Inc.) and the

metallic biasing layer are laminated and patterned on either side of the substrate using

wet etching process. The board is made by Brigitflex Inc., a circuit board manufacturer
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known for their expertise in the fabrication of customized PCBs embedded with planar

resistors. A square panel of about 5” × 5” (equivalent to 4λ0 × 4λ0) including an array of

10 × 10 elements is used as the test sample. The front and back of the circuit are shown

in Figure 4.8. The plasma-shells (shell size: 4 mm × 4 mm × 3 mm) filled with 0.1 %

Argon - 99.9 % Neon mixture at 175 Torr gas pressure are commercially available from

Imaging Systems Technology Inc. The value of the gas pressure (P = 175 Torr) is estimated

by solving a simple theoretical expression for neon gas derived in [65] at 300 K electron

temperature:

ν[s−1] = 8.63× 10−18 ×
(

P
KBTe

)
× T0.833

e f or 102K ≤ Te ≤ 5× 103K, (4.7)

where KB [J/K], Te [K], and P [Pa] are Boltzmann’s constant, electron temperature and

the gas pressure. The plasma-shells are electrically bonded to the metallic layers with 0.5

mm thickness of silver conductive epoxy. A frame with an array of cavities fabricated

using a 3D printer (uPrint SE Plus) is used for fine alignment. The silver conductive epoxy

is deposited on both the biasing and ground plane using a syringe. Then the shells are

manually placed in the cavities. The fabrication process is illustrated in Figure 4.9. The

assembled board including the plasma shells and ground plane is shown in Figure 4.8(c).

The device is excited with a sine wave produced by Keysight N5181A MXG RF analog

signal generator operating in the range of 100 KHz – 6 GHz. The wave from the signal

generator is amplified with a 50 dB (nominal) CW ENI/E&I 325LA power amplifier (PA),

with driving frequency ranging from 250 KHz to 150 MHz and maximum input voltage

limited to 1 V. The output voltage of the PA is then connected to the bias traces of the

absorber. If desired, for any specific plasma frequency used for each tuning state, the

power required to sustain the plasma-shells can be estimated using the approximated
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Figure 4.9. Fabrication process. (a) Conductive silver epoxy deposited on ground plane using a
syringe. (b) Shells manually placed in holes of 3D printed frame. (c) Conductive silver epoxy also
deposited on top side of shells before assembly.

power per unit volume for noble gas plasma dominated by two-body recombination [55]:

P
V

= kn2
e Ei ≈ k

(
ωp

5.64× 104

)4

Ei, (4.8)

where k [cm3/s] is the two-body dissociative rate constant, Ei [joules] is the energy required

to ionize a noble gas, and V [cm3] is the plasma volume. The value of k = 1.8× 10−7 cm3/s

and Ei = 36.2eV = 5.8× 10−18 joules can be found in [55]. Because 100 plasma-shells (shell

size: 4 mm × 4 mm × 3 mm) are used for the fabricated prototype, the total plasma volume

is about V = 4.8 cm3. Therefore, under perfect conditions, for any specific plasma frequency

ωp, the CW power P [W] required to sustain the plasma volume can be estimated using

Equation (4.8). Then the voltage VP can be theoretically obtained by taking into account

the 50 dB gain of the power amplifier. However, due to the complexity of the nature of

charged particles in the plasma medium, the power loss due to the mismatch of the biasing

network, the choice of the driven RF frequency, and other factors including fabrication

errors, the theoretical value of P has not been correlated with the experimental value.

Instead, the absorber tuning states given the driven RF frequency and the experimental

voltage VP from the signal generator are empirically approximated.

69



Figure 4.10. Dimming effect of the shells when plasma discharge is driven with 1 MHz RF signal.
By increasing the voltage from the signal generator a glow discharge is obtained as a sign of
avalanche discharge. (a) VP = 0.5 V. (b) VP = 0.7 V. (c) VP = 0.9 V.

By setting the driven frequency ( fS) at 1 MHz and increasing the voltage from the

signal generator, the glowing effect of the plasma-shells can be seen in Figure 4.10. An

electric glow discharge visible to the eye is produced. When VP = 0.7 V, the power output

into the load which is monitored by a built-in front panel meter of the PA reads about 50 W

(power density of 2.9 KW/m2). The sustained continuous wave output power generated

by the power supply is capable to ionize the large-scale plasma-device and eliminate the

need of laser excitation or high pulsed voltage supply which are relatively costly.

Figure 4.11. Sketch and photograph of the test setup (free space) for the absorber measurement.

The experimental setup to validate the device performance is illustrated in Figure 4.11.

A pair of PE9887-11 broadband horn antennas are placed about 0.5 m from the device under

test (DUT) to ensure the DUT is at far-field from the test antennas. An aperture of the size

of the absorber is carved out at the center of a large wood frame to mount the test sample.
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(a) (b)

Figure 4.12. Full wave simulated reflection coefficient of the passive absorber (Design #2) at various
oblique angles of incident wave. (a) TE polarization. (b) TM polarization.

(a) (b)

Figure 4.13. Measured reflection coefficient of the passive absorber (Design #2) at various oblique
angles of incident wave. (a) TE polarization. (b) TM polarization.

The frame is covered with an adhesive surface wave absorber (MR-31-0003-20 from Mast

Technologies) to reduce diffraction effects from the edges of the DUT. The calibration of

the system is carried out by measuring the reflection coefficient of the system when the

aperture is covered by a conductor plane. Then the reflection coefficient of the system is

obtained with the device under test. These results are obtained with a calibrated Agilent

HP 8719ES (50 MHZ to 13.5 GHz) vector network analyzer. Gating window is applied

to reduce ripples in the measurement caused by multiple reflections of the waves and

also to reduce cross coupling between the horn antennas. The frequency response of the

absorber is obtained by normalizing the measured results obtained in the presence of the

device with the one obtained from the conductor plane of the same size. The performance
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(a) (b)

Figure 4.14. Measured reflection coefficient of the active absorber (Design #2) at normal angle of
incidence for various biasing voltages VP. (a) Driving frequency fS = 1 MHz. (b) Driving frequency
fS = 2 MHz.

of the absorber (at OFF state) across different angles of incidence for both TE and TM

polarizations is numerically and experimentally obtained. Both simulated and measured

results (Figure 4.12 and Figure 4.13) show acceptable and stable reflection response when

the system is illuminated from various oblique angles (0◦ ≤ θ ≤ 45◦). At normal incidence,

we can notice a slight deviation of the center frequency from 9 GHz to 9.2 GHz of the

measured results compared to the ones obtained from full wave EM simulations. The

slight discrepancies can be due to many factors including the finite size of the prototype,

the thickness and homogeneity of the silver epoxy used, fabrication tolerance (caused by

inaccurate material properties) and imperfect assembly of the absorber.

