
 
 

 
 

___________________________________ 
This is not the published version of the article / Þetta er ekki útgefna útgáfa greinarinnar 

  

 Author(s)/Höf.: Levi, G., Ivanov, A. V., & Jónsson, H. 

 Title/Titill: Variational calculations of excited states via direct optimization of 
the orbitals in DFT 

 Year/Útgáfuár: 2020   

 

 Version/Útgáfa: Post-print (lokagerð höfundar) 

 

 Please cite the original version: 

 Vinsamlega vísið til útgefnu greinarinnar: 
Levi, G., Ivanov, A. V., & Jónsson, H. (2020). Variational 
calculations of excited states via direct optimization of the orbitals 
in DFT. Faraday Discussions, 224(0), 448-466. 
doi:10.1039/D0FD00064G 

 Rights/Réttur: © Royal Society of Chemistry 2021 

https://doi.org/10.1039/D0FD00064G


www.rsc.org/faraday_d

Faraday
Discussions

Royal Society of 
Chemistry

Faraday 
Discussions

Accepted Manuscript

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been accepted 
for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  G. Levi, A. V. Ivanov and H.
Jonsson, Faraday Discuss., 2020, DOI: 10.1039/D0FD00064G.

http://www.rsc.org/faraday_d
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d0fd00064g
https://pubs.rsc.org/en/journals/journal/FD


Journal Name

Variational calculations of excited states via direct optimization of
the orbitals in DFT†

Gianluca Levi,∗a Aleksei V. Ivanov,a,b and Hannes Jónssona

A direct optimization method for obtaining excited electronic states using density functionals is
presented. It involves selective convergence on saddle points on the energy surface representing
the variation of the energy as a function of the electronic degrees of freedom, thereby avoiding
convergence to a minimum and corresponding variational collapse to the ground electronic state.
The method is based on an exponential transformation of the molecular orbitals, making it possible
to use efficient quasi-Newton optimization approaches. Direct convergence on a target nth-order
saddle point is guided by an appropriate preconditioner for the optimization as well as the maximum
overlap method. Results of benchmark calculations of 52 excited states of molecules indicate that
the method is more robust than a standard self-consistent field (SCF) approach especially when
degenerate or quasi-degenerate orbitals are involved. The method can overcome challenges arising
from rearrangement of closely spaced orbitals in a charge-transfer excitation of the nitrobenzene
molecule, a case where the SCF fails to converge. The formulation of the method is general and can
be applied to non-unitary invariant functionals, such as self-interaction corrected functionals.

1 Introduction
Accurate modelling of excited electronic states in molecules is es-
sential for an understanding of fundamental photophysical and
photochemical processes, such as energy transfer and photocat-
alytic reactions. Density functional calculations of excited-state
properties of molecules are typically carried out using the linear
response formulation of time-dependent density functional theory
(TDDFT)1–3, which describes the change of the ground-state elec-
tron density upon a weak external perturbation. Standard TDDFT
calculations employ ground-state Kohn-Sham (KS)4,5 exchange-
correlation (xc) functionals, thus neglecting the time dependency
of the xc kernel, i.e. the functional derivative of the xc potential
with respect to the density, the so-called adiabatic approximation.
Such TDDFT calculations with KS functionals can provide fairly
accurate estimates of excitations to low-lying (valence) excited
states1,6 and do not require large computational effort.

However, TDDFT suffers from well-known deficiencies due to
the use of linear response theory and the adiabatic approxima-
tion. For example, doubly excited states are not accessible be-
cause they require a computationally demanding time-dependent
xc kernel7–9. Due to the lack of double excitations, the descrip-

aScience Institute and Faculty of Physical Sciences, University of Iceland, 107 Reykjavík,
Iceland. b Saint Petersburg State University, 199034 Saint Petersburg, Russia. E-mail:
giale@hi.is
† Electronic Supplementary Information (ESI) available: Character of the electronic
transitions, excitation energies and number of iterations for the benchmark calcula-
tions on excited states of small molecules. See DOI: 00.0000/00000000.

tion of conical intersections between ground and excited states
is qualitatively incorrect7. Furthermore, unless long-range cor-
rected functionals are used, TDDFT shows systematic errors for
excitations that involve displacement of electrons between or-
bitals of different spatial extent (such as excitations to Rydberg
states)6,10,11 or large spatial separation (such as charge-transfer
states)12–14. There, orbital relaxation effects are important but
are missing in practical implementations of TDDFT15–17.

Alternatively, excited states can be obtained as optimized sin-
gle Slater determinants corresponding to higher-energy station-
ary points of the energy surface that represents the variation of
the energy of the system as a function of the electronic degrees
of freedom. Such methods do not suffer from the same short-
comings as TDDFT and have, therefore, seen a resurgence of in-
terest in recent years10,11,16,18–33. Some of these approaches en-
force orthogonality of the excited-state solutions to the ground
state23,24,31,34,35, but we consider here the more straightforward
version of excited-state DFT§ where a relaxed higher-energy so-
lution is found by ensuring only orthogonality between the or-
bitals11,32. The energy of an excited state obtained in this way
does not necessarily represent an upper bound to the energy of

§ This methodology is often referred to as ∆SCF in the literature, a terminology that
refers to the fact that an excitation energy is computed as the difference between
two separate self-consistent field (SCF) calculations. Since this method gives an esti-
mate of other excited-state properties, not just excitation energy, and that stationary
points of energy functionals can be obtained without using the SCF procedure, we
rather use the more general expression "excited-state DFT".
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the exact excited state11,36,37. Despite this, such higher-energy
DFT solutions obtained with KS functionals have been shown to
give useful approximations of excited states21,32. The approxima-
tion is expected to degrade for states that are intrinsically multi-
determinantal, but in many cases, such as for open-shell singlets,
the excitation energy can be estimated with good accuracy using
the Ziegler sum rules38.

