
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-13-2018

A Heuristic Method for Task Selection in Persistent ISR Missions A Heuristic Method for Task Selection in Persistent ISR Missions

Using Autonomous Unmanned Aerial Vehicles Using Autonomous Unmanned Aerial Vehicles

Christopher C. Olsen

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons

Recommended Citation Recommended Citation
Olsen, Christopher C., "A Heuristic Method for Task Selection in Persistent ISR Missions Using
Autonomous Unmanned Aerial Vehicles" (2018). Theses and Dissertations. 4421.
https://scholar.afit.edu/etd/4421

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F4421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4421?utm_source=scholar.afit.edu%2Fetd%2F4421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A Heuristic Method for Task Selection
in Persistent ISR Missions

using Autonomous Unmanned Aerial Vehicles

DISSERTATION

Christopher C. Olsen, Major, USAF

AFIT-ENY-DS-18-S-067

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENY-DS-18-S-067

A HEURISTIC METHOD FOR TASK SELECTION

IN PERSISTENT ISR MISSIONS

USING AUTONOMOUS UNMANNED AERIAL VEHICLES

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Aeronautical Engineering

Christopher C. Olsen, B.S.M.E., M.S.S.E.

Major, USAF

13 September 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENY-DS-18-S-067

A HEURISTIC METHOD FOR TASK SELECTION

IN PERSISTENT ISR MISSIONS

USING AUTONOMOUS UNMANNED AERIAL VEHICLES

DISSERTATION

Christopher C. Olsen, B.S.M.E., M.S.S.E.
Major, USAF

Committee Membership:

Dr. Donald L. Kunz
Chairman

Dr. Richard G. Cobb
Member

Dr. William P. Baker
Member

Dr. Scott L. Nykl
Dean’s Representative

AFIT-ENY-DS-18-S-067

Abstract

The Persistent Intelligence, Surveillance, and Reconnaissance (PISR) problem

seeks to provide timely collection and delivery of data from prioritized ISR tasks

using an autonomous Unmanned Aerial Vehicle (UAV). In the literature, PISR is

classified as a type of Vehicle Routing Problem (VRP), often called by other names

such as persistent monitoring, persistent surveillance, and patrolling. The objective

of PISR is to minimize the weighted revisit time to each task (called weighted la-

tency) using an optimal task selection algorithm. In this research, we utilize the

average weighted latency as our performance metric and investigate a method for

task selection called the Maximal Distance Discounted and Weighted Revisit Period

(MD2WRP) utility function. The MD2WRP function is a heuristic method of task

selection that uses n+1 parameters, where n is the number of PISR tasks. We develop

a two-step optimization method for the MD2WRP parameters to deliver optimal la-

tency performance for any given task configuration, which accommodates both single

and multi-vehicle scenarios. To validate our optimization method, we compare the

performance of MD2WRP to common Traveling Salesman Problem (TSP) methods

for PISR using different task configurations. We find that the optimized MD2WRP

function is competitive with the TSP methods, and that MD2WRP often results in

steady-state task visit sequences that are equivalent to the TSP solution for a single

vehicle. We also compare MD2WRP to other utility methods from the literature,

finding that MD2WRP performs on par with or better than these other methods even

when optimizing only one of its n+ 1 parameters. To address real-world operational

factors, we test MD2WRP with Dubins constraints, no-fly zones in the operational

area, return-to-base requirements, and the addition and removal of vehicles and tasks

iv

mid-mission. For each operational factor, we demonstrate its effect on PISR task

selections using MD2WRP and how MD2WRP needs to be modified, if at all, to

compensate. Finally, we make practical suggestions about implementing MD2WRP

for flight testing, outline potential areas for future study, and offer recommendations

about the conduct of PISR missions in general.

v

AFIT-ENY-DS-18-S-067

This is an exercise in fictional science, or science fiction, if you like that better. Not

for amusement: science fiction in the service of science. Or just science, if you

agree that fiction is part of it, always was, and always will be as long as our brains

are only minuscule fragments of the universe, much too small to hold all the facts of

the world but not too idle to speculate about them.

-Valentino Braitenberg, Experiments in Synthetic Psychology

vi

Acknowledgements

Writing a dissertation requires thousands of hours of solitude. It’s easy to forget,

despite what it sometimes feels like, the pursuit of a doctorate does not take place in

a vacuum. In fact, the end result would not be much to speak of if it did.

First and foremost, I’d like to thank my research advisor, Dr. Kunz, for being

an open ear and, occasionally, making essential course corrections when my research

began to wander. His guidance kept me on-track for graduating on-time.

I also extend deep thanks to my research committee members, Dr. Cobb and Dr.

Baker, for lending a critical voice. Their critiques and suggestions greatly improved

my body of work. Dr. Baker spent a great deal of his own time contributing to the

periodicity proof in this document, while also maturing my mathematical view of the

problem. There are several folks at AFRL/RQQ that deserve a hearty thanks. They

spent their own research hours helping me understand the PISR problem so I could

develop a thorough research plan.

Of course, when work extends into the night, the family bears the burden. I must

thank my brilliant wife, an M.D. herself, for putting up with what has certainly not

been the best version of myself for the last three years. It was her that told me to

go for it, without hesitation, when I brought up the crazy idea of pursuing a Ph.D..

Lastly, though he wasn’t born until near the end, I must also thank my son for giving

me all the reason I needed to keep going.

Christopher C. Olsen

vii

Table of Contents

Page

Abstract . iv

Acknowledgements . vii

List of Figures . xi

List of Tables . xvii

I. Introduction . 1

1.1 Motivation . 2
1.2 Research Questions, Scope, and Tasks . 3

1.2.1 Research Questions . 3
1.2.2 Research Scope . 4
1.2.3 Research Tasks & Ontology . 5

1.3 Assumptions . 8
1.4 Research Methodology . 9
1.5 Expected Contributions . 10
1.6 Document Outline . 11

II. Literature Review . 12

2.1 Introduction . 12
2.2 Autonomous Agents . 12

2.2.1 Definition of Autonomy . 12
2.2.2 Control of Autonomous Agents . 13

2.3 PISR as a Vehicle Routing Problem . 14
2.4 Strategies for Task Selection in PISR . 15

2.4.1 TSP Methods . 16
2.4.2 Utility Function Methods . 23

2.5 Survey of the Traveling Salesman Problem . 27
2.5.1 The 2D Euclidean TSP . 28
2.5.2 The TSP with Time Windows . 32
2.5.3 The Weighted TSP (or The Minimum Latency

Tour Problem) . 37
2.5.4 The Dubins TSP . 39

2.6 Utility Theory . 43
2.7 Summary . 44

viii

Page

III. Methodology . 47

3.1 Overview . 47
3.2 Performance Measures for PISR . 47
3.3 The Maximal Distance Discounted & Weighted Revisit

Period . 48
3.3.1 Derivation . 49
3.3.2 Normalization . 53
3.3.3 Using MD2WRP to Minimize Latency . 54

3.4 Simulation Environment (PUMPS) . 54
3.4.1 Architechture . 55
3.4.2 Data Flow and Algorithms . 66

3.5 Task Configurations . 76
3.6 Research Plan . 77

3.6.1 Characterization of MD2WRP . 77
3.6.2 Comparison Studies of MD2WRP . 78
3.6.3 MD2WRP and Operational Factors . 79

IV. Results . 80

4.1 Characterization of MD2WRP . 80
4.1.1 Effect of MD2WRP Parameters on Vehicle

Behavior . 80
4.1.2 The Value of Normalization . 86
4.1.3 Periodicity . 89
4.1.4 Optimizing β and w . 97

4.2 Comparison Studies of MD2WRP . 105
4.2.1 MD2WRP with Different Communication Modes 106
4.2.2 MD2WRP with Multiple Decision Lookahead 112
4.2.3 Comparison to TSP-based PISR . 116
4.2.4 Comparison to Other Utility-based PISR 123

4.3 MD2WRP and Operational Factors . 132
4.3.1 Dubins Constraints on Vehicle Motion . 132
4.3.2 Presence of No-Fly Zones . 142
4.3.3 Return to Base Requirements . 151
4.3.4 Mid-Mission Addition and Removal of Vehicles

and Tasks . 163
4.4 Summary of Results . 166

V. Conclusion . 167

5.1 Conclusions from Results . 167
5.2 Future Work . 169
5.3 Contributions . 172
5.4 Recommendations . 174

ix

Page

Appendix A. PUMPS Code . 179

A.1 Main . 179
A.2 Classes . 195

A.2.1 The Vehicle Class . 195
A.2.2 The Task Class . 198
A.2.3 The Routing Class . 198
A.2.4 The Pathing Class . 206
A.2.5 The Communication Class . 222
A.2.6 The Database Class . 225

Bibliography . 227

Vita . 236

x

List of Figures

Figure Page

1.1 A visual mapping of research tasks and how they stem
from the hypothesis. The yellow tasks only consider a
single vehicle. Blue tasks consider multiple vehicles. 7

2.1 Levels of control for autonomous agents. 13

2.2 Left: Two vehicles on a cyclic TSP tour. Right: Two
vehicles with subtours, based on the original TSP tour.
(Image taken from [1].) . 17

2.3 Diagram depicting the use of VRPTW to enforce
priorities. High priority nodes have more frequent
windows. (Image taken from [2].) . 19

2.4 Example of the node partitioning algorithm from [3]
(original image from the source), where multiple
subtours are constructed with high priority nodes being
included in more subtours than those of low priority. 21

2.5 The seven architectures from [4] (Figure taken directly
from the source). 25

2.6 Notional progression of two node ages (in blue and red)
as well as their sum, which is the maximum age of the
network represented by the black line. (Figure adapted
from [5]). 26

3.1 The attributes and methods of the Vehicle class in
PUMPS. 56

3.2 The attributes of the Task class in PUMPS. 58

3.3 The attributes and methods of the Routing classes in
PUMPS. 59

3.4 The attributes and methods of the Pathing classes in
PUMPS. 62

3.5 The attributes and methods of the Communication
classes in PUMPS. 64

3.6 The attributes of the Database class in PUMPS. 66

xi

Figure Page

3.7 Data flow diagram for the PUMPS main loop, from
initialization to termination. 74

3.8 Simple triangular task configurations. These scenarios
are useful for analyzing properties of the MD2WRP
utility function. 77

3.9 Four scenarios designed to represent how tasks might be
distributed in various operational scenarios. The four
configurations are Circle (top left), Grid (top right),
Random (bottom left), and Clusters (bottom right). 78

4.1 Three PISR tasks in an equilateral triangle configuration. 81

4.2 Visit rates from the equilateral triangle scenario, with
varying weights applied to the top vertex (Task 3). 82

4.3 Times at which each task was visited by the vehicle for
Trades 1002 (w3 = 1.5) and 1003 (w3 = 1.51). 83

4.4 Three PISR tasks in an isosceles triangle configuration. 85

4.5 Task visit rates in the isosceles triangle scenario, with
varying β values and w = 1. 86

4.6 Times at which each task was visited by the vehicle in
Trades 1000 (β = 0.1) and 1003 (β = 0.4) of the
isosceles triangle scenario. 87

4.7 Visits per hour for the normalized isosceles triangle
scenario (using normalized MD2WRP), with varying β
values and w = 1. 88

4.8 Times at which each task was visited by the vehicle for
Trades 1000 (β = 2) and 1002 (β = 8) on the
normalized isosceles triangle scenario. 89

4.9 Demonstration of the periodicity of MD2WRP under
the isosceles triangle task configuration, with β = 0
(left) and β = 4 (right). 95

4.10 Visit patterns are dependent on vehicle starting
location, but are always periodic in the steady-state. 96

xii

Figure Page

4.11 Visit patterns are dependent on initial task ages, but
always periodic in the steady-state. 97

4.12 Total latency curve and task visit history for a vehicle
operating on the isosceles triangle map with β = 3.25,
the optimal β for this scenario. 100

4.13 Latency curves and visit history with β = 3.25 and
w = [3, 2, 3] (left) and w = [3, 1, 1] (right). 101

4.14 β = 3.5− 3.9 result in the best latency (w = 1). 106

4.15 w5 = 5.2− 5.6 result in the best latency (β = 3.5). 107

4.16 Three vehicles operating without communication. Each
starts in a separate task cluster and eventually enters
the same periodic pattern. 108

4.17 Three vehicles sharing completion data (CxBC) and
starting at different tasks within the same cluster. 110

4.18 Three vehicles sharing destination data (CxBD) and
starting at the same task. 112

4.19 Under larger β the final tour utility approaches the
limit sooner. 114

4.20 Increasing lookahead increases the final tour utility. 115

4.21 Multiple decision lookahead is more effective with
multiple vehicles. 115

4.22 The single vehicle TSP solution for each task map. 117

4.23 The tuned MD2WRP is competitive with n-spaced
TSP on a variety of task configurations. 118

4.24 The tuned MD2WRP consistently meets or exceeds the
performance of k-subtours TSP. 122

4.25 Two MD2WRP vehicles on the Random map mostly
divide the tasks between vehicles, but occasionally share
tasks. 123

4.26 In most cases, the DLM utility function improves with
an increasing decision horizon. 125

xiii

Figure Page

4.27 In most cases, the optimized MD2WRP outperforms
DLM. 126

4.28 The MD2WRP vehicle has a more evenly distributed
visit history. 127

4.29 SRP/MRP and MD2WRP deliver similar latency
performance across all four maps. 131

4.30 The MD2WRP vehicles develop distinct partitions,
although the latency performance is about the same. 132

4.31 Visit rates between two tasks with Dubins motion as β
increases. 133

4.32 Task visit times for two trades of the two-point Dubins
scenario (1000m spacing). 134

4.33 The flight trajectories for select trades of the two-point
Dubins scenario. 135

4.34 Visit rates between two tasks as β increases using
normalized MD2WRP with Dubins motion. 136

4.35 Task visit times for select trades of the two-point Dubins
scenario under normalized MD2WRP (1000m spacing). 136

4.36 The flight trajectories for select trades of the two-point
Dubins scenario under normalized MD2WRP (1000m
spacing). 137

4.37 Visit rates between two tasks as β increases using
normalized MD2WRP with Dubins motion (5000m
spacing). 137

4.38 Task visit times for select trades of the two-point Dubins
scenario under normalized MD2WRP (5000m spacing). 138

4.39 Comparison of performance using Euclidean distance
versus Dubins path distance for a single vehicle. 139

4.40 Comparison of performance using Euclidean distance
versus Dubins path distance for three vehicles. 140

4.41 NFZ results for the Clusters map with a vertical NFZ
between the western and eastern clusters. 144

xiv

Figure Page

4.42 When the NFZ IR > 1.5 on the Clusters map, failure to
re-tune β results in two vehicles becoming “trapped” on
the west side of the NFZ. 145

4.43 NFZ results for the Clusters map with a horizontal NFZ
between the northern and southern clusters. 146

4.44 NFZ results for the Circle map. 147

4.45 NFZ results for the Random map. 149

4.46 NFZ results for the Grid map. 150

4.47 Best value of wbase as a function of number of tasks. 154

4.48 Average latency performance, L̄, as a function of
number of tasks. 155

4.49 Sample base offsets for the Circle map (left to right -
0%, 40%, and 90%). The base task is circled in red. 156

4.50 The required wbase to meet RTB thresholds for varying
base offsets on the Circle map (left) and the
performance given each RTB threshold is met (right). 157

4.51 The RTB time as a function of wbase, for offsets of 0, 40,
and 90% on the Circle map. 158

4.52 Left, vehicle visit history meeting a 1300s RTB
threshold on the Circle map with a 90% base offset.
Right, the vehicle trajectory history. 159

4.53 Vehicle visit histories for wbase = 8.2 (left) and
wbase = 8.3 (right) on the Circle map with 40% offset. 160

4.54 Sample base offsets for the Random map (left to right -
0%, 40%, and 90%). The base task is circled in red. 161

4.55 The required wbase to meet RTB thresholds for varying
base offsets on the Random map (left) and the
performance given each RTB threshold is met (right). 161

4.56 The RTB time as a function of wbase, for offsets of 0, 40,
and 90% on the Random map. 162

xv

Figure Page

4.57 The total latency and task visit history of three vehicles
on the Clusters map as vehicles are added and removed. 164

4.58 The total latency and task visit history of two vehicles
on the Clusters map as tasks are added and removed. 165

xvi

List of Tables

Table Page

2.1 The utility approach for task selection in PISR has
many advantages over TSP . 46

4.1 Visit pattern length (in number of tasks) and period for
a variety of scenarios. 95

4.2 Top ten βs by best L̄ performance. 99

4.3 Performance of each w by L̄ (β = 3.25). 101

4.4 L̄ results for various maps, βs, and w’s. 105

4.5 Performance of three vehicles on “Clusters” by start
location (β = 5,w = 1). 109

4.6 Start locations for n-spaced TSP comparison. 118

4.7 Partitions for k-subtours TSP comparison, generated
with k-means++. 121

4.8 Selection of wbase to meet an RTB threshold of 1200s. 153

5.1 L̄ comparison between optimized and recommended β. 176

xvii

A HEURISTIC METHOD FOR TASK SELECTION

IN PERSISTENT ISR MISSIONS

USING AUTONOMOUS UNMANNED AERIAL VEHICLES

I. Introduction

In the first decade of the 21st centry, concurrent advancements in computing

hardware, navigation, and controls created the ideal conditions for the rapid rise in

popularity of small, unmanned aircraft; commonly called “drones” in the mainstream,

but more frequently referred to as Unmanned Aerial Systems (UAS) or Unmanned

Aerial Vehicles (UAVs) in technical communities. Today, the physical size and cost of

hardware continues to decrease and there is no apparent end in sight for UAV demand.

Governments and businesses are hungry to explore and adopt new and practical UAV

applications, from product delivery to national security.

Militaries were among the first to realize the benefits of unmanned aircraft and

begin investing heavily in their development. The earliest UAVs were simply manned

aircraft equipped with basic autopilots and deployed as airborne “torpedoes”, de-

coys, or practice targets [6]. By the turn of the century, high-bandwidth satellite

communications coupled with modern sensor technology enabled the U.S. to begin

fielding Remotely Piloted Aircraft (RPAs) for airborne Intelligence, Surveillance, and

Reconnaissance (ISR) missions over Afghanistan [7]. With high value unmanned sys-

tems such as the RQ-4 Global Hawk, MQ-1 Predator, and MQ-9 Reaper, the U.S.

military has and continues to invest in RPAs for ISR and strike missions. While the

current inventory of Department of Defense (DoD) unmanned systems provide mis-

sion capability with reduced cost and risk, they still require management by human

1

operators, either through direct flight control, sensor operation, or mission planning.

Additionally, these assets, while certainly more attritable than manned aircraft, are

nonetheless equipped with high value electronics; to put it plainly, their loss does not

go unnoticed by commanders.

Thus, the stage is set to bring about the next era of unmanned aircraft, or to put

it more precisely, to bring unmanned aircraft into the era of autonomy. The goal of

autonomy is to further reduce the need for human oversight, such that the role of the

human operator is simply to provide the autonomous agent with a goal. It is then

up to the agent to decide how best to achieve the goal, even in the face of a changing

mission environment. More will be discussed regarding autonomy and the control

of autonomous vehicles in Ch. II. For now, the use of small, attritable, autonomous

UAVs holds great promise for providing combatant commanders with low-risk and

persistent ISR.

1.1 Motivation

The DoD Unmanned Systems Integrated Roadmap for FY2013-2038 advocates

for the development of unmanned systems, to include UAVs, with autonomous and

cognitive behavior. It specifically acknowledges their suitability for the Battlespace

Awareness Joint Capability Area (JCA) [8],

Battlespace Awareness is a capability area where unmanned systems in
all domains have the ability to contribute significantly into the future to
conduct ISR and environment collection-related tasks. Applications in
this JCA include aerial, ground, surface sea, and undersea surveillance
and reconnaissance. Today, these functions are performed by several sys-
tems across all domains and mission sets. In the future, technology will
enable mission endurance to extend from hours to days and allow for
long-endurance persistent reconnaissance and surveillance in all domains.

To realize this vision, concrete objectives must be derived from the high-level

2

abstractions in the Roadmap document. The goal of this dissertation is to investi-

gate a practical decision-making algorithm for autonomous UAVs as one step toward

“long-endurance persistent reconnaissance and surveillance”, which we call persistent

intelligence, surveillance, and reconnaissance (PISR).

We propose that a utility function is well-suited to serve as a basis for task selec-

tion in PISR. Utility-based decision-making stems from Utility Theory, an artificial

intelligence concept which will be discussed in detail in Ch. II. In short, Utility The-

ory describes an agent decision-making process whereby decisions are based upon a

utility value which is calculated from a utility function. The utility function takes the

values of system state variables as input and outputs a corresponding utility value

for taking the considered action. A rational agent pursues the decision yielding the

highest utility.

A utility-based approach has many desirable attributes for PISR, which will be

discussed at the end of Ch. II. Still, choosing which state variables to include in a

utility function and determining a mathematical relationship between them that results

in desirable agent behavior is a significant challenge.

One such utility function for PISR was proposed by Kalyanam[9], called the Max-

imal Distance Discounted & Weighted Revisit Period (MD2WRP) algorithm. The

derivation of MD2WRP is presented in Ch. III. Characterizing agent decision-making

underMD2WRP and comparing its PISR mission performance to other task selection

methods composes the main body of this research.

1.2 Research Questions, Scope, and Tasks

1.2.1 Research Questions.

Hypothesis: The MD2WRP utility function can serve as the basis for PISR task

selection decisions for single or multiple autonomous UAVs under a variety of opera-

3

tional constraints. Furthermore mission performance can be competitive with leading

PISR task selection algorithms from the literature.

Research questions relating to this hypothesis are:

1. How do we define performance for PISR missions?

2. What is the relationship between the MD2WRP parameters and how do they

affect agent behavior?

3. How can the MD2WRP parameters be optimized to maximize performance?

4. What is the underlying mathematical structure of MD2WRP and how can it

be used to predict PISR performance?

5. How can the MD2WRP utility function be extended for use in multi-vehicle

teaming?

6. How does the performance of MD2WRP compare to other PISR solutions from

the literature?

7. How does MD2WRP perform in the presence of operational constraints?

1.2.2 Research Scope.

This research is focused on PISR task selection for autonomous agents (also fre-

quently referred to as task scheduling). There are many facets to the control of

autonomous agents. Task selection is the top-layer control, whose output is applied

as input in the lower-layer control of trajectory generation. Our goal is to complete

a rigorous study of task selection in support of the larger DoD research community

objective, which is to develop a fully autonomous solution capable of executing all

phases of a PISR mission.

4

The core results of this work are based in modeling and simulation under spe-

cific simplifying assumptions. In later phases of the work, some of the assumptions

are lifted to simulate operational constraints likely to be encountered in the field.

Theoretical work is also conducted, specifically in examining the mathematical struc-

ture of MD2WRP and its implications on mission performance. Similarly, on the

applied end of the research spectrum, the models used in this research were intention-

ally developed to mirror the existing autonomy software suite, Unmanned Systems

Autonomy Services (UxAS), under development by Air Force Research Laboratory

(AFRL). The goal is to maintain the relevance of the conclusions in this research to

follow-on flight testing of MD2WRP using UxAS.

1.2.3 Research Tasks & Ontology.

The following research tasks are defined in order to address our research questions:

1. Define a performance measure for PISR missions. Evaluate vehicle rout-

ing performance metrics from the literature and select one that is suitable for

PISR to serve as a common metric for comparing MD2WRP to other PISR

methods.

2. Characterize the MD2WRP utility function. Using both analysis and sim-

ple simulation scenarios, determine how MD2WRP parameters affect vehicle

behavior. Also, evaluate the transient and steady-state behavior of MD2WRP

in making task selections for PISR.

3. Investigate optimization of the MD2WRP parameters. Propose a method

to optimize the MD2WRP parameters for any given task configuration.

4. Develop a means for multiple vehicles to cooperatively use MD2WRP

for PISR task selection. Modify MD2WRP for use with multiple vehicles.

5

Evaluate different communication schemes for quantitative performance as well

as suitability based on qualitative attributes.

5. Compare MD2WRP to other PISR methods. Compare the performance of

MD2WRP , under the selected PISR performance measure, to other methods

in the literature to include other utility-based approaches and combinatorial

optimization solutions (e.g. the Traveling Salesman Problem).

6. Evaluate MD2WRP under operational factors. Lift select simplifying

assumptions in order to more realistically model real-world operational factors

(e.g. the presence of no-fly zones). Develop methods to quantify the effects

of operational constraints on MD2WRP performance and propose methods to

overcome operational challenges.

Figure 1.1 provides a visual mapping of how each research task stems from our hy-

pothesis.

6

Ef
fe

ct
 o

f β
 a

nd
 w

 o
n

be
ha

vi
or

N
or

m
al

iz
e

M
D

2W
R

P

Pr
ov

e
pe

rio
di

ci
ty

R
es

ea
rc

h
H

yp
ot

he
si

s:

M
D

2W
R

P
ca

n
se

rv
e

as
 a

 b
as

is

 fo
r t

as
k

se
le

ct
io

n
in

 P
IS

R

C
ha

ra
ct

er
iz

e

C
om

pa
ris

on
 S

tu
di

es

O
pe

ra
tio

na
l F

ac
to

rs

D
ev

el
op

 o
pt

im
iz

at
io

n
fo

r β
 a

nd
 w

C
om

m
un

ic
at

io
n

m
od

es

1-
, 2

-,
&

 3
-L

oo
ka

he
ad

to
 T

SP
 m

et
ho

ds

to
 U

til
ity

 m
et

ho
ds

D
ub

in
s

pa
th

s

N
o-

fly
 z

on
es

R
et

ur
n

to
 b

as
e

A
dd

/re
m

ov
e

m
is

si
on

 o
bj

ec
ts

N
o

C
om

m
un

ic
at

io
n

B
ro

ad
ca

st
 C

om
pl

et
io

ns

B
ro

ad
ca

st
 D

es
tin

at
io

ns

n-
sp

ac
ed

 T
SP

k-
su

bt
ou

rs
 T

SP

D
ire

ct
 L

at
en

cy
 M

in
im

iz
at

io
n

St
an

fo
rd

 S
R

P/
M

R
P

F
ig

u
re

1
.1

.
A

v
is

u
a
l

m
a
p

p
in

g
o
f

re
se

a
rc

h
ta

sk
s

a
n

d
h

o
w

th
e
y

st
e
m

fr
o
m

th
e

h
y
p

o
th

e
si

s.
T

h
e

y
e
ll

o
w

ta
sk

s
o
n

ly
c
o
n

si
d

e
r

a
si

n
g
le

v
e
h

ic
le

.
B

lu
e

ta
sk

s
c
o
n

si
d

e
r

m
u

lt
ip

le
v
e
h

ic
le

s.

7

1.3 Assumptions

Assumptions are an important consideration in modeling and simulation research.

We consider two categories of assumptions. The first category were supplied by the

research sponsor (AFRL) according to their planned application.

� Vehicles are fixed-wing UAVs with a dwell time of approximately six

hours.

� Vehicles fly at constant speed and altitude.

� Missions last for 20000s, or approximately five and a half hours.

The second type are simplifying assumptions. These assumptions apply to this

entire work, unless specifically stated otherwise.

� Vehicles travel Euclidean paths, that is, they fly between tasks in a

straight line and have a zero turn radius. For most real-world applications,

tasks are likely to be located several kilometers apart, which is large compared

to the vehicle’s turning radius (less than 100 meters). So, the impact of the

turn radius to flight time between tasks is negligible.

� Vehicles have the capability to send and receive lossless communica-

tions across the entire simulated space. While inter-vehicle communica-

tions are never guaranteed in real-world operations, the shortwave radios used

in previous flight testing have proved to be reliable enough that this assumption

ensures simulation results are meaningful for a majority of mission situations.

� Vehicles may move freely between tasks. There are no path con-

straints. Usually, PISR UAVs are operating in their own mission area. They

are either far away from manned aircraft operations or operating at a lower

flight level.

8

� Vehicles are not required to return to base during the simulated sce-

nario. They transmit their data back to the operations center with

no distance or bandwidth limitations. The PISR UAVs are equipped with

satellite communication terminals for sending collected data back to the oper-

ations center in real-time.

� The PISR tasks are point-searches, meaning they have zero service

time, begin and end in the same location, and are considered complete

as soon as a vehicle arrives. Point-searches are good approximations for

most PISR tasks. While some real-world tasks might include searching a road

or a field (and thus have non-zero service time and different start/end locations),

they can be modeled as a single point. In future research, MD2WRP may be

adapted to account for the specifics of non-point-search tasks.

1.4 Research Methodology

This research is primarily based in modeling and simulation. However, theoretical

groundwork is also established to derive additional insight. Also, the work is done with

an eye toward eventual flight testing, in an effort to ensure the results contained in this

document are easily transitioned to the test range. Taken together, this document

makes an attempt to pull the thread from theory to application, with an emphasis

on the proof-of-concept that lies between.

The research is broken into three phases. The objective of the first phase is to

characterize the MD2WRP utility function. Using analysis and simulation, the intent

is to understand how the MD2WRP parameters influence agent behavior. Part of

the characterization is selecting an appropriate performance metric for PISR and

then exploring how MD2WRP can be optimized to maximize performance under the

chosen metric.

9

Once an understanding of MD2WRP and its parameters is established, existing

solutions for similar problems will be directly compared to MD2WRP with the se-

lected performance metric serving as a yard stick. Besides comparing MD2WRP

performance to other methods, this will also highlight the key features of each ap-

proach in terms of qualitative criteria such as scalability, complexity, and robustness.

However, in order to compare MD2WRP against other methods in the multi-vehicle

case, we first explore three different communication modes for MD2WRP .

Next, MD2WRP is applied to a variety of scenarios designed to be representative

of likely operational constraints. In each of these scenarios, individual simplifying

assumptions are lifted to determine how MD2WRP is affected by operational con-

straints as well as how it can be used in overcoming them.

1.5 Expected Contributions

While this work is specifically focused on the research and development of the

MD2WRP utility function for task selection in PISR, it is also expected to make

broader contributions to the fields of vehicle routing and autonomous vehicle control.

We aim to develop a scalable solution. A significant advantage of utility func-

tions for task selection is they are single, easy-to-evaluate algebraic expressions. The

absence of a combinatorial optimization algorithm eliminates convergence issues and

also results in quick decision making for the autonomous agent. The payoff is a task

scheduling scheme that easily accommodates any practical number of tasks with little

computational overhead. Additionally, in the future, these tasks may be more com-

plex than simple point tasks; they may include line searches (e.g. road searches) or

area searches which are beyond the capability of existing combinatorial algorithms

for all but the simplest task configurations.

We also desire a task selection algorithm that is suitable for a dynamic environ-

10

ment. Because utility functions are simple algebraic expressions, they are quickly

adapted to changing mission needs. Tasks may be added to or removed from the

scenario without the need for a centralized recalculation of vehicle task assignments.

Agent behavior can be set and adjusted with a small number of parameters to provide

the desired behavior or to meet a performance requirement. Similarly, vehicles may

be added or removed from service at any time. With an appropriate communica-

tion scheme, vehicles will automatically adjust their workloads to compensate for the

number of UAVs and tasks.

1.6 Document Outline

The research hypothesis and related questions have been posed in this chapter,

along with the list of research tasks. Chapter II surveys the existing literature for

methods which have already been investigated for PISR. In Ch. III, the models and

methods of this research will be described in detail. Chapter IV presents the detailed

results and analysis conducted to answer the research questions and carry out the

research tasks. Finally, Ch. V summarizes the major conclusions drawn from the

results, describes the contributions of the research, and makes specific recommenda-

tions regarding MD2WRP as a decision-making function for PISR task selection as

well as recommendations for conducting PISR missions with autonomous UAVs in

general.

11

II. Literature Review

2.1 Introduction

At its core, PISR is a type of Vehicle Routing Problem (VRP), wherein the subject

vehicles consist of autonomous UAVs. This literature review will start by discussing

what it means for a vehicle to be autonomous, especially in the context of DoD

missions, and how the concept of control applies to such a vehicle. Next, we provide a

brief overview of VRPs and their relationship to PISR. Then, we review several studies

in PISR task selection that are based in two distinct methods: the Traveling Salesman

Problem (TSP) and utility functions. Finally, the last portion of this chapter provides

a survey delving deeper into the formulation and solution of some TSPs of special

interest in PISR applications, as well as a discussion of the theory behind utility

functions for autonomous decision making.

2.2 Autonomous Agents

2.2.1 Definition of Autonomy.

There are numerous definitions of autonomy and what constitutes an autonomous

system. However, to pick a functional definition for discussion, the following from the

DoD-sponsored 2012 Autonomy Research Pilot Initiative (ARPI)[10] is provided,

Systems which have a set of intelligence-based capabilities that allow them
to respond within a bounded domain to situations that were not pre-
programmed or anticipated in the design (i.e., decision-based responses)
for operations in unstructured, dynamic, uncertain, and adversarial en-
vironments. Autonomous systems have a degree of self-governance and
self-directed behavior and must be adaptive to and/or learn from an ever-
changing environment (with the human’s proxy for decisions).

12

2.2.2 Control of Autonomous Agents.

From the above definition, it is clear that autonomous vehicles are expected to

perform the mission with a minimal level of human oversight, but they also must

act “within a bounded domain”. Part of that bounded domain are the control laws

which govern vehicle actions. To cage the literature review to follow, we present a

brief overview of the various levels of autonomous vehicle control.

