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Abstract

Monostatic radars employ pulsed waveforms to achieve receiver/transmitter

isolation. Pulsed waveforms, however, are intrinsically ambiguous in range and

Doppler. The mitigation of these inherent ambiguities has been the focus of radar

waveform designers for many decades. In 1962 Palermo used two conjugate linear

frequency modulated (LFM) pulses to demonstrate a concept that reduces ambigu-

ous energy in processed radar return signals. This approach, known as Non-linear

Ambiguity Suppression (NLS), acts on the radar return for a pulse-coded waveform

by compressing undesirable pulses and suppressing them using saturation threshold-

ing. This process effectively reduces the energy contribution of undesirable pulses

in the resultant radar return. In this way Palermo was able to provide a 2-fold im-

provement in range ambiguities, however the use of conjugate LFM pulses does not

extend to larger symbol families, thus having severe limitations.

In order to overcome the limitation on symbol family size, NLS radar waveforms

can comprise pseudo-random discrete codes, such as Gold codes, that exhibit strong

mutual dispersion properties. However, no theorem exists that directly tackles the

problem of designing optimal mutually dispersive symbols. This thesis analyzes the

Brown theorem, a recent theorem devised in support of NLS. The Brown theorem

utilizes a rms time duration metric to design, in the frequency domain, optimal

mutually dispersive symbols for any sized pulse family. The Fourier transform of

the rms time duration is considered because it neatly isolates the envelope and

phase components of the NLS waveform thereby permitting the systematic design of

mutually dispersive pulses. Optimality in compression is found from the solution to

a constrained optimization problem, whilst mutuality in dispersion is ensured via a

prudent selection of phase-rate functions.

xiii



This thesis significantly advances research towards the implementation of op-

timal NLS waveforms by analyzing the Brown theorem. The Brown theorem is

reintroduced with the use of simplified linear algebraic notation. A methodology

for Brown symbol design and digitization is provided, and the concept of disper-

sive gain is introduced. Numerical methods are utilized to design, synthesize, and

analyze Brown symbol performance. The theoretical performance in compression

and dispersion of Brown symbols is demonstrated and is shown to exhibit significant

improvement compared to discrete codes. As a result of this research a process is

presented for the design of optimal mutually dispersive symbols for any sized family.

In other words, the limitations imposed by conjugate LFM are overcome using NLS

waveforms that provide an effective N -fold increase in radar unambiguous range.
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AN ANALYSIS OF MUTUALLY DISPERSIVE BROWN

SYMBOLS FOR NON-LINEAR AMBIGUITY SUPPRESSION

I. Introduction

1.1 Research Motivation

The radar system is primarily employed for providing information about the

presence of a target, and its associated parameters such as size, location and motion.

This information is sought after in a hierarchy from target detection to parameter

estimation with waveform resolution being the governing metric of precision [31].

Accordingly, radar waveforms are chosen based on application so that they deliver

sufficient precision in resolution. With their origins in continuous wave systems,

radars quickly evolved into pulsed systems before the end of World War II. Monos-

tatic radars (collocated transmitter and receiver) utilize pulsed waveforms so that re-

turns are received free of interference from radar transmissions. Originally extremely

narrow pulses were used to achieve high resolution, however, due to hardware satu-

ration limitations this resulted in low transmit power and was deemed ineffective. In

1960, Klauder et al. [17] introduced the linear frequency modulated (LFM), or chirp,

pulse which exploited spectral content to achieve pulse compression; this marked the

beginning of the era of pulse compression waveform design.

A pulsed radar transmits short pulses of electromagnetic energy at a rate known

as the Pulse Repetition Frequency (PRF). This rate varies based on operational re-

quirements but intrinsically leads to ambiguities in range (time delay) and Doppler

(velocity) estimation. By changing the PRF these ambiguities may be controlled but

not necessarily removed. A number of different methods exist for reducing the de-

gree of ambiguity in radar returns. However, the previously transmitted pulse that
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generated the return under consideration must be determined to entirely remove

range ambiguities. The ability to identify a particular member of a set of uniquely

coded pulses from all others in the set is known as pulse discrimination. This proves

invaluable in many applications, such as pulsed-Doppler radar and wireless spread-

spectrum communications [30]. Pulse compression and pulse discrimination are re-

lated through mutual dispersion. A set of symbols having crosscorrelation functions

with equivalent dispersive characteristics are said to be mutually dispersive. If the

same set of symbols exhibit good pulse compression, i.e., have focused autocorrela-

tion functions, then pulse discrimination becomes rudimentary. In the ideal case the

matched output, or autocorrelation function, would be the dirac delta function (all

energy concentrated at a single point). Clearly this is not realizable, therefore highly

dispersive crosscorrelation functions are required to enable pulse discrimination using

a filter and threshold detector.

Intent on improving unambiguous range, Palermo [28] discovered a means of

combining pulse compression and pulse discrimination into one technique, known as

Non-linear Suppression (NLS). NLS utilizes pulse discrimination to reduce ambigu-

ous energy in a radar return with the added benefit of exploiting pulse compression

to achieve high range resolution. Each channel of a NLS system is assigned a unique

symbol; the radar return signal is passed through the channel producing an output

indicating the presence of that symbol alone. Consequently, a series of suppression

operators are employed in each channel to sequentially suppress the response of all

undesirable symbols. These suppression operators are the kernel of NLS that exploit

the pulse discrimination concept to suppress undesirable symbol responses.

Given a suitable mutually dispersive symbol set, Palermo’s suppression kernel

comprises three components: pre-filter, non-linearity, and post-filter. The pre-filter

is matched for a particular undesirable symbol, resulting in a highly focused autocor-

relation response, and dispersed crosscorrelation response for all other symbols. The

pre-filtered signal then undergoes a saturating non-linearity that clips (limits) the
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input above a prescribed threshold. This effectively removes a good deal of undesir-

able symbol energy without affecting other symbols. Finally, the suppressed signal is

passed through a post-filter that inverts the pre-filter effect. Sequentially performing

this NLS operation for all but the desired pulse reduces the ambiguous energy in the

resultant signal. When the desired symbol is finally focused, or matched-filtered,

the ambiguous energy present in the processed radar return is significantly reduced.

Therefore, NLS is an interpulse coding scheme that exploits pulse discrimination to

provide a means for reducing pulsed radar range ambiguities.

A fundamental prerequisite to employing NLS is having a set of mutually

dispersive symbols. In [5] Brown1 presents a theorem on optimal mutually dispersive

symbols. As stated earlier, mutually dispersive symbols may be characterized by the

dispersive characteristics of their correlation functions. By considering the Fourier

transform of the rms time duration of the correlation functions, Brown devises a

theory for the spectral design of optimal mutually dispersive symbols. In this fashion,

the rms time duration neatly isolates the envelope and phase components of the

correlation function thereby permitting the systematic design of mutually dispersive

pulses. This formulation indicates that the optimal spectral envelope is the solution

to a constrained optimization problem, and the optimal phase-rate functions are

linear combinations of a weighted-orthonormal basis. The search for the optimal

linear weighting of the basis functions spawns a problem, coined by Brown as the

Hermit Problem. Brown states that the crosscorrelation dispersion of such symbols

is independent of basis and proportional to the number of symbols, N , in the set via

2N/(N − 1). However, the theory for the design of an optimal mutually dispersive
set of symbols, known as Brown symbols, remains untested.

1.2 Research Goal

The goal of this research is to:

1Chief Scientist, Sensors Directorate of the Air Force Research Laboratory. Fellow of the IEEE.
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1. Explain the formulation of Brown’s theorem [5] whilst introducing a simplified

linear algebraic notation;

2. Describe a systematic process for designing Brown symbols through an analysis

of Brown’s work and by theoretical extension;

3. Provide a theoretical analysis for the digitization of Brown symbols;

4. Evaluate performance of Brown symbols, comprising dispersive gain, through

simulation and numerical approximation; and

5. Compare the performance of various Brown symbols with discrete codes through

simulation.

1.3 Thesis Organization

Chapter II introduces background theory and presents a review of current lit-

erature. Due to the theoretical nature of this thesis, a functional analysis overview is

provided defining nomenclature and metrics. Numerical approximation techniques

and the role of the Discrete Fourier Transform (DFT) are discussed. The reference

radar model and generic form for the radar return signal are defined. Bandpass sys-

tems and analytic notation are discussed, including consideration of optimal filtering

in white noise. Pulsed waveform design is discussed in light of range and Doppler am-

biguities of monostatic pulse Doppler radar, and metrics for signal characterization

are defined, including rms time duration. Finally, ambiguity suppression is reviewed,

consideration is given to PRF techniques, and the NLS concept is explained.

Chapter III explains Brown’s theorem and introduces the symbol design method-

ology. A brief overview of the NLS concept is provided. The scope of the research is

outlined as relating to the approach and associated synthesis constraints. The radar

model is related to NLS by analytically defining, as in [5], the problem of designing a

symbol set suited to NLS, and the Brown NLS system is illustrated. Brown’s theorem

is derived by tying together the optimal envelope, phase-rate functions, Hermit Prob-

1-4



lem solutions, dispersive gain and the theoretically optimal performance. Notation

for biphase codes is defined relating the suitability of these codes to NLS. Finally,

metrics used to characterize and contrast Brown symbols are discussed, providing

an overview of the numerical approximation approach.

In Chapter IV, Brown symbols are devised analytically and then constructed,

providing results from Matlabr simulations. The design requirements are consid-

ered for each Brown symbol components: the Hermit Problem solution, phase-rate

basis function design, phase function calculation, and symbol synthesis. Results are

provided demonstrating the sensitivity of Brown symbols to the choice of phase-rate

basis functions and envelope; physical realizability is also discussed. Finally, the

performance of Brown symbols is contrasted with that of biphase symbols suited to

NLS.

Chapter V provides a summary of the significant research findings. The re-

search goal is restated and the conclusive results summarized. The significance of

this research is discussed and recommendations for future research provided.
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II. Background

2.1 Introduction

This chapter introduces background theory and presents a review of current

literature. Due to the theoretical nature of this thesis Section 2.2 provides a func-

tional analysis overview, defines nomenclature and metrics, and discusses Numerical

approximation techniques and the role of the Discrete Fourier Transform. Section 2.3

defines the reference radar model and generic form for the radar return signal, dis-

cusses bandpass systems and analytic notation and considers optimal filtering in

white noise. Section 2.3.3 discusses pulsed waveform design in light of range and

Doppler ambiguities of monostatic pulse Doppler radar, and defines signal associated

metrics for characterizing radar signals. Finally, Section 2.4 reviews ambiguity sup-

pression, considering Pulse Repetition Frequency (PRF) techniques and Non-linear

Suppression (NLS).

2.2 Signal and Waveform Analysis

2.2.1 Signal Spaces. The construction and characterization of signal spaces

is fundamental to this thesis. A signal is defined as “a quantity which, in some

manner, conveys information about the state of a physical system [11:1].” A signal

space, therefore, is the space in which a given signal can be considered a single

point or entity. The signals considered in this thesis are associated with the radar

system depicted in Figure 2.2, and are denoted as functions of either time, x(t),

or frequency, X(f). With the constraint of physical realizability enforced, these

signals are constrained to exist within the union of the sets of energy-limited and

band-limited signals, that is {x : x ∈ SE(K)
⋃
SB(Φ)} [11:5] where,

Energy-limited signals:
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SE(K) =

{

x :

∫ ∞

−∞
|x(t)|2dt ≤ K <∞

}

.
(2.1)

Band-limited signals:

SB(Φ) =

{

x : X(f) =

∫ ∞

−∞
x(t)e−2πftdt = 0 for all |f | ≥ Φ

2

}

.
(2.2)

The populous of physically realizable signals is considerable and therefore re-

quires a means of characterizing the different elements for comparison. Any func-

tional that maps elements or pairs of elements onto the real line provides a means

of characterization. A measure, defined as distance [11:20], is used to produce a real

positive number. Provided that the functional, d : {x, y} → R, exhibits the normal
properties of distance then it is commonly known as a metric, and when combined

with a set of elements results in a metric space [11].

Of all possible metrics, the analysis undertaken in this thesis requires only an

understanding of the Euclidean metric, norm, and inner product. When considering

vectors in N -dimensional space, or RN , with vectors x = [x0 x1 . . . xN−1]
T and

y = [y0 y1 . . . yN−1]
T , the Euclidean metric d2(x,y) is defined as [11]

d2(x,y) = ‖x - y‖

=

[
N−1∑

k=0

|xk − yk|2
] 1
2

.

(2.3)

When considering the set of real or complex time functions, x(t) and y(t),

defined over the interval {t : a ≤ t < b}, the Euclidean metric becomes [11]

d2(x, y) =

[ ∫ b

a

|x(t)− y(t)|2dt
] 1
2

.
(2.4)
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The norm determines the “size” of a particular element in a set and therefore

is a particularly useful variant of the Euclidean metric. This metric d2(x,0) = ‖x‖
is defined for real or complex vectors as

‖x‖ =

[
N−1∑

k=0

|xk|2
] 1
2

,

(2.5)

and for arbitrary time functions as

‖x‖ =

[ ∫ b

a

|x(t)|2dt
] 1
2

.
(2.6)

Any complex or real time function with finite size belongs to the set of finite

energy signals, SE(K), defined in Eq (2.1). To complete the discussion of signal

spaces, a metric describing the relationship between pairs of vectors is defined in the

form of an inner product. The inner product of a pair of real or complex vectors,

and arbitrary time functions is defined in Eq (2.7) and Eq (2.8), respectively:

(x,y) =
N−1∑

k=0

xk y
∗
k, (2.7)

(x, y) =

∫ b

a

x(t) y∗(t)dt. (2.8)

In some applications it may be beneficial to emphasize a certain time, or frequency,

window in calculating element pair relationships. The weighted inner product is

designed to provide this utility and is described by [11]

(x, y)w =

∫ b

a

w(t)x(t)y∗(t)dt. (2.9)

The norm metric, described earlier, in conjunction with a linear space forms

a normed linear space with ‖x‖ = (x,x) 12 . Also, describing an inner product in this
way leads to the concept of orthogonality. The inner product between two vectors is
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related to the norm squared of the vector x+y as follows:

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2xTy. (2.10)

The vector x+y is a vector completing a triangle having sides x and y. The

Pythagorean Theorem states that if the square of the hypotenuse equals the sum of

the square of the sides, then the sides are orthogonal. From the equality described

above, this implies that if xTy = 0, then x is orthogonal to y.

Not surprisingly, a signal space may be represented by far fewer elements than

are contained in the entire space. The signal space described by all linear combina-

tions of any N elements uk is called a linear subspace, denoted SN(x) and defined

as [11]

SN(x) =

{

x :
N−1∑

k=0

ckuk = x

}

.

(2.11)

Any set of elements from a signal space are said to be linearly independent if

the equality
∑N−1

k=0ckuk = 0 can only be satisfied when ck = 0 for all k, i.e., any uk

cannot be written as a linear combination of the other elements. When this is the

case, {uk} is known as a basis for the N -dimensional subspace SN(x), and SN(x)
is said to be spanned by {uk}. Therefore, any N -linearly independent elements in
SN(x) can form a basis, implying that a basis is by no means unique.

Any vector by this construction, x ∈ SN(x), can be represented by a linear

combination of basis elements. The weighting of the lth basis element is determined

by taking the inner product of x with a vector that is orthogonal to all other basis

elements, and that normalizes the lth basis element as detailed below.

cl = (x,vl) =
N−1∑

k=0

ck(uk,vl) (2.12)
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This process is simplified greatly by choosing an orthonormal basis {qk}. That
is {qk : (qk,ql) = δkl}, where δkl is the Kronecker delta, which equals unity only
when k = l and zero otherwise. In other words, qk has unit size and is orthogonal

to all other elements in the basis. In this way, the weighting of the lth basis element

is determined by simply taking the inner product of x with the lth basis element.

A basis may be orthonormalized using the Gram-Schmidt orthonormalization

procedure. Given a set of N -linearly independent vectors {uk}, the orthonormal set
{qk} is calculated by normalizing the set {wk} obtained by [18:279]:

w0 = u0

w1 = u1 − (u1,q0)q0

w2 = u2 − (u2,q1)q1 − (u2,q0)q0

... (2.13)

wk = uk −
k−1∑

l=0

(uk,ql)ql

where

qk =
wk

‖wk‖
(2.14)

2.2.2 Integral Transforms. Section 2.2.1 discussed signal spaces and met-

rics that are commonly used to characterize signals that exist as elements within

them. This section explores the relationship of these concepts to Integral trans-

forms.

As discussed in section 2.2.1, linear subspaces may be described by a linear

combination of a set of basis elements as illustrated in Eq (2.11). The study of

continuous time functions, in SE(K), can be considered analogous by viewing an N -

dimensional vector as a discrete approximation to a continuous time function whose

approximation error decreases as the sampling interval approaches zero. In this way
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Eq (2.11) can be redefined for continuous signals by the functional

x(t) =

∫

Ξ

c(ξ)ϕ(t, ξ)dξ, (2.15)

where Ξ is the range of ξ. Note that c(ξ) is analogous to ck in Eq (2.11) and that

ϕ(t, ξ), called the basis kernel, is the time continuous basis function parameterized

by ξ. In order to complete this analogy c(ξ) is described as

c(ξ) =

∫

T

x(t)ϑ(ξ, t)dt, (2.16)

where T is the range of t. This equation is the inner product of x(t) with ϑ(ξ, t),

known as the reciprocal basis kernel. For linear subspaces this is the set of basis

elements that enables the recovery of the original basis weighting due to the imposed

orthogonality relationship.