The lack of orthogonality implies that the optimization of
a given higher-energy state is liable to variational collapse
to a lower-energy solution of the same symmetry. Vari-
ous techniques have been proposed to avoid variational col-
lapse. The most commonly used approach involves combin-
ing the self-consistent field (SCF) procedure with a maximum
overlap method (MOM)11,21,32 that helps retain a given non-
aufbau occupation of the orbitals. However, SCF-MOM, or
any diagonalization-based optimization methodology, can still be
prone to erratic convergence behavior in some cases, in particular
when degenerate or near-degenerate orbitals are involved.

Methods based on direct optimization (DO) of the orbitals en-
sure more robust convergence than SCF39, but they have not been
explored much for excited states. This is because excited states
correspond to saddle points on the energy surface11. Finding sad-
dle points with an unconstrained optimization strategy, such as a
quasi-Newton algorithm, is more difficult than minimization. In
a recent implementation of DO for excited-state DFT the squared
norm of the gradient is minimized19. This method can success-
fully deal with cases for which SCF-MOM fails, but there are also
complications. First of all, the second derivatives of the energy
are required in the minimization and this increases the computa-
tional effort. Secondly, quasi-Newton squared gradient minimiza-
tion is not as well conditioned, usually requiring more iterations
to converge19,40. Finally, such a procedure is not guaranteed to
converge on a saddle point as the squared norm of the gradient
can have local minima at points that are not stationary points on
the energy surface19. Therefore, this approach requires a good
enough initial guess as a starting point.

Thanks to the above mentioned developments, excited-
state DFT using KS functionals has been applied to treat
core18 and double excitations19,21, Rydberg11,19 and charge-
transfer21,32,41,42 states, absorption spectra43 and structural dy-
namics22,44 in solution, achieving better results than TDDFT for
these problems. However, excitation energies can still be af-
fected by systematic errors. This is because, due to the typically
more diffuse character of the excited-state orbitals, many excited
states, especially those with Rydberg, charge-transfer and dou-
ble excitation character, are more affected by the self-interaction
error than ground states when using common semi-local KS func-
tionals15,45. The self-interaction correction (SIC)46 applied to
KS functionals can alleviate some of these problems by correct-
ing the long-range form of the effective potential45,47. However,
performing fully variational calculations with SIC functionals is
challenging because, contrary to KS functionals, these function-
als are not invariant to a unitary transformation of the occupied
orbitals48,49. As a consequence, implementations of fully varia-
tional calculations with SIC functionals for excited states are lack-
ing.

In order to overcome some of the technical and methodological
limitations of the excited-state DFT methods mentioned above,
we require that a new, improved approach complies with the fol-
lowing:

i The method should avoid variational collapse and ensure ro-
bust convergence for a broad range of excited states and con-
figurations;

ii The computational cost should be comparable with ground-
state calculations;

iii The nonlinear variational procedure should allow for the use
of both unitary (KS) and non-unitary invariant functionals
(e.g. SIC functionals).

We pursue these objectives by combining a DO approach with
the MOM method. The chosen DO approach makes it possible
to use quasi-Newton optimization algorithms suitable for sad-
dle points, while the MOM method ensures that at every itera-
tion the occupied orbitals are consistent with the initial choice
of occupation numbers. The Powell Hessian update or variations
on it50,51 is generally considered to give good performance in
searches of saddle points for atomic rearrangements. Based on
this, we develop a quasi-Newton limited-memory inverse Hessian
update scheme using the Powell formula, inspired by the work of
Anglada et al.52, and compare its performance with respect to the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) al-
gorithm, which is a robust quasi-Newton method most commonly
employed for minimization.

Using a benchmark set of 52 excited states of molecules, we
find that the DO-MOM method can converge on saddle points
of any order if supplied with a preconditioner of the appropriate
form. DO-MOM is found to be more robust than the SCF-MOM
method in that there are fewer convergence failures and fewer
iterations are needed, on average, corresponding to less compu-
tational effort. We also demonstrate successful application of the
DO-MOM method in a particularly challenging case: an excited
state of the nitrobenzene molecule, for which failure of SCF-MOM
is well known53. The DO-MOM method can be used not only with
unitary invariant KS functionals but also with non-unitary invari-
ant functionals, such as SIC functionals.