When an autonomous vehicle goes into a given environment to achieve a goal,

there are three sequential decision making processes that must be considered: task

selection, path selection, and path following. These are summarized in Fig. 2.1.

Figure 2.1. Levels of control for autonomous agents.

The first and highest level of decision making, and the one which is the focus of

this research, is task selection. This is when the vehicle decides which tasks to do and

in what order, frequently referred to in the literature as a control policy. Often, the

goal is to find the optimal control policy through combinatorial optimization or with

Artificial Intelligence (AI) tools, such as utility/reward functions or decision trees.

Once the vehicle has decided the order in which to accomplish tasks, it must de-

termine how to physically move from its current location to the task location. This is

13

known as the path planning problem, or trajectory optimization, and is accomplished

with open-loop control, meaning the control is executed in the absence of feedback.

Two examples of path planning/optimal trajectory algorithms are the pseudospectral

method[11] and A* search[12].

Finally, with the path decided, the agent must remain on the path as it moves to its

destination. This is done with closed-loop (feedback) control by minimizing the error

between the vehicle’s actual trajectory and the planned (reference) trajectory[13].

2.3 PISR as a Vehicle Routing Problem

The VRP was first proposed in 1959 by Dantzig and Ramser[14]. It seeks to

determine an optimal set of routes for a fleet of, m, vehicles that must visit a set

of, n, customers starting from a depot. Optimality criteria are determined by an

objective function, with the usual goal of minimizing the total distance traveled.

Since its introduction, the VRP has been intensely studied due to its cost saving

implications for a wide variety of industries.

In the terminology of computational complexity theory, the VRP is NP-hard[15],

implying that exact solutions are, in general, not available. To find an exact solution

the problem must be sufficiently small or a number of simplifying assumptions must

be imposed. As such, many VRPs are typically approached with heuristic methods

which yield good results for practical purposes.

The most broad classifications of VRPs are static/dynamic and deterministic/s-

tochastic. For the static problem, all data are known to the planner a priori. For

example, task locations are known up front and do not change. Thus the vehicle’s

path is set before leaving the depot. In the dynamic formulation, the problem data

may change during the mission. For example, new service requests could appear at

any time.

14

Independent of the static or dynamic nature, a problem may be deterministic or

stochastic. In the deterministic formulation, there is no uncertainty in the problem

data (e.g. the exact location of each customer is known) whereas in the stochastic

formulation some uncertainty may exist (e.g. customer locations must be discovered).

For most of this work, we treat the problem of task selection in PISR as a static-

deterministic VRP. It is static because the problem configuration does not change

with time. The tasks to be surveilled, as well as their associated priorities, are known

prior to the vehicle leaving the base. At the end of Ch. IV, we will briefly consider a

dynamic problem, where the number of vehicles and tasks change during the mission.

Our problem is deterministic because there is no uncertainty in the task locations or

the time that must be spent at each task (in this research it takes zero time to service

a task once the vehicle arrives).

2.4 Strategies for Task Selection in PISR

The problem of continually monitoring discrete points of interest (i.e. tasks) with

one or more vehicles is referred to in the literature under many names including

persistent monitoring, persistent surveillance, sweep coverage, and patrolling. In this

research, we use the term persistent intelligence, surveillance, and reconnaissance,

or PISR. Though the names differ, the core problem remains the same. Vehicles

must select tasks in an optimal order so as to minimize the time tasks spend waiting

for service. Previous studies have been based on two fundamental methods for task

selection in PISR: the Traveling Salesman Problem and utility functions. We review

several studies of each type in this section.

The TSP is a classic combinatorial optimization problem and has received a thor-

ough and broad treatment in the literature. Many variants of the TSP have been

studied for both single and multi-vehicle cases. Consequently, there exist a wide va-

15

riety of exact, approximate, and heuristic solutions to the many types of TSPs. A

survey of the mathematical formulation of and solutions to some specific TSP types

of special interest for PISR is included in Sec. 2.5. Below however, in presenting the

application of TSPs to the PISR task selection problem, the details of the formula-

tions and solutions for each type of TSP are not discussed. Instead, the focus is on

how each TSP variant is implemented as a task selection solution for PISR.

Using utility functions as a basis for decision making by an autonomous agent

(i.e. utility theory) stems from the field of AI. A brief introduction to utility theory

is provided in Sec. 2.6. In this section, we focus on previous studies of PISR task

selection that have implemented utility functions as the basis by which vehicles select

tasks, but without discussing how those functions were developed or the underlying

theory as to why utility functions are a valid approach.

2.4.1 TSP Methods.

The most common approach in the literature for determining the optimal task

visit sequence in PISR is to solve one or more TSPs, with the tasks equating to

nodes on a graph. The resulting tour(s) is/are assigned to one or more vehicles.

The vehicles continually travel their assigned tours and service tasks, with new tours

being generated and assigned if the number or location of tasks, or number of vehicles,

change during the mission.

Chevaleyre conducts theoretical analysis for two multi-vehicle patrolling strategies

based on the TSP[1]. The first is a cyclic strategy wherein vehicles are spaced along

a closed TSP tour such that each task has equal revisit time. Chevalyere provides a

proof for the worst-case revisit time for any task, given such a strategy. The second

is a partition strategy where a TSP tour is divided into k subtours, where k is the

number of agents. Again, a proof of the worst-case revisit time is demonstrated.

16

Figure 2.2 shows a simple example of cyclic TSP versus a k-subtour. Finally, the

author conducts trials of each strategy on six different graphs to validate the analytical

proofs on worst-case revisit time and to compare the performance of each strategy.

The author concludes that the cyclic strategy results in lower average revisit times

on all graphs except when the graph contains one or more long edges (i.e. the dij,max

is large compared to the average dij), in which case the k-subtours strategy is the

better choice.

Figure 2.2. Left: Two vehicles on a cyclic TSP tour. Right: Two vehicles with subtours,
based on the original TSP tour. (Image taken from [1].)

Stump and Michael[2] compare the cyclic TSP algorithm from Chevaleyre[1] to

two different Vehicle Routing Problem with Time Windows (VRPTW) algorithms (see

[16] for a treatment of the VRPTW). The first VRPTW algorithm, which the authors

call “Next-Visit VRPTW”, considers a single cycle of the vehicle. In other words, it

creates a Hamiltonian tour (that is, each task may only be visited once per cycle)

that satisfies all time window constraints (Fig. 2.3). The second algorithm, “Horizon

VRPTW”, attempts to generate an optimal route that visits all tasks multiple times

over a defined time horizon, with higher priority tasks having more frequent visit

window constraints. For example, a high priority task might require three visits

17

within the horizon, whereas a low priority task only requires one. The authors also

impose a “return to base” constraint, since the quadrotor UAVs used in the research

must recharge from time to time at a base station. They simulate the cyclic TSP and

Next-Visit VRPTW in a scenario involving multiple task locations with a team of

quadrotor UAVs over a period of six hours. The authors did not publish results for the

Horizon VRPTW due to issues with the algorithm’s ability to satisfy revisit period

constraints. For the cyclic TSP strategy, five UAVs were used, whereas the Next-Visit

VRPTW allows for anywhere from one to six UAVs to be employed at a given time,

with the algorithm deciding the appropriate number to employ. Their results show

the cyclic TSP strategy produces more frequent visits to the prioritized tasks, but

that the Next-Visit VRPTW still meets the minimum revisit times. The authors note

the advantage of the Next-Visit VRPTW is its ability to incorporate varying patrol

periods while resulting in less total flight time. Essentially, Next-Visit VRPTW is

able to meet requirements while conserving resources. Finally, the authors provide a

defense of their exact, centralized solution, acknowledging the risk of a single point

of failure and the imposed communication burden. Still, they argue, their approach

provides a quantitative benchmark for assessing decentralized heuristic solutions that

may be more robust.

Similar to Stump[2], Pasqualetti et al. explore a patrolling problem with prior-

itized tasks[17]. They also use the cyclic TSP strategy, which they refer to as the

Equal-Spacing trajectory, as a benchmark. However, rather than achieving some

required visit window for tasks as in [2], they propose the “Equal-Time-Spacing”

trajectory which seeks to minimize the weighted revisit period. The Equal-Time-

Spacing trajectory allows agents to hold their position at a task based on its prior-

ity so as to minimize weighted revisit time while keeping the time-spacing between

vehicles equal. They show that, for a variety of priority sets, the Equal-Spacing al-

18

Figure 2.3. Diagram depicting the use of VRPTW to enforce priorities. High priority
nodes have more frequent windows. (Image taken from [2].)

gorithm represents a conservative upper bound to the achievable performance of the

Equal-Time-Spacing algorithm, which often results in lower refresh times. Next, the

authors propose two different distributed control algorithms for implementing the

Equal-Time-Spacing trajectory, each with differing communication constraints. Us-

ing 3 robots and a simulation with 35 tasks and a lab experiment with 6 tasks, the

authors demonstrate that the distributed control algorithms eventually converge to

the predicted centralized solutions.

In [18], a centralized and decentralized approach are taken to the persistent moni-

19

toring problem. (The decentralized algorithm is described below in the section on util-

ity function strategies). The centralized algorithm, which the authors call CSWEEP,

is a TSP-based approach in which each of the tasks to be monitored is considered a

node. A classic TSP is solved and the resulting tour is partitioned into k subtours,

much like in the partition strategy of Chevaleyre[1]. The mobile sensors then contin-

ually traverse their subtour, which provides an upper bound on the maximal revisit

time to any given node.

The approach to persistent monitoring taken in [3] is to minimize the maximum

weighted latency between task visits by assigning each task as the vertex of a graph,

with the weight of each vertex corresponding to the priority of the task. The edges

between vertices represent the travel time between them. They then define weighted

latency as the time between consecutive visits to a vertex multiplied by the weight

of the vertex. Since the problem of minimizing the maximum weighted latency of

a closed tour that visits all nodes is NP-Hard, two approximation algorithms are

proposed. The algorithms work by partitioning the graphs by node priority and then

generating subtours that visit all nodes at least once, but visit high priority nodes

more often. The generated subtours are then optimized by solving a TSP on the

subset of vertices. See Fig. 2.4 for a depiction of the node partitioning scheme. The

optimized subtours are traveled by the agent in sequence to accomplish the persistent

monitoring task. The algorithms are tested on a variety of graphs with node counts

on the order of several thousand. Their results show cost reductions of 40-70% over a

standard TSP tour, with more cost savings achieved as the node count increases. Of

course, the authors’ algorithm is at a significant advantage since it allows for multiple

visits to a high priority vertex before visiting those of lower priority, whereas a TSP

tour must visit all other vertices before visiting a high priority vertex again. Still,

their approach provides a way to handle task priority and establishes a metric for

20

gauging and bounding performance.

Figure 2.4. Example of the node partitioning algorithm from [3] (original image from
the source), where multiple subtours are constructed with high priority nodes being
included in more subtours than those of low priority.

The work of Smith and Rus[19] is similar to that from [3] above. They also

define the maximum weighted latency metric (which they call “maximum urgency”)

for a set of prioritized tasks. They propose the Partition-Tour policy, which creates

k partitions in the region containing all tasks, one for each vehicle, k. Then, the

partitions are ordered according to a macro-TSP solution. Within each partition a

small TSP is solved, with nodes of priority 1 being visited in every partition, but nodes

of priority 2 only visited in 1
2

the partitions, and so on such that nodes of priority l

are visited in every 1
l
-th partition, where l is the priority of the node. Subtours are

generated inside each partition in this fashion until all nodes have been visited at least

once. Then, 2l−1 full tours are drawn, each connecting a set of subtours. The end

result is a sequence of tours that, when executed by the k agents, is asymptotically

optimal. Unfortunately, the Partition-Tour policy scales poorly with l, the number

21

of priority levels, so the authors introduce a computationally efficient heuristic based

on the k-opt TSP improvement method[20, 21]. The heuristic solves for a TSP tour

through all nodes, and then assigns vehicles to visit subsets of vertices along that

tour, with higher priority vertices appearing in more subtours.

Another common approach for patrolling a set of n tasks with k vehicles is to

partition the tasks into k clusters using a k-means clustering algorithm[22][23][24].

The k-means algorithm was first proposed by Stuart Lloyd for signal processing

applications[25]. It has since been applied in numerous fields for statistical analysis.

In PISR, if we assume each task is a “data point”, we can use k-means to efficiently

group tasks into clusters for easier servicing by a team of vehicles. K-means aims

to assign a set of n data points to k clusters with the objective to minimize the

“Within Cluster Sum of Squares (WCSS)”, that is, the sum of the squared distances

between the data points and the mean (centroid) of their assigned clusters. Solving

the WCSS objective function is NP-Hard[26], so k-means proposes a heuristic mini-

mization method. Of course, this results in sub-optimal solutions that are dependent

upon the initial conditions of the algorithm. As such, many different initialization

methods for k-means clustering have been explored. K-means++ is one of the most

popular initialization methods because it has been shown to perform well on a wide

variety of data sets[27]. From MacKay[28], to start the algorithm, each mean (the

centroid of each cluster) must be initialized. The most basic initialization method

is to generate k random values for each mean. The rest of the algorithm proceeds

in two steps: an assignment step and an update step. In the assignment step, each

data point is assigned to the nearest cluster. Then, in the update step, the centroid

of all points in each cluster is calculated and becomes the new mean for that clus-

ter. The two-step algorithm proceeds until data point assignments are unchanged,

resulting in no changes to the means. While the basic k-means clustering algorithm

22

always converges to a fixed point, the random assignment of initial means can result

in final clusters that are objectively bad with respect to the optimal clustering. K-

means++ proposes an initialization procedure that is guaranteed to find a solution

within O(log k) of the optimal[29]. The k-means++ initialization starts with select-

ing the first mean uniformly at random from the vector of data points. Then, for

every data point, the distance between it and the nearest center in the set of centers

that have already been created is calculated, called d(x). A new mean is chosen from

the set of points, with the probability of any point becoming a new mean based on

a weighted probability distribution that is proportional to d(x)2. This initial mean

selection process is repeated until k means have been chosen. The algorithm then fin-

ishes using the basic two-step k-means clustering process. Once the PISR tasks have

been partitioned with k-means clustering, each vehicle continually visits the tasks

within its assigned cluster according to a Euclidean TSP solution on the subset of

tasks. In this research, since each vehicle is traveling its own TSP subtour, we refer

to the k-means multi-vehicle PISR method as “k-subtours”.

2.4.2 Utility Function Methods.

The authors of [18], who implemented the TSP-based CSWEEP algorithm above,

also consider a decentralized algorithm, which they name DSWEEP. Unlike CSWEEP,

DSWEEP assumes no central planner is available and instead relies on inter-vehicle

communication to provide information about the environment. Vehicles share their

knowledge about task age (that is, the time elapsed since a task was last visited)

and locally store the information in a sweep table. Using the sweep table, vehicles

decide which task to visit next based on a utility calculation. The next-visit decision

is performed iteratively within “hop” rings around the vehicle, with one hop defined

by a user-defined travel time. The vehicle first looks within one hop for any tasks

23

that have yet to be visited by any vehicle. If only one exists, it is selected as the next

destination. If multiple unvisited tasks exist, it chooses the nearest one. If all one-hop

tasks have been visited previously, it looks at the impending sweep deadlines (defined

as the task age plus the required sweep period) and, if any of the sweep deadlines is

within one hop time, it marks that task as urgent. If multiple urgent tasks are found,

it selects the one with the earliest sweep deadline. If no urgent tasks are found within

one hop time, the vehicle extends its search to tasks within a two-hop radius. This

process continues until a task is selected. The authors simulate DSWEEP on a map of

100 randomly generated tasks inside a 10 by 10-unit square, imposing three different

sweep periods (of T = 80, 120, 160s), and allowing agents to exchange information

if within a 2-unit distance of each other. The results show DSWEEP to outperform

random task selection for all simulated scenarios, with DSWEEP maintaining 78% of

nodes within their sweep deadlines for the T = 80s scenario while only 51% of nodes

were kept current when random task selection was used.

Machado et al.[4] investigate seven multi-vehicle patrolling architectures, with

some architectures using task idleness to make utility-based decisions and others

choosing destinations randomly. Architectures were also differentiated on other fea-

tures, such as sensor range and type of communication between vehicles. Figure 2.5

provides a summary of the considered architectures. The authors adopt three primary

performance criteria to compare the various architectures: average task idleness (av-

erage idleness among all tasks throughout the simulation), worst idleness (the highest

idleness value achieved by any task), and exploration time (how long it takes for ev-

ery task to be visited at least once). The most interesting aspect of the Machado

results is the comparison between task idleness and random task selection. They

show that random task selection performs much worse than using task idleness as

a decision basis, which establishes idleness as a good heuristic for task selection in

24

PISR. Also, as might be expected, performance improves with increasing inter-vehicle

communication and coordination.

Figure 2.5. The seven architectures from [4] (Figure taken directly from the source).

A team at Stanford University investigated a utility function approach for both

single and multi-vehicle PISR in [5] and later extended their work to laboratory flight

testing in [30]. Their vehicles were tasked with minimizing the maximum age of any

single graph node across a gridded network of nodes. Node ages are reset to zero

when an agent visits. Figure 2.6 provides a sample plot of maximum age for a simple

2-node example.

The single-vehicle utility function employed to minimize maximum latency is,

V = max
j
{Tj + w0δij}, ∀j ∈ {1 . . . , n}

where V is the value of the selected task, Tj is the age of candidate task j, δij is the

distance between current task i and j, and w0 is a weight parameter with units of

s/m. For the simple test case of a single vehicle and two nodes, the authors found

w0 = −1/VUAV , where VUAV is the constant velocity of the UAV, to be the optimal

value. When more than two nodes are introduced, the authors acknowledge that

using w0 = −1/VUAV may not be optimal, and in that case they use an iterative

sampling optimizer to approximate the optimal value for w0.

The authors of [5] and [30] then extend their utility function to the multi-vehicle

25

Figure 2.6. Notional progression of two node ages (in blue and red) as well as their
sum, which is the maximum age of the network represented by the black line. (Figure
adapted from [5]).

case by including an additional term,

V = max
j
{Tj + w0δij + w1 min

k 6=i
(δkj)} ∀j, k ∈ {1, . . . ,m}

where w1 is an additional positive weight parameter (s/m) and δkj is the distance

between the k-th vehicle and task j. In other words, all other things equal, the multi-

vehicle function encourages each vehicle to target nodes far away from other vehicles.

As in the single vehicle case, the weight parameters w0 and w1 are optimized offline.

The authors call the multi-UAV reward function the Multi-agent Reactive Policy

(MRP), named for the reactive nature of vehicle coordination under the policy. They

then compare the performance of MRP against a proactive Space Decomposition

(SD) strategy for vehicle coordination. In SD, all nodes are divided optimally into k

partitions, one for each vehicle, with a genetic algorithm. The partitioning is optimal

26

in the sense that it seeks to divide nodes among the vehicles such that maximum

latency is minimized. Simulation results show that SD performs better, but as the

number of vehicles increases, the performance of MRP approaches that of SD. As a

final step, the paper goes on to impose simple dynamic constraints on the vehicles,

limiting their turn radius. They then conduct several simulations with varying num-

bers of vehicles and minimum turn radii and compare the performance of the policy

using Euclidean distances for δij versus Dubins trajectories. In general, the policy

using actual flight distances outperforms the Euclidean policy (so long as points are

close enough together for dynamics to be a factor). However, an interesting result

is that the performance gains derived from using actual distances over Euclidean de-

crease as the number of vehicles increases, regardless of the minimum turning radius.

The authors explain this as an emergent behavior, resulting from the ability of other

vehicles to “fill in the gaps” for each other.

2.5 Survey of the Traveling Salesman Problem

In this section we survey several variants of the well-known Traveling Salesman

Problem, or TSP, that are of special interest for PISR applications. The TSP is

a combinatorial optimization problem and special case of the general VRP. It asks,

given a set of cities to be visited, in what order should a salesman visit the cities to

minimize the total distance traveled? There are many variants of the TSP. Below,

the classic, two-dimensional, Euclidean TSP along with three TSP variants of special

interest to task selection in PISR will be discussed. Like the VRP, the TSP is NP-

hard[31]. Still, due to its popularity, many TSP algorithms have been developed.

These algorithms can find solutions for TSPs with node counts into the millions,

often with solutions less than 1% from optimum[32].

The following terminology will be used to classify algorithms:

27

� Exact - finds the global minimum solution.

� Approximate - returns a solution with a worst-case bound; it approximates the

global minimum to within some factor ε.

� Heuristic - generates locally optimal solutions that deliver empirically good

results, but without any guarantee of being near or approaching the global

minimum.

2.5.1 The 2D Euclidean TSP.

The Euclidean TSP can be formally defined in R2 as follows. Let the graph be

G(V,E), where V = {1...n} represents the nodes and E the edges. Each edge, E,

has an associated weight, dij, which corresponds to the distance between each Vj.

Thus the agent must determine a closed path that visits each Vj exactly once (this

restriction is called a Hamiltonian tour) while incurring the minimum cost, J , where

J is the sum of all di,j traveled.

The most common formulation of the TSP is in the form of an integer linear

28

program (ILP). The below ILP formulation was taken from [33]:

Minimize
∑
i 6=j

dijxij (1)

subject to
∑
j=1
n

xij = 1, i = 1, . . . , n, (2)

n∑
i=1

xij = 1, j = 1, . . . , n, (3)

∑
i,j∈S

xij ≤ |S| − 1,

S ⊂ V, 2 ≤ |S| ≤ n− 2, (4)

xij ∈ {0, 1},

i, j = 1, . . . , n, i 6= j (5)

(2.1)

where xij is a binary variable, equal to 1 if and only if the arc associated with dij

is used in the solution. Constraints (2) and (3) are degree constraints, specifying

that each vertex (or city) may only be entered once and exited once. Stated another

way, this constraint ensures each vertex has a degree of exactly two. Constraint (4)

eliminates solutions with subtours while (5) imposes the binary condition on variable

xij.

2.5.1.1 Exact Algorithms.

One of the earliest and most common algorithms for solving Eq. 2.1 is the branch-

and-bound (BB). Laporte provides an excellent qualitative description of BB algo-

rithms:

In the context of mathematical programming, they can best be viewed
as initially relaxing some of the problem constraints, and then regaining
feasibility through an enumerative process. The quality of a BB algorithm

29

is directly related to the quality of the bound provided by the relaxation.
[33]

The relaxation in Eq. 2.1 is typically performed on constraint (4), which allows for

subtours in the solution. A solution without subtours can then be found by solving an

assignment problem, for which O(n3) solutions exist. The BB algorithm with subtour

relaxation was used by Carpaneto and Toth in 1980 to solve 240-vertex TSPs in less

than one minute[34]. In 1981, Balas and Christofides introduced constraints into the

objective function via a Lagrangian approach and used BB to solve TSP instances of

5,000 vertices within 40 seconds and 500,000 vertices in just over 3.5 hours[35].

A more modern approach is to use the cutting plane method from linear program-

ming (LP). This is often combined with a branching technique to form a branch-and-

cut (BC) algorithm[36]. With the cutting plane method, the TSP is formulated as an

ILP as in Eq. 2.1, but the binary constraint (5) is relaxed. The LP is then solved. If

the optimal solution x∗ consists of only ones or zeros, the optimal solution to Eq. 2.1

has been found. If x∗ is not binary, a “cut”, or linear inequality constraint, is added

to the relaxed LP such that no integer solutions are eliminated while removing the

current non-binary x∗.

Methods implementing the cutting plane technique are perhaps the best exact TSP

algorithms known to date. The Concorde TSP Solver from University of Waterloo

implements the BC algorithm as its primary solver, and has been used to solve TSP

instances with up to 85,900 cities to optimality[37].

While BB and BC along with their numerous variations on relaxation are among

the most popular exact TSP algorithms in the literature, it should be noted that

many other exact algorithms have been introduced, including those based on shortest

spanning trees, the shortest spanning arboresence bound, and the 2-matching lower

bound. A detailed discussion of each of these algorithms is beyond the scope of this

literature review, but Laporte provides brief descriptions and additional references in

30

[33].

2.5.1.2 Approximate Algorithms.

One of the earliest and most widely known approximate TSP algorithms for the

symmetric, Euclidean TSP in R2 is that of Christofides. A symmetric TSP is one in

which dij = dji. That is, the time to travel between i and j is the same regardless of

the direction traveled. To start, Christofides finds a minimum spanning tree (MST)

for the graph G(V,E) describing the TSP. This can be done in O(n2). Since the

resulting MST is not, in general, a Hamiltonian tour, Christofides then performs a

minimum-cost matching algorithm (O(n3)) on all nodes with degree 1 (nodes that are

only connected to one edge). It can be shown that this algorithm provides a worst-

case bound on the solution to any symmetric TSP in R2, with an approximation ratio

of 3
2
. In other words, the cost of a solution generated by Christofides is guaranteed

to cost no more than a factor of 1.5 times the optimum[31].

In 1996, Arora improved upon Christofides’ 3
2

approximation ratio[31]. Arora’s

algorithm, based in dynamic programming, achieves a worst-case bound of (1 + ε)

for a cost of nO(1/ε). With Arora’s algorithm, a TSP solution can be found that is as

close to the optimum as desired. While the author admits that the implementation is

slow for even moderate values of ε, the algorithm opens the door for faster solutions

via parallelization, since it naturally breaks up a single large TSP instance into many

smaller instances. Arora’s approach is also valuable for creating benchmark solutions

against which speedier heuristic algorithms can be evaluated.

2.5.1.3 Heuristic Algorithms.

Christofides’ and Arora’s algorithms provide approximate solutions with a worst-

case bound. In addition, many heuristics have been developed that are known to

31

provide “good” solutions in an empirical sense, but without a formal bound on per-

formance. As an intuitive example, consider the Nearest Neighbor (NN) algorithm.

In NN, a tour is constructed one edge at a time. An arbitrary vertex is chosen as

the starting location and connected to the next closest vertex. That vertex is then

connected to the nearest unconnected vertex and so on. The last vertex is connected

back to the first. The complexity of NN is O(n2). As a variation, all n vertices can

be considered as the starting point, which increases the cost to O(n3) but tends to

yield better solutions[38].

The NN algorithm constructs a solution edge by edge, but some heuristics adopt a

tour improvement approach. An example of this is the k-opt algorithm[20, 21]. With

k-opt, an arbitrary initial tour is constructed. Then, k edges are removed from the

initial tour and reconnected in all possible ways. If a shorter tour is found, it becomes

the initial tour for the next iteration of k removals. The process is repeated for a set

number of iterations, or until no improvements are found. Commonly, k is selected to

be either 2 or 3, but Lin and Kernighan demonstrated an improved variation where

k is chosen dynamically at the start of each iteration yielding better results[21].

Other examples of tour improvement heuristics are Ant Colony Optimization

(ACO)[39] (a swarm intelligence algorithm by Dorigo) and simulated annealing (SA)[40],

an optimization technique that emulates the natural annealing process of metals.

Both ACO and SA are types of evolutionary algorithms, wherein an initial solution is

constructed and incrementally improved through the random exploration of the state

space.

2.5.2 The TSP with Time Windows.

In the standard TSP, the salesman is only interested in minimizing the total

distance traveled. The only restriction is that each city is visited exactly once. What

32

if, however, some or all of the cities on the salesman’s list had restrictions as to how

early or late they could be visited? This variation is the Traveling Salesman Problem

with Time Windows (TSPTW). It may also be referred to as the time-constrained

TSP.

In the TSPTW, each node has an associated time window, which defines when

the node can be visited, as well as a service requirement, q which represents some

amount of goods that must be picked up or dropped off at that node. An agent (or

agents) are then dispatched from a depot to visit the nodes. The agents may arrive

at a node before the time window opens and wait there with no penalty, but it may

not arrive after the time window has closed. Each agent also has a fixed capacity,

Q, so that the net load from goods picked up and dropped off may not exceed Q.

(Note that for PISR, Q can be considered infinite, since the “goods” being handled by

the agent are data and we impose no data capacity limitations.) The most common

objective is to minimize the total number of tours required to meet all demands with

a set number of vehicles without exceeding vehicle capacity. The secondary objective

is to minimize total distance traveled.

2.5.2.1 Exact Algorithms.

Despite the fact that the TSPTW has been shown to be an NP-complete problem[41],

several exact algorithms have been proposed for simplified versions of the problem

with varying degrees of success. One of the earliest was proposed by Christofides,

Mingozzi, and Toth in 1981[42]. The authors implemented a branch-and-bound al-

gorithm, using a state-space relaxation from a dynamic program to derive the lower

bound. Their algorithm was demonstrated to be successful on a TSPTW instance

with up to 50 nodes, so long as the time windows were sufficiently tight.

In a 1983 technical note, Baker formulated the TSPTW as an ILP and proved

33

the dual of his model to be a disjunctive graph model, for which solutions exist

from scheduling theory[43]. By relaxing the dual, Baker’s algorithm was able to solve

TSPTW problems of up to 50-nodes, with the restriction that only a small percentage

of the time windows could overlap.

Nearly a decade later, Dumas et al. applied a dynamic programming approach

to the TSPTW, leveraging the time window constraints to eliminate large chunks

of the problem state-space[44]. The authors were able to solve significantly larger

problem sizes than in previous work, demonstrating their algorithm’s effectiveness

on an instance with 200 nodes and “fairly wide” time windows. Furthermore, if the

geographical density of nodes was kept constant for increased problem sizes, they

were able to solve problems of up to 800 nodes.

Tsitsiklis considers several special cases of the TSPTW, including when the num-

ber of nodes is bounded, the time windows open at t = 0, and the time windows

are infinite after opening[45]. For each special case, the author either proves its NP-

completeness or presents a forward dynamic programming algorithm that solves in

polynomial-time.

2.5.2.2 Heuristic Algorithms.

Bräysy and Gendreau[16] provide a survey of heuristic and meta-heuristic algo-

rithms for solving the TSPTW. (They use the terminology Vehicle Routing Problem

with Time Windows (VRPTW)). They break the surveyed algorithms into two cate-

gories: route construction and route improvement methods. The original papers they

reference are cited below.

In route construction, tours are constructed piecewise until a feasible solution is

generated, with each sequential node selected based upon a cost minimization criteria.

Node selection is further constrained by vehicle capacity and time windows. Solomon

34

proposed the simple “Giant-Tour” route construction heuristic in 1986[46]. It first

solves a classic TSP with a single vehicle visiting all nodes, then splits the Giant-

Tour into smaller tours until all nodes are visited and vehicle capacity constraints are

satisfied.

One of the most popular route construction methods is the “Savings” heuristic,

also proposed by Solomon[47]. The algorithm is initialized by servicing every node

with its own route. It then sequentially evaluates the savings that would be realized

from combining two routes and selecting the combination with the largest value in

savings, subject to the feasibility of the combination (i.e. that satisfies time window

and vehicle capacity constraints). The process is repeated until all nodes have been

serviced and all routes are feasible.

Another technique is a variant on the nearest-neighbor algorithm from the classic

TSP[47]. A route is constructed by first picking the closest customer to the depot with

an eligible time window. Once the first customer has been serviced, the algorithm

searches for the next-closest eligible customer. The algorithm continues until a vehicle

reaches capacity, at which point it starts a new route with a new vehicle, or until all

nodes have been serviced.

The last major class of route construction algorithms surveyed by [16] are the

“sequential insertion heuristics”. Routes are initialized with “seed” customers, who

are selected based on some criteria, such as the farthest customer from the depot.

Customers are then inserted into the seed customer’s route until the vehicle capacity

is reached or until no more time windows can be met. If any unserviced customers

remain, a new seed customer is selected and a new route construction process is

initiated. Many variations on the sequential insertion heuristic have been explored,

with each variation applying different criteria for the selection of seed and insertion

candidates[48, 49].

35

The second half of the Bräysy and Gendreau survey looks at route improvement

methods, wherein an arbitrary route is constructed to initialize the algorithm. The

initial tour is then improved, and feasibility conditions satisfied, through an iterative

process. As [16] points out, there are four primary considerations in developing

a route improvement heuristic: how the initial tour is selected, what criteria are

used for making improvements, how improvements are accepted, and the algorithm

stopping criteria. The most popular route improvement method, k-opt exchange, was

already discussed in Sec. 2.5.1 for solving the Euclidean TSP. When applied to the

TSPTW, if more than one route is used in the solution, edges are swapped within

individual routes (intra-route swapping) to search for improvements. Variations on

k-opt include inter-route swapping[50], swapping of customers[51, 52], and swapping

of sets of customers[53].

Related to k-opt exchange, Koskosidis et al. propose a “cluster-first, route-second”

algorithm[54]. Customers are first divided into clusters with a heuristic clustering

algorithm. Each cluster is then serviced by its own route. The total solution is

optimized by evaluating the exchange of customer pairs between clusters and updating

the solution when lower cost routes are found.

Finally, in 1997 Shaw introduced a Large Neighborhood Search (LNS)[55]. In

LNS, a subset of customers are removed from the initial route and then reinserted

into the route, with the reinsertion position selected by a branch and bound algorithm.

The customers selected for removal are chosen based on similarities in location (how

near they are to each other), required service load q, and time windows. While LNS

generates competitive TSPTW solutions, it does carry a high computational burden

which limits its applicability to problem instances with a low number of customers

per route.

The TSPTW has features that make it attractive as a tool for persistent moni-

36

toring problems. When coupled with multiple vehicles and subtours, it allows some

tasks to be accomplished more frequently than others, corresponding to higher prior-

ity tasks having shorter and more frequent time windows.