The reflection coefficients of the device at ON state are obtained when the plasma is

sustained using the amplified RF source directly coupled to the gas across the thin ceramic

dielectric wall. The driven frequency ( fS) from the signal generator is set to 1 MHz and a

voltage range between 0≤ VP ≤ 0.9V is fed to the PA since its maximum allowed input

voltage is 1 V. The measured results at normal angle of incidence indicate a tuning of

the absorption band in the X-band as shown in Figure 4.14(a). The absorption resonant

frequency has increased from 9.2 to 9.9 GHz and wider absorption band is obtained by

increasing the biasing voltage. The tuning speed is found to be as short as 10-100 ns.
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Experimentally, it has also been previously demonstrated that the percentage of RF power

absorbed by the electrons increases with the driven frequency [79]. This is theoretically

explained using the equation from homogeneous plasma model derived by Godyak [80]

as:

Pi

Pe
=

(
ωp

ωs

)2 3uB

2dν
, (4.9)

where Pi is the power absorbed by ions, Pe is the electron heating power, ωs is the driving

frequency, d is the plasma half-width, and uB = (eTe/M)1/2 is the Bohm velocity (M is the

ion mass). Another set of results is further obtained by increasing the driven frequency

( fS) to 2 MHz. As can be seen in Figure 4.14(b), the frequency shift starts for lower biasing

voltage at 0.3 V. By increasing the voltage from 0-0.8 V, the plasma density increases with

higher driven frequency. The absorption center frequency shifts until it ceases to increase

at around 10.5 GHz. When the voltage is near 0.8 V, the electron density remains virtually

unchanged, which is independent of the voltage.

Figure 4.15. Power measurement setup using a high power dual directional coupler and a spectrum
analyzer.

In addition, power consumption of the plasma-shell tuned absorber is estimated by
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Table 4.3. Summary of the power distribution at different driven frequencies.

Vp(V) Pf (W)
Pr(W) PL(W) Pu(W/cm3)

1 MHz 2 MHz 1MHz 2 MHz 1 MHz 2 MHz

0.3 44.6 26.3 24.4 18.3 20.2 3.81 4.21

0.4 45.7 26.9 25.0 18.8 20.7 3.92 4.31

0.5 47.8 27.9 25.5 19.9 22.3 4.15 4.65

0.6 48.7 28.6 26.2 20.1 22.5 4.19 4.69

0.7 50.6 29.8 27.8 20.8 22.8 4.33 4.75

0.8 52.8 31.1 29.8 21.7 23.0 4.52 4.79

0.9 54.4 33.4 32.3 22.0 23.1 4.58 4.81

measuring the forward power (Pf ) and reflected power (Pr) to and from the plasma-shells,

respectively. A dual directional coupler with two auxiliary outputs is used to sample

both forward and reflected energy. A 40 dB high power dual directional coupler (C40-

110-481/1N by Pulsar Microwave Corp.) is used to characterize the power consumption

level of our absorber. The test setups (in Figure 4.15) show the output of the reverse

coupling port reduced by the 20 dB attenuator and detected by a spectrum analyzer, while

the output of the forward coupling port is terminated by the 50 Ω load. Based on the

coupling factor and the attenuation level, the sampled data is used to obtain the reflected

power from the load (or absorber). Similarly, by interchanging the role of the forward and

reverse coupling port, the forward power is obtained. A summary of the device power

consumption analysis for the different driving frequencies is provided in Table 4.3, where

PL is the total power absorbed by the plasma volume and Pu is the power per unit volume.

As can be observed from this fidelity test, the percentage of RF power absorbed by the

plasma increases with the driven frequency. On average, the current biasing setup shows

about 42 % efficiency, which can be improved if needed by adding a matching network.

External matching networks between the load (tunable absorber) and the power supply

can be designed in order to increase the efficiency of the RF power transfer from the source
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Table 4.4. Comparison of our plasma-based absorber with other existing tunable absorbers.

Absorber Tun-
ing Mechanism

Resonant Frequency
Tuning range

Tuning speed
in the order of

Thermal ef-
fect capability

Additional notes

Varactor diodes
[69]

4.35 - 5.85 GHz nanoseconds < 125°C Complex biasing net-
works; design sensitive
to polarization.

MEMS [72] 1.12 - 1.32 THz milliseconds N/A Design sensitive to polar-
ization.

Liquid crystal
[74]

2.51 - 2.62 THz milliseconds < 300°C Not easy to integrate in
many applications; de-
sign sensitive to polariza-
tion.

Graphene [75] 0.91 - 1.08 THz milliseconds < 1500°C Complex biasing config-
uration and not easy
to integrate in measure-
ment devices. Also, the
realization of graphene
using chemical vapor de-
position (CVD) is costly.

Liquid metal
[77]

0.24 - 0.41 THz milliseconds < 1300°C Requires sophisticated
control mechanism for
synchronous movement
of the liquid metal.

Plasma [this
work]

9.2 - 10.5 GHz milliseconds < 1000°C Can handle high power
at microwave frequen-
cies. Simple biasing net-
work and easy integra-
tion.

to the plasma discharge and also reduce the need of higher power for activation voltage

threshold. However, a variable matching network may be required since the admittance of

the bulk plasma is dependent on the discharge voltage. In fact the admittance of the bulk

plasma in Equation (4.5) is a function of the plasma frequency or the electron density of

the ionized plasma which is electrically controlled by the applied voltage. All limitations

considered, the detailed design and analysis of the biasing network are out of the scope of

the material presented here and left for future research items.

Although large-scale plasma-based devices may require a relatively larger amount of

power than other electronic tuning mechanisms, this dilemma can be overcome using
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a high efficiency power amplifier and more matching circuitry. The advantages of our

design using plasma technology are highlighted in Table 4.4. Compared with some existing

tunable microwave absorbers, superior characteristics of plasma-based devices such as

simple biasing schemes, ability to integrate into existing structures to reduce system weight,

cost, and most importantly survivability in harsh EM/RF environments (including extreme

temperatures and ionizing radiation) outweigh the low power consumption requirement.

4.3 Plasma-Based Tunable Absorber Loaded with Magneto

Dielectric Substrate

4.3.1 Single Pole Plasma-Based Tunable Aborber

4.3.1.1 Design Specification

Let us recall that the basis of this project is the investigation of high power handling

capability of microwave absorbers that can rapidly adapt to harsh and dynamic EM

environments. Although the tuning component (plasma-shells) used in the proposed

tunable absorber has the unique property to withstand high power microwave energy

[57, 58], the other core material in the design is not suitable for high-power operation. The

proposed absorbers, based on lossy (resistive) layers, may be useful for applications that

require moderate power handling and operation in dynamic EM environments. However,

although they are relatively low cost and simpler to realize, the lossy resistive layers

used to absorb the EM wave have very limited thermal stress capability. Usually, these

thin resistive sheets, made of nickel phosphorous, nickel chromium, nickel chromium

aluminum silicon, or chromium silicon monoxide (foils available on Rogers substrates

from Ticer and Ohmega Technologies) operate in relatively lower temperature ranges but
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provide superior absorption bandwidth because of their frequency-independent electrical

properties over a broader frequency range. Above their maximum operation temperature,

these resistive films are susceptible to burn.

