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Abstract 

The double network synthesis technique has gained popularity in the past few years as a method 

to create hydrogels with high strength and toughness, making them ideal for a plethora of 

applications, such as tissue engineering, drug delivery, and biosensors. The technique revolves 

around creating a ductile, weak network in the same space as a brittle, strong network. With the 

development of the synthesis technique, researchers have investigated both why these materials 

have the reported properties and finding new ways to synthesize them or use them in different 

applications. In this work, I aim to add on both aspects of this research. First, I investigated how 

brittle network variables affect the mechanical properties of the double network to expand our 

knowledge of double network behavior. Next, as part of a collaborative project with the Soman 

Lab, I helped develop a double network hydrogel that could be synthesized using a novel 

photolithography setup for making complex 3D microstructures. Lastly, a slug glue protein laden 

hydrogel was developed in the hopes of making a novel double network for the purposes of 

investigating the effects of glue protein and metal ion interactions. 
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Chapter 1 Introduction 

1.1 Double Network Hydrogels 

Double networking is a synthesis technique that can be used to develop tough and elastic 

materials. These networks have these tough and elastic behavior due to a brittle, rigid polymer 

network that serves to disperse the stress once a crack or deformation forms in the material [1]. 

The second, more ductile polymer allows the network to extend far beyond the yielding strain of 

the brittle polymer. The combination of stress dispersion and ductility allows for double network 

gels with greater mechanical strength and toughness than the individual networks. The technique 

is not the only way to synthesize strong polymers; other techniques include tetrahedron-like 

macromonomers [2] or slide-ring crosslinkers [3]. These two techniques provide enough strength 

to impart elastic deformation in hydrogels,  but the toughness was found to be lower than that of 

double network gels [1]. Another technique, in which the gel is combined with clay nanoparticles 

[4], does provide higher strength and toughness than using the macromonomer or crosslinker 

procedures, but not to the same degree as the double network structure [5]. 

For a classical double network hydrogel, such as those developed by Gong and colleagues, the 

following criterion must be met: the first network is a brittle polyelectrolyte, which is 

synthesized as a single network. The polyelectrolyte is usually tightly crosslinked and in some 

cases heterogeneous in nature [5]. Once the first network has been synthesized, it is placed in a 

solution containing the monomer of the second network. This second network is comprised of a 

neutral polymer that, as a single network, would be considered soft and ductile. The first network 

swells in the second network solution, which can also contain crosslinker and initiatior, and then 

the second network is formed via a second polymerization step. The swelling of the first network 

allows the second network precursors to diffuse into the bulk, and upon excitation, the second 
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network forms independently of the first. The second network should be in 20 to 30 molar excess 

of the first network in order to ensure that there is enough of the ductile polymer present in the 

material to provide support when strains are applied [1]. The synthesis technique is similar to 

that of making interpenetrating polymer networks (IPN’s); the main difference being that IPN’s 

are made of polymers with similar mechanical properties, while double networks (as stated 

previously) are made of polymers with differing mechanical properties. This difference causes a 

synergistic effect, which makes double networks stronger than the IPN’s [5]. 

1.2 Understanding Double Network Mechanics 

Ever since the technique was first reported in 2003 [6], there has been considerable interest in 

understanding how these materials behave, and the underlying mechanisms responsible for this 

phenomena. Gong provided an extensive discussion on her original material [1]. The theory 

proposed that the high toughness and strength is due to the synergistic effect between the brittle 

and ductile network. Specifically, the strong brittle network accepts a majority of the force 

applied to the gels. When the force applied is enough to break the network, it fractures and 

creates large damage zones. These large damage zones dissipate energy and allow for more force 

to be applied before a macroscopic crack forms [1].  

To continue to explore these double networks, experiments and modeling were conducted to 

better understand what causes these large damage zones [7], [8]. From this, it was hypothesized 

that heterogeneity within the brittle network was responsible for the remarkable mechanical 

properties. Nakajima et al. continued with this theory by investigating the effects of homogeneity 

in the first network on the mechanical properties of the double network [9]. To test this, 

Nakajima et al. developed a method of creating a pure homogeneous first network using a tetra-

PEG gel. They found that these homogeneous gels had the same mechanical behavior as the 
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inhomogeneous gels, and concluded that this aspect of the gel is not necessary for high toughness 

and tensile strength [9]. This independence on heterogeneity does not occur for all combinations 

of brittle and ductile networks [10]. 

This homogeneity of double networks was further investigated by Cui et al. By controlling the 

osmotic pressure of their polyampholyte double network precursor solution, the researchers were 

able to scale the homogeneity of the system [11]. High osmotic pressures tended to increase the 

homogeneity of the system. Using this method, they found that the gels had the highest strength 

and stiffness as well as highest strains to fracture when a middling osmotic pressure was applied. 

This is hypothesized to be due to the balance between the benefits of homogeneity and high ionic 

bond strength. As the osmotic pressure increases, condensation occurs, which leads to more ionic 

interactions between the polymer networks. However, when the homogeneity increases, the soft 

network cannot properly transfer stress, resulting in lower fracture strains [11]. 

While there have been some investigations into the first network, there have also been some 

investigations into how the second network affects the mechanical properties. For example, 

Tsukeshiba et al. found that high crosslinking concentration in the second network does not 

allow for good entanglement between the two, and can lower the toughness of the double 

network [12]. Another important study looked at how the ability of the gels to neck was 

dependent on the molecular weight of the polymer chains of the second network. Long chains of 

the ductile network allow for disentanglement at high elongations, which allows for greater 

energy dissipation [13].  

1.3 Creating Double Networks via Novel Synthesis Methods 

While these double network gels do have highly desired mechanical properties, one of their main 

drawbacks is the long synthesis times. In order to make a double network using the classical 
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method, the method requires synthesizing one gel, then allowing it to swell in a monomer 

solution of the second network. As one can imagine, this can make the synthesis time take up to 

several days. In addition, using the classical method can limit the complexity of the shape that 

the gels can be formed into. To this end, researchers have explored ways to improve the 

synthesis methods used to make double networks so that either the time to synthesize can be 

reduced or more complex shapes can be obtained. 

To improve on the timing of double network synthesis, researchers began looking into using one-

pot synthesis methods. As it sounds, the one-pot synthesis method is when the components of 

both the first and second network are combined into one solution, and then the networks are 

formed individually. This type of synthesis method usually uses a mix of 

polymerization/crosslinking chemistries in order to ensure that the networks are formed 

independently from one another. One of the first examples of this synthesis method was 

published in 2013, in which Chen et al. used an agar-polyacrylamide system to develop a double 

network [14]. Agar was polymerized to form a gel through heating-and-cooling cycles, while 

polyacrylamide was polymerized under UV-excitation.  

Another popular combination of polymerization/crosslinking chemistries used in one-pot 

synthesis is covalent and ionic gelation. This method usually uses a strong but brittle polymer 

that can be crosslinked via metallic ions, and a neutral ductile network that is polymerized and 

crosslinked via UV excitation. A combination used particularly often is alginate and 

polyacrylamide, in which the alginate is crosslinked via calcium ions and the polyacrylamide 

network is synthesized in the presence of photoinitiator and UV light [15]–[19].  An important 

note about these gels is that they tend to have self-healing behavior due to the presence of ionic 
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bonds. As such, they have become of interest for applications such as wound healing [20], [21], 

drug delivery [22], [23], and tissue engineering [22], [24], [25]. 

While some researchers have focused on synthesis techniques for lowering the timescale, others 

have focused on methods for creating double networks into complex structures. The most 

prominent of these methods is 3D printing. In 2013, Muroi and colleagues reported on their 

fabrication of a 3D printer that could print double networks [26]. The printer works by printing 

the material while a UV laser was shined underneath the stage. The UV light was focused via an 

objective lens which allowed for the light to travel through an optical fiber, allowing for 

controlled UV polymerization. Since then, other groups have developed their own methods to 

print double networks for biomedical applications. Yang, Tadepalli, and Wiley were able to 3D 

print a double network hydrogel with a greater compression strength and elastic modulus greater 

than that of cartilage [27]. The Burdick Lab out of the University of Pennsylvania were able to 

bioprint a double network gel consisting of two separately modified hyaluronic acid networks for 

tissue engineering [28]. Liu and Li developed a double network of κ-carrageenan and 

polyacrylamide that could be 3D printed into complex shapes for biosensor applications [29].  

1.4 Double Networks in Nature – The Arion subfuscus Defensive Glue 

An interesting subsection of double network research is in the characterization of a slug glue. 

The Arion subfuscus slug, a terrestrial slug found in the Eastern United States, secretes an 

adhesive gel as a defense mechanism [30]. Compositional analysis of the glue found that the glue 

is comprised of two networks; a flexible carbohydrate network and a rigid protein network that is 

crosslinked via metal ions [31].  This compositional analysis also found that the protein/metal 

and carbohydrate networks are in a 1:1 weight ratio with one another. This is a particularly 

interesting find, as classic double network theory would predict that the ductile network being in 
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excess of the brittle network. In addition, the two networks were found to have a synergistic 

effect. When one of the networks was disrupted using enzymes, the gel deteriorates, lacking any 

substantial strength [32]. 

Material testing on the A. subfuscus glue found that it has similar toughness to synthetic double 

networks [32]. Slug glue that was subjected to tensile testing had an average strain at failure of 

around 9.5, and an average peak stress of 101 kPa. This is in accordance with typical double 

networks [5]. Hysteresis experiments also showed that the glue can partially recover damage 

received during testing [33]. This would indicate the presence of physical crosslinks, similar to 

those seen in the covalent-ionic crosslinked double networks discussed in the previous section. 

Based off the mechanical properties of the slug glue, there is a heightened interest in 

understanding the underlying mechanics of this material. To that end, thorough investigations 

into the proteins have been conducted. RNA sequencing was used to determine if the proteins 

had a similar sequence to any other groups of proteins [34]. Four groups of proteins were found 

to be a considerable interest; a set of proteins with a sequence similar to C-lectins, another set 

with H-lectin similarities, another with C1-q similarities, and one set with a sequence similar to 

matrilins. Based off of the known information about these families of proteins, it is hypothesized 

that the lectin-like proteins are responsible for the adhesive properties [35], [36], while the C1-q 

proteins and the matrilins were responsible for crosslinking and stiffening the gel [37], [38]. 

With a majority of the biochemical analysis completed, it may be of interest to investigate the 

proteins through a materials and engineering perspective, seeing how the proteins behave in 

synthetic gels and determine more about the underlying mechanics.  
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1.5 Scope of Thesis 

This thesis is an overview of how double network theory was researched and applied to synthetic 

and biological problems. In Chapter 2 (adapted from Struck Jannini et al. manuscript [in peer 

review]), the focus is on investigating how double network mechanical properties are affected by 

brittle network composition. The concentration and crosslinking ratio of the brittle network was 

systematically altered in order to quantify the effects of both variables and their interaction on 

the tensile, swelling, and tearing properties of the gels. In Chapter 3 (adapted from Kunwar et al. 

[39]), the focus is on developing a double network system that could be used in a novel optical 

lithography setup. The material itself is the object of focus, as opposed to the laser setup, and the 

mechanical tests that were conducted to show successful double network synthesis as well as 

how material and lithographic variables affect the mechanical properties of the gel. In Chapter 4, 

the focus is on developing a material to investigate slug glue proteins. The purpose of this 

material is to determine if a double network could be formed using a synthetic polymer base that 

is then incorporated with proteins and metal ions to create the tough protein network. This would 

allow for future studies in which the protein network and metal ions could be methodically 

altered to determine how certain proteins behave in the presence of specific metal ions.   
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Chapter 2 Using a Central Composite Experimental Design to Investigate the Effects of 

Brittle Network Variable Interactions on Double Network Mechanics 

2.1 Synopsis 

Double networking is a hydrogel synthesis technique that reinforces gels through a synergistic 

effect occurring when a ductile, loosely crosslinked gel is synthesized in the same space as a 

previously polymerized brittle, tightly crosslinked gel. While there have been investigations 

undertaken to better understand the mechanisms by which these double network gels behave, 

there have been none that specifically investigate and quantify the effect of the interactions of 

different variables on the mechanical properties of these systems. To investigate the interactions 

of brittle network variables, a central composite design was used to systematically alter the 

concentration and crosslinking ratio of a poly(ethylene glycol) diacrylate (PEGDA) crosslinked, 

methacrylated hyaluronic acid network (MHA) used in an MHA-poly(dimethyl acrylamide) 
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double network, and the tensile, tearing, and swelling properties of these networks were studied. 

Through changing the weight percent of MHA and the ratio of PEGDA:MHA (0.793 to 2.207 

wt% and 1.586:1 and 4.414:1, respectively), the modulus and tearing energy were found to 

change by an order of magnitudes (19.19 kPa to 282.45 kPa and 6.16 to 102.10 J/m2, 

respectively). Using this design, it was found that the interactions of these two variables affect 

both the modulus and the tearing energy of the DN gels. As these properties of the material are 

indicative of the strength and toughness, this work shows the importance of these interactions, 

and that they should be considered when other materials researchers develop their own double 

networks. 

2.2 Introduction 

Double networking is a synthesis technique used to reinforce hydrogels. The method was first 

developed by Gong et al. [1] which made use of a brittle, tightly crosslinked poly(2-acrylamido-

2-methylpropane sulfonic acid) network and a ductile, loosely crosslinked poly(acrylamide) 

network. Since then, double networks (DN’s) have been developed using several different 

combinations of brittle and ductile polymers, including poly(methacrylic acid)-

poly[oligo(ethylene glycol) methyl ether methacrylate] [2], alginate-poly(acrylamide) [3], and 

graphene-poly(dimethylacrylamide) [4]. The advantage of DN gels is the orders of magnitude 

increases in the strength and toughness as compared to the respective singular networks.  This 

technique has been used to develop materials for a diverse array of applications, such as tissue 

engineering [5]–[8], drug delivery [4], [9], [10], and biosensors [11], [12].  