2.5.3 The Weighted TSP (or The Minimum Latency Tour Problem).

What if all cities in the salesman’s tour were not of equal importance? The

salesman would then want to visit the more important cities earlier in the tour while

still minimizing distance traveled to the extent possible. This introduces the TSP

with prioritized vertices in what is known as the Weighted TSP (WTSP). Note: In

the literature, the WTSP is more commonly referred to as the Minimum Latency

Tour Problem (MLTP), but in the interest of maintaining consistent terminology,

WTSP will be used here.

2.5.3.1 Exact Algorithms.

Because the WTSP is at least as hard as the TSP[56], there are no polynomial

time solutions to the general problem. However, Blum et al. provide some exact

solutions to special cases in their 1994 conference paper[56]. First, they provide a

proof that a depth-first search solution exists when the nodes are vertices of a tree

and all edges on the tree have unit length. The second exact solution comes from

dynamic programming, where they consider the special case when“a good bound on

the number of potential partial solutions” exists. Specifically, they prove that when

all points are on a line, dynamic programming can provide a solution to the WTSP in

O(n2). They also show that dynamic programming can produce a solution in O(n2)

if the nodes are vertices of a tree of at most degree 3 (i.e. there are at most 3 nodes

on the longest path between any two leaves).

More recently, a team from Shu-Te University in Taiwan introduced a hybrid

37

dynamic-programming/branch-and-bound algorithm to exactly solve the metric space

WTSP[57]. They describe their algorithm as “dynamic programming with pruning”

and demonstrate it on both random and real-world data sets consisting of node counts

from 15 to 23. Their algorithm shows improvements over pure dynamic programming

or branch-and-bound approaches and is able to solve instances of up to 26 nodes in

about 100 seconds on a personal computer.

2.5.3.2 Approximate Algorithms.

In the same 1994 paper as above, Blum et al. provide the first constant-factor ap-

proximation for the WTSP in a metric space[56]. They prove an (α, β)-approximator

algorithm (an algorithm in which the larger problem solution is stitched together from

solutions to the partitioned problem) has an approximation ratio of 144.

Goemans and Kleinberg improved the WTSP approximation ratio using their own

(α, β)-approximator algorithm in [58] to 21.55. In their conclusion, the authors cite

the k-TSP solution of Garg[59], which can combine with their algorithm to further

improve the approximation ratio to 10.78.

The approximation ratio is further reduced to 7.18 usingO(n log n) calls by Archer,

Levin, and Williamson[60]. Their method is based on the prize-collecting Steiner

tree while performing calls to the Garg k-TSP. While a similar method was used

in previous papers, the authors were able to improve the approximation ratio and

running time over previous algorithms by taking advantage of special structures within

the k-TSP sub-routine.

2.5.3.3 Heuristic Algorithms.

A meta-heuristic algorithm, which the authors call GILS-RVND, brings together

three different heuristic algorithms in [61]. The meta-heuristic starts with a greedy

38

initial tour construction and then improves on the initial tour through node swapping

and random perturbations. They use nine benchmark instances of the WTSP, some

with up to 1000 customers, to demonstrate “good” performance. They also show

that their algorithm finds the known optimal solutions for instances with up to 50

customers.

A group of students from Northeastern University in Shenyang, China proposed

a modified version of the ant colony optimization algorithm for solving the WTSP in

2011[62]. By introducing node priority into the ant colony heuristic matrix, they were

able to show that their algorithm performed almost as well as the best known approx-

imation algorithms for 13 benchmark instances of the WTSP, though the authors did

not present computation time data. One down side to the ant colony approach, is

that the algorithm requires extensive exploration of parameter values in order to find

the best solutions.

The WTSP is interesting in the context of PISR because it establishes two use-

ful tools: a way to deal with tasks of varying priority and a metric (in the form of

latency) for comparing the performance of different algorithms. Like all TSP solu-

tions, however, the WTSP requires that each node be visited exactly once per tour.

So while WTSP solutions do account for priority with node visit order, they do not

allow for more frequent visits to high priority nodes.

2.5.4 The Dubins TSP.

All formulations and solutions to the TSP and its variants that have been discussed

so far assume the traveling agent moves between nodes in a straight path. They do

not consider the dynamics of the traveling agent which could limit its ability to follow

the generated path solutions. In the case where the agent is a fixed-wing UAV, vehicle

dynamics may have a significant effect on the feasibility of a Euclidean TSP solution,

39

notwithstanding that the Euclidean TSP solution is likely no longer optimal. When

the distance between nodes is sufficiently small compared to the UAV turning radius

(i.e. the distance between nodes is less than four times the turn radius[63, 64]), a

more appropriate problem formulation is the Dubins TSP (DTSP). Note that when

the inter-node distance is significantly larger than the UAV turn radius, the DTSP

solution approaches that of the Euclidean TSP.

There are no exact algorithms for the DTSP. However, the problem of minimum

time point-to-point trajectories for Dubins vehicles has been widely studied. Savla,

Frazzoli, and Bullo leverage this previous body of work in their heuristic Alternating

Algorithm (AA)[65]. The basis of AA is that solving the DTSP requires two steps:

determining the order of node visits and assigning headings to the vehicle at each

node. The AA starts by finding the optimal Euclidean TSP solution to the set of

nodes, which fixes the order of visitation, and then generates a sub-optimal, yet cost-

bounded, DTSP tour. The DTSP tour is formed by keeping the odd edges of the

Euclidean TSP solution and replacing the straight-line even edges with minimum-

length Dubins paths. The original node order from the Euclidean TSP solution is

preserved. The authors go on to show that AA has a worst-case bound in terms of

the Euclidean TSP optimal solution of 1 + κ[n/2]πr, where κ is a constant of value

< 2.658, n is the number of nodes, and r is the turn radius of the vehicle.

In [66] and [67], the authors propose an approximation algorithm for the DTSP

based on arbitrarily fixing the required heading at all nodes to 0. An asymmetric dis-

tance matrix is then calculated based on the n(n−1) Dubins travel distances between

all nodes. This asymmetric TSP is then solved using a log n approximation algorithm.

The resulting solution for a fixed heading assignment has an expected tour length

within a factor of
(

1 + max
[

8πr
Dmin

, 14
3

])
log n, where Dmin is the smallest Euclidean

distance between two nodes. The authors go on to propose a Randomized Heading

40

(RH) version that is solved in the same fashion and improves expected solutions to

be within
(

1 + 13.58r
Dmin

)
log n of the optimum. The RH algorithm is computationally

demonstrated to outperform AA from [65] for problem sizes with n > 10[66].

A receding horizon approach is taken by Ma and Castanon in [68] and compared

to AA[65] and RH[66]. Ma and Castanon evaluate three different receding horizon

algorithms: a two-point (2PA), three-point (3PA), and three-point look-ahead (LAA).

The 2PA assumes the initial vehicle heading is given and the destination terminal

heading is free. Once the terminal heading is found, it is used as the initial heading

in computing the next edge of the solution. The 3PA works in a similar manner,

solving the Dubins path through three points and determining the heading for the

midpoint and terminal nodes. The terminal node then becomes the initial node for

another three-point path. In this way, the 3PA only solves Dubins paths between odd

numbered nodes. Finally, the LAA solves a three-point Dubins path to determine the

midpoint and terminal headings, but the vehicle only uses the solution until it reaches

the midpoint, at which time a new three-point path is calculated with the previous

midpoint solution becoming the new start location and heading. Through simulation

results, the authors show that LAA outperforms AA, RH, 2PA, and 3PA, both for

problems with predetermined node orders and when the node orders must be found

by the algorithms. As an interesting aside, the 2PA and AA performed similarly in

all trials.

An extension to the work on the RH algorithm in [66] is conducted in [69]. Instead

of assigning random headings to nodes, the possible terminal headings to each node

are discretized and represented by K nodes clustered around the original node. The

Dubins distances are then calculated between pairs of nodes from separate clusters.

The final tour is constructed by solving the resulting nK-node asymmetric TSP,

which can be done with a heuristic or log n approximation algorithm. While this

41

discretization technique greatly increases the node count for even modest levels of

discretization, the authors claim that a 100-node DTSP with 5 discretization levels

(a 500-node asymmetric TSP) can be solved on a standard laptop in one minute. The

authors show Monte Carlo simulation results comparing their K-headings algorithm

with K = [1, 5, 10] to AA, RH, and a Dubins implementation of NN. For all levels

of discretization, K-headings resulted in the shortest average tour lengths among

compared algorithms.

Aside from the approximate algorithms already discussed, heuristic approaches

have also been studied. Particle Swarm Optimization (PSO) is applied to the DTSP

by Kenefic in [70]. The visit order is determined by solving the Euclidean TSP while

the particle headings are initialized using either the AA heuristic from [65] or by

taking the average of the entry and exit headings from the Euclidean TSP solution,

with the decision of which heading heuristic to use based upon how close vertices are

with respect to the vehicle turning radius. Kenefic demonstrates his PSO approach

on 10, 20, and 30 vertex graphs with varying amount of spacing between nodes. Due

to the authors’ use of the AA heuristic in initializing headings, the PSO solution

converges to the AA solution as particle density increases.

More recently, in 2012, Yu and Hung proposed a Genetic Algorithm (GA) for

solving the DTSP[71]. Like all GAs, it starts with a population of arbitrary solu-

tions; in terms of the DTSP this means a population of randomly selected N -tuples

corresponding to node order and heading angles (xj, yj, θj). Their GA then uses

a combination of elitism (passing the best solutions directly into the next genera-

tion), roulette wheel (building a tour with random selections of nodes and headings),

crossover (combining the solutions of two randomly-selected parents in the previous

generation), and mutation (randomly permuting solution elements of some percentage

of the population). They demonstrate their GA on graphs with node counts from 5 to

42

50, having varying degrees of node density, and show that, on average, it outperforms

AA and RH.

2.6 Utility Theory

Up to this point, the surveyed literature has been motivated by viewing PISR

as a problem in combinatorial optimization. From this perspective, thinking about

PISR in terms of the Traveling Salesman Problem is natural. However, we can also

think about PISR purely from the agent point of view. From this perspective, PISR

can be viewed as an Artificial Intelligence problem. While the field of AI is vast

and encompasses a wide range of problem sets and algorithms, one tool in the AI

repertoire that is worth exploring is Utility Theory.

In their AI textbook, Russel and Norvig describe Utility Theory simply as a way to

“represent and reason with preferences”[72]. Preferences, in turn, describe an agent’s

desire, or lack thereof, to be in a given state or take a certain action. The agent’s

preferences are represented with a utility function. In the usual formulation, actions

and states either incur a reward (positive utility) or a penalty (negative utility).

Once the agent calculates the utility of all possible action-state combinations, if it is

rational, it will pursue the option with the highest utility.

Russel and Norvig provide a helpful example. Consider an agent trying to catch

a flight. The desired state is to make the flight, which provides a reward, whereas

missing the flight incurs a penalty. The available action is how early to leave the

house, which implies a corresponding amount of time waiting at the airport. So,

while leaving the house 24 hours in advance virtually guarantees making the flight, the

long wait at the airport significantly reduces the utility of that decision. Conversely,

leaving at the last possible moment may require no wait time, but the probability of

missing the flight is unacceptably high. The agent’s task, then, is to find the balance

43

between how early to leave for the airport and how long to wait, i.e. the decision with

maximum utility.

A closer inspection of the above example sheds some light on the difficulties with

utility-based decisions. Qualitatively, the flight catching model above is simple. If

one starts to think about the implementation of such a model, however, the challenges

become clear. What probability function should be used to determine the odds of

making a flight? How large should the make/not-make reward be compared to the

wait-time penalty? If the reward for making the flight is too large, then no amount of

waiting will ever cancel out the reward and the best decision will always be to leave

the house at the soonest possible moment, which is obviously undesirable.

Due to the difficulties addressed in the above example, it is a significant challenge

to design an appropriate utility function for agent decision making. Still, utility func-

tions offer attractive advantages over combinatorial optimization. They do not rely

on the convergence of an algorithm and are not subject to computational complex-

ity constraints as the number of agents or tasks increases. Furthermore, there is no

need for a central planner to conduct route assignments since, in the simplest form at

least, each agent makes its own decision about what to do. For these reasons, Utility

Theory is worth exploring as an approach to task selection in PISR and is discussed

in detail in Ch. III.

2.7 Summary

PISR has received several treatments in the literature. Most approaches formulate

the problem as a type of TSP or use a utility function.

The TSP is computationally hard, especially with the addition of time windows,

node priorities, asymmetry, and vehicle dynamics. The WTSP and TSPTW allow

for the incorporation of task priority into the TSP formulation and the Dubins TSP

44

provides a good model when a UAV is the vehicle and tasks are close enough together

such that vehicle dynamics become important. If the distance between tasks is large

compared to the vehicle turning radius, however, the Euclidean TSP is sufficient.

Utility functions for agent decision making are fast, but lack the mathematical

rigor and optimal guarantees provided by TSP. Crafting a useful utility function is

difficult and requires selecting a good heuristic based on state variables. It may also

be necessary to fine tune the utility function to arrive at the desired vehicle behavior.

Both TSP and utility methods allow for the incorporation of multiple vehicles.

With TSP, however, the computational complexity of developing a solution grows

rapidly with an increasing number of vehicles and tasks. Furthermore, computation

and assignment of solutions must be done by a centralized planner, which places a pre-

mium on stable communication links; a luxury not always available in an operational

environment. It is feasible that each vehicle could compute its own TSP solution

based on estimates of the environment state. This, however, requires an accurate

initial state synchronization and/or frequent exchanges of state information. The

utility approach requires only minimal information flow, pertaining to which vehicles

are accomplishing which tasks.

One significant advantage of TSP over utility functions is the guarantee of a

performance bound. With a TSP solution, it is possible to get a worst-case bound on

revisit times to any given task. It is also possible for the operator to easily locate a

vehicle and predict where it will be at a given time, since the task visit sequence of

each vehicle is predetermined.

When it comes to scalability and adaptability, the utility function approach has the

advantage. Since all TSP methods are computationally hard, the algorithms may take

a long time to converge, if they converge at all. Calculating utility values, on the other

hand, is extremely fast. For example, if tasks or vehicles are added or removed, a new

45

(potentially complex) TSP solution must be calculated and assignments redistributed

to vehicles. Using a utility function, the vehicles need only update their state variables

to reflect the new environment and future decisions will take the new information into

account. A summary of attributes for the TSP and utility function methods for task

selection is presented in Table 2.1.

Table 2.1. The utility approach for task selection in PISR has many advantages over
TSP

TSP Utility

Extension to Multi-Vehicle? Yes Yes
Architecture Centralized Decentralized

Computational complexity High Low
Guaranteed revisit times? Yes No
Communication demand High Low

Scalability Low High
Adaptability Low High

Due to the desire for a robust PISR solution, this research will pursue a utility

function approach to task selection in PISR. The aim is to assess how much is lost in

terms of performance by sacrificing the rigor of a TSP solution, and in turn, justifying

that loss with gains in ease of implementation, scalability, and adaptability.

46

III. Methodology

3.1 Overview

In this chapter we discuss the general problem of task selection in PISR and

define our performance criteria. We also formally define our proposed task selection

method, the Maximal Distance Discounted and Weighted Revisit Period (MD2WRP)

utility function and provide its derivation. Finally, we provide an overview of our

custom simulation environment and define our methodology for gathering the results

discussed in Ch. IV. Detailed documentation of the simulation code is provided in

Appendix A.

3.2 Performance Measures for PISR

In order to make comparisons between the various task selection methods for

PISR, we define a performance metric based on task age, which is the length of time

elapsed between consecutive visits to a task. Age-based metrics are a common means

of measuring performance in the literature on PISR and similar problems[4, 3, 5].

Specifically, we use average weighted latency as the primary objective function which

uses age as a basis, but multiplies each task age by a priority, which is a user-provided

value. The average weighted latency, L̄, is defined by,

L̄ =

∑m
k=0

∑n
j=1 p(j)Tk(j)

∆t ·m
(3.1)

where k is the time step, m is the total number of time steps, n is the number of

tasks, p(j) is the priority of individual task j, Tk(j) is the age of j at time step k,

and ∆t is the size of the time step. L̄ is calculated ex post facto to determine the

performance of the mission.

47

Equation 3.1 serves as a good metric for PISR because it considers both the

transient and steady-state phases of latency development, which we show to be an

important consideration in determining PISR performance. In this way, the L̄ metric

captures how vehicles will perform when viewing the mission as a whole, from start

to finish.

While Eq. 3.1 serves as a quantitative criterion, we also wish for a solution that

has certain qualitative attributes. In the spirit of autonomy, we desire a task selection

method that is adaptable, without human intervention, to a wide range of scenarios.

It should be able to accommodate single or multiple vehicles and numerous task

configurations, allowing tasks to have varying priorities. The solution should be

scalable; effective when the number of tasks or vehicles is small or large, whether

tasks are in close proximity or far apart. Lastly, the solution should be robust, that

is, resilient to the addition or removal of tasks and vehicles mid-mission, even if a

vehicle loss occurs unexpectedly.

3.3 The Maximal Distance Discounted & Weighted Revisit Period

While we argue that the task selection utility functions from Ch. II are better

suited for use in autonomous PISR applications than the TSP approaches, they still

lack some features we desire or suffer from drawbacks of their own. Only the function

from Ruan[73] allows for individual task weighting. The other functions all assume

tasks of identical weight. For multiple vehicles, most require every vehicle to be

aware of the location of all other vehicles throughout the mission, which may not be

achievable. As for the function in Ruan, upon which we base our solution, making

decisions solely on weight and future age is still troublesome. While we want to

reward the vehicle for visiting tasks that have not been visited in a long time, we

do not want to provide an incentive to travel to tasks that are far away. In other

48

words, we want the agent to spend as much time as possible accomplishing tasks,

not traveling between them. Therefore, we propose a utility function that still uses

future age as a basis for task selections, but that also discounts the reward received

for tasks that are further away.

To this end, the Maximal Distance Discounted & Weighted Revisit Period (MD2WRP)

was proposed by Kalyanam of AFRL[9]. It is,

V = max
j

[
e−βtijwj(Tj + tij)

]
, ∀j ∈ {1, . . . , n} (3.2)

where V is the value the agent receives for accomplishing the selected PISR task, tij

is the time to travel from current task i to candidate task j, β is a parameter that

discounts utility based on travel time to a task, wj is a weight parameter associated

with task j, and Tj is the time since j was last visited, also referred to as the age

of j. We add tij to Tj because we wish for the agent to consider the future age of

the task, that is, what the age will be at the time of arrival. For the purposes of the

derivation, we assume an agent with unit velocity, such that tij = dij, where dij is the

distance between tasks i and j, selected from the user-provided task distance matrix,

D. In simulations conducted later, we will specify a non-unit velocity for the agents.

The benefits of using Eq. 3.2 in task selections for PISR will be explored through

simulation. Results and analysis are presented in Ch. IV.

3.3.1 Derivation.

The MD2WRP value function in Eq. 3.2 is a myopic policy derived from a dy-

namic programming formulation of PISR, which is presented here in a form adapted

from the work of Kalyanam in [9].

Let each task, j ∈ {1, . . . , n} have an associated weight, wj > 0. A vector, T ,

with entries T (j), holds the time elapsed since task j was last visited by an agent. We

49

call T the vector of task ages. The system state can then be defined by the current

location of the agent, i ∈ {1 . . . n}, and the age of all tasks, or s = (i, T) ∈ S, with S

the set of all possible system states. Note that when the agent is at task i, T (i) = 0;

in other words the age of task i is reset when it is visited by an agent. A control

policy for the agent is defined as a mapping from the state s = (i, T) to the set of

control options: Ui = {1, . . . , i − 1, i + 1, . . . , n}. Note Ui does not allow the agent

to select the task at which it is currently located. For an agent with unit velocity,

the time required for the agent to travel from task i to target j can be defined as

d(i, j) > 0 that satisfies the triangle inequality.

Now, for an agent in state s = (i0, T) that chooses to visit task i1 ∈ Ui, the new

state, s̄ is a function of the current state, s and the selected task, i1,

s̄ = f(s, i1). (3.3)

Or more precisely,

s̄ = (i1, T̄) (3.4)

with T̄ defined by,

T̄ = T + d(i0, i1)1 i1 ∈ Ui, T̄ (i1) = 0. (3.5)

where 1 is a vector of ones in <n.

Taken together, Eqs. 3.3-3.5 define the agent state transition as being a function

of the current state, s, and selected task, i1, where the new state, s̄, has the vehicle

located at task i1 and the new task ages, T̄ , are updated as their previous age plus the

distance the agent traveled during the state transition, d(i0, i1), with the exception

that the age of task i1 is now zero.

From Ruan[73], we associate an immediate reward with state s and control i1 ∈ Ui,

50

r(s, i1) = wi1 [T (i1) + d(i0, i1)]. (3.6)

This means the agent receives a reward for visiting task i1 that is proportional to the

age of i1 at the projected visit time. The weight wi1 is a parameter.

Next we establish a control policy, π, whose input is the current state and output

is the task to select, i1,

i1 = π(s). (3.7)

If the initial system state is s0 = (i0, T0), then the result of implementing π is a se-

quence of states: s1, s2, . . . with corresponding arrival times to tasks i1, i2 of tπi1 , t
π
i2
,

Note, the time the agent visits the first targeted task, tπi1 , is simply the travel time

between the starting task i0 and the task selected by policy π (that is, i1) from the

initial state s0,

tπi1 = d(i0, i1) = d(i0, π(s0)) (3.8)

and the time of visit to any subsequent task is the time of visit to the previous task

plus the distance traveled,

tπik+1
= tπik + d(ik, ik+1) = tπik + d(π(sk−1), π(sk)). (3.9)

Therefore, combining Eqs. 3.6 and 3.9 while starting at state s0 and following

policy π, we can establish the infinite horizon cumulative discounted reward for the

agent,

V π(s0) =
∞∑
k=0

e
−βtπik+1wπ(sk) [T (π(sk)) + d(π(sk−1), π(sk))] (3.10)

where, V π(s0) is the total reward the agent receives when starting from state s0 and

following policy π, β is a travel distance discount parameter, tπik+1
is the time of visit

to task ik+1, wπ(sk) is the weight of the selected task, T (π(sk)) is the age of the selected

51

task, and d(π(sk−1), π(sk)) is the distance between the current task and the selected

task.

Ideally, we would like to compute a control policy that maximizes Eq. 3.10, that

is, to find π such that,

V (s) = max
π

V π(s), ∀s ∈ S. (3.11)

We can represent this optimal value function, V (s), using a dynamic programming

recursion. Note that in Eqs. 3.12 and 3.13 to follow, the first term in the infinite

horizon reward of Eq. 3.10 has been expanded, and that V (f(s, i1)) represents the

value of all future states.

V (s) = max
i1∈Ui
{e−βd(i0,i1)wi1 [T (i1) + d(i0, i1)] + V (f(s, i1))} (3.12)

with the optimal policy in Eq. 3.12 determined by the maximizing control,

u(s) = arg max
i1∈Ui
{e−βd(i0,i1)wi1 [T (i1) + d(i0, i1)] + V (f(s, i1))}. (3.13)

Due to the curse of dimensionality[74], it is not in general possible to solve for the

optimal control in Eq. 3.13. Instead, for the sake of practical application it makes

sense to employ a myopic policy based on Eq. 3.13. We can do this with a zeroth

order approximation, which effectively means ignoring the value of all future states,

that is, setting V (f(s, i1)) = 0. The resulting heuristic control policy is,

ū(s) = arg max
ik+1∈Ui

e−βd(ik,ik+1)wik+1
{T (ik+1) + d(ik, ik+1)} (3.14)

52

and the associated value function is,

V̄ (s) = max
ik+1∈Ui

e−βd(ik,ik+1)wik+1
{T (ik+1) + d(ik, ik+1)} (3.15)

which is the same value function introduced in Eq. 3.2, noting that Eq. 3.2 is modified

for simpler notation and generalized to allow for non-unit agent velocity.

3.3.2 Normalization.

One implementation challenge of MD2WRP is the sensitivity of the distance

discounting factor, represented by the exponential term in Eq. 3.2, to changes in the

task geometry (that is, changes to the distance matrix, D). If travel time, tij, is

measured in seconds (s), then we require the units of β to be 1/s in order to maintain

a dimensionless exponent. Therefore if the magnitudes of tij were to change due to

the application of a scalar multiplier to D, the magnitude of β would also need to

change in order to maintain the same vehicle behavior (that is, the same task visit

sequence). This makes selecting the MD2WRP parameters very difficult.

A better way is proposed to implement Eq. 3.2 by normalizing according to the

largest value in the distance matrix, dij,max, which becomes tij,max when used with a

constant velocity agent. The normalized version then becomes,

V = max
j

[
e
−β

tij
tij,maxwj

(Tj + tij)

tij,max

]
, ∀j ∈ {1, . . . , n}. (3.16)

In this way, β is now a non-dimensional parameter whose value does not depend on

the magnitude of tij. Additionally, we will always have 0 <
tij

tij,max
≤ 1, under the

Euclidean travel assumption.

53

3.3.3 Using MD2WRP to Minimize Latency.

In PISR missions, we wish to minimize average weighted latency, L̄, under a given

distance matrix, D. Unfortunately, directly solving for a tour to minimize L̄ is a

variant of the TSP and at least as hard as the TSP[56]. As such, no polynomial time

solutions exist to the general problem. However, from [75], minimizing the time since

tasks were last visited, which we can incentivize the agent to do with MD2WRP

rewards, is equivalent to minimizing the total task waiting time, or latency, of the

system. We demonstrate the effectiveness of this strategy in Sec. 4.2.3, where we

compare its performance to common TSP methods.

There is one key difference to note between the derivation of MD2WRP and the

use of MD2WRP to minimize L̄. In deriving MD2WRP in Sec. 3.3.1, the objective

was to maximize the total distance discounted value, V (s), the agent received over

an infinite number of task visits. We did this by selecting the optimal task visit order

under a given D assuming β and w were known. This provided us with the basis

for establishing the MD2WRP policy for making task selections. However, in the

context of minimizing L̄, we must choose the β and w that will yield a task visit

order with the lowest L̄, depending on the mission specified in D.

3.4 Simulation Environment (PUMPS)

The Persistent Unmanned Monitoring and Patrolling Simulation (PUMPS) tool

was developed by the author from scratch to fully meet the needs of this research.

It is an object-oriented, modular, discrete-event simulation written in Python. The

modularity allows the user to mix-and-match from among several types of routing,

pathing, and communication for each vehicle. Because the primary focus of this

research is on task selection for PISR, the simulation environment is discrete and

only considers moments in time when a vehicle is collocated with a task, which covers

54

all key decision points (i.e. task selections) for the mission.

The tool is written primarily in Python 2.7.12, relying heavily on NumPy (from the

SciPy scientific computing stack[76]) for the underlying data structure. It also takes

advantage of third-party open-source software to handle more complex functions. A

C library by Andrew Walker is used for generating optimal Dubins paths[77], which

is accessed via a Python wrapper written by the same author[78]. To generate paths

around polygon objects, the tool makes function calls to the TriPath Toolkit[79] (now

called Triplanner), which is software based on Kallmann’s academic publications for

rapid, locally optimal trajectory generation with constraints[80, 81].

3.4.1 Architechture.

PUMPS is object-oriented and defines classes for each of the major components

of a PISR mission. There are six classes: Vehicle, Task, Routing, Pathing, Communi-

cation, and Database. Each class along with its subclasses, attributes, and methods

are described below.

3.4.1.1 The Vehicle Class.

Vehicle objects are derived from the Vehicle class, which is the primary class.

Simulation events revolve around Vehicle objects. Vehicle objects use and act upon

objects derived from other classes to simulate a full PISR mission. The attributes

and methods of the Vehicle class are summarized in Fig. 3.1.

Below is a brief description of each attribute and method for Vehicle objects:

� indexer. [int] A private attribute of each Vehicle object, primarily used for

easy indexing of vehicles in various arrays used throughout the simulation.

� ID. [int] Each vehicle is assigned a unique ID in increments of 100. This is used

for data presentation to make results easier to read for the user.

55

Vehicle

+_indexer
+ID

+location
+time

+heading
+speed

+turn_radius
+t_activate

+t_terminate

+add_routing()
 +add_pathing()
 +add_comm()

 +add_database()

Figure 3.1. The attributes and methods of the Vehicle class in PUMPS.

� location. [Task object] The task at which the vehicle is currently located.

� time. [double] The time at which the vehicle arrived at its current location, in

s, based on the time elapsed since t0 = 0.

� heading. [double] The vehicle’s heading just prior to arrival at its current loca-

tion, in radians.

� speed. [double] The vehicle’s constant velocity in m/s.

� turn radius. [double] The vehicle’s minimum turning radius in m, calculated

based on speed and maximum bank angle, which are supplied by the user during

setup.

� t activate. [double] Time at which the vehicle enters the simulation, in s.

� t terminate. [double] Time at which the vehicle exits the simulation, in s.

� add routing(). Instantiates a RoutingFactory object and passes the routing

preferences provided by the user at setup. The RoutingFactory object returns

56

the appropriate routing module and adds it to the Vehicle object. The routing

module is accessed via the Vehicle object with self.routing.

� add pathing(). Instantiates a PathingFactory object and passes the pathing

preferences provided by the user at setup. The PathingFactory object returns

the appropriate pathing module and adds it to the Vehicle object. The pathing

module is accessed via the Vehicle object with self.pathing.

� add comm(). Instantiates a CommunicationFactory object and passes the com-

munication preferences provided by the user at setup. The CommunicationFac-

tory object returns the appropriate communication module and adds it to the

Vehicle object. The communication module is accessed via the Vehicle object

with self.comm.

� add database(). Adds a database module to the Vehicle object, which contains

the database items requested by the user during setup. It is accessed via the

Vehicle object with self.database.

3.4.1.2 The Task Class.

A Task object is created for each PISR task that may be visited during a mission.

In the current version, PUMPS can only handle point-search tasks, that is, tasks

that can be represented by a single point on the map. The Task class diagram is in

Fig. 3.2.

Below is a brief description of each attribute for Task objects:

� ID. [int] Each task is assigned a unique ID beginning at 1, in increments of 1.

The order of ID assignment is based upon the order in which the tasks were

listed by the user during setup.

57

Task

+ID
+location
+priority

+age
+t_activate

+t_terminate

Figure 3.2. The attributes of the Task class in PUMPS.

� location. [(double, double)] The location of the task on the map in (x,y) coor-

dinates, in m.

� priority. [int] The priority of the task. A higher priority results in faster ac-

cumulation of latency. The default priority is 1, with a higher integer value

implying the task is more important.

� age. [double] The true age of the task, that is, the time elapsed since the task

was last visited by any agent, in s.

� t activate. [double] Time at which the task appears as eligible for vehicle visits,

in s.

� t terminate. [double] Time at which the task becomes ineligible for vehicle

visits, in s.

3.4.1.3 The Routing Class.

Routing refers to the method by which vehicles select their next task. Each vehicle

in a simulation run can utilize a different type of routing, which is specified by the

58

user during setup. The parent Routing class is a Python metaclass, which defines

the structure of child classes but cannot be instantiated itself. Currently, there are

two possible types of Routing objects: MD2WRP and Manual. MD2WRP routing

selects the next task based on the MD2WRP value function described in Sec. 3.3

while Manual allows the user to specify a static task visit sequence for the vehicle.

The Routing class diagram is depicted in Fig. 3.3.

Routing (meta)

+get_next_task() (abstract)

MD2WRP Routing

+type: 'MD2WRP'
+destination
+arrival_time

+beta
+w

+norm_factor
+dis tance_measure

+get_next_task()

Manual Routing

+type: 'Manual'
+destination
+arrival_time
+current_s top

+sequence_vector

+get_next_task()

RoutingFactory

+get_routing_module()

Figure 3.3. The attributes and methods of the Routing classes in PUMPS.

To add a routing type to a vehicle, a Vehicle object instantiates a RoutingFactory

object and passes to it the routing preferences supplied by the user during setup. The

RoutingFactory then uses the get routing modules() method to select the appropriate

Routing subclass, instantiate a Routing object, and “load” it onto the Vehicle object

(the vehicle’s routing attributes and methods can then be accessed via the Vehicle

object with self.routing).

Description of MD2WRP Routing attributes and methods:

� type. [string] The type of routing, used primarily for the purpose of displaying

59

data and results to the user.

� destination. [Task object] The task to which the vehicle is currently headed.

� arrival time. [double] The time the vehicle will arrive at the destination task,

in s.

� beta. [double] The MD2WRP distance discount factor.

� w. [1× n double vector] The MD2WRP weight for each task.

� norm factor. [double] The value tij,max for computing task values with the

normalized version of the MD2WRP value function (see Sec. 3.3.2). Calculated

as the largest value in the task distance matrix divided by the vehicle’s constant

velocity. Units of s.

� distance measure. [string] Specifies how the distance between tasks is measured.

Values: Euclidean, Dubins, Tripath.

� get next task(). Evaluates the MD2WRP function using the specified parame-

ters for all candidate tasks and returns the Task object with the highest value

as the new vehicle destination.

Description of Manual Routing attributes and methods:

� type. [string] The type of routing, used primarily for the purpose of displaying

data and results to the user.

� destination. [Task object] The task to which the vehicle is currently headed.

� arrival time. [double] The time the vehicle will arrive at the destination task,

in s.