Figure 4.16. (a) Topology of the single pole high power absorber; (b) Modified single pole high
power absorber due to practical issues; (c) The physical parameters used to obtain absorption in
the C-band are provided: a = 12.7; g1 = 0.5; s1 = 1.3; b1 = 9.2; l1 = 6.5 (units in mm).

To address this vulnerability, lossy substrates that can withstand higher power EM

waves can be used to improve the peak power handling capability of the absorber. In order

to account for the total loss provided by the resistive layer in the previous designs, both

dielectric and magnetic losses are needed. Unfortunately, such substrate options are limited

in today’s market in terms of losses and relative power handling capability. Therefore,

a systematic design of FSS element shapes with available materials will be required to

effectively match the input impedance of the design to the characteristic impedance of

free space. In the modified design, a frequency-dispersive lossy magneto-dielectric is

used in lieu of the RO4003C used in the previous absorber as shown in Figure 4.16(a).

The lossy substrate (Eccosorb MF500F-112 from Laird Technologies) is rigid and can be

used for high transient power levels, allowing high temperatures up to 260°C (500◦F) as

mentioned in the data sheet. In order to show that the absorption band of the proposed

absorber can be scalable to a desired microwave spectrum, an electromagnetic bandgap

(EBG) resonator is employed for the IEEE C-band (4-8 GHz) operation. The working

principle of the single pole high power HPM absorber is similar to the previous absorber
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with the resistive sheet, as the plasma-shells are used to tune the surface impedance of the

resonator, which results in a dynamic tuning of the absorption spectral band. However,

this design presents some practical issues for fabrication. The commercially available

magneto-dielectrics do not have printed copper layers on any side that could be used

to etch the EBG resonator pattern. Moreover, they are available in standard thickness

options (h = 3.2, 6.4, 9.5, 12.7, 15.9, 19.1 mm, etc.). Printing the EBG resonator on a thin

dielectric and pasting the magneto-dielectric directly on top can also lead to a thick design

especially for a single pole operation. One way to overcome aforementioned limitations,

is to perforate the Eccosorb MF500F substrate (with thickness h = 3.2 mm) in order to

accommodate the discrete shells as shown in Figure 4.16(b). The plasma-shell dimensions

used in this model are 6 mm x 6 mm x 3 mm. Since the absorber is operating in C-band,

the value of the electron collision frequency used to improve the performance of the

system is set to be ν = 2.0× 1010 rad/s. The magneto-dielectric MF500F-112 is accurately

modeled in the frequency domain using its frequency-dependent data points in HFSS. The

frequency-dependent definition is applied to both electric and magnetic properties (real

part of permittivity and permeability, electric loss tangent, and magnetic loss tangent) of

the material. HFSS interpolates this data at the desired frequencies during the generation

of the solution.

(a) (b)

Figure 4.17. Full wave simulated reflection coefficient of the single pole HPM absorbers at various
oblique angles of incident wave (a) for TE polarization; (b) TM polarization.
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(a) (b)

Figure 4.18. Full wave simulated reflection coefficient of the single pole HPM absorber subjected to
different plasma frequencies. Tuning capability observed for the design (a) with shell size: 6 mm x
6 mm x 3 mm; (b) with larger shell size: 8 mm x 8 mm x 3 mm.

Figure 4.17 shows the full wave simulation result of the HPM absorber performance. At

normal incidence angle of the EM wave, results predict about 9% FBW at 10 dB reflectivity

level. The total thickness of the structure is only 4 mm (about λ0/12) and the periodicity

in the order of 0.25λ0, where λ0 is the free space wavelength at 6 GHz. The performance of

the absorber is also investigated across different angles of incidence for both TE and TM

polarizations as shown in Figure 4.17. Simulation results predict stable absorption response

and at least 20 dB absorption across the absorption band for both TE and TM polarizations

when the system is illuminated from various oblique angles (0◦ ≤ θ ≤ 45◦). The effect of

the variation of the plasma frequency (0≤ ωp ≤ 9× 1011 rad/s) on the proposed design

performance is also investigated. Simulation results investigating different shell sizes

(illustrated in Figure 4.18) show that by changing the value of the plasma frequency within

that range, the absorption center frequency increases providing real-time/on-demand

electronic tunability of the absorption spectral band. It can also be observed that the larger

plasma volume increases the tuning range of the single pole HPM absorber.
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4.3.2 Multiple Pole Plasma-Based Tunable Aborber

4.3.2.1 Design Specification

The proposed design that incorporates resistive FSS sheets provides broader bandwidth

(for the same thickness) compared with the one that incorporates lossy magneto-dielectric

substrate , but its operation service is limited to temperatures less than 125°C. On the other

hand, the single pole design that uses lossy substrates with higher thermal conductivity

is suitable for higher power microwave energy but the operating bandwidth is limited

(9% fractional bandwidth at 10 dB reflectivity level) by the dielectric and magnetic losses

of the existing MF500F-112 substrate. In order to broaden the absorption bandwidth, a

multilayers/multipoles design with the ability to have independent tuning control over

each resonant frequency is needed.

Figure 4.19. Topology of the multipole aborbers based on coupling interlayers; (a) Two-pole; (b)
Three pole; (c) Detailed geometry of the unit cell of each layer to obtain absorption in the C-band.

The general synthesis developed in Chapter 2 allows simultaneous control of the

electromagnetic waves response and design thickness of multi-layered bandpass FSS filters.

The technique is based on coupled bandpass filter theory using admittance inverter. The

design concept allows the engineer to use readily available commercial dielectric materials
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Figure 4.20. Simulated reflection coefficient of the passive multipole HPM absorbers; (a) Two-pole
with physical parameters: h1 = 3.2; h2 = 0.8; a = 12.5; g1 = g2 = 0.35; s1 = s2 = 1.4; b1 = 9.3; b2 =
8.24; l1 = l2 = 6.5;r = 4.2; (b) Three pole with physical parameters: h1 = 3.2; h2 = 0.8; a = 12.5; g1 =
g2 = g3 = 0.15; s1 = s2 = s3 = 1.6; b1 = 9.2; b2 = 9; b3 = 7.8; l1 = l2 = l3 = 6; r = 4 (units in mm).

with standard thicknesses for multi-layer FSS design technology. Such capabilities also

bring practical benefits for tunable metasurface by providing flexibility in integrating

tuning elements or materials that require precise control of physical dimensions. The

proposed multipole absorber relies on the same design concept. A multilayer (second-

order and third-order) bandpass FSS using such technique is placed above a ground

plane as depicted in Figure 4.19. For such combinations, the absorption band is mainly

determined by the operation frequency of the FSS and loss can be introduced in the design

using either resistive FSS elements or lossy substrates. The latter is taken into account, and

lossy substrates, consisting of the Eccosorb MF500F series (with thickness h1 = 3.2mm) are

used to absorb the EM wave energy. The FSS is formed by a periodic array of cascaded

electromagnetic bandgap (EBG) resonators that behave as a parallel LC bandpass filter.