There has been considerable interest in understanding the mechanics and underlying mechanisms 

that govern these gels. Gong ran several experiments to investigate what the mechanism was for 

DN toughness [13]. It was determined that the brittle, strong polymer acts as a “sacrificial 
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network”, in which the imparted forces are isolated. This causes the brittle network to fracture, 

but the polymer is held together by the ductile network. This allows the DN to stretch beyond the 

limits of the brittle network, but still benefit from the strength and toughness of the brittle 

network [13]. 

Weng and colleagues developed a DN gel for load-bearing tissue scaffolds and investigated 

mechanical property changes based on compositional modifications to the ductile network [14]. 

In this work, the authors attempted to optimize the ductile PDMAAm gel network by changing 

both the concentration of the monomer and the crosslinker in the DMAAm solution. The second 

network was optimized for compressive strength, and it was found that a DMAAm concentration 

of 3 mol/L and a crosslinking concentration of 0.002 moles crosslinker per mole DMAAm led to 

a maximum compressive fracture stress of 5.2 MPa. This optimization shows how the ductile 

network should be concentrated enough to provide mechanical integrity  when the brittle 

network breaks, and be loosely crosslinked to ensure high ductility [13]. 

Tsukeshiba et al. also ran an investigation to elucidate the mechanics of double network 

behavior, and determined that self-entanglement of the second network is imperative for high 

toughness [15]. The researchers were able to determine the average molecular weight of 

synthesized poly(acrylamide) polymers and found that decreasing photoinitiator concentration 

led to higher average molecular weights. These high molecular weight polymer branches were 

found to lead to DN’s with higher fracture stresses and fracture energies. These high molecular 

weight polymer strands are believed to be beneficial to DN structures because it allows for more 

entanglement of the ductile network strands. This provides better dispersion of energy during 

compressive loading, and allows for resistance to fracture, as the entangled networks fill in void 

spaces within the DN [15]. 
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While these investigations have furthered our understanding of DN gel mechanics, there are still 

many aspects that have not been considered. For example, there has been little work in 

understanding how brittle network variables and their interactions affect the mechanical 

responses of the DN gels. Tavsanli, Can, and Okay ran investigations into the degree of 

methacrylation of an MHA gel and how that affected the modulus of a MHA-PDMAAm DN gel 

[16]. The degree of methacrylation was varied from 4 to 25%, which had an optimal value of 

8%, resulting in a modulus of 549 kPa for a DN with a DMAAm concentration of 0.30 g/mL. 

However, a majority of this study was focused on the development of a triple network, and the 

investigative efforts were mainly concentrated on optimizing the second and third DMAAm 

network [16].  

Tavsanli and Okay also developed MHA-PDMAAm DN gels  using a one-pot synthesis method 

[17]. Again, the degree of methacrylation was investigated as part of the overall study design, 

with the researchers running tensile and compressive tests on DN gels containing MHA of 

different degrees of methacrylation. They noted a significant increase in the behavior of the gels 

as the degree of methacrylation increased, with a maximum Young’s modulus of 30 kPa at 25% 

degree of methacrylation [17]. Recently, Murai et al. investigated water content and crosslinking 

ratio in a cellulose and poly(ethyl acrylate) DN gel [18]. The investigators briefly looked at the 

effects of water content and crosslinking ratio of the cellulose network and the effects on the 

tensile behavior of the DN gel, finding the optimal crosslinking ratio of 0.46 g crosslinker/g 

cellulose and a water ratio of 10 μL/g cellulose led to the optimal strength and ductility. 

Although these investigations looked into the brittle networks, the interactions of the multiple 

variables were not explored. These interactions could significantly affect the mechanical 

properties of a gel and, if overlooked, could lead to less than optimal material compositions for 
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intended applications. In this work, we investigated the effect of changes in composition of the 

brittle MHA network on the mechanical properties of a MHA-PDMAAm DN gel. A surface 

response experimental design was used to quantify the effects of MHA concentration and the 

ratio of crosslinker (in this experiment poly(ethylene glycol diacrylate) or PEGDA) to MHA as 

well as their interactions through surface response plots. Quadratic equations were also 

developed to model the responses, and their accuracy was tested using gel compositions within 

the design space. It was found that the interactions of weight percent and crosslinking ratio 

significantly affected the modulus and the tearing energy of these DN gels. These findings show 

that the brittle network composition is an important aspect of DN design, and should be taken 

into consideration along with the ductile network.  

2.3 Experimental 

2.3.1 Materials 

Sodium hyaluronate (HA) of average molecular weight 950 kDa was obtained from Bloomage 

Freda Biopharm Company. Poly(ethylene glycol) diacrylate (PEGDA) of molecular weight 575 

Da was purchased from Sigma Aldrich. N,N-Dimethylacrylamide (DMAAm), N,N'-

Methylenebis(acrylamide) (MBAAm), glycidyl methacrylate (GMA), and hydrochloric acid 

(HCl) were obtained from Sigma Aldrich. Irgacure 2959 (Irg 2959) was purchased from BASF. 

The HCl solution was diluted down to 1.0 M before use. 

2.3.2 Methacrylation of Hyaluronic Acid 

Methacrylated hyaluronic acid was prepared as described by Varde [19]. Briefly, a 0.33 wt% HA 

solution was created, and GMA was added at 20 molar excess. The pH of the solution was 

lowered down to 1.5 using the 1.0 M HCl solution, and then allowed to react for two days at 50 

°C. The solution was then placed in Spectra/Por® 1 dialysis tubing and allowed to dialyze in a 
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deionized water bath for two days. Once dialysis was complete, the solution was placed in a -80 

°C freezer overnight, and lyophilized for at least 4 days. 

2.3.3 Single Network and Double Network Synthesis 

Single networks of MHA and DMAAm were prepared. A 2 wt% solution of MHA was created, 

and PEGDA was added to the solution at a ratio of 4 mol PEGDA to 1 mol MHA (4:1). 

DMAAm gels were synthesized by making a 30 wt% DMAAm solution and adding MBAAm so 

that there were 0.002 moles MBAAm per mol DMAAm [14]. Irg 2959 was added to a 

concentration of 1.5 * 10-5 mol/mL. All solutions were vortexed until all solids were dissolved. 

The gels were then subjected to 365 nm UV curing for 2 hours. 

For the double network (DN) gels, MHA gels were prepared as described previously. After 

curing, the gels were placed in excess DMAAm solution of the same composition as described 

above. After swelling overnight, the gels were removed from the solution and once again cured 

under UV light for 2 hours. 

2.3.4 Mechanical Testing 

To determine the swelling characteristics of the different gels, MHA, DMAAm, and DN gels 

were prepared using cylindrical molds with a diameter of 15.5 mm. Solutions were injected into 

these molds before curing. Once all samples were made, the gels were lyophilized for 5 days so 

that all gels had a uniform initial water content. Samples were removed from the lyophilizer, and 

then placed in excess deionized water (n=3 per composition). Mass measurements were taken at 

regular time intervals, and the swelling ratio (Q) was calculated using Equation 1, where 𝑚0 is 

the initial mass of the sample and 𝑚𝑖 is the mass of the sample at timepoint “𝑖”. The average 

maximum swelling ratio (Qmax) was calculated for comparison. 
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 𝑄 =  
(𝑚𝑖 − 𝑚0)

𝑚0
 (1) 

The rubber elastic properties of the gels were determined using tensile testing. Tensile testing 

was conducted only on DMAAm and DN gels, as the MHA gel lacked sufficient mechanical 

integrity. Samples were prepared into sheets using glass slides and a 1.15 mm thick spacer. After 

curing, the sheets were submerged in deionized water for at least three days. Tensile samples 

were created by using a dogbone punch with a gauge length and gauge width of 6.25 mm and 

1.50 mm, respectively. The samples were clamped into a TestResources 100 Series Universal 

Test Machine with a 25 N force transducer. The clamps of the machine were modified by 

adhering sandpaper to reduce the slippage of samples. The samples were pulled at a rate of 150% 

strain per minute until the material failed. Five samples from five batches were tested for each 

type of gel. The average Young’s modulus, elongation at break, and the max stress were 

calculated for comparison. 

Tearing tests were used to determine the toughness of the gels. Again, only the DMAAm and DN 

gels were tested, as the MHA gel lacked the necessary mechanical integrity to test. Briefly, 

samples were cut into rectangles of 25 mm length and 10 mm width. A razor blade was used to 

make a defect in the middle of the sample, but not all the way through it. The tear path length 

(TPL) was recorded by measuring the length between the non-defective end of the sample to the 

defect. A trouser tear test was performed on five batches of each network at a rate of 10 mm/min 

in the Test Resources tensile tester. The tearing energy was calculated according to Equation 2 

[20], where 𝑡 is the thickness, 𝐿𝑝𝑎𝑡ℎ is the TPL, and  ∫ 𝐹 𝑑𝑥
𝑥𝑛

𝑥1
 is the area under the force curve 

versus the position. 
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𝑇𝑒𝑎𝑟𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 =  

1

(𝑡 ∗ 𝐿𝑝𝑎𝑡ℎ)
∗  ∫ 𝐹 𝑑𝑥

𝑥𝑛

𝑥1

 (2) 

2.3.5 Central Composite Design 

To determine the effect of brittle network composition changes on the DN mechanical properties, 

a surface response experimental design known as a central composite design (CCD) was 

developed. A CCD design is capable of testing for the effects of multiple variables, their 

interactions, and also any nonlinear effects on the responses [21]. For this design, the MHA 

concentration and the crosslinking ratio, or the PEGDA:MHA molar ratio, was altered. The 

MHA concentration was changed over a range of 0.793 wt% to 2.207 wt%, while the 

PEGDA:MHA ratio was changed from 1.586:1 to 4.414:1. The experimental design space can be 

seen in Figure 2.1. 

2.3.6 Statistical Analysis 

A student’s t-test was used to compare between the DMAAm and the DN gel for tensile and 

tearing tests. Analysis of variance (ANOVA) followed by Tukey post-hoc test was used for the 

swelling study comparison between the PDMAAm, MHA, and DN gels. For the CCD, ANOVA 

was used to determine significant effects via the Minitab statistical analysis software package. 

Surface plots and quadratic equations were also collected using the Minitab software. 

2.4 Results and Discussion 

2.4.1 Synthesizing the Double Network 

Running tensile, tearing, and swelling experiments showed that PEGDA-crosslinked MHA-

DMAAm gels behaved in a manner indicative of a DN structure. From the tensile testing, the 

modulus was found to increase by an order of magnitude between the PDMAAm single network 

(SN) and the DN while there was no significant loss of ductility, as shown in Table 2.1. The max 
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stress was also found to increase significantly when compared to the PDMAAm SN. When 

comparing the swelling data, the PDMAAm gel had a significantly higher maximum swelling 

(Qmax) than the other two gels. No significant difference was found between the MHA network 

and the DN gel. This would indicate that the swelling of the DN was constrained or limited by 

the brittle MHA network.  

The MHA network was found to be too fragile to test with the tensile or tearing protocols. In 

both instances, the MHA network samples lacked the structural integrity to be loaded into the 

testing machine.  

The swelling data also provides some evidence of double network formation.  As stated above, 

the maximum swelling ratio of the DN was similar to that of the MHA network, but had an 

initial rate of swelling similar to the PDMAAm gels. This behavior is better visualized in Figure 

2.2. The swelling study shows that the DN has a behavior that is a combination of the two single 

networks.  During the early stages of the swelling study, the absorption rate of the PDMAAm 

network limits the DN from swelling as fast as the MHA network. However, at longer times, the 

MHA network in the DN limits it from swelling to the same extent as the PDMAAm single 

network. It should be noted that Q for the MHA gel did decrease over time due to the gel 

swelling to rupture at later time points. It should also be noted that while this is the case, no 

statistical difference was found between the last time point and the timepoint where Qmax occurs 

for these MHA gels. 

This difference in water uptake could be explained by both the differences in crosslinking 

densities of the two single networks and a difference in the inherent hydrophilicity of the two 

materials. While the data collected in this study would suggest PDMAAm is the more 

hydrophilic of the two polymers, some literature would suggest that MHA is more hydrophilic. 
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Weeks et al. found that adding hyaluronic acid to DMAAm/methacryloxypropyltris 

(trimethylsiloxy) silane (TRIS) hydrogels ended up reducing the contact angle from around 80° 

to 60° [22]. Another study by Weeks et al. investigated the degree of methacrylation on the 

contact angle of MHA networks, and found that contact angle also decreased when the degree of 

methacrylation increased [23]. In this study, the group also found that adding the methacrylated 

HA to DMAAm/TRIS hydrogels again decreased the contact angle, but the degree of 

methacrylation had no additional effect. This suggests that the difference in swelling ability is 

more likely due to the difference in the crosslinking densities than the inherent hydrophilicity of 

the two materials. 

The main difference between the MHA-PDMAAm gels developed in this work and those 

developed previously is the use of a separate crosslinker in the brittle MHA network. In the 

Weng et al. paper, as well as the two Okay papers, a crosslinker was not added to the MHA 

network [14], [16], [17]. The addition of PEGDA appears to have some effect on the strength of 

these gels, but not on the ductility. In the Tavsanli and Okay paper from 2017, a series of 1 wt% 

MHA, 30 wt% DMAAm gels were subjected to tensile tests. Tavsanli and Okay showed that 

with varying degrees of MHA methacrylation, the modulus of these gels stayed roughly a 

constant 35 kPa [17]. In comparison to the 1 wt% gels synthesized in the present study, it was 

found that the modulus for the highly crosslinked 1 wt% gel (1 wt% 4:1) had a higher modulus 

than that reported by Tavsanli and Okay (92 kPa), and the lower crosslinked gel (1 wt% 2:1) had 

a smaller modulus (19 kPa). When looking at the elongation at break, the 1 wt% gels developed 

in this paper are comparable to the gels developed by Tavsanli and Okay (281 % for 4:1, 270% 

for 2:1, and between 200 and 400%). The maximum stress increased for the 4:1 gel but 

decreased for the 2:1 gel (146 kPa for 4:1 and 30 kPa for 2:1, as compared to 60 to 120 kPa). 
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This implies that the low concentration of PEGDA used in this study provided no structural 

reinforcement. 