60

� current stop. [int] The index of the task at which the vehicle is currently located,

according to the sequence vector.

� sequence vector. [1×n int vector] The manually determined task visit sequence

assigned to the vehicle.

� get next task(). Returns a Task object of the next task in sequence vector, based

on the vehicle’s current location in the sequence, as the new vehicle destination.

3.4.1.4 The Pathing Class.

Pathing refers to how the vehicle travels between its current location and the

destination task. As with routing, each vehicle can implement a different type of

pathing. The Pathing class also implements a parent metaclass and offers three in-

stantiable subclasses: Euclidean Pathing, Dubins Pathing, and Tripath Pathing. Eu-

clidean Pathing is simple point-to-point travel, where the distance traveled is exactly

equal to the Euclidean distance between the current task location and the desti-

nation task. Dubins Pathing takes into account the vehicle’s kinematic constraints

(i.e. minimum turn radius) and current heading to generate the trajectory between

tasks. Tripath Pathing generates trajectories around polygon obstacles and is in-

tended for scenarios where no-fly zones are in effect. The Pathing class diagram is in

Fig. 3.4.

The Pathing class uses the same “factory” construct as the Routing class to gen-

erate and add a pathing module to each vehicle. Similarly, once loaded, Pathing

attributes and methods can be accessed via the Vehicle object with self.pathing).

Description of Euclidean Pathing attributes and methods:

� type. [string] The type of pathing in use.

61

Pathing (Meta)

+get_path() (abstract)
 +get_best_paths() (abstract)

Euclidean_Pathing

+type: 'Euclidean'
+trajectory

+get_path()
 +get_best_paths()

 +calcDis tanceMatrixData()

Dubins_Pathing

+type: 'Dubins '
+trajectory

+get_path()
 +get_best_paths()

Tripath_Pathing

+type: 'Tripath'
+map
+nfz

+trajectory
+nfz_impact

+get_path()
 +get_best_paths()

 +calc_nfz_impact_rating()

PathingFactory

+get_pathing_module()

Figure 3.4. The attributes and methods of the Pathing classes in PUMPS.

� trajectory. [array of two (x,y) coordinates] Stores the vehicle’s current trajec-

tory to the destination task. For Euclidean Pathing, this is simply the (x,y)

coordinates of the current location and the destination task.

� get path(). Provides the Euclidean path between two Task objects, in m.

� get best paths(). Provides the Euclidean distance to all candidate tasks given

the vehicle’s current location, in m.

� calcDistanceMatrixData(). A helper method used during simulation initializa-

tion to determine the longest and average values in the Euclidean distance

matrix, in m.

Description of Dubins Pathing attributes and methods:

� type. [string] The type of pathing in use.

� trajectory. [variable length array of (x,y) coordinates] Stores the vehicle’s cur-

rent Dubins trajectory to the destination task. Each (x,y) pair represents a

62

segment of the discretized Dubins path. Discretization step-size can be ad-

justed inside the Dubins calculator function[78].

� get path(). Provides the optimal Dubins path between two Task objects, in m.

� get best paths(). Returns the optimal Dubins paths to all candidate tasks given

the vehicle’s current location, in m.

Description of Tripath Pathing attributes and methods:

� type. [string] The type of pathing in use.

� map. [string] The name of the current task map. Used to tell the Tripath

Toolkit which map to use in performing trajectory calculations.

� nfz. [int] Tells the Tripath Toolkit which no-fly zone (NFZ) instance to use

in performing trajectory calculations. (Note: NFZs must be pre-loaded into

Tripath Toolkit separately.)

� trajectory. [variable length array of (x,y) coordinates] Stores the vehicle’s cur-

rent trajectory to the destination task, taking into account obstacle avoidance

provided by Tripath. Each (x,y) pair represents a segment of the vehicle path

provided by Tripath Toolkit.

� nfz impact. [double] Stores the NFZ “Impact Ratio”. See Sec. 4.3.2 for a de-

scription of the Impact Ratio.

� get path(). Provides the obstacle avoidance trajectory from Tripath between

two Task objects, in m.

� get best paths(). Returns the obstacle avoidance trajectory from Tripath to all

candidate tasks, given the vehicle’s current location, in m.

� calc nfz impact rating(). Returns the Impact Ratio of the NFZ.

63

3.4.1.5 The Communication Class.

There are three types of vehicle communication in PUMPS and it is not neces-

sary for every vehicle to utilize the same type. If No Communication is used, the

vehicle does not transmit the tasks it has accomplished or its destination informa-

tion, but it can still receive communications from other vehicles and make decisions

based on that information. Broadcast Completions sends other vehicles the task that

was just serviced along with a timestamp. Broadcast Destinations shares with other

vehicles the task that was just serviced, a timestamp, the next task the vehicle will

visit, and its anticipated arrival time. Similar to the Routing and Pathing classes,

the Communication class uses a factory object to generate and assign the appropri-

ate communication module to each vehicle during initialization, based on user input

during setup. Communication attributes and methods are accessed via the Vehicle

object with self.comm. The Communication class diagram is shown in Fig. 3.5.

Communication (Meta)

+talk() (abstract)

No Communication

+type: 'None'

+talk(): pass

Broadcast Completions

+type: 'Completion'

+talk()

Broadcast Destinations

+type: 'Destination'

+talk()

CommunicationFactory

+get_comm_module()

Figure 3.5. The attributes and methods of the Communication classes in PUMPS.

Description of No Communication attributes and methods:

� type. [string] The type of communication in use.

� talk(). A Python pass command, since the vehicle does not send data to other

64

vehicles.

Description of Broadcast Completions attributes and methods:

� type. [string] The type of communication in use.

� talk(). Updates the age of the task that was just serviced in vehicle.database.age tracker

of all other Vehicle objects.

Description of Broadcast Destinations attributes and methods:

� type. [string] The type of communication in use.

� talk(). Updates the age of the task that was just serviced in vehicle.database.age tracker

of all other Vehicle objects. Also updates vehicle.database.vehicle tracker of all

other vehicles to reflect the sending vehicle’s destination task and projected

arrival time.

3.4.1.6 The Database Class.

The Database class diagram is in Fig. 3.6. Database objects consolidate all data

items that Vehicle objects track into a single module. In the current version of

PUMPS, all vehicles track the same data using the mandatory attributes age tracker

and vehicle tracker. However, adding optional Database attributes and methods is

possible, if it is desired for vehicles to track more than just task ages and the activity

of other vehicles. As with other functional modules, each vehicle could implement a

different type of Database object.

Description of Database attributes:

� age tracker. [1 × n double vector] The task ages as tracked locally by the

vehicle. Since the vehicle only knows a task has been serviced when either it

65

Database

+age_tracker
+vehicle_tracker

Figure 3.6. The attributes of the Database class in PUMPS.

accomplishes the task or receives a communication from another vehicle, the

true age of a task is not necessarily the age reflected in age tracker.

� vehicle tracker. [k × 2 mixed vector] Stores the destination task and projected

arrival time of every other vehicle. vehicle tracker is only updated if at least

one vehicle is using the Broadcast Destinations communication mode, otherwise,

task selection are made without considering the activity of other vehicles.

3.4.2 Data Flow and Algorithms.

In this section, we describe in broad terms how data flows through PUMPS from

setup, to initialization, into the main simulation loop, and finally to the output of

results. We also describe two of the more complex simulation algorithms in detail.

3.4.2.1 Simulation Setup.

For each simulation scenario, a trade configuration file must be supplied to PUMPS

in the form of a Python Pickle. It is possible to run multiple trades in a row, as

PUMPS will automatically execute a simulation run for each trade file in the work-

ing directory. The trade file pickle must contain the fields and formatted values as

described below in order to successfully initialize:

66

� ’tradeID’ (int) A value to identify trades. Useful when multiple trades are

conducted in a batch. (Ex: 1000)

� ’sim length’ (1x2 list) Determines the length of the simulation. A simulation

can be run until a given number of tasks have been visited or until a simulation

time has been reached. The first entry in the list is the number of task visits

and the second is the end simulation time. For example, if running 100 task

visits the first entry in the list is an integer and the second entry is infinite ([100,

float(’inf’)]). If running for a simulation time of 20, 000s, the first entry is infinite

and the second entry is a float value ([float(’inf’), 20000.0]). Alternatively, both

entries can be set and the simulation will terminate at whichever condition is

met first.

� ’task geometry’ (string) A string to identify which task configuration to uti-

lize from the generateMapCoordinates.py file, which stores the task location

information for different scenarios along with a matching string ID.

� ’priorities vector’ (1xn np array) An array of n float values, one for each task,

to specify the task priorities. Priority determines how quickly tasks accumulate

latency. (Ex: [1 1 1 1 3 1 1 2 1 1])

� ’init ages vector’ (1xn np array) An array of n float values, one for each task,

that specifies the initial age of each task, in s. For most scenarios, all task ages

start at zero, but it may be desired to “seed” the task ages to some non-zero

value. (Ex: [0 0 0 100 250 0 0 0 0 0])

� ’task activation times vector’ (1xn np array) An array of n float values, one

for each task, that specifies the simulation time at which each task becomes

active, in s. Inactive tasks will not be considered by vehicles during the routing

67

process. If all tasks will be active from the beginning, all values should be zero.

(Ex: [0 0 0 1000 2500 0 0 0 0 0])

� ’task termination times vector’ (1xn np array) An array of n float values, one

for each task, that specifies the simulation time at which each task is termi-

nated (that is, becomes inactive), in s. If all tasks will be active for the entire

simulation, all values should be set to float(’inf ’).

� ’init locations vector’ (1xk np array) An array of k integer values, one for each

vehicle, that specifies the task at which each vehicle will begin the simulation.

(Ex: [1 1 3])

� ’init headings vector’ (1xk np array) An array of k float values, one for each

vehicle, that specifies the initial heading of each vehicle in degrees. (Ex: [90 0

270])

� ’veh speeds vector’ (1xk np array) An array of k float values to specify the

constant speed of each vehicle in m/s. (Ex: [20 25 30])

� ’veh bank angles vector’ (1xk np array) An array of k float values to specify the

maximum bank angle of each vehicle in degrees. (Ex: [30 30 45])

� ’veh activation times’ (1xk np array) An array of k float values to specify at

what simulation time, in s, each vehicle becomes active. Inactive vehicles are

ineligible to visit tasks until their activation time has been reached. An activa-

tion time of zero implies the vehicle is active at the start of the scenario. (Ex:

[0 0 1000])

� ’veh termination times’ (1xk np array) An array of k float values to specify

at what simulation time each vehicle is terminated (that is, becomes inactive),

68

in s. If a vehicle is to remain active for the entire simulation, use a value of

float(’inf ’). (Ex: [float(’inf’) float(’inf’) 5000])

� ’routing type’ (string) The type of routing for each vehicle. Routing refers to

how vehicles select tasks. Current options are MD2WRP or Manual. Manual

allows the user to specify a static task visit sequence for each vehicle. [Note:

In the version of PUMPS in Appendix A, all vehicles must use the same type

of routing. The capability for each vehicle to use a different routing type is

planned.]

� ’beta’ (float) A float value specifying β for MD2WRP routing. If MD2WRP

is not used, this value should be an empty list, []. [Note: In the version of

PUMPS in Appendix A, all vehicles must use the same β but the capability for

each vehicle to use a different β is planned.]

� ’ws vector’ (1xn np array) An array of n float values to specify the MD2WRP

weight of each task. If MD2WRP is not used, this value should be an empty

list []. (Ex: [1 1 1 3 3 1 3 1 1 1]) [Note: In the version of PUMPS in Appendix

A, all vehicles must use the same w but the capability for each vehicle to use

different w’s is planned.]

� ’distance measure’ (string) A string to define the type of distance measurement

to use in calculating travel times between tasks. Current options are Euclidean

and Dubins. Euclidean will calculate travel times based off of the task distance

matrix, regardless of the actual vehicle dynamics. Dubins will use the vehicle’s

min turning radius to calculate travel times. If the vehicle’s max bank angle

is 90deg, travel times are equal to those calculated by Euclidean. [Note: In

the version of PUMPS in Appendix A, all vehicles must use the same type

of distance measurement, but the capability for each vehicle to use a different

69

distance measure is planned.]

� ’tours vector’ (list of k lists) A list containing k lists of task visit sequences,

to be used with the Manual routing type. When the vehicle has visited every

task in the sequence, it will start over. If Manual routing is not used, the value

should be an empty list, []. (Ex: [[1 2 3], [4 5 6], [7 8 9 10]])

� ’veh start index vector’ (list of k lists) A list containing k lists of integers, to

be used with the Manual routing type. Specifies the sequence index where

the vehicle will begin, not a task number. The corresponding task number of

the specified sequence index must match the initial vehicle location specified in

init locations vector. (Ex: [[0], [0], [1]]).

� ’pathing type’ (list of lists) The type of pathing for each vehicle. Pathing refers

to how vehicles travel between tasks. Current options are Euclidean, Dubins,

and Tripath. With Euclidean, vehicles move between tasks in a straight line.

Dubins enforces the vehicle min turning radius. Tripath allows vehicles to travel

between tasks while avoiding no-fly zones. Use of Tripath requires additional

arguments to specify the task geometry (a string) and no-fly zone shape.(an

integer). (Ex: [[’Euclidean’]] or [[’Tripath’, ’clusters’, 1]]). [Note: In the version

of PUMPS in Appendix A, all vehicles must use the same type of pathing, but

the capability for each vehicle to use its own is planned. Additionally, the use

of Tripath requires additional setup of third-party software which is not covered

here.]

� ’comm mode’ (list of strings) The type of communication vehicles will use. Cur-

rent options are None, Completion, and Destination. Completion means vehicles

only share which task they have just completed and at what time. Destination

means vehicles share the task they have just completed, the current time, their

70

next task, and what time they will arrive at the next task. (Ex: [’Destination’])

[Note: In the version of PUMPS in Appendix A, all vehicles must use the same

type of communication but the capability for each vehicle to use a different type

is planned.]

� ’database items’ (list of strings) The items that each vehicle will track during

the simulation. This category is currently static with two mandatory items,

Age Tracker and Vehicle Tracker. Age Tracker is how the vehicle tracks the

age of each task based on the information it has. Vehicle Tracker is how the

vehicle tracks what the other vehicles are doing and is used in calculating task

ages from communicated data. (Ex: [’Age Tracker’, ’Vehicle Tracker’])

The fields and values of the trade file as described above can be generated using a

custom setup script. There should be one trade file for every scenario the user wishes

to run.

3.4.2.2 Initialization.

The main simulation script is runSim.py, located in the root PUMPS directory.

Once started, runSim.py looks for a trade file (in the form of a Python pickle) within

the specified simulation directory. After opening the trade file, it unpacks the pickle

into a single multi-field variable called trade config. The trade config variable is then

used to initialize the simulation. First, the general simulation data is extracted,

such as the trade ID and length of the simulation. Next, trade config is passed to

separate functions which instantiate the Task and Vehicle objects according to the

trade configuration. Task and Vehicle objects are created within their respective

functions and contain the appropriate attributes and methods outlined in Sec. 3.4.1.

To complete initialization, a vector of each type of object is returned to the main

simulation loop.

71

3.4.2.3 The Main Loop.

After initialization, the first step in the main loop is to decide which vehicle should

make the next task selection, based on the vehicle with the earliest task arrival time.

If multiple vehicles are arriving to their next task at the same time, the vehicle with

the lowest ID takes priority.

Once the deciding vehicle has been selected, its location and time attributes are

updated to reflect the current task and simulation time. At the same time, the age

of the task that was just visited is set to zero in both the deciding vehicle’s task

age tracker and within the age attribute of the visited Task object itself. The age

attributes of all other Task objects are incremented by the time elapsed since the

previous task visit. The ages of the tasks in the vehicle age tracker are not yet

incremented, as they are updated to reflect the current arrival time at the end of the

main loop iteration.

Before the vehicle selects its next task, the current visit is added to the main data

output variable, visit order. The visit order maintains a historical record of which

tasks have been visited by which vehicles, the time they arrived, and the trajectory

they flew en-route.

After task ages have been updated, the vehicle selects its next task according to

the supplied routing method. Once a task has been selected, the vehicle calculates

the path to the task according to the supplied pathing method. After the path

calculation, the ages of all tasks in the vehicle age tracker are increased by the time

of the planned arrival at the next task less the current simulation time. Finally, the

deciding vehicle communicates, sharing information about the task completed or the

next task selected with all other vehicles according to the supplied communication

mode.

With the task selection decision complete, the main loop updates the visit number

72

and simulation time before returning to the beginning of the loop to choose the

next deciding vehicle. Tasks continue to be selected until the simulation termination

conditions are reached. The visit order data is saved to the simulation directory

within a trade results pickle, along with the task and vehicle vectors and other general

simulation configuration information. All relevant simulation information is stored,

making it easy to create a custom script for data analysis. Figure 3.7 provides a

visual depiction of the main PUMPS simulation loop.

73

Main Loop

Select Deciding Vehicle

Update Deciding Vehicle Object

Update Task Objects

Record Visit Data

Select Next Task

Calculate Path (Trajectory)

Communicate to Other Vehicles

Increment Visit Index/Propagate Time

Terminal Conditions Met?

No

Save Results

Yes

initialize

end

Figure 3.7. Data flow diagram for the PUMPS main loop, from initialization to termi-
nation.

74

3.4.2.4 Minor PUMPS Algorithms.

While the PISR task selection algorithms are the heart of PUMPS, several minor

algorithms are also used. Two such algorithms are described below because they

require design decisions that impact simulation results.

Finding the Shortest Travel Time with Dubins Pathing.

When the Dubins pathing module is selected, vehicles must calculate the shortest

flight path to their destination subject to the motion constraints. PUMPS uses an

optimal Dubins path calculator[78] which generates the path between two tasks, given

the current heading and desired arrival heading. Of course, the optimal arrival heading

is unknown. So, to determine the optimal path PUMPS uses a simple discretization

strategy. The Dubins path for each arrival angle between 0 and 337.5 deg by steps of

22.5 deg is calculated and the shortest path is selected.

The choice of step size in the arrival heading discretization impacts the scenario

results when Dubins paths are in use. A step size of 22.5 deg was selected because

it provides the vehicle with ample options (16 arrival headings to choose from) while

still being quick to compute. A finer step size provides the vehicle more flexibility, but

the difference in vehicle trajectory between each option becomes less distinct while

increasing computation time.

Calculating Task Ages with Multiple Vehicles.

If multiple vehicles are servicing tasks with the MD2WRP routing module and

the Broadcast Destinations (CxBD) communication mode is active, the calculation

of task ages must be modified to reflect the activity of other vehicles. When a vehicle

is calculating task values during its decision cycle, for each task under consideration

it checks the information in its vehicle tracker to see if another vehicle has commu-

75

nicated that it is en-route to that task.

The algorithm selected and used throughout this document considers two situa-

tions. If the other vehicle will arrive at the task before the deciding vehicle, the age

of the task in the deciding vehicle’s age tracker is changed to reflect the arrival time

of the deciding vehicle less the time of the interim visit. In the event multiple other

vehicles are bound for the task under consideration, a check is performed such that

only the vehicle with the arrival time closest to that of the deciding vehicle is taken

into account.

If the other vehicle will arrive at the same time, or after, the deciding vehicle, the

utility value of the task under consideration is set to zero. This prevents one vehicle

from “cutting off” another in an attempt to eliminate redundant visits to a task.

Another option that was considered but not implemented, was to allow the deciding

vehicle to select a task even if another vehicle was en-route with an arrival time after

the calculated arrival time of the deciding vehicle. However, the utility value of the

task would be reduced. For example, the utility being received by the other vehicle

could be subtracted from the utility calculated by the deciding vehicle. For simplicity

and to encourage vehicle separation, this method was discarded in favor of the “zero

utility” method.

3.5 Task Configurations

Six maps with different scale and task geometries are used throughout this docu-

ment to demonstrate the behavior and performance ofMD2WRP . The first two maps

are simple triangle configurations intended to make analysis of the basic properties

of MD2WRP easier. One triangle is equilateral and the other isosceles (Fig. 3.8).

The other four maps are designed to be representative of the way tasks might

be arranged in an operational scenario. The four maps are presented in Fig. 3.9.

76

0 50 100 150 200 250

East, (m)

0

50

100

150

200

N
o
rt

h
,

(m
)

T[1] T[2]

T[3]

'Equilateral Triangle' Map

0 50 100 150 200 250

East, (m)

0

50

100

150

200

250

300

350

N
o
rt

h
,

(m
)

T[1] T[2]

T[3]

'Isosceles Triangle' Map

Figure 3.8. Simple triangular task configurations. These scenarios are useful for ana-
lyzing properties of the MD2WRP utility function.

The Circle map represents a base perimeter defense mission. The Grid represents

intersections to be monitored in an urban grid. The Random map is for a wide area

surveillance mission across a large geographic region. Finally, the Clusters map rep-

resents several geographically separated areas of interest, such as a group of forward

operating bases or small villages in a rural area.

3.6 Research Plan

To address the research questions in Ch. I, a plan consisting of three parts is

presented below. Each part focuses on a different aspect of developing MD2WRP

from a theory to a practical utility function for task selection in PISR.

3.6.1 Characterization of MD2WRP .

The first research step is to characterize the MD2WRP function in Eq. 3.2 (or

more precisely, the normalized version in Eq. 3.16). The desired outcome is first

to understand how the parameters β and w affect vehicle behavior and then use

that knowledge to develop a parameter optimization method that achieves the best

performance (in terms of L̄ from Eq. 3.1). We will also pursue analytical work re-

77

6000 4000 2000 0 2000 4000 6000
East, (m)

4000

2000

0

2000

4000

N
o
rt

h
,

(m
)

T[1]

T[2]T[3]

T[4]

T[5]

T[6]

T[7] T[8]

T[9]

T[10]

'Circle' Map

0 500 1000 1500 2000 2500 3000
East, (m)

0

500

1000

1500

2000

2500

3000

N
o
rt

h
,

(m
)

T[1]

T[2]

T[3]

T[4]

T[5]

T[6]

T[7]

T[8]

T[9]

T[10]

T[11]

T[12]

T[13]

T[14]

T[15]

T[16]

'Grid' Map

4000 2000 0 2000 4000
East, (m)

2000

0

2000

4000

6000

N
o
rt

h
,

(m
)

T[1]

T[2] T[3]

T[4]

T[5]

T[6]

T[7]

T[8]

T[9]

T[10]

'Random' Map

3000 2000 1000 0 1000 2000 3000 4000

East, (m)

4000

3000

2000

1000

0

1000

2000

3000

4000

N
o
rt

h
,

(m
)

T[1]

T[2]

T[3]

T[4]

T[5]

T[6]

T[7]

T[8]

T[9]

T[10]

'Clusters' Map

Figure 3.9. Four scenarios designed to represent how tasks might be distributed in
various operational scenarios. The four configurations are Circle (top left), Grid (top
right), Random (bottom left), and Clusters (bottom right).

garding the evolution of the task age vector, specifically investigating the transient

and steady-state phases of the task visit sequences produced by MD2WRP .

3.6.2 Comparison Studies of MD2WRP .

We wish to conduct two types of MD2WRP comparison studies. The first eval-

uates different versions of MD2WRP itself. We evaluate MD2WRP with multi-

decision lookahead, where vehicles make task selections based on an increasingly

longer decision horizon, from one to three decisions. Next, we explore MD2WRP

with multiple vehicles, testing three different inter-vehicle communication modes.

The second type of comparison is between MD2WRP and other PISR methods

from the literature. We compare single and multi-vehicle versions of the Traveling

78

Salesman Problem to MD2WRP , from both a performance and qualitative perspec-

tive. We also compare MD2WRP to other utility functions. These comparisons to

alternative PISR methods serve two purposes, to validate our MD2WRP parameter

optimization method and to explore the benefits and trade-offs associated with each

PISR method.

3.6.3 MD2WRP and Operational Factors.

The third part of the research plan is to evaluate MD2WRP in the presence of

four operational factors: Dubins constraints on vehicle motion, no-fly zones, return-

to-base requirements, and the addition/removal of vehicle/tasks mid-mission. For

Dubins motion, we wish to determine at what point the travel time to a task should

be calculated using a Dubins path rather than the simple Euclidean distance between

tasks. To do this, we develop a method of changing the ratio of the vehicle turn

radius to the average distance between tasks. When no-fly zones are added to the

map, our goal is to understand when the presence of the no-fly zone impacts perfor-

mance to a level that necessitates re-tuning of MD2WRP . To this end, we develop a

non-dimensional parameter called the impact ratio, which measures the level of inter-

ference a no-fly zone has on vehicle flight paths. When a return-to-base requirement

is imposed, we explore how MD2WRP can be modified and tuned to meet such a

requirement and what the implications are on performance. Lastly, when mission

objects are added or removed mid-mission, we use simulations to demonstrate the

robustness of MD2WRP to changes in the mission environment.

79

IV. Results

4.1 Characterization of MD2WRP

The first major research task is to characterize the normalized version of the

MD2WRP function in Eq. 3.16. The desired outcome is to understand how the

parameters β and w affect vehicle behavior and use that knowledge to optimize

MD2WRP for better performance. That is, we wish to find the parameter val-

ues that minimize L̄ (Eq. 3.1). All characterization work is done under the Euclidean

path assumption.

4.1.1 Effect of MD2WRP Parameters on Vehicle Behavior.

Two toy problems are presented below. The goal of these simple examples is to

highlight how the MD2WRP parameters, β and w, affect agent behavior. We begin

with studying the effect of the task weights, w, with a simple equilateral triangle task

configuration. Then, we use an isosceles triangle configuration to examine β.

4.1.1.1 Task Weights (w).

To understand the effect of w, three tasks are placed in an equilateral triangle

(Fig. 4.1). Since the tasks are equally spaced and the vehicle travels Euclidean paths,

β has no effect, as all tasks would be equally discounted. Hence, for this example β is

zero. Instead, the objective is to highlight how each element of w (the individual task

weights, wj) affects vehicle task selection. We do this by performing trade studies

using different wj values. Data from four simulations are presented in Figs. 4.2 and

4.3. Figure 4.2 represents the visits per hour (vph) to each task, for each trade.

Figure 4.3 shows the times at which a vehicle visited each task for Trades 1002 and

1003. Each trade consists of 100 task selections.

80

0 50 100 150 200 250

East, (m)

0

50

100

150

200

N
o
rt

h
,
(m

)

T[1] T[2]

T[3]

'Equilateral Triangle' Map

Figure 4.1. Three PISR tasks in an equilateral triangle configuration.

From Figs. 4.2 and 4.3, it is clear that increasing w3 (weight of the top vertex)

from 1.0 to 1.5 did not affect the overall revisit rate to any task. However, with

w3 = 1.51 a tipping point has been met or surpassed. Task 3 now has approximately

double the vph of Tasks 1 and 2. So, is it possible to determine the exact value of w3

that causes the shift? The answer is yes for this simple three-task problem.

With β = 0, w1 = w2 = 1.0, w3 = x and all tij =
dij
v

= 250m
22m/s

= 11.4s, we can

reconstruct the vehicle’s decision history to determine the value of x, that is, the

value of w3 that results in the behavior change. Going through the decisions one by

one also serves as a good exercise to understand how task selections are made with

utility functions. For the first decision, the vehicle will calculate the following values,

assuming it begins at Task 1,

V1 = w1(T1 + t1,1) = (1.0)(0 + 0) = 0

81

1
0
0
0

1
0
0
1

1
0
0
2

1
0
0
3

Trade ID

0

20

40

60

80

100

120

140

160

180

M
e
a
n
 V

is
it

 R
a
te

 (
v
p
h
) w3 = 1. 0 w3 = 1. 4 w3 = 1. 5

w3 = 1. 51

Equilateral Triangle Task Visit Rates

Task

1
2
3

Figure 4.2. Visit rates from the equilateral triangle scenario, with varying weights
applied to the top vertex (Task 3).

V2 = w2(T2 + t1,2) = (1.0)(0 + 11.4) = 11.4

V3 = w3(T3 + t1,3) = (x)(0 + 11.4) = 11.4x.

Clearly, we want to pick x greater than 1.0 since our goal is to increase the

frequency of visits to Task 3. So, the vehicle selects Task 3 and on the second decision

calculates,

V1 = w1(T1 + t3,1) = (1.0)(11.4 + 11.4) = 22.8

V2 = w2(T2 + t3,2) = (1.0)(11.4 + 11.4) = 22.8

V3 = w3(T3 + t3,3) = (x)(0 + 0) = 0.

82

0
10
20
30
40
50
60
70

La
te

n
cy

MD2WRP: β=0, w=[1. 1. 1.5]
p=[1 1 1]

L̄=50.59, Lmax=68.18

0 200 400 600 800 1000
Time, (s)

1

2

3

T
a
sk

 I
D

0
10
20
30
40
50
60
70
80

La
te

n
cy

MD2WRP: β=0, w=[1. 1. 1.51]
p=[1 1 1]

L̄=56.13, Lmax=79.54

0 200 400 600 800 1000
Time, (s)

1

2

3

T
a
sk

 I
D

Figure 4.3. Times at which each task was visited by the vehicle for Trades 1002 (w3 =
1.5) and 1003 (w3 = 1.51).

Here, the vehicle could select either Task 1 or 2, since both have the same value. In

this research, we set the vehicle to default to the task with lowest ID as a tie-breaker.

So, Task 1 is selected and the third decision is calculated as,

V1 = w1(T1 + t1,1) = (1.0)(0 + 0) = 0

V2 = w2(T2 + t1,2) = (1.0)(22.8 + 11.4) = 34.2

V3 = w3(T3 + t1,3) = (x)(11.4 + 11.4) = 22.8x.

Since Task 2 has yet to be visited, its age is now old enough that it will be visited

next unless a sufficiently large value is chosen for x. So the value of x needed to select

Task 3 over 2 is,

22.8x > 34.2 =⇒ x > 1.5.

As long as w3 > 1.5, Task 3 will dominate and be visited twice as often as Tasks

1 or 2. We can verify this by setting x = 1.51 and observing the next two decisions,

V1 = w1(T1 + t3,1) = (1.0)(11.4 + 11.4) = 22.8

83

V2 = w2(T2 + t3,2) = (1.0)(34.2 + 11.4) = 45.6

V3 = w3(T3 + t3,3) = (1.51)(0 + 0) = 0

and

V1 = w1(T1 + t2,1) = (1.0)(22.8 + 11.4) = 34.2

V2 = w2(T2 + t2,2) = (1.0)(0 + 0) = 0

V3 = w3(T3 + t2,3) = (1.51)(11.4 + 11.4) = 34.4.

The agent continues in a 1-3-2-3 pattern. At the risk of stating the obvious,

further increases to w3 do not result in increased visit frequency. This is because,

with Euclidean travel, it is not possible to visit the same node twice in a row. The

sum (Tj + tij) would always be zero for the task at which the vehicle is located. For

the equilateral triangle scenario, Task 3 can be selected at most every other decision.

It is also worth noting that with w3 set exactly to 1.5, the agent must arbitrarily

decide between tasks, since this weight results in equal utility values for all tasks.

This is undesirable since it forces the agent to make an arbitrary decision using a tie-

breaker. Fortunately, in a real-world scenario where travel times are unpredictable

and tasks are not placed in perfectly symmetrical configurations, the probability of

two tasks having equal utility values is low.

The equilateral triangle scenario highlights an important aspect of MD2WRP :

applying a weight, wj, to a task may not influence the vehicle’s behavior. Instead,

weights have bifurcation points. In a more complex scenario with multiple tasks and

vehicles, identifying these bifurcation points for tasks is not trivial. This challenge

will be addressed when we begin to optimize MD2WRP parameters for performance

in Sec. 4.1.4.

84

4.1.1.2 Distance Discount (β).

In the next scenario, we extend Task 3 northward to create an isosceles triangle

(Fig. 4.4). By keeping w = 1, the effect of the MD2WRP travel time discounting

term in Eq. 3.2, e−βtij , can be studied by varying β. Similar to the equilateral triangle,

Figs. 4.5 and 4.6 present the mean task visit rates and task visit times, respectively.

There are 100 task selections for each trade.

0 50 100 150 200 250

East, (m)

0

50

100

150

200

250

300

350

N
o
rt

h
,
(m

)

T[1] T[2]

T[3]

'Isosceles Triangle' Map

Figure 4.4. Three PISR tasks in an isosceles triangle configuration.

Figure 4.5 clearly demonstrates the effect of the β parameter. As β increases the

vehicle spends more time servicing Tasks 1 and 2, since the reward for Task 3 has

heavier discounting. The increasing sparsity of visits to Task 3 is evident in Fig. 4.6.

When β = 0.4, the vehicle only selects Task 3 six times out of 100 decisions.

The isosceles triangle example demonstrates that a non-trivial range of β values

exist for a particular task configuration. We use “non-trivial” in the sense that if β is

too small, such as β = 0.1 in Fig. 4.5, it has no effect on task selections. Conversely, if

β is too large, it results in one task being virtually ignored (as with β = 0.8 in Fig. 4.5).

85

1
0
0
0

1
0
0
1

1
0
0
2

1
0
0
3

1
0
0
4

1
0
0
5

1
0
0
6

1
0
0
7

Trade ID

0

20

40

60

80

100

120

140

160

180

M
e
a
n
 V

is
it

 R
a
te

 (
v
p
h
)

β
=

0.
1

β
=

0.
2

β
=

0.
3

β
=

0.
4

β
=

0.
5

β
=

0.
6

β
=

0.
7

β
=

0.
8

Isosceles Triangle Task Visit Rates

Task

1
2
3

Figure 4.5. Task visit rates in the isosceles triangle scenario, with varying β values and
w = 1.