2 Theory

In KS DFT4,5, the ground-state energy functional for a spin-
polarized N-electron system is:

EKS
[
n↑,n↓

]
=Ts

[
n↑,n↓

]
+
∫

υυυext(r)n(r)dr+
1
2

∫ ∫ n(r)n(r′)
| r− r′ |

drdr′

+Exc
[
n↑,n↓

]
(1)

where n(r) = n↑(r) + n↓(r) is the total electron density, and the
spin densities nσ (r) and kinetic energy Ts

[
n↑,n↓

]
are given in

terms of KS orbitals:

nσ (r) = ∑
n

fnσ | ψnσ (r) |2 (2)

2 | 1–11Journal Name, [year], [vol.],
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Ts
[
n↑,n↓

]
=−1

2 ∑
nσ

fnσ

∫
ψ
∗
nσ (r)∇

2
ψnσ (r)dr (3)

with 0≤ fnσ ≤ 1 being the occupation numbers. The other terms
on the right-hand side of eq. 1 represent, respectively, the ex-
ternal potential energy, the Coulomb repulsion between the elec-
trons and the exchange-correlation (xc) functional.

The ground state corresponds to a minimum on the energy sur-
face defined by the variation of the energy of the system with
respect to the electronic degrees of freedom according to eq. 1;
while saddle points represent excited electronic states11. To find
such stationary points of the energy functional, eq. 1 is extrem-

ized subject to
∫

ψ
∗
nσ (r)ψmσ ′(r)dr = δnmδσσ ′ , which ensures or-

thonormality of the orbitals. Using Lagrange multipliers λ σ
nm for

the constraints leads to a set of nonlinear coupled equations:

Hσ
KSψnσ = ∑

m
λ

σ
nmψmσ (4)

where Hσ
KS is the one-particle KS Hamiltonian:

Hσ
KS =−1

2
∇

2 +υυυext(r)+
∫ n(r′)
| r− r′ |

dr′+υυυ
σ
xc(r) (5)

The energy defined by a KS functional of the form of eq. 1
is invariant to a unitary transformation among the equally occu-
pied orbitals. Exploiting the unitary invariance of the functional,
the orbitals that make the energy stationary can be chosen as
the canonical orbitals obtained from solving the generalized KS
eigenvalue equations:

Hσ
KSψnσ (r) = εnσ ψnσ (r) (6)

Iteratively solving the KS equations defines the SCF procedure.
The choice of occupation numbers in the SCF determines whether
the final solution is a minimum (ground state) or a saddle point
(excited state). The ground state is obtained if this choice is made
according to the aufbau principle, while excited states are ob-
tained for non-aufbau occupations. For excited states, the prob-
lem is how to enforce non-aufbau occupations. The MOM method
is commonly used for this purpose. There, one selects the occu-
pied orbitals to be those with the biggest overlap with the occu-
pied orbitals of the previous SCF step32 or with the initial oc-
cupied orbitals11,21 (also known as the initial maximum overlap
method (IMOM)21).

An alternative formulation of the variational problem in DFT
makes use of the exponential transformation of a set of orthonor-
mal reference orbitals to find the optimal orbitals that extremize
the energy functional39,54–56:

φpσ (r) = ∑
q

[
eθθθ
]σ

pq
ψqσ (r) (7)

where θθθ is an anti-Hermitian matrix (θθθ = −θθθ
†). The DO with

exponential transformation is more general than SCF, since it can
be applied to both unitary and non-unitary invariant function-
als, such as SIC functionals46. Furthermore, the anti-Hermitian
matrices form a linear space making it possible to employ quasi-
Newton unconstrained optimization strategies57, with the advan-

tage that gradient-based optimization guarantees more rigorous
convergence than SCF39,58. Quasi-Newton methods can locate
nth-order saddle points of a multidimensional surface if the initial
guess is sufficiently good and the formula chosen to compute the
search direction is able to build an approximation to the Hessian
with the appropriate number of negative eigenvalues. The devel-
opment of quasi-Newton methods for saddle points has reached
a fairly advanced level in the context of searches of transition
states of atomic rearrangements51,59–63. However, these method-
ologies have not been explored much for DO of saddle points on
electronic energy surfaces, due to the danger of variational col-
lapse to lower solutions. Here, we propose a DO approach to sad-
dle points of electron energy surfaces which relies on a two-fold
mechanism to ensure that the search direction follows the tar-
get solution throughout the optimization: (1) a preconditioner of
the appropriate form is chosen and updated regularly to generate
an approximation to the Hessian where the number of negative
eigenvalues is consistent with the target nth-order saddle point,
and (2) MOM constraints are applied to preserve the character of
the occupied orbitals.

3 Implementation

3.1 Exponential Transformation

The exponential transformation is implemented using the local-
ized atomic orbital basis set approach as described by Ivanov et
al.64 for energy minimization. We review the implementation
here for completeness.

