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Abstract 
 

 As satellites become more complex, the on-board processing capabilities must keep 

up.  Many satellites are an integrated collection of sensors and actuators with many requiring 

dedicated real-time control to operate correctly.  For single processor systems, adding more 

sensors requires an increase in computing power and speed to provide the multi-tasking 

capability needed to service each sensor.  Faster processors are more costly and consume 

more power, which can tax a satellite’s power resources and may lead to shorter satellite 

lifetimes.  Commercial-Off-The-Shelf (COTS) electronic components are usually not 

acceptable for satellite design because they have not been hardened against the radiation 

environment of space.  An alternative design approach is to use a distributed network of 

small and low power microcontrollers designed for space to handle the computing 

requirements of each individual sensor and actuator.  The design of microdot, a four-bit 

microcontroller for distributed low-end computing, is presented.  The design is based on 

previous research completed at the Space Electronics Branch, Air Force Research Laboratory 

(AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-

Patterson AFB, OH.  The Microdot has 29 instructions and a 1K x 4 instruction memory.  

The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus 

Protocol.  A prototype was implemented and tested using an Altera Field Programmable Gate 

Array (FPGA).  The prototype was operable up to 9.1 MHz.  The design was also targeted for 

fabrication using a radiation-hardened-by-design gate-array library from Mission Research 

Corporation.  The gate-array library is designed for the TSMC 0.35 micrometer CMOS 

process. 

xii 



MICRODOT – A FOUR-BIT MICROCONTROLLER DESIGNED FOR DISTRIBUTED 

LOW-END COMPUTING IN SATELLITES 

 

1. Introduction 
 
 
1.1 Introduction 
 

In this research I design and implement a very large scale integrated (VLSI) circuit 

for the purpose of interfacing and controlling sensors and actuators in space applications.  

This research extends previous work done at the Air Force Institute of Technology [1] and 

the Air Force Research Laboratory Space Electronics Branch (AFRL/VSSE) [2,3].  I present 

the design process of “Microdot”, a small and specialized 4-bit microcontroller, from the 

initial concepts to circuit layout and testing.  I designed this application specific integrated 

circuit (ASIC) for fabrication with a radiation-tolerant gate array standard-cell library for the 

Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 micrometer process.  The 

design was implemented in an Altera [22] field programmable gate array (FPGA). 

 
1.2 Problem Statement 
 

Satellites must operate with limited power budgets and in a space radiation 

environment that is detrimental to the reliability of semiconductor micro-electronics.  A 

hierarchical satellite control and data network architecture with VLSI Microdot 

microcontrollers at the lowest level can both reduce power consumption and improve 

reliability of a satellite's control and sensing electronics. 

In a conventional design, a satellite uses a central microprocessor to interface to the 

system sensors and actuators.  The microprocessor must continuously run while polling 
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sensors to collect data or adjust actuators.  This leads to high power consumption.  If a 

central processor can delegate control and data collection to a network of low-power  

Microdot microcontrollers, it only needs to operate and consume power when transferring 

 

Central
Processor

Supervisor
Processor

Microdot

Supervisor
Processor

Supervisor
Processor

Microdot

Microdot

Microdot

Microdot

Microdot

Microdot

Microdot

Microdot

Microdot

Microdot

Microdot  
 

Figure 1-1.  Distributed Processing with the Microdot.  Processing tasks are delegated to the 
lowest possible level (Microdot).  This reduces the processing workload for the central 

processor. 
 
 
data or programming a Microdot.  Thus, it can use a standby mode to conserve power or 

perform other functions when not needed. This is the concept illustrated in Figure 1-1. 

The Microdot also provides a high level of versatility to the system design as it is 

designed to be easily reprogrammed by a central or supervisor processor.  As an example, a 

Microdot interfacing a temperature sensor could be programmed to detect temperatures that 

fluctuate more than five degrees from a target temperature and only report back to the central 
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processor when that happens.  If a five degree margin proved too small, the central processor 

could reprogram the Microdot for the same task with a temperature margin of ten degrees. 

Delegating control and data collection also may reduce the computing power needed 

for the central processor.  Because it eliminates polling, it eliminates the clock cycles used 

for executing polling routines and also eliminates the power used to execute the extra clock 

cycles.  Taking the Microdot from this concept to an actual integrated circuit requires a 

design methodology. 

 
1.3 Methodology 
 

The design methodology for ASICs is the process of taking a functional concept from 

its initial behavioral definition to its physical layout and finally testing and design 

verification.  Circuit functionality is first described in a Hardware Definition Language 

(HDL) only by its behavior.  This can occur before any decision is made on what particular 

semiconductor technology will be used.  Next, logic synthesis converts the behavioral 

description to logic gates.  Physical layout is the process of defining the placement of the 

logic gates and their interconnects.  The layout can then be fabricated in a semiconductor 

process.  The final step is verifying the design and checking for errors in the physical layout.  

The design process is further explained in Chapter Two. 

 
1.4 Scope 
 
 For this thesis, my goal was to design, implement, and test the Microdot 

microcontroller.  I used the VLSI design tools that included Synopsys Design Analyzer and 

VHDL Simulator to create the behavioral and structural models of the Microdot.  I also used 

Altera field programmable gate array software and hardware to implement and test the 
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behavioral and structural models of the Microdot microcontroller.  My research was limited 

to the design of the Microdot processor core.  While I present the Microdot as part of a larger 

distributed processing system, it was beyond the scope of this project to develop or 

demonstrate an example of the distributed computing system.   

The size of the memory is what dominates the overall size of the Microdot.  This 

research effort was primarily concerned with the design of the Microdot core and did not 

focus on the memory design.  Consequently, designing compact, radiation-hardened static 

random access memories (SRAM) requires an additional research and design effort. 

 
1.5 Summary of Results 
 
 The final Microdot design successfully realizes the concept of a small distributed 

computing element that can provide simple data collection and control operations for a 

microdevice.  The Microdot is a four-bit microcontroller with 29 instructions.  It has a 

program memory size of 1024x4 and a data memory size of 128x8.  I implemented the 

Microdot design in an Altera field programmable gate array (FPGA) and successfully tested 

it to a maximum operating frequency of 9.1 MHz.  The power consumption was computed at 

48.5 mW per MHz. 

The Microdot was also designed for radiation-hardened by design (RHBD) gate array 

standard-cell library and simulated to a maximum operating frequency of 23.3 MHz.  The 

Microdot core in the RHBD cell library requires 782 logic gates, which requires an area 

(without pads) of 1.84 mm2 (1.44 x 1.28 mm). 
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1.6 Overview 

This thesis is comprised of six chapters.  Chapter One provides an overview of the 

design problem including the motivation, scope, and design methodology for the Microdot 

ASIC. 

Chapter Two covers the integrated circuit design process, serial bus protocols for 

distributed computing, and basic information on four-bit microcontrollers.  It also covers 

radiation effects on integrated circuits and the design process for making VLSI circuits 

radiation-tolerant. 

In Chapter Three I present my Microdot design.  I present function and reason for my 

design decisions.  The main element of the chapter is the instruction set, which defines the 

processing capability of the Microdot.  I also explain the circuit architecture and major 

functional elements of the design. 

Chapter Four covers important design approaches and goes in depth into the design of 

each of the major functional elements.  The functionality and interface of each of the six 

functional blocks is explained in detail by considering the operation of each sub-block.  Also 

in this chapter, I detail the operation and design of the I2C serial bus interface that gives the 

Microdot its distributed computing capability. 

In Chapter Five I explore the simulation and testing process and results for each 

design level.  The behavioral and structural description were defined and simulated using the 

Very High Speed Integrated Circuit Hardware Description Language (VHDL).  The 

Microdot design was implemented in an Altera field programmable gate array (FPGA).  The 

FPGA was used for design verification and testing because cost and time constraints 

prevented VLSI fabrication. 
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In Chapter Six, I conclude the thesis and present the overall results and conclusions 

for the Microdot design.  I also cover the lessons learned and make recommendations for 

further research and development of the Microdot and distributed low-end computing and 

microdevice interfacing. 



2. Literature Review 
 
 
2.1 Introduction 
 
 This chapter presents background research for the design of radiation-tolerant 

application-specific integrated circuits (ASICs).  It briefly covers the VLSI/ASIC design 

process and then looks at design specific issues including stack processing and serial bus 

protocols.  It also includes the current landscape of 4-bit microcontrollers, radiation effects on 

CMOS circuits, and techniques for radiation hardening by design.   

 
2.2 VLSI Design Flow 
 

The number of individual transistors and their integration into complex logic functions 

make a VLSI design difficult to accomplish without good computer-aided design (CAD) tools 

and a very structured and incremental design process.  Also, with constantly improving VLSI 

manufacturing capability, the design process must be fast, yet able to allow designs to retain 

compatibility as semiconductor technology evolves.  Figures 2-1 and 2-2 diagram the VLSI 

design process.  Figure 2-1 shows the Y-chart, which illustrates the three development 

domains and the design hierarchy levels.  Figure 2-2 shows the traditional linear design 

approach.  There are three domains of circuit design: Behavioral, Structural, and Layout.  The 

traditional linear approach is to first design and test the behavior, then move to structural 

design, and finally circuit layout.  

Design starts in the behavioral domain.  The function of the chip is defined by an 

algorithm.  At the chip level only the functionality is initially considered.  The internal layout 

is not considered and no attention is paid to the timing.  This first step gives the designer a 
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chance to compare the algorithm against the initial design requirements.  If it does not 

function correctly, the algorithm is changed to meet the requirements. 
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Geometrical Layout
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Algorithm
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Boolean EquationsTransistor
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Processor

Mask
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Figure 2-1.  VLSI Design Process: Y-Diagram [4] 

 
 

The structural development starts by defining the external interface of the chip itself.  

At successively lower levels of hierarchy, the functional modules and their interconnections 

are defined.  Eventually, the structural design gets down to the gate or transistor level.  At this 

level, timing can be analyzed starting with the gates themselves and then moving up the 

hierarchy to the functional blocks and finally the complete chip. 
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Figure 2-2.  VLSI Linear Design Flow [4] 
 

The layout domain links the elements defined in the structural design to the physical 

layout of the chip.  Initially, the floorplan maps the functional elements onto the chip to both 

reduce chip area and minimize interconnect length.  This is completed prior to any layout of 

the functional elements.  Consequently, this requires good estimates for the size and 

dimensions of each functional block.  After floorplanning, each functional block is laid out by 
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its sub-blocks.  The sub-blocks are then laid out at the gate or transistor level.  Layout is often 

done using standard-cell gate libraries and CAD place-and-route tools. 

For the Microdot, I used VHDL (Very high-speed integrated circuit Hardware 

Description Language) to build both the behavioral and structural circuit representations.  

Hardware description languages such as VHDL are used to create circuit designs in both the 

behavioral and structural domains.  They allow seamless integration between the two design 

domains.  Functional elements can either be written as a set of equations that make up an 

algorithm or as a collection of structural elements that execute a particular function.  VHDL 

also incorporates timing that allows complete simulation of both behavioral and structural 

designs.  Converting behavioral representation to structural is often accomplished with logic 

synthesis tools.  Synopsys Design Analyzer is one such tool and was the choice for logic 

synthesis of the Microdot.  Design Analyzer converts behavioral VHDL to its structural 

design using user-specified gate libraries.  The synopsys gate libraries are usually designed 

for specific standard-cell layout libraries.  This way, the structural designs created with 

Design Analyzer port directly to automatic place-and-route tools. This allows the designer to 

make a quick jump from behavioral VHDL code to physical layout.  For the Microdot, I used 

a radiation-tolerant gate array library designed by Mission Research Corporation (MRC), 

Microelectronics Division [18].  MRC Microelectronics specializes in the design and analysis 

of radiation-hardened semiconductor devices.  They support the Space Electronics Branch of 

the Air Force Research Laboratory (AFRL/VSSE), the sponsor of this research, in the design 

and testing of space-qualified semiconductor devices.  MRC has a place-and-route tool known 

as GARDS for auto-layout of gate array designs. 
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2.3 Stack Processors 

 The Microdot was designed as a modified stack-based processor.  Unlike most 

processors that use general-purpose registers to hold data operands, a stack processor holds all 

operands in the stack memory.  Instructions retrieve operands from the top of the stack and 

return results to the top of the stack.  For example, an ADD instruction would pop two 

elements off the stack, perform the addition and then return the result to the top of the stack. 

 The stack memory is either a dedicated RAM or part of a combined RAM that 

includes both instructions and data.  The top of the stack (TOS) is defined by a hardware 

register that contains the address of the last element placed on the stack.  In an "increasing" 

stack, the stack pointer is incremented when new data is "pushed" onto the stack, and 

decremented when the data is "popped" off the stack.  Stacks are also designed as decreasing 

where the stack pointer is decremented for a push and incremented for a pop.  In addition to 

the stack pointer, there may also be registers that store the stack size and stack limit. 

 The advantage of a stack machine is that instructions and logic are quite simple 

because the operands are always coming from the top of the stack.  The disadvantage of the 

stack machine is that it often requires many additional instructions to manage the stack.  This 

can make programming a stack machine more difficult.  Another disadvantage of the stack 

architecture is that it is not compatible with the highly parallel nature of modern high 

performance processors that require simultaneous access to several operands in a large 

register set [5]. 

 Most general-purpose processors use a stack defined somewhere in the memory 

structure to store processor state data as subroutines are executed in the current program.  For 

example, before the processor jumps to a subroutine, it may store the value of the program 
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counter and registers in the stack memory.  When the subroutine has completed execution, 

returning to the correct spot in the main program is as easy as reloading the data from the 

stack.  The stack allows the use of nested subroutines, which makes programming easier and 

more versatile.  The number of subroutine calls is limited by the size of the stack divided by 

the size of the memory needed for a subroutine call.  Microdot is considered the smallest 

element of computing in a distributed computing architecture.  Therefore, each Microdot can 

be viewed as a single subroutine dedicated to a single device.  This means we can eliminate 

subroutine capability for keeping the Microdot small and simple [2]. 

 The modified stack architecture expands the flexibility of the stack while retaining a 

fairly simple design.  The top of the stack is stored in a register separate from the stack 

memory.  For all ALU operations, the top of stack register is always used as the first or only 

operand.  Results are then stored back to the top of stack register.  Instead of limiting the 

second operand to the second element on the stack, the modified stack uses an operand index 

from the instruction to select the second operand relative to the stack pointer.  For the four-bit 

Microdot, the instruction operand index (also called stack increment) is added to the stack 

pointer to address the second operand.  This allows the programmer to select any of the top 16 

stack elements as the second operand for a two-operand instruction.  The modified stack 

architecture presented in [2] uses the swap and pick instructions to manage data within the 

stack.  The swap instruction swaps the top of stack register and any of the stack addresses.  

The pick instruction replaces the top of stack register with any of the stack addresses.  The 

additional hardware elements required for the modified stack are a stack adder and a stack 

address multiplexer. 
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2.4 Serial Bus Protocols 

 The Microdot is not only a microcontroller, but also the lowest computing element in a 

distributed computing hierarchy.  The Microdot is controlled by a supervisor processor, which 

downloads programs and transfers data between itself and the Microdot.  The supervisor-

Microdot data interface is key to making the Microdot useful in a distributed computing 

architecture.  We want a simple interface that efficiently transfers data, yet reduces the wiring 

needed for interconnecting the devices.  If each Microdot requires dedicated signal lines 

between itself and the supervisor processor, the supervisor processor will require an excessive 

amount of input/output lines.  This limitation necessitates that the Microdots share a single 

data bus controlled by the supervisor processor.  A design goal for Microdot has been to keep 

it small and simple with a low pin count.  A serial data bus will both minimize the pin count 

and ultimately reduce the wiring required for the distributed computing architecture.  Data 

throughput is not a concern and is sacrificed for the simplicity of the serial bus.  A number of 

serial bus protocols have been created for inter-IC data transfer and several were investigated 

for use in the Microdot serial bus.  Rather than create a serial bus unique to only the Microdot, 

I wanted to use an accepted serial bus standard that would ease the design burden for 

designers that utilized the Microdot.  

The terms master and slave are used to describe the functional role a circuit has on the 

bus.  A master controls the bus and initiates data transfer.  A slave can monitor the bus at all 

times, but does not drive data on the bus unless commanded by the master.  There can only be 

one active bus master although devices may be designed to act as master, slave, or both.  A 

bus protocol allowing multiple masters is referred to as multi-master and has a defined 
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arbitration procedure for resolving bus control.  For the Microdot design, the supervisor 

processor is the bus master and each Microdot is a slave. 

2.4.1 Candidate Serial Bus Protocols.  The Serial Peripheral Interface (SPI) and 

Microwire synchronous serial bus protocols are full duplex and use three signal lines for data 

transfer [6].  Full duplex means that data can be transferred in both directions simultaneously.  

The three signals on the SPI and Microwire buses are the clock, data-in, and data-out.  The 

clock signal synchronizes data transfer on the data-in and data-out signals. For the Microwire 

bus, the low-to-high transition (rising edge) of the clock is the synchronizing edge for slave 

devices.  Input data must be valid around this clock edge and output data becomes valid 

shortly after the clock transition.  SPI uses a similar synchronization scheme, although data 

transition clock edge can be specified during bus setup.  The disqualifying factor for these two 

bus protocols is that they require chip select lines for each device.  A design decision was 

made not to use a bus protocol that required chip select signals.  Instead, it was decided that a 

bus protocol that sends the slave address over the serial data line would be advantageous to 

reducing the wiring in the distributed architecture because it eliminates the need for chip 

select lines to each slave on the bus.  The two most viable candidates using this type of serial 

bus protocol are the Dallas Semiconductor 1-Wire and the Phillips I2C (Inter-IC 

Communication) buses. 

 The 1-Wire bus is the absolute minimum serial bus.  As the name indicates, only one 

signal wire is required to transfer data.  Like all the serial bus protocols presented here, there 

must also be a common ground signal that allows voltage referencing.  The drawback to the 1-

Wire bus is that it is asynchronous.  Each device on the bus requires its own clock for bit 

timing.  The design decision to use an external clock eliminated the possibility of using the 
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Dallas 1-Wire bus.  Creating an on-board clock was beyond the scope of this VLSI project.  

For future versions of the Microdot, an on-board clock would allow the use of the 1-Wire 

serial bus protocol.   Another potential advantage of 1-Wire bus is that it can also be used to 

power devices [7].  The use of small capacitors allows devices receive power and data over 

the same line. 

2.4.2 I2C Serial Bus Protocol.  The only serial bus that met the required design goals 

was the I2C (Inter IC Communication) serial bus protocol.  The I2C serial bus was originally 

designed by the Philips Semiconductor Corporation to provide an Inter-IC communication 

standard for the typical devices that were integrated into most designs like microcontrollers, 

RAMs, EEPROMS [8].  The utility of I2C quickly made it a de facto world standard and it is 

now utilized by over 50 semiconductor companies [8].  Also, I2C was used as the data bus for 

the Emerald research satellite; a small satellite developed at Stanford to study distributed 

computing in space systems [9]. Emerald was part of the University Nanosatellite Program 

funded by the Air Force Office of Scientific Research (AFOSR) and the Defense Advanced 

Research Project Agency (DARPA) [9].  Much of the reasoning for using I2C on Emerald fit 

with my own reasoning about using I2C for the Microdot.  Specifically, the simplicity of I2C 

and its ability to scale well to arbitrarily sized networks made it the best candidate [9].  

Standard I2C specifies data transfer speeds up to 100 kilobits per second (Kbps) although a 

newer high-speed mode specifies the data rate up to 3.4 Mbps.  Figure 2-3 illustrates the I2C 

bus concept. 

The two signal lines that comprise the I2C bus are the serial data (SDA) and serial 

clock (SCL).  Both signal lines are connected to the positive supply voltage (Vdd) through a 
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pull-up resistor.  Output connections to the bus signals must be open-drain.  This gives the 

devices on the bus a wired-AND configuration and prevents any damage from multiple 

 
Figure 2-3.  I2C Serial Bus Concept. Devices interconnect with two common signal 

lines: Serial Data (SDA) and Serial Clock (SCL) [8] 
 

 

devices driving the bus lines at the same time.  SDA carries the bit data while SCL 

synchronizes the transfer.  This synchronized bus offers the design advantage that no internal 

clocking is required.  I2C is also a multi-master bus.  Although the original concept of the 

Microdot distributed computing system is to have a single supervisor processor as the bus 

master, a single I2C bus could have multiple supervisor processors.  This gives a designer 

potential redundancy, which is important in designs that must be highly reliable. 