An interlayer consisting of a mesh grid is placed between the resonators to regulate the

coupling level between consecutive resonators for various separations. The metallic layers

are printed on the FR4 dielectrics with thickness h2 = 0.8mm. The simulated full wave

EM results illustrated in Figure 4.20 predict absorption of the EM wave in the C-band

centered at 6 GHz with 17% and 25% fractional bandwidth at 10 dB reflectivity level for

both second and third order absorber, respectively. The total thickness of the two-pole
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Table 4.5. Physical dimensions (in mm) and electrical size of the three passive absorbers.

Design Size h1 a g1 = g2 S1 = S2 b1 b2 l1 = l2 r

#1 λ0/9 2 12.5 0.17 1.56 9.3 8.3 6.5 3.6

#2 λ0/7 3 12.5 0.25 1.50 9.3 8.2 6.5 3.9

#3 λ0/5 4 12.5 0.35 1.47 9.3 8.2 6.5 4.2

absorber is 8 mm (about λ0/6) and the periodicity in the order of 0.25λ0, where λ0 is the

free space wavelength at 6 GHz. For the three-pole absorber the total thickness is 12 mm

(about λ0/4) and the same periodicity. Other than the reduction of the RCS provided by

these multipole frequency selective absorbers, the skirt selectivity of the absorption band

with high out of band reflection can be beneficial for other applications. In fact, the high

reflectivity obtained outside the absorption band is relevant in the realization of dual-band

reflector antennas [81] for satellite communication applications.

Figure 4.21. Simulated reflection coefficient of the passive absorber with three different customized
thicknesses.

To demonstrate the absorber capability in adapting to various design thicknesses, the

response of the two-pole absorber is obtained for different values of the MF500F-112 thick-

ness h1 (2, 3 and 4 mm). The physical dimensions of the absorber for each configuration

without the plasma-shells are summarized in Table 4.5. As shown in Figure 4.21, all three
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design configurations provide virtually the same absorption response. The results predict

a second order response of about 17% fractional bandwidth at 10 dB reflectivity level.

Figure 4.22. Proposed unit cells of the two-pole tunable plasma-based absorber based on coupling
interlayers. The physical parameters used to obtain absorption in the C-band are provided: h1 =
3.2; h2 = 1.57; a = 10; g1 = g2 = 0.4; s1 = s2 = 1.6; b1 = 9.24; b2 = 8.48; l1 = l2 = 6.5; b = 6.5; w1 =
w2 = 6; r = 3.4 (units in mm)

In order to add the reconfigurability feature to the multipole absorber, cuboid cavities

are created within the lossy magneto-dielectric substrate, thereby allowing the hollow

ceramic gas-encapsulating chambers (plasma-shells) to be embedded in the design as

shown in Figure 4.22. The shells (size: 6 mm x 6 mm x 3 mm) are filled with 0.1% Argon

- 99.9% Neon with the electron collision frequency value set to: ν = 2.0× 1010rad/s. In

the active layer, both the resonators and the coupling interlayers are used as biasing

surfaces for the shells. In order to minimize field enhancement at the sharp corners of the

resonators, a fillet of radius 0.7 mm is performed at the corner of the resonators patch. The
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(a) (b)

Figure 4.23. Full wave simulated reflection coefficient of the multilayer absorber at OFF state for
various oblique angles of incident wave. (a) TE polarization. (b) TM polarization.

physical parameters of the active absorber are provided in Figure 4.22. Simulation results

shown in Figure 4.23 predict stable absorption response across the absorption band for

both TE and TM polarizations when the system is illuminated from various oblique angles

(0◦ ≤ θ ≤ 45◦).

(a) (b)

Figure 4.24. Full wave simulated reflection coefficient of the multilayer absorber at ON state subject
to different plasma frequencies. Tuning capability observed for (a) Only the top plasma layer is
activated and (b) Both plasma layers are activated.

The variation of the biasing voltage is mimicked by applying different plasma frequen-

cies through simulation. On the one hand, we assume that only the top plasma layer

is excited (ωP1 = 0). The variation of the plasma frequency (0 ≤ ωP2 ≤ 9× 1011[rad/s])

predicts a tuning of the absorption spectrum and rate. The higher absorption resonant

frequency has shifted from 6.2 to 6.7 GHz (see Figure 4.24(a)). However, wider absorption

band is obtained at the expense of the absorption rate. On the other hand, when both
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plasma layers are excited, the effect of the variation of both plasma frequency such that

ωP1 = ωP2 (see Figure 4.24(b)) predicts a tuning of both resonant frequencies across the

C-band. It can be seen that the center frequency shifts to higher frequency (from 6 GHz to

7 GHz).

Figure 4.25. Fabricated layers. (a) ) EBG resonator #1; (b) Coupling layer; (c) EBG resonator #2; (d)
Perforated lossy magneto-dielectric (MF500F-112); (e) Design stacked up without the MF500F-112.

4.3.2.2 Fabrication Processes and Measurement Results

The proposed multilayer plasma-based tunable absorber is fabricated and tested in a

free space environment to validate the numerical results. The metallic resonators and

coupling layer are patterned on the FR4 substrates using a wet etching process. Also, the

magneto-dielectric substrates MF500F-112 are finely drilled and perforated using a milling

machine (LPKF ProtoMat S103) as shown in Figure 4.25. The prototype board is an array

of 13 × 13 elements, printed on the FR4 substrates with a total size of 130 mm × 130 mm.
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Figure 4.26. (a) Photograph of the test setup (free space); (b) Fabricated prototype (without the
plasma-shells) inside a 3D printed frame; (c) Measurement vs simulated result of the absorber
without plasma-shells.

First, a pre-test is performed to evaluate the performance of the proposed absorber

without the plasma shells. A frame made out of thermoplastic material using a 3D printer

(Monoprice Maker Select v2) is used for fine alignment and to hold the layers together.

A small aperture, the size of the absorber is carved out at the center of a commercially

available large metal-backed foam broadband absorber (Eccosorb AN-75) to mount the

DUT as shown in Figure 4.26. The Eccosorb AN-75 frame is used to reduce diffraction

effects from the edges of the DUT. The calibration procedure is the same as previously

described. The measured return loss of the absorber without plasma-shells compared to its

counterpart simulated result is illustrated in Figure 4.26. The results predict a second order

response of about 14% fractional bandwidth at 10 dB reflectivity level. The link between

simulated and measured results show that the MF500F-112 magneto-dielectric substrates

have been accurately modeled in the simulation tool. A slight contrast between both results
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can be due to the small size of the prototype and the material tolerances. The plasma-shells

used for this experiment are commercially available from Imaging Systems Technology

Inc. The shells are filled with 0.1 % Argon - 99.9 % Neon mixture at 100 Torr gas pressure.

The gas pressure is estimated from the electron collision frequency (ν = 2.0× 1010 rad/s)

using Equation (4.7) a theoretical expression for neon gas derived in [65] at 300 K electron

temperature.