The exponential transformation is applied to each set of spin or-
bitals separately and, therefore, the spin index will be omitted for
simplicity. An initial set of reference orbitals consists of M guess
orbitals expressed as linear combinations of M (non-orthogonal)
atomic basis functions:

φp(r) =
M

∑
µ=1

Cµ pχµ (r) (8)

and satisfying the orthonormality condition:

∑
µν

C∗µ pSµνCνq = δpq (9)

where:

Sµν =
∫

χ
∗
µ (r)χν (r)dr (10)

The coefficients of the orbitals that extremize the energy func-
tional (optimal orbitals) are found through a unitary exponential
transformation of the Cµ p coefficients:

Oµk =
M

∑
p=1

Cµ p

[
eθθθ
]

pk
(11)

where the M×M anti-Hermitian matrix θθθ is parametrized as fol-
lows:

θθθ =

(
θθθ oo θθθ ov

−θθθ
†
ov 000

)
(12)
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In eq. 12, the occupied-occupied (oo) block is an N ×N anti-
Hermitian matrix describing rotations among the occupied or-
bitals, while the occupied-virtual (ov) blocks have dimension
N×(M−N) and describe rotations that mix occupied and unoccu-
pied orbitals. Since the functional never depends on unoccupied
orbitals, rotations among them do not change the energy and,
therefore, the virtual-virtual (vv) block can be set to zero without
loss of generality56. Due to the anti-Hermiticity of θθθ , the energy
depends only on the upper-triagonal and diagonal elements. θθθ oo

contains N2 variables, N(N−1)/2 real and N(N +1)/2 imaginary
parts (the real part of the diagonal elements is zero), while θθθ ov

contains 2N(M−N) variables, N(M−N) real and imaginary parts.
Therefore, the total number of independent variational parame-
ters is N(2M−N). To evaluate the matrix exponential eθθθ we use
the scaling and squaring algorithm of Al-Mohy and Higham65 as
implemented in the SciPy library66. For unitary invariant func-
tionals the θθθ oo block can be set to zero56. In this case the number
of degrees of freedom is 2N(M−N) and the formulas for calculat-
ing the matrix exponential given by Hutter et al.56 can be used,
with a computational cost that scales as O(N2M).

Stationary solutions are obtained when the gradient of the en-
ergy with respect to the real and imaginary parts of the {θi j}
i = 0, . . . ,N, j = i, . . . ,M rotational variables is zero. By noting that
the derivative of a function of complex variables can be written
as:

∂E
∂θi j

=
1
2

(
∂E

∂Re(θi j)
− i

∂E
∂ Im(θi j)

)
(13)

the stationarity conditions are:

∂E
∂θi j

=
∂E
∂θ∗i j

= 0 (14)

The gradient of the energy with respect to the {θi j} can be com-
puted using the chain rule and the definition of the derivative of
a matrix exponential:

∂E
∂θi j

=
2−δi j

2

[∫ 1

0
etθθθ Le−tθθθ dt

]
ji

(15)

where L is the following commutator:

Llk = [F,H]lk (16)

i.e. the commutator of the diagonal matrix F of the occupation
numbers fl and the Hamiltonian matrix expressed in the optimal
orbitals basis:

Hlk = ∑
µν

O∗µlHµν Oνk, Hµν =
∫

χ
∗
µ (r)HKSχν (r)dr (17)

When the generator of a rotation is small (‖θθθ‖ � 1), the inte-
gral in eq. 15 can be expended in a series:∫ 1

0
etθθθ Le−tθθθ dt = L+

1
2!

[θθθ ,L]+
1
3!

[θθθ , [θθθ ,L]]+ . . . (18)

and only the first term on the right-hand side of eq. 18 used to
efficiently estimate the gradient. During the iterative DO, in or-
der to avoid the norm of θθθ becoming too large, approaching 1,

the reference orbital coefficients are updated with the coefficients
of the optimal or canonical orbitals and θθθ reset to zero every Nth
iterations. Alternatively, one can calculate the gradient from eq.
15 exactly using methods based on the eigendecompostion of the
matrix θθθ or scaling and squaring algorithms for computing expo-
nential integrals67.

3.2 Quasi-Newton Step

We have implemented a quasi-Newton step based on updating an
approximation to the inverse of the Hessian matrix:

x(k+1) = x(k)−B(k)g(k) (19)

where B(k) is the approximation to the inverse Hessian at step k,
and x(k) and g(k) are the vector of elements of the anti-Hermitian
matrix θθθ and analytical gradient, respectively. To avoid too large
steps at the beginning of the optimization, we prevent the step
from exceeding a maximum allowed step length, pmax. We have
found that, in most cases, a pmax of 0.20 ensures stable conver-
gence without significantly affecting the rate of convergence.

In order to allow calculations of large systems, we adopt a
limited-memory approach to compute the search direction, which
uses only vectors and scalars from the m most recent steps to up-
date B(k). Currently, the most widely used limited-memory quasi-
Newton method is L-BFGS. But, it is mainly used for minimiza-
tion of a function. In order to asses its performance in the search
of saddle points on DFT energy surfaces, we have implemented
L-BFGS following reference57. In optimizations of atomic struc-
tures, other update formulas are preferred over BFGS for saddle
point searches, because BFGS has a tendency to build approxi-
mate Hessians that are positive definite. One of these alterna-
tive formulas that has proven most successful for saddle-point
optimization is the Powell Hessian update50,59,61. To our knowl-
edge, Powell inverse Hessian update has not been formulated in
a limited-memory version yet. We present here a limited-memory
algorithm that uses the Powell formula to update an approximate
inverse Hessian. The formulation of the inverse Hessian update
draws upon the approach used by Anglada et al.52 for a limited
memory update of the Hessian. The Powell inverse Hessian up-
date formula can be written as68:

B(k+1)
P = j(k)uT (k)+u(k)

[
jT (k)−

(
yT (k)j(k)

)
uT (k)

]
(20)

with:

j(k) = s(k)−B(k)y(k), u(k) =
y(k)

yT (k)y(k)
(21)

and:

s(k) = x(k+1)−x(k), y(k) = g(k+1)−g(k) (22)

To formulate the limited-memory Powell update of the inverse
Hessian, we make use of the following recursive formula for com-
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puting the product B(k)
P v(k) between B(k)

P and a vector v(k):

B(k)
P v(k) =B(k)

0 v(k)+
k−1

∑
i=k−m

j(i)uT (i)v(k)

+
k−1

∑
i=k−m

{
u(i)
[
jT (i)v(k)−

(
yT (i)j(i)

)
uT (i)v(k)

]}
(23)

Using eq. 23, the quasi-Newton algorithm with limited-memory
Powell inverse Hessian update is formulated as in Algorithm 1.

Choose x(0), m and pmax;
k← 0;
while not converged do

Choose B(k)
0 ;

Compute p(k)← B(k)g(k) using eq. 23;
if ‖p(k)‖ ≥ pmax then

p(k)← pmax
‖p(k)‖p(k)

end
x(k+1)← x(k)−p(k);
if k > m then

discard vector pair {j(k−m),u(k−m)} and scalar
r(k−m);

end
s(k)← x(k+1)−x(k) and y(k)← g(k+1)−g(k);

u(k)← y(k)
yT (k)y(k) ;

Compute j(k)← B(k)y(k) using eq. 23;
j(k)← s(k)− j(k);
r(k)← yT (k)j(k);
Store vector pair {j(k),u(k)} and scalar r(k);
k← k+1;

end
Algorithm 1: Limited-memory quasi-Newton algorithm based
on the Powell inverse Hessian update. If B(k)

0 is chosen as a
diagonal matrix, the computational cost scales linearly with
the dimensionality n of the optimization problem.

3.3 Choice of Preconditioner

The inverse of an approximate Hessian (B(k)
0 , according to the

terminology in Algorithm 1) represents a preconditioner of the
quasi-Newton step, which can be allowed to vary during the opti-
mization. In the basis of canonical orbitals the approximate Hes-
sian is diagonal and proportional to the difference in eigenvalues
(εi)55:

∂ 2E
∂ 2θi j

≈−2(εi− ε j)( fi− f j) (24)

Therefore, the preconditioner for the optimization problem can
be written as:

B(k)
0 =

1

−2(ε(k)i − ε
(k)
j )( f (k)i − f (k)j )

(25)

Previous experience has shown that this form of the precondi-
tioner can accelerate the convergence of a ground-39 and excited-
state19 optimization (the latter through minimization of the
squared norm of the gradient) in Hartree-Fock (HF) and DFT cal-
culations with BFGS update.

In the present calculations the preconditioner of eq. 25 is used
for saddle-point searches using DO. Since eq. 25 is not defined for
oo terms and for degenerate ov pairs, the preconditioner is not
used in these cases, i.e. the corresponding elements of B(k)

0 are
set to 1. To ensure convergence on the target nth-order saddle-
point, it is important that the approximate Hessian has n negative
eigenvalues. When the initial guess orbitals are generated by pro-
moting an electron from an occupied to a virtual orbital of the
ground state, the corresponding approximate diagonal Hessian
has one negative element for every ov pair for which the occupied
orbital lies above in energy with respect to the virtual orbital. In
some cases, due to relaxation effects, which cause changes in the
energy ordering of the orbitls, the final state can correspond to
a saddle point of different order than the one predicted by the
initial approximate Hessian. In these cases, updating B(k)

0 dur-
ing the optimization can be important to converge on the target
saddle point, as will be demonstrated later for an excited state of
nitrobenzene. We have found that, in most cases, it is sufficient to
update B(k)

0 together with the DO reference orbitals every Nth it-
erations, where N is a predefined number, which avoids the costly
diagonalization of the Hamiltonian matrix at each step. For dif-
ficult cases, updating the preconditioner after the MOM method
has detected a change of the character of the orbitals with respect
to the initial guess might improve the convergence, but we have
found that it is in general not required.

3.4 Maximum Overlap Method

The MOM method is applied at each step of the DO and when
choosing the canonical orbitals to update the preconditioner ac-
cording to eq. 25. At each step k, given the overlap matrix:

Ω
(k)
pl = ∑

νµ

C∗pµ Sµν O(k)
ν l (26)

with Sµν defined in eq. 10, the optimal orbitals that have the

largest projections ω
(k)
l into the occupied subspace of the initial

reference orbitals get occupied:

ω
(k)
l =

[
N

∑
p=1

(
Ω
(k)
pl

)2
] 1

2

(27)

Note that the reference orbitals for the MOM method are chosen
as the guess orbitals, which coincide with the initial reference or-
bitals of the DO; but while the DO reference orbitals are updated
during the iterative procedure, the MOM reference is fixed. Sim-
ilar expressions are used to find the occupation numbers of the
canonical orbitals when updating the preconditioner.