Unfortunately, identifying which values are within the non-trivial β range is difficult,

since the range shifts as the task configuration changes. This is true even when two

task configurations have similar shapes but different sizes, such as occurs when the

D matrix is multiplied by a scalar. The solution to this conundrum is normalizing

the MD2WRP utility function, which is demonstrated next in Sec. 4.1.2.

4.1.2 The Value of Normalization.

In Sec. 3.3.2, the challenge of selecting β under a wide variety of task distributions

is discussed. The challenge stems from the fact that as distance matrix, D, changes,

so too does the effect β has on vehicle behavior. In other words, if D is multiplied

by a scalar, a different task visit sequence will result even if β is unchanged. To

resolve this issue, Eq. 3.16 was introduced, which is a normalized version of the

original MD2WRP utility function in Eq. 3.2. Equation 3.16 is reprinted below for

86

0

20

40

60

80

100

La
te

n
cy

MD2WRP: β=0.1, w=[1 1 1]
p=[1 1 1]

L̄=65.68, Lmax=94.01

0 200 400 600 800 1000 1200 1400
Time, (s)

1

2

3

T
a
sk

 I
D

0

50

100

150

200

250

La
te

n
cy

MD2WRP: β=0.4, w=[1 1 1]
p=[1 1 1]

L̄=113.79, Lmax=231.41

0 200 400 600 800 1000 1200
Time, (s)

1

2

3

T
a
sk

 I
D

Figure 4.6. Times at which each task was visited by the vehicle in Trades 1000 (β = 0.1)
and 1003 (β = 0.4) of the isosceles triangle scenario.

convenience.

V = max
j

[
e
−β

tij
tij,maxwj

(Tj + tij)

tij,max

]
, ∀j ∈ {1, . . . , n}.

Consider again Fig. 4.5. Note that the β values are small in magnitude and the

range of non-trivial values is narrow. Any β ≤ 0.1 will result in equal visit rates to

all tasks, since the discount on travel distance is not sufficient to change the vehicle’s

default (i.e. as if β = 0) behavior. Likewise, any β ≥ 0.8 will result in the vehicle

virtually ignoring Task 3 for all 100 task selections. It is only within the range of

0.1 < β < 0.8 that the vehicle exhibits interesting behavior. This is troublesome for

two reasons. First, it makes it difficult to identify the correct magnitude and feasible

range of β. Second, once the range is identified, it is only valid for a specific D. Any

change in D will result in a new range of viable βs, perhaps with a different order of

magnitude. Normalization, then, should make it possible to establish a general range

of “well-behaved” βs to choose from, regardless of D.

As an illustrative example, the same isosceles triangle configuration used to gen-

erate Figs. 4.5 and 4.6 is simulated a second time, but using Eq. 3.16 to make task

selections. The results are shown in Figs. 4.7 and 4.8.

87

1
0
0
0

1
0
0
1

1
0
0
2

1
0
0
3

1
0
0
4

1
0
0
5

1
0
0
6

Trade ID

0

20

40

60

80

100

120

140

160

180

M
e
a
n
 V

is
it

 R
a
te

 (
v
p
h
)

β
=

2

β
=

4

β
=

6

β
=

8

β
=

1
0

β
=

1
2

β
=

1
4

Normalized Isosceles Triangle Task Visit Rates

Task

1
2
3

Figure 4.7. Visits per hour for the normalized isosceles triangle scenario (using nor-
malized MD2WRP), with varying β values and w = 1.

The same general behavior is observed in Figs. 4.7 and 4.8 as in Figs. 4.5 and 4.6,

with Task 3 receiving fewer visits as β increases. We also see there is still a non-trivial

range of βs. Although now the range of β is approximately 2 < β < 14. However,

to demonstrate the real value of normalization, a third simulation is performed with

an isosceles triangle of the same side length ratios, but 10 times larger (i.e. D for

the isosceles triangle is multiplied by ten). The results of that simulation are not

depicted here, because they generated visit rates and visit histories identical to those

in Fig. 4.7 and Fig. 4.8, respectively. This result demonstrates that, as desired, the

normalized MD2WRP function makes it possible to apply the same β and get the

same task visit sequence, even when the task distance matrix, D, is multiplied by a

scalar.

88

0

20

40

60

80

100

La
te

n
cy

MD2WRP: β=2, w=[1 1 1]
p=[1 1 1]

L̄=65.64, Lmax=95.04

0 200 400 600 800 1000 1200 1400
Time, (s)

1

2

3

T
a
sk

 I
D

0
50

100
150
200
250
300
350

La
te

n
cy

MD2WRP: β=8, w=[1 1 1]
p=[1 1 1]

L̄=161.34, Lmax=327.48

0 200 400 600 800 1000
Time, (s)

1

2

3

T
a
sk

 I
D

Figure 4.8. Times at which each task was visited by the vehicle for Trades 1000 (β = 2)
and 1002 (β = 8) on the normalized isosceles triangle scenario.

4.1.3 Periodicity.

In this section we provide a proof that the steady-state behavior of MD2WRP is

periodic regardless of the initial state. We also provide simulation results to demon-

strate the transition from a transient response to a periodic steady-state. Our simula-

tions reinforce how the steady-state is always periodic, though the task visit pattern

itself may vary based on the vehicle’s starting location and the initial ages of the

tasks. This proof was developed in cooperation with Dr. Kalyanam of AFRL and

Dr. Baker of AFIT.

Definition 4.1.1. Suppose we have n tasks. Let D be an n × n matrix with entries

d(i, j) representing the Euclidean distance between all tasks. Let S be the set of all

states, where state s is defined by the current location of the agent, i, and a vector T

of length n representing the ages of all tasks, that is, s = (i, T). Let m be the total

number of task visits, with each visit indexed by k, such that ik represents the task at

which the agent is located at visit k.

To start, we show how the age vector, T , evolves with each agent decision, k ∈

{0, . . . ,m}. Suppose the initial age vector is T0, then we can describe the task ages

89

at the time of the first visit, T1, by,

T1(j) = T0(j) + di0,i1(1− δi1,j)− δi1,jT0(i1), ∀j (4.1)

where j ∈ {1 . . . n}.

Note that δ is the Kronecker delta. Equation 4.1 states that each component, j,

of T is aged by the time required to move from task i0 to i1, except when j = i1 (the

age being updated belongs to the destination task), in which case the travel time is

not added and the residual age of j is subtracted. Simply stated, the age of task j

is reset to zero when it is visited by an agent. We can rewrite Eq. 4.1 in vector form

as,

T1 = T0 + di0,i1(1− ei1)− 〈T0, ei1〉ei1 (4.2)

where 1 is a vector of ones in <n, ei1 is the standard basis vector corresponding to

task i1, and 〈T0, ei1〉 is the standard dot product of T0 and ei1 .

We can define the projection operator on vector x ∈ <n as,

Pkx = 〈x, ek〉ek.

With the projection operator, Eq. 4.2 can be rewritten,

T1 = T0 + di0,i1(1− ei1)− Pi1T0 (4.3)

and rearranged to,

T1 = (I − Pi1)T0 + di0,i1(1− ei1) (4.4)

where I is an n × n identity matrix and the new state becomes s1 = (i1, T1). In

90

general we have,

Tk+1 = (I − Pik+1
)Tk + dik,ik+1

(1− eik+1
). (4.5)

It can be shown that 1− eik+1
= (I − Pik+1

)1, thus,

Tk+1 = (I − Pik+1
)(Tk + dik,ik+1

1). (4.6)

So we can show that for visits k = 0, . . . ,m and states sk = (ik, Tk), and beginning

with state s0 = (i0, T0),

T1 = (I − Pi1)(T0 + di0,i11) (4.7)

with new state s1 = (i1, T1), and

T2 = (I − Pi2)(T1 + di1,i21)

= (I − Pi2) [(I − Pi1)(T0 + di0,i11) + di1,i21]

= (I − Pi2)(I − Pi1)T0 + (I − Pi2)(I − Pi1)di0,i11+

(I − Pi2)di1,i21

(4.8)

with new state s2 = (i2, T2). By induction, we have the age vector at visit m defined

as,

Tm =

(
m∏
k=1

Bk

)
T0 +

m∑
l=1

dil−1,il

(
m∏
k=l

Bk

)
1 (4.9)

where Bk = (I − Pik) and sm = (im, Tm).

From Eq. 4.9, we see that the task ages at visit m depend exclusively on the initial

age vector, T0, and the entries of the D matrix, which are in turn selected by the

control policy. Equation 4.9 allows for some interesting observations. First, however,

91

we state the following identities which can be proved by induction,

m∏
k=1

(I − Pk) = I −
m∑
k=1

Pk (4.10)

and

(I − Pk)n = I − Pk, ∀n ≥ 1, n ∈ N. (4.11)

Equation 4.10 states that the product of I − Pk with k = 1, . . . ,m is equivalent

to I less the sum of each individual projection operator. Equation 4.11 simply states

that repeated projection operators can be ignored.

Now, let us define Bk = I − Pik and suppose that {1, 2, . . . , n} ⊂ {ik}mk=1 with

m ≥ n (i.e. each task has been visited by the agent at least once). By Eq. 4.11,

repeated projection operators can be ignored, so we have

m∏
k=1

Bk =
n∏
l=1

Bl =
n∏
l=1

(I − Pl). (4.12)

In other words, we only require one projection operator per task. Applying Eq. 4.10,

we get
n∏
l=1

(I − Pl) = I −
n∑
l=1

Pl. (4.13)

Summing Pl for every task results in an n× n identity matrix, which yields

I −
n∑
l=1

Pl = I − I = 0 =
m∏
k=1

Bk. (4.14)

Coming back to Eq. 4.9, suppose the agent has visited every task at least once

such that k = m̃, then by Eq. 4.14 we have
(∏m̃

k=1Bk

)
= 0 resulting in

Tm̃ =
m̃∑
l=2

dil−1,il

(
m̃∏
k=l

Bk

)
1 (4.15)

92

Note, the summation term with l = 1 has been discarded, since it would result in 0.

If we look at the entries of vector T we see,

Tm(j) =
m∑
l=2

dil−1,ilAlej ∀j (4.16)

where Alej is a coefficient of either 1 or 0, determined by the composite projection

matrix acting on j at visit m. We see that Tm(j) is composed of a linear combination

of elements in D with a coefficient of 1 or 0.

Lemma 4.1.1. (a) All task ages have an upper bound, M ,

Tk(j) < Mj ∀k = 1, . . . ,m, ∀j = 1, . . . , n

(b) The state-space S = {s0, . . . , sm} is finite.

Proof. (a) We offer a proof by contradiction. Suppose for n tasks, the age of a single

task j is unbounded. Then, as the age of task j increases to infinity, the value the

agent receives for j approaches infinity, by Eq. 3.2. Since the infinite value of j would

exceed the value of all other tasks, the agent would be forced to select j. Therefore,

the age of j must have some upper bound, M .

(b) From (a), the ages of all tasks are bounded by M . From Eq. 4.16, given states

sm = (im, Tm), the age of each task in Tm can only assume a value that is a linear

combination of the elements in D (with a coefficient of 1 or 0), with lower bound 0

and upper bound M . Therefore, given a finite number of tasks, the state-space S is

finite.

Note that with Lemma 4.1.1(a) we now know that there necessarily exists some

visit k = m̃ where the agent has visited every task at least once, which will result in

Eq. 4.15.

93

Theorem 4.1.2. For a given D and states sk, and following myopic control policy

π,

ik+1 = arg max
j∈Ui

e−βd(ik,j)wj [Tk(j) + d(ik, j)]

the steady-state sequence of task selections is periodic, where ik = π(sk−1) and ik+1 =

π(sk).

Proof. The myopic control policy is deterministic so that any state sk =⇒ sk+1.

That is, if an agent is located at task ik with age vector Tk, the control policy will

always result in the next agent task being ik+1 with corresponding age vector Tk+1.

Invoking Lemma 4.1.1 (b), a finite state space requires that if an agent has a state

progression of s0 =⇒ s1 =⇒ . . . =⇒ ŝk =⇒ sk =⇒ sk+1, then at some point

the agent must enter a state s̃k which returns the agent to some previously visited

state, which we call ŝk. At this point, the agent enters a state feedback cycle which

eventually returns the agent to state s̃k =⇒ ŝk, the end result being a task visit

order with a periodic structure.

For a demonstration of periodicity, simulation results for the isosceles triangle

with β = 0 and β = 4 are presented below. The weight vector is w = 1 and 50 task

selections are made (m = 50) with Vveh = 22m/s. Figure 4.9 includes both the visit

histories of the vehicles as well as a plot of total latency. Latency is included here,

not as a performance indicator, but because the latency “signal” makes it easy to

identify the periodic portion of the visit sequence.

The isosceles triangle results show a clear periodic visit pattern. With β = 0 in

Fig. 4.9, the pattern is simply, {1, 2, 3}. With β = 4, it takes longer for the pattern

to repeat due to less frequent visits to Task 3. The new pattern is, {2, 1, 2, 1, 2, 1, 3}.

Even though these scenarios are simple, the results hold regardless of the number of

tasks or the values of the MD2WRP parameters. Additional results are included

94

0

20

40

60

80

100

120

140

160

L
a
te

n
c
y

Isosceles Triangle with β=0

0 200 400 600 800 1000 1200

Time, (s)

1

2

3

T
a
s
k
 I

D

0

50

100

150

200

250

L
a
te

n
c
y

Isosceles Triangle with β=4

0 200 400 600 800 1000

Time, (s)

1

2

3

T
a
s
k
 I

D

Figure 4.9. Demonstration of the periodicity of MD2WRP under the isosceles triangle
task configuration, with β = 0 (left) and β = 4 (right).

in Table 4.1. These were generated on the operational scenarios depicted in Fig. 3.9

from Ch. III.

Table 4.1. Visit pattern length (in number of tasks) and period for a variety of scenarios.

Map β Length Period (s)
Isosceles Triangle 0 3 71.5
Isosceles Triangle 4 7 144.1

Circle 0 10 4140.9
Circle 8 10 1409.1

Clusters 0 10 2812.9
Clusters 4 22 1927.8

Grid 0 16 2042.3
Grid 5 16 831.2

Random 0 10 2795.2
Random 4 39 5294.2

One might ask, if the vehicle eventually enters a periodic pattern, why not deter-

mine the pattern and assign it as the vehicle route? While this idea seems reasonable,

it undermines the purpose of decision making with utility functions. Specifically, it

eliminates the element of adaptability that makes the utility approach desirable for

an autonomous vehicle operating in a dynamic mission environment. If the vehicle’s

path will be predetermined, then other methods are better suited, such as those em-

ploying variants of the Traveling Salesman Problem, which we have already discussed

95

as having undesirable attributes for autonomous vehicle PISR.

While the task visit order produced by MD2WRP is always periodic in the steady-

state, different initial conditions may result in a different steady-state visit order. For

a simple demonstration of the sensitivity to initial conditions, results are presented

below in Sec. 4.1.3.1 and 4.1.3.2 for the isosceles triangle map. For each simulation,

we use β = 4.0, w = 1, m = 50, and Vveh = 22m/s.

4.1.3.1 Initial Conditions - Start Location.

In Fig. 4.10, results with the vehicle’s starting location set to Task 1 (left) and

Task 3 (right) are shown. A close inspection of the total latency for both scenarios

shows that the latency curves are identical in the steady-state. Therefore, from a

mission performance perspective, there is no difference in the two visit patterns once

steady-state is achieved. In either case, Tasks 1 and 2 receive six combined visits for

every visit to Task 3. The specific periodic visit order, however, changes. When the

start location is Task 1, the periodic visit order is {2, 1, 2, 1, 2, 1, 3}, whereas starting

at Task 3 produces {1, 2, 1, 2, 1, 2, 3}.

0

50

100

150

200

250

L
a
te

n
c
y

Isosceles Triangle with Start Task=1
Total Latency

0 200 400 600 800 1000

Time, (s)

1

2

3

T
a
s
k
 I

D

0

50

100

150

200

250

L
a
te

n
c
y

Isosceles Triangle with Start Task=3
Total Latency

0 200 400 600 800 1000

Time, (s)

1

2

3

T
a
s
k
 I

D

Figure 4.10. Visit patterns are dependent on vehicle starting location, but are always
periodic in the steady-state.

96

4.1.3.2 Initial Conditions - Task Ages.

In Fig. 4.11, the initial normalized ages of the tasks are set to T0 = [0, .5, 3.7].

The vehicle starts at Task 1 and it can be seen that the same steady-state latency

curve emerges as in the left of Fig. 4.10, despite a slightly different transient. In this

case, the steady-state visit pattern is the same as when all initial task ages are zero

and the vehicle starts at Task 1, although this may not always be true in general.

Interestingly, the transient period with a non-zero T0 is shorter than with T0 = 0̄.

0

50

100

150

200

250

L
a
te

n
c
y

Iososceles Triangle with Non-zero Initial Ages
Total Latency

0 200 400 600 800 1000

Time, (s)

1

2

3

T
a
s
k
 I

D

Vehicle[100]

Figure 4.11. Visit patterns are dependent on initial task ages, but always periodic in
the steady-state.

4.1.4 Optimizing β and w.

So far, the effects of the MD2WRP parameters on vehicle behavior have been

explored and it has been demonstrated that MD2WRP produces steady-state visit

patterns that are periodic. Before the performance of MD2WRP is compared to

other PISR methods, the parameters β and w must be optimized to provide the best

97

possible MD2WRP performance.

Clearly, the search space for finding the optimal β and w is large, even for small

problems. While normalization helps limit β to a relatively small range of viable

values, each element of w can be any real positive number. An exact algorithm for

finding the parameters that yield the global minimum latency is probably not possible.

Still, a two-step heuristic method is proposed below that facilitates the selection of

MD2WRP parameters which yield empirically good results (as we will show with

comparisons to other methods in Sec. 4.2) and provide some confidence that latency

performance is within a local optimum, if not approaching the global minimum. The

method below breaks the search into two phases: first the selection of β and then the

weight vector, w.

The parameter optimization method is again demonstrated on the isosceles trian-

gle scenario. To enrich the example, Task 1 is given a higher priority. The priority

vector is p = [3, 1, 1], such that the latency of Task 1 will increase three times faster

than that of Tasks 2 or 3. Performance is based on average latency, L̄, with maximum

total latency, Lmax, used as a tiebreaker.

4.1.4.1 Selecting β.

The search for β is conducted first since it is a single value. Also, its value will

alter the effect of w, which is a much larger space to search, so it makes sense to pick

β first. For now, all tasks have an MD2WRP weight equal to one (w = 1). Due to

normalization, the search range for β is relatively small and stable. Using the results

in Fig. 4.7, a good place to begin the search for non-trivial β values is between 0-10.

Values for β are simulated in increments of 0.25 with the latency performance of the

top ten values for m = 150 task selections summarized in Table 4.2. The latency of

the β = 0 case is shown for reference. Recall that β = 0,w = 1 implies decisions are

98

based solely on the future age of tasks. The total latency curve and visit history for

a vehicle with the optimal β = 3.25 (but using non-optimized w = 1) is shown in

Fig. 4.12.

Table 4.2. Top ten βs by best L̄ performance.

β L̄ Lmax

3.25 101.90 182.86
2.75 104.66 182.86
2.25 104.94 182.86
2.50 104.94 182.86
3.50 105.10 182.86
3.75 105.18 182.86
3.00 105.83 172.53
2.00 106.60 182.86
1.75 106.60 182.86
4.25 106.68 196.29
0.00 106.98 182.86

The case with β = 3.25 provides the best performance in terms of L̄, 4.7% better

than with β = 0, which we use as our baseline policy. The reason β = 3.25 provides

the best performance is because it strikes the appropriate balance in visit frequency

between Task 1, with high-priority, and the low priority tasks. The vehicle visits

Task 3 less often due to the distance discount from the exponential term, e
−β

tij
tij,max .

If β were smaller, the vehicle would visit Task 3 too frequently at the expense of

significantly higher latency for Task 1. Conversely, if β were larger, Task 3 would

not be visited enough and its latency would outgrow that of Task 1, despite its lower

priority.

4.1.4.2 Selecting w.

With the best β selected, the next step is to determine the task weight vector, w.

This is more difficult than selecting β due to the size of the search space. In choosing

weights, it should also be noted that the values themselves are not important, but

99

0

50

100

150

200

La
te

n
cy

MD2WRP: β=3.25, w=[1 1 1]
p=[3 1 1]

L̄=101.9, Lmax=182.86

0 500 1000 1500 2000
Time, (s)

1

2

3

T
a
sk

 I
D

Figure 4.12. Total latency curve and task visit history for a vehicle operating on the
isosceles triangle map with β = 3.25, the optimal β for this scenario.

the ratio between them.

The simplest way to test weights is to simulate numerous weight vectors. To

begin, we explore 27 task weight combinations, allowing each task to have the weights

w1 = {1, 2, 3}, w2 = {1, 2, 3}, and w3 = {1, 2, 3}. The results for the top ten weight

combinations by L̄, using β = 3.25, are shown in Table 4.3. The latency curves and

visit histories for two weight vectors of special interest, w = [3, 2, 3] and w = [3, 1, 1],

are in Fig. 4.13.

Of the 27 weight vectors tested, the best performance is with w = [3, 2, 3], which

results in a 9.6% improvement over the baseline policy (β = 0, w = [1, 1, 1]), or an

additional 4.9% improvement from the β-only optimization (β = 3.25, w = [1, 1, 1]).

Referring to the visit history on the left of Fig. 4.13, the vehicle achieves this perfor-

mance by visiting Task 1 between every visit to Tasks 2 and 3. This makes intuitive

sense because the high-priority of Task 1 warrants additional visits. What may not

100

Table 4.3. Performance of each w by L̄ (β = 3.25).

w L̄ Lmax

[3, 2, 3] 96.70 160.13
[3, 1, 3] 97.03 160.13
[2, 1, 2] 97.03 160.13
[3, 1, 2] 97.03 160.13
[3, 1, 1] 99.87 162.20
[2, 1, 1] 99.87 162.20
[3, 2, 2] 99.87 162.20
[1, 1, 1] 101.90 182.86
[2, 2, 3] 106.60 182.86
[1, 1, 3] 106.98 182.86

0
20
40
60
80

100
120
140
160
180

La
te

n
cy

MD2WRP: β=3.25, w=[3 2 3]
p=[3 1 1]

L̄=96.7, Lmax=160.13

0 500 1000 1500 2000
Time, (s)

1

2

3

T
a
sk

 I
D

0
20
40
60
80

100
120
140
160
180

La
te

n
cy

MD2WRP: β=3.25, w=[3 1 1]
p=[3 1 1]

L̄=99.87, Lmax=162.2

0 500 1000 1500
Time, (s)

1

2

3

T
a
sk

 I
D

Figure 4.13. Latency curves and visit history with β = 3.25 and w = [3, 2, 3] (left) and
w = [3, 1, 1] (right).

be intuitive, however, is the additional weights on Tasks 2 and 3, despite their lower

priority. The reason is due to the discounting effect of β. Optimizing β alone did

not yield the visit sequence required to achieve this performance. However, the addi-

tional weight on Task 3 partially offset the β discount to encourage a slightly higher

visit frequency. Together, along with β, the weights in w adjusted the weight ratio

between all tasks and worked in concert to deliver the best performance.

Unfortunately, optimizing w by testing weight combinations for every task has

some significant limitations. As just demonstrated, the best performance may involve

increasing the weight of some low priority tasks. For the isosceles triangle example,

101

this is not a problem. However, it becomes computationally impractical when the

number of tasks is ten, or sixteen, such as with our operational scenarios depicted

in Fig. 3.9. Assuming only a single task has an increased priority, testing even two

priorities for every task requires simulating 210 = 1024 different weight vectors for ten

tasks or 216 = 65536 for sixteen! In general, if r is the number of different priorities

to test and n the number of tasks, there are rn weight combinations to test.

To limit the search space, we can instead leave all low priority tasks with a weight

of one and only increase the weight of the high-priority task. In that case, the best

performance from Table 4.3 is with w = [3, 1, 1]. Only modifying the weight of Task

1 reduces performance in favor of easier computation, but improvements in L̄ are still

realized. The improvement over the baseline policy becomes 6.6% and improvement

over the β-only optimization is 1.9%. Overall, for this scenario we sacrifice 3% of our

performance improvements, but reduce the number of weight combinations from 27

to 3.

Interestingly, what might have been the most intuitive choice, w = [3, 2, 1] (in

other words, a w that matches p), yields significantly worse results than leaving all

weights at one. The value is not included in Table 4.3 because it is not in the top

ten weight combinations. The L̄ with w = [3, 2, 1] is 124.24. This reinforces that

priority, established by the operator, and MD2WRP weight, for optimizing vehicle

performance, are independent concepts and that one is not necessarily a good guess

for the other.

While the isosceles triangle example is simple, it reveals some truths that trans-

late to larger, more complex scenarios. In general, only optimzing β, which is a

quick and simple search, yields significant performance improvement over the base-

line policy (i.e. β = 0,w = 1). Weight optimization, on the other hand, does yield

significant performance improvement if we test different weights for all tasks, which

102

comes with an increased computational burden. Limiting the weight increase to only

the high-priority task(s) reduces the number of weight combinations to test, while

still providing a performance increase. In Sec. 4.1.4.3, we demonstrate the two-step

optimization method on more complex scenarios and only increase the weight of the

single high-priority task.

From an operational standpoint, minimal effort should be spent on selecting a

weight vector, since MD2WRP is intended for use in a dynamic mission environment.

The frequent introduction or removal of tasks and vehicles makes it impractical to

continuously evaluate for an optimal weight vector. Therefore, if all tasks are of equal

priority it is recommended to optimize β and use w = 1. If some tasks have increased

priority, only adjusting the weight of the high-priority tasks saves computation time

while still improving performance.

The two-step optimization method introduced here is a simple brute force ap-

proach. For both β and w, we simply search a discrete linear progression of values,

simulating each until the values that results in the lowest L̄ are found. While this

method is simple, we demonstrate in Sec. 4.2 that it results in good performance that

is competitive with other methods of task selection. In Sec. 5.2, we describe potential

alternatives for optimizing β and w that may provide a more thorough search of the

space, resulting in the discovery of better local minimums.

Lastly, it should be noted that it is possible to obtain any visit pattern under

any task configuration solely through the manipulation of weights, whether distance

discounting is used or not. Finding the weight vector that yields a specific visit

pattern, however, is too difficult and of little value. Even if it were possible to

precisely control visit patterns through weights, this would be detrimental to PISR

with multiple vehicles. As will be discussed in Sec. 4.2, the real benefit of MD2WRP

is realized under a multi-vehicle scenario, where careful selection of β provides for the

103

emergence of decentralized cooperative behavior. If individual task weights are used

in place of β, this cooperative behavior is lost.

4.1.4.3 Optimization Examples.

In this section, the two-step MD2WRP optimization method is demonstrated

on different task configurations and priority vectors. The purpose is to characterize

the potential performance gains through optimization of β and w and to show the

optimization methodology is effective regardless of the task configuration.

To simplify analysis, a priority vector is chosen for each map with one task given

a priority of ten and all others set to one. This serves the dual purpose of limiting

the search space for w (assuming that only weights for the high-priority task are

adjusted) and accentuating the play between priorities and weights. In Table 4.4, for

five task map and priority vector combinations, performance data is shown first for

the baseline MD2WRP (β = 0,w = 1), then with optimal β and w = 1, and finally

with both β and w optimized. The percent improvement over the baseline policy is

shown in the rightmost column.

In general, only optimizing β yields significant performance improvement over the

baseline policy, more than halving L̄ in every scenario tested. Weight optimization,

on the other hand, only yields an additional 3-4% improvement in most cases. Oc-

casionally, as seen for the Circle and Grid (with p16 = 10), the optimal weight of the

high-priority task is equal to 1.0, so there is no difference between the β-only opti-

mization and the optimization including wj. Curiously, when the high-priority task is

along the outermost edge of the map, adding a weight is detrimental to performance.

The best choice is to leave the weight equal to one. This can be seen in the Circle map,

where every task could be considered on the outermost edge, as well as the second

Grid scenario where Task 16 is in the bottom-right corner. Performance decreases in

104

Table 4.4. L̄ results for various maps, βs, and w’s.

Map pj β wj L̄ % Improv.
Rand 0 w5 = 1.0 26247 -
Rand p5 = 10 3.5 w5 = 1.0 13229 50.0
Rand 3.5 w5 = 5.5 11961 54.4
Circ 0 w1 = 1.0 38926 -
Circ p1 = 10 2.0 w1 = 1.0 13184 66.1
Circ 2.0 w1 = 1.0 13184 66.1
Clust 0 w7 = 1.0 26512 -
Clust p7 = 10 2.5 w7 = 1.0 10362 61.0
Clust 2.5 w7 = 4.5 9561 64.0
Grid 0 w6 = 1.0 25071 -
Grid p6 = 10 5.0 w6 = 1.0 9236 63.2
Grid 5.0 w6 = 8.0 8090 67.7
Grid 0 w16 = 1.0 25002 -
Grid p16 = 10 1.0 w16 = 1.0 8931 64.3
Grid 1.0 w16 = 1.0 8931 64.3

these situations because the increased frequency of visits to the outer high-priority

task creates a large opportunity cost among all other tasks, with the net result of

driving up L̄. Therefore, an edge task would need an exceptionally high-priority to

justify additional weight.

We can be confident that the optimized β and w in Table 4.4 are local optimums

because either increasing or decreasing their values (to a point which changes the

visit pattern) results in worse performance. The plots of L̄ versus β and versus the

weight of the high-priority task are shown for the Random map in Figs. 4.14 and

4.15, respectively.

4.2 Comparison Studies of MD2WRP

The next research task investigates the performance of several variants ofMD2WRP

and then looks at how MD2WRP compares to other methods for PISR task selection,

specifically TSP solutions and other utility functions. Among the self-comparisons,

different communication modes are examined for the multi-vehicle case. We also

105

0 1 2 3 4 5 6 7 8 9 10

β

14000

16000

18000

20000

22000

24000

26000

A
v
e
ra

g
e
 L

a
te

n
cy

,
(L̄

)

'Random' Map

Figure 4.14. β = 3.5− 3.9 result in the best latency (w = 1).

examine MD2WRP with multiple decision lookahead. Then, MD2WRP is com-

pared to the cyclic and partition TSP strategies from [1], which we call n-spaced and

k-subtours TSP, respectively. Finally, MD2WRP is compared to the greedy direct la-

tency minimization (DLM) utility function as well as the single-vehicle/multi-vehicle

reactive policies (SRP/MRP) from [5].

4.2.1 MD2WRP with Different Communication Modes.

To discuss multi-vehicle cooperation, one must address communication modes.

There are many possibilities when it comes to communication amongst vehicles. How-

ever, in keeping with the spirit of simplicity that drove the development ofMD2WRP ,

only three basic modes are explored due to their minimalistic nature: no communi-

cation (CxNone), “Broadcast Completions” (CxBC), and “Broadcast Destinations”

(CxBD).

We select the Clusters map using three vehicles to demonstrate each communica-

106

2 4 6 8 10

Weight of Task 5, (w5)

12000

12500

13000

13500

14000

14500

A
v
e
ra

g
e
 L

a
te

n
cy

,
(L̄

)

'Random' Map

Figure 4.15. w5 = 5.2− 5.6 result in the best latency (β = 3.5).

tion mode (bottom left of Fig. 3.9). The clusters scenario makes it easy to identify

the advantages/disadvantages of each communication type due to the obvious oppor-

tunity for task partitioning. To further accentuate the characteristics of each mode,

three different sets of initial conditions are used, each more challenging than the next:

first with each of the three vehicles starting in separate clusters, then at separate tasks

within the same cluster, and finally at the same task. We assume all tasks have equal

priority and use w = 1. For all three communication types we use β = 5.0. All task

ages are initially zero.

4.2.1.1 No Communication (CxNone).

We begin with a scenario where communications are not available and each vehicle

must make task selections independently. The CxNone mode provides a worst case

baseline of performance to compare the CxBC and CxBD modes against for each of

the three initial conditions described above.

107

From Sec. 4.1.3, it was shown that a single vehicle using MD2WRP enters a

periodic visit pattern. Given that conclusion, in the case of multiple vehicles operating

in the same space as independent actors, each will eventually achieve a periodic

pattern. This is indeed the case, as seen in Fig. 4.16. In this instance, the steady-

state visit pattern for all three vehicles is the same, though this is not true in general.

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

Clusters Map
 Comm Mode=CxNone

β=5.0, w=1, p=1
L̄=1696.65, Lmax=2813.34

Total Latency

0 2000 4000 6000 8000 10000 12000

Time, (s)

2

4

6

8

10

T
a
s
k
 I

D

Vehicle[100]

Vehicle[200]

Vehicle[300]

Figure 4.16. Three vehicles operating without communication. Each starts in a separate
task cluster and eventually enters the same periodic pattern.