When a complex sinusoid is used as the basis kernel the well known Fourier

transform with the Fourier transform pair is described here:

F{x(t)} : X(f) 4
=

∫ ∞

−∞
x(t)e−2πftdt, (2.17)

F−1{X(f)} : x(t) 4
=

∫ ∞

−∞
X(f)e2πftdf. (2.18)

The frequency content in a continuous time function is divined from this transform.

There are, however, properties of the Fourier transform that should be dis-

cussed in order to relate this concept to an analysis of a radar system. For x(t) a

real-valued function, the complex conjugate of Eq (2.17) shows thatX∗(f) = X(−f).
This is significant as it illustrates a symmetry in the frequency content of real time

functions, and therefore a redundancy. That is, only one-half of the spectrum is

required to define a real-valued signal. Consequently, an analysis of real signals is

simplified by representing them with a one-sided spectral signal, or analytic signal.
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One approach is to define a complex valued signal, ψ(t) ∈ C, that has a one-
sided spectrum equivalent to that of the real-valued signal, Ψ(f) = X(f) for f ≥ 0,
and whose real part is equal to the signal, <{ψ(t)} = x(t). For example:

ψ(t) = x(t) + x̂(t) (2.19)

Ψ(f) = X(f) + X̂(f). (2.20)

Ψ(f) is to be one-sided, and has arbitrarily been assumed non-negative for positive

frequencies. Therefore, the spectrum of the imaginary part of the analytic signal,

X̂(f), must cancel the spectrum of X(f) for negative frequencies and as such is

defined as

X̂(f) =







−jX(f) f ≥ 0
jX(f) f < 0






= −jX(f) sgn(f), (2.21)

where sgn(f) is 1 for f ≥ 0 and −1 for f < 0. Therefore, from Eq (2.20) and

Eq (2.21) the spectral density of the analytic signal becomes one-sided and is of the

form

Ψ(f) =







2X(f) f ≥ 0
0 f < 0

.

(2.22)

The time function, x̂(t), can be determined by taking the inverse Fourier transform of

X̂(f) defined in Eq (2.21). For F−1{− sgn(f)} = 1/πt, by the convolution property
of the Fourier transform, x̂(t) is given by

H{x(t)} : x̂(t) 4
= x(t) ?

1

πt

=
1

π

∫ ∞

−∞

x(s)

t− s ds. (2.23)

Eq (2.23) introduces the Hilbert transform definition, another integral transform as

defined in Eq (2.15). In this case, however, 1/(t− s) is the basis kernel and exhibits
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a singularity at s = t, therefore, define

∫ ∞

−∞
⇒ lim

ε→0+

(∫ t−ε

−∞
+

∫ ∞

t−ε

)

.

2.2.3 Discrete Signal Approximations. Although much of the later dis-

cussions in this thesis are related to an optimization approach regarding continuous

time signals, a physical implementation is likely to require some manner of digi-

tization. Therefore, this section provides the digital signal processing background

necessary to facilitate this transition and to introduce some numerical approximation

fundamentals.

The use of a complex exponential as a basis kernel, as seen in the Fourier

transform introduced in Section 2.2.2, is commonly considered for various forms of

discrete signals. Signals are typically taken to be either continuous or sampled ap-

proximations, therefore an appropriate revision of the Fourier transform is required.

The transform pair for continuous signals in time and frequency is described in

Eq (2.17); signals that are continuous and periodic in time may be represented by a

Fourier series [25], i.e., having discrete or sampled frequency spectra. The duality of

frequency and time signals, as related via the Fourier transform, ensures the spectra

of a time sampled signal is continuous and periodic; being related via the Discrete-

Time Fourier Transform (DTFT) [25]. The majority of digital systems that exploit

the spectral content of a signal, however, sample the signal and then by processing it

appropriately generate a frequency representation that is also discrete. This trans-

form is called the Discrete Fourier Transform (DFT) and is defined in Eq (2.24) and

Eq (2.25). Recall that xk denotes the k
th element of the vector x [25].

Xk =
Ns−1∑

l=0

xl e
−2πkl/Ns (2.24)

xl =
1

Ns

Ns−1∑

k=0

Xk e
2πlk/Ns , (2.25)
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where Ns is the total number of samples. In this case, however, the elements of x

are samples of the continuous time function x(t) taken at a sampling interval t0, as

such xk = t0 x(kt0). The Shannon Sampling Theorem describes the circumstances in

which x completely represents x(t). Sampling a continuous time signal, at t0, results

in a periodic frequency spectrum. The DTFT of the sampled signal is [25]

∞∑

k=−∞
t0 x(kt0)e

−2πfkt0 =
∞∑

k=−∞
X(f + kΦ0). (2.26)

Therefore, by sampling at an interval t0 the spectrum of the signal becomes periodic

at Φ0 = 1/t0. Effective reconstruction of the original signal is attained if the spectral

copies created by sampling are removed. Therefore, two things are required to be

able to reconstruct x(t), firstly the spectral copies must not interfere with each other,

and secondly each of the copies for k 6= 0 must be removed. The first of these is
achieved by ensuring that x(t) is band-limited, that is x(t) ∈ SB(2fmax), and t0

must be chosen such that Φ0 = 1/t0 ≥ 2fmax, i.e., to avoid aliasing the Nyquist rate
must be achieved [25:129]. Secondly, removal of the spectral copies of the sampled

signal is accomplished by passing only those frequencies |f | ≤ fmax ≤ Φ0/2. When

Φ0 = 2fmax an ideal low-pass filter is required, defined in Eq (2.27), with impulse

response h(t) described as

H(f) = rect(f/Φ0) (2.27)

h(t) =

∫ Φ0
2

−Φ0
2

e2πftdf

=
1

t0
sinc(Φ0t), (2.28)

where

rect(ξ) =







1 ξ ≤ 1/2
0 else

, (2.29)
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and

sinc(ξ) =
sin(πξ)

πξ
. (2.30)

Therefore reconstruction of x(t) is possible via the convolution of the sampled

signal with the impulse response function h(t):

x(t) = t0 x(kt0) ? h(t)

=
∞∑

k=−∞
t0x(kt0)h(t− kt0)

=
∞∑

k=−∞
x(kt0) sinc(Φ0[t− kt0]). (2.31)

In reality, h(t) is not a time-limited signal, therefore this type of reconstruction is

not realizable. In practice t0 is chosen so that Φ0 À 2fmax enabling the use of cheap

filters with smooth pass-band characteristics, i.e., H̃(f) ≈ rect(f/2fmax).

The transition to sampled signals from continuous time is therefore permissable

provided the Nyquist sample rate is achieved. In numerically approximating the

Fourier Transform of a sampled signal, however, further constraints are encountered.

Beginning by defining the rectangle-rule approximation to the Fourier transform

consider signals sampled in both time, sample interval t0, and frequency, sample

interval f0.

x(t) =

∫ ∞

−∞
X(f)e2πftdf

≈
Ns−1∑

l=0

X(lf0) e
2πlf0tf0

4
= x̃(t) (2.32)

This approximation leads to the mapping of discrete-frequency signals to discrete-

time signals. Having Ns samples in frequency leads to a transform that calculates

the corresponding Ns-sample time signal, t0 x̃(kt0). From Eq (2.26) Φ0 t0 = 1, and
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since there are Ns samples in frequency at f0, Φ0 = Nsf0 ⇒ t0 f0 = 1/Ns. The

sampled time signal is therefore represented by

t0 x̃(kt0) = t0

Ns−1∑

l=0

X(lf0) e
2πlk/Nsf0

=
1

Ns

Ns−1∑

l=0

X(lf0) e
2πlk/Ns , (2.33)

which is the DFT as defined in Eq (2.24). The choice of Ns and the associated

sample intervals defines the resolution of the transform and extent of aliasing. As

shown earlier, to prevent aliasing 1/t0 ≥ 2fmax. The sample interval and rate, t0
and f0, are related via t0 f0 = 1/Ns. Since t0 must be chosen to prevent aliasing,

the spectral sample interval, f0, can only be shortened by increasing the number of

samples Ns, a technique known as zero padding.

2.3 Pulse Doppler Radar Fundamentals

2.3.1 Radar and Communications Model. This section defines the radar

model that is assumed in this thesis. In defining the model composition an arbitrary

radar signal is considered and the environmental range map that it generates is ana-

lyzed. Radar and communications systems are constrained to transmit real signals.

However, the transmission of complex waveforms may be considered possible through

quadrature receiver design [6]. An arbitrary signal xm(t) = a(t) cos[2πfct + φ(t)],

has envelope a(t), phase modulation φ(t) and is modulated with carrier frequency

fc Hz. When this signal is processed, as illustrated in Figure 2.1, via mixing with an

in-phase signal 2 cos(2πfct) then low-pass filtered the signal a(t) cos[φ(t)] is obtained.

Likewise, when the signal is quadrature mixed with −2 sin(2πfct), then filtered, the
result is a(t) sin[φ(t)].

The output, or low-pass signal corresponding to xm(t), may now be described

in terms of an ordered pair {a(t) cos[φ(t)], a(t) sin[φ(t)]}, and represented in complex
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xm(t) q

-

-

⊗

⊗-

6

?

2 cos(2πfct)

−90◦

-

- Lowpass

filter

Lowpass

filter
-

-

a(t) cos[φ(t)]

a(t) sin[φ(t)]

Figure 2.1. In-phase and Quadrature signal processing. The com-
ponent labelled −90◦ effects a phase shift on the passed
signal.

notation as shown in Eq (2.34) [6]:

x(t) = LPF[xm(t)2 cos(2πfct)] +  LPF[−xm(t)2 sin(2πfct)]

= a(t) cos[φ(t)] +  a(t) sin[φ(t)]

= a(t)e φ(t). (2.34)

Accordingly, this notation is employed to represent the signal’s, xm(t), low-pass in-

phase and quadrature (IQ) components, denoted the complex low-pass video signal

[6:131]. This means of modulation is a form of quadrature multiplexing and is known

to suffer performance degradation from a loss of phase lock. The degradation occurs

in the form of undesirable cross-talk in the output IQ channels. Radar systems that

employ complex low-pass video signals, therefore require coherent receiver and trans-

mitter coupling. Assuming that the reference radar system is capable of coherent

processing and immobile, a single sweep of the range channel is analyzed.

The electromagnetic energy returned to a radar at any given time is deter-

mined by the spectral reflectivity of a spherical range shell about the emitting radar
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antenna [6:136]. The reflectivity of the environment is modelled with a function,

u(s), representing the radial reflectivity density defined by

u(s) = u0(s)e
ϕ(s). (2.35)

Subsequently, the incremental radar return in the range channel due to signal xm(t),

illuminating a shell at range s and thickness ds, is represented by:

u0(s)ds a

(

t− 2s
c

)

cos

[

2πfc

(

t− 2s
c

)

+ φ

(

t− 2s
c

)

+ ϕ(s)

]

, (2.36)

where c is the speed of light, and 2s/c represents the round-trip time delay between

transmission and reception of xm(t) from a reflector at range s. The coherent super-

position of these returns describes the radar return in the range channel, calculated

here as [6]:

rm(t) =

∫ ∞

−∞
u0(s) a

(

t− 2s
c

)

cos

[

2πfc

(

t− 2s
c

)

+ φ

(

t− 2s
c

)

+ ϕ(s)

]

ds. (2.37)

The previous analysis of IQ demodulation of xm(t) lead to the compact complex

low-pass video notation x(t). Therefore, when rm(t) is coherently IQ demodulated

Eq (2.37) becomes

r(t) =

∫ ∞

−∞
u(s) a

(

t− 2s
c

)

e[2πfc
2s
c
+ φ(t− 2s

c )]ds. (2.38)

With a simple change of variables, the delay term is redefined as 2s/c = τ and the

form of a convolution becomes more readily apparent. Finally, Eq (2.38) becomes

r(t) =

∫ ∞

−∞
u
(cτ

2

)

e
4π
λ

cτ
2

︸ ︷︷ ︸

a(t− τ) eφ(t−τ) c
2

︸ ︷︷ ︸

dτ

= um(t) ? x(t). (2.39)

2-13



The radar range channel can therefore be represented by the convolution of the mod-

ulated radial reflectivity density with the complex low-pass video of the transmitted

signal. This model is illustrated in Figure 2.2. To more accurately capture the effects

of environmental interference the range cell is combined with additive noise. The

final component of the model is the receiver filter.

Reflectivity

density u(t)

e
4π
λ

t

Propagation

phase shift

-
⊗

6

x(t)
X(f)

-r(t) ⊕?

n(t)

- h(t)
H(f)

- output

x(t) Complex modulation of the transmitted pulse

h(t) Impulse response of receiver

Figure 2.2. Radar model [6:138] relating spectral reflectivity density
u(s), the complex modulation of the transmitted pulse
x(t) and radar return.

Note that the true reflectivity density is effected by the radar waveform se-

lection, modulation frequency, and the receiver filter design. These aspects of the

model are discussed in the following section.

2.3.2 Bandpass Signals and Systems. This section revisits some of the

characteristics of bandpass signals and systems that are key to the development of

this thesis. Due to platform size limitations and antenna gain characteristics1 radar

signals are typically modulated at high frequencies. Also, due to power constraints

and spectrum utilization these signals are bandlimited. Subsequently, the trans-

mitted radar signal is described as narrowband, meaning the carrier frequency is

much greater than the signal bandwidth, i.e., {x(t) : x(t) ∈ SB(Φ)}, with f0 À Φ.

Primarily, this permits two things that are discussed in this section: firstly, the sim-

plified use of analytic notation, and secondly optimization of receiver filter design to

eliminate noise.

1For example, the gain of a parabolic antenna is inversely proportional to the square of the
wavelength of the transmitted signal, recall G ≈ 4πAe

λ2 [35].
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The analytic representation of a signal ψ(t) = x(t) + x̂(t), from Eq (2.19),

describes a signal having only a positive-sided spectrum and real component x(t),

however the calculation of the Hilbert transform can generate unwieldy functions.

Notably, if x(t) is modulated with a complex carrier, its entire spectrum is shifted

from baseband to fc, so

xa(t) = x(t)e2πfct

= a(t) cos[2πfct+ φ(t)] +  sin[2πfct+ φ(t)]. (2.40)

If the shifted spectrum has only positive frequency content then it approximately

meets the criteria for the analytic form for xm(t). For this to be analytic in the strict

sense, however, the imaginary part of xa(t) must be the Hilbert transform of its

real part. A detailed analysis of the Hilbert transform of xm(t) shows that provided

<{x(t)} = a(t) cos[φ(t)] and ={x(t)} = a(t) sin[φ(t)] are bandlimited below fc, then

xa(t), from Eq (2.40), is the correct analytic signal representation of xm(t) [4].

Figure 2.3 shows the effect of modulating a signal on a complex carrier. Fig-

ure 2.3(b) illustrates the spectrum modulated insufficiently, subsequently containing

negative frequencies and therefore failing as an analytic approximation. In Figure

2.3(c) the modulation frequency is chosen such that it is greater than the half-

bandwidth of the signal. Radar signals are typically considered narrowband, and are

therefore able to utilize Eq (2.40) as a valid analytic representation of xm(t).

The receiver design for narrowband signals is next discussed by considering the

detection of a single target in stationary white Gaussian noise. Although optimality

in this scenario depends on noise parameters and costs associated with detection

threshold selection, the following investigation considers receiver optimization in

terms of maximizing only the Signal-to-Noise Ratio (SNR). Figure 2.2 provides the
model in this case, by considering a signal in additive noise y = r + n. The system

output, therefore, is z = y ? h = r ? h + n ? h. The SNR under consideration is
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Figure 2.3. Spectral modulation of a bandlimited signal. A bandlim-
ited signal, (a), can be represented using analytic signal
notion provided its modulated spectrum, (b), exists in
only one hemisphere, (c).

defined as the ratio of peak signal power to average noise power:

SNR =
|
∫∞
−∞R(f)H(f)e2πfτdf |2
∫∞
−∞ Sn(f)|H(f)|2df

, (2.41)

where Sn(f) is the power spectral density of n(t). By the Schwartz inequality the

numerator can be bounded as

∣
∣
∣
∣

∫ ∞

−∞
R(f)H(f)e2πfτdf

∣
∣
∣
∣

2

≤
∫ ∞

−∞
|R(f)|2df

∫ ∞

−∞
|H(f)e2πfτ |2df

=

∫ ∞

−∞
|R(f)|2df

∫ ∞

−∞
|H(f)|2df, (2.42)
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assuming n(t) is white Gaussian noise with power spectral density Sn(f) = η/2.

