Protruded intervertebral disk and its relationship to the sciatic syndrome

Clifford C. Babbitt
University of Nebraska Medical Center

This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research.

Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses
Part of the Medical Education Commons

Recommended Citation

Babbitt, Clifford C., "Protruded intervertebral disk and its relationship to the sciatic syndrome" (1941). MD Theses. 840.
https://digitalcommons.unmc.edu/mdtheses/840

This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.

```
THE PROTKTDED INTERVGKTLBRAL DISK
AND ITS RELATIONSHIP TO
THE SCIATIC SYNORCNE
```

CLIFEORD H. BABBITT

INTRODTCTION

It is the purpose of this paper to ilscuss the Protruded Intervertebral Disk an its relation to the so-called "Sciatic Synarome". It is now not considered proper to make a diagnosis of "Sciatica". Taylor has said, "To me the word Sciatica means no more than a bai pain in the back of the lower limb. It loes not even mean a clinical state because the symptoms vary greatly and the supposed pathology seems quite unconvincing". (1) To be sure all cases of low back pain ant sciatic radiation are not cases of protrusion of the intervertebral disk. However, it is the opinion of Reynolss, and that of the majorIty of the men interested in cases of this type, that "All cases of intractable low back pain with sciatic radiation that do not respond to conservative means in a reasonable period of time shovid be considered cases of protrusion of the lisk until proven otherwise". (2)

It is as yet to early to evaluate the frecuency with which the Protrule Intervertebral Jisk is the cause of "Seistica". At the Mayo Slinic it has been possible to arrive at a iagnosis of Protrude oisk in only 300 of 10,000 consecutive cases of low back ant sciatic pain. (3) Fincher, in a rasiologic stuiy
of 31 consecutive cases of chronic low back pain an sciatic pain, fand that 24 of the cases had displacement of the intervertebral cartilage. (4) Barr states that in a single 10 month period in a hospital of moderate size 20 cases ere operated and verified. (5) These reports indicate little concerning the incidence of the lesion but they do show that this entity is certainly not rare and that in the past it has been overlooked or wrongly diagnosed.

HIETCRY

In 1911 Goldwaithe reported the case of a patient, ap 39, who he a history of hypertrophic arthritis of the lumbar spine seven years before. Tris hat necessitated the use of a support for several months. This patient ha strained his back in liftine a heavy object an hat protuce an obvicts displacement of the sacro-iliac joint on the right side. This conlition was recocnized at once and properly treated. Three months later, the previovs symptoms having disappeared, the man became fatigued from carryine a heavy suitcase for some listance following a lone car journey. His back became painful and sensitive, and Golawaithe was callet to see him. He found the sacro-iliac joints strained
but no displacement of the bones. The symptoms and signs found were intense pain. the body held forward and to the left, complete puralysis of the bladder and rectum, and complete paraplegia except on the anterior part of the thighs where sensatinn hau returned. The pain was stated to be of a lancinating character and was referred to the legs and feet. There was a partiovlarly constant and severe pain referred to the upper part of the rectum. Cushing operated and found nothing except a narrowing of the osseous canal at the lumbo-sacral junction. Following the operauion there was a grauual improvement much to the disternation of the surgeon. Goldwaithe went on to explain the prcbable lesions that covld cause the findings in this case and in doing so brought forth the probability of a protrusion of the disk as well as a bony displacement. (6)

In $2 y 25$ Adson is a discussion of the Tumors of the Spinal Cord included Fibrochonaromas of the Intervertebral disks.(7) Stookey, in ly28, reported seven ventral extradural cervical chondromas and summarized that they presented a definite clinical entity. (8) Dandy reported in lyzy two cases in which a diagnosis (presumptive) of Carcinoma of the Vertebrae had been made. At operation he found that in both cases loose cartilage was the cause of the symptoms.Roentgen stud-
ies had Aisclosed nothing in either case. He believer that trauma had undoubtedly been the cause of the lesion. (9)

In 1928 Elsburg, in discussing extradural spinal tumors operated in his clinic, statel he had found seven cases of Chondroma derived from the intervertebral disk. This he found in the cervical region only an? they were pressing the dura from the mijline or more to one sile or the other. Elsburg summarized that these Chondromata were probably much more common than formerly believed. (10) Peet in 1934 reported a case with a syndrome of cauda equina involvement in wich was fount a complete cerebrospinal fluid block. The lesion was located with iodized oil an a laminectomy was performed, with a removal of a notule from the intervertebral disk an: complete recovery of the patient. The patient had complained of pain in the back, which radiated down both thighs. The onset has been $1 \frac{1}{2}$ years before with pain ant tingling in the right leg. Both legs eventually became wrak an for throe months there was difficulty in emptying the blad er, sexual impotence and some rectal incontinence. There was no history of trauma. The nolule was exposed attached to the disk between the 2nd and 3rd lumbar vertebra. (11)

In the same year Mixter and Barr, in an investi-
gation of cases of spinal cord tumors treatel at the Massachusetts General Hospital and in their private practice, reported the following: "In a surprisingly large number of cases the lesions clascified as chonfromata were not tumors of carilace but prolapses of the nucleus pulposus or facture of the annulus". They concluded that, "in reality rupture of the isk is more common than neoplasm; in our series 3 to 1". (12)

Thus the role of the Intervertebral iisk in producing back pain and sciatic pain has gradually come to the attention of the Neurologist and the Orthopelists. For many yfars the lesion had been seen but the true knowledge of the pathology of the lisk had been obscure. Various names had been given the lesion; among them Chondromas, Ecchontromas, ant Endochonlromas were widely used. True, there are neoplastic tumors of the intervertebral disks but they are rare an? in all probability many of the noiules were taken to be neoplastic in origin because of lack of any alternative. (13)

THE ANATOMY, PHYSIOIOGY AN: MECHENIEM CT THE DISKS
"Our ideas concerning the anatomy, physiology and mechanism of the human spinal column have unlercone revolutionary changes in the past few years. Cur conceptions of injuries an: Xiseases as they affect this part of our boiies have been even more profcunlly altered.

Only recently have we come to the knowledge that the structures which make up the disks are by all odis the most important parts of the spinal column, the most important, the most dynamic, and the most dancerous to the individual. We now know that the spaces between the boney bodies represent the strongest section of the spine and the bones, stalwart as they appear, represent the weakest part". (14)

The disks have origin in part form the remnants of the primitive notochord and in part from the mesoderm between the successive blocks of rapidly chonirifying tissue which establish the true vertebral segments. The nucleus is derived at first from the notochord but is extended by a mucoid change which occurs in the surrounding tissue of the so-called notochordal sheath, tocether with multiplication of the original chordal cell.s. In the last 2 or 3 months before birth there is a dispersal of the cellular groups together with the appearance of fibrocartilagenous elements from the peripherally aifferentiation annulus. The annulus differentiates later than the nucleus into fibrocartilage, and the progressive developement and thickening of the bundles extends well into the postnatal period. That portion of the notochord passing through the center of the vertebral body is early transformed into a relatively cell free ligament
and, together with its cangl is obliberated during chondrification and ossification of the centum. (J5)