Data transfer on the I2C bus is completed in eight-bit (byte) blocks with the most 

significant bit (MSB) first.  The I2C bus is designed so that each device connected to the bus 

has a unique address.  This seven-bit address is part of the first byte transferred, which is 

called the address byte.  The seven-bit address space allows 128 possible device addresses.  

During data transfer, the SDA signal is only allowed to change when SCL is low.  Figure 2-4 

illustrates the bus rules for standard data transfer. 
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Figure 2-4.  I2C Bit Transfer. Bit values on SDA can only change when SCL = ‘0’ [8] 

 
 

When the master is ready to execute a data transfer it asserts the start condition on the 

bus lines.  The start and stop conditions are non-standard bus conditions that signal the start or 

stop of data transfer.  Figure 2-5 shows the start and stop conditions.  The start condition is 

indicated by a high-to-low transition of the SDA signal when SCL is high. 

 

 
Figure 2-5. I2C START and STOP Conditions [8] 

 
 

After the start condition is asserted, all devices on the I2C bus will begin shifting in the first 

byte.  Data is valid when SCL is high.  The first byte contains the seven-bit address plus the 

data direction bit.  A data direction bit of ‘0’ indicates a master-to-slave transfer, while a ‘1’ 
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indicates a slave-to-master transfer.  If a slave detects its address in the address byte, it 

acknowledges its presence to the master by pulling the SDA line low during the acknowledge 

clock cycle.  The acknowledge clock cycle comes after the eighth bit is sent when the master 

releases the SDA line (SDA = ‘1’) for one SCL cycle.  The master continues the data transfer 

if the address is acknowledged or terminates it if no acknowledge is received.  For a master-

to-slave transfer, the master continues the serial transmission one byte at a time checking for 

acknowledge after each byte.  After any byte during the transmission, the slave can stop the 

data transfer by not asserting the byte acknowledge.  The master signals the end of a 

transmission by either asserting the stop condition or another start condition.  The stop 

condition is the low-to-high transition of the SDA line when SCL is high. 

For a slave-to-master transfer, the master releases the SDA line after the address byte 

and becomes the data receiver.  The slave drives its serial data on the SDA line synchronized 

to SCL, which is still driven by the master.  After each byte is received, the master now 

acknowledges receipt by pulling SDA low during the acknowledge clock cycle.  Like the 

master-to-slave transmission, the master can terminate the transfer after any byte by not 

asserting the byte acknowledge and then asserting the stop condition.  Figure 2-6 

demonstrates a complete data transfer on the I2C bus. 

The I2C bus specification is more complicated than what is presented here, but the 

basics presented in this section are sufficient for designing the Microdot serial communication 

interface. 
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Figure 2-6.  I2C Data Transfer [8] 

 
 

2.5 Four-bit Microcontrollers 

 The market for four-bit microcontrollers is quite diverse, with at least 20 companies 

producing them.  Table 2-1 is a representative selection of the four-bit microcontrollers 

currently on the market.  The performance is not charted, although performance, operating 

current, and clock frequency have a linear relationship (high performance = high current).  

Most four-bit microcontrollers are designed for small, battery-powered devices. Operating 

frequencies are slow to minimize power consumption, with 32 kHz being a popular choice.  

As can be seen, the operating current is quite low with the EM Microelectronic (EM6603) and 

Epson Electronics (SIC60N01 and E0C63158) devices operating in the single-microamp 

range.  For comparison, a single AAA battery (1150 milliamp-hour) could power an EM6603 

for 638,000 hours (72.9 years).  Obviously, the battery would go bad long before the current 

was drained.    Most four-bit microcontrollers are also designed with a standby or sleep mode 

that minimizes current consumption.   For all devices available, the instruction memory is 

either a masked ROM, one time programmable (OTP) ROM, or EEPROM.  Instruction 
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memories range from 1K x 12 up to 24K x 8.  Data memories range from 52 nibbles up to 256 

nibbles.  Most of these microcontrollers also have peripheral functions like Analog-to-Digital 

converters, LCD drivers, timers, and event counters that offer designers a one-chip solution 

for small battery-powered devices. 

 

 Table 2-1.  Representative Sample of the Four-bit Microcontroller Market 

Manufacturer Part Number Instruction 
Memory 

Data 
Memory I/O Operating 

Frequency 
Supply 
Voltage 

Operating 
Current 

(Typical) 

Standby 
Current 

(Typical) 

Chip 
Size 
(mm) 

ELAN 
Microelectronics 

Corporation 
EM73PE00 24K x 8 128 x 4 

8 input 
8 output 

5 bidirectional 

200 KHz –  
4 MHz 2.5 - 5.0 0.4 mA 

@ 3.0 V 
0.4 uA 

@ 3.0 V 
1.52 x 
3.55 

ELAN 
Microelectronics 

Corporation 
EM73201 2K x 8 52 x 4 

4 input 
4 output 

8 bidirectional 

32 KHz –  
4 MHz 2.4 - 6.0 0.7 mA 

@ 5.0 V 
60 uA 

@ 5.0 V 
1.82 x 
1.51 

Epson Electronics SIC60N01 1K x 12 80 x 4 
4 input 

2 output 
4 bidirectional 

32 KHz 1.8 - 3.6 2.5 uA 
@ 3.0 V 

1.0 uA 
@ 3.0 V 

2.64 x 
2.18 

Epson Electronics E0C63158 8K x 13 512 x 4 
9 input 

12 output 
20 bidirectional 

32 KHz –  
4 MHz 0.9 - 3.6 

4 uA 
@ 3.0V 
32 KHz 

2 uA 
@ 1.5V 
32 KHz 

N/A 

Hitachi 
Semiconductor HD404054 4K x 8 128 x 4 8 input 

27 bidirectional 4 MHz 1.8 - 6.0 
0.6 mA 
@ 3.0V 
800KHz 

0.2 mA 
@ 3.0V 

800 KHz 
N/A 

Mitsubishi 
Semiconductors 

M34280M1-
XXXFP 1K x 9 32 x 4 

1 input 
7 output 

7 bidirectional 
4 MHz 1.8 - 3.6 

0.35 mA 
@ 3.0V 
500 KHz 

1 uA 
@ 3.0V 

500 KHz 
N/A 

Mitsubishi 
Semiconductors 

M34570M4-
XXXFP 4K x 10 128 x4 

6 input 
10 output 

12 bidirectional 
4.2 MHz 2.0 - 5.5 

0.4 mA 
@ 3.0 V 
500 KHz 

0.1 uA 
@ 3.0V 

500 KHz 
N/A 

Toshiba 
Electronics TMP47C422N/F 4K x 8 256 x 4 20 bidirectional 30 kHz –  

8 MHz 2.2 - 5.5 
0.5 mA 
@ 3.0V 
400KHz 

0.5 uA 
@ 5.5V N/A 

EM 
Microelectronic EM6603 2K x 16 96 x 4 4 input 

12 bidirectional 32 kHz 1.2 - 3.6 1.8 uA 
@ 1.5V 

0.1 uA 
@ 1.5V 

3.048 x 
2.59 

Oki 
Semiconductor MSM64152A 1.5K x 8 128 x 4 

4 input 
4 output 

4 bidirectional 
32 kHz 1.15 - 3.5 6 uA 

@ 1.15V 
0.9 uA 

@ 3.0 V 
3.90 x 
3.48 

 

 

No four-bit microcontrollers were identified with reprogrammable instruction 

memory.  Most outmatch the Microdot in processing capability, but none offers its unique 
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capabilities.  The Microdot concept is to create a device for low-end distributed and re-

configurable computing.  Thus, while many of the four-bit microcontrollers available have 

adequate performance and could likely be integrated into a distributed system, they would not 

work for the reprogrammable satellite design.  Also, none of the four-bit microcontrollers 

identified were radiation-hardened. 

 
2.6 Radiation Hardening of Electronics 
 

Radiation can degrade the performance of semiconductor devices and may cause them 

to fail.  Electronics designers must take special steps to improve the reliability of electronics 

in a radiation environment.  This process is referred to as "radiation hardening".  To 

understand the process of radiation hardening electronics, it is important to understand 

radiation environments and the effects of radiation on semiconductor devices. 

There are two radiation environments of concern.  The first is the space radiation 

environment that consists primarily of high-energy electrons, protons, alpha particles, and 

cosmic rays [10].  The second is the nuclear weapon environment that consists of a high dose 

rate pulse of X-rays, gammas, neutrons, and other reaction constituents [10].  For this 

research, I was concerned with the space radiation environment and the effects of space 

radiation on Complementary Metal-Oxide Semiconductor (CMOS) devices.  Military and 

space application designers prefer CMOS technology because of its high noise margins and 

low static power requirements [10].  Scaling and integration are another advantage CMOS 

technology has over other semiconductor technologies.  The drawback is that CMOS is 

susceptible to two types of space radiation effects.  These are total ionizing dose (TID) and 

single event effects (SEE).  TID effects are the result of accumulated exposure to ionizing 
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radiation.  SEE are the result of a single high-energy particle that strikes the device.  These 

radiation effects are detailed in the sections that follow. 

2.6.1 Space Radiation Environment.  The two sources of radiation in the near-Earth 

space environment are trapped particles and transient radiation.  The earth’s magnetic field 

traps energetic protons, electrons, and heavy ions in the Van Allen radiation belts as shown in 

Figure 2-7.   

 

 
Figure 2-7.  Van Allen Radiation Belts [11] 

 
 

The inner belt consists primarily of high-energy protons and extends from 1.1-3.3 earth radii 

[12].  The South Atlantic Anomaly is a particular area of interest in the inner belt.  

Irregularities with earth’s magnetic field extend the proton belt to altitudes as low as 250 km 

centered in an area east of Brazil [12].  Satellites in low earth orbit that pass through this 

region are subject to a high flux of energetic protons that increase radiation exposure and 

cause single event effects.  The outer radiation belt consists mainly of energetic electrons and 
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extends from 3-9 earth radii.  The outer belt converges with earth’s atmosphere at high 

latitudes where the magnetic field lines converge at the magnetic poles.  The intensity of the 

belts is affected by solar activity.  Shielding is quite effective at stopping electrons because of 

their low energy and low mass.  However, it is not as effective against high energy protons 

and heavy ions.  As you can see, the satellite orbital altitude and inclination will affect the 

amount of radiation exposure. 

2.6.2 Total Ionizing Dose.  When ionizing radiation penetrates a semiconductor 

device, it generates electron-hole pairs along its traversed path.  In the silicon dioxide (SiO2) 

that makes up both the gate and field oxides, holes that do not quickly recombine can become 

trapped and cause a buildup of positive charge.  This occurs because holes have a very low 

mobility in SiO2, while electrons have higher mobility and are quickly swept away by the 

electric field in the oxide.  The holes then slowly migrate in the direction of the electric field 

(positive to negative).  This process is illustrated in Figure 2-8. 
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Figure 2-8.  Transistor Ionization Process [10] 

In the case of a positive-biased gate voltage, the holes move away from the gate toward the 

SiO2-Si interface [10].  In addition to creating oxide-trapped holes, ionizing radiation also 
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generates interface traps at the SiO2-Si boundary.  For n-channel transistors, interface traps 

are negatively charged and cause positive threshold voltage shift.  For p-channel transistors, 

interface traps are positively charged and contribute to negative threshold voltage shift.  

Additionally, interface traps can also cause degradation of channel carrier mobility and 

channel conductance.  Ionizing radiation also ruptures the chemical bonds in the SiO2 leading 

to more defects in the material, which act as carrier traps and store positive charge [10].  For 

an n-channel transistor (nfet), the buildup of positive charge in the gate oxide causes a 

negative shift in the threshold voltage (turn-on voltage).   

Figure 2-9 is an I-V plot for a MOS transistor before and after irradiation.  The oxide-

trapped holes cause the negative shift while the interface traps cause the reduction in slope. 

As the total dose increases, the voltage shift from oxide-trapped holes may eventually cause 

the transistor to conduct even with no applied gate voltage.  This is referred to as depletion 

mode and leads to device failure.  Conduction of the nfet at zero gate voltage also causes an 

increase in power consumption in CMOS because with both nfets and pfets (p-channel 

transistors) conducting, there is a direct path from supply voltage to ground limited only by 

the resistance of the transistor channels.  As total dose increases above 100 krad(Si), the effect 

of negatively-charged interface traps dominates over oxide-trapped charge.  This condition is 

called “rebound” and causes the nfet threshold voltage shift back positive eventually leading 

to a higher threshold voltage than before irradiation.  This causes the nfet to be harder to turn-

on.  Figure 2-9 also illustrates the effects of rebound.  Increased threshold voltage and  
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Figure 2-9. Normalized N-Channel MOSFET I-V Curve. Illustrates the effects of ionizing 

radiation on threshold voltage and transconductance.  At lower total ionizing doses, trapped 
holes in the gate oxide (SiO2) cause negative shift in the threshold voltage.  As total ionizing 
dose increases above 100 krad(Si), negatively charged interface traps cause positive shift in 

the threshold voltage and a reduction in transconductance. 
 

 

decreased transconductance will reduce the switching speed of CMOS circuits and may 

eventually lead to device failure.   

P-channel transistors are more resistant to total ionizing dose.  First, since the gate 

voltage is negative, the holes collect near the gate and have less effect on the transistor 

channel than in nfets.  Also, the threshold voltage shift from both oxide-trapped charge and 

positively-charged interface traps is negative, so the P-channel transistor becomes more 

difficult to turn on which leads to slower response time.  CMOS transistors must be designed 

to increase drive and reduce channel resistance to counter the negative threshold voltage shifts 

in pfets and positive threshold voltage shifts in nfets.   
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Total dose radiation exposure is measured in rads.  The term rad (radiation absorbed 

dose) quantifies the total radiation exposure of a material [13].  One rad (Si) is equal to 100 

ergs of energy absorbed per gram of the material, which, in this case, is silicon.  The total 

dose radiation threshold of a device is the minimum level of rad(Si) that will cause device 

failure [10].  Total ionizing dose exposure at low earth orbit can be quite low with exposures 

of less than 10 krads(Si) over a 20 year mission [14].  Geosynchronous satellites can receive 

up to 100 krads(Si) after 10 years on orbit.  The most severe total dose orbits are one-half 

geosynchronous, which can reach 1Mrad(Si) after 8 years [14]. 

2.6.3 Single Event Effects.  The space radiation environment exposes circuits to a 

varying flux of ionizing particles.  At geosynchronous orbits, the cosmic ray heavy ion flux is 

approximately 100 particles/cm2 per day [10].  Shielding does little to stop this flux of high-

energy particles that can singly cause errors and/or damage when they strike the circuit.  The 

effects of a single particle strike are known as Single Event Effects (SEE).  If space 

electronics are to be reliable, they must be designed to reduce susceptibility to SEE.  Single 

event upset (SEU) is a change in a stored bit value caused by a single particle strike.  Single 

event latchup (SEL), a hard error, occurs when a particle strike induces latchup, which may 

lead to device failure.  These effects are examined further in the next two sections. 

2.6.3.1 Single Event Upset.  Single event upset (SEU) describes the event when 

a stored bit in a circuit changes state due to the charge deposited on a sensitive node by a 

single high-energy particle.  SEU is considered a soft error because the circuit is not damaged.  

Particles causing SEU can be photons, protons, alpha and beta particles, and heavy ions [10].   

The sources of this radiation are the Van Allen radiation belts, solar events (sun) and galactic 

cosmic rays that originate outside the solar system.  Figure 2-10 illustrates the effects of a 
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single particle strike.  An ionizing particle that penetrates the semiconductor creates a narrow 

ionization track (radius < 1um) as it traverses the material [15]. 

 

   

a) Heavy Ions (ionization by 
each particle) 

b) Protons (nuclear interaction 
needed to produce recoil) 

 
Figure 2-10.  Single Particle Strike [11] 

 
 

The sensitive circuit node then collects these mobile charge carriers.  SEU occurs when the 

charge collected on the sensitive node causes a charge imbalance and changes the value of the 

stored bit.  The number of electron-hole pairs created is a function of the particle energy and 

the stopping power of the semiconductor in relation to the particle.  The stopping power 

(energy deposition per unit depth – MeV/µm) is related to the linear energy transfer (LET), 

which is measured in units of MeV/(cm2/gm).  For silicon, one electron-hole pair is created 

for every 3.6 eV of deposited energy [16].  SEU susceptibility is characterized by the LET 

threshold at which bit upsets begin to occur.  Figure 2-11 illustrates the sensitive nodes in a 

typical six-transistor SRAM cell storing a ‘0’.  A particle strike on the drain of pfet 1 
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produces charge that must be dissipated through nfet 3.  If the charge is sufficient to raise the 

gate voltage of the feedback inverter (pfet 2 – nfet 4) past the nfet threshold voltage, it will 

switch the inverter which then switches the state of the memory bit. 

 

 
Figure 2-11. Six-transistor SRAM Cell. Shaded circles mark nodes sensitive to single particle 

strike [12] 
 

  

Circuits can be hardened against SEU in a number of different ways.  Process methods 

include using thin epitaxial layers on heavily doped substrates or silicon-on-insulator (SOI) 

for fabrication.  These methods minimize SEU by reducing the volume of charge that can be 

collected at sensitive nodes. One popular design method is the use of polysilicon resistors in 

the feedback paths of memory circuits.  Polysilicon resistors increase the RC time constant of 

the feedback paths creating a low-pass filter that rejects the transient pulses cause by single 

particle strikes.  The drawback to this method is that it increases the memory response time, 
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thus reducing performance.  System level methods of reducing SEU involve using redundant 

memory cells with error detection and correction.  Triple modular redundancy (TMR) is one 

such method that uses three memory cells and a 2-of-3 voting circuit for each memory cell 

[17]. Additional circuitry detects bit errors and corrects them.  SEU still occurs with TMR 

when a particle strike upsets two bits simultaneously.  Therefore, it is important to put enough 

space between the redundant memory cells to reduce the possibility of multi-bit upset.  The 

obvious drawback to redundancy is the area penalty, but it is the price that must be paid for 

reliability. 

2.6.3.2 Single Event Latchup.  The layout of conventional CMOS transistors 

forms a parasitic silicon controlled rectifier (SCR) from a four-layer PNPN structure that can 

be turned on by a heavy ion strike [18].  The parasitic SCR turn-on condition is called single 

event latchup (SEL) and is a self-reinforcing condition that can be destructive to the circuit.  

SEL is a considered a hard error because it damages the circuit.  The PNPN structure that 

creates the parasitic SCR is shown in Figure 2-12. 

 

  

p+

N SUBSTRATE

Rw
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P WELL

GND

Q2

n+ n+

Q1

n+ p+

Vdd

Rs

 
 

Figure 2-12.  CMOS PNPN Structure [10] 
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An ion strike deposits charge in either the n-substrate or p-well.  As the charge from the ion 

strike flows to the substrate or well contacts, there may be sufficient voltage drop across the 

intrinsic resistance (Rs or Rw) to forward bias the base-emitter junction of the transistor (Q2 

or Q1) and turn it on. If the gain product of the two parasitic bipolar junction transistors is 

greater than one, latchup occurs when the current from one transistor causes a voltage drop 

sufficient for turning the other transistor on.  The currents from both transistors then begin to 

reinforce themselves causing ever-larger current flow from power to ground, which 

eventually leads to device burnout if the current cannot be limited or stopped.  Without 

current limits, the only way to stop the latchup condition is remove the power and allow the 

device to reset.  The key to eliminating latchup is designing the transistors so the gain product 

is less than one.  Design practices used to reduce latchup susceptibility are [18]: 

1. Increasing the spacing between the well edge and n+ and p+ source/drain regions. 

2. Using n+/n well and p+/p well guardbands to reduce parasitic transistor gain. 

3. Increasing the number of well/substrate contacts and placing them closer to the 

latch path. 

The drawback to these design techniques is that they incur a significant area penalty, which is 

illustrated in Figure 2-16. 

2.6.4 Radiation Hardening By Design.  Shielding reduces radiation exposure by 

stopping or slowing particles, but does not eliminate it.  A realistic design cannot simply 

shield its way to radiation hardness.  Consequently, circuits must be fabricated and/or 

designed to reduce their susceptibility to radiation effects. 