Combining this with Eq (2.41) and Eq (2.42) the SNR becomes

SNR ≤
2
∫∞
−∞ |R(f)|2df

∫∞
−∞ |H(f)|2df

η
∫∞
−∞ |H(f)|2df

=
2

η

∫ ∞

−∞
|R(f)|2df

=
2E
η
. (2.43)

Equality holds in Eq (2.43), if H(f) = kR∗(f)e−2πfτ . Therefore the optimal filter

in white Gaussian noise is the matched filter, so named because the spectrum of

the receiver is matched to that of the noise free signal. Consequently, the impulse

response function of H(f) is h(t) = kr∗(τ − t), a time delayed and flipped conjugate
of the noise free signal.

A single point-target at range R and with radial velocity vr has a two-fold

effect on the returned constant carrier, fc, pulse. The range of the target contributes

to a round trip delay of τ = 2R/c, and the radial velocity results in a Doppler

shift, ν = 2vrfc/c. The output of the matched filter can then be approximated for a

single-target response as a function of Doppler and delay, as detailed in Eq (2.44):

χ(τ, ν) =

∫ ∞

−∞
x(t)x∗(t− τ)e2πνtdt

(2.44)

=

∫ ∞

−∞
X∗(f)X(f − ν)e2πfτdf.

This function was formulated by Ville [40] and introduced to radar by Woodward [41]

and is commonly known as the Ambiguity Function [31]. Though modelling a moving

target as a spectral shift is over simplified, this function serves as a good estimate

in describing the ambiguities that exist for a given transmitted waveform. When

normalized, this surface provides a quasi-joint density for describing the probability

of a target’s range and velocity. Appendix A provides ambiguity surfaces for a
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single pulse at Appendix A.1.1, a pulse train at Appendix A.1.2 and a LFM pulse

at Appendix A.1.3.

2.3.3 Radar Waveform Design. The previous sections describes the signal

characteristics and radar model, as shown in Figure 2.2. This naturally leads to

the topic of signal design. The constraints limiting the antenna size also restrict

the number of antennae. Typically, a single antenna is used in the majority of

airborne platforms, which logically constrains the analysis to monostatic systems,

i.e., collocated transmitter and receiver. Such systems must use pulsed waveforms to

provide a listening interval to detect radar returns. This section explores desirable

properties of radar waveforms and the design trade-offs associated with inherent

ambiguities and resolution.

2.3.3.1 Pulse Doppler Radar Ambiguities. A radar is primarily em-

ployed for determining information about target presence, and associated parameters

such as size, location and motion. This information is delivered in a hierarchy from

target detection to parameter estimation with the governing metric of precision a

function of resolution [31]. To improve a radar’s performance in target detection,

the SNR is maximized using a matched filter as described in Section 2.3.2. For

parameter estimation, a target’s range and velocity is considered via analyzing the

matched filter output.

By dividing the radar range channel into bins, an estimate of range is given by

detecting the presence of a pulse return in a given bin. If a pulse x(t) =rect(t/τ), as

shown in Figure 2.4(a), were to be transmitted then the matched filter output would

be a triangular pulse with width 2τ as shown in Figure 2.4(b). Using the half-power

point as a measure of pulse width, the range bins become τ wide and provide a range

resolution of cτ . Target velocity, on the other hand, is determined as the range rate

and can be calculated from the Doppler shift of the return signal [35]. The original

spectrum of the pulse is a sinc(·) waveform, but the spectrum of the matched filter
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Figure 2.4. Matched filter output of (a) in time, (b), and frequency,
(c). The matched filtering of a rect-pulse results in a de-
crease in time resolution but an increase in the frequency
resolution.

output is a sinc2(·) waveform, as shown in Figure 2.4(c). Consequently, the matched
filter output is narrower in frequency than the original signal providing better fre-

quency resolution, illustrating a clear relationship between detection, estimation and

resolution.

However, pulses are transmitted periodically, therefore the transmitted signal

is described in Eq (2.45), where T is the Pulse Repetition Interval (PRI) and τ is

the pulse width:

x(t) =
∞∑

n=−∞
rect

(
t− nT
τ

)

.
(2.45)

This leads to two significant observations. Firstly, if the radar power is such that the

maximum detection range is greater than cT/2, then the range returns are ambigu-

ous. Figure 2.5 illustrates this showing that if two targets, at ranges R1 and R2, are

being illuminated by a pulsed radar then the returns from targets in the ambiguous

range region, R ≥ Ru = cT/2, fold-over and generate misleading range indications.
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Secondly, the periodicity of the signal results in a sampling of the signal spectra2.

The spectrum of a T -periodic pulse train is simply that of a single pulse sampled

at an interval 1/T . Therefore, if a pulse train is processed over what is termed a

Coherent Processing Interval (CPI), then a comb-like spectra is generated resulting

in better Doppler resolution. However, because the spectra is evenly spaced at 1/T ,

ambiguities in the measurement of spectral shifts, or Doppler, are introduced. The

unambiguous radial velocity of a target is |v| ≤ |vu| = λ/4T . Therefore, unambigu-

ous radar operation requires R|v| < cλ/8.

²±
Antenna

Ru 2Ru 3Ru

Range
tTarget 1

at R1 tTarget 2

at R2

Transmitted
signal

Received
signal

T 2T 3T

Time

R1
P1

R1
P2

R1
P3

R2
P1

R2
P2

Figure 2.5. Ambiguous pulsed radar returns [1:1-3]. The target at R2
is located in the ambiguous range interval, subsequently
the first pulse, P1, is processed in the second CPI as a
return from pulse P2.

Obviously, a better estimate of target parameters is attained with the removal

of all types of ambiguities, and increased resolution in both time and frequency.

Notably, by increasing the PRI, the unambiguous range is increased. However, the

increase in PRI conversely decreases unambiguous velocity. Clearly, simultaneous

removal of ambiguities in both range and Doppler cannot be achieved by solely

altering the PRI. A technique, know as Non-linear Ambiguity Suppression (NLS),

solves this problem to a considerable extent and will be discussed in Section 2.4.

2Recall from a Fourier series analysis that if a signal is T periodic then it can be represented
by xT (t) =

∑∞

k=−∞Xne2πnf0t, where f0 = 1/T and Xn = f0X(nf0). Therefore, the spectrum of

xT (t) becomes F{xT (t)} =
∑∞

k=−∞ f0X(nf0)δ(f − nf0) [39].
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2.3.3.2 Pulse Compression. Previously, the resolution of the radar

pulse was arbitrarily defined as the half-power region of a signal; a more rigorous

analysis of resolution is now presented. A metric is required that operates on a signal

and provides a real number describing the resolution of that signal, σ : {x} → R.
Three such metrics are: total duration (σT ), equivalent rectangle (σE), and root

mean squared (rms) signal duration (σ). Total duration is defined in time and

frequency respectively as:

σT =

[ ∫∞
−∞ |x(t)|2dt
|
∫∞
−∞ x(t)dt|2

] 1
2

(2.46)

ΣT =

[ ∫∞
−∞ |X(f)|2df
|
∫∞
−∞X(f)df |2

] 1
2

.

The equivalent rectangle metric aims to describe the width required to

define a rect(·) pulse of equivalent height to the signal at its center such that the
rect(·) contains the same amount of energy as the signal. This is defined in time and
frequency respectively as:

σE =

[∫∞
−∞ |x(t)|2dt
|x(tc)|2

] 1
2

(2.47)

ΣE =

[∫∞
−∞ |X(f)|2df
|X(fc)|2

] 1
2

.

Finally the rms signal duration is defined. The moments of statistical densities

provide information about spread and location and are therefore used to characterize

random variables. Analogously, these moments are often used to characterize signal

precision and resolution performance [31]. The first moments are used to describe a
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signal’s center of mass and are defined in time and frequency respectively as:

tc =

∫∞
−∞ t|x(t)|2dt
∫∞
−∞ |x(t)|2dt

(2.48)

fc =

∫∞
−∞ f |X(f)|2df
∫∞
−∞ |X(f)|2df

.

The centered second moment, denoted here as rms signal duration, is a measure of

spread and is defined in time and frequency respectively in Eq (2.49). These metrics

are used most predominantly throughout this thesis.

σ =

[∫∞
−∞(t− tc)2|x(t)|2dt
∫∞
−∞ |x(t)|2dt

] 1
2

(2.49)

Σ =

[∫∞
−∞(f − fc)2|X(f)|2df
∫∞
−∞ |X(f)|2df

] 1
2

By invoking Schwartz inequality on the product of the time and frequency rms

signal durations of Eq (2.49), a time-bandwidth product is derived and bounded by

Gabor [12] so that

σΣ ≥ 1, (2.50)

where equality is achieved when x(t) = −e−µt2/2 [31:55]. As an initial observation,
this indicates that by increasing signal bandwidth the rms time duration reduces and

therefore range resolution improves proportionately, with a LFM pulse providing the

best performance.

This indicates that the range resolution of a signal is, at the very least, in-

versely proportional to its bandwidth, providing an upper bound. By exploiting this

property and making the time-bandwidth product as large as the system can sustain,

the greatest resolution for a given bandwidth is achieved. For uniform pulsed signals,

a popular means of doing this is through LFM. Such pulses are generated by either
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directly modulating a constant frequency signal with a variable-frequency oscillator,

or passing a constant frequency signal through a dispersive filter [17]. These signals

are known as either LFM or quadratic phase signals having the form described in

Eq (2.51):

xLFM(t) = rect

(
t

τ

)

eπµt
2

, where µ = Φ/τ. (2.51)

The matched filter output of this signal is

zLFM(t) = rect

(
t

2τ

)
sin π[µtτ − µt2]

πµt
, (2.52)

characterized by quadratic phase and with its maximum at t = 0.

An understanding of how bandwidth affects the resolution of this function is

obtained by considering the null-null width, σ̃, of the mainlobe:

σ̃ =

√

µτ 2 + 4−
√

µτ 2 − 4
2
√
µ

. (2.53)

When the pulse width τ is fixed, the bandwidth Φ increases linearly with µ. Therefore

as µ is increased, and thus the bandwidth of the signal increased, the numerator

approaches zero, i.e.,
√

µτ 2 + 4 ≈
√

µτ 2 − 4, and the denominator increases, causing
σ̃ to become very small. LFM is a means of improving the resolution of a matched

filter output by increasing the spectral content and bandwidth of a fixed duration

single pulse.

In general, a waveform that has a time-bandwidth product much greater than

unity is said to exhibit properties of pulse compression [31]. There are many wave-

forms that have been designed, aside from LFM, exhibiting these properties such as

Barker codes [35], polyphase codes [21] [22], Costas codes [8], and maximal length

pseudo-random noise sequences [23], such as Gold codes [7].
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2.4 Ambiguity Suppression

The ambiguities detailed in Section 2.3.3.1 are inherent for any pulsed radar

system. This section discusses approaches to mitigate these ambiguities, discussing

a multiple PRF approach and a pulse discrimination process known as Non-linear

Ambiguity Suppression (NLS) [28].

2.4.1 Pulse Repetition Frequency Approaches. Ambiguities can be miti-

gated to some extent through the choice of the PRI, however, as this section shows,

these tend to be application specific leading to a search for other alternatives. Sec-

tion 2.3.3.1 discusses the origins of range and velocity ambiguities illustrating that

the selection of the PRI T jointly effects velocity ambiguity and range ambiguity,

motivating an analysis of PRI selection.

Frequency

Spectra

· · · - 2
T
- 1
T
0 1

T
2
T
· · ·

(a)

Transmitted
signal

Frequency

T 2T Time

(b)

Figure 2.6. Pulse train spectra and PRI. An infinite length pulse
train with PRI T , (b), will have a comb-like spectra with
harmonics separated by 1/T , (a).

Typically, pulse doppler radars operate at one of three PRI rates: High,

Medium, or Low. The PRI rate is also known as the Pulse Repetition Frequency
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(PRF) and is defined as fp = 1/T . High PRF radars have greater spectral sepa-

ration and therefore are better suited for avoiding velocity ambiguities, but due to

the associated small PRI suffer greatly from range ambiguities. Low PRF radars, on

the other hand, have an unambiguous range near the maximum detection range of

the radar system, but have a densely packed spectra exacerbating velocity ambigui-

ties. Figure 2.6(a) illustrates the spectrum resulting from an infinite train of pulses,

shown in Figure 2.6(b). The aforementioned accordion effect that PRI changes have

on the spectral separation is clearly represented in this figure.

By utilizing multiple PRF’s, these ambiguities can be significantly reduced.

This technique may be conceptualized as the transmission of two or more pulsed

waveforms from the same antenna, with each waveform having a unique PRF. The

PRF’s are typically related via

PRFn =
an
Tu
, (2.54)

where PRFn is the n
th PRF, an is an integer, and Tu is a common sub-multiple of

a prescribed PRI [1:1-18] [24:273]. A radar return from a target has a true range

Rt described by Rt = γRu + Ri, where Ri is the indicated range and γRu is an

integer multiple of the unambiguous range. The unknowns are γ and Rt; therefore,

by changing the PRF (and thereby Ru and Ri,) a second simultaneous equation

is generated and a solution for the true range is found. Alternatively, the true

range can be determined by identifying where the radar returns for the different

PRFs coincide. However, the multiple PRF returns from this technique cannot be

processed coherently, resulting in a less energy efficient implementation. Also, an

environment that has multiple targets is likely to generate further ambiguous returns

from ghosting [1:1-18].

2.4.2 Non-linear Suppression System Model. Non-linear Ambiguity Sup-

pression (NLS) combines pulse compression and pulse discrimination techniques to
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deliver a means of improving radar ambiguities in pulsed radar. The concept was

introduced by Palermo in 1962 [28] utilizing a conjugate LFM coded pulse pair.

The fundamental building block of the NLS technique is the suppression kernel Λk

shown in Figure 2.7. This unit operates on the radar return to suppress a particular

pulse response by first pre-filtering the entire signal to discriminate that pulse in

some way from all other pulses. Once the presence of that pulse is emphasized in

the radar return, the pulse is suppressed by a suppression operator, which ideally

has no effect on all other pulses. After this suppression operation, the radar return

is passed through a post-filtering process to remove the effect of pre-filtering. The

pre-filter hk(t) and post-filter gk(t) condition the waveform to maximize the effect

of the suppression operation on the kth pulse without impacting the other pulses.

Therefore, the suppression operation determines the filter and pulse design criteria.

input - hk(t)
Hk(f)

Pre-
Filter

- Γkα

Suppression

Operator

- gk(t)
Gk(f)

Post
Filter

- output

Λk

Figure 2.7. General NLS kernel [1:2-11].

Two examples of thresholding suppression operators are illustrated in Fig-

ure 2.8(a) and (b). Although various suppression operators may be devised, this

thesis focuses only on the use of thresholding suppression operators as these are the

most common. The implications that thresholding has on formulation of a pulse de-

sign criteria is two-fold. To remove energy from a signal, the focused pulse response

must have an amplitude greater than the threshold, consequently the pre-filtering

process should project as much of the undesirable pulse energy above the threshold

as possible whilst spreading all other pulses below it. When only thresholding sup-

pression operators are considered, the suppression is dependent on the ability of the

2-26



-1 -0. 5 0 0.5 1
-1

-0.5

0

0.5

1

V
o

u
t

V
in

 -1  -0.5 0 0.5 1
 -1

 -0.5

0

0.5

1

V
o

u
t

V
in

Figure 2.8. Threshold suppression operators (Γα). Hole-punch (a),
and saturation limiter (b), with α = 0.5Vin [1:1-23].

pre-filter to compress the intended pulse whilst spreading, or dispersing, all other

pulses.

A common means of pulse compression exists through the matched filtering of

certain waveforms. To utilize the NLS technique, a series of pulses must be designed

in such a way that as a result of matched filtering for the kth pulse (causing it to

become compressed) each of the remaining pulses are dispersed. This concept is

known as mutual dispersion and is utilized in spread-spectrum applications such as

direct sequence Code Division Multiple Access (CDMA) [30]. When thresholding

NLS is employed, the components of the suppression kernel, in Figure 2.7, become:

matched filter, threshold operator, and conjugate reflection filter.

A NLS system with N pulses utilizes as many channels to disinter each pulse

from the radar return. The nth channel containsN−1 suppression kernels, Λk ∀k 6= n,

aimed at suppressing all but the nth pulse from the pulse train as detailed in Fig-

ure 2.9. The final stage of each channel is a matched filter operation for the sought-

after pulse. In other words, the nth channel extracts the nth pulse from a radar

return whilst suppressing all others. As a result, the pulse repetition interval effec-

tively increases N -fold. This extends the effective unambiguous range to NcT/2 and

considerably alleviates the range ambiguities discussed in Section 2.3.3.
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Figure 2.9. NLS system illustrating N individual channels each com-
prising N−1 suppression operations [1:2-15].