The disks mare up a full querter of the total presacral length of the spinal column. They are thinnest in the region between the 3rd and 7th thoracic vertebrae and are thickest in the lumbar region. They conform to, and are somewhat responsible for, the curves of the spinal column. The disks are composed of three parts; the annulus fibrosis, the nuclous pulposus and the cartilage plates. The latter are composed of hyaline cartilage but near their periphery they become more fibrous and olend with the annulus fibrosis. They cover the end surfaces of the vertebral bodies. The cells of the cartilage next to the bone are irregularly arranged, those facing the nuoleus pulposus lie parallel to the surface. Marginally the cellular elements become oriented in the direction of the entering fibers. The plates have an average thickness of 1 mm , are thinner at the center, and are applied in direct contact with the marrow of the vertebral bodies. On the surface fine fibers enter the plates and arrange themselves parallel to the surface of the plate. These fine fibers are from the nucleus pulposus. The nucleus is located in the center of the disk a iittle nearer to the posterior surface than the anterior. It is sof't and elastic, somewhat "slimy to the
touch", and has an inherent turgor which causes it to bulge above the cut surface on section. Cavities with a villus-like group of projections are frequently found. A course network of fine fibrous stranis with cellular elements enmeshed make up the nucleus. Notochordal tissue is found in this region. This tissue consists of large cells in small groups separated from the ground substance by condensations of fibrous tissue. Their rosette grouping is typical. The larger colonies of these cells are above and below in close contact with the thinnest part of the cartilage plates. This indicates that this area is that of the obliberated premature notochord. The fine fibers are more prominient at the outer part of the nucleus, and here the cellular elements are fewer in number. From here there is an increase, gradually, in the size of the fibers out to the annvlus. The annulus is made up of coarse collaginous fibers, the coarseness becoming more pronounced at the margins of the tisks. This increase in size is gradual from nucleus out. At the edge of the plates fibers from the annulus pass into the cartilage. Intermediate fibers are attached to the bone of the body and the fibers of Sharre. The outmost fibers blend with the longitudinal ligaments and fibrous periosteum of the centra. (15)

Fach disk is thicker anteriorly in the cervical
and lumbar regions and the characteristic convexities of the column are due somewhat to this fact. In the lumbar region the nucleus is dorsal to the center of the disk and moves still more in that direction during flexion.(16)

Important are the intervertebral foramina of the lumbar region. The bony foramen is somewhat the shape of an inverted pear. This is not true of the fifth lumbar foramen which is oblique and irregular. Its upper boundary, formed by the pedicle and, more anteriorly by the lower part of the vertebral body of the upper vertebra, is deeply notched. The spinal nerve, closely applied to the medial surface of the pedicle, grooves this structure and forms the sulcus nervus spinalis. At the fifth lumbar foramen, and also at the fourth but to a lesser evtent, the sulcus grooves the root of the pedicle, the base of the transverse process, ant the adiacent body. Thes the spinal nervo occupies only the up ermost part of the intervertebral foramen and bears no direct relationship to the lower half of the foramen. The lower half of the foramen is bounded below by the shallow superior vertebrel notch on the upper aspect of the pedicle below. This portion of the foramen is narrow and bounded anteriorly by the backward protrusion of the intervertebral disk and posteriorly by the forward bulging of the ligamentum fla-
vum, due to the partial offsetting of the inferior articular process. At this point the nerve may be lying within the lural sac, as is more usual, or be about to emerge from the sac, or may heve just emerged enclosed within its own sheath. (16) Around the prolongation of the dura is a rich venous plexus. The nerve is not protected by the cereorospinal fluid. Because of the above two factors any mechanical irritation would undoubtly bring on a traumatic inflammatory condition. (17) The nerve is relatively fixed in this region because of its proximity to its point of emergence, although lying withing the spinal dura. It is in this position that the nerve is vulnerable to encroachments by either the ligamentum flavum or the intervertebral disk, or both. (16)

The cord ends opposite the disk below the first lumbar vertebral and belar this the nerve roots of the caula equina are freely moveable except as shown above. At the fourth lumbar disk the fifth lumbar nerve is in the subarachnoid space, fixed laterally against the dura one vertebra higher than its exit. The dural sleeve of the fifth nerve emerges below the fourth disk and passes downward beneath the pedicle of the fifth vertebra to its intervertebral foramen. All lumbar nerves hold the same relation.(18) Protrusions from the postero-lateral portion of the disk may encroach upon the inter-
vertebral foramen or protrude posteriorly and involve the nerve passing to the foramen below. In the latter case the spinal theca would be deformed at the level of the intervertebral disk above the foramen of the nerve involved. (16)

Roofe attempted to trace the origin of the nerves which were observed to incervate the annulvs fibrusus and the posterior longituiinal ligament. He dissected in a cadaver the recurrent spinal nerves to the above structures and found fibrous-like strands returning fron beyond the dorsal root ganglia to the vertebral canal, through the intervertebral foramen. Histological stuaies did not convince him that the stranis were nerve fibers. He did not find nerves from a recurrent branch other than the one passing through the foramen. He also removed the fourth and fifth vertebrae with the intervening disk and these he fixed, sectioned and stained. He observed many fibers in the annulus fibrosus. These were unmyelinated fibers and terminated in naked nerve endings within the annulus. No nerve tissue was ubserved within the disk itself. In the posteidor longitudinal ligament a small number of fine unmylinated fibers were found. Their position was almost invariably near the anulus fibrosus in the area where the posterior longitudinal ligament fans out to merge with the annulus. They also showed naked nerve endings as well
as glomerulus-like terminations.(19)
Because of the radiation of pain found in "Sciatica" it would be well to review at this time the dermatomes supplied by the lumbar nerves. The first lumbar dermatome or the area of sensibility which remains after the eleventh and twelth thoracic, and all sacral roots have been divided, occupies the inferior part of the abdomen and upper part of the anter or and lateral surface of the leg. At the dorsal side it forms a band which reaches the spine of the fifth lumbar vertebra. The second lumbar dermatome lies chiefly on the anterior aspect of the thigh but there is also a small band on the dorsum of the trunk which is not continuous with the main area upon the anterior surface of the leg. The third lumbar dermatome has a great extent of overlap. It has a charasteristic shape, a central part around the knee, an upper prolongation along the anterior and internal surface of the thigh, and an inferior strip or band along the inner side of theleg reaching below as far as the internal malleolus. Also there is a small band on the lorsal aspect of the trunk not in continuity with the main area upon the lower limb. The extent of this dermatome may present considerable individual variations. The fourth dermatome occupies the anterior side of the leg, the internal part of the dorsum of the foot and the great toe. On the sole its border runs from between the first and second toes

Abstract

backward behind the incernal sile of the leg. At the level of the knee it turns forward then benas behind the head of the fioula to the outer side of the leg and finally returns to the dorsal aspect or the foot where it reaches the interdigital space between the hallax and the second toe. The filth dermatome occupies the anterior siue of the leg, and the entire dorsum of the foot and all tues. The burder runs along the outer border of the foot behind the external malleolus, up the leg and then curns below the head of the ridula to the anterior aspect from where it runs down along the internal side of the leg vo the sole. It occupies the medial part of the sole, and the plantar surfaces of the first, second and third toes, but not that of the fourth ant fifth toes. The first sacral occupics the sole and the plantar surtaces of the toes. From the sole it spreats lipward along the pouterior side of the leg. The second sacral occupies the posterior surrace of the thigh and leg, the sole oi the foot and the plantar aspects of the toes. (20)

Not only the anatomy but the physiology and the mechanism of the veruepral lisks must be understood before the pruaction of a protrusion or herniation can ve comprehended. By means of the elastic turgor of the disk a state of equilibrium is establisned be-
tween the various spinal ligament s and the expansil force or the disk. This equilibrium tenis to resist deforming forces and to restore the normal state of the column when deformity has occured. The expansil force is due to the compression of the nucleus pulposus within the confines of the annulus an the cartilagenous plates. (15)

Petter, using calaver spines of inlividuals dying of Tuberculosis at the Glen Lake Sanatorium and studying them four hours after death, markel the vertebrae an: found a definite expansion of the isk occurred upon removal from the body. He notel further expansion when the an nulus fibrosus was sectionel. The amount of pressure recuired to reduce this expansion was found to be on the average 32 pounds. (21) In the erect living subject the weight of the trunk and upper extremeties must raise this prescure in the lower lumbar area well over 100 pounds. During the transitory phases of spinal movement, as when the back is extendef from the flexed position with no resistance but that of gravity, estimates indicate the pressure to be in excess of 200-300 pounds. The ability of the disk to withstan such pressure is in all probability related to its high water content. "Pascal's law says that liduids transmit in all direction, and without diminution, any pressure that is applied to them and
for all practical purposes may be considered incompressiole".(1b) Naffiziger, taking the spinal column as a lever of the third class, has estimated that the lumbar region carries the brunt of the pressure and that the pressure on the disks, when the subject lifts a weight of fixty pounds unaer average conditions, to ve aiout bul pounas. He goes even fiurther in saying that under othr conditions there are fleeting perioas during motion in which the pressure is considerably in excess of this rough estimate. (16)