2.4.2 Brittle Network Concentration and Crosslinking Affecting Mechanical Properties 

The differences seen within this design space are interesting considering the relatively small 

range of values used for both concentration and crosslinking ratios. The importance of the brittle 

network composition is clearly evident when designing a DN gel. Other researchers interested in 

developing a DN for their intended application would do well to investigate the brittle network 

for an optimal composition. 

Using the CCD, the response of several mechanical properties were observed while varying the 

concentration and the crosslinking ratio of the brittle network. As part of the experimental 

design, the MHA concentration and crosslinking ratio was systematically changed from 0.793 

wt% to 2.207 wt% and 1.586:1 to 4.414:1, respectively. Over this compositional range, the 

Young’s Modulus was found to vary by an order of magnitude (19.92 – 282.4 kPa). There is a 

similar range seen in the max stress (30.32 – 314.6 kPa) and in the tearing energy (6.164 – 102.1 

J/m2). For elongation at break, the range of difference was less extreme (222 – 305 %). The 

swelling results show almost a quadruple difference over the range of compositions (4.58 – 16.9 

g/g). A full table of data is provided in Appendix A.1.  

In regards to mechanical properties, decreasing the MHA wt% and [PEGDA]/[MHA] led to a 

decrease in modulus, max stress, and tearing energy while also an increase in the elongation at 

break and Qmax. When looking at the surface plots generated from the CCD, there is similarity in 

the overall shape of response curves between the modulus and the max stress (Figure 2.3.a and 

Figure 2.3.c, respectively). The main difference is the slight curvature that can be seen in the 

modulus surface plot. This can be explained from the ANOVA results, which found that 
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interactions between MHA wt% and [PEGDA]/[MHA] significantly affected the modulus 

response. ANOVA results can be found in Appendix A.2.  

To explain the modulus (E) results, we define the modulus as described from rubber elasticity 

theory, shown below in Equation 3: 

 𝐸 = 3𝑛𝑅𝑇 (3) 

Where R and T are the gas constant and temperature, respectively, and n is the number of active 

chain units per unit volume. This term is related to the density of the polymer, as well as the 

molecular weight between crosslinks (Mc) [24]. Based off the definition, Mc is affected by the 

concentration of the polymer and the crosslinking ratio. A compounding effect occurs with 

increases in both variables, effectively reducing Mc and causing an increase in n and 

subsequently E. 

From the elongation at break plot (Figure 2.3.b), the parabolic relationship suggests a local 

maximum at mid-level crosslinking ratios. It is interesting to note this shape, as the ANOVA 

results showed that the MHA wt% was the only significant variable that affected the response. 

The parabolic relationship can be explained by the additional crosslinks giving the sample more 

strength and allows the sample to be stretched farther before stress is imparted to the ductile 

network. If too many crosslinks are added, then the sample becomes too brittle, and the sample 

fails at a lower strain as stress is imparted to the ductile network. This indicates that the most 

ductile DN composition can be achieved without sacrificing strength altogether and highlights 

the importance of synergistic effects between the brittle and ductile network. 

 As discussed previously, the max stress has a surface plot with very little curvature (Figure 

2.3.c). This lack of curvature is also reflected in the ANOVA data, which shows that the MHA 
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wt% and [PEGDA]/[MHA] ratio affected the response, but not the interactions or nonlinear 

factors. The shape of the response curve is similar to that of the modulus. Interactions affecting 

the modulus but not the max stress can be explained from a thermodynamic perspective. The 

max stress, from a thermodynamic stance, can be defined as the force necessary to break the 

bonds present in the system normalized to the area. This force necessary to break the bonds can 

be related back to the enthalpy needed to break the bonds (ΔHbonds). Specifically, for this 

example, ΔHbonds would be the summation of the weakest bond energies (i.e. the bonds that break 

during tensile testing) present in the system. Since this is a summation, both crosslinking and 

concentration would have an effect on the max stress, but the two would not have a 

compounding effect.  

The tearing energy appears to have minima at high MHA wt%, low crosslinking, and low MHA 

wt% and high crosslinking (Figure 2.3.d). To explain this behavior, we use the model for fracture 

energy (G) as shown in Equation 4 [13]: 

 𝐺 = 𝐺0 + 𝜎𝑐𝜀𝑐ℎ (4) 

Here, G0 is the intrinsic fracture energy, σc is the yielding stress, εc is the strain where the 

necking finishes, and h is the length of the softened zone around the crack. Of these variables, 

the one that is theoretically higher in the low-concentration, low-crosslinking gel is h, since the 

material has less brittle network to keep the size of the softened zone low. Relating h to the 

intrinsic fracture energy of the material (G0) as well as the characteristic elastic energy density 

(W), as seen in Equation 5 [25], we can further explain this behavior. 

 ℎ ≅  
𝐺0

𝑊
 (5) 
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It is important to note the inverse relation between h and W. For low-concentration, low-

crosslinking brittle network gels, the density of the elastic energy must be lower when compared 

to a more concentrated, crosslinked network, as there is not enough brittle network available to 

absorb the mechanical energy being applied to the system. At our low-concentration, low-

crosslinking gel composition, the W must be small enough that the h value is actually raised past 

that of either the low-concentration, high-crosslinking gel or the high-concentration, low-

crosslinking gel. And because the size of the softened zone is larger, this also means that the 

critical length that the sample must be pulled is also larger [13]. Due to this critical length 

increase, the sample must be pulled to a higher length in order to fully propagate the crack, 

which in turn increases the area under the curve for the force versus position graphs. This type of 

behavior can be seen in Appendix A.3.  This type of relationship is discussed in more detail in 

the Yu et al. paper which shows a direct correlation between h and G [25]. 

From the ANOVA results, the MHA wt%, [PEGDA]/[MHA], and the interactions between these 

two variables significantly affected the tearing energy. These results can be explained by 

discussing the size of the damage zone (h in Equations 4 and 5). As described in other works, 

when a double network is stretched or torn, a region around the crack tip becomes soft due to the 

defect [13], [25], [26]. As discussed, h can be related to G0, which can be defined as the energy 

required to break polymer chains along the crack plane during a tearing test [27]. This energy is 

in turn related to the energy required to rupture polymer chains in the gel and the number of 

chains per unit area [28]. Both concentration and crosslinking affect the number of chains per 

unit area and the energy requirement to rupture, causing a compounding increase on G0, and 

therefore the tearing energy. 
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As expected, increases in MHA wt% causes a decrease in the Qmax (Figure 2.3.e). An interesting 

note, however, is the slight convex structure that occurs with increasing [PEGDA]/[MHA] at low 

MHA wt%. A possible explanation for this behavior would be based off of Flory and Rehner 

theory; specifically the entropy change caused by the reduction in the numbers of possible chain 

conformation on swelling (entropy change due to elongation) versus the entropy of mixing the 

polymer and the solvent [24]. PEGDA can be used as a polymer for hydrogels (25–27), and has 

been used in the development of double networks (28–30). Of important note for this discussion, 

Mazzoccoli used PEGDA blends in order to crosslink and make mechanically robust tissue 

engineering scaffolds [35]. It is therefore reasonable to suggest that long chains of PEGDA may 

be produced during the synthesis process, linking MHA chains farther away from one another 

than the length of a single PEGDA unit of 575 Da molecular weight. This would explain the 

convex behavior seen in the response plot. Initially, adding more PEGDA to the system causes 

the entropy change due to elongation to increase, because the crosslinking bonds are reducing the 

amount of conformational changes overall, inhibiting swelling. However, as even more PEGDA 

is added, the PEGDA chains become longer. Because the long chains allow for more 

conformation changes overall, the entropy change due to elongation is reduced, allowing the gel 

to swell further. 

ANOVA results for the Qmax data showed that not only were MHA wt% and [PEGDA]/[MHA] 

significantly affecting the results, but so too was the nonlinear effects of MHA wt% (Appendix 

A.2). The concentration and crosslinking ratio affecting the response is explained simply using 

the Flory-Rehner theory, and again thinking about the entropy change due to elongation. This 

could also explain the compounding concentration factor; as the concentration of the brittle 

network increases, these long polymer strands (the HA used had an average molecular weight of 
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950 kDa) take up more space in the fixed volume. Due to this, the polymer strands do not have 

the same amount of free volume available to make conformation changes, so the entropy change 

due to elongation increases. 

The experiments that were run in this investigation highlight the importance of the first network 

composition in DN synthesis. For example, while only a relatively small range was used for the 

compositional space, there was considerable variation in the mechanical responses. Another 

important finding was the local maxima regarding the elongation at break that was at mid-level 

crosslinking ratios. From a materials design perspective, this shows that ductility does not have 

to be sacrificed entirely for strength. Lastly, the interactions of both the crosslinking and weight 

percent of the brittle network affect the modulus and tearing energy of the DN. Again, this is 

important from a materials design perspective, because the interplay should be considered in the 

creation of other DN gels. 

2.4.3 Model Equations 

Model equations were developed from the CCD to predict the mechanical behavior of the DN 

gel based on the brittle network composition. The model equations take into account linear and 

nonlinear effects of the two variables, as well as the interaction effects. The general equation, as 

well as the value of the coefficients for each response, can be seen in Table 2.2. It should be 

noted that these model equations are based off the surface response plots that were discussed in 

the previous section.  

Two compositions were synthesized to test for the accuracy of these equations. These 

compositions (1.75 wt% 2.5:1, and 1.25 wt% 3:1) existed within the design space while also not 

being used for the development of the CCD. The 2 wt% 4:1 and 1 wt% 2:1 gels used in the CCD 

were also tested. The same testing was conducted for the new compositions, and these results 
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were compared to those generated using the model equations. For all tests, there was agreement 

between the theoretical and experimental results for the 2 wt% 4:1 and 1 wt% 2:1 gels as seen in 

Figure 2.4. For the two new compositions, there was good fit between the theoretical and 

experimental values for modulus, tearing energy, and Qmax. For elongation at break, there was a 

significant difference between the values predicted and collected for the 1.75 wt% 2.5:1 gel. The 

max stress equation was also found to significantly overestimate the response for the 1.75 wt% 

2.5:1 and 1.25 wt% 3:1 compositions. 

The overestimation of the max stress equation could be due to the variability of max stresses that 

were collected. By reviewing the max stress data (Appendix A.1), there are several points within 

the CCD design that have large variation in max stress. Nonetheless, the modulus, tearing 

energy, and maximum swelling equations all show strong predictive power of a composition’s 

behavior. This highlights the benefits of using a CCD design, which is that model equations can 

be used to find optimized compositions over the compositional range used during 

experimentation. 

2.5 Conclusions 

A double network composed of PEGDA-crosslinked MHA and PDMAAm was synthesized for 

the purpose of determining the effects of brittle network composition on the mechanical 

properties of the DN gel. A central composite experimental design was used to systematically 

alter weight percent and crosslinking ratio of the brittle network and mechanical tests were 

conducted to determine the strength, ductility, toughness, and swelling properties of the gels. 

Using ANOVA, it was found that the modulus and tearing energy were both affected by the 

interactions of the concentration and crosslinking ratio of the brittle network. An important 

design aspect to consider is that elongation at break has a local maxima at middling crosslinking 
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ratios of 3:1, meaning that materials can be designed where ductility does not need to be 

sacrificed for strength or toughness. Model equations were also developed, and the modulus, 

tearing energy, and maximum swelling equations were found to accurately predict behavior. 

Future work would involve running another design of experiments looking at the interplay 

between brittle network and ductile network composition variables.  
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2.6 Schemes, Figures, and Tables 

 

Figure 2.1 The CCD data points used during experiments. The 22 factorial design compositions 

are denoted by the orange points and the blue denotes the CCD compositions, while the red is the 

centerpoint.   
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Figure 2.2 Swelling study of individual polymer networks and the double network. Here, “Q” 

stands for the swelling ratio. Error bars are standard deviation. It is interesting to note that the 

DN has a slow swelling rate comparable to that of a PDMAAm gel for the first few time points 

but reaches a maximum comparable to that of the MHA gel. 
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Figure 2.3 Surface plots that show the a) modulus, b) elongation at break, c) max stress, d) 

tearing energy, and e) Qmax response to changes in brittle network composition of an MHA-

PDMAAm DN gel. Of the five properties, modulus and tearing energy were dependent on the 

interactions between the weight percent and crosslinking ratio of the brittle MHA network. 
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Figure 2.4 Comparison of the response predicted from the model equations (“Theoretical”) 

versus those obtained by direct testing (“Experimental”) for modulus (a), elongation at break (b), 

max stress (c), tearing energy (d), and Qmax (e). Error bars are 95% confidence intervals. * - 

significant difference between the theoretical and experimental values. 
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Table 2.1 A comparison of the mechanical properties between the single networks (SN’s) and the 

DN (±standard deviation). MHA networks were too fragile to test using either the tensile or 

tearing procedure.  * - Statistically different using Student’s t-test with p < 0.01. ** - Statistically 

different from the other two points using Tukey post-hoc with p < 0.01. 

Property MHA PDMAAm DN 

Young’s Modulus 

(kPa) 
N/A 18.5 (±2.6) 282 (±92)* 

Elongation at Break 

(%) 
N/A 281 (±75) 222 (±94) 

Max Stress (kPa) N/A 24.4 (±4.4) 315 (±59)* 

Tearing Energy 

(J/m2) 
N/A -0.87 (±5.7) 102 (±41)* 

Qmax 4.12 (±1.09) 12.34 (±1.19)** 4.74 (±1.34) 
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Table 2.2 The general CCD equation used to model response behavior and the specific 

coefficient values for each response. These equations are based off the surface response plots as 

shown in Figure 2.3. 