Figure 4.27. (a) Shells are hand-placed in the perforated lossy magneto-dielectric backed by the
ground conductor; (b) Conductive silver epoxy are stenciled on the top side of the shells using a
syringe; (c) Bottom plasma excitation layer is added on top of the lossy magneto-dielectric; (d) The
perforated lossy magneto-dielectric is added on top of the bottom plasma excitation layer. (e) Shells
with epoxy deposited on both top and bottom side are hand-placed in the substrate chambers. (f)
Top plasma excitation layer is added on top of the lossy magneto-dielectric.

The fabrication procedure of the absorber with the plasma shells embedded in the lossy

perforated magneto-dielectric substrates MF500F-112 is illustrated in Figure 4.27. The

performance of the absorber (at OFF state) across different angles of incidence for both
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TE and TM polarizations is experimentally obtained. Measured results Figure 4.28 show

acceptable and stable reflection response when the system is illuminated from various

oblique angles (0◦ ≤ θ≤ 45◦). Both the measured results (Figure 4.28) and simulated results

(Figure 4.23) demonstrate acceptable agreement although the measured center frequency

has shifted to 6.3 GHz.

(a) (b)

Figure 4.28. Measured reflection coefficient of the multilayer absorber at OFF state for various
oblique angles of incident wave. (a) TE polarization. (b) TM polarization.

In order to turn the device ON, a class A, RF power amplifier (ENI 2100L with 50 dB

nominal gain and operating frequency ranging from 10 kHz to 12 MHz) is used to sustain

the plasma layers. The RF power amplifier (PA) amplifies a sinusoidal wave produced by

Keysight’s N5181A MXG RF analog signal generator operating at 2 MHz. The output of the

PA is then connected to the bias traces of the absorber via a coaxial cable. By monitoring

the power level of the continuous wave through the PA front panel meter and changing

the voltage from the signal generator, different voltage is supplied to the plasma volume.

The tuning speed is less than 100 ns. The excited device under test is shown in Figure 4.29.

When the top plasma layer is only excited with various RF power such that P1 = 0 and

0≤ P2 ≤ 67W, the measured results at normal angle of incidence indicate a tuning of the

higher absorption resonant frequency (see Figure 4.30(a)). However, when both plasma

layers are activated (0 ≤ P1 = P2 ≤ 67W), a tuning of the absorption spectrum range is

perceived (see Figure 4.30(b)) showing a shift of the absorption center frequency. The
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Figure 4.29. Photograph of the test setup (free space) when the absorber is excited with various RF
powers.

(a) (b)

Figure 4.30. Measured reflection coefficient of the multilayer absorber at ON state. The plasma
volume are excited independently excited with various RF power intensities. Tuning capability
observed for (a) Only the top plasma layer is activated and (b) Both plasma layers are activated.

measured results obtained in Figure 4.30 agree well with their simulated results shown in

Figure 4.24. These experimental results validate the fact that the proposed absorber, when

properly biased, can be adapted under a dynamic EM environment.

89



4.4 Multiphysics Analysis of Two-Pole High Power Microwave

Absorber

Multiphysics analysis is a powerful design process that can be used to understand multiple

physical phenomena of electromagnetic devices under real world conditions. Such analysis,

composed of electromagnetic (EM) simulation coupled with thermal, structural, and/or

fluidic simulations [82, 83] are critical for the design liability associated with performance

and cost. One of the real world applications of multiphysics analysis involves the impact

of high power electromagnetic interference (EMI) with electronics devices. In such events,

researchers have focused their understanding on electronic attacks (EA) and electronic

protection (EP). These inquiries have led to tremendous development capabilities that are

evolving rapidly with modern technology [84–86]. Advanced countermeasures electronic

systems, such as electronic coating shielding, isolators, filter limiter, frequency selective

surface, microwave absorber [87–91], have been explored to ensure functional safety of EM

devices. Conversely, techniques such as electronic jamming and deception, anti-radiation

weapons, use of HPM and EMP weapons [92–98] are often exploited to target those

protective layers and damage the electronic and electric systems through EM coupling.

The exposure of electronic systems to high power level EM interference, whether it is

intentional or not, can disrupt their performance and cause device failure depending on

the core material and the microscopic features of the systems architecture. Usually, the

electric field induced in the system caused by the incident wave are associated with current

and voltage surge that can initiate electromagnetic breakdown, arcing or overheating of the

system [99]. Under such conditions, design specifications such as EM-thermal-mechanical

management can no longer be neglected. The ANSYS multiphysics simulator has proved

to be a reliable and powerful software package for the study of EM-thermal-mechanical
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coupling [100, 101]. While the EM analysis is performed by ANSYS HFSS, both thermal

analysis and stress analysis can be performed using ANSYS Mechanical. For instance, if the

electronic system is lossy, the electric fields calculated from Maxwell’s equations are used

to compute the power dissipated in the system. The EM losses (surface and volume loss

densities) are then converted into heat using heat transfer equation. Then, the temperature

distribution can be utilized to analyze the thermal stress (expansion or contraction). The

deformation caused by the thermal stresses and the change in temperature are fed back

into HFSS and will affect the electro-thermal properties of the materials. This cycle is

repeated until the temperature reaches its steady state. The interaction between EM and

heat transfer using both ANSYS HFSS and ANSYS Mechanical provides an accurate and

complete bidirectional coupled physics analysis.

In this section, the physical limitation of a plasma-based tunable conductor-backed

absorber under high power microwave levels is demonstrated using multiphysics numer-

ical analysis. The peak power (for very short duration pulse) and average microwave

power (for continuous wave) handling capability of the active absorber is investigated.

The numerical analysis is carried out to predict the dielectric and air breakdown levels

within the system. Also, since the absorber converts the EM energy into thermal energy,

the EM wave and heat transfer are coupled together to evaluate the thermal behavior of the

absorber. Both the steady state and transient state analysis are performed when the device

is exposed to various incident power densities. A non-uniform temperature distribution is

obtained with hotter spot located within the lossy magneto-dielectric. Since testing at high

power microwave levels is potentially unsafe, experiments are performed with relatively

moderate far-field power densities to validate numerical results. The temperature distri-

butions on the top surface of the absorber are obtained using a thermal imaging infrared

camera (FLIR E6).
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4.4.1 Physical Impact of High Power Microwave Source on the Pro-

posed Multilayers Absorber

High peak and average microwave power sources present severe challenges for the relia-

bility and safety of resonant structures. Under exposure of high-power RF, the physical

interaction between the EM field and the electronic system on a molecular level must be

investigated. Electromagnetic breakdown and overheating of the device are feasible causes

of design failure. In general, EM breakdown events are the primary concerns associated

with very short pulse durations (in terms of µs) of high peak power. This happens when

the induced electric field within the device becomes greater than the breakdown limit of

air or dielectric. In our resonant absorber, the slots within the metallic layers enhance the

localized electric field intensity from a buildup of negative and positive charges. As a result

of the electric discharge, current will flow through the dielectric to create a short circuit

as the insulating material becomes a good conductor. On the other hand, overheating of

the system is associated with high average power with sustained continuous wave. The

energy dissipated in the system due to the time averaged metallic and dielectric losses

is converted into heat, which can become problematic depending on the selected design

materials.