The axis of movement between aujacent verveurai over a limited range pass through the nucleus pulposus. Any change in the size of the disk is very small. However there is a crange oi shape on movement. There is compression of the anterior part of the disk and expansion posteriorly during flexion. In extension there is anterior elongation and posterior compression. Shuald extension progress to where the spinous processes touch each otner this point O_{1} contaut becomes the fulcrum and further extension results in elongation of the entire disk with narrowing of its diameter. This aiternating compression and extension of the disk produces displacement of the nucleus pulpusus posteriorly in flexion and anteriorly in extension.(15)

If tension is thrown upun the pusterior purtion of the annulus in rlexion and ir some rotation should
accompany ilexion, the mnulus is Iurther aroject to tursional stress. Furtner, in reaching rorwaru to one side, the anatomical arrangement in the lumpar region is such as to dimit rhai rotation which so freely occurs in the thoracic segments. This limitation forces lateral bending in the lumbar region, which puts the major stress on the postero-lateral portion of the annulus and the ligamentum flavum of the contralateral side.(16)

THE PATHOLOGY
It is difficult to determine what is a normal disk and what is pathological. This is because of the changes In the structure of the iisk throughout life. Because degenerative changes are found so commonly in supposedly healthy spinal columns at midale age it must be assuned that these changes are the result of age porcesses in an organ male susceptible because of its functional activity. These changes may vary greatly. Solution of the continuity of the cartilage plates allows escape of nuclear material and hence loss of the elasticity. As age advances the nucleus progressively loses its iistinctiveness and the iisks become more honogenous. At this time the cavitiss and the villus-line projections are found. Thereafter the isi: undergoes roressive dehydration and fibrosis. Elatts fornd tha in an examin-
ation of 50 sines found that 20% of them hat berniations of the noleis into adjasent vertebral bodies, 16\% had a rupture of the nelevs rosteriorly into the neural canal and 6% had anterior protrisions. (22) Schmorl, who lead the work on the intervertebral disk, fornd the se nodules in 56 of 368 investigations of the spine.(23)

There has been much discussion as to whether the lesions are herniations of the nucleus pulposus or protrusions of the disk. Saunders and Inman are of the opinion that both varieties may be found.(15) Spurling and Bradford state that disease of the lisk is rarely responsible for nerve root compression except when the annclus fibrosus has ruptured and allowed the nuclevs pulposis to extrude throtgh the lefect. (18) Devcher, in a pathological study of 100 cases of protruded intervertebral disk found not a single specimen in which annular parts of the disk were not also present. The relationship of the annulus and the nucleus was found to be variable, in some specimens the annulus being the predominating tissue and in others the nucleus predominating. But at this age, the age that the lesion is most frequently found, the demarcation between the annvilus and the nucleus is not very definite. (24)

A typical rupture is a discrete circumscribed mass projecting from the posterior margin of the disk
to one side of the miłline. It not infrecuently is, loose. (25) The extruded nuclear material has a marked tendency to become transformed at its periphery into cartilage or pseufocartilage. This may even go on to calcification. In some specimens the structure is characteristically that of the nucleus although as a rule the cellular elements are increaset an the re is a true inflammatory reaction. In others, and perhaps the majority, there is a mixture of the pulposis and annulus showing a varying degree of cartilagenous metaplasis, inflammatory reaction and necrosis. (15)

Grossly Deutcher distinguishes two different types of protrusion. The single dense piece, which characteristically is that of "wet rolled-up blotting paper", and the fragmented protrusion. The fragments of the latter vary greatly in size and shape but this factor is meaningless. This worker a lso found that in 22 cases of the 100 there was a lefinite edematous swelling of the prom trusion. He found the same thing, but to a more varying degree, in the other cases. This point will be considered later in this paper. (24)

The protrusion is most likely to occur in the posteriomlateral aspect of the ilsk. This is because of the poor lateral development of the posterior longitudinal ligament in this area. The posterior ligament reinforces the annulus. (26) At the 4th lumbar disk a protruded
disk would press on the 5 th lumbar nerve but might also press on the 4 th nerve at the intervertebral foramen. Melially the lesion might also press on the thecal sac with the lst and 2nd sacral nerves.(26)

Of 100 operatea cases Love am halsh found 113 protruted dises. There were 12 cases of multiple protrusions and 88 cases of single protrusion. Of the single cases 76 were in the lumbar region and of the multiple cases all were in the lumbar region with the exception of one case which had a llth thoracic lesion. 39 of the cases had the lesion in the 4 th disk and 47 had the lesion in the 5th disk. (27) Hampton found that in 39 protruded disks of the lumbar area 92% were at the 4 th or 5 th disk. Of the se cases 24 were lesions at the 4 th and 11 were lesions at the 5th. (28)

ETIOLCGY

There has been two main theorjes as to the etiology. The early workers believed the lesion to be neoplastic in origin. Here again let me quote Hawk. "One gets the impression that Chondromata as a diagnosis was made not because the workers were certain, but because they knew of no alternative". Hawk goes on to say that it may be impossible to differentiate a chondroma from a normal fibrocartilage.(13)

The most recent theory, and the one adhered to by
the majority of the workers, is that of trauma. As shown in Table I some men have found a definitely associated history of trauma in as high as 80% of their cases. Fincher found a specific history of injury in 70% of his 50 proven cases of protruled intervertebral disk.(4) Skinner believes that trauma was present in all cases but, because of its insignificance, was not remembered. He also believes that repeated minor trauma is of the greatest importance.(29)

Naffziger, when he discussed the pressure attendant upon use of the spinal column, stated that the magnitude of the pressure was sufficient to account for herniation in a rormal isk from a single traumatic incident. (16)

Chamberlain and Young, in their studies of the disk by means of intraspinal injection of air,found that in every normal case the maneuver of hyperflexion flattened the contours of the ventral surface of the thecal sac, while hyperextension prodved visible bulging of soft tissue into the canal opposite each disk. In a few cases of protrusion they were able to obtain evidence of accentration of the disturbance during extension and partial reduction of the protrusion during flexion.(26) A traumatic incident occurring while the subject was in a position of hyperextension wovld clearly inhance the chance for rupture of the annulus.

It has been brovght forth before in this paper that lateral bending in the lumbar region places a great deal of strain on the annulus ant posterior longitudinal ligament of the contralateral sile. This position also would predispose the annulus to rupture if a traumatic incident shovid occur.

Saunders, in his discussion of the cavities and villus-like projections of the nucleus, stated that he believed them to be an indication of an early degree of dessication. They were fount in the older subjects with great frequency, especially on dehydration by alcohol during the process of sectioning. The cavities were found with the greatest frecuency during the milde decades. (15) As seen in Table 1 the average age of cases with this lesion is between 37 and 41. Thus it is logical to assume that with dessication and loss of the normal elasticity, the nucleus and anmulus are more predisposed to the effects of trauam.

Indirect evidence that trauma is the etiological factor is shown in that the lesion prejominates in the male (3-1). The type of work performed by the male subjects him to a greater chance of traumatic insult than does the work of the female. The distribution of the lesion to the curvatures of the spine, the areas of greatest mechanical stress, is another factor point-
ing inlirectly to trauma. (27)

SYMPTCMS AN SIGNS
Macy, in a review of 100 cases, states that it is very difficult to raw any lefinite conclusions as to the symptoms found in the sciatic syndrome. He associates the following manifestations: Recurrent backache with recurrent sciatic pain; Continuovs backache with recurrent sciatic pain; Continuous backache with continuous sciatic pain; Continuovs sciatic pain without backache; Recurrent sciatic pain without backache. (30)

A fairly typical case was that of Mrs. P. E., a white ivorced female, age 39, who enteref the University Hospital on March 5, 1941, with the complaints of:

1) Three attacks of "sciatic rheumatism", thelast attack being in May, 1940;
2) The rheumatism char acterized by pain in the right hip an down the lateral side of the leg into the two small toes;
3) Pain an tenerness in the lower back an the right buttock.