 Radiation Hardening by Design (RHBD) is the process of using layout design 

techniques to reduce radiation effects on transistor circuits.  The quality of commercial 
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CMOS processes and the use of RHBD techniques facilitates the design of radiation-tolerant 

VLSI circuits that are less expensive than circuits created with traditional rad-hard processes.  

Also, the demand for electronics capacity in commercial markets has greatly decreased the 

manufacturer interest in developing rad-hard components [12].  This both keeps the cost high 

for rad-hard components and leaves their performance at least one generation behind the 

leading commercial processes.  RHBD offers a low-cost approach to designing circuits for 

radiation environments.  The RHBD design techniques are discussed below. 

One total ionizing dose effect on conventional n-channel transistor design is referred 

to as parasitic edge leakage.  This effect is illustrated in Figure 2-13.  The cross section view 

of a typical n-channel transistor shows positive charge collected in the bird’s beak regions. 

 

 
Figure 2-13. Bird’s Beak Diagram.  Positive charge buildup in the bird’s beak region causes 

parasitic edge leakage [18] 
 

 

The bird’s beak is the transition from gate oxide to field oxide and the edges of the transistor.  

The trapped positive charge in the bird’s beak creates conduction channels at the edge of the 

transistor that leak current even when the transistor is off.  As total dose increases, these 

parasitic transistors increase their conduction, which increases power supply current and may 

2-25 

GATE 
BIRD'S BEAK OXIDE 

"NORMAL" REGION 
FIELD-OXIDE CHANNEL 

REGION REGION    POSITIVE TRAPPED- 
CHARGEINDUCED 

CURRENT LEAKAGE PATH 



lead to functional failure of the device [18].  The annular or re-entrant design of n-channel 

transistors, shown in Figure 2-14, completely eliminates the oxide transition that creates the 

bird’s beak region between the source and drain.  The drawback of this design is that re-

entrant designs incur an area penalty over conventional transistor designs. 

Another total ionizing dose problem with CMOS processes is referred to as field oxide 

leakage.  During ionizing radiation exposure, holes accumulate in the field oxide that 

separates the transistors.  This can lead to two possible leakage paths.  The first leakage path 

occurs between n-wells connected to Vdd and an n+ source connected to ground.  The second 

is between n+ source and drain regions of adjacent transistors.  Eliminating field oxide 

leakage is accomplished with a channel stop.  A channel stop is simply a more heavily doped 

P region implanted between potential leakage paths.  The increased doping makes the channel 

stop much more difficult to invert and create a channel.  Consequently, the leakage path is 

broken by the channel stop.  Channel stops surround the n+ source/drains of a transistor in 

what is referred to as a guard ring.  The guard ring minimizes channel leakage between 

adjacent transistor n+ source/drain regions. 

 In addition to providing a channel stop for field oxide leakage, the grounded p+ 

guardband suppresses latchup by holding the base of the parasitic npn bipolar junction 

transistor (BJT) at ground.  Since both the base and emitter are held at ground, the base cannot 

get above the threshold voltage to turn the transistor on and begin the latchup cycle.  

Likewise, the n+ guardband at Vdd holds the base of the parasitic PNP BJT at Vdd, which 

prevents it from ever conducting. 

2.6.5 Radiation-Hardened By Design Gate Array Cell Library.  Mission Research 

Corporation, Microelectronics Division has used radiation-hardness by design (RBHD) 
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techniques to develop a gate array cell library for the Taiwan Semiconductor (TSMC) 0.35 

micrometer CMOS process. 

 The gate array design is used for its uniformity and design simplicity.  It facilitates the 

design of logic gates with a predictable level of radiation tolerance for all the library cells.  

Also, library cells can be quickly designed as new cells are defined only by the interconnects 

and metallization between the gate array cells.  Figure 2-14 shows the primitive gate array cell 

incorporating the RHBD design strategies. 

 

 

Vcc – Supply Voltage

p-Channel Transistors 

n+ Guardband 

p+ Guardband 

Re-entrant 
n-Channel Transistors 

Ground 

 
Figure 2-14.  Radiation Hardened By Design Gate Array Cell [18] 

 
 

The re-entrant n-channel transistors eliminate the parasitic leakage channels that form in the 

bird’s beak region.  The p-channel transistors use a two-fingered layout and are sized larger to 

maintain drive strength as ionizing radiation negatively shifts the threshold voltage and 

reduces drive capability.  The p+ guardband in the p well minimizes field oxide leakage and 

reduces latchup susceptibility.  The n+ guardband in the n well and frequent well contacts 

further reduces latchup susceptibility as discussed above. 
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Most of the gates use multiple gate array cells as shown in the AOI222 gate of Figure 

2-15.  Defining a gate is as simple as positioning the metal and interconnects.  Most gate 

 

 
 

Figure 2-15.  AOI222 (AND-OR-INVERT) gate in RHBD Gate Array 
 

  

arrays are pre-fabricated without metallization.  Then, the only fabrication step left is the 

metallization, which often can be done very quickly.  The RHBD gate array is actually just a 

standard-cell library designed with gate-array cells.  The benefits of this gate array design are 

the quick and simple design of library cells and the uniform level of radiation hardness 

throughout the design.  The drawback is the area penalty incurred from using the same 

transistor structure for each gate in the library. 

An example of the area penalty of radiation hardening is Figure 2-16 which shows a 

comparison between a RHBD NAND gate using gate-array cells and a non-rad-hard 

minimum-sized NAND gate in the TSMC 0.35 micron process.  The gate array NAND gate is 

5.15 times larger than the minimum-sized NAND gate.  However, depending on the design, 
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the overall area penalty would likely be 2-3 times greater than a standard cell, non-rad-hard 

design.  This is a considerable penalty, but it is the design tradeoff that must be made to 

achieve radiation-tolerant VLSI circuits that will operate reliably in the space environment. 

 

 
                                                               (a)                        (b) 

 
Figure 2-16.  NAND Gate Size Comparison. RHBD gate array (a)  

versus minimum-size transistors (b) 
 

  

 In addition to standard logic gates, the RHBD gate array library also includes latches 

and flip-flops designed to be SEU hard.  The latches are based on the DICE design that uses 

double redundancy and eliminates direct feedback.  This prevents a strike on a single node 

from upsetting the memory bit [19]. 

Radiation testing of the gate array design [18] in an older 0.8 micron process showed 

an ionizing dose hardness of greater than 300 krad(Si) and a SEU LET threshold greater than 

50 MeV-cm2/mg.  Latchup was not observed in the test facility limit of 102 MeV-cm2/mg.  

The thinner gate oxides in modern advanced CMOS processes will likely increase total dose 
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hardness of the RHBD gate array.  However, the tradeoff to smaller feature size will reduce 

SEU hardness, requiring additional design techniques to reduce SEU susceptibility.  A similar 

RHBD test circuit fabricated in the TSMC 0.25 micron process showed total ionizing dose 

hardness up to 500 krad(Si) [20]. 

2.7 Summary 
 
 The goal of my thesis is to create a small but useful microcontroller for distributed 

microdevice interfacing in satellites.  In this chapter I have covered the VLSI design process, 

stack processors, four-bit microntrollers, and serial bus protocols that can be used for 

distributed computing.  Finally, I presented an overview of the effects of radiation on CMOS 

circuits and the design techniques used to harden them for operation in the space environment. 



3.  Design Overview 

 
3.1 Introduction 
 

In this chapter, I present an overview of the Microdot design.  The purpose is to 

introduce the Microdot architecture and explain how it works.  First, I cover the design goals 

and summarize Microdot architecture.  Next, I examine the instruction set and explain the 

purpose and operation for each functional block. 

 
3.2 Design Goals 
 
 The Microdot is conceived as a small, low-power microcontroller for distributed 

interfacing and control of microsensors and actuators on satellites.  Figure 3-1 shows the 

Microdot distributed computing concept.  Arrays of Microdots assigned to individual 

microdevices are connected to the supervisor processor with an I2C serial bus.  This is 

designed to distribute computing among the array of microcontrollers instead of using a single 

microcontroller for all the processing.  The first design goal for the Microdot is that it must be 

capable of operating in the space radiation environment for an extended amount of time.  This 

requires the use of logic gates designed specifically to minimize the radiation effects on 

CMOS circuits as presented in Chapter 2.  Additionally, the Microdot must be designed to 

consume minimum power, as satellites must operate on limited power budgets either from on-

board batteries or solar panels or both.  The final major design goal is small area.  I envision 

that Microdots could actually be fabricated on the same substrate adjacent to the microdevices 

with which they interface.  Plus, a satellite with possibly hundreds of microsensors might 

require nearly an equal number of Microdots, one dedicated to each device.  Consequently, 
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minimizing the size of the Microdot results in a decrease in the potential size and weight of 

the satellite, which is also important in minimizing launch costs. 

  

 
Figure 3-1. Microdot Distributed Computing Concept.  Microdots are connected to the 
supervisor processor with the I2C bus.  Each I2C bus can connect up to 128 Microdots.  

Processing tasks for each microdevice are delegated to its assigned Microdot. 
 

 
3.3 Microdot Design 
 

The Microdot is a four-bit microcontroller with twenty-nine instructions and eight 

input/output lines.  Instructions vary in length from one to four nibbles (four-bit words).  It 

has a program memory size of 1024 nibbles and a data memory size of 128 nibbles.  The 

Microdot is programmed serially using an I2C serial bus interface.  The I2C interface is also 

used to transfer data between the Microdot and its supervisor processor.  The Microdot design 
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hierarchy consists of six functional blocks and thirty-five sub-blocks.  The Microdot block 

diagram in Figure 3-2 shows the overall architecture.  Thick lines represent data paths and 

thin lines represent control signals. The Control Unit controls program execution.  The Stack 

Unit is the data memory.  The Memory Unit is the program or instruction memory.  The 

Input/Output Unit is the interface to the eight bi-directional external data ports.  The I2C COM 

Unit is the interface to the I2C bus, which is used for distributed control and data transfer.  

Before the functional blocks were designed the instruction set was defined. 

 

STACK

INPUT/
OUTPUT

MEMORY

CONTROL

I2CI2C BUS

I/O PORTS

ALU

 
 

Figure 3-2. Microdot Block Diagram 
 

3.4 Instruction Set 

One of the first steps in designing any microprocessor is the definition of the 

instruction set. The number of instructions and their complexity determines the amount of 

logic required to implement them.  There is a tradeoff between having a small number of 

simple instructions and a large number of complex instructions.   Reduced Instruction Set 

Computers (RISC) use a small set of simple instructions.  The logic needed to implement the 

instruction set is smaller, but it takes more instructions to execute a typical program.  Thus, 
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more memory is required to store programs.  A Complex Instruction Set Computer (CISC) 

uses a large set of complex instructions that requires fewer instructions and less memory to 

implement and store programs [5].  The Microdot is a RISC machine.  The instruction set is 

small and quite simple, but still capable of meeting the overall design goals.  The previous 

version of the Microdot had twenty-three instructions.  The addition of the I2C interface 

required three instructions for transferring data on the I2C bus.  Table 3-1 is an overview of 

the instruction set for the Microdot.   

The instructions vary in length from one to four nibbles.  The first nibble of each 

instruction is the operation code, or OPCODE.   The OPCODE defines either the individual 

instruction or the instruction category.  The instruction categories are load (3), ALU one-

operand (4), general (5), and ALU two-operand (8).  All other OPCODES define individual 

instructions.  OPCODE C (1100) is not a legal instruction although the control logic executes 

it as a two-operand ALU instruction that loads the INDEX 2 register even though it is not 

used.  The stack instructions POP and DUP are the only one-nibble instructions.  The second 

instruction nibble is referred to as the ALU CODE.  For ALU instructions, the ALU CODE 

defines the specific ALU operation (ADD, SUB, etc.).  For load and general instructions, the 

ALU CODE specifies the instruction.  It is basically an extension of the OPCODE.  For other 

multi-nibble instructions, the ALU CODE is part of the instruction operand.  For instance, the 

ALU CODE in the PUSH instruction holds the nibble to be pushed onto the stack.  The third 

instruction nibble is INDEX 1 and is part of the instruction operand.  In an ALU two-operand 

instruction, INDEX 1 is the offset that is added to the stack pointer to determine the  
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Table 3-1.  Microdot Instruction Set 
INSTRUCTION OPCODE ALU CODE INDEX 1 INDEX 2 LENGTH TYPE DESCRIPTION 

POP 0    1 STACK Pop an element off the Stack 

DUP 1    1 STACK Push a duplicate the Top of Stack to 
the Stack 

PUSH 2 CONST   2 STACK Push an element onto the Stack 

LDU 3 1   2 I/O Load Upper I/O Nibble to Top of 
Stack 

LDL 3 2   2 I/O Load Lower I/O Nibble to Top of 
Stack 

LDCM 3 4   2 I2C COM Load Lower Nibble of the I2C COM 
Register 

STSR 3 8   2 I2C COM Set the Status Register with state of 
I2C COM Unit (IDR/ODR/INT) 

SHL 4 8   2 ALU-1 Shift Top of Stack Left with Carry 

SHR 4 9   2 ALU-1 Shift Top of Stack Right with Carry 

NOT 4 A   2 ALU-1 Invert the Top of Stack 

SUSP 5 1   2 INTERNAL Suspend the Processor 

INT 5 2   2 I/O Set the Interrupt Line asserted 

CLSR 5 4   2 INTERNAL Clear the Status Register 

RST 5 8   2 INTERNAL Reset the Processor 

STIO 6 STK INC   2 I/O Store Top of Stack and Stack 
Element to I/O Port 

STCM 7 STK INC   2 I2C COM Store Top of Stack and Stack 
Element to I2C COM Register 

ADD 8 0 STK INC  3 ALU-2 Add Stack Element to Top of Stack 
without carry 

ADDC 8 1 STK INC  3 ALU-2 Add Stack Element to Top of Stack 
with carry 

SUB 8 2 STK INC  3 ALU-2 Subtract Stack Element from  
Top of Stack without carry 

SUBC 8 3 STK INC  3 ALU-2 Subtract Stack Element from  
Top of Stack with carry 

AND 8 4 STK INC  3 ALU-2 And Top of Stack with Stack 
Element 

OR 8 5 STK INC  3 ALU-2 Or Top of Stack with Stack Element 

XOR 8 6 STK INC  3 ALU-2 Exclusive-or Top of Stack with Stack 
Element 

SWAP 9 STK ADR 
[6..4] 

STK ADR 
[3..0]  3 STACK Swap Top of Stack with  

Stack(STK ADR) 

PICK A STK ADR 
[6..4] 

STK ADR 
[3..0]  3 STACK Load Top of Stack with  

Stack(STK ADR) 

SEIO B IO MASK 
[7..4] 

IO MASK 
[3..0]  3 I/O Set I/O Mask Register 

(0 = input/1 = output) 

 C ALU CODE STK INC LOADED 4  Unused OPCODE 

BRCH D MASK PC INC [7..4] PC INC [3..0] 4 PROGRAM Branch to PC + PC INC 
if MASK * SR != 0 

JMP E JMP ADR 
[9..8] 

JMP ADR 
[7..4] 

JMP ADR 
[3..0] 4 PROGRAM Jump to specified address 

WAIT F STK INC WAIT MASK 
[7..4] 

WAIT MASK 
[3..0] 4 INTERNAL Wait for masked I/O inputs to change 

from Top of Stack and Stack Element

       * Stack Element =  
Stack Pointer + STK INC 
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second operand in the ALU operation (Top-of-Stack Register is always the first operand).  

The last part of the instruction register is INDEX 2.  The only four-nibble instructions are 

WAIT, BRCH, and JMP.  The WAIT instruction allows the Microdot to conditionally 

suspend itself while waiting for a selected input to change.  The WAIT instruction is 

discussed further in the section 3.2.5.  The BRCH instruction is a conditional branch 

determined from the status register and the mask loaded into the ALU CODE.  If the bitwise-

and of the status register and mask is nonzero, then the Microdot will jump forward by the 

amount specified in INDEX 1 and INDEX 2 (INDEX 1 * 16 + INDEX 2 < 256).  The status 

register stores the condition of the last ALU operation except when the CLSR or STSR 

instruction is executed.  The four status conditions are Carry, Negative, Overflow, and Zero.  

The CLSR instruction clears the contents of the instruction register.  The STSR instruction 

causes the status register to load with status information from the I2C COM Unit.  The JMP 

instruction loads the program counter with the address given in ALU CODE, INDEX 1, and 

INDEX 2 (ALU CODE [1..0] * 256 + INDEX 1 * 16 + INDEX 2 < 1024). 

 
3.5 Control Unit 
 

The Control Unit (CONUNIT) manages instruction loading and execution for the 

Microdot.  It generates all the control signals for each functional unit.  The Control Unit 

interface is shown in Figure 3-3.  For all interface diagrams, the inputs are on the left and the 

outputs are on the right.  The signal definitions are presented in the signal table in Appendix 

A.  The main inputs to the Control Unit are the OPCODE and ALU CODE registers from the 

Memory Unit.  Other important inputs are control and state signals from the I2C COM Unit.  

The I2C COM Unit operates independently from the rest of the functional blocks and needs to 

3-6 



 
Figure 3-3.  Control Unit Interface 

 
 

control the Control Unit during I2C data transfer operations.  The five sub-blocks that 

comprise the Control Unit are the Control State Machine (CONTSTM), the Internal Control 

Logic (CONCNT), the Memory Control Logic (MEMCNT), the Stack Control Logic 

(STKCNT), and the I/O Control Logic (IOCNT).  CONTSTM holds the instruction state and 

the status register.   There are six possible instruction states.  These are Fetch-OPCODE 

(FOC), Fetch-ALU CODE (FAC), Fetch-INDEX 1 (FX1), Fetch-INDEX 2 (FX2), Swap 

(SWP), and Execute (EXE).  The instruction is loaded during the fetch states.  Fetch-
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OPCODE is the first state in an instruction cycle.  Following the Fetch-OPCODE state, one 

and two nibble instructions enter the Fetch-ALU CODE state and then jump directly to the 

Execute state.  The one-operand instructions, POP and DUP, have a Fetch-ALU CODE state 

although internal logic prevents the ALU CODE register from being loaded.  This eliminated 

the need to have an instruction decode state immediately after the Fetch-OPCODE state.  The 

instruction state transitions are illustrated in Figure 3-4.  As can be seen, one-nibble and two-

nibble instructions transition from FAC to EXE.  Three-nibble instructions skip from FX1 to 

EXE.  The SWAP instruction is the only one that transitions to the SWP state after FX1.  This 

state is needed to facilitate reading from and then writing to the same memory location in the 

Stack RAM. 

 

FOC

FAC

FX1

FX2

EXE

SWP

1,2

SW

3

4

1- 1x4 Instruction
2- 2x4 Instruction
3- 3x4 Instruction
4- 4x4 Instruction
SW- SWAP

 
Figure 3-4. Instruction State Diagram 
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The control logic signals are generated according to the instruction code (OPCODE 

and ALU CODE), the instruction state, the status register, and the I2C COM Unit state.  The 

control logic blocks divide the control logic by the functional units.  This was done to 

simplify the design and break the control logic into smaller and more manageable units.  

CONCNT generates the control signals used in the Control Unit itself.  MEMCNT generates 

control signals for the Memory Unit.  STKCNT generates control signals for the Stack Unit.  

The IOCNT generates control signals for the I/O blocks of the Microdot, which include the 

I/O Unit and the I2C COM Unit. 

 
3.6 Arithmetic and Logic Unit 
 
 

 
Figure 3-5. ALU Interface 

 
 

The Arithmetic and Logic Unit (ALU) executes the logic function for one of the ten 

ALU instructions.  The ALU interface is shown in Figure 3-5. The Microdot uses two’s 

complement to represent signed numbers.  Table 3-2 shows the unsigned and two’s 

complement for four-bit numbers. 