4 Computational Methods

The DO-MOM method has been implemented in a developmen-
tal version of the Grid-based Projector Augmented Wave (GPAW)
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program69–71 that is used for all the calculations presented here.
GPAW is based on the PAW approach72 for describing the re-
gions close to the nuclei and a frozen-core approximation. Uncon-
tracted functions are removed from all basis sets of Gaussian-type
orbitals used in the present work. A grid spacing of 0.15 Å is cho-
sen and the simulations box made large enough to avoid any ef-
fect due to truncation of the basis functions. The spin-unrestricted
formalism is used and each (spin-mixed) excited state is described
by a single-electron transition within the same spin channel. All
the calculations use the PBE generalized gradient approximation
to the energy functional.73 A calculation is considered to be con-
verged when the integrated value of the square of the residuals of
the KS equations is smaller than 10−10 eV2 per valence electron.
Each calculation has a maximum of 300 iterations.

Convergence tests are carried out for 52 excited states of 18
molecules with atomic coordinates taken from the benchmark set
of Loos et al.74. Frozen-geometry calculations are performed with
DO-MOM using either L-BFGS or the limited-memory Powell in-
verse Hessian formulation developed in the present work, as well
as calculations based on standard direct diagonalization of the
Hamiltonian matrix70 together with the MOM method with fixed
reference orbitals21 (SCF-MOM). The initial guess for each ex-
cited state is obtained by promoting an electron from an occupied
to a virtual orbital obtained from a ground-state SCF calculation.
The SCF-MOM calculations use GPAW default parameters for den-
sity mixing, while in the DO-MOM calculations the update of the
reference orbitals used in eq. 7 occurs every 20 steps. The mem-
ory m for the limited-memory computation of the quasi-Newton
search direction is chosen as 20, while the maximum step length,
pmax, is 0.20. The Dunning aug-cc-pVDZ basis set is used in these
calculations75–77.

Calculations are also carried out for nitrobenzene in the C2v

geometry taken from reference53. The initial guess used for con-
verging to the A1(π ′ → π∗) excited state is generated using the
converged orbitals from an SCF calculation of the ground state
by promoting an electron from the second highest occupied π or-
bital (π ′ according to the notation used in reference53) to the
lowest unoccupied π∗ orbital. The calculations make use of the
def2-TZVP78 basis set, as in reference53.

5 Results

5.0.1 Benchmarks on Small Molecules

A summary of the resuls of the 52 convergence tests is given in
Figures 1 and 2. The SCF-MOM does not converge within the
maximum allowed number of iterations of 300 for 16 out of the
total of 52 states. DO-MOM with L-BFGS is able to converge in all
cases except for one, the 1∆(π → π∗) state of carbon monoxide,
and it requires on average ∼9 fewer iterations than SCF-MOM.
DO-MOM with limited-memory Powell inverse Hessian update is
not as robust, failing to reach convergence for 10 excited states,
all cases where SCF-MOM also does not converge.

The performance of DO-MOM with L-BFGS in the cases for
which SCF-MOM fails is summarized in Figure 3. A compari-
son with Figure 2 shows that a larger number of iterations is
on average needed in these cases. For most of them, conver-

SCF L-BFGS Powell0

5

10

15

20

25

30

23.3

14.0

20.4

16

1

10

Avg no. iterations for convergence
Convergence failures

Fig. 1 Average number of iterations needed for convergence in cases
where all three methods converge, and the number of failed calculations.
One iteration corresponds to an energy and gradient evaluation for the
DO-MOM methods, and to a Hamiltonian diagonalization and energy
evaluation for the SCF-MOM method.

gence difficulties arise because excitation occurs from or to de-
generate or quasi-degenerate orbitals. The extreme situation is
represented by the ∆ states of carbon monoxide and dinitrogen
since both the donor (π) and acceptor (π∗) orbitals belong to
a degenerate pair. In these cases, the challenges faced by SCF-
based techniques are well known: since the single-determinant
solutions obtained by occupying either of the two orbitals of a
degenerate pair have the same energy, the character of these or-
bitals can undergo large changes from one iteration to another,
leading to convergence failure. Tuning modifications, including
level shifting, damping and smearing can enforce convergence
of the SCF when degenerate orbitals are unequally occupied79.
However, they often require a careful choice of parameters to en-
sure converge to the target state without introducing artefacts80.
On the other hand, the DO-MOM approach can converge these
difficult cases more easily, without the need for tuning modifica-
tions. Previously, Van Voorhis and Head-Gordon39 have shown
the advantage of a gradient-based unconstrained optimization in
ground-state calculations where the HOMO-LUMO gap is small,
using a geometric approach to direct minimization. The present
results demonstrate the advantage of DO in finding excited states
as saddle points on the energy surface.

L-BFGS is known to be an efficient quasi-Newton method for
minimization, but it is not as well suited for calcultions of saddle
points81. Hence, it might appear surprising that DO-MOM per-
forms better with L-BFGS than the limited-memory Powell inverse
Hessian update. This is in part because the systems considered
here include several highly symmetric molecules where the gra-
dient along directions of negative curvature is often zero by con-
struction of the initial guess as the respective ov pairs are made
of orbitals belonging to different irreducible representations of
point group symmetry. For the excited states represented by a
first-order saddle point, except for the 1A1 state of ammonia, the
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unique gradient along a negative curvature direction is zero and,
therefore, the excited-state optimization corresponds to a min-
imization. On the other hand, for more complex cases, where
the orbitals associated with directions of negative curvature are

allowed to mix and orbital energy levels change during the relax-
ation, the ability of L-BFGS to converge on the target saddle point
stems from the use of the MOM constraints together with the up-
dates of the precondtioner. This is illustrated in the following
section.