The first at tack had been 11 years $a, 0$, the $2 n$ had been 3 years ago, an the present attack began in May, 1940. During the last attack the pain had been so severe that she had spent one half of the time in bed. The only in-
jury she could recall was 3 years ago when she had slipped and struck her back against a show case. The sole of her right foot had seemed numb. The pain hat been very sharp and of a "twisting" nature. She stated that the pain became worse if she tried to raise her leg without bending her knee. Coughing would cause her a twinge of pain down the leg. She was able to relieve the pain somewhat by lying on her ablomen and propping herself up on her elbows.

She had been treated by various medical men and by Chiropracters. One of the latter gave her some relief by manipulations of her leg ant spine. She stated that luring these manipulations she would feel a catch in her back following which the pain would be relieved. Frequently, however, before she left the elevator of the building something in her back would snap and the symptoms would return again.

Examination showed tenderness in the region of the greater sciatic notch, and positive Lasecue's sign,but no sensory charees. The ankle jerk on the right was markedly decreased. Thus she presented a history of recurrent pain in the low back, gluteal, posterior thigh, and postero-lateral calf, paresthesia exten ing to the lateral two toes, a positive Lasec e's sign and absent ankle jerk.

No roentgen studies with contrast medium were done
and she was subjected to a partial hemilaminectomy. Complete recovery was obtained.

The Pain
The most severe pain is referred to the root involved. There is, however, no way of excluing painful stimuli overflow into sementally aljacent spinal nerves.(31) It may be referred to the peripheral instribution of the spinal-nerve root, or it may involve more than one peripheral segment, depeniing on the size and the location of the protrusion. It is usually referred to as "root pain". Root pain is defined as "pain which begins within or near thr spinal corl ant is projected peripherally to that part of the boty or extremity innervated by the nerve fibers which lonve the cord through the spinal-ner e emerging at that level. The pain is often described as 'sharp','shooting', or like an 'electric shock' ". (32) This causalcia is an irritative phenonemon an: it is encounteres in incomplete nerve lesions. (33) It may be the only complaint. (34) In orter of frequency the painful areas are usually the posterior ani lateral thigh, the poeterior an lateral calf, the lumbosacral regior, the gluteal an sacral-iliac region and the lateral borier of the foot. (35) The pain is found to be unilateral in from $68 \%-85 \%$ of the cases.
cases. (27) (36) The probability is that the pain is due to pressure on the posterior longitudinal ligament. (27) Attentin is again called to the work of Roofe who has shown efinite nerve fibers in the annulus but not the nucleus pulposus. (19)

Intermittancy

Intermittancy is a common finding. There are several varied theories to account for this. Deucher reported the following: "In 20 of 22 cases in which the pathological specimen sh owed marked evilence of edematous swelling attacks of pain lasting for from 3 weeks to six months ha: occurred inmediately before registration at the clinic. Attacks of varying legree prior to these had ceased. In the other 2 cases the history was somewhat indefinite, but there had been symptoms for three and two years, respectively. These facts lead to the supposition that elema may be the cause of the recurrent attacks or exacerbations of pain. In many cases In which repeated painful attacks oscurred over a period of years, a relatively small protrusion was found at operation, so that it serms likely that in some cases at least the repeated attacks were the result of recurring edema of the protrudet portion of the iisk. Edematous swelling and its subsidence under altered conditions, such as rest in bed, seem to offer one explan-
ation of the intermittency of pain in these cases". (24) Love and falsh, ant also Macy, believe that the explanation is a change in the position of the herniatel nucleus. The former two men believe that the nucleus may in some cases return to its normal position an be extruiel again. (27) Macy believcs that the isplaced nucleus changes its position beneath the annulus fibrosis. (30) It has been statel before that Chamberlain an Young were able to observe, by means of contrast medium and roentgen rays, the partial reduction of a herniated disk luring flexion of the spine. (26) Woozhall fount a history of intermittancy in 96% of his cases. (36)

Paresthesias

Well localized paresthesias occur in meny patients with single root involvement and ar of great fiagnostic value. (31) Numbness, tingling, an? feelings or heat an cold are some of the paresthesias experienced by the patients. These prevertet sensations are usually referred to the distal ends of the extremities and are spoken of as acroparesthesias. (33) Paresthesias can and do occur with involvement of only onf root an also they usually preceet sensory changes. If the eensory division of the posterior divisions of the nerve is involved the pain an the paresthesias shoula be referred
to the small fermatomes about the gluteal region. (31) In the cases reported paresthesias have been prosent in over 50%.

Sensory Chances
On the subject of sensory changes many of the men aisacree. In the reported cases the percentage of sensory changes varies from 35% to 68%. ensory change is not as a rule present because of the overlapping of the cutanecus nerves. As Foerster has shown it is necessary to cut three adjacent posterior nerves in order to produce ant area of anesthesia. (20) Hypesthesia or anesthe sia would not be expected in a very large prrcentage of the cases since the protrusion usually involves only one nerve root. (37) Barr reports regarding sensory changes that at operation one half of his cases had the disk fragment pressing on only one root, ant in no instance in the se cases was there any sensory change present. (35)

More important in liacnosis than actual sensory loss in the causalgic-like iscomfort which is often proluced by stimulation in the hypesthetic zone. Stroking the skin of the involved dermatome may proluce a "needle and pin" or an "electric shock" sensation sharply limited to the involved segment. This hyperesthesia
"may overshadow the hypesthesia". (38)

Reflex Chance
A diminished or absent ankle jerk was found in 23% of Skinner's cases and in 72\% of Noothall's cases. (39)(36) Here again the inciaence of thi s sign as reported by the various men varies greatly. Braffort's cases indicete a greater incilence of diminished ankle jerks when the lesion is at the lumbosacral disk than when it is at the 4th lisk. This sign was found in only 3 of $2 l$ cases in which the lesion was at the 4 th iisk, but it is found in 10 of 13 cases with the lesion at the 5th disk. Bradford states that as a rule the reflexes return when true neuritis subsides. In case of subsidence of an enduring sciatica with residual neurological findings thre is an Indication of the possibility of painful disability from a disk disappearing with complete physiological destruction of the involved nerve. (31)

The reflexes are not of assistance in accurately locating the interspace because several nerve rocts frecuently supply the same muscle or may be responsible for the integrity of a certain reflex. (27)

Laseque's Sign
This test is accomplished with the patient lying supine. The thigh is raisel to right angles with
the trunk, the knee beine flexe . The leg is then exteniel on the thigh until pain begins along the course of the sciatic nerve. The foot is then zorsi-flexed to see if additional pull on the sciatic nerve exaggerates the pain. (18) This test is of significance in that it puts the sciatic nerve on the stretch an accentuates or precipitates the pain radiation. Macy and Naffziger have developed tests which are similar to this test in their principal.

Scoliosis an? Loss of Normal Lordosis
Among the signs is the constant one called the"spinal symptom". Next to the pain, this is one of the most dominate features of "Sciatica". It is not a special symptom for it exists in every case of irritation of the lumbar spine. It oes accuire special significance when associated with sciatic raliation of pain.