To illustrate this approach consider a pulse family comprised of two conjugate

LFM waveforms f1(t) =e
2πµt2 , and f2(t) =e

−2πµt2 , for |t| < 1 and µ = 5. The

radar range channel is arbitrarily constructed over a CPI to contain these pulses,

r(t) = f1(t− t1) + f2(t− t2) + n(t), delayed in time and affected by Gaussian white
noise, as detailed in Figure 2.10(a). Notice that the pulse returns overlap; this

phenomena is known as self-clutter due to the interference each pulse contributes

to the other. In attempting to disinter f2(t) from this signal it is passed through

a matched filter, F ∗
2 (f), resulting in the plot in Figure 2.10(b). On the other hand

suppressing f1(t) with a thresholding non-linearity removes a good deal of its energy,

and therefore interference contribution, as shown in 2.10(c). Because of the dispersive

effect that matched filtering for f2(t) has on f1(t), both approaches provide good

results, however the contribution to self-clutter is significantly reduced due to the

suppression operation as shown in Figures 2.10(b) and (c).

2.5 Summary

This chapter introduced the background theory used throughout the remain-

der of this thesis, and in so doing presents a cross-section of the literature pertinent

to this field. Section 2.2.1 introduced the concept of realizability and some signal

theory basics and metrics. This analysis naturally lead to a discussion on integral

transforms, the most prevalent being the Fourier and Hilbert transform, and to sub-
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(left), (b). Pulse 1 is suppressed prior to matched filter-
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sequent consideration given to numerical approximations. Section 2.3 introduced

radar signals as a subset of realizable signals, narrowband in nature, permitting

compact analytic notation. This section also provided the model for the radar sys-

tem. Section 2.3 concluded with a discussion on radar waveform design describing

ambiguities inherent to pulsed radar systems and defining metrics for measuring res-

olution. The core topic of this chapter was introduced in Section 2.4.2 where the

NLS approach was explained. The NLS model was provided and NLS’s superior

ambiguity suppression performance was demonstrated.
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III. NLS Symbol Design and Modelling

3.1 Introduction

The effectiveness of a thresholding NLS system hinges on the selection of sym-

bols that exhibit good compression in autocorrelation and dispersion in crosscorrela-

tion. Section 2.4.2 provided an example using conjugate linear FM symbols, unfor-

tunately the use of these symbols is limited to only one pair, therefore to expand the

symbol set a more detailed analysis of NLS is required. This chapter describes an

approach conceived by Brown [5] that is optimal in rms time duration for generating

a family of mutually dispersive symbols of any size. Section 3.2 provides a brief

overview of the NLS concept. Section 3.3 discusses the scope of the research, relat-

ing the approach and associated synthesis constraints. Section 3.4 relates the radar

model to NLS by defining analytically, as in [5], the problem of designing a symbol

set suited to NLS, and illustrates the Brown NLS system. Section 3.5 derives Brown’s

theorem with the optimal envelope and phase-rate functions, introduces the Hermit

Problem and dispersive gain, and provides an expression for theoretically optimal

performance. Section 3.6 defines notation for biphase codes relating the suitability

of these codes to NLS. Finally, Section 3.7 discusses the metrics used to characterize

and contrast Brown symbols, providing an overview of the approach to numerical

approximation.

3.2 Non-linear Ambiguity Suppression Overview

Radar systems are employed to detect targets and to facilitate parameter esti-

mation. Within this construct, the pulse-like nature of pulse Doppler radar systems

leads to radar returns containing range and velocity ambiguities degrading the over-

all system performance. The ambiguities may be eliminated should the attitude of
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the target in question be such that the range velocity product is [35]

R|v| < 1
8
cλ, (3.1)

where c is the speed of light and λ is the wavelength of the transmitted radar sig-

nal. Although a profile of the target’s range and velocity characteristics may be

constructed, typically they cannot be controlled, requiring an alternative means of

eliminating ambiguities.

Non-linear Ambiguity Suppression (NLS) is a means of transmitting a pulse-

train comprised of N pulses, each of which exhibit specific characteristics derived

from the choice of suppression operator. When considering thresholding suppression

operators the pre-filtering the pulse train must provide a two-fold affect. The filter

must compress the intended pulse and spread, or disperse, all remaining pulses. This

is the key design criteria for NLS symbol design.

By concatenating a chain of suppression kernels, each suppressing a different

pulse as detailed in Figure 2.9, a series of non-linearities are effected on the radar

return reducing the self-clutter. Figure 3.1 shows a time slice series for a LFM signal

passed through a single suppression kernel. Figure 3.1(a) is the original linear FM

pulse. This signal is passed through a matched filter; the response is shown as a

dashed line in Figure 3.1(b), while the solid line indicates the resultant signal after

hole-punch suppression. Finally, the suppressed signal is passed through a conjugate

reflection filter where the output, displayed in Figure 3.1(c), exhibits a significant

reduction in signal energy.

The suppression kernel, Λk, considered in this thesis takes the form illustrated

in Figure 3.2 [1:2-11]. The pre-filtering is performed by a matched filter, compressing

the kth pulse and spreading all others. The suppression operation is accomplished

with a thresholding non-linearity, and finally the post-filtering is performed by a

conjugate reflection filter. Using this kernel constrains the search for optimality.
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Brown has devised a theorem that poses an optimal solution to pulse design

for this configuration of NLS system [5]. Brown [5] describes, in terms of rms dura-

tion, the optimal correlation waveform introducing an elegant notation simplification.

Brown considers the design of phase functions such that a set of codes may be devised

with optimal mutually dispersive properties. This step leads to a problem, coined

by Brown as the Hermit Problem, in which an N -dimensional solution is determined

by choosing N vectors in N -space that are each maximally equidistant from each

other.

3.3 Scope of Research

As stated in Section 1.2, the goals of this thesis are to:

1. Explain the formulation of Brown’s theorem [5] whilst introducing a simplified

linear algebraic notation;

2. Describe a systematic process for designing Brown symbols through an analysis

of Brown’s work and by theoretical extension;

3. Provide a theoretical analysis for the digitization of Brown symbols;

4. Evaluate performance of Brown symbols, comprising dispersive gain, through

simulation and numerical approximation; and

5. Compare the performance of various Brown symbols with discrete codes through

simulation.

The simulations conducted in generating and characterizing Brown symbols utilized

Matlabr. This approach constrains the simulation to purely digital analysis, provid-

ing the theoretical background required to analyze Brown symbols for digitization

and obtaining results using numerical approximation techniques. Analytic deriva-

tions of closed-form spectral definitions of Brown symbols are determined and syn-

thesized as frequency sampled signals, the respective sampled time functions are de-
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termined with the rectangle-rule approximation technique. Finally, the time-sampled

correlation functions are calculated and analyzed.

3.4 Brown Theorem Motivation

Pulsed radar systems are challenged to divine the nature of their environment

by processing radar returns amidst self-clutter and ambiguities. Section 2.3.3.1 high-

lighted the causes of ambiguities, concluding that it is not possible to entirely remove

ambiguities using only the PRF as a control variable. Alternatively, NLS provides a

powerful technique to overcome these challenges, however it poses different problems

such as symbol selection, and difficulties in optimal symbol design.

The discovery of symbol families that are well-suited to NLS is not by any

means a recent achievement. CDMA schemes are an example of the use of discrete

codes that exhibit the very properties desired in NLS [2]. Instead, the search for

optimal symbols has historically been relegated to the search for optimal discrete

codes; an avenue of research that has encompassed a vast array of techniques from

heuristic approaches to neural networks but that has not fully unveiled a solution

to optimality in NLS. By considering the rms time duration of the correlation

functions, Brown proposes an elegant theorem for the design of optimally mutual

dispersive codes leading to an expression for the optimal performance of such codes.

This section presents Brown’s theorem by first constructing the environmental

model and presenting relevant assumptions as necessary. The problem definition is

then stated and the theorem is explained. Finally, the resultant theoretical optimal

performance in rms time duration is presented.

3.4.1 Environment Construction. Pulse Doppler radars are employed on

a vast array of sensor platforms. Of course, platform specifics determine the partic-

ular performance profile and associated catalysts to system degradation. However,

the problem of self-clutter and range and velocity ambiguities appears somewhat
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ubiquitous. This derivation utilizes analytic notation and the radar model described

in Section 2.3 and illustrated in Figure 2.2. Accordingly, the pulsed radar signal is

defined as

x(t) =
N−1∑

k=0

fk(t− kT ), (3.2)

where

fk(t) = ak(t)e
φk(t)rect

(
t

τp

)

. (3.3)

In other words, the radar waveform is comprised of N distinct pulses separated by

a uniform interval T and of uniform width τp. Subsequently, when the k
th pulse is

modulated onto a carrier it can be denoted by the real part of the analytic signal

fmk
(t) = ak(t) cos(2πfct+ φk(t)). (3.4)

Using the radar model, Figure 2.2, the radar range channel r(t) is constructed.

Assuming the transmitted signal is received and processed with coherent IQ channels,

the analytic notation may be retained. Recall that, in the IQ representation, the real

part describes the output from the in-phase channel, whilst the quadrature channel

output generates the imaginary part. Substituting fk(t) for x(t) into Eq (2.39)

describes the radar return of the kth pulse,

r(t) = um(t) ? fk(t)

=

∫ ∞

−∞

c

2
u
(cτ

2

)

e2πfcτ ak(t− τ) eφk(t−τ)dτ, (3.5)

taking the Fourier transform of both sides illustrates that the frequency response of

the radar range channel is related to the transmitted pulse by

R(f) = Fk(f)Um(f), (3.6)
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where

Um(f) = F
{
c

2
u

(
ct

2

)

e2πfct
}

= U

(
2f

c

)

? δ(f − fc)

= U

(
2[f − fc]

c

)

,
(3.7)

which is the spectral reflectivity density of the environment, colored in response to

an incident wave at frequency fc. Therefore, the frequency response of the radar

range channel is

R(f) = Fk(f)U

(
2[f − fc]

c

)

.
(3.8)

The spectrum of the transmitted pulse has a filtering effect on the spectral reflectivity

density. High compression ratios from the matched output predicates a requirement

for signals having large time-bandwidth products. Eq (3.8) illustrates that large

bandwidth signals also pass more energy from the environment. The search for

optimal signals in the Fourier domain then provides a more immediate relationship

between the signal, the radar return, and the environment.

3.4.2 Problem Definition. Due to the temporal and spatial dynamics of the

spectral reflectivity density function and sensor motion, each pulse return contains

different information about the environment. The goal is to extract this informa-

tion from a radar range channel with the highest fidelity, or minimal degradation.

Section 2.3.3.1 covers the nature of range and velocity ambiguities and Section 2.4

discusses the benefits provided by NLS. By removing self-clutter and ambiguities,

radar system performance is improved and although there are many approaches to

ambiguity reduction the focus of this thesis centers on the use of a NLS technique.
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Brown looks in the Fourier domain to divine an optimal solution which leads

to an improved implementation of the NLS system [5:18]. Firstly, complex notation

is used to describe the spectrum of each of the N pulses in the symbol set. Eq (3.9)

defines the Fourier transform pair of the kth pulse

Fk(ω) = A
1
2 (ω)eΦk(ω) (3.9)

where ω = 2πf and the envelope A(ω) and phase Φk(ω) functions of Fk(ω) are

both real and bandlimited, i.e., A(ω), Φk(ω) ∈ <, with A(ω) = 0 for all |ω| > Ω0/2.

However, whilst the signal Fk(ω)
F⇐⇒ fk(t), this is not true of the individual envelope

and phase function components, i.e., A(ω)
F⇐⇒/ ak(t) and Φk(ω)

F⇐⇒/ φk(t). The

components of the NLS kernel, in Figure 3.2, are now redefined using this notation.

The matched filtering operation for the kth pulse is Hk(ω) = F ∗
k (ω) = A

1
2 (ω)e−Φk(ω),

whilst the conjugate reflection filter is Gk(ω) = [F
∗
k (ω)]

−1 = A− 1
2 (ω)eΦk(ω). The

conjugate reflection filter from Λk and its neighboring matched filter, from Λk−1,

have reciprocal envelopes that are independent of k. These filters may be combined

to form the equivalent filter Gk(ω)Hk−1(ω) = e
[Φk(ω)−Φk−1(ω)]. This filter effectively

refocuses the radar return, emphasizing the next pulse, and as such is denoted the

refocusing filter. The resultant suppression kernel, denoted the Brown kernel Υk, is

defined as illustrated in Figure 3.3.

input - Γkα

Thresholding

Operator

- e[Φk−Φk−1]

Refocusing

Filter

- output

Υk

Figure 3.3. Brown threshold NLS kernel.

Note, also, that the first stage of matched filters share the envelope A
1
2 (ω).

Subsequently, the implementation of the NLS system may be further simplified by
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moving the envelope component A
1
2 (ω) to the front of the suppression bank. When

a NLS system is constructed with the aforementioned simplifications it may be re-

described as shown in Figure 3.4. This implementation is similar in structure to

the implementation shown in Figure 2.9 but is more compact in terms of notation

and avoids singularities in the refocusing filter design. Therefore, this is the refer-

r(t) A
1
2 (ω)

channel 0

- e−ΦN−1 - ΥN−1 · · ·- Υ2
- Υ1

- y0(t)

channel 1

- e−Φ0 - Υ0 · · ·- Υ3
- Υ2

- y1(t)

...
...

...
...

channel
N−1

- e−ΦN−2 - ΥN−2 · · ·- Υ1
- Υ0

- yN−1(t)

Figure 3.4. Brown NLS system [5].

ence model used in this thesis for implementation of Brown symbols. With the NLS

system defined, the problem becomes that of designing envelope A(ω) and N phase

functions Φk(ω) yielding an optimal set of symbols. The following section describes

Brown’s approach to the problem.

3.5 Brown’s Optimally Mutual Dispersive Symbols

3.5.1 Optimality Design Criteria. To provide a rigid mathematical frame-

work, compression and dispersion measurements are calculated using the appropriate

metrics described in Section 2.3.3.2. Recall from Eq (2.49) that the rms time dura-

tion of a signal centered at t = 0 and having unit energy is given by

σ2 =

∫ ∞

−∞
t2|x(t)|2dt. (3.10)
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Because of Fourier transform duality, this equation may be rewritten in terms of a

Fourier pair for time function f(t). In this case, using the Fourier properties

F{tx(t)} = 
d

dω
X(ω) = Ẋ(ω) (3.11)

∫ ∞

−∞
|x(t)|2dt =

1

2π

∫ ∞

−∞
|X(ω)|2dω (3.12)

leads to the equivalent expression for the rms time duration of a signal in terms of

frequency,

σ2 =
1

2π

∫ ∞

−∞

∣
∣
∣Ẋ(ω)

∣
∣
∣

2

dω. (3.13)

By defining the spectral waveform as an arbitrary complex analytic signal, i.e.,

X(ω) = β(ω)eµ(ω), a useful formulation of the rms time duration is developed:

σ2 =
1

2π

∫ ∞

−∞

∣
∣
∣
∣

d

dω
β(ω)eµ(ω)

∣
∣
∣
∣

2

dω

=
1

2π

∫ ∞

−∞

∣
∣
∣β̇(ω)eµ(ω) − β(ω)µ̇(ω)eµ(ω)

∣
∣
∣

2

dω

=
1

2π

∫ ∞

−∞
β̇2(ω)dω +

1

2π

∫ ∞

−∞
µ̇2(ω)β2(ω)dω. (3.14)

This is a useful way of describing the rms time duration because it partially isolates

the phase function, actually the phase-rate function, from the envelope. The NLS

kernel performs thresholding on the correlation functions. Consequently, should the

lth pulse of the symbol set defined in Eq (3.9) arrive at Υk, then the correlation

function suppressed by the thresholding operator is defined as

Fl(ω)Hk(ω) = Fl(ω)F
∗
k (ω)

4
= Plk(ω)

= A(ω)e[Φl(ω)−Φk(ω)] (3.15)

where Plk(ω)
F⇐⇒ ρlk(t) denotes the crosscorrelation function and Pkk(ω)

F⇐⇒ ρkk(t)

denotes the autocorrelation function. Since Υk aims to suppress only the k
th pulse

response the autocorrelation function, ρkk(t), should be maximally compressed (fo-
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cused) whilst all crosscorrelation functions, ρlk(t), should be maximally dispersed.

The rms time duration is small for compressed signals and large for dispersed sig-

nals thereby providing a useful metric for comparing correlation functions. From

Eq (3.14), the correlation functions that arrive at Υk have the following rms time

duration

σ2lk =
1

2π

∫ ∞

−∞
Ȧ2(ω)dω +

1

2π

∫ ∞

−∞
[Φ̇l(ω)− Φ̇k(ω)]2A2(ω)dω. (3.16)

Where Φ̇k(ω) and Ȧ(ω) denotes the first derivative with respect to ω. The elegance

of Brown’s solution becomes no more apparent than is shown here. For l = k the rms

time duration of the autocorrelation function has no phase component, leaving only

the first term of Eq 3.16. The rms time duration of the autocorrelation function is

therefore independent of phase, decoupling the design of envelope A(ω), to optimize

autocorrelation compression, from the phase functions Φk(ω), to optimize crosscor-

relation dispersion. In other words, rms time duration as a metric of optimization

provides a means of designing mutually dispersive symbols.

3.5.1.1 Optimal Envelope Design. Brown pursues the choice of an

envelope that optimizes the compression of a matched filtered bandlimited signal

[5:7]. The design of the optimal envelope, A(ω), such that σ2kk is minimized requires

a solution to the following constrained optimization problem:

Minimize
1

2π

∫ ∞

−∞
Ȧ2(ω)dω,

Such that
1

2π

∫ ∞

−∞
A2(ω)dω = 1.