The ALU is comprised of the eight sub-blocks described below.  The ALU Controller 

(ALUCONT) decodes the ALU CODE to activate the correct logic sub-block for the selected 

ALU instruction.  The ALUNOT sub-block inverts the TOS Register.  The ALUAND sub-

block is the bitwise-and of the operands, the ALUOR sub-block is the bitwise-or, and the  
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Table 3-2.  Microdot Number Representation 
BINARY HEX UNSIGNED SIGNED

0000 0 0 0 
0001 1 1 1 
0010 2 2 2 
0011 3 3 3 
0100 4 4 4 
0101 5 5 5 
0110 6 6 6 
0111 7 7 7 
1000 8 8 -8
1001 9 9 -7
1010 A 10 -6
1011 B 11 -5
1100 C 12 -4
1101 D 13 -3
1110 E 14 -2
1111 F 15 -1

 

ALUXOR sub-block is the bitwise-exclusive-or.  The ALUSHF sub-block either shifts the 

Top-of-Stack (TOS) Register left or right depending on the ALUCONT control signals. The 

ALUADD sub-block performs four-bit addition or subtraction as directed by the ALUCONT.  

Both operands come directly from the Stack Unit.  The first operand is always the Top-of-

Stack (TOS) Register.  For two operand instructions, the second operand is the Stack RAM 

output (STK).  Stack RAM output is the RAM element addressed by the Stack Pointer 

(STKPTR) plus the increment loaded in the INDEX 1 Register (STKPTR + INDEX 1).  The 

Status Logic (ALUSTR) sub-block determines the condition of the ALU operation.  As noted 

before, the four status conditions are Carry, Negative, Overflow, and Zero.  During an ALU 

instruction, the status output is stored by the Control Unit for use with future BRCH 

instructions.  For instance, a program may require a branch if an ALU operation resulted in a 

zero output.  The status register is used during the BRCH instruction to check if the last ALU 

result was zero and branch forward if it was.  Add, subtract, and shift operations are the only 
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ALU instructions capable of generating a carry.  The carry bit is used to perform multi-nibble 

addition, subtraction, and shift operations.  An ADD or ADDC instruction generates a carry 

bit if the ALU result (AR) is greater than 15.  A SUB or SUBC instruction generates a carry 

bit (considered a borrow) if the ALU result is less than 0.  SHR and SHL instructions generate 

a carry if the shift-out bit is ‘1’.  The negative bit is generated during all ALU instructions if 

the ALU result is a negative number in four-bit, two’s-complement representation.  If the 

most significant bit (MSB) of the ALU result is ‘1’, the result is considered negative.  The 

overflow bit is generated during add and subtract instructions when an overflow occurs and 

the ALU result may be considered invalid.  Overflow occurs when the addition or subtraction 

results in the opposite of what is expected.  For instance, when two positive numbers are 

added we expect a positive result, but if the result is negative an overflow has occurred.  The 

other possible overflow conditions are listed in Table 3-3 below. 

 

Table 3-3.  ALU Overflow Conditions 
 ADD/ADDC SUB/SUBC 

TOS + - + - 
STK + - - + 

ALU RESULT - + - + 
 

 

The zero bit is generated during all ALU instructions when the ALU result is zero.  The zero 

bit is useful for executing a branch-on-equal.  Two numbers can be compared by executing a 

SUB instruction followed by a BRCH instruction that masks the zero bit as the branch 

condition.  
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3.7 Stack Unit 

 

 
Figure 3-6. Stack Unit Interface 

 
 

The Stack Unit (STKUNIT) functional block shown in Figure 3-6 is the Microdot data 

memory.  The Stack Unit feeds operands to the ALU and stores the results of the ALU 

operations.  It also stores data loaded from the program memory, I/O ports, and I2C COM 

Unit.  The Stack Unit is designed to interface the 128-nibble static random access memory 

(SRAM), referred to as the Stack RAM.  An advantage of using SRAMs is that they can 

typically be designed much smaller and more efficiently than a register array of the same size.  

The Stack Unit is actually a modified stack design.  This allows easier access to the stack 

elements, which makes it much simpler to use as the data memory by allowing simultaneous 

access to two operands.  The modified stack also reduces the number of instructions needed to 

manage the stack.  The Stack Unit is comprised of six sub-blocks.  The top of the stack is 

actually stored in a register referred to as the Top-of-Stack Register (TOSREG or TOS).  For 

3-12 

SMUE 

STK[3:0] 

STKADR[6:0] 

STKD0[3:0] 

TOS[3:0] 



operand instructions (ALU or STORE), the TOSREG is always the first, or only, operand.  

Data is loaded to the TOSREG by the Top-of-Stack Multiplexer (TOSMUX), which selects 

the data input based on the instruction.  The Stack Pointer (STKPTR) stores the address of the 

second element of the stack, which is actually the top of the Stack RAM.  During a reset, the 

STKPTR is initialized to 00HEX.  The STKPTR decrements when elements are pushed onto 

the stack and increments when elements are popped from the stack.  A PUSH instruction 

places the new element into the TOSREG while the TOSREG data is placed onto the Stack 

RAM and the STKPTR is decremented. A POP instruction loads the Stack RAM element 

addressed by the STKPTR to the TOSREG and then increments the STKPTR to point to the 

next element.  The Stack Pointer Logic (STKPTRLOG) computes the increment or decrement 

for the STKPTR.  The Stack Adder (STKADD) adds the four-bit stack increment to STKPTR 

to give two-operand instructions access to the elements from STKPTR to STKPTR + 15.  

Depending on the instruction, the four-bit stack increment comes from either the ALU CODE 

or INDEX 1 register.  The Stack Address Multiplexer (STKADRMUX) selects the address 

input for the Stack RAM. 

 
3.8 Input/Output Unit 
 
 

 
Figure 3-7.  Input/Output Unit Interface 
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The Input/Output Unit (IOUNIT) is the functional unit that manages the interface to 

the eight input/output (I/O) ports.  The previous Microdot design had only four I/O ports.  

While a design goal for the Microdot is to keep the pin count down, I also wanted a level of 

versatility that would make the Microdot useful for more than just the smallest designs.  Plus, 

after examining the design, I concluded that the logic required to implement four additional 

I/O ports was only a small penalty so the tradeoff was made for more I/O capacity. 

 The Input/Output Unit interface is shown in Figure 3-7.  It is comprised of only three 

sub-blocks.  These are the Mask Register (MSKREG), the Output Register (OUTREG), and 

the Event Detector (EVNTDET).  The MSKREG is an eight-bit register that determines 

whether the bi-directional I/O pads are configured as inputs or outputs.  A ‘0’ stored in a 

MSKREG bit configures its corresponding I/O pad as an input.  Conversely, a ‘1’ causes the 

I/O pad to drive the value from the corresponding bit in the Output Register.  The MSKREG 

is loaded during execution of the SEIO (Set I/O Mask) instruction.  The eight-bit OUTREG 

holds the output for the I/O ports.  The value of the OUTREG is set during execution of the 

STIO (Store to I/O port) instruction.  The Event Detector (EVNTDET) is used during the 

WAIT instruction to detect a data event on the input lines.  The WAIT instruction puts the 

Microdot in a suspend state while the I/O ports are compared to the data input from TOS and 

STK according to the mask loaded in the INDEX 1 and INDEX 2 registers.  If a mask bit is 

set (‘1’), then the I/O port is compared to its corresponding data input bit.  If the two bits 

differ, the EVNTDET signals an event to the Control Unit and the Microdot resumes 

execution.  Otherwise, the Microdot remains in the standby state waiting for data to change on 

the selected I/O ports. 
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3.9 Memory Unit 

 

 
Figure 3-8.  Memory Unit Interface 

 
 

The Memory Unit (MEMUNIT) shown in Figure 3-8 is responsible for managing the 

Microdot’s 1024x4 bit Program SRAM.  Its two main functions are 1) delivering instructions 

to the Microdot and 2) loading new programs.  The 1024x4 SRAM is a standard memory 

architecture.  It has 10 address inputs, 4 data inputs, 4 data outputs, and a write enable input.  

Input data is written to the addressed location when the write enable input is high (‘1’).  When 

write enable is low, the addressed data is placed on the data output lines. The Memory Unit is 

made up of four sub-blocks, which are the Program Counter State Machine (PCSM), Program 

Counter Logic (PCLOG), Instruction Register (INSREG) and External Memory Multiplexer 

(XMEMMUX). 

 The PCSM is a 10-bit register that holds the current program memory address.  Its 10-

bit output feeds the address input of the Program SRAM as well as the external address 

(EXADR) output pads.  The PCLOG sub-block is the logic for updating the PCSM.  During a 
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BRCH instruction where the branch condition is set, the PCLOG adds the eight-bit branch 

value from the INDEX 1 and INDEX 2 registers to the current PCSM value to compute the 

branch address.  During JMP instructions, the PCLOG loads the new address from the ALU 

CODE, INDEX 1, and INDEX 2 registers.  Otherwise, during normal operation the PCLOG 

increments the PCSM value by one. 

The Instruction Register (INSREG) sub-block is a combination of the four registers 

that hold the instruction nibbles: OPCODE, ALU CODE, INDEX 1, and INDEX 2.  Each 

four-bit register has its own load input, which comes from the Control Unit.  The four-bit data 

input comes from the XMEMMUX. 

The External Memory Multiplexer (XMEMMUX) has two functions.  The first is to 

provide an external memory interface so off-chip memory can be used for testing.  This 

allows the Microdot to be tested if the internal SRAM fails.  When the DIM (disable internal 

memory) input is asserted (‘1’), the XMEMMUX selects the external memory data port (XDI) 

as the program memory.  During normal operation, XMEMMUX selects the internal program 

memory (MEMDI).  The second function of XMEMMUX is to select the correct nibble from 

the eight-bit I2C COM Unit during the programming operation.  Program data is loaded to the 

I2C COM Unit in bytes, but must be written to the Program SRAM as nibbles.  During 

programming the XMEMMUX selects the nibble based on the Program Nibble Select (PNS) 

input (0 = upper nibble, 1 = lower nibble).  

 
3.10 I2C Communication Unit 
 

The I2C Communication Unit (COMUNIT) is the link to the supervisor processor that 

controls the Microdot.  I2C COM Unit operations include loading new programs, transferring 

data over the I2C bus, and receiving commands from the supervisor processor to control  
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Figure 3-9.  I2C Communication Unit Interface 

 
 

execution.  The Microdot is designed for distributed computing and control interfacing of 

microdevices in satellite systems.  The idea is a distributed architecture where a supervisor 

processor delegates computing and control tasks to a collection of Microdots that 

independently operate on different devices.  Therefore, it is important for the Microdot to 

have a simple and efficient interface distributed computing.  The interface requires two 

operations.  The first operation is the programming of the Microdot.  The second operation, 

data transfer, is equally as important.  What good is a processor if you cannot get data from it?  

Control processes can possibly run independently, but data collection needs a path from the 

Microdot to the supervisor processor.  The I2C COM Unit uses the I2C serial bus protocol 

introduced in Chapter 2.  As I studied the I2C bus and the Microdot design, I came up with a 

set of commands for data transfer, execution control, and programming that the supervisor 

processor could send to the Microdot as part of a command byte.  The I2C commands and 

command process are explained Chapter 4. The I2C COM Unit functional block shown in 

Figure 3-9 consists of six sub-blocks that are briefly explained below. 
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The start detector (STDET) detects the start condition on the I2C bus.  Recall that the 

start condition is defined by a ‘1’ to ‘0’ transition of the SDA line while SCL is at ‘1’.  After a 

start condition is detected, the I2C COM Unit will load the address byte. 

 The COM Word State Machine (COMWS) holds the mode of the I2C COM Unit.  The 

modes are IDLE, READ ADDRESS, READ COMMAND, WRITE DATA, and PROGRAM.  

COMWS modes correspond to what the I2C COM Unit is currently doing.  The IDLE mode 

indicates that no I2C data transfer is taking place.  READ ADDRESS indicates that the I2C 

COM Unit is reading the address byte that begins every I2C data transmission to specify the 

device being addressed and the direction of the subsequent data transfer.  READ COMMAND 

mode denotes that the I2C COM Unit is reading a command byte from the supervisor 

processor.  WRITE DATA mode indicates that the I2C COM Unit is transferring a data byte 

to the supervisor processor.  PROGRAM mode means that the supervisor processor is 

downloading a new program to the Microdot. 

 The COM Bit State Machine (COMBS) counts bit states and synchronizes the 

acknowledge state.  Recall that the I2C data byte is actually 8 data bits followed by the 

acknowledge state.  When a data transfer begins, the COMBS is reset and then starts counting 

clock cycles by nine.  Every ninth clock cycle is an acknowledge cycle and the COMBS 

signals it to the other sub-blocks of the I2C COM Unit when the acknowledge cycle is 

reached.  The acknowledge signal is used to synchronize other I2C COM Unit operations. 

 The COM buffer (COMBUF) is the shift register that interfaces the serial data (SDA) 

line.  When data is transferred into the Microdot, the SDA data is shifted into bit 0.  When 

data is shifted out of the Microdot, the COMBUF is first loaded from the COM Register.  The 
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data is then shifted out of bit 7. The COMBUF also contains the logic for I2C address 

detection. 

 The COM Register (COMREG) is the link between the microcontroller and I2C 

interface.  When a byte is written to the Microdot during a write-nibble command or 

programming, the COMREG loads the output of the COMBUF.  During the STCM (Store to 

COM Unit) instruction when the Microdot stores data to the I2C COMUNIT for output on the 

I2C bus, the COMREG loads the TOS and STK outputs. 

 The COM State Machine (COMSTM) holds the I2C COM Unit state information and 

generates control signals for programming and reading the stack.  The state information 

includes bits for Suspend, Interrupt, Output Data Ready (ODR), and Input Data Ready (IDR).  

The Suspend and Interrupt states are actually Microdot state information.  The Suspend bit is 

included as part of the COMSTM because the execution is controlled over the I2C bus by the 

supervisor processor.  The interrupt line is integrated with the I2C bus to signal the supervisor 

processor that the Microdot has data ready to send.  The interrupt bit is set during the INT (Set 

Interrupt) instruction and is reset when the output data has been sent over the I2C bus. 

 The COM Logic (COMLOG) sub-block has internal control logic for loading the 

COMBUF and COMREG and external control logic for I2C reset and byte acknowledge. 

 
3.11 Status Multiplexer 
 
 The status multiplexer shown in Figure 3-10 is the test structure that allows visibility 

to several of the Microdot’s internal data paths.  It is an eight input by four-bit multiplexer 

that selects from the following inputs: 
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0: ALU Result 
1: Top-of-Stack Register 
2: Stack RAM Output 
3: Status Register (Carry, Negative, Overflow, Zero) 
4: OPCODE Register 
5: ALU CODE Register 
6: COM Register [7..4] 
7: COM Register [3..0] 

 
The three-bit select input comes from off-chip.  This configuration allows testing of the 

OPCODE and ALU CODE registers, the TOS and STK data, the ALU result, and COMREG.  

This allows an internal view of exactly what is happening within the Microdot that cannot be 

gained by watching the external outputs.  This test structure would not be included in a 

production version of the Microdot. 

 

 
Figure 3-10. Status Multiplexer Interface 

 
 
3.12 Summary 
 
 In this chapter, I have provided an overview of the Microdot design.  I first presented 

the overall architecture and the instruction set.  Next, I reviewed the six functional blocks that 

comprise the Microdot microcontroller. 
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4.  Design Implementation 

 
4.1 Introduction 
 

In Chapter 4, I explore design methods that are useful for the creation of the 

Microdot.  I look again at the functional units and sub-blocks and cover how they are 

interconnected.  I also present an in-depth explanation of the I2C Communication Unit design 

and operation. 

The Microdot is essentially a scaled-down microprocessor.  It has a basic instruction 

set with standard arithmetic and logic functions.  It is designed to be small.  There are no 

high performance design methods like pipelining or memory caching and it is not designed to 

run subroutines.  Its role is really to run a single program to interface a single device that 

needs simple control.  The most complicated part of the design is the interface for the I2C 

serial bus.  Of course, this is the part of the design that makes the Microdot more than just a 

mini-microcontroller.  It is the basis for the Microdot distributed computing concept. 

 
4.2 State Machine Design 
 
 The state machines in the Microdot were designed using a “one-hot” approach.  

Traditional state machines use n flip-flops to represent < 2n states.  The one-hot approach 

uses a single flip-flop per state.  Only one of the flip-flops holds a ‘1’, which represents the 

active state.  For small state machines with simple state transition tables, the one-hot design 

approach makes them very simple to implement.  It simplifies the next-state logic and no 

decode logic is needed to determine the active state.  Eliminating decode logic can make this 

approach also work well for large state machines that have a small number of state transition 

cycles. 
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 One of the drawbacks to the one-hot approach is the possibility of errors.  If two flip-

flops are simultaneously set to ‘1’ by a bit upset, the state machine exists in two states at 

once.  This is an illegal condition and will cause errors.  To make the one-hot state machine 

more robust, extra logic is needed to detect the error condition and reset the state machine.  

This complicates the design, which reduces any advantage over traditional state machine 

design.  Also, for the radiation-hardened gate array library, the SEU-hardened flip-flops are 

very large (24X larger than 2 input NAND).  The area penalty for extra flip-flops quickly 

outweighs the combinational logic penalty of traditional designs.  For comparison, the 

Control State Machine was designed with both the one-hot and traditional design methods.  

Table 4-1 summarizes the design comparison.  You can see that the one-hot implementation 

has fewer gates and smaller combinational logic area, but the size of the SEU hardened flip-

flops makes the one-hot design 1.5 times larger than the traditional design. 

 

Table 4-1.  State Machine Design Comparison 

Approach Flip-
flops 

Combinational 
Gates 

Combinational 
Cell Area 

Flip-Flop Cell 
Area 

Total 
Cell 
Area 

One-hot 6 10 16 144 160 
Traditional 3 25 37 72 109 

 

 

The state machine design is one area of redesign I would accomplish before pressing forward 

with a full fabrication of the Microdot in the RHBD gate array library.  Redesigning the state 

machines will make the Microdot smaller and more robust to SEU. 
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4.3 Gated Clocking 

 One of the methods for reducing power consumption in the Microdot is the use of 

gated clocking.  Gated clocking reduces power consumption by reducing the number of 

inputs that switch each clock cycle.  Figure 4-1 shows a gated clock register versus a 

standard continuously clocked register design.  The gated clock register clocks the flip-flops 

only when the load input is asserted. This register uses an asynchronous clear.  The 

continuously clocked register clocks each flip-flop on every clock cycle.  This requires logic 

to feed back the output to maintain the value when the load or reset input is not asserted.  

This register uses a synchronous clear. 

The multi-cycle design of the Microdot allows the use of gated clocking.  Multi-cycle 

refers to the fact that each instruction is executed in multiple clock cycles.  For the Microdot, 

an instruction requires 3-5 clock cycles depending on the type.  Most of these cycles are 

required for loading an instruction opcode or operand into one of the four-bit registers that 

make up the instruction register.  Thus, there is no need to continuously clock these registers.  

The logic synthesis tools do not have the ability to synthesize behavioral logic with multiple 

or gated clocks.  Therefore, the structural logic for the sequential elements of the Microdot 

had to be hand-designed.  In anticipation of this inadequacy, elements of sequential and 

combinational logic for each register were separated into sub-blocks.  This allowed for easy 

synthesis of the combinational blocks and manual design of sequential blocks. 
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Figure 4-1. Gated Clocking versus Continuous Clocking.  Gated Clocking reduces power 
consumption by gating the clock, which reduces clock fanout and switching capacitance. 

 

 

4.4 Control Unit 

 Figure 4-2 shows the connectivity of the Control Unit (CONUNIT).  The wiring is 

not shown, but can be followed by tracing the signal names to their source and destinations.  

The OPCODE (OC) and ALU CODE (AC) inputs from the Memory Unit define the 

instruction that is currently being executed.  The instruction input and control state stored in 

the Control State Machine (CONTSTM) define the output of the control signals.  The 

CONTSTM also contains the status register, which stores the status output from the last ALU 

instruction or the I2C COM Unit status stored during the Set Status Register (STSR) 

instruction.  The ALU status inputs are COUT, NEG, OVR, and ZER.  The I2C COMUNIT 

status inputs are IDR, INTX, and ODR.  The internal control and reset logic is determined in  
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Figure 4-2.  Control Unit Interconnect Diagram 
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the CONCNT block.  CONCNT controls the CONTSTM instruction cycle based on the 

OPCODE and external inputs.  It is also responsible for status register loading and reset and 

testing the status register to determine if the branch condition is met. 

The external control logic is broken down by the functional unit control signals.  

Stack Control logic (STKCNT) uses instruction input and control state to determine the 

control signals for the Stack Unit.  Memory Control Logic (MEMCNT) resolves the Memory 

Unit control signals.  The I/O Control Logic (IOCNT) resolves the control signals for both 

the I/O Unit and the I2C COM Unit. 