In the early staces when sciatic pain is not severe, the spinal column remains straight in the frontal plane, but complete forward flexion is impossible without acgrevation of the pain. In other worls, the Iumbar spine is rigid but not doformed. This rigiaity may persist throughout the course of the disease an isappear when the pain ceases. Soon after the onset of pain an? while the pain is increasing, the spine curves laterally, displacing the trunk to the side away from the pain. This is the socalled contralateral sciatic scoliosis. Less frecuently
the contracture bends the spine in the reverse ircotion, thus iisplacing the trunk towards the painful side. This is the homolateral scoliosis. This scoliosis is due to muscular contraction, which is due to a reflex inducet by the pain to diminish the pain. The loss of the normal lumbar lordosis is of the same mechanism. The contralateral scoliosis is an attempt to separate the articular surfaces of the intervertebral joints on the painful side, and also to widen the intervertebral canals and to immobilize the joints. The homolatral scoliosis relaxes the joints and makes the nerve corf relax on the painful side. (40)

Barr fount a list of the spine in 26 of 40 cases. In 15 cases the list was away from the site of the lesion and in ll cases the list was towarl the site of the lesion. In 27 of these cases a lumbar kyphosis was present. Barr also attributes this to the muscle spasm. (35)

Localized Tenderness

This sign was present in all of Finchers cases. In the se cases there was present a tenderness on pressure in the interspace between the posterior spines at the level of the site of protrusion. This he found to be a maximal painful area and in most cases it was the only point of interspinal pain. (4) Pasula also brought forth this point when he state that his cases consis-
tantly showed tenderness over the spines of the lower lumbar area. He does not, however, go as far as Fincher, and say that there is a maximal point of tenderness over the involved interspace. (41)

Motor Weakness, Atrophy, ant Fibrillation
Fibrillary twitchings in the calf and the peroneal muscles occur in a small number of cases ($4 \%-8 \%$). They are most frequently found when there is also muscular atrophy. They are probably explained by the root irritation. (27) The mascle atrophy, paralysis or one or more extremities or of the vesical or anal sphincter are ususally late developments. Sphincter incontinance occurs in a low percentage of the cases, and diagnostically they are not of major i portance. Caution should be exercised in judgine motor weakness and atrophy. These signs must not be conrrsel with isability because of the pain. Atrofhy can ocour from lisuse. (18)

There are no physical, neurological, or orthopetic signs which are fount alone in ca:es of protmsion of the intervertebral isks. fll of the known signs may also be found in other condition, (32) but many of the men interestel in this lesion feel that the signs definitely aid in the location of the lisk. Spurling an Eravford say lefinitely that the neurological symptoms ant signs
are reliable. " Durine the past three months we have successfully removed nine consecutive herniations without conimmation with cortrast mediums". (Spurling-18) On the other sile of the fence are Love on walsh. They Delieve that it is impossinle to loaste the interspace involve? by reurologionl means; there are no sensory or motor changes chacacteristic enouch for onysical examination alone to accrrately looate the lesion. (27)

In a personal communication Kergan has pointed out that the important areas in location of the lesIon by newological msans are the bic toe, the two lateral toes, an the heel. As has been stated befors in th is paper the paresthesias usually precele the sensory chances, or in other words, the subjective symptoms precele the objective symptoms. True, there are cutaneous sensory overlaps but if the above three areas are kept in mind and a good history is obtained as to paresthesias, the neurolorical diagnosis will be made more simple.

Another point brought out by Keegan is the fact that so many of the men concerned with cases of sciatic pain speak of the pain as being a"referrel pain". Keegan believes it shoul? be brought to the attention of these men that "referred pain " is a type of visceral pain. (42) "The visceral afferents carry the impulses to the spinal cort via the posterior root; they are car-
ried upward ans rach the thalamus an cerevral cortex; instea. of being localizel in the liseasel viscus these pains ar referred to definite skin areas. The latter become hyperalgesic to stimuli while the patient is experiencing pain or in the interim. The location of the skin area to which the visceral pain $1 s$ referrel is letermined by the fact that the visceral afferents rach the same cord segment which innervates the particular skin zone. (33) The pain of the sciatic syndrome is due to direct irritation of the nerve root. It is not visceral pain and therefore "projection" or "radiation" of pain should be the iescriptive terms used.

QPECIAL DAGNOETIC PROCEDRS:
The Reverse cueckenstedt Test
Love is the most energetic advocate of this test. He places a cauial needle in the sacral hiatus. A lumbar puncture is then inserted into the lumbar arachnoid space, a manometer is attaches an then 10 co fractions of a 1% solution of Proceine Hyrochlorile are injeoted into the caulal epi ural space through the caral nesfe. Nomally there shol? be aroreseive rise in the monometer readines as the caucl seo is comprose? by the ex-
 tal of 40 oe of the 1 sclution of Prooaine are infected extradurally. If a tumor or protrued issk of suffioient
size to obstruct the caudal sac is present, no increase in manometer readings will be found. In case the sciatic pain is not caused by a tumor or extruted disk the pain is usual y exagerated and then relieved on injection of each fraction. The order of events is first, pain from the irritation of the nerve roots and posterior eanglia, and then relief as the fluid diffuses and its anesthetic properties become manifest. In cases of compression by a tumor or disk the pain is unbearable and injection will hove to be discontinued.(43)

Cerebrospinal Fluid Tctal Protein
Examination for total protein has been of no positive aid in dianosis of protruded disk. kinner was able to find no elevation in his cases.(39) Pennebacker did lumbar punctires on 25 ases an fornd that in 17 canss the total protein contert was 45 me . or lass, in 6 cecs it rus between 45 and 65 m. , ent in only 2 oeses wes it over $65 \mathrm{~m} .(44)$ te botel pretein in mila rame peroent eareases ravily wh inoreasina Tistance above the Irsion. It is whest brlog the Iesson. "enoe in the limber rupture the elevation is vsually quite molerate. If possible the nesile should be introduced below the 5th lumber vertebra.(25) Nobinson consilers any inorease on the total protén as only an Indication for myelograns with contrest medium. (25)