The function achieving this is the cosine taper described in Eq (3.17) [5:8].

A(ω) =







√
4π
Ω0
cos
(
πω
Ω0

)

, |ω| < Ω0
2

0 , else
(3.17)
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The cosine taper, therefore, provides the optimal performance in rms time duration

of the autocorrelation function as illustrated:

σ2kk =
1

2π

∫ ∞

−∞
Ȧ2(ω)dω

=
2π2

Ω3
0

∫ Ω0
2

−Ω0
2

sin2
(
πω

Ω0

)

dω

=
π2

Ω2
0

. (3.18)

The cosine taper is the optimal spectral envelope ensuring minimal rms time

duration for a matched filtered, finite bandwidth signal. The next step, therefore,

is to design phase-rate functions providing the highest degree of dispersion in the

crosscorrelation response.

3.5.1.2 Optimal Phase-Rate Functions. The design of optimal phase-

rate functions begins by noticing that the second term is of Eq (3.16) can be expanded

into components of the form

(x, y)w =

∫ b

a

x(t)y∗(t)w(t)dt. (3.19)

This function was first introduced in Eq (2.9) as the weighted inner product of two

functions. To utilize this expression, Brown defines the phase-rate functions as points

in a Hilbert space, Φ̇k(ω) ∈ H. Each of the phase-rate functions is then defined as a
linear combination of basis functions, ϕn(ω), as shown

Φ̇k(ω) =
N−1∑

n=0

ckn ϕn(ω)

= cTk ϕ(ω), (3.20)
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where

ck = [ck0 ck1 ck2 . . . ckN−1]
T

ϕ(ω) = [ϕ0(ω) ϕ1(ω) ϕ2(ω) . . . ϕN−1(ω)]
T

ϕk(ω) ∈ H ∀ k.

These basis functions are chosen as odd functions of ω and are orthonormal within the

weighted inner product space incorporating A2(ω). The last of these characteristics

may be expressed mathematically as

(ϕk, ϕl)A2 =
1

2π

∫ ∞

−∞
ϕk(ω)ϕl(ω)A

2(ω)dω = δkl (3.21)

By incorporating Eqs (3.20) and (3.21), the second term of Eq (3.16), describing the

dispersion the crosscorrelation function, is expanded as follows

σ2lk − σ2kk =
1

2π

∫ ∞

−∞
[cTl ϕ(ω)− cTk ϕ(ω)]

2A2(ω)dω

sub: dlk
4
= cl − ck

=
1

2π

∫ ∞

−∞

N−1∑

n=0

dlk,n ϕn(ω)
N−1∑

m=0

dlk,m ϕm(ω)A
2(ω)dω

=
1

2π

N−1∑

n=0

N−1∑

m=0

dlk,n dlk,m

∫ ∞

−∞
ϕn(ω) ϕm(ω)A

2(ω)dω

= ‖dlk‖2. (3.22)

Subsequently, the dispersive term in the rms time duration can be reduced in this

manner to the norm squared of dlk, i.e., the square of the Euclidean distance between

vectors cl and ck, which is d
2
2(cl, ck) as defined at Eq (2.3). Notably, by selecting

a satisfactory basis set performance is no longer dependant on the choice of phase-

rate functions. Instead, the problem becomes one of selecting optimal coefficient

weighting vectors, i.e., N vectors in N -dimensional space having the greatest equiv-
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alent Euclidean distance. This problem has been coined by Brown as “The Hermit

Problem” [5:9].

3.5.2 The Hermit Problem. This problem is so named in reference to a

scenario, wherein N-hermits living on a unit sphere in N -dimensional space jostle for

a position that provides the greatest solitude. The vectors addressing each hermit in

the steady state solution to this competitive relocation, being maximally equidistant,

describe a solution to the problem. This solution, however, is not unique. Brown

begins his analysis of this problem in 2-dimensional space [5:9], eventually providing

a generic analysis for the more conceptually challenging higher dimensions.

Brown provides that in 2-dimensions the hermits will clearly reside at the

opposite ends of a line. In 3-dimensional space they will reside within the same

plane, each hermit separated by an arc of 120◦. Conceptualization of a solution

is confounded when considering 4-dimensional space, however Brown presents the

following generic process for obtaining a solution [5:10]. Begin with the length N

vector α = [cos ξ cos ξ cos ξ . . . cos ξ]T , where cos ξ = 1/
√
N . This vector is of

unit length and contains an equal contribution from each of the orthogonal axes.

Brown visualizes this vector as the handle of an umbrella with N spokes. As the

umbrella opens, the spokes move outward through the respective axes until they all

become perpendicular to the umbrella handle, α. Figure 3.5 illustrates a particular

solution to the Hermit Problem for N = 2 and N = 3. Notably, a different solution

is achieved for each different rotation of α. However, this has no impact on the

performance of symbols coded with Brown’s approach.

Brown provides the following observations. The solution to the hermit prob-

lem is (N − 1)-dimensional; in 2-dimensions the solutions exist on a line and in
3-dimensions within a plane, and so on. Also, the sum of the resultant vectors is

zero,
∑

k ck = 0. Brown continues, providing an expression for optimal performance

of these symbols using a trigonometric proof. The results in Chapter IV illustrate
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Figure 3.5. A solution to the Hermit Problem for (a)
N = 2, and (b) N = 3.

an implementation utilizing a linear algebraic approach, by digressing here from

Brown’s approach the solution is obtained using a linear algebraic methodology.

The umbrella analysis leads into the following proof by emphasizing the re-

quirement for orthogonality. Each of the solution vectors, ck, must be orthogonal to

the umbrella handle and as such exist in an orthogonal (N−1)-dimensional space.
Subsequently, the N -dimensional space may be decomposed into two orthogonal

subspaces. The subspace containing the solution vectors is denoted the hermit sub-

space, 〈C〉, and the subspace containing the umbrella handle is called the orthogonal
subspace, 〈A〉, where

C = [c0 c1 c2 . . . cN−1], (3.23)

A = α. (3.24)

The orthogonal projection operator that projects onto 〈A〉 is defined as [34:47]

PA = A
(
ATA

)−1
AT

= α
(
αTα

)−1
αT

=
1

N
1, (3.25)
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where

1 =














1 1 1 . . . 1

1 1 1 . . . 1

1 1 1 . . . 1
...
...
...
. . .

...

1 1 1 . . . 1














N×N.

(3.26)

〈C〉 is an orthogonal subspace to 〈A〉 therefore the projection matrix for 〈C〉
is defined as

PC = IN −PA

= IN −
1

N
1

=
1

N














N − 1 −1 −1 . . . −1
−1 N − 1 −1 . . . −1
−1 −1 N − 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . N − 1














N×N,

(3.27)

where IN is the N ×N identity matrix. Each of the N vectors in PC is orthogonal

to α, also being evenly separated in 〈C〉. Subsequently, a solution to the Hermit
Problem exists as the normalized column vectors of PC . Projection matrices are

idempotent1 therefore by observation the diagonal elements of PC describe the norm

of the column vectors. Normalizing the projection matrix PC by dividing by the

1An idempotent matrix when multiplied with itself results in the original matrix, that is
P2
C =PC .
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square root of this value generates a solution to the Hermit Problem C defined as

C =
1√

N2 −N














N − 1 −1 −1 . . . −1
−1 N − 1 −1 . . . −1
−1 −1 N − 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . N − 1














N×N.

(3.28)

The metric describing dispersion for Brown’s approach is the Euclidean distance.

This squared distance, between any vector pair cl, ck where l 6= k, is defined as

d22(cl, ck) = dT
lk dlk

= (cl − ck)
T (cl − ck)

=
2N

N − 1 . (3.29)

Also, the angle that is subtended between any pair of vectors is given by

cos ξN = cTl ck

=
1

1−N . (3.30)

Eq (3.22) illustrates that the rms time duration for non-matched, or crosscorrelated,

symbols is governed by the Euclidean distance between the Hermits. Accordingly,

the performance of Brown’s approach is provided by Eq (3.29). This expression,

however, is given under the constraint that each vector has unit length. Notably,

a uniform increase in the length of the vectors will provide a direct increase in

the Euclidean distance without compromising mutuality and therefore produce an

improvement in the dispersive properties of the crosscorrelated symbols.
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In the following chapter dispersive gain (GD), is introduced to uniformly in-

crease the length of the vector solutions to the Hermit Problem, such that

ck ⇒
√

GDck,

therefore

d22(cl, ck) = GD(cl − ck)
T (cl − ck)

=

(
2N

N − 1

)

GD. (3.31)

The achievable performance of symbols augmented by GD is constrained only by

hardware limitations.

3.6 Discrete NLS Signals

3.6.1 Desirable Signal Properties. Waveforms utilized for NLS are required,

due to the nature of the threshold suppression operator, to compress on autocorre-

lation and disperse on crosscorrelation. Typically, the search for NLS codes has

leveraged off scientific and technical advances in the field of communications, partic-

ularly spread-spectrum communications, resulting in a range of literature on the uses

of biphase and polyphase codes. Such codes are typically comprised of a sequence

of chips, or discrete phase coded intervals, that concatenate to describe the symbol,

or code. The general form of a complex phase coded signal is provided in Eq (3.32)

[20:152]:

x(t) =
1√
Mτ

M−1∑

m=0

xm rect

(

t+
(
M−1
2
−m

)
τ

τ

)

, (3.32)

where

xm =







eφm , 0 ≤ t ≤ τ

0, elsewhere.
(3.33)
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There are a number of techniques used in phase-coding a sequence to achieve com-

pression, such as Barker codes [3] and Pseudo-Random Noise (PRN)-sequences. Op-

timally, these codes must be mutually dispersive to be of any practical use in NLS.

3.6.2 Biphase Codes. Biphase codes are so named because the phase-

code is limited to being one of two possible values, φm ∈ {0, π}. Subsequently, the
resultant code is a real valued signal having a chip value of xm = ± 1. These codes,
therefore, are represented using an M -length sequence x = eφ.

Barker sequences generate two-valued autocorrelation functions, being either

1 or 1/M [35] and thus have desirable autocorrelation compression properties. How-

ever, only a limited number of Barker codes exist and they do not have desirable

crosscorrelation properties. Maximal-length PRN-sequences, known as m-sequences,

are usually generated via a Linear Feedback Shift Register (LFSR) [30]. For m-

sequences, the LFSR is configured to generate maximal-length sequences that ex-

hibit two-valued autocorrelation functions, as per the Barker sequences. A Gold

code family is a set of preferred pairs of m-sequences, having crosscorrelation func-

tions with three-values. Due to the mutually dispersive nature of Gold codes, they

have been employed in DS-CDMA and spread-spectrum communications applica-

tions. Recently, these codes were demonstrated to provide an effective symbol set

for NLS [2]. Gold codes are discrete codes that are well suited to NLS and are

evaluated in Section 4.4.

3.7 Numerical Estimation of NLS Symbols Performance

3.7.1 Performance Metrics. The performance of the symbols, analyzed in

the following chapter, is measured in terms of the rms time duration of the correlation

function, defined in Eq (3.34). The correlation function was optimized, in terms of
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rms time duration, for Brown symbols in Eq (3.15).

ρlk(t) =

∫ ∞

−∞
fl(s)f

∗
k (s+ t)ds (3.34)

Plk(ω) = Fl(ω)F
∗
k (ω) (3.35)

The calculation of the periodic correlation function for discrete codes can be

represented as shown in Eq (3.36) [33:594].

θn(x,y) = λ
M−1∑

m=0

xmy
∗
m+n ∀ n = 1−M,−M, . . . ,M−1, (3.36)

where

λ =

∫ τ
2

− τ
2

rect2
(
t

τ

)

dt. (3.37)

There are three metrics that are commonly used to compare the correlation functions

for discrete codes [2:3-2]. These metrics are: the Peak Autocorrelation Sidelobe Level

(PSL); Integrated Autocorrelation Sidelobe Level (ISL); and Peak Crosscorrelation

Level (PCCL), defined in Eqs (3.38), (3.39), and (3.40) respectively [26:537].

PSL = 10 log






max
n

n6=0
|θn(x,x)|2

|θ0(x,x)|2




 (3.38)

ISL = 10 log





∑M−1
m=1−M

m6=0

|θm(x,x)|2

|θ0(x,x)|2



 (3.39)

PCCL = 10 log





max
n
|θn(x,y)|2

max{|θ0(x,x)|2, |θ0(y,y)|2}



 (3.40)

The PSL metric provides a measure of the disparity in the peak power of the auto-

correlation function compared with the power of the most prominent sidelobe. ISL

measures the total power in the sidelobes compared to the mainlobe. PCCL mea-

sures the disparity in the peak power of the autocorrelation function compared with
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the power of the most prominent sidelobe in the crosscorrelation function. There-

fore, small sidelobes will produce a small PSL, high compression ratios will produce a

small ISL and high crosscorrelation dispersion will result in a small PCCL. In short,

the smaller these values the more suited the codes will be to NLS implementation.

Unfortunately, these metrics are not defined for continuous signals. Therefore,

the following adjustment is made to accommodate the calculation of these param-

eters for a continuous signal. Firstly, the times t̃ at which the extremum for the

autocorrelation function occur must be determined, denoted

t̃ =

{

t :
d

dt
|ρkk(t)| = 0

}

. (3.41)

The set, t̃, is then used to generate a discrete sampling of the autocorrelation func-

tion, at the extremum, which in turn leads to the construction of the discrete auto-

correlation function

θ̃n(fk, fk) = ρkk(t̃n), (3.42)

where t̃n is the n
th ordered element of the set t̃. This ordered set is then used for

generating the discrete crosscorrelation sequences θ̃(fk, fl). With discrete sequences

defined in this way the metric set is expanded to incorporate continuous waveforms.

3.7.2 Process Overview. Chapter IV provides simulation results for vari-

ous forms of Brown symbols. The design process divined from Section 3.5 may be

summarized as follows, for k = 0, 1, . . . , N−1:

1. Choose any set of N unit-vectors in N -dimensional space that solves The Her-

mit Problem. C = [c0 c1 . . . cN−1];

2. Choose any set of N odd functions. ϕ(ω) = [ϕ0(ω) ϕ1(ω) . . . ϕN−1(ω)]
T , such

that 1
2π

∫∞
−∞ ϕk(ω)ϕl(ω)A

2(ω)dω = δkl;

3-21



3. Describe the resultant N phase-rate functions Φ̇k(ω) =
√
GDcTk ϕ(ω);

4. Describe the resultant N phase functions Φk(ω) =
√
GDcTk

∫

ω
ϕ(ω)dω;

5. The resultant N mutually dispersive codes expressed in the frequency domain

are then Fk(ω) = A
1
2 (ω)eΦk(ω); and

6. The resultant N mutually dispersive codes expressed in the time domain are

fk(t) =
1
2π

∫∞
−∞A

1
2 (ω)e[Φk(ω)+ωt]dω.

This process is demonstrated in the following chapter.

3.8 Assumptions

To meet the research goals and stay within time and resource constraints, some

assumptions are necessary. As explained in Section 3.3, this research seeks to simplify

the notation of Brown’s approach, provide the theoretical extension for digitization

of Brown symbols, validate the theoretical expressions of rms time duration, and

analyze the resultant correlation waveforms. As such the following assumptions

have been made:

1. The Brown symbols being modelled are individual radar returns from station-

ary single point targets;

2. The environment and radar system do not distort the phase information of the

Brown symbols;

3. There is no system or environmental noise; and

4. The hardware specifications are such that the sample frequency and bandwidth

chosen for numerical simulation are attainable.

3.9 Summary

This chapter described Brown’s approach, which is optimal in rms time dura-

tion, for generating a family of mutually dispersive symbols of any size. Section 3.2
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provided a brief overview of the NLS concept. Section 3.3 discussed the scope of

the research, relating the approach and associated synthesis constraints. Section 3.4

related the radar model to NLS and analytically defined, as in [5], the problem of

designing a symbol set suited to NLS. Section 3.5 derived Brown’s theorem divining

the optimal envelope, phase-rate functions and solutions to the Hermit Problem, and

also introduced dispersive gain and provided expressions for optimal performance.

Section 3.6 defined notation for biphase codes relating the suitability of these codes

to NLS. Finally, Section 3.7 discussed the metrics used to characterize and contrast

Brown symbols, providing an overview of the numerical approximation approach

undertaken.
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IV. Analysis and Results

4.1 Introduction

In this chapter, Brown symbols are devised analytically, using the process

outlined in Section 3.7.2, and then constructed and simulated in Matlabr. Section 4.2

considers the design of each of the Brown symbol components, being the Hermit

Problem solution, phase-rate basis function design, phase function calculation, and

symbol synthesis. Section 4.3 demonstrates the invariance of Brown symbols to the

choice of phase-rate basis functions and envelope, and considers physical realizability.

Finally, Section 4.4 contrasts the performance of Brown symbols with that of extant

biphase symbols.

4.2 Brown Symbol Design

Section 3.5.1.1 devised the optimal envelope for Brown symbols. This section

describes the process of generating Brown symbols by solving the Hermit Problem

and designing phase functions.