 The I2C COM Unit primarily operates independently from the Microdot.  It is 

constantly monitoring the I2C bus looking for its unique address to be sent in an address byte. 

The I2C COM Unit needs control over the Control Unit so it can execute commands sent 

from the supervisor processor.  The SPI input signals the Control Unit that the I2C COM Unit 

has suspended the Microdot.  The COMPCI input is used during the programming process to 

signal the Control Unit to increment the program counter.  The COMRST signal is the reset 

input from the I2C COM Unit.  The RDST input signals that the I2C COM Unit is reading a 

stack element.  I2C COM Unit operation is examined in section 4.9. 

 
4.5 Arithmetic and Logic Unit 
 
 The Arithmetic and Logic Unit (ALU) is shown in Figure 4-3.  The ALU data inputs 

come from the Stack Unit.  They are the Top-of-Stack Register (TOS) and Stack RAM 

output (STK).  The CIN and VIN inputs come from the Control Unit.  CIN is the carry-in 

input for the ADDC, SUBC, SHL, and SHR instructions.  VIN is the overflow bit input.  It is 

included so the overflow bit can be maintained during non-arithmetic instructions. 
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Figure 4-3.  Arithmetic and Logic Unit Interconnection Diagram 

 
  

The ALU Controller (ALUCONT) selects the logic function based on the ALU 

CODE.  The outputs of the six logic blocks are all connected to the ALU Result (AR) output.  

The select input on each logic block enables a tri-state buffer to drive the result to the ALU 

Result output.  The ALU Result bus is a form of distributed multiplexing that eliminates the 

need for a result multiplexer.  The drawback to multiplexing with tri-state buses is that 
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leakage currents can cause a reduction in bus output voltage swing that may cause failure.  

However, for this implementation, the number of outputs driving the bus is small so leakage 

currents caused by ionizing radiation should remain small and voltage margins will not be 

adversely affected.  The ALUCONT also controls the carry bit to the Adder and Shifter sub-

blocks.  It withholds the carry-bit during ADD and SUB instructions.  ADDC, SUBC, SHL, 

and SHR instructions all receive the carry bit from the Control Unit status register.  

 The Adder (ALUADD) performs all add and subtract operations.  The ADDSEL 

input enables the Adder tri-state buffer.  The normal operation is addition.  The SUBSEL 

input activates the subtraction logic.  The adder uses ripple-carry adder/subtractor logic.  Size 

is the issue with the Microdot and ripple-carry design is the minimum-area approach.  Plus, 

ripple-carry delay through four bits is not the critical path in the circuit. 

 The Shifter (ALUSHF) is the sub-block for SHL and SHR instructions.  The SHLSEL 

and SHRSEL inputs control which operation is performed.  These are shift-with-carry (five-

bit rotate) instructions so shifting without a carry requires a CLSR instruction prior to the 

Shift instruction. 

 The Status Logic (ALUSTR) determines the status of the ALU operation.  There are 

four possible status conditions.  Carry-out (COUT) signals that 1) the add operation 

generated a carry, 2) the subtract operation generated a borrow, or 3) the shift operation 

shifted out a '1'.  Negative (NEG) signals that the result represents a negative number in four-

bit two's complement.  Overflow (OVR) indicates that arithmetic overflow occurred.  It is 

only generated during add and subtract operations.  The Zero (ZER) output signals that the 

four-bit ALU Result was zero.  Table 4-2 shows the status bits output by each ALU 

instruction. 
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Table 4-2.  Status Bit Output by ALU Instruction 
Instruction COUT NEG OVR ZER 

SHL X X  X 
SHR X X  X 
NOT  X  X 
ADD X X X X 

ADDC X X X X 
SUB X X X X 

SUBC X X X X 
AND  X  X 
OR  X  X 

XOR  X  X 
 

 

4.6 Stack Unit 

 The Stack Unit and Stack RAM are the Microdot data memory.  The six sub-blocks 

that comprise the Stack Unit interface the 128x4 Stack RAM.  The Stack Unit creates a 

modified stack as discussed in Section 2.3.  The purpose of the modified stack is to gain the 

advantage of the stack architecture and improve the flexibility in selecting data elements.  

Normal stack processors only have access to elements at the top of the stack.  The modified 

stack allows simultaneous access to the top of the stack and the one of the top 16 elements.  

Also, the SWAP and PICK instructions are used to gain access to the entire stack.  

Essentially, the modified stack reduces the number of instructions needed to move data 

around the stack.  The top of the stack is actually stored in a register separate from the Stack 

RAM.  The stack pointer points to the top of the Stack RAM, which is actually the second 

element on the stack.  Additionally, the Stack Unit contains an adder and multiplexer for 

addressing the top 16 Stack RAM elements during two-operand instructions and any of the 

Stack RAM elements during SWAP and PICK instructions.  The Stack Unit interconnection 

diagram is shown in Figure 4-4.  The sub-blocks are described below.  
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Figure 4-4. Stack Unit Interconnection Diagram 
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4.6.1 Stack Unit Sub-blocks.  The Top-of-Stack Register (TOSREG) is the four-bit 

register that stores the first element on the stack.  This register is the first or only operand in 

all ALU instructions.  All loaded data and ALU result data is first stored to the TOSREG. 

 The Top-of-Stack Multiplexer (TOSMUX) is a six input by four-bit multiplexer that 

selects the input to the TOSREG from six data sources.  Select input comes from the Control 

Unit.  The data sources are: 

1. Stack RAM 
2. ALU Result 
3. ALU CODE Register 
4. COM Register [3..0] 
5. I/O Port Upper Nibble [7..4] 
6. I/O Port Lower Nibble [3..0] 

 
 The Stack Address Multiplexer (STKADRMUX) is a four input by seven-bit 

multiplexer that selects the address for the Stack RAM.  Select input comes from the Control 

Unit.  Data sources are: 

1. Stack Pointer 
2. Stack Adder 
3. INDEX 1 [2..0] and INDEX 2 [3..0] 
4. COM Register [6..0] 

 
The STKADRMUX works as follows. POP, DUP, and PUSH instructions use the Stack 

Pointer to address the Stack RAM.  Two-operand instructions use the Stack Adder to address 

the Stack RAM.  SWAP and PICK instructions use the INDEX1 and INDEX2 registers to 

address any of the 128 Stack RAM elements.  The COM Register input is used during the I2C 

READ STACK command to transfer a Stack RAM element to the COM Register.   

 The Stack Pointer (STKPTR) is a seven-bit register that stores the address of the last 

element pushed onto the Stack RAM.  The Stack Pointer Logic (STKPTRLOG) is the logic 

sub-block that increments and decrements the STKPTR.  When elements are pushed onto the 
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Stack RAM with either the PUSH or DUP instructions, the STKPTRLOG decrements the 

STKPTR.  When elements are popped off the Stack RAM with the POP instruction, the 

STKPTRLOG increments the STKPTR. 

 The Stack Adder (STKADD) adds a four-bit increment to the STKPTR to select one 

of the top 16 elements of the Stack RAM. For the STIO, STCM, and WAIT instructions, the 

ALU CODE register is selected as the increment.  The ALU two-operand instructions use the 

INDEX 1 register as the stack increment. 

 The Stack RAM is the 128 x 4 static random access memory (RAM) that stores all 

data elements except the top of the stack.  The interface signals to the Stack RAM are the 

STKADR, STKDO, and SMWE outputs and the STKDI input.  STKADR is the seven-bit 

address that comes from the STKADRMUX.  STKDO is the four-bit data input to the Stack 

RAM that comes from the TOSREG via the stack output buffer.  SMWE is the write-enable 

signal for the Stack RAM.  STKDI is the data output of the Stack RAM that is loaded into the 

stack input buffer. 

 It is important from a programming aspect to examine exactly how the Stack Unit 

operates.  The PUSH and DUP instructions are the only instructions that transfer the 

TOSREG to the Stack RAM.  Load instructions (LDU, LDL, LDCM) replace the TOSREG 

with the selected data source, but do not also push the TOSREG to the Stack RAM.  

Therefore, if the TOSREG data needs to be saved for later processing, it should be pushed to 

the Stack RAM with the DUP instruction.  The POP instruction transfers the top element of 

the Stack RAM to the TOSREG.  The ALU result is stored to the TOSREG, which is also the 

first operand, so if the first operand needs to be saved, the TOSREG must be duplicated to 

the Stack RAM before the ALU operation. 
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 The STKPTR resets to address 00HEX.  A PUSH or DUP instruction decrements the 

STKPTR before the element is written to the Stack RAM.  If no POP instruction occurs 

before the first PUSH instruction, the first PUSH instruction writes the ALU CODE to the 

TOSREG and writes the TOSREG (0 after reset) to Stack RAM address 7FHEX.  The Stack 

RAM is circular, which means that when the STKPTR reaches the Stack RAM boundaries 

(0HEX or 7FHEX), the increment or decrement simply rolls the address over (7FHEX -> 0HEX for 

increment; 0HEX -> 7FHEX for decrement).  A decrementing stack was selected to simplify the 

logic for the modified stack. 

4.6.2 Stack Buffer Registers.   The Stack Unit has both input and output buffer 

registers.  These are the positive edge triggered flip-flops shown in Figure 4-4.  The input 

buffer register is used to synchronize loading from the asynchronous Stack RAM.  

Additionally, it is needed for correct execution of the SWAP instruction.  Recall that the 

SWAP instruction exchanges the TOSREG with any of the 128 Stack RAM elements.  Since 

it is not possible to simultaneously read from and write to the Stack RAM, an extra register is 

required to temporarily hold the Stack RAM element so the TOSREG and Stack RAM can be 

written to simultaneously. 

 The stack output buffer register synchronizes the write from the TOSREG to the 

Stack RAM.  The write operation occurs at the falling edge of the clock.  I found through 

testing that the TOSREG was writing through to the Stack RAM.  This was caused because 

the TOSREG loads before the Stack RAM write enable is de-asserted causing the TOSREG 

value to be lost.  This error condition is illustrated in Figure 4-5. In this figure notice that the 

clock skew between the TOSREG and Stack RAM can cause the Stack RAM to load the new 

TOSREG value to the Stack RAM during the PUSH instruction.  The PUSH instruction is 
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supposed to load a new value to the TOSREG while the current TOSREG is written to the 

Stack RAM.  The timing error causes the current TOSREG value to be lost.  The output 

buffer loads the TOSREG on the rising edge of the clock.  This holds the TOSREG value 

over the falling edge of the clock while with TOSREG and Stack RAM load the new values.  

This prevents write-through of the new TOSREG value back to the Stack RAM. 

 

 
Figure 4-5. Stack Timing Errors During PUSH Instruction. Clock skew between TOS and 

STK causes new TOS value (B) to write-through to STK.  Old TOS value (A) is lost. 
 

 

Figure 4-6 shows the timing of the SWAP instruction and the role of the stack buffer 

registers.  These registers are temporary storage for the TOSREG and Stack RAM values that 

synchronize the switch of the elements from one to the other.  The Stack RAM value to be 

swapped is held in the stack input buffer register during the Execute instruction state.  This 

way, the Stack RAM value can be written to the TOSREG as the TOSREG value is written to 

the Stack RAM. The stack output buffer loads on the rising-edge of the clock and holds the 

TOSREG value for Stack RAM input.  This way, there cannot be write-through from the 

Stack RAM to the TOSREG and back to the Stack RAM at the negative clock edge during 

the Execute instruction state. 
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Figure 4-6. SWAP Instruction Timing.  Stack Input Buffer Register loads on the positive 

clock edge during the SWAP state and holds the value until the positive clock edge during 
the FETCH OPCODE state.  This holds the old STK value for loading to the TOS while the 

TOS value is written to the Stack RAM during the last half of the EXECUTE state.  The 
Stack Output Buffer holds the old TOS value stable while it is being written to the Stack 

RAM during the second half of the EXECUTE state. 
 
 

4.7 Input/Output Unit 

The Input/Output Unit is shown in Figure 4-7.  This simple unit consists of two eight-

bit registers and event detection logic.  The role of the I/O Unit is to interface the eight bi-

directional pads.  The direction of the pad is determined by its enable input, which is an 

asserted-low input.  To drive the pad as an output, the enable input should be '0'.  Otherwise 

the pad is just an input.  

 The Mask Register (MSKREG) is what determines the direction of the pads.  The Set 

I/O Mask instruction (SEIO) writes the ALU CODE and INDEX 1 inputs to MSKREG.  This 

register loads on the negative clock edge when the LDMR input is asserted.  ALU 

CODE[3..0] is stored to MSKREG[7..4] and INDEX 1[3..0] is stored to MSKREG[3..0].  A 

'0' stored in the MSKREG bit configures the pad as an input while a '1' configures it as an 

output.  A reset sets all pads as inputs.   
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Figure 4-7.  Input/Output Unit Interconnection Diagram 

 
 

The Output Register (OUTREG) stores the output data for the bi-directional pads.  If 

a pad is configured as an output, the bit stored in the OUTREG is driven to the output pad.  

During the Store to I/O port (STIO) instruction, OUTREG is loaded on the negative clock 

edge when the STOR input is asserted.  TOS[3..0] is stored to OUTREG[7..4] and STK[3..0] 

is stored to OUTREG[3..0]. 

 The Event Detection Logic (EVNTDET) is used during the WAIT instruction to 

determine that an event has taken place on the inputs and the Microdot should resume 

execution.  During the Execute instruction state of the WAIT instruction, the Control Unit 

suspends the Microdot while the external inputs (EPI) are compared to the Microdot data 
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input (TOS and STK) according to the INDEX 1 and INDEX 2 inputs.  INDEX 1 and 

INDEX 2 are the event mask.  A '1' in the event mask means that, for that bit, a difference 

between the Microdot data input and the external input generates an event (EVNT = '1') and 

the Microdot resumes execution.  A ‘0’ in the event mask bit means that the data input bit is 

not compared to the external input bit so no event can be generated by that bit.  This lets the 

programmer select which inputs can generate events. 

 
4.8 Memory Unit 
 

The Memory Unit (MEMUNIT) is the interface for the 1024x4 SRAM that contains 

the Microdot instructions.  During normal execution, the Memory Unit loads the program 

data to the instruction registers and advances the program counter.  The normal control 

signals come from the Control Unit.  During programming, however, special control signals 

and data come from the I2C COM Unit.  The Memory Unit Interconnection Diagram is 

shown in Figure 4-8.  The four sub-blocks are explained below. 

4.8.1 Memory Unit Sub-blocks.  The Program Counter State Machine (PCSM) holds 

the current program memory address.  The PCSM outputs feed the address inputs of the 

Program RAM and the external address output pads (EXADR) that allow off-chip memory 

interfacing.  The Program Counter Logic (PCLOG) is responsible for computing the next 

PCSM value.  PCLOG performs one of three functions specified by the Control Unit PC 

signals: PCIN, PCBR, and PCLD.  If the PCIN input is asserted, PCLOG increments the 

current PCSM output by one.  The PCBR signal is asserted when a conditional branch is 

taken.  When this happens, PCLOG adds the eight-bit value in the INDEX 1 and INDEX 2 

registers to the PCSM.  This allows the program to conditionally branch forward up to 256 

nibbles in the program.  The PCLD signal is asserted when a JMP instruction is executed.  In  
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Memory Buffer Register 

Figure 4-8.  Memory Unit Interconnection Diagram 
 

 

this case, PCLOG feeds the 10-bit value from the ALU CODE [1..0], INDEX 1, and INDEX 

2 registers directly to the PCSM inputs.  The PCLOG signals the PCSM to load when any of 

these PC input signals is asserted.  The PCLOG also generates the PCE signal (Program 

Counter End) which signals the I2C COM Unit that the memory is full and that programming 

should be terminated. 
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The Instruction Register (INSREG) holds all four parts of the current instruction, 

which are OPCODE, ALU CODE, INDEX 1, and INDEX 2.  The OPCODE register is 

always loaded at the beginning of each instruction cycle.  The Control Unit loads the 

remaining registers according to the OPCODE.  Refer to Table 3-1 for the length of each 

instruction. 

The External Memory Multiplexer (XMEMMUX) is a test structure that was created 

to interface an off-chip program memory.  The External Data (EXDAT) ports are bi-

directional ports for external memory interfacing.  Combined with the External Address 

(EXADR) and External Memory Write Enable (EXMWE) output ports, they provide a 

complete interface to the off-chip memory.  During normal operation, the Disable Internal 

Memory input (DIM) is low (‘0’) and the XMEMMUX selects the output of the internal 

Program RAM.  Also during normal operation, the XMEMMUX configures the EXDAT 

ports as outputs and drives them with the value from the internal SRAM. This is another 

feature of the XMEMMUX created for testing purposes that allows viewing of the internal 

Program RAM during normal operation.  When the DIM input is set to ‘1’ to disable the 

internal program memory, the XMEMMUX configures the XDAT pads as inputs and selects 

XDAT as the memory input.  A second function of the XMEMMUX is to multiplex the 

correct nibble from the COM Register to the Program RAM data input lines during 

programming.  Recall that the COM Register is an eight-bit register that holds two program 

nibbles.  The Program Nibble Select (PNS) input specifies which nibble is input to the 

Program RAM.  During programming, the XMEMMUX configures the EXDAT ports as 

outputs and drives them with the value of the selected COM Register nibble to be written to 

memory.  The Program Memory Write Enable (PMWE) output signals a write to the external 
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memory.  This both programs the external memory (if present) and/or provides an external 

view of the programming process during testing. In a production version of the Microdot that 

did not contain the test structures, program nibble multiplexing would be the sole function of 

the XMEMMUX.   

4.8.2 Memory Buffer Register.  The positive-edge triggered flip-flops (bp_didff_x1) 

are the memory buffer register.  This register holds the memory output stable around the 

falling edge of the clock when the instruction registers are loaded.  This is designed to 

eliminate timing problems caused by loading the PCSM at the falling edge of the clock. 

The memory buffer register synchronizes memory loading.  The PCSM, which is the 

address input to the Program RAM, updates at the falling edge of the clock.  The instruction 

registers are also loaded at the falling edge of the clock.  This means that the Program RAM 

address is changing as the registers are loading.  If the Program RAM output changes quicker 

than the instruction registers loads the memory output, incorrect data will be loaded.  This 

situation can be caused by clock skew and other circuit delays that lead to the RAM outputs 

not meeting hold times for the instruction registers.  The memory buffer register eliminates 

this timing problem by loading the memory at the rising edge of the clock.  Assuming the 

rising edge occurs after the memory output is stable, the memory buffer register will load 

correctly.  The memory buffer register then holds the memory output stable around the 

falling-edge of the clock when the instruction registers load.  Memory loading with the 

memory buffer register is shown in Figure 4-9. 

If the delay times can be verified to meet hold times, the memory buffer registers are 

not needed.  However, for devices in an ionizing radiation environment, circuit delay times 

can be adversely affected.  This leads to unpredictable delay times that cannot be guaranteed. 
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Figure 4-9.  Memory Buffer Register Timing Diagram.  Loading the memory buffer 

(MEMBUF) register on the rising edge of the clock keeps the OPCODE input stable when 
new data is being loaded.  This eliminates timing problems caused if the memory output 

changes to quickly after the memory address changes. 
 

 

Adding memory buffers reduces operating speed, but eliminates timing errors.  Timing errors 

are eliminated by slowing the clock to meet the maximum delay time of the Program RAM. 

 Another method to eliminate timing problems is to load the PCSM on the rising edge 

of the clock.  This would require changing the control logic for program counter increment.  

In retrospect, this would have been a better approach.  This would have eliminated the need 

for the memory buffer register, which would have eliminated the area consuming flip-flops 

from the design. 

 
4.9 I2C Communication Unit 
 

The Microdot is a simple microcontroller.  The usefulness of the Microdot is not just 

as a simple and low-power microcontroller, but also as a microcontroller that is designed for 

distributed computing.  Much of my design effort was spent on the distributed computing 

interface.  Once the I2C bus was chosen as the serial bus protocol, the effort focused on 

creating an I2C Communication Unit that facilitated a useful and efficient distributed 

computing system for the Microdot.  The next several sections explain the I2C interface. 
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The I2C Communication Unit (I2C COM Unit) Interconnection Diagram is shown in 

Figure 4-10.  It is the largest and most complicated functional block in the Microdot.  