Fher tency of symprone and gigns as frpcettd by tele VARIOTS ATMHCRS

	LOVE-FTNCUE-BERI-SNINNCR-NCOMAL-							CAN
No. of cases	,	76	50	100	13	25		100
Age average	,	39.8	--	37	39	36		--
Irauma ilist.	,	71	--	80\%	23\%	47%		--
Ave. Duration	,	4 yr	--	--	3 yr	3 $\frac{1}{2}$	yr	--
Back Pain	,	95\%	--	--	-	100\%		70\%
Sciatic Kad.	,		60\%		--	100\%		--
inilatrral	,	68\%	--	80\%	--	--		--
Bilateral	,	25\%	--	20\%	--	-		
Recurrent Sain		82,	--	40\%	--	25\%		--
Accent. by cough, etc.	1	30%	--	40\%	60\%	36%		55
Hypesthesia		31\%	84	35	--	68.		55%
Paresthesia		40%	--	--	$61{ }^{\prime \prime}$	483		--
Localized tenderness	'	--	50\%	50\%	--	56		--
Paravertebral muscle spasm	;	--	- -	60	76\%	72\%		--
Change in Lordosis	,	--	--	90\%	76%	40\%		--
Laseque pos.		92	--	100\%	768	100		--
Sciatic tenderness	'	63.	--	--	53\%	28\%		--
Motor weakness, etc.		26\%	40\%	15\%	7\%	40\%		27.5%
Reflex change	'	57%	84\%	50\%	23\%	72\%		50\%
```Fibrillar twitchings```	',	--	40\%	--	--	3\%		--
Sphincter incontinance	;	8\%	--	$5 \%$	--	--		$7.5 \%$
Disk location	'							
I	'	2						
II	'	1						
III	'	10		10		3		
IV		40		50		12		
V	1	47		35		10		
Multiple	1	12						

ROENTCEN STTIES
The final word in diacnosis and in the location of the lesion is obtained by the use of Spinograms. Eerens has summarized the points for and afainst both air an lipiodol o11 in the following manner:

For 0il: It gives a clearer picture, is more accurate, is easier to perform, is not painfll, needs no anesthetic and is useful in any part of the canal. Against Oil: Operation is necessary for removal, inflammatory reaction results if oil is not romoved, if not all removed the oil will show in subsequent roentgengrams. Cccassionally it is placed extradurally and is material for malpractice.

For Air: It will reveal all medium sized or large deformities of the lural sac such as would unquestionably require surgery. It has no after effects and nothin can be revealed by later examinations. It is not material for malpractice and may be performed several times if necessary.

Against Air: It necessitates a powerful rontgen aparatus, and even then does not always ive a clear picture. It is not accurate for small lesions an is painful necessitating a sedative or anesthetis. It is most useful in the lower horsal, lumbar an sacral eformities. It takes more time and trouble to perform. (45)

Camp reorts that anotrer isadvantage in the use of air
is the difficulty in controlling the position and distribution of the air. (46)

Chamberlain and Young ha ve reported more than 300 spinograms with air. Each operated case verified their results. Their technique is as follows: If the lesion is below the third lumbar vertebra they use the lateral decubitus position with the head of the table lowered to an angle of 20-25 degrees. At the third lumbar and 18-20 gage needle is inserted into the subarachnoid space. Spinal fluit an air is exchanged in 5 co cuantities until air escapes through the needle. The usual amount needed is $40-50 \mathrm{cc}$. If the lesion is above the third lumbar vertebra the needle is inserted in the same place but the patient is placed in a horizontal position. A Queckenstedt test is then done. If there is a partial or complete block the fluid is replaced with $3-6$ co of air, and the patient is placed in a sitting position. If the geckenstedt is negative the needle is replaced by a lumbar or cisternal puncture. The patient is placed face down and the table changed to the horizontal position. They report that over-exposure of the films gives the best results. The minimal views required are steroscopic, lateral, and anterio-posterior projections. The head is kept lowered because if this is not done the air will ascent into the cranium and produce headache. (26) The diagnosis by roentgen rays depends in the
majority of the cases, upon the intentation or encroachment on the limiting membrane of the subarachnoit sac. A herniated disk carries the posterior longitudinal ligament dorsad so that intentations of the ventral aspect of the air column is usually detected on lateral projections. This defect is usually at the level of the interspace but if it is marked the membrane will be pushed forsad for a variable distance below. According to these men the advantages of air is that it leaves no unabsorbable an possible irritating substance in the canal. Oxygen and air are completely absorbed. (26)

The indications for Lipiotol are, l) in case of doubt as to the lesion, 2) when precise anatomical location of the lesion is desired by the neurosurgeon, and 3) when air studies have been inconclusive or unsatisfactory. (46) Keegan believes that intraspinal injection of lipiodol shovid not be d one until conservative measures have failed to give relief an when serious disabilities exist. (47) Robinson eonsiders the use of lipiotol only in those cases that have an elevation of the spinal fluid protein, in Whom an adecuate trial of orthopedic treatment has failed. In whom some other explanation can not be found for the sciatic symptoms and in whom a sacro-iliac or lumbosacral fusion is contemplated. (25)

Camp states that 5 cc is the optimum volume for accurate ant consistant localization. (46) Spurling is in
complete disagreement with this. "Iwo cubic centimeters is considered to ope optimun. In excess of this we consider it a handicap, for if the lesion is small it may be demonstrated only when a trin column of the opa ue material is passing the point of involvement. (48) According to Camp if less than 5 co are used a surprisingly large number of the large lesions and also the multiple lesions may be over looked. (46) In Table I is shown that the cases that Camp and Love report had among them 12 multiple cases. Camp prefers lumbar injection as he believes it is the safer place and that it keeps the oil in one mass in the lower part of the column.(46)

During the injection of the oil slow continvous pressure on the syringe should be used. This prevents droplet formation in the subarachnoid space. If the examination is negative the column shovid be examined at a higher level.(46)

The oil must be of a clear and transparent yellow color, and it must be warmed to 105 degrees $F$ before injection. If it has a brownish color it should be discarded for that color indicates deterioration and the undesirable presences of free iodine. Robinson states that the reaction of the meninges to the oil can practically be predicted by the pH of the oil. He belleves the reaction to be due to the free fatty acil. (25)

The oil is ore or loss of an irritant to the men-
an: therefore produces a ventral extradural pressure defect on the sac. Lipiodol cannot enter the local area. The root or roots aro pushe: almost firectly backwards against the facets over-hanging the conal. -efects in Which the root apears pinches of? juct below the lower border of the a ch of the lamina, an in which the arachnoit outpocketinc is obliberatel with slieht medial displacement of the order of the lipiodol column are not uncommon inlines at the fifth lumbar level. (25) The findings are usually characteristically like those aboce Tre factors that influence the feformity are, 1) the position an size of the protrusion, 2) the as:ociate? hypertrophy of the ligamentum flavum, and 3) the chances in the nerve roots. (46) The larger the protrusion the more tendency toward bilatoral feformity. This Camp found in $35 \%$ of the cases he examined. (46)

The finfings of the roentgengram must be carefully correlated with the symptomotology and history. Horwitz studied the lumbar spines of 75 adult male human cadavers. He fount narrowed lisks in 24 cases, protrusions of the disk into the vertebral boiles in 4 cases, anl the posterior protrusions into the canal in 9 cases. He also reviewed the histories of 25 of the cases, but in the histories of these cases backache was an infrecuent and minor complaint and in no instance had the patient experienced the sciatic pain syndrome. Horwitz concluded that since the
use of contrast myelograms was usually needed for liagnosis it is important to understand thet other lesions, largely the result of legenerative processes ant also involving the intervertebral isk and ligamentum flavum an? their adjacent structures, may be asymptomatic and yet produce defects in the intraspinal column of air or Iodizet oil. (51) Spurling reported that in some of his cases severe, persistant sciatic pain with low back pain, rigidity, hypesthesia of the lateral aspect of the leg, and diminution of the ankle jerks, gave positive results at surgical exploration regerdless of the tipe of defect demonstrated by the iodized oil. (48) He goes on to say that on the other hani exploration frequently gave negative results where characteristic defects had been demonstrated but neurological evidence had been less characteristic.