4.2.1 Hermit Problem Solution. Section 3.5.2 outlined a methodology

for solving the Hermit Problem by using a linear algebraic technique. Given the

starting vector α described in Section 3.5.2, this approach provides a simple means

of generating the solution matrix, C, as detailed in Eq (4.1).

C =
NIN − 1√
N2 −N

, (4.1)
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where IN is an N ×N identity matrix, and

1 =














1 1 1 . . . 1

1 1 1 . . . 1

1 1 1 . . . 1
...
...
...
. . .

...

1 1 1 . . . 1














N×N.

(4.2)

Alternative solutions to the Hermit Problem can be attained by reworking the

derivation using a different vector for the umbrella handel, α, or by operating on

the solution provided here with an N -dimensional rotation matrix. Once a solution

has been calculated, the next step of generating Brown symbols is to determine the

phase functions.

4.2.2 Phase Function Design. Section 3.5.1.2 provided a methodology for

the design of optimal phase-rate functions and indicated that N basis functions are

required. These functions must be odd functions of ω and orthonormal within the

weighted inner product space incorporating A2(ω). A generic four-step process for

generating these basis functions follows:

1. Choose any set of N odd and linearly independent functions.

ϑ(ω) = [ϑ0(ω) ϑ1(ω) . . . ϑN−1(ω)]
T .

2. Using any orthonormalization procedure with the weighted inner-product, gen-

erate a set of orthonormal basis functions ϕ(ω) = [ϕ0(ω) ϕ1(ω) . . . ϕN−1(ω)]
T .

3. Describe the resultant N phase-rate functions Φ̇k(ω) =
√
GDcTk ϕ(ω), where

GD is the dispersive gain factor and ck is the k
th solution to the Hermit Prob-

lem.

4. Calculate the resultant N phase functions Φk(ω) =
√
GDcTk

∫

ω
ϕ(ω)dω.
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This process can be very involved but permits the widest selection of basis functions

for implementation in Brown symbols. Once the phase functions are calculated the

Brown symbols can be compiled.

4.2.3 Symbol Synthesis. The phase functions are the key element in de-

signing strong mutually dispersive symbols. Once the N phase functions have been

calculated the Brown symbols maybe compiled. The resultant N -symbol family is

represented, for k = 0, 1, . . . , N , as

Fk(ω) =
4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

eΦk(ω)rect

(
ω

Ω0

)

(4.3)

fk(t) =
1

2π

∫ Ω0
2

−Ω0
2

4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e[Φk(ω)+ωt]dω. (4.4)

The phase functions are sampled and reconstructed as vectors in Matlabr. Care is

taken to ensure that the frequency sample interval is chosen to avoid time-aliasing.

The nth element of the kth sampled phase function is described as Φ̃kn = Φk(nω0);

the tilde notation is used to denote the sampled approximation to the continuous

frequency or time function . Due to sampling in the frequency domain the corre-

sponding time function will be periodic with period T0 = 2π/ω0, therefore ω0 is

chosen to avoid aliasing such that ω0 ≤ 2π/T0. This is simply the converse to the
time sampled analysis provided in Section 2.2.3. Each of the phase functions and

the envelope Ãn = A(nω0) are sampled in this manner to synthesize the spectral

Brown symbols. The nth element of the kth Brown symbol, in frequency, is therefore

defined as

F̃kn = Ãne
Φ̃kn . (4.5)

As mentioned earlier, these symbols are constructed in Matlabr. Matlabr is a dis-

crete simulation application that constrains further analysis to a numerical approx-

imation. The corresponding time domain signal for each of the Brown symbols is
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calculated using the rectangular-rule approximation to the Fourier transform, which

is the DFT as shown in Eq (2.33). The resultant vector has an equivalent number

of samples (Ns) and a time sample interval t0 = 2π/Nsω0. The n
th element of the

kth Brown symbol, in time, is defined as

f̃kn =
1

Ns

Ns−1∑

l=0

F̃kl e
2πln/Ns

=
1

Ns

Ns−1∑

l=0

Ãl e
[Φ̃kl+2πln/Ns]. (4.6)

Consequently, the results provided in this chapter are parameterized by the

following: choice of basis ϕk(ω); number of symbols (N); bandwidth (Ω0); and

dispersive gain (GD). The last of these, dispersive gain, was introduced in Section

3.5.2 as a factor that uniformly increases the length of the vectors that solve the

Hermit Problem, thereby controlling the dispersion induced in the crosscorrelation

functions.

4.3 Brown Symbol Sensitivity

Brown’s theorem indicates that the resultant symbols exhibit properties that

are insensitive to changes in basis. However, this is only in consideration of the rms

time duration of the correlation functions. This section considers a number of differ-

ent bases illustrating that although the theoretical results are achieved independent

of basis, the form of the correlation functions vary.

Unless otherwise stipulated, the results provided in this section are generated

using a bandwidth of Ω0 = 8π. Under this condition the theoretical rms time

duration for the autocorrelation function is σ2kk = π2/Ω2
0 = 0.0156, and for the

crosscorrelation functions is σ2lk = π2/Ω2
0 + (2GDN)/(N − 1), which for a symbol

family of N = 3, and GD = 0 dB, is 3.0156.
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4.3.1 Sinusoidal Basis. Sinusoids are an obvious choice as basis functions

due to their orthogonality properties. Appendix B.1 derives the generation of an

N -dimensional set of sinusoidal basis functions that retain orthonormality within

the weighted inner product space. The general form for each element in this set of

basis functions is described in Eq (4.7).

ϕn(ω)
4
=
√
2 sin(anω), (4.7)

therefore

Φk(ω) =
N−1∑

n=0

−
√
2GDckn
an

cos(anω), (4.8)

where an is an arbitrary positive integer and ckn is the n
th element of the kth solution

to the Hermit Problem. As indicated in Appendix B.1, for orthogonality to be

exactly met, this basis requires the bandwidth to be an even integer multiple of π,

i.e., Ω0 = 2mπ, m ∈ Z. The synthesized Brown symbols are then of the form

Fk(ω) =
4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e
−

[
∑N−1

n=0

√
2GDckn
an cos(anω)

]

rect

(
ω

Ω0

)

(4.9)

fk(t) =
1

2π

∫ Ω0
2

−Ω0
2

4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e


[

ωt−
∑N−1

n=0

√
2GDckn
an cos(anω)

]

dω. (4.10)

A closed form solution to Eq (4.10) is unlikely to exist, however, a numerical ap-

proximation to this function provides a means of analysis. This approach does

not detract from the end result of physical implementation as the sampled form of

fk(t) ⇒ t0fk(nt0) = f̃kn is the code that a digital radar system would utilize, with

parameters such as sample interval governed by hardware specifics.

These symbols are synthesized, as detailed in Section 4.2.3, for a code family

of N = 3 symbols. A dB plot of the autocorrelation function, which is the same for

each symbol, is displayed in Figure 4.1. The x-axis describes the time lag and the
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y-axis describes the amplitude, in decibels. The metrics described in Table 4.1 have
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Time Delay [τ]
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00

(τ
)|

|2  [d
B

]

Figure 4.1. Autocorrelation function for a sinusoidal basis with
N = 3, GD = 0 dB, and a = [13 18 23]T .

been calculated from these crosscorrelation functions.

Table 4.1. Autocorrelation metrics for a sinusoidal basis with N = 3,
GD = 0 dB, and a = [13 18 23]T .

ρlk(t) PSL ISL σ2kk
[dB] [dB]

ρ00(t) -23.000 -18.931 0.016
ρ11(t) -23.000 -18.931 0.016
ρ22(t) -23.000 -18.931 0.016

A dB plot of the crosscorrelation functions is displayed in Figure 4.2. The

x-axis describes the time lag and the y-axis describes the amplitude, in decibels.

The metrics described in Table 4.2 have been calculated from these crosscorrelation

functions. Although the theoretical results for σ2kk and σ
2
kl are achieved the cross-

correlation plots do not show strong dispersive properties resulting in undesirably

small values of PCCL and dominant sidelobes. By increasing the dispersive gain
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Figure 4.2. Crosscorrelation functions for a sinusoidal basis with
N = 3, GD = 0 dB, and a = [13 18 23]T .

Table 4.2. Crosscorrelation metrics for a sinusoidal basis withN = 3,
GD = 0 dB, and a = [13 18 23]T .

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -0.059 3.016
ρ02(t) -0.051 3.016
ρ12(t) -0.032 3.016
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the amount of spread is controlled. Figures 4.3 and 4.4 illustrate the effect on the

crosscorrelation functions of increasing GD to 20 and 40 dB respectively. The
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Figure 4.3. Crosscorrelation functions for a sinusoidal basis with
N = 3, GD = 20 dB, and a = [13 18 23]T .

Table 4.3. Crosscorrelation metrics for a sinusoidal basis with N = 3,
GD = 20 dB, and a = [13 18 23]T .

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -6.537 300.016
ρ02(t) -5.670 300.016
ρ12(t) -3.420 300.016

metrics described in Tables 4.3 and 4.4 have been calculated from these correlation

functions shown in Figures 4.3 and 4.4 respectively.

Increasing the dispersive gain, GD, has the effect of improving the dispersive

properties of the crosscorrelation functions without affecting the autocorrelation

functions. To improve the compression of the autocorrelation function the band-

width must be increased as illustrated (for a sinusoidal basis) in Figure 4.5. This
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Figure 4.4. Crosscorrelation functions for a sinusoidal basis with
N = 3, GD = 40 dB, and a = [13 18 23]T .

Table 4.4. Crosscorrelation metrics for a sinusoidal basis with N = 3,
GD = 40 dB, and a = [13 18 23]T .

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -19.985 30000.016
ρ02(t) -14.925 30000.016
ρ12(t) -18.789 30000.016
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basis achieves the theoretical Brown autocorrelation performance, as a function of

bandwidth.

10 15 20 25 30 35 40 45 50 55 60

0.05

0.1

0.15

0.2

0.25

Bandwidth [Ω
0
]

σ2 kk

Sinusoidal σ2
kk

Brown σ2
kk

 bound

Figure 4.5. σ2kk for a sinusoidal basis with GD = 0 dB and
a = [13 18 23]T .

The performance of the crosscorrelation in terms of rms time duration is con-

sidered in relation to the number of symbols (N). Figure 4.6 indicates that the

theoretical Brown crosscorrelation result, for symbol families with N = 2, 3, . . . , 7,

is also achieved with the sinusoidal basis. Although the crosscorrelation dispersion

decreases with an increase in the number of symbols, increasing the dispersive gain

offsets this effect.

This section demonstrated that the sinusoidal basis is a valid basis for any size

symbol family, achieving the theoretical Brown results in each case. This, however,

says nothing of the suitability of these symbols for physical implementation or their

comparative performance. These aspects are now considered.

4.3.1.1 Realizable Brown Symbols. Brown symbols are bandlimited

and therefore unlimited in time. However, a physical implementation of these sym-
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Figure 4.6. σ2kl − σ2kk for a sinusoidal basis with GD = 0 dB and
a = [13 18 23]T .

bols requires them to be time-limited. Consequently, an analysis of windowed Brown

symbols is provided. Following this a comparison is made between the performance

of a pair of sinusoidal Brown symbols and the conjugate LFM symbols used in the

initial demonstration by Palermo [28].

The requirement to transmit time-limited symbols leads to an analysis of win-

dowed Brown symbols. In this analysis a rectangular window, w(t), of unit height is

employed to create a time-limited Brown symbol,

w(t) = rect

(
t

Tw

)

, (4.11)

where Tw is the width of the window. The window will zero the tails of the Brown

symbols for fk(t), |t| ≥ Tw/2. Figure 4.7 illustrates, for Brown symbols generated

with various dispersive gains, that the signal energy becomes more concentrated as

the dispersive gain is increased. The x-axis describes the dispersive gain, in decibels,
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and the y-axis describes the relative half-window width Tw/2 as a fraction of the rms

time duration of the Brown symbol σk.
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Figure 4.7. Relative window duration Tw/2σk required to capture
99.9% of signal energy as a function of dispersive gain
GD.

Accordingly, Brown symbols generated using a large dispersive gain are more

compact and are therefore better suited to windowing. Figure 4.8 displays the ef-

fect that shortening the window width has on the properties of the crosscorrelation

function. Notably, the effect of windowing Brown symbols becomes insignificant for

Tw/2 ≈ 2.5 σk. Therefore the performance of Brown symbols is not significantly
degraded due to windowing, for large dispersive gain, suggesting that these symbols

are easily modified for physical implementation.

Originally Palermo utilized conjugate LFM pulses to demonstrate the effec-

tiveness of NLS. Unfortunately the number of conjugate LFM is limited to N = 2.

Having demonstrated that Brown symbols may be windowed for physical imple-

mentation a comparison is now provided between the characteristics of sinusoidal

Brown symbols and conjugate LFM. In this comparison symbols are generated hav-
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Figure 4.8. Correlation function statistics for windowed Brown sym-
bols with sinusoidal basis for N = 2, GD = 40 dB, and
a = [13 18]T . (a) PSL, (b) σkk, (c) PCCL, and (d) σkl.

ing equivalent rms time duration and energy. The results, in Figure 4.9, illustrate

the comparative performance. Brown symbols, being optimized for rms time dura-

tion of the correlation function, show equivalent or better performance in all areas

except the peak crosscorrelation level (PCCL). Figure 4.9 (c) shows that the Brown

symbols exhibit approximately 10 dB worse PCCL than conjugate LFM. However,

Brown symbols exhibit consistent performance when compared with conjugate LFM,

and unlike conjugate LFM, Brown symbols are not limited in symbol family size.

4.3.2 Polynomial Basis. Polynomials have been shown in various applica-

tions to exhibit strong orthogonality properties, as illustrated by the set of Chebyshev

polynomials, Hermite functions, Legendre polynomials and so on [36:136-160] [16:25-

36]. Unfortunately, these specific sets are orthogonal only within a unity weighted

inner product space requiring further analysis for adaptation to optimal Brown sym-

bols. The design of polynomial basis for use in Brown codes is explored in this

section.
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Figure 4.9. Correlation function statistics for conjugate LFM and
Brown symbols with sinusoidal basis for N = 2 and
a = [13 18]T . (a) PSL, (b) σkk, (c) PCCL, and (d)
σkl.

Appendix B.2 shows that an N -dimensional set of polynomial basis functions,

which retain orthonormality within the weighted inner product space, can be gener-

ated. The general form for each element in this set of basis functions, is described

in Eq (4.12). Each basis element ϕn(ω), of order 2p − 1, is a weighted set of odd
polynomials:

ϕn(ω)
4
=

p−1
∑

m=0

bnmω
2m+1. (4.12)

where bnm is the element in the m
th row of the nth column of the matrix B defined

in Eq (B.12). Therefore

Φk(ω) =
N−1∑

n=0

√

GDckn

p−1
∑

m=0

bnm
ω2m+2

2m+ 2

=
√

GDcTkB
T

∫

ω

ϕ(ω)dω, (4.13)
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where ck is the k
th solution to the Hermit Problem. The synthesized Brown symbols

are therefore

Fk(ω) =
4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e

[√

GDcT
kB

T ∫

ω
ϕ(ω)dω

]

rect

(
ω

Ω0

)

(4.14)

fk(t) =
1

2π

∫ Ω0
2

−Ω0
2

4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e

[

ωt+
√
GDcT

kB
T ∫

ω
ϕ(ω)dω

]

dω. (4.15)

As was the case with Eq (4.10), a closed form solution to Eq (4.15) is unlikely to

exist, however, a numerical approximation to this function again provides a means

of analysis.

These symbols are synthesized, as detailed in Section 4.2.3, for a code family

of N = 3 symbols. A dB plot of the autocorrelation function, which is the same for

each symbol, is displayed in Figure 4.10. The x-axis describes the time lag and the

y-axis describes the amplitude, in decibels. The metrics described in Table 4.5 have
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Figure 4.10. Autocorrelation function for a polynomial basis with
N = 3 and GD = 0 dB.

been calculated from these crosscorrelation functions.

4-15



Table 4.5. Autocorrelation metrics for a polynomial basis with N = 3
and GD = 0 dB.

ρlk(t) PSL ISL σ2kk
[dB] [dB]

ρ00(t) -23.048 -18.975 0.016
ρ11(t) -23.048 -18.975 0.016
ρ22(t) -23.048 -18.975 0.016

A dB plot of the crosscorrelation functions is displayed in Figure 4.11. The

x-axis describes the time lag and the y-axis describes the amplitude, in decibels. The
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Figure 4.11. Crosscorrelation functions for a polynomial basis with
N = 3 and GD = 0 dB.

metrics described in Table 4.6 have been calculated from these correlation functions.

Again, although the polynomial basis has achieved the theoretical results for

σ2kk and σ
2
kl, these crosscorrelation plots also fail to show strong dispersive properties.

By increasing the dispersive gain the amount of spread is controlled. Figures 4.12

and 4.13 illustrate the effect on the crosscorrelation functions of increasing GD to
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Table 4.6. Crosscorrelation metrics for a polynomial basis with N =3
and GD = 0 dB.