In Fig. 4.16, because the vehicles begin within separate clusters, they maintain

a wide spacing resulting in relatively even coverage of tasks. The performance in

terms of average weighted latency is L̄ = 1696.65 (Table 4.5). If vehicles begin at

separate tasks within the same cluster, performance decreases drastically due to a

tighter vehicle spacing (L̄ = 5679.74). A serious problem is encountered, however,

when all vehicles start at the same task. Since all ages are initially zero, the vehicles

begin in the same state, so every vehicle always makes the same task selection. The

net result is the vehicles spending the entire simulation collocated. Since this defeats

108

the purpose of having multiple vehicles, it is essential in the CxNone mode that each

vehicle start in a different state to ensure spacing between vehicles. Unfortunately,

in an operational environment, initial vehicle states may not always be under the

operator’s control, since factors such as the base location may determine the first

task visited.

Table 4.5. Performance of three vehicles on “Clusters” by start location (β = 5,w = 1).

Start Locations Comm. Mode L̄
CxNone 1696.65

Separate Clusters CxBC 1156.20
CxBD 1156.20

CxNone 5679.74
Same Cluster CxBC 1810.38

CxBD 1286.10
CxNone 7266.59

Same Task CxBC 7266.59
CxBD 1308.83

4.2.1.2 Broadcast Completions (CxBC).

Sharing completion information is perhaps the simplest possible communication

mode. Upon completing a task, each vehicle broadcasts the task ID and time of

completion. All other vehicles update their table of task ages and use this information

when the time comes to select their next task. In other words, this is as if all vehicles

were making decisions from a single, shared database of task ages.

If the vehicles are initialized within the same cluster, but at different tasks, the

CxBC mode significantly outperforms the no communication case, cutting latency

from L̄ = 5679.74 to L̄ = 1810.38, a reduction of 68%. This performance increase

is caused by an emergent cooperative behavior resulting from the implicit effect of

the travel time discount factor, β. As seen in Fig. 4.17, the vehicles automatically

partition themselves into separate clusters, where they remain for the duration of the

109

mission. It takes about 2100 seconds (35 minutes) for the vehicles to enter the final

partitioned visit sequences.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

L
a
te

n
c
y

Clusters Map
 Comm Mode=CxBC
β=5.0, w=1, p=1

L̄=1810.38, Lmax=8464.2
Total Latency

0 2000 4000 6000 8000 10000

Time, (s)

2

4

6

8

10

T
a
s
k
 I

D

Vehicle[100]

Vehicle[200]

Vehicle[300]

Figure 4.17. Three vehicles sharing completion data (CxBC) and starting at different
tasks within the same cluster.

Of course, performance is better still if the vehicles start off in separate clusters,

since vehicles begin already in their partitions. The effect of β ensures that the

vehicles remain partitioned throughout the scenario.

As seen by their identical performance in Table 4.5, when the vehicles start at the

same task, CxBC suffers from the same problem as CxNone; all vehicles visit the same

tasks at the same time. At the start of the mission, every vehicle makes an initial

task selection with all vehicles calculating utility using the same database. Since

they are using identical information, they all select the same task. Upon arriving at

the next task, they share which task they have completed (the same one), and again

make their next selection using identical information. This is a major drawback of

the CxBC mode. In the event two or more vehicles are at the same task with the

110

same age information (i.e. they enter the same state at the same time), they will

“group up” for the remainder of the mission.

Despite the specific drawbacks of the CxBC mode, the automatic partitioning

behavior demonstrated in Fig. 4.17 is a key benefit of MD2WRP . The effect of β is

to make each vehicle remain in its own cluster. Furthermore, utility values are never

high enough to visit another cluster since the ages of those tasks are being reset by the

other vehicles. If, however, one of the vehicles were to be lost, the increasing ages of

the lost vehicle’s tasks would eventually result in the remaining vehicles establishing

a new division of tasks, after a transient period. Conversely, the introduction of a new

vehicle would see a new task partition. The same could be said about the removal or

addition of tasks. This adaptable automatic partitioning makes MD2WRP ideal for

uncertain, dynamic mission environments.

4.2.1.3 Broadcast Destinations (CxBD).

The destination sharing mode works as follows. After completing a task, vehicles

select their next task and broadcast four pieces of information: the task ID and time

of completion for the completed task plus the task ID and anticipated arrival time

to the destination task. Using the destination information, vehicles are able to de-

conflict their task selections based on the activity of other vehicles. The CxBD mode

slightly increases the complexity of the MD2WRP task selection algorithm because

the future activity of every vehicle must be accounted for when calculating task ages

(see Sec. 3.4.2.4). Even so, the added complexity is compensated for with increased

robustness, as the following scenario demonstrates.

The primary benefit of sharing destinations is that vehicles will automatically

partition themselves even if they begin from the same state. In Fig. 4.18, all vehicles

begin at Task 1 and are fully partitioned by 1000 seconds (about 17 minutes). In fact,

111

performance and partition time are only marginally worse for the “same task” start

condition (L̄ = 1308.83) as for the “same cluster, different task” case (L̄ = 1286.10).

As with the other communication methods, the best performance is achieved when

the vehicles begin in separate clusters (L̄ = 1156.2).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

L
a
te

n
c
y

Clusters Map
 Comm Mode=CxBD

β=5, w=1, p=1
L̄=1308.83, Lmax=4074.91

Total Latency

0 2000 4000 6000 8000 10000

Time, (s)

2

4

6

8

10

T
a
s
k
 I

D

Vehicle[100]

Vehicle[200]

Vehicle[300]

Figure 4.18. Three vehicles sharing destination data (CxBD) and starting at the same
task.

The CxBD mode is the recommended form of communication and will be used

for all comparisons in the remainder of this research. It allows vehicles to de-conflict

their task selections while preventing vehicles from coalescing at the same tasks.

4.2.2 MD2WRP with Multiple Decision Lookahead.

Recall thatMD2WRP is derived from the first term of the infinite horizon solution

to PISR formulated as a dynamic programming problem (see Sec. 3.3.1). If the first

two, or three, terms are taken from the infinite horizon solution, MD2WRP becomes

a first, or second, order approximation, equivalent to making decisions based on the

112

next two or three task visits. The result of a longer decision horizon should be a total

tour utility value that approaches the optimal infinite horizon value. This is indeed

the case and it is demonstrated in the first portion of this section. Later, we address

whether decisions stemming from a better utility value approximation translate to

better performance, that is reduced L̄.

4.2.2.1 Utility from Multiple Decision Lookahead.

Recall the infinite horizon version of MD2WRP from Eq. 3.10. It is reprinted

here for convenience,

V π(s0) =
∞∑
k=0

e
−βtπik+1wπ(sk) [T (π(sk)) + d(π(sk−1), π(sk))] .

First, we note a curious phenomenon that prevents the use of multiple decision

lookahead when β = 0. With β = 0, the distance discount term, e
−βtπik+1 , goes

to one, such that the utility sum of all future decisions is no longer limited by

a decaying exponential, but instead continues to increase with weighted task age,

wπ(sk) [T (π(sk)) + d(π(sk−1), π(sk))]. In other words, the longer a vehicle waits to

accomplish a task, the more utility it receives! The end result is the task with the

highest weighted age being continually pushed to the edge of the decision horizon,

but never actually visited. Obviously this is counter to the intended behavior. So, in

its current form, some value of β greater than zero must be used for MD2WRP with

multiple decision lookahead.

In Fig. 4.19, plots of the total tour utility under two different βs using 1-, 2-, and

3-Lookahead on the Random map are shown. For clarity, the tour utility curves are

calculated after the fact, using Eq. 3.10, based on the final tour that was generated

with a given lookahead; they do not reflect the actual utility values calculated for

decisions during the simulation run. In the β = 1.0 plot, it is clear that increasing

113

the decision horizon results in a final tour with increased utility. Also notice that

with β = 1.0 the final tour value does not plateau until about twenty decisions, but

with β = 5.0 the plateau occurs in eight decisions. This is owing to the accelerated

decay caused by a larger β in the exponential term of Eq. 3.10. What this means is

the higher β, the less impact the steady-state has on final tour value. For example,

with β = 5.0, the final visit pattern of 1-, 2-, and 3-Lookahead are not the same, but

they have the same apparent tour utility because their first eight decisions are the

same. The added utility of any decision beyond number eight is worth too little to

appreciably impact the total tour utility.

0 5 10 15 20 25 30

Decision No.

0

50

100

150

200

250

300

T
o
ta

l
T
o
u

r
U

ti
li
ty

Random Map w/ β=1.0

1L
2L
3L

0 5 10 15 20 25 30

Decision No.

0

5

10

15
T
o
ta

l
T
o
u

r
U

ti
li
ty

Random Map w/ β=5.0

1L
2L
3L

Figure 4.19. Under larger β the final tour utility approaches the limit sooner.

The final tour values under several different βs for 1-, 2-, and 3-Lookahead on the

Random map are shown in Fig. 4.20. The tour values are normalized based on the

largest tour value for a given β. As Fig. 4.20 depicts, a longer decision horizon always

results in a better final tour utility value, but the effect is diminished as β increases.

4.2.2.2 Performance from Multiple Decision Lookahead.

Now we explore whether increasing the decision horizon through multiple looka-

head translates to better performance in terms of L̄. Of note, increasing the decision

horizon changes the optimal β for a given task configuration. For example, β = 8.5

114

1 2 3

No. of Lookaheads

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
o
rm

a
li
ze

d
 T

o
u

r
U

ti
li
ty

Random Map - Tour Utility By Lookahead

Beta=1.0
Beta=3.5
Beta=5.0

Figure 4.20. Increasing lookahead increases the final tour utility.

may be optimal with 1-Lookahead, but the optimal value for 3-Lookahead might be

β = 4.0. As such, the data in Fig. 4.21 represents the latency under the optimal β

for that level of lookahead.

1 2 3
Number of Lookaheads

5500

6000

6500

7000

A
v
e
ra
g
e
 L
a
te
n
cy
,
L̄

Avg. Latency vs. Lookahead (1 Vehicle)

Circle
Random
Clusters
Grid

1 2 3
Number of Lookaheads

1500

2000

2500

A
v
e
ra
g
e
 L
a
te
n
cy
,
L̄

Avg. Latency vs. Lookahead (3 Vehicles)

Circle
Random
Clusters
Grid

Figure 4.21. Multiple decision lookahead is more effective with multiple vehicles.

In the single vehicle case, there appears to be no correlation between multiple

lookahead and improved L̄ (left of Fig. 4.21). While 2- and 3-Lookahead deliver

narrowly improved performance on the Clusters map, their performance is slightly

115

worse on the Random map. The extra computational cost of multiple lookahead is

not recommended for a single vehicle, as it is just as likely to hurt performance as

help it.

In the multi-vehicle case (right of Fig. 4.21), increased lookahead does provide a

slight performance improvement. (Except in the case of the Grid map, which is likely

attributable to the effect of arbitrary tie-breaking logic, which has been discussed

previously.) The performance improvements due to lookahead using multiple vehicles

is due to increased opportunities for task deconfliction, since a vehicle can account

for the arrivals of other vehicles that would be beyond its decision horizon with

only 1-Lookahead. Even so, the performance gains are marginal at best and the

extra computational effort is likely not worth it. For this reason, MD2WRP with

1-Lookahead is used in the remainder of this research for both single and multi-vehicle

scenarios.

4.2.3 Comparison to TSP-based PISR.

In Chevaleyre[1] it was shown, for a single agent, that the cyclic strategy (which

we refer to as n-spaced TSP) is optimal for the minimum latency tour problem. With

n-spaced TSP, vehicles are evenly spaced along the same single-vehicle TSP tour and

follow each other, such that every vehicle services every task. For multiple vehicles,

the author goes on to demonstrate that a partitioning strategy (which we call k-

subtours TSP) is better suited when the map contains one or more long edges. In

this section, we compare MD2WRP to both strategies using the four sample scenarios

in Fig. 3.9. For reference, Fig. 4.22 depicts the single vehicle TSP solutions for each

task map.

116

4000 2000 0 2000 4000

East, (m)

2000

0

2000

4000

6000

N
o
rt

h
,

(m
)

T[1]

T[2] T[3]

T[4]

T[5]

T[6]

T[7]

T[8]

T[9]

T[10]

'Random' TSP Tour

6000 4000 2000 0 2000 4000 6000

East, (m)

4000

2000

0

2000

4000

N
o
rt

h
,

(m
)

T[1]

T[2]T[3]

T[4]

T[5]

T[6]

T[7] T[8]

T[9]

T[10]

'Circle' TSP Tour

3000 2000 1000 0 1000 2000 3000 4000

East, (m)

4000

3000

2000

1000

0

1000

2000

3000

4000

N
o
rt

h
,

(m
)

T[1]

T[2]

T[3]

T[4]

T[5]

T[6]

T[7]

T[8]

T[9]

T[10]

'Clusters' TSP Tour

0 500 1000 1500 2000 2500 3000

East, (m)

0

500

1000

1500

2000

2500

3000

N
o
rt

h
,

(m
)

T[1]

T[2]

T[3]

T[4]

T[5]

T[6]

T[7]

T[8]

T[9]

T[10]

T[11]

T[12]

T[13]

T[14]

T[15]

T[16]

'Grid' TSP Tour

Figure 4.22. The single vehicle TSP solution for each task map.

4.2.3.1 n-spaced TSP.

The n-spaced TSP is perhaps the most intuitive approach to PISR. Here, we

compare the L̄ performance of n-spaced TSP to MD2WRP with a varying number

of vehicles. For multiple vehicles, we use the Broadcast Destinations communication

mode (CxBD). The MD2WRP parameter β has been optimized according to the

process outlined in Sec. 4.1.4.1 and w = 1. All task priorities are equal to one.

To maintain a fair comparison, the MD2WRP vehicles begin in the same locations

as those using n-spaced TSP with the caveat that the PUMPS tool can only handle

vehicle locations that are collocated with tasks. For this reason, it is not possible

to perfectly space vehicles along the TSP tour. Instead, the spacing is as close to

equal as possible given the task configuration. Table 4.6 depicts the vehicle starting

117

locations for each of the four maps from Fig. 3.9 when one to five vehicles are used.

Table 4.6. Start locations for n-spaced TSP comparison.

Map Start Locations
Circle {1}, {1,6}, {1,4,7}, {1,4,6,9}, {1,3,5,7,9}

Clusters {1}, {1,8}, {3,6,10}, {1,6,7,8}, {2,3,6,7,8}
Grid {1}, {1,11}, {1,6,12}, {1,8,11,14}, {1,4,7,14,16}

Random {1}, {1,7}, {1,5,10}, {2,4,5,9}, {1,4,7,8,10}

The results of the n-spaced TSP comparison are displayed in Fig. 4.23. Overall,

MD2WRP with CxBD is competitive with n-spaced TSP on all tested maps.

1 2 3 4 5
Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Random' Map

n-Spaced TSP
MD 2WRP

1 2 3 4 5
Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Circle' Map

n-Spaced TSP
MD 2WRP

1 2 3 4 5
Number of Vehicles

1000

2000

3000

4000

5000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Clusters' Map

n-Spaced TSP
MD 2WRP

1 2 3 4 5
Number of Vehicles

1000

2000

3000

4000

5000

6000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Grid' Map

n-Spaced TSP
MD 2WRP

Figure 4.23. The tuned MD2WRP is competitive with n-spaced TSP on a variety of
task configurations.

Interestingly, for a single vehicle, the latency performance of MD2WRP and n-

spaced TSP is nearly equal regardless of task configuration. In fact, on the Circle,

Grid, and Clusters maps, the MD2WRP vehicle finds the TSP tour in the steady-

118

state with an optimal β. This is a powerful result as it demonstrates that the op-

timized MD2WRP vehicle, using only utility values with 1-Lookahead for decision

making, can achieve the same performance as a TSP vehicle whose path was generated

with combinatorial optimization.

As the number of vehicles increases, n-spaced TSP narrowly edges out MD2WRP

except on the Clusters map when the number of vehicles is three or greater. This

is due to the long edges in the Clusters map, a reflection of the Chevaleyre result

mentioned previously. The automatic partitioning behavior of MD2WRP results in

at least one vehicle servicing every cluster. Hence, the number of long edges traveled

between clusters is reduced, resulting in a more efficient vehicle allocation compared

to the n-spaced TSP tour, in which every vehicle must travel between clusters.

The advantage of n-spaced TSP on the Circle and Grid maps with multiple vehicles

is due to the arbitrary tie-breaker logic in the MD2WRP algorithm. Take for example

the Circle map with two vehicles: Vehicle 100 starts at Task 1 and Vehicle 200 at

Task 6. From Task 1, Vehicle 100 receives equal utility for going to either Task 2 or

10. Since the lowest task number is given preference in the event two tasks have equal

value, Task 2 is selected. Next, Vehicle 200 at Task 6 receives equal utility for going

to Task 5 or 7, so it travels to Task 5. After both vehicles have arrived at their next

task, Vehicle 100 at Task 2 selects a new task. Again, it receives equal value for both

Task 3 and 1, since they are the same travel time and have the same age (the age of

all tasks is now the time to travel from Task 1 to Task 2, t12, except for Tasks 2 and

5, whose ages are now zero). Under the tie-breaker rules, Vehicle 100 chooses Task

1. Similarly, Vehicle 200 selects Task 4. From this point forward, both vehicles begin

traveling around the circle clockwise. Except now, due to the tie-breaking decisions,

there is only a two-task separation between the vehicles, instead of the original four

task separation, which would have resulted in lower L̄.

119

The n-spaced TSP method delivers good performance and is straightforward to

implement. The relative simplicity makes n-spaced TSP an attractive option for PISR

missions. Still, there are some limitations. For instance, the addition of different

priorities among tasks will degrade n-spaced TSP performance, since a standard TSP

solver has no way to include prioritized tasks (i.e. prioritized nodes on the graph).

The MD2WRP function, on the other hand, has the advantage of being able to adapt

to priorities through manipulation of the weight vector, w.

4.2.3.2 k-subtours TSP.

When multiple vehicles are employed, it may not make sense for every vehicle to

service every task, especially when the map contains long edges[1]. Instead, transit

time could be saved if the vehicles “divide and conquer”, with each vehicle servicing

a subset of tasks. This is the motivation for the k-subtours approach, where the map

is divided into k clusters with k the number of vehicles. Each vehicle then travels a

small TSP tour within its assigned cluster.

To generate the clusters, we use Matlab’s k-means++ function from the Statistics

and Machine Learning Toolbox. Use of k-means++ and k-means clustering as tools

for generating vehicle tours in PISR are described in Sec. 2.4.1. We initialize the

k-means++ algorithm 1,000 times and select the best local optimum found as the

clustering solution (see Table 4.7).

The k-subtours and MD2WRP vehicles once again begin in the same locations

(i.e. the first task in each subtour from Table 4.7) and β is optimized while w = 1.

All priorities are equal. The L̄ of MD2WRP and k-subtours are shown for each

map with one to four vehicles in Fig. 4.24. Note that the n-spaced and k-subtours

approach are equivalent with a single vehicle.

Performance on the Random map is competitive, with a slight advantage to

120

Table 4.7. Partitions for k-subtours TSP comparison, generated with k-means++.

Map No. of Veh. Partitions

Circle

1 {1,2,3,4,5,6,7,8,9,10}
2 {1,2,3,4,5}, {6,7,8,9,10}
3 {1,2,3,4}, {5,6,7}, {8,9,10}
4 {1,2,3}, {4,5,6}, {7,8}, {9,10}

Clusters

1 {1,2,6,4,5,8,10,9,7,3}
2 {1,2,6,4,5,3}, {7,8,10,9}
3 {1,2,3}, {4,5,6}, {7,8,10,9}
4 {1,2,3}, {4,5,6}, {7,8}, {9,10}

Grid

1 {1,2,3,4,8,12,16,15,11,7,6,10,14,13,9,5}
2 {1,2,3,4,8,7,6,5}, {9,10,11,12,16,15,14,13}

3
{1,2,6,9,5}, {3,4,8,12,7},
{10,11,16,15,14,13}

4
{1,2,6,5}, {3,4,8,7},

{9,10,14,13}, {11,12,15,16}

Random

1 {1,4,10,9,7,5,6,8,3,2}
2 {1,2,3,4}, {5,6,8,10,9,7}
3 {1,2,3,4}, {5,6,8,7}, {9,10}
4 {1,2,3,4}, {5,6}, {7,8}, {9,10}

MD2WRP . MD2WRP naturally minimizes the time spent traversing long edges,

due to the effect of β. The vehicles develop “loose” partitions, generally staying in

their own region but occasionally “sharing” tasks with other vehicles (see Fig. 4.25

for an example in the two-vehicle case). Also, MD2WRP vehicles are not limited

to visiting each task only once per loop, as with k-subtours, which creates some

performance gains.

In the Circle scenario, MD2WRP outperforms k-subtours in every case except

with a single vehicle, when both methods have the same performance. This is due to

MD2WRP adopting a cyclic visit pattern, with vehicles following each other around

the circle as in the n-spaced method. For the Circle map, the cyclic method is more

efficient than the partition method. This highlights the adaptability of MD2WRP

to changes in the number of tasks or vehicles. The agents are able to adapt to the

most efficient coordination method without the need for explicit vehicle assignments.

121

1 2 3 4
Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Random' Map

k-subtours TSP
MD 2WRP

1 2 3 4
Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Circle' Map

k-subtours TSP
MD 2WRP

1 2 3 4
Number of Vehicles

1000

2000

3000

4000

5000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Clusters' Map

k-subtours TSP
MD 2WRP

1 2 3 4
Number of Vehicles

2000

3000

4000

5000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Grid' Map

k-subtours TSP
MD 2WRP

Figure 4.24. The tuned MD2WRP consistently meets or exceeds the performance of
k-subtours TSP.

On the Clusters map, k-subtours closes the performance gap on MD2WRP where

the n-spaced method fell short. The Clusters map contains several long edges, which

n-spaced is ill-equipped to handle. From Fig. 4.24, the two methods are nearly equal

for all numbers of vehicles with the map being partitioned in roughly the same way.

Finally, on the Grid map as with Clusters, the performance of both methods is

nearly equal. Vehicles partition the tasks in similar ways.

The k-subtours TSP method provides a good alternative to n-spaced TSP, espe-

cially in situations where long edges make it desirable to divide responsibility for tasks

among vehicles. Ideally, both methods would be available based on the particular sce-

nario at hand. Just as with n-spaced, however, the partitions for k-subtours must be

calculated offline and distributed to vehicles. Changes to the task configuration or the

122

Figure 4.25. Two MD2WRP vehicles on the Random map mostly divide the tasks
between vehicles, but occasionally share tasks.

number of vehicles will require the calculation and distribution of new assignments.

MD2WRP , on the other hand, has the flexibility to cycle through tasks, partition

them among vehicles, or adopt a different visit pattern altogether based on which

provides the best performance.

4.2.4 Comparison to Other Utility-based PISR.

4.2.4.1 Direct Latency Minimization.

The Direct Latency Minimization (DLM) utility function was developed by the

author for this research. It is a simple greedy algorithm that attempts to select tasks

that will minimize total system latency. It calculates, for every candidate task, what

the total system latency would be when the vehicle arrives. Whichever destination re-

sults in the lowest system latency is selected as the next task. Stated mathematically,

123

V = min
j

n∑
k=1

pk(Tk + tij)), k 6= j,∀j ∈ {1, . . . , n} (4.17)

where V is the value of the selected task, pk is the priority of task k, Tk is the age

of task k, and tij is the time to travel from the current location at task i to j. Note

when the agent leaves task i, i will incur a latency cost during the transit to j, but

the latency of j becomes zero when the vehicle arrives.

Though DLM is a more direct approach to maximizing PISR performance than

MD2WRP , it comes at the cost of more operations. Whereas MD2WRP with 1-

Lookahead requires n− 1 operations per decision, DLM is on the order of n2.

Before comparing DLM to MD2WRP , a brief characterization of DLM is pre-

sented. In Fig. 4.26, the performance of a single vehicle using DLM is shown for four

maps with varying degrees of lookahead. In general, performance improves as looka-

head increases. Three decision lookahead provides the best performance in almost all

cases but, owing to the n2 nature of DLM, becomes computationally expensive with

even a moderate number of tasks. In the PUMPS tool, 3-Lookahead on the Grid map

of 16 tasks requires almost five minutes per decision, compared to less than 15 seconds

per decision with 2-Lookahead. Thus, 2-Lookahead provides the best value in terms

of the performance to computational cost ratio and will be the version of DLM im-

plemented in the comparison to MD2WRP below. Vehicles also communicate under

DLM using the Broadcast Destinations (CxBD) communication scheme.

Figure 4.27 compares the performance of MD2WRP to 2-Lookahead DLM for

a varying number of vehicles across four maps. Vehicles always begin at Task 1.

The MD2WRP performance data was gathered under the previously recommended

parameters, that is, using the CxBD communication mode, optimized β, and w = 1.

In most cases, MD2WRP outperforms DLM. This is somewhat surprising since L̄

minimization via MD2WRP is a by-product of maximizing utility, whereas DLM

124

1 2 3
Number of Lookaheads

9000

10000

11000

12000

A
v
e
ra
g
e
 L
a
te
n
cy
,
L̄

1 Vehicle using DLM

Circle
Random
Clusters
Grid

Figure 4.26. In most cases, the DLM utility function improves with an increasing
decision horizon.

deliberately attempts to minimize latency. One should bear in mind, however, that

MD2WRP must be optimized to realize the best performance. With DLM, all an

agent needs is a priority vector in order to work.

In Fig. 4.28, the latency curves and visit histories are provided for two data points

from Fig. 4.27, specifically one point for each utility function from the Random map

with 2 vehicles. These plots shed some light as to why the optimized MD2WRP

generally outperforms DLM. Notice that DLM has a high density of visits to Tasks 2

and 3, which are in close proximity to each other. These successive visits are a result

of the algorithm’s greedy nature. The vehicles find that successive visits between

Tasks 2 and 3 result in minimal increases to system latency, as opposed to making

lengthy trips to other tasks which would cause all task latencies to rise substantially,

thus increasing system latency. However, the short-term gains of visiting Tasks 2 and

3 have a secondary effect with regards to the increase in total latency caused by the

125

1 2 3 4
Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Random' Map

2L-DLM
MD 2WRP

1 2 3 4
Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Circle' Map

2L-DLM
MD 2WRP

1 2 3 4
Number of Vehicles

1000

2000

3000

4000

5000

6000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Clusters' Map

2L-DLM
MD 2WRP

1 2 3 4
Number of Vehicles

2000

3000

4000

5000

6000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Grid' Map

2L-DLM
MD 2WRP

Figure 4.27. In most cases, the optimized MD2WRP outperforms DLM.

increasing ages of the other tasks. Eventually, a point is reached where the ages of all

other tasks have become so large that the vehicles find the best decision to minimize

total latency is to reset their ages with visits.

Contrast the clustered task visit sequence of DLM with the relatively even dis-

tribution of visits in the MD2WRP plot. Even though MD2WRP is not directly

attempting to minimize latency, it results in better system performance because it

avoids the immediate reward pitfalls that are characteristic of greedy search.

Additionally, the DLM vehicles do not appear to exhibit the same kind of emergent

cooperative behavior as the MD2WRP vehicles. With MD2WRP , in general, one

vehicle services Task 1-4 and the other services Tasks 5-10, though there is some

overlap. DLM, however, does not have this behavior. Both vehicles service all tasks

throughout the simulation period.

126

0
1000
2000
3000
4000
5000
6000
7000
8000

L
a
te

n
c
y

2L-DLM: Random Map
 Comm Mode=CxBD

p=1
L̄=4337.27, Lmax=7482.56

Total Latency

0 5000 10000 15000 20000

Time, (s)

2

4

6

8

10

T
a
s
k
 I

D

Vehicle[100]

Vehicle[200]

0

1000

2000

3000

4000

5000

L
a
te

n
c
y

MD 2WRP : Random Map
Comm Mode=CxBD
β=5.3, w=1, p=1

L̄=3592.9, Lmax=4735.13
Total Latency

0 5000 10000 15000 20000

Time, (s)

2

4

6

8

10

T
a
s
k
 I

D

Vehicle[100]

Vehicle[200]

Figure 4.28. The MD2WRP vehicle has a more evenly distributed visit history.

Despite its performance drawbacks, the DLM utility function has some attractive

features. No optimization is required, so the operator can be certain of consistent

performance despite changes to the task configuration or number of vehicles. Still,

in most respects, MD2WRP appears to be the better choice for PISR missions.

It generates better latency performance while requiring less evaluations per utility

function call.

4.2.4.2 The Stanford Single/Multi-Vehicle Reactive Policy.

In Ch. II, we referenced the work of Nigam and Kroo of Stanford University[5,

30], which proposed a utility function for PISR task selection. In this section, we

implement modified versions of the Nigam and Kroo functions. Their single vehicle

policy (which we refer to as the Single-Vehicle Reactive Policy, or SRP; the authors

do not provide a name for their single vehicle policy) considers task age and weighted

travel distance,

V = max
j
{Tj + w0δij}, ∀j ∈ {1 . . . , n} (4.18)

where V is the value of the selected task, Tj is the age of candidate task j, δij is

the distance between current task i and j (in m), and w0 is a weight parameter with

units of s/m. Note that w0 must be negative, such that shorter travel distances are

127

preferred. The Multi-Vehicle Reactive Policy (MRP), was also introduced,

V = max
j
{Tj + w0δij + w1 min

k 6=i
(δkj)} ∀j, k ∈ {1, . . . ,m} (4.19)

where w1 is an additional positive weight parameter (units of s/m) and δkj is the

distance between the kth vehicle and task j, in m.

Both SRP/MRP and MD2WRP use age as a basis for selecting tasks. They also

consider travel distance, though their implementations differ. Whereas SRP/MRP di-

rectly applies a negative utility that increases linearly with travel distance, MD2WRP

uses tij in an exponential function to apply a value discount. They also differ in their

approach to facilitating cooperation between vehicles. The SRP/MRP directly re-

wards vehicles for selecting tasks that are far away from other vehicles. On the other

hand, MD2WRP relies upon the exponential discount factor β to indirectly encour-

age separation of vehicles.

Before proceeding, a brief discussion on how SRP/MRP was implemented for this

research is provided. The sole sources for reconstructing SRP/MRP were [5] and [30].

In those papers, vehicles were given a sensor radius and tasks were located within

a network of cells. For this work, sensor radius is ignored. Tasks are serviced only

when a vehicle is exactly collocated with a task. In turn, instead of a network of cells,

tasks are located discretely in space; it is not possible for a vehicle to exist between

tasks. The discrete nature of the simulation does not affect the calculation of task

ages in Eqs. 4.18 and 4.19, but it does alter how the distance between target tasks

and other vehicles, δkj, is calculated in Eq. 4.19. Nigam and Kroo state that to find

δkj, “the UAVs need to know positions of all UAVs at all time steps”. Since our

simulator cannot determine the current location of vehicles that may be transiting

between tasks during a given decision, the definition of δkj was altered to instead

reflect the distance between the target task, j, and the current destination task of

128

vehicle k. In this way, MRP can utilize the same CxBD communication mode as

MD2WRP , adding consistency to the comparison. This implementation of δkj has

the added benefit of requiring less information sharing between vehicles, since it is

not necessary to receive an update on the location of every vehicle for each decision.

Instead, each vehicle already knows the destination of every other vehicle due to

CxBD. Also, it arguably provides better vehicle separation, since the location of the

other vehicles is not as important as where they are going.

Nigam and Kroo also mention that −1/V , where V is the velocity of the vehicle, is

a good place to start for optimizing the values of w0 and w1, though they acknowledge

that for multiple tasks and vehicles these values are not necessarily optimal. They

utilize an Iterative Sampling optimizer, which they developed, to determine optimal

values of w0 and w1. We instead use a simple brute force method, performing nu-

merous simulations across a linear distribution of w0 and w1 values to find the best

combination. The authors also acknowledge that “the weights for different policies

are allowed to be different, resulting in different policies for each UAV” and that “the

optimization thus needs to be conducted for different number of UAVs too”. For sim-

plicity in this comparison, all vehicles use the same weight parameters, acknowledging

that slight performance improvements may be possible by allowing each vehicle to use

different weights. This assumption is based on the authors’ own comment that “ide-

ally, the weights would need to be re-optimized when the mission specifications (e.g.,

the number of UAVs or size of target space) change, but the sensitivity of mission

performance to such changes, using a fixed set of weights in found to be small.”[30].

(Though not explored in this research, MD2WRP may also be able to achieve bet-

ter performance if each vehicle were allowed to use a different value for β and w).

Additionally, the authors indicate that w0 should be a negative value, which makes

intuitive sense as the longer travel distance becomes, the less utility should be avail-

129

able. However, they also seem to indicate that w1 be negative. This is assumed to be

an error, since a negative w1 would result in larger negative utility for tasks far away

from other vehicles, while tasks close to other vehicles would be less negative, making

them preferred. In simulations to test the functionality of MRP, positive values of

w1 resulted in the intended effect of vehicles maintaining maximal spacing. Finally,

the authors describe SRP/MRP as selecting the maximum of either calculated utility

or zero, presumably to avoid negative utility. For this work, if all utility values are

negative, the vehicle selects the least negative utility. This avoids a situation where

all utility values become zero and a vehicle must resort to tie-breakers.

With the implementation described above, the SRP and MRP are simulated on the

Random, Clusters, Circle, and Grid maps (Fig. 3.9) with a varying number of vehicles.

All vehicles start at Task 1 for each simulation and all task priorities are equal.

The latency performance is compared against MD2WRP on the same scenarios in

Fig. 4.29. The displayed data reflects the use of the optimized weight parameters (w0,

w1) for SRP/MRP and optimal β for MD2WRP with w = 1.