Young has had gCo results with air myelograms. He states that oil is never justified. His reported cases do not seem to number enough to justify his statement. In 13 cases with the level of the lesion 3emenstratel by air he was able to confirm the iagnosis at operation. He found five herniations of the nuoleus pulposus and eight tumors of the caula ecvina. (52)

Johnson has reported 24 operated cases in which lipiodol stuifes had shown a defect in 22 cases. 6 cases had the lesion at the 5th lisk, 10 had the lesion at the

4th $\dot{\text { isk, }}$ anl 6 cases with the lesion in other locations. (53) Foppen repontes 2 ceses whior shorl serve as a warning to those who heve bling trust in the spinograms. These 2 cases were thought to have fingings with lipiolol that simulated herniated disk. When they were subjected to laminectomy no evidence of herniation was found. The defect had been produced by a chronic thickening of the arachnoid. (54)

In Table 11 is a brief summary of the cases operatet at the University Hospital by Keegan. These ar the cases operated during the period of December 1939 to the present date. There were ten cases but one was not included in this table as it was treated by the Orthopedic department with a body cast. A point worth consideration is that of these 9 cases, 5 of them were operated without previous localization by means of spinograms. In 2 of these cases the spinograms were not attempted. In 2 the spinograms were unsatisfactory. In 1 the spinogram was negative. Yet in all 5 cases a protrusion wes found at operation, In another case no lesion was fount at operation yet lipiodol stuiies had shown a definite defect. This group of cases, although not large, certainly makes one regart the results of the spinogram with no small degree of skepticism. The necessity of removing the oil from the dural sac does not secm to make its use warrented if the neurological iagnois can be made.

CASES OPTRATED AT THE INIVERSITY OF NEBRACKA HOSPITAL

DECEMEHR 1939 TO PRESENT DATE

CASE		1	2	3	4	5	6	7	8	9
Age	1	31	46	57	27	48	50	22	35	39
Duration	1	5 mo	3 yr	3 yr	2 yr	4 yr	12 y	r3yr	5 yr	11 yr
Intermittancy		\%	*	*	,	,	\%	*	*	,
Backache		\%	*	$\because$	-	-	\%	*	$\ddot{H}$	*
Scietic pain	'	\%	*	$\because$	-	-	*	\%	*	\#
Muscular tenderness	!	-	-	-	-	*	*	-	\%	-
Loss of Normal										
Lordosis	,	-	-	-	-	-	-	*	\%	-
Sciatic tender-	'									
Laseque's sign		-	-	-	-	$\%$	-	\%	\%	\%
Ankle Jerl:		ABL	1		ABS	- A	BE.	AB	ABL	IM.
Motor weakness	!	$\#$	*	*	$\cdots$	-	\%		-	-
Hypesthesia		$\%$	$\%$	-	-	-	-	\%	\%	-
Faresthesia		-	-	-	-	-	*	-	-	*
Muscle Fibril-	,									
lation	1	-	-	-	-	-	$\%$	-	-	-
Sphincter loss	,	-	-	-	-	-	-	-	-	-
isk Location	,	5 th	5th	5 th	4 th	5 th	-	5 th	5 th	5 th

* Positive fin incs; - Iecative rinsing.

Case\#8 and \#9: Partial Hemilaminectomy at operation. No Myelograms were done.
Case\#4: Legative Myelograms; at operation a protroled disk was found at 5 th lumbar interspace.
Case\#t 5 and\#r: Lipiodol stulies were unsatisfactory. At operation lesions were found at 4th and 5 th disk respectively.
Case\#6: No lesion was found at operation although Lipiodol studies had shown a definite constant defect. The failure was explained on the basis that the protrusion had been reduced luring the course of the anesthesia. while on the opereting table attempts were made to locate the lesion by placing the subject in hyperflexion, and also in hypere tension, failed.

## Trientment

The technicue and finer details of the treatment of protrude intervertebral lisk will not be gone into at great length in this paper. There ar a few points in modern ay tratment that should be emphasized.

Love and Nalsh bring forth the question of fusion. They consider that fusion is not necessary nor inficated in a high percentage of the cases. The Orthopedic surgeons at Mayo Clinic have fount it necessary to fuse the spinal column in only 15 of over 500 operations for the protruded intervertebral disk. According to the se men each case should be considered individually. Associated spondylolisthesis, extensive lumbosacral arthritis, and a static type of backache in adsition to the protruded disk shoula be indications for fusion. Contra-indications are younger persons whose bones are still growing and persons of advancet age who would have to be immobilized for prolonged periods. (55)

Another point is the amount of bone to be removed at operation, As much of the neural arch should be preserved as is possible. Hemilaminectomy usually is all that is necessary where a unilateral lesion is present. Love has found that resection of the ligamentum flavum suffices in cases of unilaterality of lesion with marked contrelateral sooliosis. Fie hes been able to do partial hemilaminectomies in which he remove? only the margins
of the laminae withot interruption of a single neural arch. (55) Keecan performed this type of laminectomy on Cases $\# 8$ and $\# 9$ as seen in Table 11.

If lipiodol stulies have been ane previous to operation the contrast medium should be removed. This is best accomplished by having the head an shoulders of the patient elevated. This position results in the collection of the radiopacue substance into a mass at the level of the lesion and making it more accessible. The use of a suction apparatus facilitates removal. Irrigation with warmed saline solution is also advantagous. (55)

The question of recurrence is often a problem. The entire disk is never removel and it seems very likely that further protrusion could occur. Furthermore it has been shown before in this paper that multiple lesions have been reported in as high as $12 \%$ of the cases. Protrusion at some other level could very logically occur. It would seem that careful postoperative instruction to the patient would in a good measure prevent recurrence. (55) Love instructs his patients to do no lifting or straining for a period of three months from the late of dismissal. "It is particularly important to warn the laborer, and all others who are accustomed to hard manual work, to return to their former duties gradually. Such
persons ast rocain thén oonfi snoe to oerry on". Tove has reortel only 5 recurences in over 500 oases. In all of the recrimences the Game lish was involve again. (55)

As jet there are fea incourain results of operation reported. Kescan reportel the results of 40 laminectomirs as Collows: 00-100\% leoovery in $57.5 \%$; 30-00\% recovery in $17.5 \%$ 50, recovery in 10\%; and failure in 15\%. He also reportet thet in $15 \%$ of these oasrs there was no lefinite patholocy found. (42)

CCNCLIGICN
An attempt has been male in this paper to correlate the anatomy and pathology of the protrusions of the intervertebral disk in the lower lumbar region with the symptoms and siens protuced.

The lesion has becn eainine an increasingly large amount of popularity in the past few years. As a pathological entity it has become recognized as a freçent cause of low bach and sciatio pain, ut in this respect it shares the limelint with many other lesions, all of which may protuce the ame peripheral symptoms and signs. Among these other les ons are bondylolisthesis, Chronic Strain of the acro-iliac an Lumbo-sacral region, ConEenital aftifctions such as ina ifila ant sacralization of the 5 th lumbar vertebra, Neoplastic conlitions,
and lumors of the Spinal cord.
It would be nice at this tine to be able to indicate the frecuency with which the protrufel lisis are a cause of low back and sciatic pain. But, as it has been shown in this paper, the reports of the men working with cases of this type have liffered wisely concerning incidence. Oraig and walsh have fount an incilence of only $3 \%$, yet Fincher has indicated an incidence much in excess of this.(3)(4) Pappworth, in a caustic review of the reported cases up to 1839 , brought forth the ouestion that many of the operatel cases cull possibly have been afflictions of the spinal cord that caused the same sciatic symptoms but in which the protrvsion of the disk had been an incidental finding, one of Schmorl's 15.2\%. (56) The work of Horwitz would tend to substantiate that thought. (51)

With regard to the diagnosis of the protrusion, a complete an detailed history as to onset and association with trauma, intermittancy, the type of pain, the paresthesias, and the previous treatment an effect of such treatment would be of tpmost aid.

Perhaps the use of special liagnostic procedures has somewhat eclipsed the benefits of a thorough physical an neurological examination. there is no guestion as to the iagnostic ait and the aid in localization that may be obtained by such procelures, especially that of the intraspinal myelo rams. But such measures are not infal-
lible. In many aaers they he been of no value and the subjection of the patient to such measures has seemed unnecescary. n many cases a toroush netrolozical examination ani a tetaile history were all that was neeled. The work of purling and the cases operated at the iniversity Fospital by Keegan support this statement.