Response Coefficients for the Equation:  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑎 + 𝑏 ∗ 𝑀𝐻𝐴 𝑤𝑡% + 𝑐 ∗
[𝑃𝐸𝐺𝐷𝐴]

[𝑀𝐻𝐴]⁄ + 

𝑑 ∗ (𝑀𝐻𝐴 𝑤𝑡%)2 + 𝑒 ∗ (
[𝑃𝐸𝐺𝐷𝐴]

[𝑀𝐻𝐴]⁄ )
2

 

+𝑓 ∗ 𝑀𝐻𝐴 𝑤𝑡% ∗ 
[𝑃𝐸𝐺𝐷𝐴]

[𝑀𝐻𝐴]⁄  

a b c d e f 

Modulus (kPa) 88 -112 -63.8 35.6 8.9 48.5 

Elongation at Break (%) 188 7 70.9 -12.4 -9.3 -6.8 

Max Stress (kPa) -85 -15 8.4 28.4 3.5 29.8 

Tearing Energy (J/m2) 172.5 -119.5 -65.1 19.6 4.65 32.01 

Qmax (g/g) 34.77 -23.17 -2.08 6.84 0.369 -1.087 
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Chapter 3 Developing a Double Network for High-Resolution 3D Printing Using Optical 

Projection Lithography1 

3.1 Synopsis 

Double-network (DN) hydrogels, with their unique combination of mechanical strength and 

toughness, have emerged as promising materials for soft robotics and tissue engineering. In the 

past decade, significant effort has been devoted to synthesizing DN hydrogels with high 

stretchability and toughness; however, shaping the DN hydrogels into complex and often 

necessary user-defined two-dimensional (2D) and three-dimensional (3D) geometries remains a 

fabrication challenge. In this project, a collaboration project was formed between myself and Dr. 

Puskal Kunwar to create a new fabrication method based on optical projection lithography to 

print DN hydrogels into customizable 2D and 3D structures within minutes. The focus of my 

work for this project was on developing a DN synthesis method that would work within this 

optical projection lithography setup, and then determine the mechanical properties of the printed 

gels. The DN was synthesize by first photo-crosslinking a single network structure via spatially 

modulated light patterns followed by immersing the printed structure in a calcium bath to induce 

ionic cross-linking. It was found that the strain and elastic modulus of printed structures can be 

tuned based on the hydrogel composition, cross-linker and photoinitiator concentrations, and 

laser light intensity.  

3.2 Introduction 

Hydrogel materials, characterized by their high degree of water content, have been extensively 

used in areas such as drug delivery and pharmaceuticals, diagnostics and biosensors, soft 

 
1 This chapter is adapted from Kunwar et al.’s publication in ACS Applied Materials & Interfaces [47]. 
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robotics, flexible electronics, tissue engineering, and organ-on-a-chip models [1]–[3]. However, 

most hydrogels are mechanically weak and possess poor toughness and low elastic moduli that 

have limited their usage in applications that require superior mechanical properties, such as 

tissue engineering and soft robotics [4]–[6]. To expand the utility of hydrogels for applications 

that requires a combination of stretchability and toughness, double network (DN) hydrogels, or 

DN gel, were developed [7]–[10]. DN gel typically consists of two networks: the first network 

possesses covalently cross-linked polymer chains that allow for the dissipation of large amount 

of energy during deformation, whereas the second network is soft and often ionically cross-

linked, providing superior toughness and stretchability [7], [10]–[13]. 

Over the years, a variety of DN gel with unique mechanical properties have been synthesized 

[14]–[20]. For instance, DN gel formed by using ionically cross-linked alginate and covalently 

cross-linked polyacrylamide (PAAm) have been shown to exhibit remarkable fracture toughness 

of 9000 J/m2 [10]. In another study, alginate was replaced by polyvinyl alcohol (PVA) to enable 

the formation of crystallites upon heating within the intertwined network of PVA/PAAm DN gel 

[21], [22]. 

Furthermore, Cai et al. have reported the fabrication of porous DN gel with high toughness and 

stretchability using the freezedrying method [23]. Thermoreversible polysaccharide agar/PAAm 

DN gel with excellent recoverability have also been demonstrated [24]. Chen, et al. have 

developed biocompatible polyethylene glycol (PEG)/agarose DN gel with excellent mechanical 

strength [13]. In another study, cell-encapsulated DN network hydrogel fiber that showed tunable 

mechanical strength, and stretching behavior was synthesized using alginate and poly(N-iso 

propylacrylamide)/PEG [25]. There are few reports of one-pot synthesis of DN gel such as 

synthesis of highly mechanical and recoverable agar/PAAm (agar/PAM) DN hydrogels [26]–
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[28]. Most current studies choose conventional molding or casting methods to shape DN gel into 

simple geometries. For instance, clover, snowflakes, and the letters “ICCAA” have been molded 

using PEG/agarose hydrogel [8]. In another study, DN gel structures in the geometry of a 

meniscus have been casted using an acrylamide/PAMPS network [29]. Although DN gel with 

simple geometries such as sheets, slabs, blocks, discs, and dumbbells have been made, DN gel 

with user-defined and often complex two-dimensional (2D) or three-dimensional (3D) structures 

will be necessary for a variety of applications in tissue engineering and soft robotics. 

To address the need of creating customized 2D and 3D geometries for a range of application of 

DN gel, 3D printing methods based on extrusion-based fused deposition modeling have been 

widely used. Complex shapes, such as human ears and noses, have been fabricated using 

stretchable alginate/PEG DN gel [8], [9], [29]–[33]. 3D printers have also been used to extrude 

DN gel made from a κ-carrageenan network and PAAm to make structures that can self-heal 

[31]. Extrusion printing assisted by a heated cartridge was used to print DN structures of PAAm 

mixed with agar and alginate [34]. However, extrusion-based methods for printing DN gel have 

low resolution (300−500 μm) and are limited in throughput due to the serial nature of fabrication 

[8], [9]. To print DN gel at high resolution and at high speeds, light-based 3D printing methods 

such as stereolithography, digital light processing lithography, and direct laser writing can be 

transformative as they allow fabrication of structures with high resolution and improved design 

flexibility, in a highly automated, assembly-free manner [35]–[45]. However, printing DN gel 

using light-based methods currently, in general, requires an extremely long cross-linking time 

(several hours), making these methods impractical [10]. 

In this work, we demonstrate quick and high-resolution printing of user-defined 2D and 3D 

structures made of DN gel using optical projection lithography. The polymer solution, composed 
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of sodium alginate, dimethyl acrylamide (DMAAm), methylenebis-acrylamide (MBAAm), and 

lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), was polymerized by projecting digital 

patterns of ultraviolet light, followed by immersion of printed structures into calcium chloride 

solution to undergo ionic polymerization. The quick lithography process (within minutes) and 

high-resolution printing of DN gel enables customized 3D structures that exhibit high toughness 

and stretchability. To our knowledge, this is the first report demonstrating fabrication of DN gel 

into complex 2D and 3D geometries within minutes, and we anticipate that this work will open 

new avenues in the areas of soft robotics and tissue engineering. 

3.3 Experimental 

3.3.1 Materials 

2,4,6-trimethylbenzoyl chloride was purchased from Fisher Scientific®. All other materials were 

purchased from Sigma-Aldrich®. 

3.3.2 LAP Synthesis 

LAP was synthesized using an established method as described below [45]. Briefly, 2,4,6-

trimethylbenzoyl chloride (4.5 g, 25 mmol) was added dropwise to continuously stirred dimethyl 

phenylphosphonite (4.2 g, 25 mmol) at room temperature and under argon gas. This solution was 

stirred for 24 h before adding an excess of lithium bromide (2.4 g, 28 mmol) in 50 mL of 2-

butanone to the reaction mixture at 50 °C, to obtain a solid precipitate after 10 min. The mixture 

was then cooled to room temperature, allowed to rest overnight and then filtered. The filtrate was 

washed with 2-butanone (3 × 25 mL) to remove unreacted lithium bromide and dried under 

vacuum to give LAP (6.2 g, 22 mmol, 88% yield) as a white solid. All chemicals were used as 

received and were of analytical grade. 
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3.3.3 Fabrication of the DN Structure 

Hydrogel prepolymer solution was synthesized by mixing the DMAAm, alginate, MBAAm, and 

LAP in aqueous solution (Scheme 3.1). The hydrogel prepolymer solution consisted of DMAAm 

(22 wt %), alginate (2.4 wt%), MBAAm (0.07 wt % or 0.2 mol MBAAm/mol DMAAm), and 

LAP (0.33 wt %). To create the gel, the solution was placed in a custom-built, digital mask-based 

optical lithography setup (Scheme 3.2). Briefly, a 400 nm laser beam modulated by a digital 

micromirror device (DMD) selectively photocrosslinks the prepolymer solution in a continuous 

fashion. Postfabrication, the gel structures were dipped into a calcium chloride solution for 72 h 

to enable the formation of ionic bonds between guluronic acid units in alginate [10]. To make 

intricate 3D structures, a 3D model of any user-defined structures was drawn using AutoCAD 

and sliced horizontally to create a stack of binary portable network graphics (png) image files 

using a custom-written MATLAB code. The png files were uploaded to the DMD, which 

allowed for the structure to be fabricated via the laser.  

3.3.4 Mechanical Testing 

All mechanical tests were performed in air at room temperature. After allowing the samples to sit 

in the ionic bath, rectangular samples were cut into dog bones using a cutter dye with a gauge 

length of 6.25 mm and gauge width of 1.50 mm. Samples were placed into a tensile tester with a 

25 N load cell and stretched at a rate of 9.375 mm/min until failure. For tearing tests, samples 

were cut into rectangles of 25 mm length and 10 mm width. A razor blade was used to then cut 

the samples nominally at the center, along the length of the rectangular sample. The tear path 

length (TPL) was measured as the distance from the end-tear, to the uncut end of the sample. A 

trouser tear test was performed at a rate of 10 mm/min. The tearing energy was calculated using 



42 
 

Equation 1, where 𝑡 is the thickness, 𝐿𝑝𝑎𝑡ℎ is the TPL, and  ∫ 𝐹 𝑑𝑥
𝑥𝑛

𝑥1
 is the area under the force 

curve versus the position [46]. 

 
𝑇𝑒𝑎𝑟𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 =  

1

(𝑡 ∗ 𝐿𝑝𝑎𝑡ℎ)
∗  ∫ 𝐹 𝑑𝑥

𝑥𝑛

𝑥1

 (1) 

 

3.3.5 Microscopic Imaging 

The fabricated structures were imaged and characterized using a digital optical microscope 

(HIROX, KH-8700). An MX(G)-2016(z) objective lens was used to image the fabricated 

structures, which provided a resolution of 1.16 μm. 

3.3.6 Statistical Analysis 

Statistical analysis was performed using analysis of variance (ANOVA) with three independent 

samples for each test. Post hoc t-tests with Bonferroni correction were also performed between 

two groups to determine significant differences. 

3.4 Results and Discussion 

3.4.1 Fabrication and Characterization of the DN Structures 

First, we printed a planar slab structure using a single exposure of light pattern and characterized 

its mechanical properties (Figure 3.1). A rectangular shaped patterned fs laser beam of 

wavelength 400 nm with a laser intensity of 5 mW/cm2 was exposed for 5 s to print planar 

rectangular shaped structures. During this process of fabrication, the UV exposure induced cross-

linking of acrylamide by covalent bonding; at this stage, the alginate within the acrylamide 

network does not form a network. When UV-crosslinked structures are subsequently immersed 

into the 100 mM calcium chloride solution, ionic cross-linking of alginate occurs. Alginate 



43 
 

chains consist of mannuronic acid (M unit) and guluronic acid (G unit), and the introduction of 

the divalent cations results in cross-linking of G units in different alginate chains forming an 

ionic network [10]. 

For optimal soak times in the calcium bath, we studied the swelling behavior of the structures 

after submerging them to the calcium solution (Appendix B.1) These structures swelled to 208% 

of its original dimension during the first 24 h of immersion and further swelled to 248% at the 

end of 96 h. As a result, all mechanical property characterizations, such as stress−strain 

relationships, tearing resistance, and tensile properties such as elastic modulus, strain, and 

maximum stress, were performed 72 h post-immersion to ensure repeatability and minimal 

influence of swelling on the tests. 

The stress−strain plots for the DN gel structure and structures printed using its individual parent 

gel (acrylamide-only and alginate-only) show that the DN gel structure stretched more than four 

times its original length without rupture (Figure 3.1.a and inset). The acrylamide gel structure 

was softer and more stretchable compared to the DN gel structure; however, the alginate 

structures were more tough and less stretchable than that of the DN gel structure. 

Tensile parameters (elastic modulus, ultimate strain, ultimate stress) of the structures printed 

using DN gel, alginate-only gel and acrylamide-only gel are plotted (Figure 3.1 parts b through 

d). The modulus of elasticity was 124 ± 17 kPa for alginate structure, 49 ± 4.3 kPa for the DN 

gel structure, and 5.3 ± 0.15 kPa for DMAAm structure. It required stress of 65 ± 4 kPa to stretch 

the DN gel structure by 4.10 ± 0.5 times of its original length. The stress and associated strain for 

the acrylamide gel structure was 6.6 ± 0.5 kPa and 6.25 ± 0.44. For the case of the alginate gel, 

the ultimate strain was 1.54 ± 0.23, with a corresponding ultimate stress of 118 ± 22 kPa. The 

elastic modulus of the DN gel structure is close to the average of the elastic moduli of the 
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DMAAm and alginate gel (Figure 3.1). A similar trend is also observed in the ultimate stress and 

ultimate strain of the fabricated structures. Essentially, these results show that the DN gel 

structure acquires its stretching properties from the acrylamide gel and stiffness properties from 

the alginate gel. 