4.4.2 Estimation of the Absorber Breakdown Threshold

The prediction of the absorber electrical breakdown level is a very complex task because

the discharge process is transient and occurs on a microscopic level. While many factors

can cause microwave-metal electrical discharge mechanism, we exploit the effect of the

field enhancement caused by high peak microwave power. Numerically, the dielectric and

air breakdown level within the absorber can be estimated by quantifying the maximum
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field enhancement factor (MFEF) [102]. MFEF is defined as the ratio between the maximum

local electric field intensity inside the system and the electric field intensity of the incident

EM wave. Therefore, a microwave system resilient to high power RF is expected to have

lower MFEF.

(a) (b)

Figure 4.31. Simulated E-field distribution in the metallic layers at a unit cell level of the absorber
illuminated with an incident power of 1 W. The electric field with intensity E0 = 2746 V/m is
coupled to the absorber. The induced field distribution is observed at (a) the first resonant frequency
f1= 5.9 GHz (b) the second resonant frequency f2= 6.1 GHz

Figure 4.32. Extracted MFEF values at different frequencies of the absorber without and with
filleted resonators corners.

However, at resonance the fields inside small metallic gaps are maximally enhanced.
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The electric field distribution in the metallic layers of the absorber unit cell is numerically

obtained at both resonance frequencies f1 = 5.9 GHz and f2 = 6.1 GHz. When the cross

section of the unit cell (with periodicity a = 10 mm) is illuminated with an incident power

of 1 W, a maximum incident power density of 10 000 W/m2 which is equivalent to an

electric field intensity of E0 = 2746 V/m is coupled to the system.

Table 4.6. Approximated maximum allowed power density (in MW/m2) for very short pulse
duration of high power.

Design 5.8 GHz 5.9 GHz 6.0 GHz 6.1 GHz 6.2 GHz

Without filleted resonator corners 12.4 11.9 14.8 12.2 13.7

With filleted resonator corners 18.3 16.3 25 17.6 26.5

The results shown in Figure 4.31 predict strong local field enhancement at both EBG

resonators. It can be seen that, the field is strongly enhanced at the edges of the metallic

layers. The MFEF of the absorber (without/with resonator corners filleted) is extracted

across the C-band (4 GHz to 8 GHz) using full-wave EM simulation and the result is

depicted in Figure 4.32. It is perceived that the proposed design with filleted resonators

corners shown better performance in handling higher microwave power. The value of the

MFEF is higher in the operation band of the absorber with maximum (27 and 26) observed

at both resonant frequencies for the proposed design. At OFF state, the air gap existing in

the cavity is the most limiting medium with electrical breakdown strength EB = 3 MV/m.

For very short pulse duration of high peak power, the maximal power density the absorber

can withstand at specific frequencies is depicted in Table 4.6. Overall, the data obtained

showed the maximum allowed incident power density is about S =16.3 MW/m2 for the

proposed multilayer absorber at OFF state.
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4.4.3 Thermal Analysis of the Proposed Multilayer Absorber

As mentioned previously, when the absorber is coupled with a high average power contin-

uous wave (CW), thermal analysis needs to be taken into account to avoid design failure

due to material heating and possible burning. Therefore, it is important to understand how

the material choice can affect the thermal and electrical performance of the design. The

CW incident power density allowed by the design can be obtained based on the thermal

limit of their temperature dependent materials. A comprehensive multiphysics solution

that couples full-wave EM to thermal analysis is performed using HFSS and Icepak from

ANSYS.

Table 4.7. Thermal properties of the absorber materials.

Material Thermal conductiv-
ity (W.m−1.K−1)

Density
(Kg.m−3)

Specific heat
(J.Kg−1.K−1)

Operating temper-
ature limit (◦C)

Copper 401 8933 356 < 750

Alumina 27 3970 910 < 1750

Neon 0.0498 0.1079 1029.9 < 1000

FR4 0.3 1250 1300 < 140

Rogers RO4003C 0.71 1700 900 < 280

MF500F-112 1.44 3250 1300 < 260

In general, the temperature dependency of the materials’ electrical properties (such as

dielectric constant, loss tangent, conductivity) are governed using a quadratic approxi-

mated equation [103]:

x(T) = x(T0)
[
1 + C1(T − T0) + C2(T − T0)

2
]

. (4.10)

where T0 is the initial temperature, T is the temperature of the heated material (which

can be position dependent as well), and C1 and C2 are the linear and quadratic expansion
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coefficients, respectively. A bidirectionally coupled analysis is possible if the temperature

dependency of all the materials electrical properties are known. In such case, the transient

frequency response of the design due to temperature drift and structural deformation can

be also obtained. However, in this section our analysis focuses on the heat generated solely

due to Joule heating within the absorber for different incident power densities.

Figure 4.33. Simulation model of the finite size multilayer absorber illustrating the coupling
between ANSYS HFSS and ICEPAK.

The thermal specification of the design modeled in Icepak is illustrated in Table 4.7.

These values are taken under ordinary conditions and it can be seen that the FR4 substrate

is the limiting material in terms of the maximum operating temperature (<140 ◦C). Be-

yond this threshold, known as the glass transition temperature (Tg), the hard polymer

will become soft and lose its electrical and mechanical integrity. The simulation set up in

Icepak is performed in a natural convection environment (heat transfer coefficient HTC

= 10 W ·K−1 ·m−2), with the radiation ON (for heat transfer) and ambient external tem-

perature. In order to predict the temperature profile of the design, the exact finite size of

the absorber is taken into account (as shown in Figure 4.33) to consider the edge effects,

although a heavy simulation CPU time is required.

Both the steady and transient state simulation results are obtained when the absorber is
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Figure 4.34. Simulated steady state temperature map throughout the multilayer absorber exposed
to various power densities with incident plane wave at f0 = 6.0 GHz.

Table 4.8. Simulated maximum temperature (◦C) within the FR4 substrates for different power
densities across the absorption spectral band.