At the present the lesion of the protruied disk is in a blazing spotight of popularity. It may be likened to the up-swing of a pendulum. There have been few reports of poor results. $H$, exe extensive follow-up reports on operated cases may bring to our attention a few poor results that have put in a delsyed appearance. This does not seem very probable for the treatment has been by proven surgical means and the tendency has bern to do partial hemilaminectomies with a minimum of disturbance to the neural arch. The popularity of the protrudel Aisk as a cause of "sciatica" may recede ant the inci"ence may be low when eventually establishet but as a patholonical entily,with a lefinite semonstrable lesion, the protruded disk has become firmy fixel in the rins of the minds of the Orthopeists an: Nevrolofists.

1. Taylor, J., Surgical Treatment of Pain; Lancet, 2: 1151-1154, Nov. 19, 133
2. Feynolas, F.C., Nevrosurgical Aspects of Low Back Pain; Industrial Medicine, $9: 182-184$, April, '40
3. Craig, W.M. and Walsh, M.N., iagnosis and Treatment of Low Back and Sciatic Pain Caused By Protruied isk and Hypertrophied Ligaments; Minnesota Nedicine, 22: 511-517, Aug. '39
4. Fincher, E.P., Neurologic Aspects of Low Back Pain and Sciatica; Annuals of Surgery, loe: 1028-1033, June '39
5. Barr, J.s., "coiatica" Caused by Disk Lesions: 40 Cases of Rupture of isk Occurring in Low Lumbar Spine and Causing Pressure on Cauda Equina; Journal of Bone and Joint Surgery, 19: 323-342, April '37
6. Goldwaithe, The Lumbo-sacral Articulation; Boston Medical and Surgical Journal, 164: 365-372, March 16, 1011
7. Adson, A. ., Diagnosis and Treatment of Spinal Tumors; Northwest Nedicine, 24: 308-317, July, ' 25
8. Stookey, B., Compression of Spinal Cord Sue to

Ventral Extraiural Cervical ChonAromas: Diagnosis and Surgical Treatment; Archives of Neurology and Psychiatry, 20:275-291, Aug. 128
9. Jandy, T. Loose Cartilace from Intrrvertebral isk imvlating Tumor of pinal Oord Archives of surgery, le:600-672, Oct. '29
10. Flsberg, C.A., Tumors of Spinal Cord: Problems in Their iagnosis and Localization: Procedures for Their Exposure and Removal; Archives of Neurology and Psychiatry, 22:949-965, Nov.'29
11. Peet, M.M., and Echols,D.H, Herniation of Nucleus Pulposus: Cause of Compression of Spinal sord; Archives of Neurology and Psychiatry, 32:924932, Nov. '34
12. Mixter, W.J., and Barr, J.S., Rupture of Intervertebral Disk with Involvement of Spinal Canal; New England Journal of Medicine, 211:210-215, Avg. 2, '34
13. Hawk, W.A., Spinal Comprcision Caused by Ecchondrosis of Tibrocartilage: With a Review of Kecent Literature; Brain, 59:204-224, June, '36
14. Nalsh, G., Our Increasing Nnowledge of The Spine; Medical Record, 143:133-136, Febr. 19, '36
15. Saunders, C.in., and Inman, V.T., Pathology of In-
vertebral ：isk；Archives of Sureery，40； 38s－416，March，＇40

16．Naffziger，H．C．，Inman，V．，And Saunders，J．B． de C．M．，Lesions of Intervertebral ンisk and Ifgamentum lava；Clinioal an Anatomical tudies；Brgery，Oynecology，anł Obstetrics， 66：283－258，＂ebr．＇38

17．Williams，P．O．，Lssions of Trmbosacral ine；jour－ nal of ore an Joint surery，le：6e0－703， Jでリ， 137
 pects of erniated Nucleus Pulposus at vourth and Fifth Limbar Interspaces；Journal of the American velisal fssociation，113：2019－2022， jec．2，＇39

19．Hoofe，f．í．，Innervation of Annulus Zibrosis and Posterior Longitudinal Ligament：Fourth and Fifth Lumbar Level；Archives of Neurology and Psychiatry，44：100－103，July，＇40

20．Foerster，0．，Jermatomes in Man；Erain，56：1－39， March＇33

21．Petter，C．K．，Methois of Measuring Pressure；cour－ nal of Bone and Joint Surgery，15：365－368， April＇33

22．Blatts，M．Jr．，Rupture of Nucleus Pulposus：Ana－ tomical stvey；Journal of Bone and Joint

Surgery, 21:121-126, Jan, '39
23. Schmorl, G., zur Eatholoischen Anatomie der firbelsaule: Klinische ochenschrift, s:1243-1249, July 2, ' 29 (Vourtesy of iacob magner)
24. Deucher, N.C., and Love,J. ., Patholoyic Aspects of Posterior Protrusions; freaives of Pathology, 27:201-211, $\mathrm{ebr} \cdot \mathrm{I} 39$
25. Robinson, J.M., Retropulsion of Lumbar Disks es Cause of Low Eack Pain with nilateral "Ciatic" Radiation: Roentegologic Diagnosis with Special Reference to Iodolography; American Journal of Surgery, 4s:71-88, July,'40
26. Chamberlain, $V$.F., and Young, B.R., Diagnosis of Protasion by Intraspinal Injection of Air: Air. Myelography; Journal of the American Medical Association, 113:2022-2024, Dec. 2, '39
27. Love, J.G., and Walsh, N.N., Protruled InterverteDral Disks: Report of 100 Cass in Which Operation was Ferformed; Journal of the American Medical Association, lll:396-400, July, '38
28. Hampton, A. ., and Kobinson, J.M., Koentgenographic Demonstration of Nuptured isk into Spinal Canal After Injection of Lipioiol with Special Keference to Tnilateral Lumbar Lesions Accompanied by Low Back Fain with "Siatic" Ha ia-
tion; fmericen journal of roenteenology, 36: r22-903, ec. '36
20. Skinner, H.L., and fountree, J. T., Herniation of Sisk and Associated Lesions, with leport of Cascs; Virénia Vedical Nonthly, 66:575-5:1, Cot. ' 39
30. Macy, E.B., Clinical Aspects of Protruted isk; Archives of Surgery, 40:433-443, March '40
31. Bradford, $\mathrm{H}_{\mathrm{H}}$, ant Spurling, R.G., Intraspinal Causes of Low Back and Sciatic Pain:Results of 60 Consecutive Low Lumbar Laminectomies; Surgery, Cynecology, and Cbstetrics, 69:446459, Oct. '39
32. Love, J.G., and Camp,J.D., Root Pein Resulting from Intraspinal Protrusion of Disks: Diagnosis and Surgical Treatment; Journal of Bone and Joint surgery, 19:776-804, July, '37
33. Brock, Samuel, The Basis of Clinical Neurology; The Anatomy and Physiology of the Nervous System in their Application of Clinical Neurology: Baltimore, W. Wood and company,1938
34. Bauman, G.I., Cause and Trestment of Certain Types of Low Back Pain and Sciatica; Journal of Bone and joint surgery, 6:909-914, Oct. '24
35. Barr, J.S., Intervertebral Disk Lesions as Cause
of Sciatica; British Journal of Meiicine, 2: 1247-1251, Dec. 17, '38
36. Woodhall, B., Kaney, R.E., and Vaughan, W.i., Low Back Pain and Sciatica, with Special kefrence to kupture of Disk; North Carolina edical Journal, 1:84-101, Febr., '40
37. Echols, D.H., Kuptured Disk; Cause of Sciatic Pain; New Orleans Medical and vurgical journal, 91: 243-246, Nov., '38
38. Spurling, R.G., and Granthan, E.G., The Neurologic Picture of Eerniations of Nucleus Pulposus in the Lower Part of Lumbar Kegion; Archives of Surgery, 40:375-388, March '40
39. Skinner, H.L., Ruptured isk and Hypertrophied Ligamentum Flava; pollow-rp Study; Virginia Medical Monthly, 67:400-494, Aug. '40
40. Putti, V., New Conceptions in Pathogenesis of Sciatic Fain; Lancet, 2:58-60, July 9, '27
41. Padula, R.J., and Keys, R.C., Herniation of Intervertebral Disk; Journal of the Connecticut Medical Society, 3:552-559, Oct. '39
42. Keegan, J.J., Personal Communication.
43. Love, J.G., Protrusion of Fibrocartilage into Spinal Canal; Procedings of the Staff Meetings of the Mayo Clinic, 11:529-535, Aug. 19, '36
44. Pennebacker, J., Sciatica and the Intervertebral Disk; Lancet, 1:771-777, April 27, '40
45. Berens, S.N., Lipiodol Versus Cil as Aid in Diagnosis of rrotrusion; Northwest Medicine, 39: 160-163, May '40
46. Camp, j. . . Roentgenologic iagnosis of Intraspinal Protrusion of isks by Means of raiiopaque Oil; Journal of the American Viedical Association, 113:2024-2029, јec. 2, '39
47. Lecean, J.J., an Tinlayson,A.J., Iow ack an ciatic Pain Cavsel by Disk Ilerniation; Nebraska Medical cournal, 25:170-184, Nay '40
48. Bell, J.c., ont vpurling, h.e., Concerning iagnosis of Lesions in Lower Spinal Canal; Raiiology, 31:473-480, Oct. '38
49. Nalsh, M.N., ant Love, J.G., Meningeal Kesponse Following Subarachncid Injection of Iolized Cil; Procedings at the Staff Meetings of the Mayo Clinic; 13:792-796, Dec. 14, '39
50. Barr, J.S., Hampton, A..., and Mixter, T.J., Pain Low in Sack and "aciatica" due to Lesions of Intervertebral Disks; Journal of the American Medical Association, lo9:1265-1270, Cct. 16,'37
51. Horwitz,T., Lesions of Intervertebral Disk and Iigamentum Flavum of Lumbar Vertebrae: Anatomical Study of 75 Human Cadavers; Surgery, 6:410-425, Sept. '39
52. Young, B.R., and Scott, M., Air Myelography: Sub-
stitution of hir for Lipiodol in koentgen Visualization of Trmors and Other Strvetures in Spinal Cord; American Journal of noent enoloy, 39:197-192, ebr. '3e
53. Johnson, •., Intervertebral isk Merniation with Keferred colatic symptoms: tudy of 40 Cases: Journal of one an Joint urgery, 22:708-716, JuJy 140
54. Poppen, J.I., Mernietion of Intervertebral -isk; Sureery Clinics of North America, 18:8ro8e7, June '38
55. Love, J. 0 ., and Nalsh, M.N., Intraspinal Protrusion of Intervertebral Disk; Archives of Surgery, 40:373-388, March '40
56. Pappworth, S., Ketropulsion of Nucleus Pulposus: Critical Neview; British Medical Journal, 2:1938-1040, Nov. 25, '39