Overall, the latency performance of SRP/MRP and MD2WRP is comparable

across all of the tested task configurations, with a slight advantage alternating between

the two. Both functions exhibit automatic partitioning, though their specific task

allocations, and the efficiency of those allocations, are not always the same given the

same map and number of vehicles. For instance, on the Clusters map with three

vehicles under SRP/MRP, the vehicles separate with each taking responsibility for

its own cluster slightly quicker than with MD2WRP . But on the Grid map with 3

vehicles MD2WRP results in 3 distinct partitions (two 3x2 rectangles and a 1x4 line)

while SRP/MRP creates no partitions at all (Fig. 4.30). Conversely, SRP/MRP with

three vehicles on the Random map develop three distinct partitions while MD2WRP

does not.

130

1 2 3 4

Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Random' Map

SRP/MRP
MD2WRP

1 2 3 4

Number of Vehicles

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Circle' Map

SRP/MRP
MD2WRP

1 2 3 4

Number of Vehicles

1000

2000

3000

4000

5000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Clusters' Map

SRP/MRP
MD2WRP

1 2 3 4

Number of Vehicles

2000

3000

4000

5000

6000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

'Grid' Map

SRP/MRP
MD2WRP

Figure 4.29. SRP/MRP and MD2WRP deliver similar latency performance across all
four maps.

Despite their different approaches to distance discounting and vehicle separation,

SRP/MRP and MD2WRP deliver similar performance when simulated on the same

scenario. One advantage of MRP is that it explicitly rewards vehicles for maintaining

separation, so the operator can be sure that vehicles are doing their best to remain in

separate areas of the operational region. Conversely, vehicle spacing from MD2WRP

is implicit and stems solely from β and the fact that vehicles share task age infor-

mation. While optimizing the two weight parameters in SRP/MRP was found to be

a quick and straight-forward process, MD2WRP requires optimizing only the single

parameter, β. Along the same lines, β is dimensionless due to normalization. This

makes it easier to select β regardless of the task configuration. The SRP/MRP weight

parameters, w0 and w1, have units of s/m, so their optimal values may change when

131

0

500

1000

1500

2000

2500

3000

La
te

n
cy

MRP: Grid Map
w0=-0.5, w1=0.2, p=1

L̄=2188.56, Lmax=2775.07
Total Latency

0 5000 10000 15000 20000

Time, (s)

0
2
4
6
8

10
12
14
16

T
a
sk
 I
D

Vehicle[100]

Vehicle[200]

Vehicle[300]

0

500

1000

1500

2000

2500

3000

L
a
te

n
c
y

MD 2WRP : Grid Map
β=7.0, w=1, p=1

L̄=2072.83, Lmax=2622.72
Total Latency

0 5000 10000 15000 20000

Time, (s)

0
2
4
6
8

10
12
14
16

T
a
s
k
 I

D

Vehicle[100]

Vehicle[200]

Vehicle[300]

Figure 4.30. The MD2WRP vehicles develop distinct partitions, although the latency
performance is about the same.

the distance matrix, D, is multiplied by a scalar.

4.3 MD2WRP and Operational Factors

In this section, we investigate how certain operational factors influence the behav-

ior and performance of MD2WRP vehicles, as well has how MD2WRP can be ad-

justed to compensate for each factor. Four factors are addressed: Dubins constraints

on vehicle motion, no-fly zones, return-to-base requirements, and the addition/re-

moval of tasks/vehicles mid-mission.

4.3.1 Dubins Constraints on Vehicle Motion.

All results presented to this point have been with the assumption that vehicles

move between tasks along Euclidean paths. This is a good approximation of vehicle

motion so long as the distances between tasks are large relative to the turning radius

of the vehicle. As the distance between tasks decreases, however, vehicle kinematics

play an increasingly important role in calculating the travel times between tasks,

which affects vehicle decision making under the MD2WRP function. The goal of

this section is to characterize how the Dubins path assumption influences vehicle

132

behavior and to determine when travel times based on Euclidean distances are no

longer appropriate.

4.3.1.1 Characterization of MD2WRP with Dubins Paths.

We begin with a simple scenario consisting of two tasks spaced 1000m apart. The

vehicle’s maximum bank angle is 30 degrees, which results in a minimum turning

radius of 85m at a velocity of 22m/s. The vehicle starts at Task 1 with an initial

heading of 0 degrees (due east). We wish to explore variations in β while keeping

w = 1. Ten trades are conducted with β incrementing from 0.0 to 0.225. For this

first example, the agent uses the non-normalized version of MD2WRP for decision

making (Eq. 3.2). This will emphasize the sensitivity of β to the task configuration

and again motivate the need to normalize, especially under Dubins constraints. The

results are shown in Figs. 4.31 and 4.32, which depict the mean visit rates to teach

task for each trade and the task visit sequence for Trades 1003 and 1009.

Figure 4.31. Visit rates between two tasks with Dubins motion as β increases.

133

Figure 4.32. Task visit times for two trades of the two-point Dubins scenario (1000m
spacing).

Unlike Euclidean paths, under Dubins it is possible for a vehicle to visit the same

task twice in a row, since the future age term, (Tj + tij), is not automatically zero

for a revisit. While Tj is still zero, the maximum turning radius makes tij non-zero.

Therefore, it is possible for β to be large enough such that the UAV continually visits

the same task for the entire mission. This is the case in Trade 1009 when β = 0.225

(right of Fig. 4.32). Over the course of 100 decisions, the UAV chooses to visit Task

1 every time.

The second interesting takeaway from the two-point Dubins scenario is that the

visit rate to two tasks is essentially equal under a given β, even though the UAV

may visit a single task multiple times in a row. This is shown by the equal blue and

green bars in each trade of Fig. 4.31 and by the alternating visit patterns in Fig. 4.32.

The apparent inequalities in visit rates are merely due to the simulation cutoff at 100

visits, which gives the appearance that one task is visited more often than another.

Also note that the absolute visit rate increases as β increases, meaning the vehicle

spends more time servicing tasks and less time in transit. This is reinforced by the

fact that Trade 1003 completes 100 visits in just under 3000s, whereas Trade 1009

only takes about 2500s to service the same number of tasks (Fig. 4.32). The trajectory

plots in Fig. 4.33 also illustrate this point. With Trade 1003, time is consumed as

134

the UAV traverses between tasks, whereas in Trade 1009 the UAV performs several

shorter loop-backs of the same task.

Figure 4.33. The flight trajectories for select trades of the two-point Dubins scenario.

4.3.1.2 Normalization with Dubins Paths.

Next, we wish to observe the effect of using the normalized MD2WRP from

Eq. 3.16 under Dubins constraints. Normalization in the Dubins case is interesting

because, unlike the isosceles triangle examples with Euclidean paths from Sec. 4.1.1,

two configurations with the same geometric ratios between tasks are in fact two

different problems. In other words, they will yield different task visit sequences even

if the vehicle uses the same β. This is attributed to the changing ratio of turn radius

to tij,max when a scalar multiplier is applied to the distance matrix, D.

As an example, we present the two-point scenario from above, but use Eq. 3.16

to make task selections. The results are shown in Figs. 4.34, 4.35, and 4.36 (which

show the mean visit rates, task visit histories, and vehicle trajectories, respectively).

Though the range of non-trivial β values has changed, the vehicle’s general behavior

is the same. When β is small, the vehicle alternates more frequently between tasks

since the distance discount is minimal. As β grows, the vehicle begins repeating the

same task more often before moving on.

Next, the distance between the two tasks is increased from 1000m to 5000m and

we again use the normalized MD2WRP utility function. The visits per hour for each

trade is depicted in Fig. 4.37 and the task visit times in Fig. 4.38.

135

Figure 4.34. Visit rates between two tasks as β increases using normalized MD2WRP
with Dubins motion.

With the increased spacing between tasks, the non-trivial β range has changed.

It is now approximately 3.00 ≤ β ≤ 5.25. The shift in β is due to the change in

the ratio of turn radius to tij,max. With a turn radius of 85m, the path distance for

visiting the same task (a circle) is 534m. With normalization and 1000m spacing,

this means the travel time to the same task is 0.534 versus 1.000 to travel to the

distant task. For 5000m spacing, normalized travel time to the same task is now only

Figure 4.35. Task visit times for select trades of the two-point Dubins scenario under
normalized MD2WRP (1000m spacing).

136

Figure 4.36. The flight trajectories for select trades of the two-point Dubins scenario
under normalized MD2WRP (1000m spacing).

Figure 4.37. Visit rates between two tasks as β increases using normalized MD2WRP
with Dubins motion (5000m spacing).

0.107 while the distant travel time is still 1.000. Hence, it takes a larger β (> 3.0)

to make revisiting the same task preferred over the longer trip. On the upper end,

we see that it only requires β = 5.25 to make the vehicle never leave Task 1. This

is caused by the relatively short travel time to Task 1, which results in a slow build

up of age for Task 2. The simulation cutoff at 100 task visits prevents Task 2 from

achieving a value greater than that of Task 1.

One final note regarding the Dubins path case. Recall that the normalizing value

of tij,max from Eq. 3.16 is based on the Euclidean distance between the two most

distant tasks, such that traveling in a straight line between these two tasks gives

137

Figure 4.38. Task visit times for select trades of the two-point Dubins scenario under
normalized MD2WRP (5000m spacing).

tij = 1.0. Under Dubins constraints, it is possible that the true travel time between

tasks can be greater than 1.0, due to turning. As the ratio of turn radius to tij,max,

increases, the more tij may exceed 1. Therefore, the relative density or sparsity of

task distribution under Dubins constraints also has an effect on the viable range of β

values as well as performance implications, which is discussed next.

4.3.1.3 The Ratio of Turn Radius to tij.

In this section we consider two different measurement types for the distance be-

tween tasks, which are in turn used to calculate the value of tij in MD2WRP . If

we consider a case where the distance between tasks is large compared to the turn-

ing radius, the vehicle kinematic constraints add a negligible amount of travel time

between tasks. In this case we can simply use the Euclidean distance. This is the

preferred method of measuring distance because it only requires selection of a matrix

entry, taking almost zero on-board computational resources. However, if the distance

between tasks is equal to the turning radius, kinematics become an important player

and using Dubins paths to measure distance is more accurate. Between these two

extremes, there must exist a transition point where the Euclidean travel assumption

becomes invalid.

138

To find the transition, we use a vehicle with a turn radius of 85m (a velocity of

22m/s and maximum bank angle of 30 deg) and the four maps from Fig. 3.9. We scale

the maps by varying amounts to change the ratio of r/d, that is, the ratio of turn

radius to average distance between tasks. We then simulate each case of r/d twice;

first using Euclidean paths to calculate travel time and then using Dubins paths. The

results for a single vehicle and three vehicles are displayed in Figs. 4.39 and 4.40.

0.0 0.2 0.4 0.6 0.8 1.0

r/d

500

1000

1500

2000

2500

3000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Circle Map, 1 Vehicle

ED
DD

0.0 0.2 0.4 0.6 0.8 1.0

r/d

500

1000

1500

2000

2500

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Clusters Map, 1 Vehicle

ED
DD

0.2 0.4 0.6 0.8 1.0

r/d

1000

1500

2000

2500

3000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Grid Map, 1 Vehicle

ED
DD

0.0 0.2 0.4 0.6 0.8 1.0

r/d

500

1000

1500

2000

2500

3000

3500

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Random Map, 1 Vehicle

ED
DD

Figure 4.39. Comparison of performance using Euclidean distance versus Dubins path
distance for a single vehicle.

Whether a single vehicle is used, or three vehicles, we see a bifurcation when

r/d is between approximately 0.2 and 0.3 in all maps. In other words, if the vehi-

cle turn radius is less than about 25% of the average distance between tasks, then

there is little difference in performance between Euclidean and Dubins measurements.

However, as the turn radius grows beyond 25% of average task separation, Dubins

path measurements begin to outperform Euclidean, eventually becoming significantly

better.

139

0.0 0.2 0.4 0.6 0.8 1.0

r/d

200

400

600

800

1000

1200

1400

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Circle Map, 3 Vehicles

ED
DD

0.0 0.2 0.4 0.6 0.8 1.0

r/d

200

300

400

500

600

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Clusters Map, 3 Vehicles

ED
DD

0.2 0.4 0.6 0.8 1.0

r/d

300

400

500

600

700

800

900

1000

1100

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Grid Map, 3 Vehicles

ED
DD

0.0 0.2 0.4 0.6 0.8 1.0

r/d

200

400

600

800

1000

1200

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Random Map, 3 Vehicles

ED
DD

Figure 4.40. Comparison of performance using Euclidean distance versus Dubins path
distance for three vehicles.

The simulation results presented here agree with the theoretical results for mini-

mum Dubins paths between tasks. Specifically, if a destination point is located at a

Euclidean distance from the vehicle of at least four times the minimum turn radius of

the vehicle (or, in our notation, r/d ≤ 0.25), then the the optimal path to the point

can be constructed using only an arc with curvature equal to the minimum turn ra-

dius (a “C-segment”) and a straight line (an “S-segment”), called a “CS” path. If the

distance to the point is less than four times the vehicle turn radius (or r/d > 0.25),

then the minimum Dubins path will be segments of type CCC, CSC, or a subset

thereof[64, 63]. The implication is that Euclidean distance is a good approximation

for the optimal Dubins path when r/d ≤ 0.25, with an error proportionate to the

extra path distance introduced by the C portion of the path, which agrees with our

simulated results.

It should be noted that, for the results presented here, d represents the average

140

distance between all tasks. In other words, we use the average value of the Euclidean

distance matrix, D, not including the diagonal zeros. This averaging method explains

why we found the bifurcation point between Dubins and Euclidean measurements to

lie between r/d = 0.2 and 0.3, while the theoretical results state 0.25 to be the true

point. Other methods of calculating d are possible and could yield bifurcation points

that are in better agreement with theory. Such methods include basing d on the

median value in the distance matrix (not including diagonal zeros), the radius of a

circle that circumscribes all tasks, or the distance between the geometric center of all

tasks and the furthest task from that centroid.

4.3.1.4 Summary of Dubins Constraints Results.

Using Dubins paths to measure the travel distance between tasks introduces

slightly more complexity into the MD2WRP algorithm. Because the time to re-

turn to the current task is no longer zero, vehicles now have the option to visit the

same task twice in a row. Additionally, because the ratio of the turn radius to the

travel distance changes with each candidate task selection, the range of viable β values

shifts for each decision.

The choice of whether to use Dubins paths or Euclidean distance to calculate

the travel time between tasks is ultimately subject to design constraints, such as

available CPU resources or user preference. Ideally, Dubins paths would always be

used to measure travel distance, since they provide the greatest accuracy no matter

the turn radius or the task configuration. However, if one can be reasonably certain

that tasks will always be separated by distances that are large in comparison to turn

radius (i.e. d is at least four times r), the Euclidean assumption for travel distance

can save CPU time without sacrificing performance.

141

4.3.2 Presence of No-Fly Zones.

A common constraint in air operations is the presence of “no-fly” zones (NFZs).

Airspace might be restricted in such a manner to maintain positive control around an

airfield or other high traffic region, such as a training area. This may be especially

important if there is a mix of manned and unmanned aircraft operating in the same

space. Another reason a NFZ may be created is to keep friendly aircraft from getting

too close to suspected enemy threats. Whatever the reason, airspace restrictions alter

the mission environment. For MD2WRP , this means parameters that were optimized

for unrestricted airspace may no longer yield the best performance in the presence

of NFZs. In this section, we attempt to quantify how various NFZ geometries affect

MD2WRP optimization.

We use each of the maps from Fig. 3.9 for our test. Vehicles are assumed to follow

Euclidean paths (no kinematic constraints) and all vehicles begin the scenario at Task

1. Obstacle avoidance for vehicle paths is calculated using Tripath Toolkit[79] (now

called Triplanner), which is software based on Kallmann’s work in [80] and [81].

Our method of evaluating performance over numerous instances of NFZ is based

on an Impact Ratio (IR),

IR =
d̄NFZ
d̄

. (4.20)

The IR is calculated by placing a rectangular NFZ on each map such that it interferes

with a direct flight path between some of the tasks. The average distance between all

tasks with the NFZ present (d̄NFZ) is divided by the unrestricted average distance

between all tasks (d̄) to provide the IR of the NFZ. In this way, a NFZ with IR = 1

has no effect on vehicle pathing, while any IR > 1 implies some degree of interference.

To test over a range of Impact Ratios, NFZs of progressively larger size are created

by stretching them along their primary axis.

For each map, we run a set of simulations for the case of one, two, and three

142

vehicles. For each case of vehicle number, we simulate on the range 1 ≤ IR ≤ 2.

We optimize and simulate MD2WRP twice at each IR: first by using the optimal

β given the unrestricted task configuration and then optimizing β in the presence of

the NFZ. We refer to the original β as being “un-tuned” for the NFZ, whereas the

re-optimized β is “tuned”. Results are presented in terms of L̄ vs. IR. In this way, we

can see how various task and NFZ geometries interact to affect performance and gain

insight as to when a NFZ is restrictive enough to warrant re-optimizing MD2WRP .

4.3.2.1 The Clusters Map.

The first map we test is the Clusters map with a vertically oriented NFZ between

the western three-task cluster and the two eastern clusters. A sample NFZ instance

and the results for this scenario are shown in Fig. 4.41.

With a single vehicle, the performance of the un-tuned β begins to diverge slightly

at IR > 1.3, with the slope of the curve increasing further from IR = 1.6. When

IR < 1.3, there is little difference in performance. Re-tuning MD2WRP is probably

not necessary. Beyond IR = 1.6, failure to re-tune would result in drastic performance

losses (increases in L̄ of over 300%). Re-tuning for the NFZ, however, results in a

linear increase in L̄ with a relatively shallow slope. In other words, a single vehicle

can adjust to a growing NFZ so as to minimize the impact to performance.

When a second vehicle is employed, re-tuning is not indicated until IR > 1.6,

after which latency demonstrates an almost exponential increase without re-tuning.

If both vehicles are re-tuned, the effects of the NFZ on performance are almost entirely

eliminated, as indicated by the zero slope of the tuned curve. In other words, the

vehicles compensate by positioning themselves around the NFZ.

The three vehicle results demonstrate an interesting phenomenon. Up to IR = 1.5,

the tuned and un-tuned curves show about the same performance. When IR > 1.5,

143

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

5000

10000

15000

20000

25000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

clusters_vertical Map, 1 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

5000

10000

15000

20000

25000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

clusters_vertical Map, 2 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

1200

1400

1600

1800

2000

2200

2400

2600

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

clusters_vertical Map, 3 Vehicle

Untuned for NFZ
Tuned for NFZ

Figure 4.41. NFZ results for the Clusters map with a vertical NFZ between the western
and eastern clusters.

the performance decreases in a step fashion, more than doubling the latency. The

tuned curve remains nearly flat for all IR values. The reason for the jump in the

un-tuned curve is due to the starting location of the agents with respect to the shape

of the NFZ. Since all agents begin at Task 1, they are on the west side of the NFZ.

When the NFZ is small enough (IR ≤ 1.5), the un-tuned β is sufficient to successfully

partition the vehicles around the NFZ. When the NFZ becomes too large (IR > 1.5),

however, two vehicles become “trapped” to the west of the NFZ. The result is two

vehicles servicing Tasks 1-3 while the other vehicle must service Tasks 4-10 alone (see

the visit history in Fig. 4.42), which of course is a poor division of tasks resulting in

poor latency performance. In the tuned case, the new β value ensures each vehicle

“takes responsibility” for its own cluster, which is the optimal task division as it

144

effectively negates the effect of the NFZ.

Figure 4.42. When the NFZ IR > 1.5 on the Clusters map, failure to re-tune β results
in two vehicles becoming “trapped” on the west side of the NFZ.

We evaluate the Clusters map once again, but this time orient the NFZ horizon-

tally between the northern and southern clusters. The objective is to ensure our

IR method is sound regardless of the NFZ orientation. We also wish to see if the

bifurcation points between the tuned and un-tuned curves are similar under different

NFZ conditions. The new NFZ orientation and the simulation results are presented

in Fig. 4.43.

The single and two-vehicle results are similar to the vertical case, with latency of

the un-tuned curve increasing drastically for IR > 1.6. Again, the tuned curve shows

a shallow slope for the single vehicle case and remains flat for two vehicles.

The three-vehicle curves with a horizontal NFZ look very similar to those of the

two-vehicle results. The breakpoint for both is about IR = 1.5. With a horizontal

NFZ, the step increase in latency seen for the vertical NFZ is eliminated, since all

three vehicles begin north of the NFZ and there is only a single cluster of tasks to the

145

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

NFZ Impact Ratio

5000

10000

15000

20000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

clusters_horizontal Map, 1 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

NFZ Impact Ratio

4000

6000

8000

10000

12000

14000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

clusters_horizontal Map, 2 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

NFZ Impact Ratio

1500

2000

2500

3000

3500

4000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

clusters_horizontal Map, 3 Vehicle

Untuned for NFZ
Tuned for NFZ

Figure 4.43. NFZ results for the Clusters map with a horizontal NFZ between the
northern and southern clusters.

south, which removes the possibility of two vehicles being confined to a single cluster.

4.3.2.2 The Circle Map.

On the Circle map, we place a vertical NFZ to the west of Tasks 1, 9, and 10. A

sample NFZ and the tuned versus un-tuned results are presented in Fig. 4.44.

The unique geometry of the circular task configuration makes the results inter-

esting. The tuned and un-tuned performance for a single vehicle is identical until

IR = 1.6, when the un-tuned curve begins to peel away from the linear tuned curve.

Prior to IR = 1.6, both cases of β result in the vehicle visiting tasks in order around

the circle and simply navigating around the NFZ. With IR ≥ 1.6, the un-tuned ve-

hicle begins to prefer tasks on whichever side of the NFZ it is currently on, servicing

146

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

NFZ Impact Ratio

7000

8000

9000

10000

11000

12000

13000

14000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

circle Map, 1 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

NFZ Impact Ratio

4000

5000

6000

7000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

circle Map, 2 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

NFZ Impact Ratio

3000

3500

4000

4500

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

circle Map, 3 Vehicle

Untuned for NFZ
Tuned for NFZ

Figure 4.44. NFZ results for the Circle map.

those tasks multiple times before traveling around the NFZ to the other side of the

map. This behavior creates high latency among the tasks on whichever side of the

map the vehicle is not servicing. Tuning β for the NFZ, on the other hand, ensures

the vehicle continues servicing each task in turn regardless of the NFZ size.

The two vehicle results present the best case for always re-tuning β out of all the

scenarios tested. It is clear that, with the exception of a few IR values, the un-tuned

vehicle performs significantly worse than the tuned β. The general reason is due to

the difficult NFZ placement. As the NFZ grows, it splits the map unevenly, with 3

tasks east of the NFZ and 7 tasks to the west. This creates two groups of tasks of

uneven size that are difficult for the two vehicles to share equitably.

When the IR < 1.3, the un-tuned vehicles “leap-frog” around the map, whereas

the tuned vehicles follow each other along the same circuit, keeping a 5-task separa-

147

tion. The 5-task spacing yields the best latency. The dip in un-tuned latency near

IR = 1.4 occurs because the particular instance of NFZ size and task geometry hap-

pens to result in the two vehicles following each other, as in the tuned case (though

the latency is not quite as low due to a longer transient period). A further increase

to the IR results in a third pattern; the vehicles take turns servicing the east and

west sides of the map. This split servicing pattern also yields results significantly

worse than the tuned result of 5-task spacing. Interestingly, as the IR continues to

grow, the un-tuned β again yields the same pattern as the tuned spacing, with its

performance suffering slightly from a longer transient period.

The Circle map with three vehicles displays curves that look similar to that of

the Clusters map above with a vertical NFZ. That is, the tuned and un-tuned curves

both deliver low latency values until IR > 1.4, when there is a step increase in the

un-tuned latency. The reason is the same as in the Clusters map. All three vehicles

start at Task 1, with two vehicles becoming “trapped” to the east of the NFZ as it

grows in size. Re-tuning is necessary to evenly distribute the workload among the

vehicles.

4.3.2.3 The Random Map.

The Random map results (Fig. 4.45) are similar to those of the Clusters map with

horizontal NFZ. For a single vehicle, we see two bifurcation points in the un-tuned

curve. The first is at IR = 1.2, where the un-tuned latency increases slightly over

the tuned. The un-tuned curve tracks closely to the tuned curve with approximately

a 500 latency offset until IR = 1.6, beyond which the un-tuned latency begins to

increase at a faster rate. In both the two and three-vehicle cases, un-tuned and tuned

latency are about equal until IR > 1.6. Beyond that point, the un-tuned latency

begins to increase rapidly.

148

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

7000

8000

9000

10000

11000

12000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

random Map, 1 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

3500

4000

4500

5000

5500

6000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

random Map, 2 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

2500

3000

3500

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

random Map, 3 Vehicle

Untuned for NFZ
Tuned for NFZ

Figure 4.45. NFZ results for the Random map.

4.3.2.4 The Grid Map.

The last map we examine is the Grid map. The results are shown in Fig. 4.46.

Like the Circle, the highly symmetric geometry of the Grid creates some interesting

results. In the single vehicle case, the tuned and un-tuned performance are identical

until IR ≈ 1.5, with both vehicles visiting tasks according to the TSP tour while

circumventing the NFZ. Beyond IR = 1.5, as in the Circle map, the un-tuned vehicle

begins preferring tasks on whichever side of the NFZ it currently resides, causing the

tasks on the opposite side to accumulate excessive latency.

The two-vehicle results show un-tuned and tuned performance that are competi-

tive until IR > 1.8, with both βs encouraging the vehicles to split the task load evenly

around the NFZ. One vehicle services Tasks 13-16 to the east of the NFZ and the

149

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

6000

6500

7000

7500

8000

8500

9000

9500

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

grid Map, 1 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

4000

6000

8000

10000

12000

14000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

grid Map, 2 Vehicle

Untuned for NFZ
Tuned for NFZ

1.0 1.2 1.4 1.6 1.8

NFZ Impact Ratio

5000

10000

15000

20000

25000

30000

35000

40000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

grid Map, 3 Vehicle

Untuned for NFZ
Tuned for NFZ

Figure 4.46. NFZ results for the Grid map.

other services all tasks to the west. When the IR exceeds 1.8, however, the un-tuned

β results in both vehicles servicing all tasks, which is not ideal since both vehicles

are making the long trip around the NFZ. Re-tuning brings the vehicles back to the

east-west division of tasks.

As with most other scenarios, three vehicles on the Grid map have similar perfor-

mance using both the tuned and un-tuned βs when IR < 1.6. For IRs greater than

this, however, the latency spike of the un-tuned curve is the result of the distance

discount being so large that none of the vehicles ever receive a reward large enough to

warrant a visit to the other side of the NFZ. The end result is continually increasing

latency for Tasks 13-16 until the end of the simulation.

150

4.3.2.5 Summary of NFZ Results.

In general, with the exception of the Circle map with two vehicles, the results for

the scenarios we tested indicate that, if the calculated IR is less than 1.6, re-tuning

of β is not strictly necessary. Performance will only suffer slightly, and in some cases

be identical, to the performance using a β tuned for the NFZ. Of course, using the

two-vehicle Circle map as a counter-example, the safest option is to always re-tune β

when a NFZ is added or removed from the operational area. The development of a

dynamic re-tuning algorithm to take into account changes to the mission environment

would be a useful addition to the MD2WRP software suite. This will be discussed

further in Sec. 5.2.

These results are limited due to the small sample size of task configurations and

NFZ placements that were tested. Also, we have only examined a single NFZ on

each map but it is possible a given area could have more than one. While more

testing could provide the confidence to draw broad conclusions, there are an infinite

combination of task configuration with NFZs. Still, we have proposed a methodology

(via the Impact Ratio, IR) which makes it possible to study the effects of NFZs on

vehicle task selection, which could serve as a basis for more extensive testing, or at

least allow the effects of a NFZ to be assessed for a specific mission.

4.3.3 Return to Base Requirements.

One of the primary benefits of the TSP approach to task selection is the guarantee

it provides for task revisit times. If we consider one task to be the base, then we can

guarantee that the vehicle will return to base (RTB) with a given frequency. An RTB

criterion is useful to facilitate refueling or perhaps to dump collected data when long-

haul communications are unavailable. For utility methods, such revisit rates are not

necessarily guaranteed, since the vehicle is selecting tasks based on state variables.

151

However, since MD2WRP provides a way to weight individual tasks (via w), a

mechanism does exist for encouraging more frequent visits to a “base” task without

hard-coding an RTB command when the deadline is approaching. To test the ability

of MD2WRP to meet such an RTB requirement, we use two different schemes: one

that varies the number of tasks and one that changes the relative placement of the

base node to the PISR tasks.

4.3.3.1 Centrally Located Base with Varying Number of Tasks.

For the first test scenario, we place tasks in a circle of fixed 5000m radius, with

the base “task” at the center. We vary the number of tasks from five to twelve (not

including the base task). The idea is to explore how the weight of the base task,

wbase, must change in order to guarantee the RTB deadline is met. We also wish to

show how L̄ is effected when weights are adjusted to satisfy the RTB requirement.

First, however, it is necessary to develop a method of selecting wbase that meets

an RTB threshold while providing the best performance. To demonstrate the process

we take a seven task RTB scenario as an example, but it should be noted that the

same process for selecting wbase is used for all RTB maps.

The first step is to set w = 1 and optimize β over a mission duration of 20000s.

In the event that multiple βs deliver the same L̄, we select the lowest value. For the

seven task example, β = 2.6 is optimal. Next, we simulate the scenario for a range of

wbase values, from 1.0 to 10.0 in increments of 0.1. We sort the results by L̄ with the

objective of selecting wbase that never exceeds the RTB threshold while providing the

best performance. Sample results are provided in Table 4.8 for an RTB threshold of

1200s.

All weights below the horizontal line in Table 4.8 result in vehicle tours that

satisfy a RTB requirement of 1200s or less. Of those that meet the criterion, we see

152

Table 4.8. Selection of wbase to meet an RTB threshold of 1200s.

wbase L̄ Max RTB (s) Avg RTB (s)
1.0 6370.9 1835.1 1835.1
1.1 6373.6 1637.9 1637.9
1.2 6385.2 1637.9 1546.8
1.5 6449.6 1440.6 1370.2
1.6 6554.6 1440.6 1206.4
1.7 6571.5 1243.4 1185.4
1.8 6584.5 1243.4 1173.8
1.9 6768.3 1046.2 1006.8
2.2 6786.7 1046.2 997.0
2.4 6945.4 1046.2 902.8
3.0 7190.8 1046.2 816.1

that wbase = 1.9 provides the best L̄. Even though wbase of 2.2, 2.4, and 3.0 also

meet the RTB threshold, they place too much weight on the base, resulting in more

frequent visits than necessary, as demonstrated by their lower average RTB times.

Visiting the base too frequently is undesirable, since vehicles should spend as much

time accomplishing PISR tasks as possible.

With a process for optimizing wbase, the next step is to explore how the value

of the optimal wbase changes, both as the number of tasks change and as the RTB

requirement becomes tighter. Figure 4.47 shows two curves of RTB criteria, one for

1200s and one for 900s, on a plot of wbase versus number of tasks.

As expected, the optimal value of wbase increases as the RTB requirement becomes

tighter. Also, as the number of tasks increase, the value of wbase increases somewhat

linearly. Though more data would be required on a wider variety of task configura-

tions, these results show that it may be possible to extrapolate the required value of

wbase when simulation data is not available for a specific scenario, or at least use this

data to establish a good range of values for beginning the search.

Lastly, three performance curves are shown in Fig. 4.48 for a varying number of

tasks. One curve is L̄ when wbase = 1.0, which we include because it provides a

153

5 6 7 8 9 10 11 12

No. of Tasks

2

3

4

5

6

B
e
st

 w
ba
se

 T
h
a
t

M
e
e
ts

 R
T
B

 C
ri

te
ri

a

Circular RTB Map, 1 Vehicle

1200s RTB
900s RTB

Figure 4.47. Best value of wbase as a function of number of tasks.

lower-bound on performance. (Recall that with wbase = 1.0 the vehicle is optimized

for performance, but does not necessarily satisfy the RTB requirement). Each data

point on the other two curves represent the performance on a simulation run for the

given number of tasks with wbase optimized to meet either 1200s or 900s RTB criteria,

while maximizing performance.

Of course, enforcing RTB criteria reduces performance. But we see that for a

small number of tasks, less than about nine, the performance losses for 1200s RTB

are minimal. This is a useful result, since we can guarantee a base visit every 1200s

without losing too much time in servicing PISR tasks. Also, from nine tasks and

up, we see the performance losses due to enforcing RTB criteria begin to level off,

especially for 1200s. The plateau is due to the decrease in spacing between tasks as

more tasks are added to the fixed-radius circle. The vehicle has time to visit more

tasks, because they are closer together, before returning to the base task at the center

154

5 6 7 8 9 10 11 12

No. of Tasks

5000

6000

7000

8000

9000

10000

11000

12000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Circular RTB Map, 1 Vehicle

wbase=1

wbase for 1200s RTB

wbase for 900s RTB

Figure 4.48. Average latency performance, L̄, as a function of number of tasks.

of the circle.

The limited results presented here will require more substantiating data before any

broad conclusions about the ability of MD2WRP to achieve guaranteed RTB thresh-

olds can be drawn. However, they do act as a proof of concept and reveal promise

that RTB criteria can be met through manipulation of the MD2WRP parameters as

the number of tasks increases.