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -6.482 3.016
ρ02(t) -7.690 3.016
ρ12(t) -7.382 3.016

20 and 40 dB respectively. The metrics described in Tables 4.7 and 4.8 have
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Figure 4.12. Crosscorrelation functions for a polynomial basis with
N = 3 and GD = 20 dB.

been calculated from the crosscorrelation functions shown in Figures 4.12 and 4.13

respectively. This section demonstrated that the polynomial basis is a valid basis

for any size symbol family, achieving the theoretical results in each case.

4.3.3 Chebyshev Basis. Appendix B.3 shows that an N -dimensional set

of Chebyshev basis functions can be generated when a non-ideal uniform spectral

envelope is employed. Under this condition the nth element in the set of Chebyshev
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Figure 4.13. Crosscorrelation functions for a polynomial basis with
N = 3 and GD = 40 dB.

Table 4.7. Crosscorrelation metrics for a polynomial basis with N =3
and GD = 20 dB.

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -15.407 300.016
ρ02(t) -15.187 300.016
ρ12(t) -11.159 300.016

Table 4.8. Crosscorrelation metrics for a polynomial basis with N =3
and GD = 40 dB.

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -22.189 30000.016
ρ02(t) -22.264 30000.016
ρ12(t) -15.978 30000.016
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basis functions is described in Eq (4.16)

ϕn(ω)
4
=

√
2Ω0
π
T2n+1

(
2ω
Ω0

)

4

√
Ω20
4
− ω2

, (4.16)

where Tk(ω) is a k
th order Chebyshev polynomial defined in Eq (B.14). For or-

thonormality the envelope is uniform over Ω0 and is defined as

A(ω) =

√
2π

Ω0

rect

(
ω

Ω0

)

, (4.17)

and the phase function of the kth symbol is defined as

Φk(ω) =
N−1∑

n=0

√

GDckn

∫

ω

√
2Ω0
π
T2n+1

(
2ω
Ω0

)

4

√
Ω20
4
− ω2

dω, (4.18)

where ckn is the n
th element of the kth solution to the Hermit Problem. The synthe-

sized Brown symbols are then

Fk(ω) =
4

√
2π

Ω0

eΦk(ω)rect

(
ω

Ω0

)

(4.19)

fk(t) =
1

2π

∫ Ω0
2

−Ω0
2

4

√
2π

Ω0

e[ωt+Φk(ω)]dω (4.20)

Again, a closed form solution to Eq (4.20) is unlikely to exist, however, a numerical

approximation to this function provides a means of analysis.

These symbols are synthesized, as detailed in Section 4.2.3, for a code family

of N = 3 symbols. A dB plot of the autocorrelation function, which is the same for

each symbol, is displayed in Figure 4.14. The x-axis describes the time lag and the

y-axis describes the amplitude, in decibels. The metrics described in Table 4.9 have

been calculated from these crosscorrelation functions.
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Figure 4.14. Autocorrelation function for a Chebyshev basis with
N = 3 and GD = 0 dB.

Table 4.9. Autocorrelation metrics for a Chebyshev basis with N = 3
and GD = 0 dB.

ρlk(t) PSL ISL σ2kk
[dB] [dB]

ρ00(t) -13.267 -7.076 316.033
ρ11(t) -13.267 -7.076 316.033
ρ22(t) -13.267 -7.076 316.033

4-20



A dB plot of the crosscorrelation functions is displayed in Figure 4.15. The

x-axis describes the time lag and the y-axis describes the amplitude, in decibels.

The metrics described in Table 4.10 have been calculated from these crosscorrelation
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Figure 4.15. Crosscorrelation functions for a Chebyshev basis with
N = 3 and GD = 0 dB.

functions.

Table 4.10. Crosscorrelation metrics for a Chebyshev basis with
N = 3 and GD = 0 dB.

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -8.983 319.033
ρ02(t) -8.564 319.033
ρ12(t) -9.034 319.033

Although the Chebyshev basis provides worse autocorrelation compression, for

the same dispersive gain the PCCLs are better than for the sinusoidal and poly-

nomial bases. Notably, a the non-ideal envelope provides worse compression but

better dispersion, normally this would lead to an envelope design trade-off between
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dispersion and compression. However, the dispersive gain controls dispersion enough

to accommodate for any trade-off that might otherwise have been necessary. Fig-

ures 4.16 and 4.17 illustrate the effect on the crosscorrelation functions of increasing

GD to 20 and 40 dB respectively. The metrics described in Tables 4.11 and 4.12
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Figure 4.16. Crosscorrelation functions for a Chebyshev basis with
N = 3 and GD = 20 dB.

Table 4.11. Crosscorrelation metrics for a Chebyshev basis with
N = 3 and GD = 20 dB.

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -16.066 616.029
ρ02(t) -15.617 616.029
ρ12(t) -16.830 616.029

have been calculated from these correlation functions shown in Figures 4.16 and 4.17

respectively.

As expected, the change in A(ω) to a non-ideal rectangular window results in

worse performance of the autocorrelation function, i.e., larger σ2kk, however mutual
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Figure 4.17. Crosscorrelation functions for a Chebyshev basis with
N = 3 and GD = 40 dB.

Table 4.12. Crosscorrelation metrics for a Chebyshev basis with
N = 3 and GD = 40 dB.

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -22.780 30315.616
ρ02(t) -22.655 30315.616
ρ12(t) -24.680 30315.616
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dispersion is exhibited due to orthonormality in the basis set. The control on dis-

persion offered by the dispersive gain accommodates any envelope design trade-off

that might be made of worse compression for increased dispersion. This section

analyzes the Chebyshev basis, for any size symbol family, showing that although

the results are suboptimal the characteristics of the crosscorrelation functions are

mutually dispersive and well suited to NLS.

4.3.4 Piecewise Continuous Basis. Appendix B.4 shows that a set of N

orthonormal piecewise basis functions can be generated using the uniform taper

applied previously for the Chebyshev case. The general form for each element in this

set of basis functions is defined in Eq (B.19) as

ϕn(ω)
4
=

4
√
3an
Ω0

[

(ω + Ω0/2)rect

(
ω + Ω0/2− Ωn/8

Ωn/4

)

+
2an−1∑

m=1

(−1)m(ω + ωm)rect
(
ω − ωm
Ωn/2

)

+ (ω − Ω0/2)rect

(
ω − Ω0/2 + Ωn/8

Ωn/4

)]

,
(4.21)

therefore

Φk(ω) =
N−1∑

n=0

√

GDckn
4
√
3an
2Ω0

[

(ω2 + Ω0ω)rect

(
ω + Ω0/2− Ωn/8

Ωn/4

)

+
2an−1∑

m=1

(−1)m(ω2 + 2ωmω)rect
(
ω − ωm
Ωn/2

)

+ (ω2 − Ω0ω)rect

(
ω − Ω0/2 + Ωn/8

Ωn/4

)]

,
(4.22)

where ckn is the n
th element of the kth solution to the Hermit Problem. The synthe-

sized Brown symbols are then of the form

Fk(ω) =
4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e−Φk(ω)rect

(
ω

Ω0

)

(4.23)
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fk(t) =
1

2π

∫ Ω0
2

−Ω0
2

4

√
4π

Ω0

cos
1
2

(
πω

Ω0

)

e[ωt+Φk(ω)]dω. (4.24)

Again, a closed form solution to Eq (4.24) is unlikely to exist, so a numerical ap-

proximation to this function is considered.

These symbols are synthesized, as detailed in Section 4.2.3, for a code family

of N = 3 symbols. A dB plot of the autocorrelation function, which is the same

for each symbol, is displayed in Figure 4.18. The x-axis describes the time lag and

the y-axis describes the amplitude, in decibels. The metrics described in Table 4.13
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Figure 4.18. Autocorrelation function for a piecewise basis with
N = 3, GD = 0 dB, and a = [1 2 4]T .

have been calculated from these crosscorrelation functions.

A dB plot of the crosscorrelation functions is displayed in Figure 4.19. The

x-axis describes the time lag and the y-axis describes the amplitude, in decibels.

The metrics described in Table 4.14 have been calculated from these crosscorrelation

functions. The correlation plots exhibit similar characteristics to the Chebyshev

basis, having less compression on the autocorrelation function and slightly better
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Table 4.13. Autocorrelation metrics for a piecewise basis with N = 3,
GD = 0 dB, and a = [1 2 4]T .

ρlk(t) PSL ISL σ2kk
[dB] [dB]

ρ00(t) -13.262 -7.109 63.203
ρ11(t) -13.262 -7.109 63.203
ρ22(t) -13.262 -7.109 63.203
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Figure 4.19. Crosscorrelation functions for a piecewise basis with
N = 3, GD = 0 dB, and a = [1 2 4]T .

Table 4.14. Crosscorrelation metrics for a piecewise basis withN = 3,
GD = 0 dB, and a = [1 2 4]T .

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -8.187 66.203
ρ02(t) -9.307 66.203
ρ12(t) -4.788 66.203
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dispersion on the crosscorrelation functions. The orthonormality in the basis pro-

vides the theoretical values for the dispersive term and the form of the correlation

functions is suited to NLS, being similar to that of the Chebyshev and polynomial

bases. Figures 4.20 and 4.21 illustrate the effect on the crosscorrelation functions of

increasing GD to 20 and 40 dB respectively. The metrics described in Tables 4.15
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Figure 4.20. Crosscorrelation functions for a piecewise basis with
N = 3, GD = 20 dB, and a = [1 2 4]T .

Table 4.15. Crosscorrelation metrics for a piecewise basis withN = 3,
GD = 20 dB, and a = [1 2 4]T .

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -17.394 363.182
ρ02(t) -16.711 363.182
ρ12(t) -14.061 363.182

and 4.16 have been calculated from these correlation functions shown in Figures 4.20

and 4.21 respectively.
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Figure 4.21. Crosscorrelation functions for a piecewise basis with
N = 3, GD = 40 dB, and a = [1 2 4]T .

Table 4.16. Crosscorrelation metrics for a piecewise basis withN = 3,
GD = 40 dB, and a = [1 2 4]T .

ρlk(t) PCCL σ2kl
[dB]

ρ01(t) -26.603 30061.120
ρ02(t) -24.722 30061.120
ρ12(t) -23.631 30061.120
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This section showed that the piecewise basis, for any size symbol family, is

a valid basis. This basis provides slightly better performance than the Chebyshev

basis.

4.4 Discrete Code Comparison

Spread spectrum multiple access schemes, such as Direct Sequence CDMA

(DS-CDMA), require code families with dispersive crosscorrelation properties sim-

ilar to those used in NLS. Unlike the Brown symbols described earlier, DS-CDMA

utilizes discrete spreading codes. Gold codes were invented in 1967 specifically for

use in multiple-access spread spectrum systems [30:135], and have been employed

in a variety of applications including cellular DS-CDMA. Metrics for Gold codes

and Simulated Annealing biphase codes are provided in this section contrasting the

performance of Brown symbols.

The codes considered in this section are finite in time, unlike the finite band-

width Brown symbols. The metrics, therefore, have been calculated for discrete

symbols of equivalent signal energy and approximately equivalent bandwidth to the

Brown symbols. The null-to-null bandwidth of a biphase signal is approximately

4π/τb, where τb is the bit duration; therefore by choosing τb = 4π/Ω0 the bandwidth

is approximately that of the Brown symbols. With the bit duration so defined, the

amplitude of the biphase symbol is then chosen so that the energy of the biphase

symbol is equal to that of a Brown symbol.

4.4.1 Gold and SA Biphase Codes. PRN-sequences such as maximal-length

codes and Gold codes are commonly employed in spread-spectrum communications

systems [30:89]. Metrics for an N = 3 family of 31-bit and 127-bit Gold codes are

illustrated in Tables 4.17 and 4.18 respectively.
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Table 4.17. Auto/Crosscorrelation metrics for a 31-bit Gold code
family of N = 3.

ρlk(t) PSL ISL PCCL σ2kk σ2kl
[dB] [dB] [dB]

ρ00(t) -17.786 -7.227 x 13.857 x
ρ11(t) -17.786 -6.523 x 15.443 x
ρ22(t) -14.264 -3.742 x 16.078 x
ρ01(t) x x -9.827 x 44.600
ρ02(t) x x -8.999 x 48.393
ρ12(t) x x -10.742 x 36.230

Table 4.18. Auto/Crosscorrelation metrics for a 127-bit Gold code
family of N = 3.

ρlk(t) PSL ISL PCCL σ2kk σ2kl
[dB] [dB] [dB]

ρ00(t) -24.014 -6.023 x 267.233 x
ρ11(t) -22.991 -5.675 x 277.247 x
ρ22(t) -19.154 -2.240 x 325.511 x
ρ01(t) x x -14.842 x 818.573
ρ02(t) x x -15.228 x 701.845
ρ12(t) x x -15.228 x 666.453
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Codes with controlled crosscorrelation properties have recently been devised

using a Simulated Annealing approach [1:3-11]. Metrics for an N = 3 family of

31-bit and 127-bit SA codes are illustrated in Tables 4.19 and 4.20 respectively.

Table 4.19. Auto/Crosscorrelation metrics for a 31-bit SA code fam-
ily of N = 3.

ρlk(t) PSL ISL PCCL σ2kk σ2kl
[dB] [dB] [dB]

ρ00(t) -14.264 -3.106 x 19.472 x
ρ11(t) -14.264 -1.946 x 19.829 x
ρ22(t) -14.264 -2.820 x 18.038 x
ρ01(t) x x -11.765 x 41.693
ρ02(t) x x -11.765 x 46.396
ρ12(t) x x -11.765 x 51.002

Table 4.20. Auto/Crosscorrelation metrics for a 127-bit SA code fam-
ily of N = 3.

ρlk(t) PSL ISL PCCL σ2kk σ2kl
[dB] [dB] [dB]

ρ00(t) -19.154 -2.793 x 356.686 x
ρ11(t) -19.154 -1.844 x 321.849 x
ρ22(t) -19.154 -1.388 x 351.224 x
ρ01(t) x x -16.501 x 763.032
ρ02(t) x x -16.501 x 784.979
ρ12(t) x x -16.501 x 778.029

This section provided comparative results for biphase codes of equivalent signal

energy and approximate bandwidth. Even 127-bit Gold and SA codes do not perform

as well as Brown symbols in terms of PCCL and PSL indicating that Brown symbols

are likely to be well suited to NLS applications.

4.5 Summary

This chapter synthesized and analyzed Brown symbols, using the process out-

lined in Section 3.7.2. The analytical approach described in Appendix B lead to
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the construction and simulation of various Brown symbols in Matlabr. Section 4.2

considered the design of each of the components to a Brown symbol: the Hermit

Problem solution, phase-rate basis function design, phase function calculation, and

symbol synthesis. Section 4.3 provided results indicating the insensitivity of the per-

formance of Brown symbols to the choice of phase-rate basis functions and envelope,

and also considered physical realizability. These results support the claim that there

is no sensitivity in rms time duration of the correlation functions to the choice of

phase-rate basis functions, so long as the criteria of optimality and orthonormality

are met. Finally, Section 4.4 contrasted the performance of Brown symbols with

that of extant biphase symbols with Brown symbols showing superior performance

in rms time duration characteristics of the correlation functions.

Tables 4.21 and 4.22 provide a summary of the comparative performance. As

shown in Table 4.21, the autocorrelation function that provides the best overall

performance corresponds to the Brown symbol family with the polynomial basis,

which was derived with the optimal envelope. The lowest PCCL for each symbol

family is extracted and displayed in Table 4.22. The Brown symbols derived from

the non-ideal uniform taper, and Chebyshev and piecewise basis provide the best

results. Notably, Brown symbols show greater mutual dispersion than 127-bit Gold

and SA codes suggesting that they are better suited to NLS.
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Table 4.21. Autocorrelation metrics for various symbol/code fami-
lies.

Symbol Basis/ PSL ISL σ2kk
Code [dB] [dB]

Sinusoidal -23.000 -18.931 0.016
Polynomial -23.048 -18.975 0.016

Chebyshev -13.267 -7.076 316.033
Piecewise -13.262 -7.109 63.203
31-bit Gold -17.786 -7.227 13.857
127-bit Gold -24.014 -6.023 267.233
31-bit SA -14.264 -3.106 19.472
127-bit SA -19.154 -2.793 356.6866

Table 4.22. Crosscorrelation metrics for various symbol/code families
with N = 3.

Symbol Basis/ PCCL σ2kl
Code [dB]

Sinusoidal -14.925 30000.016
Polynomial -15.978 30000.016
Chebyshev -22.655 30315.616

Piecewise -23.631 30061.120
31-bit Gold -8.999 48.393
127-bit Gold -14.842 818.573
31-bit SA -11.765 51.002
127-bit SA -16.501 784.979
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V. Conclusions and Recommendations

5.1 Restatement of Research Goal

As stated in Section 1.2, the goals of this research are to:

1. Explain the formulation of Brown’s theorem [5] whilst introducing a simplified

linear algebraic notation;

2. Describe a systematic process for designing Brown symbols through an analysis

of Brown’s work and by theoretical extension;

3. Provide a theoretical analysis for the digitization of Brown symbols;

4. Evaluate performance of Brown symbols, comprising dispersive gain, through

simulation and numerical approximation; and

5. Compare the performance of various Brown symbols with discrete codes through

simulation.