Without it, however, the Microdot would just be a mini-microcontroller.  It has three 

different state machines used to read the I2C serial data and execute the I2C distributed 

computing functions, which include data transfer, programming, and execution control.  The 

I2C COM Unit sub-blocks are described below. 

 The Start Detector (STDET) detects the start condition on the I2C bus.  The start 

condition indicates the start of a data transmission.  It is defined as the high-to-low transition 

of the SDA line while the SCL line is high.  STDET signals the COM Word State Machine to 

go into READ ADDRESS mode during which the I2C COM Unit reads the address byte.  

The STDET output also resets the COM Bit State Machine.  Regardless of the current state 

of the I2C COM Unit, a start condition resets it to begin receiving an address byte. 

 The COM Bit State Machine (COMBS) keeps track of the serial bit count.  When the 

COM Word State Machine is in IDLE mode, COMBS also remains idle and does not count.  

When the COM Word State Machine is out of IDLE mode, the COMBS counts clock cycles 

by nine.  Every ninth clock cycle, the BSACK output signals the acknowledge bit state.  The 

BSACK signal is used to synchronize the I2C COM Unit.  For instance, when COM Word 

State Machine is in READ ADDRESS mode the COM Buffer shifts serial data in until the 

BSACK signal is asserted.  BSACK indicates that the address byte has completely loaded.  

The COM Word State Machine will change states at the end of the acknowledge cycle 

depending on the I2C address and data direction bit. 
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Figure 4-10.  I2C Communication Unit Interconnection Diagram 

 
  

The COM State Machine (COMSTM) contains I2C COM Unit status and control 

outputs.  Status information is stored in SPI, IDR, ODR, and INT bits.  SPI indicates that the 

I2C COM Unit is has suspended the Microdot.  The IDR bit indicates that the supervisor 

processor has loaded a nibble of data to the COM Register with the WRITE NIBBLE 

command.  The ODR bit indicates that the Microdot has loaded new data to the COM 

Register.  The INT bit drives the interrupt output pad that signals the supervisor processor 
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that the Microdot has data ready for transfer.  The control outputs are used for executing I2C 

COM Unit operations like reading the stack, programming, or storing data to the COM 

Register.  The RDST output signals the Control Unit that the I2C COM Unit is reading the 

stack.  The LODS output is also used during a stack read to signal the COM Register to load 

the input data from the stack (TOS, STK).  The MEMPRG_port and PNS outputs are used 

for programming.  The MEMPRG output signals memory write and program counter 

increment.  The PNS (program nibble select) output selects the correct nibble from the COM 

Register to write to the Program RAM.  The I2C COM Unit receives data in eight-bit blocks.  

The program memory is four-bits wide.  For each program byte received, the I2C COM Unit 

first writes the upper nibble (COMREG[7..4]) followed by the lower nibble 

(COMREG[3..0]). 

 The COM Logic (COMLOG) sub-block has two functions.  Internal control logic 

controls loading and shifting of the COM Buffer and loading of the COM Register.  

SDA_OUT2 signals that the SDA line should be driven low during the acknowledge state.  

The COMRST signal initiates the Control Unit to reset the Microdot.  It is asserted during the 

RESET and PROGRAM commands.  LODR signals the COM Register to load from the 

COM Buffer.  LODB signals the COM Buffer to load from the COM Register.  SHFI and 

SHFO outputs control COM Buffer shifting.  SHFI signals the COM Buffer to shift data in 

from the SDA input while SHFO signals the COM Buffer to shift data out to the SDA line. 

 The COM Buffer (COMBUF) is the serial-to-parallel data storage for the I2C COM 

Unit.  During read operations, data from SDA_IN input is shifted into bit 0 of the COMBUF.  

During write operations, data is loaded from the COM Register and then shifted out to 

SDA_OUT1.  The COMBUF is also used to detect the I2C address.  The I2C address input 
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(ADR[6..0]) is compared to COMBUF[7..1] and asserts the address detect (ADRD) signal if 

they match.  After the address byte has been received an address detect will put the COM 

Word State Machine in either READ COMMAND or WRITE DATA mode based on the 

data direction bit ('0' = READ COMMAND, '1' = WRITE DATA).  The data direction bit is 

placed in bit 0 of the address byte. 

 The COM Register (COMREG) is the data link from the I2C COM Unit to the rest of 

the Microdot.  During programming or a WRITE NIBBLE command, data is transferred 

from the COMBUF into the COMREG where it becomes available for loading to the Stack 

or Memory Units.  During a READ DATA command, the COMREG is first loaded to the 

COMBUF before being shifted out to the SDA output. 

 The COM Word State Machine (COMWS) stores the operating mode of the I2C 

COM Unit. Figure 4-11 is the state transition diagram for the COMWS.  The IDLE mode 

indicates that nothing is happening.  It essentially holds the I2C COM Unit in a wait state.  A 

start condition puts COMWS into READ ADDRESS (RDAD) mode during which the 

address byte is serially loaded into the COMBUF.  If the Microdot I2C address is detected, 

the data direction bit determines whether COMWS goes to READ COMMAND (RDCM) or 

WRITE DATA (WTDT) mode.  If the address is not detected, COMWS returns to IDLE 

mode.  At the end of RDCM mode, a program command puts COMWS into PROGRAM 

(PRGM) mode.  PROGRAM mode loads program bytes and transfers them a nibble at a time 

to the Program RAM.  The COMWS stays in PROGRAM mode until either the supervisor 

processor terminates programming by issuing a start condition or the Microdot terminates 

programming when Memory Unit asserts the Program Counter End (signal) indicating that 

the Program RAM is completely full. 
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Figure 4-11.  COM Word State Machine State Transition Diagram 

 
  

The SDA AND gate (and2x1) takes in the SDA signals from COMBUF (data) and 

COMLOG (acknowledge) and sends the output to the SDA pad.  If SDA_OUT is low, the bi-

directional pad will pull the SDA output to ground signaling either a '0' data bit or I2C byte 

acknowledge. 

4.9.1 I2C Commands.  The supervisor processor controls the Microdot with 

commands sent over the I2C bus.  The command set is listed in Table 4-3 below.  The 

RESET, SUSPEND, and RESUME commands allow the supervisor processor to control 

Microdot execution.  The READ STACK command gives the supervisor processor full read 

access to the Microdot data memory.  The WRITE NIBBLE command transfers a nibble 

from the supervisor processor to the Microdot.  The PROGRAM command sets up the 

Microdot to receive a new program over the I2C bus.  The READ DATA command is a non-

standard command that initiates a one-byte data transfer from the Microdot to the supervisor 
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Table 4-3.  Microdot I2C Commands 
Command Data 

Direction 
Bit 

Command 
Byte 

Description 

READ 
STACK 

0 0SSSSSSS Load Top-of-Stack Register 
and Stack RAM element 
S[6..0] into the COM 
Register 

RESET 0 1000XXXX Reset the Microdot 
SUSPEND 0 1001XXXX Suspend Microdot execution 
RESUME 0 1010XXXX Resume Microdot execution 
WRITE 
NIBBLE 

0 1100DDDD Write nibble D[3..0] to the 
COM Register and set the 
Input Data Ready (IDR) bit 

PROGRAM 0 1111XXXX Put Microdot into 
PROGRAM mode 

READ 
DATA 

1 None Signal Microdot to write 
output data to I2C bus 

 

 

processor.  There is no command byte because the ‘1’ in the address byte data direction bit 

specifies a slave-to-master data transfer.  The READ DATA command is examined further in 

section 4.9.1.2.   

Figure 4-12 illustrates the standard I2C command cycle.  It shows the I2C bus and 

COMBUF when a Microdot with address 5A (1011010) is sent the RESET command.  After 

the start condition is detected, the I2C COM Unit enters the READ ADDRESS mode and 

serially receives the I2C address byte that contains the seven-bit address and the data 

direction bit.  If the I2C COM Unit detects that its I2C address matches the address byte, it 

acknowledges its presence by driving the SDA line low during the acknowledge clock cycle 

and then enters the READ COMMAND mode.  If the address does not match, the I2C COM 

Unit returns to the IDLE mode.  Following the address byte acknowledge, the command byte 

is sent and acknowledged.  At the end of the command byte, the I2C COM Unit logic detects 
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which command was sent and executes the command.  The READ STACK, READ DATA, 

and PROGRAM commands are examined further in the sections below. 

 

 
Figure 4-12.  I2C Read Command Cycle 

 
 

I2C Command Process (RESET, SUSPEND, RESUME) 

1. Detect I2C Start Condition 
2. Read Address Byte 
3. If I2C address detected and data direction bit is ‘0’ then load Command Byte 
4. Execute command specified in command nibble (COMBUF[7..4]) 

 
4.9.1.1 Reading the Stack (READ STACK command).  The READ STACK 

command was conceived to give the supervisor processor complete visibility into the 

Microdot data memory.  I envisioned that the Microdot could be programmed to store data to 

specific Stack RAM addresses using the SWAP instruction. The supervisor processor then 

retrieves the Stack RAM data by sending the READ STACK command to the Microdot.  The 

programmer would have to make sure that the program did not inadvertently overwrite the 

stack element to be read.  This command was also conceived for testing purposes.  At any 

point during execution, the supervisor processor could suspend the Microdot and then check 

any or all of its stack contents one nibble at a time.   

The stack address width is only seven bits so the Stack RAM address of the element 

to be loaded is included in the command byte.  Bit 7 of the command byte specifies a READ 
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STACK command with a ‘0’.  All other commands have a ‘1’ in Bit 7.  After the READ 

STACK command byte is received, it is transferred to the COMREG.  The lower seven bits 

of the COMREG are sent to the Stack RAM address inputs.  The Microdot is temporarily 

suspended while the addressed Stack RAM element and current TOSREG are loaded into the 

COMREG.  The Stack RAM element is loaded to COMREG[7..4] and the TOSREG is 

loaded to COMREG[3..0].  The READ STACK command only loads the COMREG and sets 

the Output Data Ready (ODR) bit.  The data is actually sent to the supervisor processor with 

the READ DATA command as discussed in the next section. 

When the I2C COM Unit receives a READ STACK command, the COMLOG signals 

the COMREG to load from the COMBUF.  At the same time, the COMSTM begins a READ 

STACK cycle, which is a two clock cycle event.  During the first clock cycle, the COMSTM 

suspends the Control Unit.  During the second clock cycle, the RDSTK output signals the 

Control Unit that, in turn, signals the Stack Unit to address the Stack RAM with the 

COMREG input.  Finally, the LODS output signals the COMREG to load from the Stack 

Unit and the Output Data Ready (ODR) bit is set.  The TOSREG and Stack RAM output are 

now loaded into the COMREG.  Figure 4-13 shows exactly how the READ STACK 

command works.  The address byte selects the Microdot and specifies a command byte is to 

be read.  The command byte is read and recognized as a READ STACK command.  During 

the command byte acknowledge, the COMBUF is transferred to the COMREG.  The Stack 

RAM is addressed with COMREG and loads the Stack RAM element and TOSREG one 

clock cycle later.  The COMREG now holds the data, which will be transmitted to the 

supervisor processor during the next READ DATA command cycle. 
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Figure 4-13.  I2C READ STACK Command Cycle 

 
 

Read Stack Process 

1. Detect I2C Start Condition 
2. Read Address Byte 
3. If I2C address detected and data direction bit is ‘0’ then load Command Byte 
4. If Bit 7 of Command Byte is ‘0’, load COMBUF to COMREG 
5. Suspend Microdot execution 
6. Address Stack RAM with COMREG 
7. Load TOSREG and Stack RAM to COMREG 
8. Set Output Data Ready (ODR = ‘1’) 
9. Resume Microdot execution 

 
4.9.1.2 Writing Output Data (READ DATA command).  When the I2C COM 

Unit has output data ready (ODR bit = ‘1’), the I2C master receives it by sending a READ 

DATA command.  The READ DATA command is simply an address byte with the data 

direction bit (Bit 0) set to ‘1’.  The READ DATA command puts the I2C COM Unit into 

WRITE DATA mode.  During the address byte acknowledge state, the COMBUF is loaded 

from the COMREG.  The loaded byte is then serially shifted out of the COMBUF to the SDA 

line.  The READ DATA cycle is shown in Figure 4-14.  As you can see, bit 0 of the address 

byte is ‘1’, which signals a Microdot-to-supervisor transfer.  During the address byte 

acknowledge, the byte in the COMREG is loaded into the COMBUF and the I2C COM Unit 

enters the WRITE DATA mode.  This signals the COMBUF to shift left and drive bit 7 to the 
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SDA line.  The Microdot is only capable of writing a single byte at a time.  The ODR bit 

indicates that the COMREG has data to be written.  If the ODR bit is not set, the Microdot 

does not acknowledge the READ DATA command address byte and no data is sent.  If the 

supervisor processor needs to test for correct functionality of the Microdot, it should issue the 

RESUME command and check for acknowledgement of the address and command bytes. 

 

  
Figure 4-14.  READ DATA Command Cycle 

 
 

Read Data Process 

1. Detect I2C Start Condition 
2. Read Address Byte 
3. If I2C address detected, data direction bit is ‘1’, and output data is ready        

(ODR = ‘1’)  then load COMBUF from COMREG 
4. Shift COMBUF data to SDA output (MSB first) 

  
The ODR (output data ready) and IDR (input data ready) bits are the handshaking 

scheme for synchronizing data transfer to and from the Microdot.  IDR indicates that input 

data is ready while ODR indicates that output data is ready.  When the Microdot is expecting 

data from the supervisor processor, it checks the status of the IDR bit by executing the Set 

Status Register (STSR) instruction.  When the supervisor processor is expecting data from a 

Microdot, it simply needs to periodically send a READ DATA command.  If the ODR bit is 

set, the Microdot will acknowledge the READ DATA command address byte and then write 
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the data byte to the I2C bus as shown in Figure 4-14.  The ODR bit is set when the Microdot 

executes a Store to COM Unit (STCM) instruction.  This instruction loads the COMREG 

with the TOSREG and Stack RAM output.  The ODR bit is also set during the READ 

STACK command cycle.  The Microdot loads the status of the ODR bit with the STSR 

instruction.  Thus, the Microdot can wait until the I2C COM Unit has written the data to the 

supervisor processor before writing new data to the COMREG.  The STSR, BRCH, and JMP 

instructions let the programmer create programs that synchronize data transfer with the I2C 

COM Unit.  The code listing below in Figure 4-15 illustrates a program loop that checks for 

input data.  The STSR instruction loads the status register with the I2C COM Unit status bits 

(INTX, ODR, IDR).  The BRCH instruction checks the IDR bit using mask value 1HEX.  If 

input data is ready, the BRCH instruction exits the loop by adding four to the program 

counter, which takes it past the JMP instruction.  Otherwise, the JMP instruction sets the 

program counter back to address 039 to begin the check again. 

 

ADDR DATA INSTRUCTION
039 3 STSR
03A 8
03B D BRCH IDR +4
03C 1
03D 0
03E 4
03F E JMP 039
040 0
041 3
042 9

Figure 4-15.  Programming Example to Wait for Input Data 

 

4.9.1.3 Programming (PROGRAM command).  The supervisor processor 

starts the programming process by sending the PROGRAM command.  During command 

byte acknowledge, the I2C COM Unit resets the Microdot and then suspends it.  The reset 
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returns the program counter to 000HEX.  Following the PROGRAM command, the supervisor 

processor sends the first program byte of the new program.  When the byte is received, it is 

acknowledged and then transferred to the COMREG.  The COMSTM then begins the 

program byte write cycle.  This is a three clock cycle event.  During the first clock cycle, the 

even program nibble (COMREG[7..4]) is written to program memory and the program 

counter is incremented at the end of the cycle.  The next clock cycle is an idle state inserted 

to eliminate timing issues caused by writing to the program memory while the program 

counter is incremented.  The third clock cycle contains the odd program nibble 

(COMREG[3..0]) write followed by the program counter increment.  Programming continues 

until the memory is full or the supervisor processor ends programming by asserting a start 

condition on the I2C bus.  When the memory is full, the Program Counter End (PCE) signal 

will be asserted by the Memory Unit.  When PCE is asserted, the I2C COM Unit withholds 

the byte acknowledge for the last program byte and returns to the IDLE mode.  After 

programming has ended, the Microdot remains suspended until the supervisor processor 

issues a RESET command, which returns the program counter to 000HEX and starts execution 

of the new program. 

 Figures 4-16 and 4-17 show the program process.  Programming starts like any other 

I2C command.  The start condition is followed by the address byte.  Following address byte 

acknowledge, the PROGRAM command (11110000) is sent.  The Microdot acknowledges 

the command and enters PROGRAM mode.  Figure 4-17 shows the programming process 

between the I2C COM Unit and the program memory.  Each program byte is received, 

acknowledged, and then transferred to the COMREG where control signals from the I2C 

COM Unit load the Program RAM a nibble at a time and increment the program counter. 
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Figure 4-16.  I2C Program Cycle. Address byte is followed by the PROGRAM 

command, which puts the I2C COM Unit into PROGRAM mode. 
 

 

 
Figure 4-17.  Continuation of Program Cycle.  After each program byte is received, 

the byte is transferred to the COMREG and then written to program memory a nibble 
at a time. 

 
 

Program Process 

1. Detect I2C Start Condition 
2. Read Address Byte 
3. If I2C address detected and data direction bit is ‘0’ then load Command Byte 
4. If command nibble (COMBUF[7..4]) is ‘1111’, then enter PROGRAM mode 
5. Suspend the Microdot 
6. Reset the Program Counter 
7. Load a Program Byte 
8. Transfer Program Byte from COMBUF to COMREG 
9. Write program nibble 1 (COMREG[7..4]) to Program RAM 
10. Increment Program Counter 
11. Write program nibble 2 (COMREG[3..0]) to Program RAM 
12. Increment Program Counter 
13. Return to Step 7 (Load a Program Byte) until I2C Start Condition detected or PCE 

signals the Program RAM is full 
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4.9.2 Interrupt.  The interrupt is an open-drain bi-directional port for synchronization 

between the Microdot and the supervisor processor.  The interrupt was conceived to give the 

Microdot the capability to interrupt the supervisor processor if it has data ready to send.  

Imagine a Microdot is interfaced with a temperature sensor that is monitoring a critical 

device.  If the Microdot reads a temperature above a certain threshold, it should alert the 

supervisor processor so corrective action can be taken.  When the temperature is exceeded, 

the Microdot asserts the interrupt.  The supervisor processor services the interrupt by reading 

data from the Microdot which indicates an overheat condition on the critical device and the 

supervisor processor reacts accordingly.  A Microdot can signal the supervisor processor by 

executing the interrupt instruction (INT), which pulls the interrupt line low.  The interrupt 

line is connected to each Microdot and the supervisor processor through a pull-up resistor.  

This creates a wired-or configuration for the Microdots.  There is no address information to 

the interrupt so when the interrupt line is pulled low, the supervisor processor must poll each 

Microdot until it finds the Microdot(s) that are interrupting.  The supervisor processor polls 

the Microdots by sending a READ DATA command to each Microdot until the interrupt line 

returns high.  If a Microdot has output data ready, the Microdot will acknowledge the address 

byte and transmit its output byte.  When the output byte is sent, the Microdot will reset its 

interrupt output.  The Microdot cannot set its interrupt unless it has output data ready.  

Consequently, in order for the Microdot to pull the interrupt line low, the program must have 

a STCM instruction prior to the INT instruction so the ODR bit will be set when the INT 

instruction is executed.  If there is not output data ready, the INT instruction has no effect. 
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4.10 Microdot Top Level 

Figure 4-19 shows the top-level interconnection diagram for the Microdot.  The 

interconnection signals are defined in the signal table in Appendix A.  This figure shows the 

integration of the Microdot functional units without the stack and program SRAM units.  The 

interconnection diagram for the complete integrated version of the Microdot that contains the 

SRAM units and pads is shown in Appendix C.  Figure 4-18 is the interface diagram for the 

test version of the Microdot.  The test version has 42 pins.  The EXADR, EXDAT, and 

EXMWE ports are the external memory interface.  The DIM (Disable Internal Memory) 

input selects the external memory as the instruction memory and disables the internal 

Program RAM.  The MADR port is the input for the seven-bit I2C address.  The SCL and 

SDA signals are the interface to the I2C serial bus.  The interrupt (INT) output is used for 

interrupting the supervisor processor.  The SSEL inputs are the select lines for the Status 

Multiplexer as defined in section 3.11.  The SMX outputs are the Status Multiplexer output.  