Power density 5.8 GHz 5.9 GHz 6.0 GHz 6.1 GHz 6.2 GHz

S =0.1 kW/m2 23.5 24.9 24.6 24.8 24

S =1.0 kW/m2 58 59 58.5 59.5 58

S =3.7 kW/m2 140.5 142 141 151.5 140

S =4.0 kW/m2 147.5 148.5 148 148.7 148

S =8.0 kW/m2 231 235 235 234 230

exposed to a continuous plane wave. The steady state temperature profile of the absorber

exposed to various power densities at the center frequency f0 = 6.0 GHz is illustrated in

Figure 4.34 (which reflect the temperature plot in both substrates and metallic surfaces). It

appears that a non-uniform spatial temperature distribution is obtained such that the peak

temperature is located within the magneto-dielectric MF500F-112, where the substrate

losses are the most significant. A report of the simulated maximum temperature generated

within the FR4 substrate for different power densities across the absorption spectral band

is summarized in Table 4.8. It can be seen that the temperature increases with the power

density and slightly higher values are obtained at the resonant frequencies. A transient
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(a)

(b)

Figure 4.35. Simulated transient state temperature map throughout the multilayer absorber with
incident plane EM wave at f0 = 6.0 GHz. The absorber is exposed to various power densities. (a)
S =0.1 kW/m2; (b) S =4.0 kW/m2.

simulation is also performed on the multilayer absorber. The 3D temperature distribution

throughout the absorber is obtained within one-hour time frame for various power density

at the center frequency as shown in Figure 4.35. The initial temperature of the absorber

is set to the room temperature (T0 = 20 ◦C). The transient simulated results show that the

temperature within the absorber increases with time and converges to the steady state
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Figure 4.36. Time variant simulated peak temperature plot throughout the FR4 (plot using symbol)
and the MF500F substrate (solid line plot) illustrated for various power densities with incident
plane EM wave at f0 = 6.0 GHz.

after one hour. The plot in Figure 4.36 (maximum temperature versus time) is provided to

illustrate the trend of the temperature increase over time within the FR4 and the magneto-

dielectric MF500F. It’s observed that the temperature rises quickly for higher incident

power density. Based on the data projected, the maximum average power density the

absorber can tolerate at OFF state for an incident CW is about SA =3.7 kW/m2.

4.4.4 Experimental Results of the Temperature Distribution on the Top

Surface of the Absorber

Testing the power handling capability of specific microwave components requires tech-

nical safety measures. All the test instruments need to be rated for the measurement

environment. Safety practices recommended by IEEE standards on high power testing
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should be adopted. The test setup can differ given the specific device under test (DUT).

For example, when testing the power handling of a microwave filter, the input of the DUT

can be driven with a coax connection and the output terminated using a high power load.

Radiated susceptibility measurement of antennas are often performed in a semi-anechoic

chamber. However, all these test procedures require the use of a high power source.

(a)

(b)

Figure 4.37. (a) Sketch and (b) photograph of the free space test setup.

To validate the thermal numerical results of the multilayer tunable plasma-based ab-

sorber, a 40 dB traveling wave tube (TWT) amplifier from Hughes (Model#: 1177H13F000)

operating in the S/C-band (3 GHz to 8 GHz) is used to generate a high power microwave.

100



Since the power handling limit of the absorber is related to the thermal effect, the tem-

perature of the absorbing material under RF fields is measured using a thermal imaging

infrared camera (FLIR E6). This IR camera has the capability to detect object temperatures

ranging from −20 ◦C to 250 ◦C with 2% reading accuracy. As a safety precaution, the

thermal analysis tests are performed with relatively moderate far field power densities.

Although the incident power level might not test the design to its limits, it is sufficient

enough to cause heat generation that can be measured using the IR camera. An illustrative

sketch of the test setup is shown in Figure 4.37(a). Prior to the experiment, a 6.3 GHz

sinusoidal wave produced by Keysight’s E8257D PSG RF analog signal generator is am-

plified by the TWT power amplifier and the output is monitored using the E4418B EPM

series power meter. Thus, by placing the DUT at the far-field (0.5 m) from the PE9887-11

broadband horn antenna, the incident power density is evaluated using the equation:

S =
PtGt

4πR2
(4.11)

where Pt is the transmitted power, Gt = 12.6 is the gain of the transmit horn antenna, and

R is the distance from the horn antenna to the center of the top surface of the DUT. The

measured thermal distribution is obtained at three different power densities (S = 0.08 ,

0.1 and 0.3 kW/m2). A photograph of the test measurement is shown in Figure 4.37(b).

Since only the top surface of the absorber is visible to the FLIR E6 IR camera, the temper-

ature distribution on the top surface of the absorber is measured and compared to the

numerical results. The numerical analysis of the thermal transient state of the absorber

upon an incident RF power density at 6 GHz is performed.

The simulated temperature distribution obtained on the top surface of the absorber for a

power density of S =0.1 kW/m2 is shown in Figure 4.38(a). In order to accurately measure

the radiated temperature on top of the absorber, the IR camera is properly calibrated,
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(a)

(b)

Figure 4.38. (a) Transient state temperature map observed at the top surface of the multilayer
absorber exposed to a power density power S =0.1 kW/m2. (a) Simulated results for incident plane
EM wave at f0 = 6.0 GHz; (b) Measured results for incident plane EM wave at f0 = 6.3 GHz.

the emissivity is set to 0.91 (emissivity of FR4) and the distance between the object and

camera is set to 0.5 m. Images obtained from the IR camera are depicted in Figure 4.38(b).

It shows that the top surface of the absorber becomes hotter for different time frames.

The qualitative aspect of the simulated temperature profile does not exactly correspond

to the measured temperature map obtained of the top surface of the multilayer absorber.

Several parameters such as the color visualization used in the simulation of the design

model, the lighting in the test room, or the position of the IR camera surely influence the

results. However, the measured temperature obtained at the center of the top surface

of the multilayer absorber accurately validates its numerical counterpart as observed in

Figure 4.39 for various incident power densities.
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Figure 4.39. Simulated/measured time variant temperature plots obtained at the center of the top
surface of the absorber versus time illustrated for various power densities with incident plane EM
wave.

4.4.5 Techniques to Reduce the Absorber Susceptibility to Fail under

High Power Excitation

The design of microwave absorbers resilient to high power is very intriguing, since the ab-

sorbed incident energy is converted to heat via phase cancellation. However, multiphysics

analysis of absorbers can result in optimized design solutions. In [104], optimization tech-

niques have been investigated to mitigate field enhancement in resonant structure. The

widening of capacitive gaps between metallic patches, filleting of sharp metallic corners,

and the use of genetic algorithms (pixelized screen geometry) have reduced the MFEF of

such design. In addition, by substituting capacitive metallic layer with high permittivity

thin dielectric, the MFEF value can be further reduced [102].

In the case of thermal management, custom design techniques such as the use of hollow

pyramidal and honeycomb lossy material, integration of coolant system within the design,

and the use of high temperature materials can increase the power handling capability. For

instance, RO4003C, a hydrocarbon ceramic laminate from Rogers Corporation’s RO4000
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Figure 4.40. Simulated reflection coefficient of the alternate multilayer absorber (using Rogers)
along with the previous design (using FR4) at OFF state. The physical parameters of the alternative
design Type 2 (using Rogers RO4003C) used to obtain absorption in the C-band are provided:
h1 = 3.2; h2 = 1.5; a = 10; g1 = g2 = 0.4; s1 = s2 = 1.65; b1 = 9.4; b2 = 8.66; l1 = l2 = 6.5; b =
6.5; w1 = w2 = 6; r = 3.6 (units in mm).

Figure 4.41. Full-wave simulated reflection coefficient of the multilayer absorber at ON state subject
to different plasma frequencies when Both plasma layers are activated.

series (which are known for their reliability when subjected to severe thermal shocks with

transition temperature Tg = 280 ◦C) has been incorporated in the design as a substitute

for the FR4 dielectric. Under these circumstances, the magneto-dielectric MF500F becomes

the limiting material in terms of the maximum operating temperature (<260 ◦C). For a fair

comparison, the two types of absorber have the same thickness, unit cell periodicity, and
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operating frequency band, with virtually the same fractional bandwidth.