Furthermore, tearing tests were performed to characterize the tear resistance of the printed 

structure (Figure 3.1.e). In the case of the DN gel structure, the position moved by the upper 

clamp was 26 mm, whereas for case of the alginate sample the clamp moved 24 mm, and for 

acrylamide the clamp only moved 5 mm. The tearing energy was 92 J/m2 for the DN hydrogel 

structure, 0.4 J/m2 for the acrylamide-only structure, and 98 J/m2 for the alginate-only structure. 

This study suggests that the tearing resistance for the DN gel structure is similar to that of the 

alginate sample and higher compared to that of the acrylamide structure. 

3.4.2 Effect of Light Dose on the Tensile Properties of DN Gel Structures 

To investigate the effect of light dose on the tensile properties of DN gel structures, we varied 

the exposure time from 3 to 10 s while keeping a constant light intensity of 5 mW/cm2 (Figure 

3.1.f). For the sample exposed less than 3 s, no cross-linking was detected; therefore, we used 

exposure times of 3, 5, 8, and 10 s. Samples exposed to 3 s were partially cross-linked, and the 

structures were partially formed. However, 5 s exposure was able to completely cross-link the 

structure. The strain was highest for the structure which is exposed for 5 s. The structures 

fabricated with exposure times of 8 and 10 s were considered overexposed, as they exhibit less 

stretchability and break with lower ultimate stress as compared to the sample exposed to 5 s. 
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3.4.3 Effect of Composition of Alginate/acrylamide on the Tensile Properties of DN Gel 

Structures 

In this set of experiments, the laser intensity and exposure time were kept constant at 5 mW/cm2 

and 5 s, respectively. Samples were prepared using a constant amount of DMAAm (22 wt %), 

and the amount of alginate was varied (1.2, 2.4 and 4.8 wt %) to change the acrylamide/alginate 

ratio of the printed samples. The amount of the cross-linker and photoinitiator was fixed to 0.07 

and 0.33 wt %, respectively. A stress−strain curve with representative samples was plotted as 

shown in Figure 3.2.a.  

An increase in the concentration of the alginate was found to increase the modulus of elasticity 

and maximum stress, while the stretchability of the structure decreases (Figure 3.3 parts b 

through d). The elastic modulus of the structure decreases from 148.5 ± 12.5 to 12 ± 1.88 kPa, 

when the concentration of alginate was decreased from 4.8 to 1.2 wt %. The strain was 3.7 ± 

0.38 for the structure with alginate concentration of 4.8 wt %. There was a small increase in 

ultimate strain when the alginate concentration was lowered to 2.4 wt % and the highest ultimate 

strain of 4.76 ± 0.30 was obtained with the alginate concentration of 1.2 wt %. Ultimate stress 

follows the decreasing trend seen with the elastic modulus. The stress decreases from the 159.3 ± 

14.5 to 21.33 ± 1.5 kPa when the alginate concentration is decreased from 4.8 to 1.2 wt %. 

3.4.4 Effect of Cross-linker Amount on the Tensile Properties of DN Gel Structures 

Tensile properties of the DN gel structures were studied by varying the MBAAm cross-linker 

concentration (0.035, 0.07, and 0.14 wt %) while keeping the amounts of the acrylamide, 

alginate, and photoinitiator constant at 22, 2.4, and 0.33 wt % respectively. Structures were 

printed using a laser power of 5 mW/cm2 and an exposure time of 5 s. The fabricated structures 

were loaded into the tensile tester, and the stress strain curve was recorded as shown in Figure 
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3.3.a. Results show that the elastic modulus of the structure is highest (51.31 ± 1.75 kPa) for the 

structure printed with MBAAm concentration of 0.07 wt %, and the modulus decreases when the 

concentration of MBAAm increases to 0.14 or decreases to 0.035 wt % (Figure 3.3.b). Similarly, 

the ultimate strain is also highest (3.85 ± 0.55) for the structure printed with the MBAAm 

concentration of 0.07 wt % (Figure 3.3.c). The strain is decreased to 1.9 ± 0.06 and 2.65 ± 0.26, 

when the MBAAm concentration is 0.14 and 0.035 wt %, respectively. A similar trend is also 

shown in the ultimate stress as seen in Figure 3.3.d). The stress is highest (65 ± 4 kPa) for the 

DN gel structures fabricated with MBAAm concentration 0.07 wt % compared to that of the 

structures printed with the MBAAm concentration of 0.14 and 0.035 wt %. 

3.4.5 Effect of Composition of Photoinitiator on the Tensile Properties of DN Gel Structures 

DN gel slab samples were prepared with three concentrations of LAP photoinitiator (0.165, 0.33, 

and 0.66 wt %). The amount of the acrylamide, alginate and cross-linker was fixed to 22, 2.4, 

and 0.07 wt %, respectively. Structures were printed using a DMD based fabrication with the 

laser power of 200 mW (laser intensity of 5 mW/cm2) and exposure time of 5 s. The 

concentration of the LAP also strongly affects the stretchability and stiffness of the DN gel 

structures Figure 3.4. The highest elastic modulus of 60.91 ± 2.91 kPa is obtained for the 

structure fabricated with the LAP concentration of 0.66 wt %. This figure also shows that the 

modulus remains at the similar level for the LAP concentrations of 0.33 and 0.16 wt %. 

However, the ultimate strain of 3.89 ± 0.51 is obtained for the structure printed with the LAP 

concentration of 0.33 wt % and is highest among the structures printed with the three different 

concentrations of the LAP photoinitiator as shown in Figure 3.4.c. Similarly, the ultimate stress 

is 65 ± 4 kPa, which is obtained for the structures fabricated using a DN gel with a LAP of 0.33 

wt % (Figure 3.4.d). 
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Results showed that the optimized prepolymer composition of DMAAm (22 wt %), alginate (2.4 

wt %), MBAAm (0.07 wt %), LAP (0.33 wt %), and laser parameters (laser intensity of 5 

mW/cm2, exposure time of 5 s) can result in mechanically robust yet stretchable structures. 

3.4.6 Printing and Characterization of 3D DN Gel 

Optimized prepolymer composition and printing conditions were used to demonstrate the ability 

to print complex 3D structures using DN gel. In the case of the 3D fabrication, an UV absorber 

quinoline yellow (QY) dye was used to limit the light scattering and penetration of depth of the 

light. We observed that the QY dye washed away when the sample was dipped into the calcium 

solution. First, the stress−strain curve was obtained by fabricating the DN gel rectangular slab 

structures with varying the laser intensity of 0.65 mW/cm2 (laser power of 40 mW), 1 mW/cm2 

(laser power of 60 mW), 1.35 mW/ cm2 (laser power of 80 mW), and 1.65 mW/cm2 (laser power 

of 100 mW) at a constant fabricating speed of 0.02 mm/s. Sample tensile test results are shown 

in Figure 3.5.a. The elastic modulus does not vary significantly for the fabricated structures with 

different laser intensities (Figure 3.5.b). It is also evident from the figure that the ultimate stress 

is 35 kPa for the structure fabricated with a laser intensity of 0.6 mW/cm2 and the stress 

increases to highest (66 kPa) for the laser intensity 1 mW/cm2; however, further increase in laser 

intensity leads to decrease in the stress. The structure printed with a laser intensity of 1 mW/cm2 

stretches almost 480% of its original length, and the ultimate strain is decreased for the structure 

printed with laser intensity lower and higher than 1 mW/cm2. 

Further, the effect of the fabrication (scanning) speed on the tensile properties of the DN gel 

structure was also studied. To perform a test, DN gel structures were printed by a constant laser 

intensity of 1.65 mW/cm2 and varying scanning speed of 0.045−0.09 mm/s. The exposure laser 

dose for fabrication speed of more than 0.075 mm/s was not able to fully cross-link the DMAAm 
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hydrogel. These printed structures were stretched to obtain a stress−strain curve as shown in 

Figure 3.5.c. Increasing the fabrication speed from 0.045 to 0.06 mm/s, the ultimate strain 

increases from 150 to 290% and decreases when the printing speed is increased to 0.075 mm/s 

and above (Appendix B.2). The trend is also consistent with the result obtained in stress−strain 

curve obtained from structure with different laser powers and stress−strain curves obtained from 

the 2D structure printed with different exposure time. 

3.4.7 Fabrication of User-Defined 2D/3D Structure of DN Hydrogel 

Next, we demonstrate the printing of user-defined 2D DN gel structures using an “auxetic” shape 

design. A cartoon of auxetic shape with re-entrant cell structure before and after stretching is 

shown in Figure 3.6.a1. The auxetic structure was printed as shown in Figure 3.6.a2 using the 

DN gel with the laser intensity of 5 mW/cm2 and exposure time of 5 s. This structure did not 

lose its breadth when stretched to 200% of its original length (Figure 3.6.a3). Next, we also 

fabricated the 2D structure of DN hydrogel by writing “Syracuse University” using a laser 

intensity of 5 mW/cm2 and exposure time of 5 s. The results of which are shown in Figure 3.6.b. 

We further tested the smallest feature size of DN gel structures fabricated using our optical 

lithography system as shown in Figure 3.6.c. The smallest feature size of the printed structure is 

mostly influenced by the size of a mirror in DMD (∼12 μm) and the material properties of DN 

gel. In this experiment, we designed masks of intersecting lines and the linewidth of the lines 

were varied to 3, 5, and 10 pixels, with a laser intensity of 5 mW/cm2 and exposure time of 5 s. 

No observable crosslinking was observed in the case of 3 pixels’ line. Only partial cross-linking 

was observed for 5 pixels’ line, and the partially cross-linked structures were easily destroyed 

during the subsequent washing steps. The smallest linewidth of printed stable line of the DN gel 

was 120 μm using a mask of 10 pixels lines. 
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Further, 3D printing of the DN hydrogel structures is demonstrated (Figure 3.6 parts d and e). 

This is done by printing the Empire State Building printed using digital mask-based optical 

lithography. Post-printing, the structure is dipped into the calcium chloride solution for 72 h as 

shown in Figure 3.6.d. In order to fabricate the structure, a laser power of 60 mW (=laser 

intensity of 1 mW/cm2) and stage speed of 0.02 mm/s was used. Mayan pyramid printing is also 

demonstrated using DN gel hydrogel, and the structure was printed using the laser power of 1 

mW/cm2 and scanning speed of 0.02 mm/s (Figure 3.6.e). 

3.5 Conclusions 

In summary, we have demonstrated that an alginate, poly(dimethylacrylamide) gel can be used in 

a 3D additive printing method of synthesis using optical projection lithography. Material testing 

found that increasing the crosslinker concentration from 0.07 to 0.14 wt% results in weaker gels 

overall. When the photoinitiator concentration was increased from 0.16 to 0.33 wt%, a similar 

trend occurred for the ultimate stress and strain. At a laser power of 60 mW, materials had the 

highest ultimate stress and strains, but the lowest moduli. The power level with the highest 

moduli was either 40 or 100 mW. This new method can be extended to other material 

compositions with broad implications in the areas of soft robotics and tissue engineering. 
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3.6 Schemes, Figures, and Tables 

 

Scheme 3.1 a) Schematic showing the 3D fabrication of DN hydrogel structure using digital 

mask-based optical lithography setup. b) Schematic of the alginate/DMAAm DN hydrogel 

formed by covalent cross-linking of DMAAm and ionic cross-linking of alginate. 

  

a) 

b) 
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Scheme 3.2 Schematic cartoon showing a simplification of the lithography setup. A laser is 

shined to a digital micromirror device (DMD), which allows for precise polymerization and 

crosslinking of the photoinitiated gel. Ionic crosslinking is conducted after the lithography by 

submerging the gel in a calcium bath. 
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Figure 3.1. Initial tests to show double network formation. a) Plot showing the tensile 

stress−strain curve obtained from DN gel structure and its individual parent gel structures. The 

inset shows a dogbone-shaped structure being stretched more than 4 times its original length. 

The structure was printed with the laser intensity of 5 mW/cm2 and exposure time of 5 s. Bar 

diagrams showing elastic modulus (b), ultimate strain (c), and ultimate stress (d) for the DN gel 

structures, alginate gel structures, and DMAAM gel structures with LAP as an photoinitiator and 

MBAAm as a cross-linker. ANOVA test showed significant difference among the groups (p 

value < 0.001). ANOVA with Bonferroni correction showed significant differences between two 

groups at *p < 0.016, **p < 0.001. [Error bars: mean ± standard deviation (SD)]. e) Plot showing 

the tearing test for the DN gel representative structures and the individual parent gel structure. f) 

Plots showing the stress−strain curve obtained from the DN gel structures exposed to different 

exposure times. 
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Figure 3.2 Results of the alginate composition experiments. a) Sample tensile tests results from 

each of the DN compositions. The elastic moduli (b), ultimate strain (c), and the ultimate stress 

(d) was collected and compared. *p < 0.016, **p < 0.001. (Error bars: mean ± SD). 

  

a) b) 

c) d) 
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Figure 3.3 Results of the crosslinker concentration experiments. a) Sample stress−strain results 

of the DN gels with the varying amounts of crosslinkers (0.035, 0.07, and 0.14 wt %). The elastic 

moduli (b), ultimate strain (c), and the ultimate stress (d) was collected and compared. *p < 

0.016, **p < 0.001. (Error bars: mean ± SD) 

  

a) 

b) 

c) 

 

d) 
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Figure 3.4 The results of the photoinitiator composition experiment. a) Sample stress−strain 

results of the DN gels with the varying amounts LAP photoinitiator (0.165, 0.33 and 0.66 wt %). 