The eight bidirectional data ports are defined as EP[7..0].  RST is simply the master reset 

signal. 

 

  
Figure 4-18.  Microdot Interface Diagram 
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Figure 4-19.  Microdot Interconnection Diagram 
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4.11 Microdot Production Design 

 The production version of the Microdot would only have 14 pins or pads.  Figure 4-

20 shows the pinout for a production version. 

 

1. Serial/System Clock (SCL) 
2. Serial Data (SDA) 
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3. Reset 
4. I/O Port 0 
5. I/O Port 1 
6. I/O Port 2 
7. Ground  
8. I/O Port 3 
9. I/O Port 4 
10. I/O Port 5 
11. I/O Port 6 
12. I/O Port 7 
13. Interrupt  
14. Vcc 

 
Figure 4-20.  Microdot Production Version Pinout 

 
 

The I2C address of each Microdot would be "burned" in after fabrication.  The address bit 

structure is a combination pull-up/pull-down structure in top layer metal that feeds the seven-

bit address input.  The address is defined by laser-cutting each address bit structure to make it 

a pull-up or pull-down and thus define the address bit as a '1' or '0'. 

 
4.12 Summary 
 
 In this chapter, I have provided a look inside the Microdot.  I have examined each 

functional block and its sub-blocks, covering the overall functionality and interconnections.  I 

have also gone in depth into the design and operation of the I2C serial bus interface.   
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5. Testing and Analysis 

 
5.1 Introduction 
 

In this chapter, I review the testing and analysis of the Microdot design.  Testing was 

completed at each level of design starting with the behavioral models for the Microdot and its 

functional blocks and sub-blocks.  The fabrication costs and limitations to the RHBD gate 

array library prevented fabrication of the Microdot.  In lieu of fabrication, I constructed and 

tested a prototype using an Altera field programmable gate array (FPGA).  Consequently, 

most of the simulation and testing was completed with the Altera FPGA software and 

hardware. 

 
5.2 Altera Overview 
 

The Altera Max+ Plus II development software is a complete design flow tool for 

developing logic circuits on Altera FPGAs.  It supports both schematic capture and hardware 

description languages including Verilog and VHDL.  It also offers complete simulation and 

timing analysis.  Behavioral and structural designs implemented in Synopsys can be ported 

directly to the Altera FPGA.  A gate library was created for the Altera FPGA to match the 

RHBD gate array library.  The Microdot design for the RHBD gate array library was created 

with Synopsys Design Analyzer and then ported to the Altera FPGA for testing. 

 The Altera device I used was the EPF10K20RC240-4.  It is part of the Altera 

University Program UP-1 design laboratory package shown in Figure 5-1.  The FLEX 10K20 

is a SRAM-based FPGA that has 20,000 gates and 12,288 RAM bits.  Considering that 

Microdot uses less than 1,000 gates and 4.5K RAM bits, it was more than enough for me to 

fully implement and test the complete design.  The extra capacity of the 
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Figure 5-1.  Altera UP-1 Design Laboratory Package [21] 

 
 

FLEX 10K20 also allowed test units to be implemented on the same chip.  Thus, the entire 

Microdot design, including a simulated supervisor processor interface, could be tested with 

only a single chip. 

Another advantage to using the FLEX 10K20 was the embedded array blocks (EAB).  

The EABs are blocks of RAM that can be configured to create complete RAM units of 

varying size and depth.  The FLEX 10K20 has six EAB with each containing 2048 bits.  The 

Max+ Plus II software has EAB megafunctions that allow easy creation of complete Random 

Access Memory designs of variable width and depth.  Both the stack memory and program 

memory were created with EAB megafunctions.  Another advantage of the EABs is that the 

memory can be pre-loaded using a memory initialization file.  This allowed for easy testing 

of the chip without having to use external memory or external circuits for downloading 

programs. 
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The 10K20 is an array of 1152 Logic Elements.  The FLEX 10K Logic Element is 

shown in Figure 5-2.  The logic actually consists of the programmable four-input lookup 

table.  The element is configured for combinational or sequential operation by selecting the 

Register Bypass or Programmable Register.  The Carry and Cascade structures are 

specifically designed to create fast adders and counters.  Programming the 10K20 is done by 

downloading a configuration bit stream to the device.  The bit stream programs the lookup 

table and sets the configuration of each Logic Element. Fortunately, the Max+ Plus II 

software simplifies the design process by synthesizing the behavioral or structural logic into 

the configuration for each Logic Element.  The software also configures the programmable 

interconnects to connect the Logic Elements.  A SRAM-based FPGA loses its configuration 

whenever power is cutoff.  In permanent designs, the configuration must be stored in a 

programmable read-only memory (PROM) connected to the FPGA.  Every time the power is 

cycled, the FPGA loads its configuration bit stream from the PROM. 

 
Figure 5-2.  Altera FLEX10K Logic Element [22] 
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5.3 Behavioral VHDL Testing 

 The design entry started with behavioral VHDL.  The behavioral VHDL defines only 

the function of each block with standard programming constructs.  At this point, no structural 

design information is included.  Each sub-block was implemented in behavioral VHDL and 

then tested for correct functionality with the Synopsys VHDL Simulator.  The next level of 

design hierarchy is the functional block level.  Each functional unit was a structural VHDL 

implementation of its sub-blocks.  Each functional block was then tested for correct 

functionality.  After verifying correct operation of each functional block, the complete design 

was integrated with a top-level structural VHDL file and then tested. 

 After successfully testing the behavioral design with Synopsys VHDL simulator, the 

design and testing moved to Altera Max+ Plus II design software.  I found the Max+ Plus II 

software much more useful for creating simulation files.  Unlike Synopsys, simulation files 

could be created with a graphical timing diagram.  This made the simulation process much 

more intuitive.  The behavioral VHDL was once again tested.  This time, however, the 

testing included the FPGA timing.  The Max+ Plus II software synthesizes the behavioral 

VHDL into a structural layout for the selected FPGA chip.  It then analyzes the structural 

layout using the known logic block timing delays to compute the overall timing of each sub-

block.  Behavioral testing with timing verifies functionality with realistic timing constraints. 

It was during this testing that several timing errors were uncovered that required some 

redesign.  Specifically, timing errors with read and write operations to the two memories 

(program and stack) were causing incorrect data to be loaded from and stored to the 

asynchronous RAMs.  The errors stemmed from the fact that all control signals and registers 

were synchronized with the falling edge of the clock.  These errors were corrected by using 
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synchronization buffer registers that loaded on the rising edge of the clock so data was held 

stable at the falling edge of the clock. 

 
5.4 Structural VHDL Testing 
 
 After verifying the correct operation of the Microdot behavioral design, the next step 

was to convert the behavioral VHDL to logic gates.  For large and complex designs, a logic 

synthesis tool is required to translate behavioral VHDL into its logic gate equivalent.  

Synopsys Design Analyzer was the logic synthesizing tool used for converting the Microdot 

behavioral VHDL to the RHBD gate array implementation.  Design Analyzer uses size and 

timing information in the RHBD gate array design library to synthesize logic for selectable 

size and performance constraints.  For the Microdot I synthesized logic for minimum area, as 

performance was not the first concern.  The structural design was ported to the Altera design 

software.  In order to port the structural VHDL, I first had to port the RHBD gate array 

library to the Max+ Plus II software.  The structural VHDL for each of the functional units 

was tested with the simulation files created for the behavioral VHDL.  After the top-level 

design had been successfully simulated, the design was downloaded to the UP-1 board for 

final design verification. 

 
5.5 Full FPGA Testing 
 
 The final design verification step was loading the design on actual FPGA hardware 

and running a test program to confirm correct functionality.  The Microdot design was 

downloaded to an Altera EPF10K20RC240-4 on the UP-1 Design Laboratory Package.  Test 

monitoring was accomplished with a Hewlett-Packard 1630D Logic Analyzer.  The 

HP1630D can record 1024 state measurements on 43 channels at up to 25 MHz.  It is also 
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capable of timing measurements up to 100 MHz.  The 25.175 MHz oscillator on the UP-1 

board was stepped down to 3.15 MHz for full testing.  A test program was written to test the 

instruction set.  Figure 5-3 shows the FPGA test configuration. 

 

 
(a)                                                                        (b) 

 
Figure 5-3.  Microdot FPGA Test Setup.  Included (a) HP1630D Logic Analyzer and (b) 

Altera UP-1 design board 
 
 

5.6 I2C Driver 

 The processor portion of the Microdot was quite simple to test.  Test programs were 

downloaded to program memory as part of the FPGA configuration and the logic analyzer 

could monitor program execution.  However, testing the I2C interface required additional 

circuitry because the I2C bus is controlled by an external supervisor processor.  There was no 

supervisor processor available for testing so a test circuit was created to act as the I2C bus 

master (supervisor processor).  Because of the extra logic capacity of the 10K20 (Microdot 

uses only 38% of logic resources), the test circuit could easily be included as part of the 

overall FPGA design.  The I2C Driver circuit tested the entire I2C command set including 

downloading a new program. 
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5.7 FPGA Results 
 

The FPGA implementation of the Microdot required 435 out of the 1152 (37.7%) 

Logic Elements.  The program and data memory requires 3 of the 6 (50%) Embedded Array 

Blocks.  The timing and power consumption are presented in the next two sections. 

5.7.1 FPGA Timing.   The overall performance of both the FPGA design and RHBD 

gate array design is limited by the speed of the program memory. All timing delays in this 

discussion are maximum simulated timing delays for the EPF10K20RC240-4.  The PCSM, 

which is loaded on the falling edge of the clock, has a timing delay of 19.9 ns.  The PCSM 

addresses the Program RAM, which has timing delay of 35.1 ns.  The memory output is 

loaded to the buffer registers on the rising edge of the clock.  Therefore, in order to guarantee 

that the memory loads correctly, there needs to be delay of 55 ns between the falling edge 

and rising edge of the clock.  For a 50% duty cycle, the minimum clock period would be 110 

ns (9.1 MHz).  All other logic blocks meet timing requirements within a 110 ns clock cycle.  

For instance, the critical path in the Control Unit is the LDSKR output which controls 

loading of the stack buffer registers on the rising edge of the clock.  The maximum delay 

from negative clock edge to LDSKR would be 40.9 ns.  A 55 ns half-clock period provides a 

14 ns margin.  All other control signals have the full 110 ns to propagate through before the 

next falling clock edge.  The maximum delay of the Control Unit is 53 ns.  The timing results 

of the FPGA design are presented in Table 5-1.  Test program simulation showed that the 

design functioned at 9.1 MHz without timing errors.  Hardware tests actually showed that the 

Microdot could be clocked at up to 12.6 MHz before timing errors were detected.  These tests 

were not exhaustive, though, so this number cannot be guaranteed. 
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Table 5-1.  FPGA Timing Results 
Min Clock Period 110 ns 
Max Frequency 9.1 MHz 

  
Functional Unit Max Delay (ns) 

ALUNIT 46.4 
MEMUNIT 49.5 
STKUNIT 26.9 
IOUNIT 29.2 

CONUNIT 53 
Program RAM 35.1 

Stack RAM 30.1 
 

 

5.7.2 FPGA Power Consumption.  For the FPGA, power consumption is estimated 

based on the size of the design and the operating frequency.  The formula is [22]: 

LCMAXCCACTIVE togfI ×Ν××Κ=    
MHz

Aµ  

Where K is a multiplication constant for each device.  For the EPF10K20, K is 89.  The 

maximum frequency is given as fMAX.  The maximum frequency for the Microdot is 9.1 MHz. 

N is the number of logic elements in the design.  The Microdot design required 435 logic 

elements.  The togLC variable is the estimate of the average number of logic elements 

toggling each clock cycle.  The data sheet provides a typical number at 12.5%.  An analysis 

of the Microdot shows that most registers change state once every 4-5 clock cycles.  Thus, 

the maximum average toggle rate should never exceed 25%.  The current consumption at 

max operating frequency (9.1 MHz) for the Microdot is 88 mA, which equates to a power 

dissipation of 440 mW.  This is orders of magnitude above the typical operating currents of 

the four-bit microcontrollers presented in Table 2-1.  Maximum current is not really a fair 

comparison.  If we look at the current consumption at slower speeds, we see the design 

compares more favorably with the typical four-bit microcontrollers. 
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Table 5-2 shows the supply current, power dissipation, and performance over the 

range of operating frequencies.  At the target operating frequency of 32 kHz, we see that the 

supply current is 310 µA with a power dissipation of 1.55 mW.  This is still quite higher than 

the extremely low-power microcontrollers presented in Table 2-1, but is still considered low-

power.  The numbers presented so far are for the 5-Volt EPF10K20 device on the UP-1 

board.  If I wanted to minimize power consumption in the FPGA implementation, I would 

select the 3.3-Volt EPF10K10A.  This device consumes 1/5 the current of the EPF10K20.  

This would reduce 32kHz current and power consumption to 59 µA and 196 µW, 

respectively.  These numbers are on par with the low-power four-bit microcontrollers 

currently available. 

 

Table 5-2.   Microdot FPGA Supply Current, Power 
Dissipation, and Performance (Altera EPF10K20RC240-4) 

Frequency
Supply 
Current 
(mA) 

Power 
Dissipation

(mW) 

Performance  
x1K instr/sec 

32 kHz 0.3104 1.552 8.9 
100 kHz 0.97 4.85 27.8 
500 kHz 4.85 24.25 139 
1.0 MHz 9.7 48.5 277 
2.0 MHz 19.4 97 556 
3.0 MHz 29.1 145.5 833 
4.0 MHz 38.8 194 1111 
7.0 MHz 67.9 339.5 1944 
9.0 MHz 87.3 436.5 2500 

 

  

The decision against using Altera SRAM-based FPGAs for distributed and 

reconfigurable low-end computing in space-borne applications is their susceptibility to SEU.  

If SRAM-based FPGAs were radiation-hardened against total ionizing dose and SEU, they 

5-9 



would offer far more flexibility for reconfigurable control and data collection on 

microdevices than would small microcontrollers.  The designer would not be limited to eight 

I/O ports.  Nearly every pad/pin could be configured as an input or output.  Also, the internal 

logic of the FPGA could be more efficiently tailored to the microdevice that it interfaces. 

 
5.8 RHBD Gate Array Results 
 
 The Microdot was designed with a RHBD gate array standard cell library.  The 

behavioral design of each functional block was synthesized and/or hand-designed into a 

structural design.  The structural designs were then used to create the gate-array layouts with 

the GARDS place-and-route tool.  I did this at Mission Research Corporation, 

Microelectronics Division in Albuquerque, NM. 

 

Table 5-3 RHBD Microdot Design Summary 
Components 782 Area 
Gates 666 33 % 
Flip-flops 116 67 % 

Gate Array Cells 3684 0.88 
mm2 

Functional Unit Width 
(µm) 

Height 
(µm) 

ALUNIT 180 385 
COMUNIT 580 580 
CONUNIT 385 390 
IOUNIT 375 385 
MEMUNIT 575 580 
STKUNIT 570 435 
STATMUX 180 140 
MICRODOT CORE 1440 1280 
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Table 5-3 is a summary of the RHBD gate array design.  You can see that the SEU-

hardened flip-flops require 67% of the cell area, but are less than 15% of the total 

components.  The dimensions of each functional block and the Microdot core are also 

presented in Table 5-3.  This does not include the RAM blocks for the stack or program 

memory.  Memory size is discussed in section 5.8.2. 

5.8.1 RHBD Gate Array Timing.  The Synopsys Design Library for the RHBD gate 

array contains elements for timing analysis.  Overall timing delays are computed from 

individual gate delays and the fanout of each gate.  While this level of timing analysis is 

somewhat coarse, it does provide good estimates of what the actual timing delays would be 

in a fabricated design.  I expected the RHBD gate array design to be much faster than the 

FPGA design and it is. 

 

Table 5-4.  RHBD Gate Array Timing Results 
Min Clock Period 43 ns 
Max Frequency 23.3 MHz 

  
Functional Unit Max Delay (ns) 

ALUNIT 9.2 
MEMUNIT 8.6 
STKUNIT 4.4 
IOUNIT 1.1 

CONUNIT 2.6 
I2C COMUNIT 4.3 
Program RAM 20.7 

Stack RAM 20.7 
 

 

Table 5-4 shows the timing performance for the RHBD gate array version of the 

Microdot.  The limiting factor for performance is still the memory.  A 128x4 memory 
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structure created with RHBD gate array components had a simulated timing delay of 20.7 ns.  

Since the PCSM has delay of 0.8 ns, the total delay for the memory output is 21.5 ns.  Since 

21.5 ns is the minimum half-clock cycle, the total clock cycle time would be 43 ns which is a 

frequency of 23.3 MHz.  All the other functional units operate well within the 43 ns clock 

cycle. 

5.8.2 RHBD Gate Array Memory Design.  One of the limitations to implementing the 

Microdot with the RHBD gate array is there is no compact memory structure for 

implementing SRAM units.  The only way to create memory structures is to use existing 

latches and flip-flops that are not area efficient.  A 128x4 RAM implemented with available 

RHBD gate-array components would require a cell area of 5137 (1.23 mm2) with non-SEU-

hardened latches and 6673 (1.60 mm2) with SEU-hardened latches.  The units of cell area are 

gate array cells, which are 240 µm2.  The microdot without SRAM units requires a cell area 

of 3684 (0.88 mm2).  These are minimum areas that do not factor in extra area needed for 

interconnect routing which could be as much as 125%.  The two RAM units (Program and 

Stack) dominate the total cell area and ultimately will control the size of the Microdot.  

Considering that a full program memory will be nearly eight times as large as the 128x4 

SRAM (9.84 mm2 for non-SEU-hard, 12.8 mm2 for SEU-hard), creating large memories with 

the gate array library wastes too much space and does not make sense for the Microdot 

design.  The smaller the size of the SRAM cell, the smaller the Microdot will be.  It would be 

advantageous to develop smaller RHBD SRAM cells that could be efficiently packed to 

create smaller SRAM designs that still have an acceptable level of total ionizing dose and 

SEU hardness. 
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5.9 Summary 
 
 The Microdot was successfully tested with an Altera FLEX 10K20 FPGA.  

Simulations and testing showed that the FPGA Microdot could be clocked at speeds up to 9.1 

MHz.  The current and power consumption at the base frequency of 32 kHz is low, but still 

does not come close to the low-power four-bit microcontrollers currently available.  By using 

improved versions of the FLEX 10K20 FPGAs or fabricating the RHBD gate array layout the 

Microdot can achieve better performance and lower power consumption.  A partial layout 

was created with a RHBD gate array library.  Simulations on this design showed a 

performance of 23.3 MHz.  The partial layout without RAM units requires 5.8 mm2.  A full 

layout in RHBD gate array requires a minimum area of 15.28 mm2.  Unfortunately, this does 

not meet the design goal for small area. 



6.  Conclusions and Future Work 
 
 
6.1 Summary and Accomplishments 
 
 I designed, implemented, and tested the Microdot, a four-bit microcontroller designed 

for distributed microdevice control and data collection in satellites.  Normally, a single 

processor interfaces a large number of microdevices and must execute individual subroutines 

to service each device.  As the number of devices in a design increases, the processing 

capability needs to be increased.  The concept of the Microdot is to distribute the needed 

processing capability among a network of small microcontrollers dedicated to each 

microdevice instead of using a single processor for all processing.  Delegating processing 

serves to reduce the level of processing required by a single processor, which can also reduce 

the power consumption and increase reliability.  Another element of the Microdot concept is 

reconfigurability.  The Microdot makes satellite design flexible because each Microdot can 

be reprogrammed on-the-fly.   

In this thesis, I expanded previous research completed at both the Air Force Research 

Laboratory Space Electronics Branch (AFRL/VSSE) and the Air Force Institute of 

Technology.  The major design improvement I gained with this version of the Microdot was 

the addition of the I2C serial bus interface for distributed computing.  The previous versions 

of the Microdot introduced the distributed computing concept, but did not really provide an 

efficient way to create a distributed network.  The I2C bus uses only two signal lines to 

connect up to 128 Microdots to a single central processor.  My work with the Microdot 

design transformed it from just a small microcontroller to a more flexible microcontroller 

designed specifically to operate as a distributed computing element within an overall 

distributed computing system. 
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 I designed the Microdot microcontroller for fabrication in a radiation-hardened by 

design (RHBD) gate array standard cell library for the Taiwan Semiconductor (TSMC) 0.35 

micrometer CMOS process.  The RHBD gate array design of the Microdot core requires 666 

combinational gates and 116 flip-flops with an area of 1.84 mm2.  Simulation using 128x4 

RAM units for both the program and stack memory showed a maximum clock speed of 23.3 

MHz.  The test version of the Microdot requires 44 pins.  The production version of the 

Microdot requires 14 pins. 