For the molecules considered here, DO-MOM and SCF-MOM
have similar computational effort per iteration because neither
the arithmetic operations involved in the quasi-Newton step nor
the diagonalization of the Hamiltonian are a bottleneck. The scal-
ing and squaring algorithm employed here to compute the matrix
exponential in DO-MOM calculations can outperform matrix di-
agonalization for sparse matrices; while the cost of the limited-
memory quasi-Newton update scales linearly as O(mn), where m
is the memory and n is the dimensionality of the problem. There-
fore, if the memory can be kept low without affecting the con-
vergence properties of the algorithm, the computational effort in
each iteration of DO-MOM can be less than that for SCF-MOM
where a matrix diagonalization needs to be carried out.

5.0.2 Nitrobenzene

The A1(π ′ → π∗) excited state of nitrobenzene has an important
role in the photophysics of this molecule since it is the lowest
excited state with large oscillator strength53,82. It has charge-
transfer character because it involves the transfer of an electron
from the benzene ring to the nitro group. Mewes et al.53 have
reported failure of the SCF-MOM method to converge to this state
when the occupation numbers at each SCF iteration are updated
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Fig. 4 (Left) Energy difference with respect to the ground state and root mean square of the gradient in a DO-MOM calculation converging to the
A1(π ′ → π∗) excited state of nitrobenzene. (Right) Energy difference and root mean square of the gradient in a DO calculation where MOM is not
used and the preconditioner is fixed according to the initial approximation to the inverse Hessian.

according to the overlaps with the orbitals of the previous iter-
ation. Such procedure leads to gradual drifting from the initial
guess and collapse to the ground state because the hole and ex-
cited orbital are allowed by symmetry to mix. The SCF-MOM
procedure employed here avoids gradual drifting to the ground
state since the overlaps are determined with respect to a fixed set
of orbitals; however, there is oscillatory behavior and ultimately
failure to converge on the A1(π ′ → π∗) state. Recently, Hait et
al.19 have observed a similar erratic convergence behavior of the
SCF-MOM with fixed reference orbitals when applied to another
excited state of nitrobenzene with A1 symmetry. On the other
hand, DO-MOM with L-BFGS is able to converge the energy of
the A1(π ′ → π∗) state to 10−8 eV within ∼50 iterations, as indi-
cated in Figure 4.

To shed light on the failure of SCF-MOM and the success of
DO-MOM, Figure 5 shows the orbitals of the initial guess con-
structed from the converged ground state and of the converged
A1(π ′→ π∗) state. First of all, we note that the five highest-energy
occupied orbitals of the ground state (from the nπ to the n orbital)
are closely spaced, spanning an energy range of ∼1 eV. Then, we
observe that, as a result of the charge transfer, the three highest n
orbitals localized at the nitro group are destabilized in the relaxed
A1(π ′ → π∗) state compared to the initial guess, while the π or-
bitals are stabilized. The presence of near degeneracies between
the hole and the occupied orbitals, and the significant rearrange-
ment in the energy levels of the orbitals contribute to the difficul-
ties encountered by SCF-MOM in converging to the A1(π ′ → π∗)
state.

A challenge for DO-MOM arises from the fact that while the ini-
tial approximation to the Hessian has three negative eigenvalues
(one for each of the three ov pairs where v is the hole and o is
the π, n or π∗ orbital), the relaxed A1(π ′→ π∗) state corresponds
to a fourth-order saddle point (see Figure 5). The approximation
to the Hessian obtained from the initial guess has fewer negative
eigenvalues as a consequence of the rearrangement in the order-
ing of the orbitals from the initial (based on ground state) to the
relaxed excited state. The performance of a quasi-Newton opti-

mization can be poor if the preconditioner is not good enough.
Figure 4 shows the convergence of a DO calculation where the
preconditioner is not updated and the MOM is not applied during
the optimization. Then the character of the hole changes from
the original π ′ orbital to a mix of π and n orbitals, and the opti-
mization converges to a third-order saddle point, which is consis-
tent with the less than optimal preconditioner. From Figure 4 we
also see how DO-MOM can overcome the risk of converging to a
lower saddle point of the wrong order. In the first twenty itera-
tions, there are two cases where the MOM detects a change in the
character of the hole and promotes a flip of the orbital occupa-
tions that forces the hole to have a character consistent with the
initial guess. These events are indicated by jumps in the energy
in Figure 4. Following the application of the MOM constraints,
the optimization approaches a region of the electron configura-
tion space where an approximation to the Hessian has the struc-
ture of the target solution. By updating the preconditioner us-
ing the canonical orbitals with occupation numbers determined
through the MOM, L-BFGS is guided to ultimately converge on a
fourth-order saddle point consistent with the A1(π ′ → π∗) state.
Finally, we note that for this system updating the preconditioner
(together with the reference orbitals) after DO-MOM has detected
a change of the character of the occupied orbitals is not necessary
but speeds up the convergence.