The elastic moduli (b), ultimate strain (c), and the ultimate stress (d) was collected and 

compared. *p < 0.016. (Error bars: mean ± SD) 

  

a) 
b) 

c) d) 
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Figure 3.5 Results of experiments in which the laser power and the fabrication speed were 

varied. a) Sample stress-strain curves for DN gel structure printed at fixed fabrication speed and 

varying laser power. b) Scatter plot showing modulus of elasticity, ultimate stress, and ultimate 

strain of the DN gel structure fabricated with different laser intensity and constant fabrication 

speed. c) Stress−strain curve for DN gel structure printed at varying fabrication speed and fixed 

laser power. *p value < 0.05, **p value < 0.001. (Error bars: mean ± SD) 

  

a) 

b) 
c) 
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Figure 3.6 Illustration cartoon of 2D structure (auxetic shaped). (A2) Fabricated DN gel structure 

before stretching and (A3) after stretching. Structure was printed using optical projection 

lithography and dipped into calcium solution for 72 h. (B) 2D printed “Syracuse University” 

before dipping into calcium solution. (C) Log-pile structure demonstrating the smallest feature 

size/resolution of 120 μm. (D,E) 3D printing of tough and stretchable hydrogel. (D1,D2) Empire 

State Building structure before and after dipping into the calcium solution. (E) Mayan pyramid 

structure printed using DN gel structure and image was recorded after the structures are dipped 

into calcium solution for 72 h. The fabricated images shown in A,D,E were acquired using a 

digital SLR camera and B,C are recorded using a HIROX microscope. 
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Chapter 4 Determining the Effect of Polymer and Protein Concentration on Adhesive and 

Mechanical Properties of Protein-Polymer Gels 

4.1 Synopsis 

The Arion subfuscus slug secretes a defensive glue that has unique properties of toughness and 

adhesion, even though it is 95-97% water by mass. The hypothesized reason as to why these 

glues have such remarkable mechanical properties is due to a double network structure between a 

rigid protein network and a ductile carbohydrate network. It is also believed that the proteins are 

responsible for the adhesive properties observed, and both the rigidity and the adhesiveness is a 

product of protein and metal-ion interactions. In this work, poly(dimethyl acrylamide) 

(PDMAAm) gels were synthesized in the presence of extracted slug glue proteins (SGP’s) and 

metal ions. A robust set of mechanical tests were performed to determine the full extent of SGP 

effects on gel properties and to determine if an ion-crosslinked protein network could be formed. 

To do this, a design space of nine compositions were tested for stiffness, hysteresis energy, 

cohesive strength, and adhesive strength.  

4.2 Introduction 

As the field of hydrogel research continues to expand, investigators are looking at ways of 

developing adhesive gels for different purposes. Due to the hydrophilic nature of hydrogels, 

adhesive materials would be advantageous for biomedical applications. A majority of focus for 

these adhesive gels is based on their use for wound dressings, suture replacements, and drug 

delivery [1], [2]. One of the issues in the development of these gels is their design. The majority 

of hydrogels that have been researched do not have inherently adhesive properties, and the 

adhesive hydrogel literature is scarce [3]. A few examples of adhesive systems discussed early in 

the literature would be poly(acrylic acid)-based oral drug delivery systems [1] and modified 
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poly(ethylene glycol) gels, such as FocalSeal® [2]. To develop adhesive gels, many researchers 

have turned to materials from nature as a source of inspiration. 

One of the most famous muses for these bioadhesive materials is the mussel. Mussels secrete a 

byssus, or bundle of filaments, that allows them to adhere to surfaces [4]. The proteins found in 

the byssus have been studied thoroughly, and have been used in the design of bioadhesive 

materials [5], [6]. Messersmith created an adhesive hydrogel based on the covalent adhesion of 

mussel byssus combined with thermosensitive block copolymer chemistry [7]. This allowed the 

hydrogel network to shrink under heat, making it useful for wound dressing and sealing. Ren and 

Lu have also developed materials inspired off of the mussel adhesive mechanism using a 

polydopamine-polyacrylamide single network gel which had high ductility, toughness, and self-

healing abilities [8]. Wang developed a mussel-inspired tissue adhesive by creating dopamine-

grafted gelatin crosslinked using both Fe3+ ions and genipin [9]. 

While many other sources of inspiration exist, such as geckos [10] and mushrooms [11], one that 

is gaining significant attention is slugs. Karp and del Nido developed a blood resistant surgical 

glue for use in minimally-invasive heart surgeries, inspired by water-immiscible components in 

slug and sandworm secretions that allow for adhesion even in aqueous environments [12]. For 

this reason, focus has been applied to the Arion subfuscus slug, which secretes a defensive glue 

with interesting properties, including stiffness and adhesion. The glue consists of 95% water by 

mass, and contains a mixture of carbohydrates and proteins [13].  

While investigating the composition of the gel, Dr. Andy Smith found that it seems to have a 

structure that is comparable to those of double networks [14]. To briefly review double networks, 

these materials are developed by incorporating a ductile, loosely crosslinked polymer network 

into an already existing brittle, highly crosslinked polymer network [15]. The two polymers work 
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in a synergistic manner, providing strength and ductility that are absent in either of the single 

networks. The first double network (DN) study was seen in 2003 from Gong and coworkers [16]. 

While initially developed using covalently crosslinked networks, researchers have also 

developed DN’s that use both covalent and ionic crosslinking methods. Sun et al. developed 

double networks that used an ionically crosslinked alginate gel as the strong network and a 

covalently crosslinked polyacrylamide gel as the ductile network, which showed remarkable 

elasticity and toughness even when a defect is cut into the samples [17]. It is also useful to note 

that the alginate-polyacrylamide gels were shown to have self-healing properties, on account of 

the ionic crosslinking of alginate. The slug glue is believed to have a double network structure, 

as the two major materials that make up the glue (aside from water) were found to be 

carbohydrates and proteins at roughly similar quantities [14]. The carbohydrates and the proteins 

may form ionic or coordinate covalent crosslinks, both dependently and independently from one 

another, using various metal ions.  

The defensive slug glue is similar to the structure of its trail glue [18]; however, the glue contains 

a different set of proteins, and a considerable concentration of metal ions [14]. Metal ions that 

are known to be in the glue include calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), and iron 

(Fe3+). The set of proteins that are native to the defensive glue consist of two groups; a set of 

proteins that have a molecular weight of approximately 15 kDa (asmp-15) and another with a 

molecular weight around 61 kDa (asmp-61) [19]. In addition, the metals that exist in the glue are 

imperative to its stiff and adhesive behavior. For instance, removing calcium from the slug glue 

causes around a 30% decrease in stiffness [20]. Based on this information, Smith decided to use 

RNA sequencing to determine the sequence of the proteins so information could be gleaned 

about how the proteins and the metals interact [21]. It was found that the asmp-15 proteins 
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consist of three different groups; a set of proteins with a sequence similar to C-lectins, another 

set with H-lectin similarities, and another with C1-q similarities. The asmp-61 proteins were 

found to have a sequence similar to matrilins. 

It’s important to note how the protein structure correlates with the metals that exist in the glue. 

Lectins in general are known as binding proteins involved in many different biological functions, 

such as cell binding [22] or immunoresponses [23]. C-lectins are a large group of proteins that 

are known for having a characteristic double-loop (or a loop within a loop) structure [24]. The C-

lectin superfamily is found mainly in the extracellular matrix of many Metazoan animals, 

including humans. C-lectins are known to bind to other proteins and carbohydrates through 

coordination with Ca2+ ions [24]. While the function varies between the individual proteins, C-

lectins have been documented in signaling inflammatory responses [25]. H-lectins are known for 

similar binding behavior, but use Zn2+ ions for intermolecular connections [26]. Unlike C-lectins, 

H-lectins have not been documented in many different species; they have been documented 

mainly in snails, but recent work has found a variant that exists in a species of algae [27]. In 

snails, H-lectins are involved in the protection of fertilized eggs from harmful bacteria [26].  

The C1q protein superfamily has been studied by those interested in brain and nervous system 

physiology, as that is where these proteins are found [28]. While there are many different types 

of C1q proteins, only a small subset of these proteins interacts with metals, mainly calcium. This 

subset of proteins is believed to use the metal ions to either stabilize their structure or use the 

ions as a method to mediate protein-protein interactions [28]. Matrilins have a very specific 

structure consisting mainly of von Willebrand factor type A and epidermal growth factor 

domains [29]. The protein ends in a coiled-coil domain. Matrilins also rely on Ca2+ ions, and 

sometimes Mg2+ ions, as part of a mechanism for crosslinking [29], [30].  This explains why the 
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stiffness of the glue drops when calcium is removed from the glue, but no change in the stiffness 

is seen when zinc is removed [20]. It should be noted, however, that both calcium and 

magnesium are easily removed from the glue, raising the possibility that these ions are not the 

sole mechanism by which the protein network is formed [31]. 

To continue discussing crosslinking mechanics, the current working theory is that there are 

multiple metal-based crosslinking mechanisms that are occurring within the glue. While calcium 

is the most abundant of the metal ions that exist within the glue, iron is also present [14]. Iron is 

difficult to remove from the gel, and even when chelators that selectively target iron are added to 

the glue, the concentration is only slightly reduced [20].  The theory is that iron is responsible for 

additional ligand-bonding coordination and the binding affinity for these bonds is high enough 

resist chelation [20], [31]. Iron may also be responsible for covalent crosslinks formed via 

oxidation [14], [20]. Briefly, the oxidation of iron in the glue causes the formation of carbonyl 

groups, which react with amine groups in lysine sidechains to form imine bonds. Oxidized 

proteins are known to exist in the glue, and disruption of imine bonds is known to decrease its 

stiffness [20], [32].    

An interesting aspect of these proteins is that adding them to gel networks has been shown to 

cause an increase in stiffness. Smith found that incorporating these proteins into citrus pectin 

gels caused significant increases in the storage modulus [13], [19], [33]. While stiffening 

behavior has been observed, neither adhesive nor self-healing behavior has been documented 

with the incorporation of proteins into synthetic gels. 

While these proteins have been investigated significantly, most of the work so far has been 

focused on the biochemical and structural aspects of the protein to determine the underlying 

mechanisms of the glue’s behavior. To further understand the importance of the proteins, and 
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how they directly contribute to the adhesive, stiffening, and possible self-healing abilities, a 

material science centered investigation would be beneficial. With some materials already 

developed based on the mechanisms of the glue [34],  further characterization and understanding 

can help researchers to develop novel biomaterials for uses in biomedical applications. 

4.3 Experimental 

4.3.1 Materials 

Raw slug glue was either donated from Dr. Smith of Ithaca College or collected from samples in 

nature. The collection process is as follows: Slugs were obtained from local wilderness and 

parks. The backs of these slug were rubbed with a metal spatula to trigger the defensive reaction, 

causing the slug to secrete the glue. The glue was collected, and slugs returned to the wilderness 

where they were found. The glue was stored in a -80 °C freezer until protein extraction was 

necessary. 

4.3.2 Extracting the Slug Glue Proteins 

Slug glue samples were soaked overnight in a solution of 10 mM tris(hydroxymethyl) 

aminomethane (Tris) and 20 mM ethylenediaminetetraacetic acid (EDTA) at 4 °C at a 

concentration of 40 mg slug glue per mL Tris-EDTA solution. The mixtures were homogenized, 

sonicated, and then centrifuged at 13.0 *103 g’s for 10 minutes. The supernatant was collected 

and considered SGP solution. The protein concentration of the SGP solution was determined via 

BCA assay. 

4.3.3 Gel Synthesis 

Solutions of DMAAm and SGP were mixed to obtain the concentrations as described in Figure 

4.1. MBAAm and Irg ratios, used as crosslinker and photoinitiator for the DMAAm network 

respectively, were held constant throughout the compositions at 0.2 mol% MBAAm to DMAAm 



68 
 

and 25 wt% Irg. A concentrated metal ion solution was created with a ratio of 40 mol Ca2+:15 

mol Mg2+: 1 mol Zn2+ and a concentration of 48 mg/mL CaCl2, 33 mg/mL MgCl2*6H2O, and 1.5 

mg/mL ZnCl2. The concentrated metal ion solution was added to the DMAAm-SGP mixture so 

that there is a ratio of 0.8 g metal ion for every gram of SGP. The DMAAm-SGP mixtures were 

injected into molds made with two microscope slides and a spacer with a thickness of 1.13 mm. 

Gels were subjected to 365 nm UV light for 2 hours to ensure polymerization of the PDMAAm 

network. 

4.3.4 Rheometry 

Rheometry experiments were run on an AR-G2 rheometer with an 8 mm plate-plate geometry 

setup. The storage modulus was recorded at 0.5 % strain and a frequency of 0.5 Hz. These values 

were chosen based off of strain and frequency sweeps conducted between 0.1 to 100% and 0.1 to 

10 Hz, respectively. The data for these sweeps can be found in Appendix C. 

4.3.5 Hysteresis 

Hysteresis experiments were based off a procedure used by Fung, Gallego Lazo, and Smith [31].  

Briefly, gels were cut into samples of a length and width of 15 mm and 4 mm, respectively. The 

samples were clamped in an AR-G2 rheometer with a specialized tensile clamp setup. Samples 

were stretched three times to 10,000 mm, 15,000 mm, and then 20,000 mm. After each stretch, 

the strain was released and the sample was allowed to sit for 5 minutes before the next strain was 

applied. The hysteresis energy was calculated for each loop and calculated to determine energy 

dissipation in the gels. 

4.3.6 Lap Shear Test 

Lap shear tests were performed to determine the cohesive strength of the gels. The tests were 

performed based on the standard ASTM F2255 [35]. Briefly, rectangles of fake tattoo skin were 
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cut to the dimensions of 75 mm by 26 mm to act as the substrate. Samples of the gel were 

sandwiched between two rectangles so that there was a small portion of overlap (roughly 20-25% 

of the length of one rectangle), and then a force of 1 N was applied to the bonded area for 1 hour 

in a humidity-controlled room at 30 % ± 5 % relative humidity . After the force had been 

applied, samples were loaded into a Test Resources® tensile tester and pulled apart at a rate of 5 

mm/min. The cohesive strength of the samples was calculated as the maximum load divided by 

the area of the bonded site. 