I implemented the full Microdot design in an Altera FLEX 10K20 FPGA.  During my 

simulation and hardware testing, I showed that the maximum clock speed is 9.1 MHz, which 

equates to 2.5 million instructions per second (MIPS).  At this frequency, the circuit draws 

87.3 mA and dissipates 436.5 mW.  At the low-power operating frequency of 32 kHz, the 

Microdot executes 8.9 thousand instructions per second (KIPS) while consuming 310 µA and 

dissipating 1.552 mW of power. 

 
6.2 Conclusions and Lessons Learned 
 

Designing for a radiation-hardened library requires an initial understanding of the 

layout and performance of the individual cells.  For instance, it is important to understand the 

area penalty of using SEU-hardened flip-flops.  As noted earlier, state machine design was 

one area where I learned that using a one-hot design strategy may simplify logic, but it 

increases area and makes a design more susceptible to SEU.  In RHBD designs, the strategy 

must be to reduce the number of flip-flops.  Ultimately, to increase reliability in SEU 

environments, redundancy and error detection and correction (EDAC) must be applied to 

memory cells so reducing the number of flip-flops reduces the area penalty of designing in 

SEU hardness. 
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 It is important to obtain the design libraries early in the process.  After analyzing the 

RHBD design, I discovered the areas where the design could be improved.  The major 

shortcoming of the RHBD gate array library was the lack of area-efficient SRAM cells.  

Therefore, the RHBD gate array library should not be used if a full version of the Microdot is 

fabricated.  Since memory ultimately determines the size of the design it would be better to 

design the Microdot for a more area efficient standard cell library with smaller SRAM cells. 

 Timing is one of the hardest things to get right and has to be correctly engineered 

from the earliest stages of design and properly monitored for improvement.  The clocking 

strategy used for the Microdot was single phase clocking.  The advantage of single phase 

clocking is that only a single clock signal has to be routed.  However, clock skew between 

different areas on the chip can cause timing errors that have to be corrected.  In my case, it 

cost me 12 extra flip-flops, which was a significant area penalty.  Two phase clocking can 

eliminate clock skew errors and probably should have been considered as the clocking 

strategy. 

 Another lesson learned was to get your design tools in place as early as possible.  At 

the start of my research, AFIT did not have any FPGA design tools for VLSI research.  

Because of the uncertainty of the fabrication process due to cost and timeline, I wanted a way 

to prototype and test my designs with more than just simulation tools.  This is why I got 

AFIT started with the Altera University Program.  The design and simulation process 

improved greatly after I got the Altera FPGA tools.  I was able to create simulation files and 

run the simulations very quickly.  Also, the reconfigurable SRAM-based chip permitted me 

to quickly download a design to the chip and run a hardware test.  If I had been able to use 

the Altera software and hardware from the start of my research, it would have sped up the 

6-3 



6-4 

design evolution and I could have recognized design problems earlier and got a better 

working design in the end.  The Altera FPGA tools are very useful to VLSI design and 

looking back, I am glad that I went to the trouble to get them. 

 
6.3 Future Research 
 
 The Microdot is essentially a small reconfigurable computing element.  My work 

with the Altera FPGAs showed me that SRAM-based FPGAs are the ultimate in 

reconfigurability.  I believe future research in distributed low-end computing for space 

applications should look at how to develop small, low-power SRAM-based FPGAs for robust 

operation in the space radiation environment.  Conventional SRAM-based FPGAs are not 

suitable for operation in a space environment mainly due to their SEU susceptibility.  Since 

the configuration is stored in SRAM cells, an upset of a configuration bit could alter the 

functionality of the device and cause failure.  Radiation-hardened SRAM-based FPGAs 

would offer designers a much greater amount of flexibility for interfacing microdevices.  

They would not be limited to eight I/O pins on a single device, nor would they be limited to 

the capabilities of the Microdot instruction set.  Each FPGA could be more uniquely tailored 

to the device it interfaces which would be much more efficient.  If a device required a greater 

amount of processing capability than a single FPGA could provide, multiple FPGAs could be 

used.  I do believe an I2C serial bus would still be very useful for creating a distributed 

architecture.  It would be important to have a standard interface for downloading 

configurations as well as providing a data path back to the supervisor processor. 

 

  



A-1 

Appendix A. Microdot Functional Blocks and Signals 
 

 
Table A-1.  Microdot Design Hierarchy 

Abbreviation Name Function 

MICRODOT_CHIP Microdot Chip Design Top-level design that contains microdot 
processor, RAM units, and external pads 

MICRODOT Microdot Processor 
Design 

Processor design contains the functional 
blocks without the RAM units or external 
pads 

CONUNIT CONTROL UNIT Control logic for microdot functional units 

CONTSTM Control Unit State 
Machine Control Unit state plus Status Register 

CONCNT Internal Control Logic Control Unit State Machine Logic 
MEMCNT Memory Control Logic Memory Unit Control Signals 
STKCNT Stack Control Logic Stack Unit Control Signals 

IOCNT I/O and I2C COM 
Control Logic I/O and I2C COM Unit Control Signals 

MEMUNIT PROGRAM 
MEMORY UNIT Microdot Program Memory 

PCSM Program Counter Holds current program memory address 

PCLOG Program Counter Logic 

Either increments program counter or adds 
instruction register increment during BRCH 
instruction or loads from instruction register 
during JUMP instruction 

INSREG Instruction Register 
Holds all elements of the current instruction 
(OPCODE, ALU CODE, INDEX 1, and 
INDEX 2) 

XMEMMUX External Memory Mux Selects program memory input based on the 
state of the disable-internal-memory input 

RAM1024X4 Program Memory Program SRAM 

STKUNIT STACK UNIT Microdot Data Memory 
TOSREG Top of Stack Register Register for the Top of Stack 

TOSMUX Top of Stack Data 
Multiplexer 

Selects the data input for Top of Stack based 
on the current instruction 

STKADRMUX Stack Address 
Multiplexer 

Selects stack RAM address from stack 
pointer, stack adder, or instruction register 
based on the current instruction 
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STKPTR Stack Pointer 
Holds the current stack RAM address -- 
Adding elements to the stack decrements the 
stack pointer 

STKPTRLOG Stack Pointer Logic Increments or decrements the stack pointer 
based on the control signals 

STKADD Stack Address Adder Adds the stack offset (ALU Code or Index 1) 
to the current stack pointer 

RAM128X4 Stack Memory Stack SRAM 

ALUNIT ARITHMETIC AND 
LOGIC UNIT Microdot arithmetic and logic functions 

ALUCONT ALU Controller Selects the active ALU operation based on 
the current ALU CODE 

ALUNOT ALU NOT Function Not Logic 
ALUSHF ALU SHIFT Function Shift Right and Shift Left Logic 
ALUAND ALU AND Function And Logic 
ALUOR ALU OR Function Or Logic 

ALUXOR ALU XOR Function Exclusive-or Logic 
ALUADD ALU ADD Function Add/Subtract Logic 

ALUSTR ALU Status Detector ALU Status Logic (Carry, Negative, 
Overflow, and Zero) 

IOUNIT INPUT/OUTPUT 
UNIT Interface to the 8 Input/Output Ports 

OUTREG Output Register Output Register written to during the Store 
I/O (STIO) Instruction 

MSKREG Mask Register Holds the state of the I/O lines as input or 
output (0 = input, 1 = output) 

EVNTDET Event Detection Logic Detects if an event has taken place on the I/O 
lines during a WAIT instruction 

COMUNIT 
I2C 

COMMUNICATION 
UNIT 

Interface to the I2C serial bus 

COMBUF Serial Communication 
Buffer 

Serial-in/out, Parallel-in/out Shift Register 
for interfacing the I2C bus and detecting I2C 
address 

COMREG Serial Communication 
Register 

Register for interfacing between the 
processor and the I2C Com Unit 

COMWS Word State 

Part of the I2C Com State Machine -- 
Determines if I2C is Reading 
Address/Reading Command/Writing 
Data/Programming 
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COMBS Bit State Part of the I2C Com State Machine -- 
Synchronizes data load and acknowledge 

COMSTM I2C Communication 
State Machine 

I2C Control State Machine -- Asserts control 
signals to execute I2C commands 

COMLOG I2C Communication 
Logic 

Internal and External Control Logic for the 
I2C COM Unit 

STDET Start Detector Detects a Start condition on the I2C bus 

STATMUX STATUS 
MULTIPLEXER 

Test multiplexer for viewing internal data 
lines 
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Table A-2.  Microdot Signal Table 

Name Bits Source Description Destinations Other 
names 

AC 4 MEMORY ALU CODE 

CONUNIT, 
ALUNIT, 
IOUNIT, 

STKUNIT, 
STATMUX 

 

ADR 7 EXTERNAL Microdot I2C Address I2C COMUNIT  
ADS 2 CONUNIT Stack Address Select STKUNIT  

AR 4 ALUNIT ALU Result STKUNIT, 
STATMUX  

CB 1 CONUNIT Status Register Carry Bit ALUNIT, 
STATMUX CIN 

COMPCI 1 I2C COMUNIT Increment Program 
Counter CONUNIT  

COMRST 1 I2C COMUNIT I2C COM Unit Reset CONUNIT  
COUT 1 ALUNIT Carry Out CONUNIT  

CR 8 I2C COMUNIT I2C COM Register MEMUNIT, 
STKUNIT  

DECSP 1 CONUNIT Decrement Stack Pointer STKUNIT  
DIM 1 EXTERNAL Disable Internal Memory MEMUNIT  

DMSK 8 IOUNIT Direction Mask EXTERNAL 
PADS  

DTS 3 CONUNIT Top of Stack Data Select STKUNIT  
EPI 8 EXTERNAL I/O Port Input IOUNIT  
EPO 8 IOUNIT I/O Port Output EXTERNAL  

EVNT 1 IOUNIT Event Detected CONUNIT  
IDR 1 I2C COMUNIT Input Data Ready CONUNIT  

INCSEL 1 CONUNIT Increment Select STKUNIT  
INCSP 1 CONUNIT Increment Stack Pointer STKUNIT  

INT 1 I2C COMUNIT Interrupt Output EXTERNAL PAD  
INTS 1 CONUNIT Set Interrupt I2C COMUNIT  
INTX 1 EXTERNAL Interrupt Input CONUNIT  

LCRS 1 CONUNIT Load I2C COM Register 
from STK I2C COMUNIT  

LDAC 1 CONUNIT Load ALU CODE MEMUNIT  
LDMR 1 CONUNIT Load Mask Register IOUNIT  
LDOC 1 CONUNIT Load OPCODE MEMUNIT  
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Name Bits Source Description Destinations Other 
names 

LDSKR 1 CONUNIT Load Stack Buffer 
Register STKUNIT  

LDSTK 1 CONUNIT Load Stack RAM STKUNIT  

LDTOS 1 CONUNIT Load Top of Stack 
Register STKUNIT  

LDX1 1 CONUNIT Load INDEX 1 Register MEMUNIT  
LDX2 1 CONUNIT Load INDEX 2 Register MEMUNIT  

MEMDI 1 PROGRAM 
RAM 

Program RAM Input 
Data MEMUNIT  

MEMDO 4 MEMORY Memory Data Output PROGRAM RAM  

NB 1 CONUNIT Status Register Negative 
Bit STATMUX  

NEG 1 ALUNIT Negative Result CONUNIT  

OC 4 MEMUNIT OPCODE CONUNIT, 
STATMUX  

ODR 1 I2C COMUNIT Output Data Ready CONUNIT  
OVR 1 ALUNIT Arithmetic Overflow CONUNIT  
PCBR 1 CONUNIT Branch Program Counter MEMUNIT  
PCE 1 MEMUNIT Program Counter End I2C COMUNIT  

PCIN 1 CONUNIT Increment Program 
Counter MEMUNIT  

PCLD 1 CONUNIT Load Program Counter MEMUNIT  
PLN 4 IOUNIT I/O Port Internal (Lower) STKUNIT IP[3..0] 

PMWE 1 MEMUNIT Memory Write Enable PROGRAM RAM  
PNS 1 I2C COMUNIT Program Nibble Select MEMUNIT  

PROG 1 I2C COMUNIT Programming MEMUNIT, 
CONUNIT  

PUN 4 IOUNIT I/O Port Internal (Upper) STKUNIT IP[7..4] 
RDST 1 I2C COMUNIT Reading Stack CONUNIT  
RIDR 1 CONUNIT Reset Input Data Ready I2C COMUNIT  

RST 1 EXTERNAL System Reset 

I2C COMUNIT, 
IOUNIT, 

CONUNIT, 
STKUNIT, 
MEMUNIT 

 

RSTC 1 CONUNIT Reset I2C COM Unit I2C COM UNIT  
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Name Bits Source Description Destinations Other 
names 

RSTP 1 CONUNIT Reset Microdot 

MEMUNIT, 
STKUNIT, 
IOUNIT, 

CONUNIT 

 

SCL 1 EXTERNAL I2C Serial Clock/System 
Clock 

I2C COMUNIT, 
IOUNIT, 

CONUNIT, 
STKUNIT, 
MEMUNIT 

 

SDA 1 EXTERNAL I2C Serial Data I2C COMUNIT SDA_IN 
SDA_OUT 1 I2C COMUNIT Serial Data Output EXTERNAL PAD  

SMWE 1 STKUNIT Stack RAM Write Enable STACK RAM  
SMX 4 STATMUX Status Multiplexer EXTERNAL  
SPI 1 I2C COMUNIT Microdot Suspended CONUNIT  

STK 4 STKUNIT Stack Memory Output 

ALUNIT,I2C 
COMUNIT, 

IOUNIT, 
STATMUX 

 

STKADR 7 STKUNIT Stack RAM Address STACK RAM  
STKDI 4 STACK RAM Stack RAM Input Data STKUNIT  
STKDO 4 STKUNIT Stack RAM Output Data STACK RAM  
STOR 1 CONUNIT Store to I/O Port IOUNIT  
SUSP 1 CONUNIT Set Suspend I2C COMUNIT  

TOS 4 STKUNIT Top-of-Stack Register 

ALUNIT,I2C 
COMUNIT, 

IOUNIT, 
STATMUX 

 

VB 1 CONUNIT Status Register Overflow 
Bit 

ALUNIT, 
STATMUX VIN 

X1 4 MEMUNIT INDEX1 STKUNIT, 
IOUNIT  

X2 4 MEMUNIT INDEX2 IOUNIT  

XAD 10 MEMUNIT Program Counter EXTERNAL, 
PROGRAM RAM  

XDE 1 MEMUNIT External Data Output 
Enable 

EXTERNAL 
PADS  

XDI 1 EXTERNAL External Data Input MEMUNIT  
XDO 4 MEMUNIT External Data Output EXTERNAL  
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Name Bits Source Description Destinations Other 
names 

ZB 1 CONUNIT Status Register Zero Bit STATMUX  
ZER 1 ALUNIT Zero Result CONUNIT  
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Appendix B.  Microdot Design Summary -- Radiation Hardened By Design 
Gate Array Library 

 
 

Table B-1.  Microdot RHBD Gate Array Cell Breakdown 

Cell Number GA 
Cells Function 

AND2X1 30 2 2-input AND 
AND3X1 15 2 3-input AND 
AND4X1 1 3 4-input AND 
AND5X1 7 3 5-input AND 
AO211X1 2 3 4-input AND-OR 
AO21X1 2 3 3-input AND-OR 
AO221X1 1 3 5-input AND-OR 
AO222X1 18 4 6-input AND-OR 
AO22X1 6 3 4-input AND-OR 
AOI21 11 2 3-input AND-OR INVERT 
AOI211 4 2 4-input AND-OR-INVERT 
AOI22 79 2 4-input AND-OR-INVERT 
AOI222 9 3 6-input AND-OR-INVERT 
BL_ZBUF1X1 18 3 Tri-state Buffer with 1X drive 
BL_ZBUF1X2 6 4 Tri-state Buffer with 2X drive 
BN_DIDFF_X1 39 18 Negative-edge D flip-flop 
BN_DIDFFC_X1 64 24 Negative-Edge D flip-flop with Clear 
BN_DIDFFP_X1 1 24 Negative-Edge D flip-flop with Preset 
BP_DIDFF_X1 12 18 Positive-Edge D flipflop 
BUF1X1 17 1 Buffer with 1X drive 
BUF1X2 8 2 Buffer with 2X drive 
BUF1X3 1 2 Buffer with 3X drive 
INV1X1 132 1 Inverter with 1X drive 
INV1X2 15 1 Inverter with 2X drive 
INV1X3 4 2 Inverter with 3X drive 
INV1X4 3 2 Inverter with 4X drive 
MAJI3 2 3 3-input Majority 
MUX2X1 26 3 2-input Multiplexer 
NAN2 60 1 2-input NAND 
NAN3 5 2 2-input NAND 
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NAN4 9 2 2-input NAND 
NOR2 52 1 2-input NOR 
NOR3 14 2 2-input NOR 
NOR4 13 2 2-input NOR 
OAI21 20 2 3-inputOR-AND-INVERT 
OAI211 7 2 4-input OR-AND-INVERT 
OAI22 26 2 4-input OR-AND-INVERT 
OAI222 4 3 6-input OR-AND-INVERT 
OR2X1 9 2 2-input OR 
OR3X1 6 2 3-input OR 
XNOR2 5 3 2-input Exclusive-NOR 
XOR2 19 3 2-input Exclusive-OR 
Total 782 3684  
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Appendix C.  Microdot Chip Level Interconnection Diagrams 
 
 

 
Figure C-1.  Microdot Test Chip Diagram (1 of 3). 

External inputs and input pads, microdot and memory blocks. 
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Figure C-2.  Microdot Test Chip Diagram (2 of 3). 

External outputs and bi-directional pads. 
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Figure C-3.  Microdot Test Chip Diagram (3 of 3). 
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Appendix D.  List of Abbreviations 
 
 
AFOSR – Air Force Office of Scientific Research 

ALU – Arithmetic and Logic Unit 

ASIC – Application Specific Integrated Circuit 

BJT – Bipolar Junction Transistor 

CAD – Computer Aided Design 

CISC – Complex Instruction Set Computer 

CMOS – Complementary Metal Oxide Semiconductor 

DARPA – Defense Advanced Research Project Agency 

EDAC – Error Detection and Correction 

EEPROM – Electrically-erasable Programmable Read-only Memory 

FPGA – Field Programmable Gate Array 

HEX – Hexadecimal 

I/O – Input/Output 

I2C – Inter-IC Communication 

Kbps – Kilobits per second 

KIPS – Thousand Instructions per second 

LCD – Liquid Crystal Display 

LET – Linear Energy Threshold 

Mbps – Megabits per second 

MDOT – Microdot 

MIPS – Million Instructions per second 
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MOS – Metal Oxide Semiconductor 

MRC – Mission Research Corporation 

MSB – Most Significant Bit 

NFET – N-channel Field Effect Transistor 

Nibble – Four-bit Word 

PFET – P-channel Field Effect Transistor 

PROM – Programmable Read-only Memory 

Rad – Radiation Absorbed Dose 

RAM – Random Access Memory 

RHBD – Radiation Hardened By Design 

RISC – Reduced Instruction Set Computer 

ROM – Read-only Memory 

SCL – I2C Serial Clock 

SCR – Silicon Controlled Rectifier 

SDA – I2C Serial Data 

SEE – Single Event Effects 

SEL – Single Event Latchup 

SEU – Single Event Upset 

SOI – Silicon-on-Insulator 

SPI – Serial Peripheral Interface 

SRAM – Static Random Access Memory 

TID – Total Ionizing Dose 
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TMR – Triple Modular Redundancy 

TSMC – Taiwan Semiconductor Manufacturing Company 

Vdd – Supply Voltage 

VHDL – Very High Speed Integrated Circuit Hardware Description Language 

VLSI – Very Large Scale Integration 
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