5.2 Conclusions

5.2.1 Brown Symbol Sensitivity. Optimal Brown symbols require phase

rate functions to be described by a linear combination of basis functions that are

orthonormal within the weighted inner product space incorporating A2(ω), defined

in Eq (3.17). Chapter IV considered two bases that meet this requirement, the

sinusoidal basis described in Section 4.3.1 and the polynomial basis in Section 4.3.2.

By relaxing the optimality requirement for envelope A(ω), two other bases were

considered, the Chebyshev polynomials in Section 4.3.3 and piecewise continuous

basis in Section 4.3.4.

The sinusoidal and polynomial bases provide a means of generating N op-

timally mutually dispersive symbols, with dispersive gain providing control over

crosscorrelation dispersion. Both of these bases achieve the Brown theoretical au-

tocorrelation and crosscorrelation performance in rms time duration, demonstrating
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the validity of Brown’s theorem. Notably, for unity dispersive gain, the form of

the crosscorrelation functions vary despite having equivalent rms time durations.

The sinusoidal basis produces crosscorrelation functions with a strong mainlobe and

dominant sidelobes at approximately -18 dB, whereas the polynomial basis produces

crosscorrelation functions with a broad mainlobe and no sidelobes. When the disper-

sive gain factor is increased, however, both bases produce crosscorrelation functions

with extensive dispersion at approximately -20 dB. This result suggests that Brown

symbols need only be considered for symbols with large dispersive gain, which also

relates to large time-bandwidth products.

Brown symbols show insignificant degradation due to windowing, provided the

window width Tw is selected according to dispersive gain as illustrated in Figure 4.7.

This suggests that Brown symbols are suitable to radar applications. When com-

pared to conjugate LFM, Brown symbols have superior autocorrelation statistics but

produce crosscorrelation functions with a consistent 10 dB lower PCCL. Although

the LFM pulse pair has better PCCL performance, Brown codes exhibit superior

performance in terms of rms time duration. For example, the comparison of pulses

with equivalent rms time duration, in Figure 4.9, showed that Brown codes exhibit

greater compression. PCCL is an excellent indicator of a symbol families suitability

for NLS, however, any two symbols will have only one crosscorrelation function and

can claim justly to be mutually dispersive; this is not so for larger code families.

LFM pulses have been shown to provide excellent performance in NLS but are of

minimal benefit to NLS systems due to the severe limitation on symbol family size,

N = 2. Conversely, Brown symbols are scalable to any sized family, they perform

better in terms of rms time duration and are comparable to LFM in terms of PCCL.

When the constraint of envelope optimality is removed, and a uniform enve-

lope applied, the properties of the autocorrelation function worsen. This is shown

in Tables 4.9 and 4.13 with a significant increase in rms time duration and a 10 dB

increase in PSL. The Chebyshev and piecewise bases, due to the increase in auto-

5-2



correlation dispersion, provide better crosscorrelation dispersion at unity gain than

both the sinusoidal and polynomial bases. The dispersive gain can be increased to

improve crosscorrelation dispersion, therefore, small differences in PCCL are easily

accounted for in this way, negating the requirement to use a non-ideal envelope. The

shape of the correlation plots is, however, significantly different. For lower dispersive

gain, or time-bandwidth, the crosscorrelation functions resulting from these bases ex-

hibit much flatter dispersive characteristics. A relaxing of the optimality constraint

therefore effects both the autocorrelation and crosscorrelation statistics providing

marginal improvements in PCCL and dispersion, potentially flatter crosscorrelation

functions, but higher sidelobes.

5.2.2 Discrete Code Comparison. Section 4.4 provided a brief insight into

the performance of extant waveforms that are suited to NLS. Gold codes and SA

codes were considered in comparison to Brown symbols. Neither the 31- or 127-bit

Gold or SA codes provide comparable performance to Brown symbols. Although the

127-bit Gold codes have comparable PSL values, both types of codes exhibit much

worse compression and dispersion characteristics than Brown symbols. Also, these

codes offer no means of controlling the degree of dispersion.

5.3 Significant Results of Research

NLS symbol families constructed from signals with desirable correlation prop-

erties, such as LFM symbols [28] and discrete Gold codes [2], have already been

implemented. However, LFM pulse families are severely limited in size and the per-

formance of Gold codes is constrained. Theoretically, Brown symbols can be easily

tailored for utilization in NLS. The theorem claims that these symbols are optimally

mutually dispersive, but has until now remained untested.

This research reintroduced Brown’s theorem relating the system model as-

sumptions and theory formulation. As a result of this research, a systematic method
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for synthesizing Brown symbols is now defined and demonstrated. The synthesis

and simulation process provides the theoretical background necessary to enable dig-

itization of Brown symbols. The Brown symbols that were created and analyzed

achieve theoretical performance and, for large dispersive gain, exhibit desirable cor-

relation characteristics. The dispersive gain factor was introduced and integrated

into the formulation and design of Brown symbols, thus providing a crosscorrelation

dispersion control parameter. Subsequently, Brown symbols have been shown to be

well-suited for physical implementation into pulse Doppler radar systems, exhibiting

more desirable correlation statistics than comparable discrete codes. As such, the

goals stated in Section 1.2 have been accomplished.

5.4 Recommendations for Future Research

Recommendations for future work center on expanding the complexity of the

radar model and further demonstrating Brown symbol performance, robustness and

sensitivity. The Brown theorem can also be expanded to image processing.

The radar model referenced in this research incorporated simplifying assump-

tions of a noiseless, distortion free environment with stationary single-point targets.

To better understand the suitability of Brown symbols to pulse Doppler radar these

assumptions should be altered to better reflect a real radar environment. As such,

future work should consider the implementation of Brown symbols, with different

generating bases, in the presence of noise. Also, Brown symbols appear reliant on

the integrity of the phase functions, therefore, an analysis of the effect of Doppler

and clutter on the properties of the correlation functions would be desirable.

Brown [5:13] has proposed a study of Brown symbols for implementation with

functions of more than one variable, such as images. For example, future work could

consider expanding the theory of mutually dispersive symbols to 2-dimensions and

analyze the performance of signals generated in that way. A possible application

identified by Brown is the coded-multiplexing of color television signals onto a single
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channel. Other 2-dimensional research could include the expansion of the theory to

facilitate the design of radially symmetric Brown surfaces.

The principle of stationary phase may be employed to approximate the inverse

Fourier transform of the crosscorrelation functions. By considering this approach, an

intuitive avenue of research becomes apparent, i.e., the approximation to the cross-

correlation function is a linear combination of complex sinusoids; their phases are

determined by the stationary points of the phase-rate function. Periodic phase-rate

functions, such as the sinusoidal basis, are therefore likely to generate crosscorre-

lation functions with constructive superposition leading to sidelobes. A random

phase-rate process with uniform distribution would considerably alleviate this issue.

An expansion to the theory provided in this thesis should consider constructing a

framework for the use of random processes as basis functions. Initial work in this

area shows crosscorrelation functions with excellent dispersive properties and PCCLs

on the order of -32 dB.
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Appendix A. Ambiguity Function Analysis

A.1 Ambiguity Surfaces

This appendix displays a series of ambiguity surfaces generated for various

radar waveform types.

A.1.1 Single Pulse Waveform. The most basic pulsed radar consists of a

single pulse modulated onto a carrier.

x(t) = rect

(
t

T

)

e2πfct (A.1)

The ambiguity surface for this function, with fc = 0, is determined from

χ(τ, ν) =

∫ ∞

−∞
rect

(
t

T

)

rect

(
t− τ
T

)

e2πνtdt (A.2)

and is illustrated in fig. A.1.

A.1.2 Pulse-Train Waveform. The next most advanced pulsed radar con-

sists of a train of pulses modulated onto a carrier, used to improved detection and

Doppler resolution. In practise an infinite pulse-train is not feasible, therefore in this

analysis an N pulse train is considered.

x(t) =
∞∑

n=−∞
rect

(
t− nTp
T

)

e2πf0t (A.3)

The ambiguity surface for this function, with fc = 0, is determined from

χ(τ, ν) =

∫ ∞

−∞

N∑

n=0

N∑

m=0

rect

(
t− nTp
T

)

rect

(
t−mTp − τ

T

)

e2πνtdt (A.4)

and is illustrated in fig. A.2 for N = 6.
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Figure A.1. Ambiguity surface of a single pulse radar waveform.

Figure A.2. Ambiguity surface of a pulsed radar waveform.
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A.1.3 Linear FM Waveform. The linear FM pulse also has interesting

properties, as discussed in section 2.3.3.2. This signal sweeps a frequency range, Φ,

and can be described by

xLFM(t) = rect

(
t

T

)

eπkt
2

, where k = Φ/T (A.5)

The ambiguity surface for this function is determined from

χ(τ, ν) =

∫ ∞

−∞
rect

(
t

T

)

eπkt
2

rect

(
t− τ
T

)

e−πk(t−τ)
2

e2πνtdt (A.6)

and is illustrated in fig. A.3.

Figure A.3. Ambiguity surface of a single pulse LFM waveform.
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Appendix B. Basis Function Derivations

B.1 Sinusoidal Basis

The sinusoidal functions are an obvious choice to form a bases due to their

orthogonality properties. With the optimal envelope for Brown symbols, however,

the orthogonality must hold within the weighted inner product space, (ϑk, ϑl)A2 . The

weighted inner product of sinusoidal functions is defined such that

ϑk(ω)
4
= b sin(akω), (B.1)

then

(ϑk, ϑl)A2 =
1

2π

∫ ∞

−∞
ϑk(ω)ϑl(ω)A

2(ω)dω

=
1

2π

∫ Ω0
2

−Ω0
2

b sin(akω)b sin(alω)
4π

Ω0

cos2
(
πω

Ω0

)

dω

=
b2

Ω0

∫ Ω0
2

−Ω0
2

sin(akω) sin(alω)dω +
b2

Ω0

∫ Ω0
2

−Ω0
2

cos

(
2πω

Ω0

)

dω. (B.2)

While ak are integers for all k, and ak 6= al. Thus, the sinusoidal functions in the first
term of Eq (B.2) are orthogonal when evaluated over an integer number of cycles.

Subsequently, a sufficient constraint for orthogonality here is that Ω0 = 2mπ, for

any integer m. The weighted norm, k = l, reduces the first term as such

b2

Ω0

∫ Ω0
2

−Ω0
2

sin2(akω)dω =
b2

2Ω0

[

ω − sin(akω)
ak

]Ω0
2

−Ω0
2

=
b2

2
. (B.3)

The second term is simply an integral of a cosine function over one complete cycle,

which will always be zero. Therefore the sinusoidal basis functions are orthogonal.

By choosing b so that Eq (B.3) equals unity, an orthonormal basis is described.
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Therefore an orthonormal sinusoidal basis is defined by

ϑk(ω)
4
=
√
2 sin(akω), (B.4)

where

Ω0 = 2mπ

ak, m ∈ Z (B.5)

ak 6= al, ∀ k 6= l.

B.2 Polynomial Basis

There are a number of orthogonal polynomial bases such as Chebyshev func-

tions, Legendre functions, Hermite functions and so on. The suitability of each of

these alternate bases is dependent on them being odd functions that retain their

orthogonality within the weighted inner product space, (ϑk, ϑl)A2 . The search for

a suitable basis begins by defining the kth basis element as a weighted set of odd

polynomial functions of order 2p− 1.

ϑk(ω)
4
=

p−1
∑

n=0

bknω
2n+1, (B.6)

then

(ϑk, ϑl)A2 =
1

2π

∫ ∞

−∞
ϑk(ω)ϑl(ω)A

2(ω)dω

=
1

2π

∫ Ω0
2

−Ω0
2

p−1
∑

n=0

bknω
2n+1

p−1
∑

m=0

blmω
2m+1 4π

Ω0

cos2
(
πω

Ω0

)

dω

=
2

Ω0

p−1
∑

n=0

p−1
∑

m=0

bknblm

∫ Ω0
2

−Ω0
2

ω2(n+m+1) cos2
(
πω

Ω0

)

dω. (B.7)
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The resultant of the integral is a function only of m and n and is therefore redefined

as

Emn =
2

Ω0

∫ Ω0
2

−Ω0
2

ω2(n+m+1) cos2
(
πω

Ω0

)

dω, (B.8)

which simplifies Eq (B.7) to

(ϑk, ϑl)A2 =

p−1
∑

n=0

p−1
∑

m=0

bknblmEmn. (B.9)

Again this may be further simplified using linear algebraic notation as

(ϑk, ϑl)A2 = bT
kEbl. (B.10)

Defining B = [b0 b1 b2 . . . bN−1] permits further simplification of Eq (B.10). Solving

for orthonormality provides

(ϑ,ϑT )A2 = BTEB

= IN . (B.11)

Therefore when E is invertible

BBT = E−1, (B.12)

or in other words with BT as the Cholesky decomposition matrix to the inverse of

E another orthonormal basis within the weighted inner product space is defined.

B.3 Chebyshev Functions

Changing the spectral envelope, A(ω), introduces a different weighted inner

product space within which to design an orthonormal basis. An envelope that is

uniform across the spectral bandwidth invites the use of Chebyshev polynomials.

This is because any pair of Chebyshev polynomials exhibit the orthogonality prop-
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erties described in Eq (B.13) [36:158]:

∫ 1

−1

Tm(ω)Tn(ω)√
1− ω2

dω =







0, m 6= n

π, m = n = 0

π/2, otherwise

(B.13)

where Tk(ω) is an k
th order Chebyshev polynomial. The odd Chebyshev functions

can be defined as

T2m+1(ω) = cos[(2m+ 1) cos−1 ω]

=
m∑

k=0

(−1)k
(
2m+1

2k

)

ω2m−2k+1(1− ω2)k. (B.14)

With A(ω) defined as a uniform envelope on the interval [−Ω0/2,Ω0/2] as in Eq

(B.15), the Chebyshev functions are scaled to induce orthonormality within this

inner product space as shown in Eq (B.16).

A(ω) =

√
2π

Ω0

rect

(
ω

Ω0

)

(B.15)

ϑn(ω) =

√
2Ω0
π
T2n+1

(
2ω
Ω0

)

4

√
Ω20
4
− ω2

. (B.16)

Therefore the weighted inner product of any pair of basis functions is

(ϑk, ϑl)A2 =
1

2π

∫ ∞

−∞
ϑk(ω)ϑl(ω)A

2(ω)dω

=
1

2π

∫ Ω0
2

−Ω0
2

√
2Ω0
π
T2k+1

(
2ω
Ω0

)√
2Ω0
π
T2l+1

(
2ω
Ω0

)
2π
Ω0

√
Ω20
4
− ω2

dω

=
2

π

∫ Ω0
2

−Ω0
2

T2k+1

(
2ω
Ω0

)

T2l+1

(
2ω
Ω0

)

√
Ω20
4
− ω2

dω.

(B.17)
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With a change of variable (γ = 2ω/Ω0) the integral takes on the familiar form of

Eq (B.13), where for all k, l,

2

π

∫ 1

−1

T2k+1(γ)T2l+1(γ)
√

1− γ2
dγ = δkl. (B.18)

Therefore the Chebyshev basis as defined in Eq (B.16) is orthonormal for a non-ideal

uniform taper.

B.4 Piecewise Continuous Basis

LFM pulses were originally demonstrated in the early implementation of a NLS

scheme. These pulses have linear phase-rate functions with spectral content that

is approximately uniformly dispersed over a compact frequency bandwidth. The

duality of the Fourier transform provides that functions of frequency having linear

phase-rate functions will correspond to time signals that are uniformly dispersed and

compactly supported. This is a desirable property of the crosscorrelation functions

as the presence of sidelobes is expected to be significantly mitigated. This section

explores the use of piecewise linear phase-rate functions, such as the saw-tooth wave-

form. To provide a means of analysis this basis utilizes the same uniform taper as

the Chebyshev basis as described in B.15. As such, the function that describes the

normalized basis is defined as

ϑk(ω)
4
=

4
√
3ak
Ω0

[

(ω + Ω0/2)rect

(
ω + Ω0/2− Ωk/8

Ωk/4

)

+

2ak−1∑

n=1

(−1)n(ω + ωn)rect
(
ω − ωn
Ωk/2

)

+ (ω − Ω0/2)rect

(
ω − Ω0/2 + Ωk/8

Ωk/4

)]

(B.19)

where

Ωk = Ω0/ak
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ωn =
Ω0

2
(n/ak − 1).

That is, ak is the number of cycles over Ω0, Ωk is the period, and ωn are the zero

crossings as illustrated in Figure B.4.
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Figure B.1. Saw-tooth basis function with ak = 4 and
Ω0 = 2.

The selection of ak is constrained to ensure that ϑk(ω) forms an orthonormal

basis. This can be accomplished by ensuring thatmax {ak, al}/min{ak, al} is radix
2 for all k, l. Figure B.4 illustrates that the product of two basis functions with

max {ak, al}/min{ak, al} = 2 produce equivalent positive and negative areas.
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