4.3.7 Pull-Off Test 

 To determine the adhesive strength of these gels, a pull-off test was conducted. This test was 

based off of a similar test used by Robertson [36]. Cylindrical samples of 8 mm diameter were 

made using a handheld press punch. Samples were loaded in a dynamic mechanical analysis 

machine (DMA) with a compression clamp attachment. Samples were compressed to a load of 1 

N, and the load was held for 1 hour. The load was removed at a constant rate of 0.5 N/min. The 

test was performed until the top clamp hit its maximum height, which corresponded to an 

adhesive failure. The adhesive strength was determined by dividing the maximum load before 

failure by the surface are of the sample.  

4.3.8 Statistical Tests 

For all mechanical tests, three replicates from two batches were tested for a total of six samples 

per composition. All results were tested for outliers via GraphPad. To test for differences 

between the compositions, two-way analysis of variance (ANOVA) followed by Tukey post-hoc 

tests were conducted using Minitab statistical software. 
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4.4 Results and Discussion 

4.4.1 Gel Synthesis 

The gel synthesis process was considered successful due to qualitative observations. It was noted 

that all compositions behaved as low-viscosity fluids before UV exposure, and changed to either 

semisolid or solid gels for the 40/50 mg DMAAm/mL samples and the 60 mg DMAAm/mL 

samples, respectively. Control samples maintained a clear white color, while SGP-loaded 

samples tended to have a pale-yellow color that increased in intensity with increases in SGP 

concentration. 

The time and intensity of the UV exposure was also found to be of importance via qualitative 

observations. Samples were exposed to three different UV sources; a low intensity (SBI general 

purpose UV box), middle intensity (OmniCure® S2000 Spot UV Cure System with a 200 Watt 

UV Lamp), and high intensity source (Dymax® 2000-EC Series Lamp with a 400 Watt UV 

Lamp). The times of exposure were changed based on the time it took a control sample of the 

same concentration to polymerize; this corresponded to 2 hr exposure to the low intensity 

source,10 min exposure to the middle intensity source, and 2 min exposure to the high intensity 

source. In the cases of both the middle intensity and high intensity sources, samples were found 

to change color from a pale yellow to a clear white as shown in Figure 4.2.  

The color change that was observed after UV irradiation may be an indirect marker of protein 

damage during the synthesis process.1 It is theorized by Dr. Smith that the yellow color observed 

in the SGP solution as well as the gels is due to a pigment molecule that exists within the glue. 

The theorized purpose of this pigment would be to make the glue a bright color, as a warning to 

 
1Conversation with Dr. Andy Smith of Ithaca College. 
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predators. The color change after exposure to UV irradiation may indicate a change in the 

structure of this hypothesized pigment or other molecules derived from the slug glue, including 

the target proteins for double network formation.  

It should also be noted that rheometry tests on samples that lost this yellow tint were found to 

have storage moduli comparable to that with controls (data not shown). Based off of these 

results, if samples loaded with protein became clear after UV exposure, it was considered 

unusable. Since the low intensity light source was the only instance when exposure did not lead 

to a color change within the gels, this setup was solely used for sample creation. 

4.4.2 Stiffness and Hysteresis Energy 

The stiffness and hysteresis energy of the SGP-PDMAAm gels was collected to determine if a 

protein network was formed. If an SGP network had formed within the sample, these gels were 

hypothesized to take on a double network structure. This would be seen as sharp increases in 

both the stiffness and hysteresis energy when the SGP was added. 

The stiffness of the samples was measured based off the results of a rheometry experiment, in 

which the storage modulus (G’) was recorded at a strain and frequency of 0.5% and 0.5 Hz, 

respectively. Based on the results shown in Figure 4.3, the 60 mg DMAAm/mL, 0.8 mg SGP/mL 

had the highest stiffness of any sample, with a storage modulus of 233 ± 106 Pa. This storage 

modulus was an order of magnitude higher than each of the 40 mg DMAAm/mL and 50 mg 

DMAAm/mL compositions. This result was considered promising, as such an increase in a 

mechanical property can be interpreted as indicative of double network formation.  

The 60 mg DMAAm/mL, 0.5 mg SGP/mL was also found to have a significant increase in 

storage modulus when compared to the 40 mg DMAAm/mL samples. Again, the increase in 
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storage modulus was found to be an order of magnitude. This composition was also considered 

as a possible sample where a double network may have been formed.  

While the data from the rheometry experiments was promising, the results alone were not 

enough to confirm SGP network formation. In order to determine if the network was being 

formed, the hysteresis energy of the samples was determined. If the gels which showed 

significant increases in their stiffness also showed higher hysteresis energy, this would be 

indicative of the SGP forming, as double networks have been documented to have significant 

hysteresis energy [17], [37]. 

From the results of the hysteresis tests, as shown in Figure 4.4, there was no evidence to suggest 

an SGP network was being formed. All hysteresis energy measurements were remarkably low, 

with all values being within a standard deviation of 0 kJ/m3. This implies that the hysteresis 

energy for all of these gels is at or near zero, which would conform to the understanding of 

PDMAAm gels as described in Chapter 2.  

When comparing the performance of these gels to the raw slug glue, it is evident that the SGP-

DMAAm gels have weaker mechanical properties. Specifically when reviewing the hysteresis 

results, raw slug glue tends to have a hysteresis energy between 20 and 60 kJ/m3 [31]. This 

indicates a lack of SGP network formation in these materials. If an SGP network were forming 

within these materials, it would be expected that the hysteresis energy would be  significantly 

higher with statistical analysis.  

Previous work conducted by Dr. Andy Smith had shown that gels would stiffen when protein 

solutions were incorporated into them [13], [19], [33]. This led to the hypothesis that other 

mechanical properties may be heightened within the gel once proteins were added. In addition, 
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another question was asked: Could a double network be forming within these gels? If a network 

was being formed, this would be considered remarkable, as the proteins are in such low 

concentration and molar fraction when compared to the PDMAAm network. Indeed, classical 

double network theory would suggest that concentrations of about 200-fold would be necessary 

for such formation. However, the results of the mechanical tests show that this is not the case.  

4.4.3 Cohesive and Adhesive Strength 

Two tests were run to determine the adhesive properties of the SGP-DMAAm gels. A lap shear 

test was used to measure the cohesive forces, while a pull-off test was used to measure adhesive 

forces. Both forces are important aspects of the total adhesive performance of the material. 

Adhesive forces are derived from the bonds between the adhesive and the substrate, while 

cohesive forces are derived from the bonds that occur between the material and itself [38]. 

Certain types of mechanical tests used to measure the adhesive properties of materials are more 

favorable for measuring only one of these forces over the other. For example, the lap shear test is 

known for being dominated by the cohesive forces [39], [40], while a pull-off test is dominated 

by the adhesive forces [39]. To this end, both tests were employed to get a better understanding 

of both forces present within the gels. 

Analyzing the results of the lap shear tests as shown in Figure 4.5, no composition was found to 

be significantly different from the others. The large variations in the 40 mg DMAAm/mL, 0.5 

mg SGP/mL and the 40 mg DMAAm/mL, 0.8 mg SGP/mL compositions are also worth noting, 

but outlier testing indicated that none of the collected results were significant outliers. It should 

also be noted that the results of this test show that these materials have low cohesive forces in 

comparison to some bioadhesive materials developed recently. While these materials show 
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strengths in the hundreds of Pascals, materials developed for bioadhesive applications have been 

shown to have cohesive strengths in the kPa and even MPa range [41]–[43]. 

The results of this test would suggest no significant changes to the cohesive forces in the 

materials once loaded with SGP’s. This would make sense considering the results of the 

rheometry and hysteresis tests, which indicated that no SGP network was being formed. If an 

SGP network was being formed, it would be expected that the cohesive forces increase, as there 

is another network forming crosslinking bonds within the gel. This increase in crosslinking 

bonds are important for providing the rigid structure necessary for high cohesive strength [38], 

[44].  

The results of the pull-off test, as shown in Figure 4.6, show a pattern that was opposite of that 

hypothesized. It was expected that by increasing the concentration of proteins, the adhesion 

would increase, as there would be more adhesive proteins within the system. For both the 50 and 

60 mg/mL DMAAm batches, incorporating the slug glue proteins into the gels had no significant 

effect on the adhesive strength. For the 40 mg/mL DMAAm batches, it was found that high SGP 

concentration decreased the adhesive strength. It is also interesting to note that the 40 mg/mL 

DMAAm, 0.0 and 0.5 mg/mL SGP samples had higher adhesive strengths than the other 

samples. A possible explanation for this could be due to the relationship between flowability and 

cohesion, which is necessary for adhesive polymers [1], [45], [46]. It is possible that this 

concentration is the best ratio between these two contradictory variables, leading to a higher 

adhesive strength for the pull-off test. 

The hypothesized reason as to why adhesion occurs within the raw slug glue is that the asmp-15 

proteins have an open adhesion site upon the surface of their structure, most likely mediated by a 

calcium ion [21]. If there is no sign of increased adhesion with increased SGP concentration, one 
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possibility for such a result would be that the adhesive site is no longer open or functioning, 

which would be caused by the protein denaturing during synthesis. It is also a possibility that the 

proteins go through a conformational change when placed in the gel, and this conformation 

change makes it so that the binding sites necessary for adhesion are not present at the surface of 

the material.   Alternatively, this could also be due to the same reason as the results seen in the 

hysteresis and lap shear tests; the concentration of the proteins is too small for there to be any 

direct effect on the mechanical properties. Currently, there is more evidence to suggest that the 

latter is the likely case considering the results of the other mechanical tests. However, future 

work with more concentrated samples could be used to determine whether denaturing is 

occurring or not. 

4.5 Conclusions 

A synthetic DMAAm polymer was loaded with SGP’s and multiple types of metal ions for the 

purposes of determining if this material setup could be used to elucidate how protein and metal-

ion interactions affect the mechanical properties of a defensive slug glue. Through a series of 

mechanical tests, it was found that there was no discernable difference between the controls and 

protein-loaded samples. This is believed to be due to the low concentration of proteins, which is 

not conducive to the formation of a protein network. 

To create a functional protein network within the current system, SGP solutions will need to be 

made with protein concentrations of approximately 200 mg/mL, about 200 times more 

concentrated than the average concentration used during this study. This limitation is 

compounded by two problems with the current setup. First, when collecting samples from slugs, 

the protein extraction process limits the SGP solution to concentrations that range from 0.6 

mg/mL to 1.5 mg/mL. Concentrating these solutions to the desired level would require large 
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collections of raw glue, which can be difficult to obtain. Second, the SGP’s are known to self-

aggregate and separate out of solutions when the concentration gets too high (> 3 mg/mL).  

In order for this setup to be a viable option, it may be necessary that more advances are done 

when it comes to creating methods to collect and solubilize these proteins. One option is to 

develop bacterium that could synthesize the proteins of interest. This would allow not only high 

throughput and collection of the proteins but allow for more control over the specific 

concentrations of individual proteins. The large variations in the Results section may be a 

product of differences in individual protein concentrations between batches, so the use of 

bacteria could help minimize this. The solubilization problem is one that may have to be 

investigated and solved by a biochemist, who would have better knowledge on how to best tackle 

the issue.  

The results of this project show what limitations currently exist for using this setup as a viable 

method to determine the effects on mechanical properties due to protein-ion interactions. Once 

these problems are solved, the current setup could be reviewed and investigated as a practical 

methodology.  
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4.6 Schemes, Figures, and Tables 

 

Figure 4.1 The design space used to investigate the effects of polymer and protein concentration 

on the adhesive and mechanical properties of the gels. 
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Figure 4.2 A slug glue protein, poly(dimethylacrylamide) gel that has been exposed to UV light 

from the OmniCure® S2000 Spot UV Cure System. For this particular light source, it was found 

that the beam was too focused, and would cause denaturing or damaging of the proteins in the 

area where the light directly shone unto the sample (red dashed circle). These samples were 

considered unusable.  
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Figure 4.3 The results of the rheometry experiments with the SGP-DMAAm gels. The order of 

magnitude increase in storage modulus in the 60 mg DMAAm/mL, 0.8 mg SGP/mL sample was 

seen as a potential indication of a SGP network being formed. Error bars are standard deviation. 

** - p-value < 0.01. *** - p-value < 0.001.  
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Figure 4.4 The hysteresis energy of the SGP-DMAAm gels. One point to note is that all error 

bars cross the 0-point. This indicates that there is little to no energy dissipation that occurs within 

the gels. If an SGP network was forming, it would be expected that the energy dissipation would 

increase with incorporation of SGP’s into the gel. 
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Figure 4.5 The cohesive strength of the SGP-DMAAm gels as observed from a lap shear test. No 

statistical difference could be inferred when comparing the compositions. This could be due to 

the high variations seen in the SGP-loaded 40 mg DMAAm/mL samples. It should be noted that 

outlier testing was conducted on all samples, and no outliers could be determined. This data also 

conforms with the results of the hysteresis testing, which indicated a lack of SGP network 

formation. An SGP network being formed within the gels would be seen as an increase in the 

cohesive strength. 
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Figure 4.6 The adhesive strength of the SGP-DMAAm gels based on the results of a pull-off test. 

Interestingly, the 40 mg DMAAm/mL, 0.0 mg SGP/mL and 40 mg DMAAm/mL, 0.5 mg 

SGP/mL compositions had the highest adhesive energy. This is believed to be due to the high 

water content of these gels, and an increase in the surface tension that would result when a force 

is applied to the gel and then released. * - p-value < 0.05. ** - p-value < 0.01. 
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Chapter 5 Summary 

5.1 Conclusions 

As shown in this thesis, the study of double network hydrogels can be taken into many different 

areas. In Chapter 2, a study was conducted into the underlying mechanics of double networks, to 

see how brittle network variables affect the mechanical properties of the gels. Chapter 3 

highlights work performed to create a double network that could be synthesized using a novel 

photolithography setup, which allows us to make precise, complex 3D constructs. In Chapter 4, 

an attempt was made to create a synthetic-biological hybrid network for the purposes of 

investigating how proteins from a defensive slug secretion react when in the presence of different 

types of metal ions.  