6 Concluding Remarks

Despite the fact that DO has long been known to be an alternative
to SCF for energy minimization39,83,84, DO calculations of saddle
points have so far been considered to be too difficult, due to the
risk of variational collapse. Here, a DO method for converging
to single-determinant DFT excited states is presented. The ap-
proach uses an updated preconditioner that guides convergence
on the desired saddle point as well as the MOM method to avoid
variational collapse. Since only one gradient calculation is per-
formed at each iteration, there is no added computational cost
with respect to DO ground-state calculations. This is an advan-
tage over squared gradient minimization approaches, which re-
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Fig. 5 Illustration of the frontier molecular orbitals of nitrobenzene ordered according to the energy. Left: initial guess for the DO-MOM calculation
based on the ground-state orbitals. Right: relaxed A1(π ′→ π∗) excited state. Isosurfaces are drawn at an isovalue of 0.1 Å−3/2. The labelling of the
orbitals follows the notation used in reference53. In each case the energy ordering of the orbitals is represented schematically.

quire explicit computation of second derivatives of the energy at
each iteration19. We further note that the DO-MOM method can
be applied more generally than just KS DFT, provided that the
appropriate expression for L is used in eq. 15 for the gradient.
This, for example, opens up the possibility of performing fully
variational calculations of excited states with SIC functionals.

An implementation of DO-MOM using a localized basis set rep-
resentation is found here to outperform a standard implementa-
tion of the widely used SCF-MOM approach for two tested quasi-
Newton schemes both in terms of robustness and rate of conver-
gence for a 52 excited-state benchmark set. The best performance
is obtained with the L-BFGS optimization algorithm with a mem-
ory of 20. DO-MOM with L-BFGS is found to be more robust than
SCF-MOM for the challenging case of a charge-transfer state of
nitrobenzene, which is characterized by excitation from closely
spaced orbitals and large electronic rearrangement. This exam-
ple further illustrates the importance of updating the precondi-
tioner in the DO-MOM as the initial excited state constructed
from orbitals of a ground-state calculation has an approximate
Hessian with three negative eigenvalues, while the converged ex-
cited state is a fourth-order saddle point.

These are preliminary results. The Powell update, which here
is found to perform worse than L-BFGS, is not the only quasi-
Newton method used for saddle-point searches. For atomic struc-
tural rearrangements, the symmetric rank-one (SR1) or a com-
bination of SR1 and Powell updates proposed by Bofill50,51 are
other commonly employed quasi-Newton algorithms. In order to
assess the performance of these methods within DO-MOM, an ex-
tension of the limited-memory inverse Hessian update algorithm
presented in this work is needed. Moreover, the tests should be
extended to larger molecules and to excited states of different
character, such as long-range charge-transfer states. It would be
particularly valuable to assess the performance of DO-MOM with

respect to electronic transitions in transition metal complexes,
which are usually challenging for SCF methodologies26.
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53 J. M. Mewes, V. Jovanović, C. M. Marian and A. Dreuw, Phys-

ical Chemistry Chemical Physics, 2014, 16, 12393–12406.
54 J. Douady, Y. Ellinger, R. Subra and B. Levy, The Journal of

Chemical Physics, 1980, 72, 1452–1462.
55 M. Head-Gordon and J. A. Pople, Journal of Physical Chem-

istry, 1988, 92, 3063–3069.
56 J. Hutter, M. Parrinello and S. Vogel, The Journal of Chemical

Physics, 1994, 101, 3862–3865.
57 J. Nocedal and S. Wright, Numerical Optimization, Springer,

New York, 2006.
58 S. Lehtola, F. Blockhuys and C. Van Alsenoy, Molecules, 2020,

25, 1–23.
59 R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson and

H. Jónsson, Journal of Chemical Physics, 2004, 121, 9776–
9792.

60 P. Culot, G. Dive, V. H. Nguyen and J. M. Ghuysen, Theoretica
Chimica Acta, 1992, 82, 189–205.

61 J. Baker, Journal of Computational Chemistry, 1986, 7, 385–
395.

62 J. Simons, P. Jørgensen, H. Taylor and J. Ozment, Journal of

10 | 1–11Journal Name, [year], [vol.],

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
2 

Ju
ne

 2
02

0.
 D

ow
nl

oa
de

d 
on

 7
/8

/2
02

0 
11

:2
2:

11
 P

M
. 

View Article Online

DOI: 10.1039/D0FD00064G

https://doi.org/10.1039/d0fd00064g


Physical Chemistry, 1983, 87, 2745–2753.
63 C. J. Cerjan and W. H. Miller, The Journal of Chemical Physics,

1981, 75, 2800–2806.
64 A. Ivanov, E. Ö. Jónsson, T. Vegge and H. Jónsson, Imple-

mentation of a Direct Minimisation Method using Exponential
Transformation in the Localised Basis Set Approach, 2020, In
preparation.

65 A. Al-Mohy and N. Higham, SIAM Journal on Matrix Analysis
and Applications, 2009, 31, 970–989.

66 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore,
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