The reflectivity response of this alternate design along with the previous design is

shown in Figure 4.40. The physical dimensions (in mm) of the alternative design are also

depicted in the caption of Figure 4.40. Figure 4.41 shows the effect of the variation of both

plasma frequency such that ωP1 = ωP2 when both sources are turned ON. It also predicts a

tuning of both resonant frequencies across the C-band such that the center frequency shifts

from 6 GHz to 7 GHz. The plot of the time variant simulated peak temperature within

the magneto-dielectric MF500F (Figure 4.42) indicates that the average power handling

capability under sustained CW excitation increases from 3.7 kW/m2 (for the design using

FR4) to 10 kW/m2 (for the one using Rogers RO4003C).

Figure 4.42. Time variant simulated peak temperature plot throughout the RO4003C (plot using
symbol) and the MF500F substrate (solid line plot) illustrated for various power densities with
incident plane EM wave at f0 = 6.0 GHz.
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4.5 Chapter Conclusion

A low profile, compact, high performance electronically tunable microwave absorber based

on plasma properties is revealed in this Chapter. Numerical solutions of the propagation

of the electromagnetic wave in plasma devices had been provided using transmission line

approach. The practicability of the design, the biasing networks, the fabrication process

and experimental verification were satisfactory. The feasibility of devising electronically

tunable, high power resilient compressed Jaumann absorbers relies on applying thickness

controlled inter-coupling layers and integrating tiny discrete plasma-shells. The power

handling capability of the proposed multilayer absorber is studied using multiphysics

analysis.
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Chapter 5

Conclusion

In this work, we demonstrated innovative design techniques for next-generation fre-

quency selective surfaces and absorbers. High performance multipole bandpass spatial

filter is implemented by cascading miniaturized resonant element and inverter layers. The

realized filters deliver maximally flat multipole stable inband responses. The separation

between adjacent FSS layers can be arbitrary (at very close distance or at moderately spaced

distance), thus providing flexible design control of both passband response and overall

filter thickness. Ultimately, given overall thickness specification and filter characteristics,

the proposed generalized synthesis technique provides the optimal inter-coupling dimen-

sions allowing a magnetic coupling path between resonant layers to produce the desired

response. Building on this achievement, the concept is applied to practical engineering

problems including the design of low profile, compact reconfigurable FSSs and microwave

absorbers. The design flexibility allows simpler integration of active components that

require specific size. The integration of discrete plasma-shells into the proposed compact

multilayered FSS/absorber adds reconfigurability property to their performance while

achieving efficient and stable multifunctional operation in harsh environment. This novel

electromagnetic radiation protection system has potential application in modern stealth

technology and protection from high-power electromagnetic interference.

In Chapter 2, we introduce a new design guide that allows simultaneous control of

the EM wave response and design thickness of multilayered bandpass FSS filters. The

proposed technique is based on coupled bandpass filter theory using admittance inverter.

A generalized ECM is systematically used to discover the physical mechanism behind the

interaction of the multilayers. It has been demonstrated that given center frequency and
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bandwidth of filter specification, there is a degree of conformity for thickness customizable

high-order bandpass FSS with some limitations in term of the design profile. The overall

thickness of multipoles FSSs can be deliberately designed without losing any generality

of the spatial filter performance. The proposed technique is suitable for FSS applications

requiring precise thickness specifications and also allows the engineer to use readily

available commercial dielectric materials with standard thickness for multilayered FSS

design technology.

In Chapter 3, a practical large scale switchable electromagnetic field blocking FSS based

on discrete plasma-shells is proposed. The discrete plasma-shells allow the realization of

large scale plasma devices and easy control of the plasma density by using a simple FSS

layer as a plasma excitation surface. Method of understanding and controlling the plasma

behavior has been implemented by extracting electrical parameters of the plasma. Then

we examined this feature as switchable field blocking components of FSS. A comparison

between simulation and measurement in free space or waveguide environment have

proven to be in good agreement. The proposed state of art switchable FSS definitely

provides benefits in improving overall aerodynamics, conformability, and reliability. The

fabricated large-area switchable plasma device exhibits a fast tunable shielding against

low and high power microwave and has potential application in aerospace and terrestrial

electromagnetic system protection. The design can be scaled to desired frequency bands

including multi-band operation using proper design concept. These novel spatial filter

devices address the limitation of tunable FSS based semiconductor varactor and pin diode

where high power is a potential threat in electronic warfare.

In Chapter 4, a low-profile tunable absorbers based on lossy FSS layers embedded with

discrete plasma-shells is investigated. The bulk plasma is modeled using parallel plate

topology and a transmission line approach is provided to explain the working principle

of the proposed plasma-based tunable absorbers. Through full wave electromagnetic
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simulation, it is demonstrated that by adjusting the plasma frequency of the gas volume,

a tuning of the absorption band is achieved. The large-scale plasma-based absorber is

fabricated and tested. The biasing voltage used to sustain the plasma is properly adjusted

to control the transfer function of the absorber to validate the tunability capability that

was expected from the simulation results.

Furthermore, by leaning toward applications requiring protection from high power

HPM/EMP emanated by frequency agile microwave weapons or radar systems, we intro-

duced a compact multilayer tunable absorber based on lossy magneto-dielectric substrates

embedded with discrete plasma-shells. The discrete plasma-shells located on different lay-

ers of the structure allow independent control of each resonant frequency. The techniques

employed in the proposed design lend much freedom to customize both functional and

physical characteristics of the absorber. This thickness customizable compact multilayer

absorber is tuned in real time to provide a multifunctional response on demand for a

dynamic use of the EM spectrum.

The power handling capability of our proposed multilayer absorber is studied. Notably,

we investigate the physical effect of high peak and average power, which can present se-

vere challenges in a harsh electromagnetic environment. A coupled physical phenomenon

between both RF and thermal simulation is investigated by rigorous multiphysics simu-

lated analysis. The results predict very well the thermal issues for high-power applications.

High power analysis of microwave components is very crucial in a sense that selected ma-

terials can be rightfully chosen in the early stages of design in order to avoid failure of the

final product for specific applications and assure a safe operation in harsh environments.

The outcomes of our research will lead to a new class of reconfigurable, high perfor-

mance, high-order spatial filters and absorbers for stable communication links from high

power interference. While this research was only applicable to planar EM structures, future

research can explore the versatility of the proposed technique on conformal multilayered
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reconfigurable FSSs/absorbers to validate the usability and the effect of incorporating

inverter layers under non-planar structural formations. Also, given high demand for broad-

band and high data rate communication, plasma-based reconfigurable structures will be

investigated over a wide range of spectrum from millimeter wave, terahertz (THz), up to

optical frequencies. This forthcoming research will present certain degree of theoretical

and experimental challenges due to the micro-scale design features.
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