Chapter 2 used a methacrylated hyaluronic acid, poly(dimethylacrylamide) double network to 

determine how brittle network concentration and crosslinking can affect the mechanical 

properties of the double network gel. A central composite experimental design was used to 

systematically vary these two characteristics so that the interactions could also be quantified. It 

was found that the modulus and tearing energy of the double networks were affected by the 

interactions of the concentration and crosslinking ratio. From surface response plots, the 

elongation at break was found to have a local maxima at middling crosslinking ratios of 3:1. This 

means that materials can be designed where ductility is not forfeited for tougher or stronger gels. 

From model equations developed from results of the central composite design, the modulus, 

tearing energy, and maximum swelling equations were accurately predicted for gels of a tested 

composition. 

Chapter 3 reported on efforts to make a double network gel that could be used in an additive 

printing photolithography machine. Results showed that double networks were formed using this 
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novel synthesis method. By altering the concentration of the brittle network, as well as the 

crosslinker and photoinitiator concentration of the second network, the mechanical properties of 

the system could be tuned. The same is true for the power setting of the laser as well as the 

fabrication speed of the setup. This tuning of material properties would be helpful for researchers 

who would need to make gels with specific material properties for tissue engineering or other 

biomedical applications. 

Chapter 4 focused on the attempt to make poly(acrylamide) gels that were laden with proteins 

from a defensive slug glue. The goal of this work was to create a hybrid synthetic-biologic 

double network, and then use this network to investigate how metallic ions and protein 

concentrations would affect the mechanical properties of the gel. This would help to determine 

the role of the several types of proteins that exist within the slug glue and would hopefully lead 

to the design of novel biomaterials. Unfortunately, these gels did not show any signs of protein 

network formation. After review, several aspects of this project would need to be refined before 

this process is revisited. These are highlighted in the next subsection of this chapter. 

5.2 Future Work 

From the work completed in Chapter 2, the next steps would be to run similar types of central 

composite designs to further investigate the interplay between material variables and how they 

affect the overall gel mechanics.  One experimental design that would be of particular interest 

would be to investigate the interactions between a brittle network variable and a ductile network 

variable. An example could be the crosslinking concentration of either, or the concentrations of 

either. For a particularly robust study, a complex experimental design could be implemented 

which would test for the importance and interactions of several variables at once. The drawback 
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to an experimental design such as that discussed above is the complexity of the design, which 

would require several compositions, and therefore be strenuous both on resources and time. 

From the work completed in Chapter 3, alginate, poly(acrylamide) double networks were 

synthesized in a novel photolithography setup. It might be interesting to see if other materials 

could be made and how this change in materials could lead to gels with different mechanical 

properties. In addition, the self-healing properties of this material was not investigated. This 

could be an interesting property to examine and could lead to other applications that this material 

and synthesis process could be used for. To further expand on whether this material could be 

used in tissue engineering applications, tests should also be run to determine cytocompatibility. It 

would also be interesting to expand upon the complex 3D shapes made in this work, and perhaps 

try to make 3D structures that contain hollow channels that could be used for making bioreactors 

or complex tissue constructs.  

From the work completed in Chapter 4, the limitations of the current setup were highlighted. 

Specifically, the concentration of proteins collected from raw glue samples was found to be too 

low to make viable samples. Advances in biochemistry, particularly the development of making 

bacterial strains that can produce the targeted proteins, would need to be completed. In addition, 

it may be necessary to determine how to keep the proteins from aggregating out of solutions 

when the concentrations get too high. Both problems would best be solved outside the area of 

expertise of the author, and so these issues might best be solved with collaborations with other 

researchers. 
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Appendices 

Appendix A.1. All tensile, tearing, and swelling data collected for the CCD. Each value is the 

average ± standard deviation.   

Composition 
Modulus 

(kPa) 

Elongation at 

Break (%) 

Max Stress 

(kPa) 

Tearing 

Energy (J/m2) 
Qmax (g/g) 

2 wt% 4:1 282.4 (±92) 222.1 (±94) 314.6 (±59) 102.1 (±41) 4.58 (±1.6) 

2 wt% 2:1 109.8 (±50) 224.3 (±53) 139.6 (±60) 29.82 (±2.7) 8.91 (±0.72) 

1 wt% 4:1 94.90 (±52) 281.1 (±30) 145.7 (±68) 31.92 (±20) 10.2 (±1.7) 

1 wt% 2:1 19.19 (±2.9) 269.8 (±64) 30.32 (±7.6) 23.70 (±11) 12.9 (±1.1) 

1.5 wt% 3:1 106.9 (±37) 269.6 (±39) 147.2 (±53) 28.84 (±4.8) 7.60 (±0.90) 

2.207 wt% 3:1 222.9 (±29) 237.4 (±30) 288.7 (±39) 52.98 (±9.2) 6.53 (±0.55) 

0.793 wt% 3:1 22.59 (±6.9) 305.2 (±31) 34.44 (±11) 6.164 (±2.4) 16.9 (±1.6) 

1.5 wt% 

4.414:1 
211.2 (±30) 269.9 (±60) 262.2 (±14) 26.23 (±11) 7.08 (±0.27)  

1.5 wt% 

1.586:1 
34.24 (±21) 248.0 (±56) 46.70 (±25) 25.27 (±9.0) 11.0 (±0.43) 
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Appendix A.2.  ANOVA Results. Tabular ANOVA data for each of the mechanical responses. 

Obtained from MINITAB software. 

 

Modulus: 

Source                           DF  Adj SS  Adj MS  F-Value  P-Value 

Model                             5  365468   73094    40.70    0.000 

  Linear                          2  352310  176155    98.08    0.000 

    MHA wt%                       1  196971  196971   109.67    0.000 

    [PEGDA]/[MHA]                 1  155339  155339    86.49    0.000 

  Square                          2    1409     704     0.39    0.678 

    MHA wt%*MHA wt%               1    1152    1152     0.64    0.428 

    [PEGDA]/[MHA]*[PEGDA]/[MHA]   1    1153    1153     0.64    0.428 

  2-Way Interaction               1   11749   11749     6.54    0.015 

    MHA wt%*[PEGDA]/[MHA]         1   11749   11749     6.54    0.015 

Error                            39   70045    1796 

  Lack-of-Fit                     3     170      57     0.03    0.993 

  Pure Error                     36   69876    1941 

Total                            44  435513 

 

Elongation at Break: 

Source                           DF  Adj SS   Adj MS  F-Value  P-Value 

Model                             5   27764   5552.7     1.97    0.104 

  Linear                          2   26084  13042.2     4.64    0.016 

    MHA wt%                       1   25074  25074.5     8.92    0.005 

    [PEGDA]/[MHA]                 1    1010   1009.9     0.36    0.552 

  Square                          2    1450    725.2     0.26    0.774 

    MHA wt%*MHA wt%               1     139    138.8     0.05    0.825 

    [PEGDA]/[MHA]*[PEGDA]/[MHA]   1    1256   1255.7     0.45    0.508 

  2-Way Interaction               1     229    228.7     0.08    0.777 

    MHA wt%*[PEGDA]/[MHA]         1     229    228.7     0.08    0.777 

Error                            39  109659   2811.8 

  Lack-of-Fit                     3    2852    950.6     0.32    0.811 

  Pure Error                     36  106807   2966.9 

Total                            44  137423 

 

Max Stress: 

Source                           DF  Adj SS  Adj MS  F-Value  P-Value 

Model                             5  480909   96182    51.69    0.000 

  Linear                          2  475708  237854   127.83    0.000 

    MHA wt%                       1  254304  254304   136.67    0.000 

    [PEGDA]/[MHA]                 1  221404  221404   118.99    0.000 

  Square                          2     755     378     0.20    0.817 

    MHA wt%*MHA wt%               1     732     732     0.39    0.534 

    [PEGDA]/[MHA]*[PEGDA]/[MHA]   1     182     182     0.10    0.756 

  2-Way Interaction               1    4446    4446     2.39    0.130 

    MHA wt%*[PEGDA]/[MHA]         1    4446    4446     2.39    0.130 

Error                            39   72567    1861 

  Lack-of-Fit                     3    4266    1422     0.75    0.530 

  Pure Error                     36   68302    1897 

Total                            44  553476 
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Tearing Energy: 

Source DF Adj SS Adj MS F-Value P-Value 

Model 5 22592.0 4518.4 10.20 0.000 

  Linear 2 17061.6 8530.8 19.27 0.000 

    MHA wt% 1 12371.0 12371.0 27.94 0.000 

    [PEGDA]/[MHA] 1 4690.6 4690.6 10.59 0.002 

  Square 2 405.7 202.8 0.46 0.636 

    MHA wt%*MHA wt% 1 347.7 347.7 0.79 0.381 

    [PEGDA]/[MHA]*[PEGDA]/[MHA] 1 314.7 314.7 0.71 0.404 

  2-Way Interaction 1 5124.7 5124.7 11.57 0.002 

    MHA wt%*[PEGDA]/[MHA] 1 5124.7 5124.7 11.57 0.002 

Error 39 17267.9 442.8       

  Lack-of-Fit 3 7149.7 2383.2 8.48 0.000 

  Pure Error 36 10118.3 281.1       

Total 44 39859.9          

 

 

Maximum Swelling: 

Source                           DF   Adj SS   Adj MS  F-Value  P-Value 

Model                             5  300.194   60.039    26.75    0.000 

  Linear                          2  263.556  131.778    58.72    0.000 

    MHA wt%                       1  209.914  209.914    93.54    0.000 

    [PEGDA]/[MHA]                 1   53.642   53.642    23.90    0.000 

  Square                          2   33.090   16.545     7.37    0.004 

    MHA wt%*MHA wt%               1   25.508   25.508    11.37    0.003 

    [PEGDA]/[MHA]*[PEGDA]/[MHA]   1    1.188    1.188     0.53    0.475 

  2-Way Interaction               1    3.548    3.548     1.58    0.222 

    MHA wt%*[PEGDA]/[MHA]         1    3.548    3.548     1.58    0.222 

Error                            21   47.126    2.244 

  Lack-of-Fit                     3   23.010    7.670     5.72    0.006 

  Pure Error                     18   24.116    1.340 

Total                            26  347.320 
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Appendix A.3. Explanation of the Tearing Energy Results. 

 

 

Figure A.1 Model behavior of low wt% and low crosslinking ratio gel (1 wt% 2:1) and a high 

wt% and low crosslinking gel (2 wt% 2:1). From the data, the low wt% low crosslinking network 

takes more energy to propagate the defect. An explanation for this is that the low wt% and low 

crosslinking ratio gel propagates the defect slower than the other due to a higher critical length 

before crack propagation can occur. 
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Appendix B.1. Quantification of volume increase during the immersion of DN gel structures in 

calcium solution. 

 

The DN gel structure undergoes significant increase in volume after it is immersed to the 

calcium bath. To quantify the increase in the volume due to absorption of calcium solution, we 

fabricated DN gel rectangular slab by digital masked based optical lithography. The as-fabricated 

structure was immersed into the calcium solution and the dimension of the structure is recorded 

every 24 hrs. Series of photographs show the increase of the volume of the sample before 

immersing (0 hrs) and after immersing the structure to 24 hrs, 48 hrs and 72 hrs to the calcium 

bath (Figure B-1). Photographs show that the most of increment takes place within the 24 hrs of 

immersion. There is still increment of the volume after 24 hrs of immersion, however the 

increase in volume is significantly lower compared to that of first 24 hrs immersion. The volume 

change is quantified in bar diagram, which shows almost 100% increase in volume in 24 hrs. 

However, in the next 48 hrs, the volume of structure only increases by ~20%. 
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Appendix B.2. Study of the mechanical properties of fabricated DN gel structures with different 

fabrication speed and fixed laser power. 

 

The tensile properties of the DN gel structures are studied by fabricating structures with varying 

scanning speed (also referred as fabrication speed) of 0.045 mm/s, 0.06 mm/s, 0.075 mm/s and 

0.09 mm/s at constant laser intensity of 100 mW (laser intensity of 1.65 mW/cm2). A stress vs 

strain plot was recorded using a tensile tester and is depicted in Figure 6A. The tensile 

parameters (elastic modulus, strain, and maximum stress) are plotted as a function of fabrication 

speed (Figure B-2). 
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Appendix B.3. Schemes, Tables, and Figures for Appendix B. 

 

  

 
Figure B.1 Photographs of the rectangular slab fabricated of DN gel using a digital mask based 

optical projection lithography. The first photo was taken right after optical fabrication of the 

structure (0 hrs). The three other photos were recorded after the structure is immersed into the 

calcium chloride bath for 24 hrs, 48 hrs and 72 hrs respectively. Bar diagram shows 

quantification of volume increment before and after dipping the fabricated structure to the 

calcium bath for different periods of time. ** p value <0.001 (Error bars: Mean±SD) 
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Figure B.2 Tensile parameters (A) elastic modulus, (B) strain, and (C) maximum stress are 

plotted for DN gel structure printed at varying scanning speed and fixed laser power. * p 

value<0.05, ** p value <0.001 (Error bars: Mean±SD) 
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Appendix C. The Strain and Frequency Sweeps of PDMAAm-SGP gels. 

 

 
Figure C.1 Strain sweep data for DMAAm gels at a concentration of 40, 50, and 60 mg/mL. The 

linear viscoelastic region is highlighted as the region between the red bars. For all frequency 

sweeps, it was determined that a strain of 0.5 % would be used for all other studies, as it is a 

strain in which the LVE is evident for all concentrations. 
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Figure C.2 Frequency sweep data for DMAAm gels at a concentration of 40, 50, and 60 mg/mL. 

The gels are not viable at frequencies above 1 Hz, as the gels appear to mechanically fail. It was 

determined that for rheometry data collection, a frequency value of 0.5 Hz would be used. 
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