4.3.3.2 Relative Location of the Base to the Tasks .

In the second test scenario, we wish to evaluate how the relative location of the

base task to the PISR tasks affects the performance of MD2WRP and its ability to

satisfy RTB criteria as well as how the required wbase changes. We use the 10-task

Circle map and the Random map, each with an additional task which serves as the

base task (the base is always Task 1). In order to quantify the placement of the base

155

relative to the tasks, we calculate the centroid of the task map. An offset is used to

describe the location of the base. We consider a base located at the centroid to have

an offset of 0% while a base located a distance from the centroid equal to the farthest

task from the centroid has an offset of 100%. For both of our test maps, we collect

data for a range of offset values from 0-100%.

Sample base locations are shown in Fig. 4.49 for the Circle map with 0, 40, and

90% offsets. As with the above results where we varied the number of tasks, for the

base offset simulations we provide data in terms of optimal wbase that meets a given

RTB threshold as well as L̄ when RTB thresholds are met. For the L̄ results, we again

provide the performance data for wbase = 1.0 as a lower-bound comparison. These

results are presented in Fig. 4.50.

Figure 4.49. Sample base offsets for the Circle map (left to right - 0%, 40%, and 90%).
The base task is circled in red.

For the case of a 1600s RTB requirement, additional weight is only required on the

base node for offsets between 0-20%. With 30-100% offset, the base is close enough

to the perimeter of the circle that the vehicle is able to visit the tasks and the base

in a simple TSP circuit and still meet the RTB requirement. A 1300s RTB threshold

is more difficult for the vehicle to meet. As the base gets closer to one side of the

circle, increasingly large weights are required to draw the vehicle back to base when

it is visiting tasks on the opposite side of the map.

In terms of performance, 30-100% offset with a 1600s RTB have the same per-

156

0.0 0.2 0.4 0.6 0.8 1.0

Offset (d/dmax)

1

2

3

4

5

6

7

B
e
st

 w
ba
se

 T
h
a
t

M
e
e
ts

 R
T
B

 C
ri

te
ri

o
n

Circle Centroid RTB Map, 1 Vehicle

1600s RTB
1300s RTB

0.0 0.2 0.4 0.6 0.8 1.0

Offset (d/dmax)

8000

9000

10000

11000

12000

13000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Circle Centroid RTB Map, 1 Vehicle

wbase=1

wbase for 1600s RTB

wbase for 1300s RTB

Figure 4.50. The required wbase to meet RTB thresholds for varying base offsets on the
Circle map (left) and the performance given each RTB threshold is met (right).

formance as the case with wbase = 1.0, which makes sense given that we already

determined that wbase = 1.0 is sufficient to meet the RTB threshold when the base

is close to the perimeter of the circle. For the 1300s RTB, L̄ is about 1000 − 2000

higher between 0% and 60% offset, but begins to grow at a rapid rate when the offset

is above this range, with L̄ being about twice as high at 100% offset.

We also present results in terms of the RTB achieved versus wbase for offsets of 0,

40, and 90% (Fig. 4.51). For each instance of offset, we show the maximum, minimum,

and average RTB time +/- standard deviation. For reference, the two RTB goal times

are also plotted.

The data presented in Fig. 4.51 are derived from the same simulations as in

Fig. 4.50, but when depicted in this way it is easy to see how increasing wbase re-

duces RTB times. It is also useful in determining what RTB deadlines are within the

realm of possibility, as the relative location of the base to the tasks imposes physical

constraints on how quickly the vehicle can RTB, regardless of wbase, as seen by the

flattening of max and average RTB with increasing wbase. The inclusion of maxi-

mum, minimum, and average RTB on the chart show the variability in RTB metrics

for different wbase values.

157

2 4 6 8 10

wbase

500

1000

1500

2000
R

e
tu

rn
 t

o
 B

a
se

 T
im

e
 (

s)

Circle Centroid RTB Map, 1 Vehicle

Offset=0, max
Offset=0, min
RTB Goal=1600s
RTB Goal=1300s
Offset=0, µ ± σ

2 4 6 8 10

wbase

500

1000

1500

R
e
tu

rn
 t

o
 B

a
se

 T
im

e
 (

s)

Circle Centroid RTB Map, 1 Vehicle

Offset=.4, max
Offset=.4, min
RTB Goal=1600s
RTB Goal=1300s
Offset=.4, µ ± σ

2 4 6 8 10

wbase

0

500

1000

1500

2000

R
e
tu

rn
 t

o
 B

a
se

 T
im

e
 (

s)

Circle Centroid RTB Map, 1 Vehicle

Offset=.9, max
Offset=.9, min
RTB Goal=1600s
RTB Goal=1300s
Offset=.9, µ ± σ

Figure 4.51. The RTB time as a function of wbase, for offsets of 0, 40, and 90% on the
Circle map.

Figure 4.52 shows the visit and trajectory history for a vehicle tuned to meet

1300s RTB (wbase = 6.5) on the Circle map with a 90% offset (recall Task 1 is the

base task). Figures 4.51 and 4.52 combined reveal the trade-offs required to meet an

RTB criterion with MD2WRP . From Fig. 4.51, the vehicle never takes longer than

1300s to RTB, however, the average RTB is much lower at 586s, indicating the vehicle

actually returns to base much more often. We also see the standard deviation is quite

large at ±382s, so there is significant variability in the time between base visits. The

minimum RTB is low, at 142s. From the visit history in Fig. 4.52, there are many

quick returns to Task 1 during the transient period. This is where the minimum RTB

occurs. During the steady-state, visits to the base occur in clusters, with 3-4 visits

occurring relatively quickly, followed by a long interval while the vehicle visits tasks

158

Figure 4.52. Left, vehicle visit history meeting a 1300s RTB threshold on the Circle
map with a 90% base offset. Right, the vehicle trajectory history.

on the other side of the map. This is the cause of the low average RTB and the large

standard deviation.

The trajectory history in Fig. 4.52 shows the “circuits” traveled as the vehicle

reaches steady-state. The vehicle visits only 2-3 tasks before returning to base when

it is near the base node, but takes a long route when visiting tasks far away. In this

way, the vehicle can meet the RTB deadline while minimizing L̄.

Another discussion point in Fig. 4.51 is the occasional increase of both maxi-

mum and average RTB times with increasing wbase, which is counter-intuitive. In

some instances, wbase increases yet maximum RTB also increases, meaning the ve-

hicle actually takes longer to RTB despite the base task offering a higher reward.

Or similarly, wbase decreases with a corresponding decrease in average RTB - so less

reward is gained, but the vehicle visits more frequently. How can this be? The answer

lies in the sensitivity of vehicle decisions to the evolution of the task age vector. We

use an example to illustrate, which is provided in Fig. 4.53 showing two different visit

histories from the Circle map with 40% offset: one when wbase = 8.2 (left) and the

other with wbase = 8.3 (right). These two simulation instances were chosen because

they demonstrate this phenomenon well.

159

Figure 4.53. Vehicle visit histories for wbase = 8.2 (left) and wbase = 8.3 (right) on the
Circle map with 40% offset.

The two visit histories are identical until the visit to Task 10 circled in red, which

occurs around 6000s. The vehicle with wbase = 8.2 goes from Task 10 to 9 whereas the

wbase = 8.3 vehicle returns to the base (Task 1), due to the increased reward. From

that point onwards, the task age vectors of the two simulations evolve differently.

Though the base may have an increased reward, that reward is not necessarily enough

to outweigh the task rewards under the new age vector in the same way it might have

under the old one. While wbase = 8.3 does result in a lower average RTB (574s) than

wbase = 8.2 (483s), wbase = 8.3 results in a longer period with no base visit (1181s).

Meanwhile, wbase = 8.2 has a shorter maximum RTB (981s). In summary, under a

consistent β, increases in wbase do not necessarily result in a monotonically decreasing

maximum or average RTB.

Lastly, we look at the Random map. We present the same results as for the Circle

map above. Sample base locations for the 10-task Random map are in Fig. 4.54.

The wbase required to meet RTB thresholds of 1000s and 1300s for offsets of 0-

100% are shown on the left of Fig. 4.55 and L̄ for each tested offset are on the right.

The results are intuitive. As the base offset increases, the wbase required to meet the

RTB threshold also increases. A centrally located base means the vehicle has less

160

Figure 4.54. Sample base offsets for the Random map (left to right - 0%, 40%, and
90%). The base task is circled in red.

distance to the farthest located tasks, so there is less distance discounting from β and

less wbase is required. When the base is located on the perimeter of the map, servicing

tasks on the opposite side increases the RTB distance, so a higher wbase is necessary

to overcome the larger distance discount. Of course, decreasing the RTB threshold

further increases the required wbase. Similarly, increasing the base offset or decreasing

the RTB threshold generally results in worse performance since the vehicle must stop

servicing tasks more frequently in order to make it back to base before the deadline.

When the offset is ≥ 80%, L̄ begins to rise rapidly as making frequent trips back to

base from the opposite side of the map impacts performance.

0.0 0.2 0.4 0.6 0.8 1.0

Offset (d/dmax)

1

2

3

4

5

6

B
e
st

 w
ba
se

 T
h
a
t

M
e
e
ts

 R
T
B

 C
ri

te
ri

o
n

Random Centroid RTB Map, 1 Vehicle

1300s RTB
1000s RTB

0.0 0.2 0.4 0.6 0.8 1.0

Offset (d/dmax)

8000

9000

10000

11000

12000

A
v
e
ra

g
e
 L

a
te

n
cy

,
L̄

Random Centroid RTB Map, 1 Vehicle

wbase=1

wbase for 1300s RTB

wbase for 1000s RTB

Figure 4.55. The required wbase to meet RTB thresholds for varying base offsets on the
Random map (left) and the performance given each RTB threshold is met (right).

The plots of RTB versus wbase for offsets of 0, 40, and 90% are shown in Fig. 4.56.

161

The Random map plots look similar to the Circle map above, showing the same

trends. In general, increasing wbase decreases the maximum and average RTB time,

with higher wbase required to meet the RTB deadline as the offset increases. We also

see the same disparity between maximum and average RTB. The wbase to achieve a

maximum RTB threshold results in a significantly lower value of average RTB. This is

because more frequent base visits occur when the vehicle is visiting tasks close to the

base while RTB frequency is reduced when visiting distant tasks. The consequence of

this is that achieving consistent revisit times to the base is difficult with MD2WRP .

This issue is discussed further along with possible solutions and alternatives in Ch. V.

2 4 6 8 10

wbase

0

200

400

600

800

1000

1200

R
e
tu

rn
 t

o
 B

a
se

 T
im

e
 (

s)

Random Centroid RTB Map, 1 Vehicle

Offset=0, max
Offset=0, min
RTB Goal=1300s
RTB Goal=1000s
Offset=0, µ ± σ

2 4 6 8 10

wbase

200

400

600

800

1000

1200

1400
R

e
tu

rn
 t

o
 B

a
se

 T
im

e
 (

s)

Random Centroid RTB Map, 1 Vehicle

Offset=.4, max
Offset=.4, min
RTB Goal=1300s
RTB Goal=1000s
Offset=.4, µ ± σ

2 4 6 8 10

wbase

500

1000

1500

R
e
tu

rn
 t

o
 B

a
se

 T
im

e
 (

s)

Random Centroid RTB Map, 1 Vehicle

Offset=.9, max
Offset=.9, min
RTB Goal=1300s
RTB Goal=1000s
Offset=.9, µ ± σ

Figure 4.56. The RTB time as a function of wbase, for offsets of 0, 40, and 90% on the
Random map.

162

4.3.3.3 Summary of Return to Base Results.

We demonstrated the feasibility of using MD2WRP to enforce a return to base

requirement by considering the base as another PISR task and manipulating its

MD2WRP weight, both as the number of tasks increases and as the relative po-

sition of the base to the tasks changes. Intuitively, as the number of tasks increases

or as the base location becomes further removed from the centroid of all tasks, more

MD2WRP weight is required on the base task in order to meet a given RTB require-

ment. Similarly, as the time between required base visits becomes shorter, additional

base weight is also required. Additionally, the performance penalty introduced by

decreasing the required time between base visits becomes more severe when the base

is located at a distance from the centroid that is further than 80% of the distance

between the centroid of all tasks and the furthest task from the centroid.

4.3.4 Mid-Mission Addition and Removal of Vehicles and Tasks.

The utility function approach to PISR task selection is attractive over the TSP

method because it does not require a centralized planner to assign routes to vehicles.

Instead, each vehicle makes a real-time decision about which task to visit. Because

of this decentralized nature, MD2WRP is robust to the addition or loss of vehicles,

intentional or not, and to the addition or removal of tasks mid-mission. In this section,

we demonstrate such robustness with two examples.

The first demonstration concerns the addition or loss of vehicles during a mission.

Once again, we use the Clusters map from Fig. 3.9. We set β = 5.0 and w = 1.

Vehicles communicate using the CxBD communication mode (or “Broadcast Des-

tinatinos”) described in Sec. 4.2.1.3. Two vehicles (Vehicle 100 and 200) begin the

mission located at Task 1 and proceed to visit tasks until 5000s. Their visit sequences

are shown in the bottom half of Fig. 4.57, with each star representing a task visit.

163

The top half of Fig. 4.57 shows the total latency curve for the mission.

Figure 4.57. The total latency and task visit history of three vehicles on the Clusters
map as vehicles are added and removed.

At 5000s mission time, Vehicle 300 is introduced, which also begins at Task 1.

As the third vehicle begins servicing tasks and communicating its task completion

and destination information, the other vehicles automatically adjust to its presence.

Ultimately, each vehicle maneuvers to a separate cluster. This pattern continues

until 10000s at which point Vehicle 100 goes offline. As the other vehicles continue to

accomplish tasks they stop receiving updates from Vehicle 100. To compensate, they

re-partition the tasks and begin servicing the cluster where Vehicle 100 had previously

been. Finally, at 15000s Vehicle 200 is also removed, forcing Vehicle 300 to service

all ten tasks by itself.

The second demonstration is of addition and removal of tasks mid-mission. We

use the Clusters map with β = 4.0 and w = 1. However, at t = 0, Tasks 7-10 are

inactive. The number of vehicles remains constant at two, with both beginning at

Task 1. The task visit history and total latency curves are shown in Fig. 4.58.

164

Figure 4.58. The total latency and task visit history of two vehicles on the Clusters
map as tasks are added and removed.

Through 10000s, each vehicle services one of the two clusters, at which point Tasks

7-10 are activated. To adjust, the vehicles spread out and begin sharing all ten tasks.

At 15000s, Tasks 1-3 are deactivated. The vehicles resume servicing one cluster each,

though the clusters are different than at the beginning of the scenario.

It should be noted that the β values used in the demonstrations above are not

necessarily optimal for the duration of the scenario. Any time a vehicle or task is

added or removed, the optimal β for the scenario changes. So long as those changes

are not too dramatic, continuing with the old β still results in good performance and

vehicle separation, but task selections are no longer optimal. In order to ensure the

best possible performance, it would be ideal to re-optimize β when there are changes

to the number of vehicles, the number of tasks, or the location of tasks.

The above demonstrations show the power of using a decentralized task selection

method with a simple communication scheme. Vehicles can readily adapt to a dy-

namic mission environment without operator intervention, whether those dynamics

165

are the result of deliberate operator actions, the unexpected failure of a vehicle, or

the result of enemy interference.

4.4 Summary of Results

In this chapter, we performed an in-depth examination of the MD2WRP utility

function as a task selection method for PISR. We began in Sec. 4.1 by characterizing

the MD2WRP utility function. We explored how its parameters, β and w, af-

fected vehicle behavior and used that information to develop a normalized version of

MD2WRP , which facilitated optimization of the parameters using a simple two-step

brute force method. We also proved that task selections under MD2WRP eventually

become periodic. Then, in Sec. 4.2, we explored different versions of MD2WRP ,

including multiple decision lookahead and three different inter-vehicle communica-

tion modes. Moving forward with the best version of MD2WRP , we compared its

performance to four alternative methods for task selection, including those based on

the TSP and other utility functions. Finally, in Sec. 4.3, we investigated the effects

of four different operational factors on the performance of MD2WRP , and proposed

ways to characterize those effects and mitigate their performance impacts.

166

V. Conclusion

5.1 Conclusions from Results

From the results in Ch. IV, we can draw some conclusions about MD2WRP that

pave the way for real-world testing and application. First, to make MD2WRP more

intuitive to optimize, it is helpful to normalize travel time between tasks, tij, based

on the time to travel between the two most distant tasks, tij,max. Normalizing in this

way has two primary benefits: it ensures consistent behavior by vehicles using the

same β and w, even if they have different constant velocities, and it simplifies the

search for the optimal β by making it a dimensionless parameter.

The behavior of vehicles under MD2WRP is influenced by the parameters β and

w. We can view β as a way to alter a vehicle’s “preference” for servicing nearby

tasks versus those far away. Larger β encourages the former and smaller β the latter.

Viewed another way, shifting β from large to small shifts the vehicle from locally-

oriented to globally-oriented task coverage. It is important to note that the effect of

β and w on vehicle behavior are subject to bifurcation points. Increasing or decreasing

their values does not necessarily alter vehicle behavior. The parameters must change

task values enough to alter the task visit sequence. On a related note, task visit

sequences under MD2WRP are always periodic in the steady-state, though changes

to the initial conditions (i.e. the initial task ages or the vehicle start location) can

change the final periodic visit sequence. This is important because a vehicle that

begins servicing a specific task configuration under a different set of initial conditions

than a vehicle that is already servicing tasks may not have the same performance

even though the same parameters are used. Therefore, for maximum performance, all

vehicles should be optimized based on their specific initial conditions before entering

service.

167

In multi-vehicle scenarios, MD2WRP provides implicit and decentralized coop-

eration with a simple data sharing scheme. Vehicles only broadcast updates immedi-

ately after completing a task. The updates consist of the task that was just completed

along with a timestamp plus their next destination and an estimated arrival time.

Other vehicles receive and store this information and make use of it when calculating

task ages during their next task selection decision.

When optimizing MD2WRP parameters, it is most efficient to optimize β before

w. Optimizing β is a single value and yields latency performance increases of 50% over

using a utility function based solely on task age. In fact, for a single vehicle servicing

tasks of the same priority, the optimization of β alone can often yield a steady-state

visit sequence equivalent to the TSP solution. When tasks have different priorities,

optimizing w for only the highest priority task(s) improves latency performance by

an additional 3-5%. In the case of multiple vehicles, only optimizing β causes vehicles

to automatically partition tasks, often yielding subtours that are equivalent to those

generated by the k-means++ multiple TSP method. The result is MD2WRP delivers

performance on par with basic TSP solutions for PISR in both the single and multi-

vehicle case. Additionally, when compared to other task selection utility functions

from the literature, MD2WRP performs just as well while needing only a single

optimized parameter (β).

MD2WRP can be adapted to overcome challenges introduced by operational

factors. Vehicle kinematic constraints can be ignored without significant performance

loss when calculating travel times between tasks so long as the turn radius is less than

25% of the maximum value in the task distance matrix. This lessens the burden of on-

board computation since Dubins motion does not need to be calculated. When a no-fly

zone is present, MD2WRP can be tuned as if the NFZ were absent so long as the NFZ

does not increase the vehicle’s average travel distance by more than 50% (IR < 1.5).

168

If mission needs necessitate a return-to-base requirement, an RTB threshold can be

met with minimal impact on performance when the base is located less than 80% of

the distance between the centroid of all tasks and the farthest task from the centroid

(offset < 0.8). If vehicles or tasks are added or removed mid-mission, MD2WRP will

ensure vehicles re-distribute the task workload without operator input, though the

newly established visit sequences may no longer be optimal.

The results of this research provide a foundation for further testing and develop-

ment of MD2WRP , whether by simulation or flight test. There are many aspects

to consider for task selection in PISR missions. This research answered some of the

biggest and most important questions about using MD2WRP for task selection, but

also raised questions that require additional research to answer.

5.2 Future Work

The optimization method for the MD2WRP parameters β and w described in

Sec. 4.1.4 is a brute force approach, made possible by normalizing travel time based

on the maximum value in the task distance matrix (D). We make the case, through

comparisons with other methods, that good performance is possible by only optimiz-

ing β and the weight of the high priority task(s). However, we also show in Sec. 4.1.4

that it is possible to further increase performance by manipulating the weights of non-

high priority tasks in unintuitive ways. Therefore, as an avenue of future study, we

recommend developing a MD2WRP parameter optimization method that conducts

a more thorough search of the space in an attempt to find better local minimums that

make use of more complex weight vectors (w). For instance, genetic algorithms (GAs)

are well-suited for optimization when many parameters are available. Implementing

a GA poses a challenge, however, as our average weighted latency objective function

(Eq. 3.1) requires a full mission simulation to be evaluated, which would make the

169

evaluation of thousands of different parameter sets infeasible. Therefore, a way would

be needed to either simplify the evaluation of L̄ or a new objective function would

need to be selected. Another interesting approach, which would eliminate the need

to fully simulate results in order to evaluate the objective function, is simulation-

based learning. These methods, which were explored for utility function parameter

optimization in [73], include Monte-Carlo, Temporal Difference, and Similar State

Estimate Update. While the details of the specific methods differ, each make use

of episodic “experience” from simulation results, which feed a reinforcement learning

algorithm and iteratively update parameter values, eventually converging to locally

optimal values.

Our focus in this work was to optimize the MD2WRP parameters and use those to

compare performance between task selection methods and under different operational

factors. We were not so much interested in the actual parameter values, so long as

performance was optimized. However, there is value in understanding how parameter

values change, both with the number of vehicles and the task configuration. A closer

look at these relationships may make it possible to create a table of “good” parameter

values based on the number of vehicles and the distance matrix, eliminating the need

to perform on-the-fly optimization.

Throughout this research, a constant theme has been the nature of the transient

versus steady-state in PISR task selection. For the results in this dissertation, the de-

cision was made to compare performance between vehicles based on average weighted

latency, since that metric accounts for performance in both the transient and steady-

state phases of task visit sequence development. This made sense because the UAVs

intended for future flight testing of MD2WRP had defined dwell times and it was

unknown how long the transient period would last before steady-state for any given

task configuration. However, as research continued, the question arose as to whether

170

it would be best to tune MD2WRP parameters for performance based solely on the

steady-state while ignoring the transient, since PISR missions take place over a long

time horizon. This reasoning is logical, but in order to pursue it further a method must

be developed to characterize the length of the transient as a function of MD2WRP

parameter values and the D matrix for the task configuration. The groundwork for

this was laid in this document in proving the periodicity of MD2WRP , which in-

cluded formulating a mathematical structure for the evolution of the task age vector.

Understanding how the age vector evolves is one piece of the puzzle. The other piece

is placing bounds on task ages given a D and specific MD2WRP parameters. To-

gether, the evolution of the age vector and the maximum age for each task drive the

task visit sequence toward a steady-state visit pattern. Using this knowledge as a

start, it may be possible to analytically calculate the length of the transient, or at

least determine an upper-bound.

A major assumption throughout this research was that every vehicle had the same

constant velocity and MD2WRP parameters. In reality, it is likely PISR will be per-

formed by a heterogeneous team of UAVs with differing velocities. Future research

could include developing a parameter optimization method for such a scenario, per-

haps first focusing on the same MD2WRP parameters but different speeds and then

vice versa.

The final section of Ch. IV demonstrated scenarios where vehicles and tasks were

added and removed mid-mission. Though MD2WRP was shown to be robust by

allowing the vehicles to continue to service all tasks despite changes in the mission

objects, the original MD2WRP parameters were no longer optimal when the number

of vehicles or tasks changed. Since this scenario is entirely likely to come up in

the field, it would be useful to develop an algorithm to facilitate mid-mission re-

optimization of MD2WRP parameters when mission objects are added or removed.

171

As was done for Dubins and no-fly zone constraints, it would be helpful to know how

much benefit is derived from mid-mission retuning in terms of performance and when

it is necessary or can be ignored.

All simulations conducted in this research assumed tasks were point searches.

Vehicles begin and end the task in the same location and the task takes zero time

to service. As soon as the vehicle arrives, the task is considered complete. This

assumption is representative of some tasks that may be required for an actual PISR

mission (e.g. take a picture of a specific coordinate), but it may also be necessary to

search a non-point objective, such as a road or field. These tasks introduce further

complexity, since vehicles may start the task in one location and end in another.

Additionally, they take a non-zero amount of time to complete. MD2WRP can

be modified to accommodate these tasks relatively easily by introducing a term to

account for task service time. How these new factors affect the conclusions of this

research based on point search tasks, however, requires more research.

Finally, we have assumed that task priorities were provided by the operator.

MD2WRP was optimized to maximize performance given the assigned task priority

vector (p) and task configuration (D). In reality, before any task selection algorithm

is implemented, selecting appropriate task priorities to provide the desired task cov-

erage (that is, each task receiving approximately the desired number of visits during

a given period of time) is a research problem unto itself. In short, if optimizing the

task selection algorithm solves a problem, optimizing the task priorities ensures the

right problem is being solved.

5.3 Contributions

This work has made several contributions to the field of persistent monitoring,

or PISR. In Ch. II, a thorough literature review is presented that summarizes many

172

methods available for PISR and the strengths, weaknesses, and challenges associated

with each. In addition to the various methods reviewed, some general considera-

tions of PISR were also discussed, such as the interplay between the transient and

steady-state. We noted that with PISR methods such as TSP, the task visit sequence

was static but there was a transient and steady-state phase to latency development.

Whereas with utility methods, both latency and the task visit sequence undergo tran-

sient and steady-state phases. These considerations are important in deciding which

type of method to use and how it will perform in a real-world PISR mission.

The core of this research revolved around a specific method of PISR task selec-

tion, MD2WRP . This dissertation took the previously published MD2WRP theory

and used it as a basis for developing MD2WRP for practical use. We introduced

a normalized form of MD2WRP to make it easier to select parameter values, even

when teams of heterogeneous vehicles are used. We characterized the effect of the

parameters β and w on agent behavior and proved that MD2WRP is periodic in

the steady-state. To deliver the best performance, we proposed a two-step heuristic

parameter optimization which was validated by comparing the optimized MD2WRP

performance to single and multi-vehicle TSP methods on a variety of task configura-

tions.

In assessing the ability of MD2WRP to adapt to operational challenges, we

showed that MD2WRP could accommodate multiple types of mission restrictions,

including Dubins contraints on vehicle motion, no-fly zones, return-to-base require-

ments, and the mid-mission addition and removal of tasks and vehicles. While these

conclusions are certainly contributions, the methods we developed to test three of

the operational factors are contributions in their own right. For Dubins constraints,

we introduced a method of scaling the task map to determine when the vehicle turn

radius became significant in calculating task values. To test the effect of no-fly zones,

173

we developed the Impact Ratio, IR, which defined how much the no-fly zone inter-

fered with vehicles traveling between tasks. Finally, in evaluating the effect of the

relative location of a base to the PISR tasks, we presented an offset ratio based on

the geometric centroid of all tasks.

Finally, the PUMPS tool, which was used to generate all of the simulation data in

this document, was developed from scratch with the intent of providing a flexible code

base for further testing of PISR task selection algorithms. It has a modular design

allowing for each vehicle to use a different type of task selection, vehicle pathing, and

communication. Tasks of different priorities can be placed in any configuration, with

the possibility to add support for more complex tasks in the future, such as road or

area searches. The PUMPS tool is freely available to the community to use or modify

in future research, which could be extended to other domains such as dynamic sensor

tasking for space applications or other logistic operations where TSP-like solutions

are sought. The code for the current PUMPS version, as of the publishing of this

document, is located in Appendix A. For the most up-to-date version of PUMPS,

please visit the Github repository (https://github.com/Sacaraster/PISR-Simulation).

5.4 Recommendations

To conclude this work, we provide recommendations about how to implement

MD2WRP as a PISR task selection method with an eye toward flight testing, as

well as general recommendations about conducting PISR missions. These recom-

mendations are based on reviewing the literature surrounding PISR as well as our

experiences conducting this research.

One of our first research tasks was to select a performance measure for PISR.

Throughout this work we based our metric on both the transient and steady-state

phases of latency development. However, the usefulness of this choice depends on

174

https://github.com/Sacaraster/PISR-Simulation

mission requirements. If the mission has a predefined timespan and the ages of all

tasks are zero at the start of the mission, a transient phase will necessarily exist and

is likely to have a significant impact on performance. In this situation, the average

weighted latency serves as a good metric. However, if PISR is to be conducted

indefinitely, with vehicles relieving each other and effectively continuing the mission

from the same state (i.e. the task ages known to the old vehicle are passed on to the

new vehicle), then a metric based solely on the steady-state may be more appropriate,

such as minimizing the maximum total latency or the maximum latency of any single

task once steady-state is achieved.

In addition to considering transient and steady-state, selecting the type of per-

formance metric is also dependent upon the mission. Average weighted latency, as

used in this research, provides performance that ensures all tasks are being serviced

in accordance with their priorities, but it provides no guarantees as to how long some

tasks may have to wait for service. Since it is an average, one task may receive many

visits over a short period of time while another experiences a long delay before ser-

vice, but the latency of the two tasks offset each other. For some use cases, this may

be fine. However, minimizing maximum weighted latency places an upper bound on

maximum idle time which provides a worst-case guarantee. Minimizing the maximum

weighted latency can be done in one of two ways: as a summation of the latency across

all tasks, which emphasizes minimizing latency from a system perspective, possibly

at the expense of individual tasks, or by considering the maximum latency of any

single task, which provides a firm upper bound on the latency of any single task but

possibly introduces system-wide inefficiencies.

A major part of this research was developing an optimization method forMD2WRP

parameters given the number of vehicles and a specific task configuration. However,

it may be desired for the sake of practicality to use predetermined parameters that

175

may be sub-optimal for a given scenario, but will work “well enough”. Based on our

findings and time spent running various scenarios, we recommend using β = 5.0 and

w = 1 as default parameter values. These settings often yield performance that is

close to that of the optimized values, which is likely good enough for vehicles to be

operationally effective. Table 5.1 summarizes the performance of the recommended

β of 5.0 compared to the optimal β for the four operational scenarios in Fig. 3.9.

The simulations in Table 5.1 assume a team of homogeneous vehicles, all vehicles

beginning at Task 1, use of the CxBD communication mode, and a mission duration

of 20000s.

Table 5.1. L̄ comparison between optimized and recommended β.

Map 1 Vehicle 2 Vehicles 3 Vehicles 4 Vehicles
Circle - Optimized 6859 3569 2682 1922

Circle - β = 5.0 6859 4152 2802 1957
Clusters - Optimized 5369 2867 1179 951

Clusters - β = 5.0 6955 3238 1215 1005
Random - Optimized 6960 3558 2391 1729

Random - β = 5.0 7107 3598 2455 1825
Grid - Optimized 5773 2896 2044 1458

Grid - β = 5.0 6459 2897 2288 1494

In order to maximize the benefit of MD2WRP , some method of dynamically

re-optimizing parameters should be included on flight software. In this research,

parameters were optimized manually based on the number of vehicles and task con-

figuration and then those values were assigned to vehicles. However, it should be

possible to wrap the MD2WRP task selection algorithm in an outer algorithm that

calculates optimal parameter values anytime mission objects change, based on cur-

rently known state information. This would fully remove the user from the process,

allowing more resources to be focused on data analysis rather than data acquisition.

We conducted several comparisons between MD2WRP and various TSP solutions

for PISR. The TSP solutions were useful for validating our MD2WRP parameter

176

optimization method, but the process of coding the TSP solutions to make these

comparisons also provided insight into the merits and drawbacks of utility versus

TSP methods in general. While TSP methods require centralized coordination and

combinatorial optimization algorithms, the basic methods we tested (n-spaced and k-

subtours) are relatively simple and would probably be the preferred primary method

in a mission where tasks are simple (e.g. point search tasks), mission objects are

unlikely to change often, and satellite communication links are readily available in

the event vehicle routes must be re-planned and re-distributed. Also, TSP methods

provide guaranteed task revisit times and vehicles act in a predictable way, which

might be desirable for users, if not posing some risk in terms of enemy awareness.

Utility methods, on the other hand, would be preferred as the primary task selection

method when tasks are complex (e.g. road searches), mission objects are introduced

and removed frequently, and satellite communications are poor, since the distribution

of vehicle routes is not required. Or, utility methods could serve as a secondary

method of task selection when TSP methods fail or become infeasible. For instance,

if long-haul satellite communications become unstable, vehicles could automatically

switch to a utility method in order to continue to service tasks in the absence of

centralized planning, instead relying on shortwave inter-vehicle communications. In

that scenario, return-to-base requirements could be enforced to deliver the collected

data.

The enforcement of a return-to-base (RTB) requirement with MD2WRP was ex-

plored in Sec. 4.3.3. The conclusion was that meeting RTB criteria with MD2WRP

was possible, but doing so had the potential to introduce inefficiencies depending on

the location of the base relative to the tasks. There is a variant of the TSP that

enforces time windows on task visits that provides a guarantee on the RTB frequency

while maximizing task visits (discussed in Sec. 2.5.2), but the algorithm quickly be-

177

comes intractable as the number of vehicles and tasks increases and may have no

solution at all if the problem is not formulated with care. A simpler option that

is compatible with MD2WRP would be to enforce a hard-coded RTB requirement

outside of the main MD2WRP algorithm. For example, the RTB wrapper could

continually track the travel time back to the base node from the current location, and

if the next task visit would bust the deadline, the vehicle would RTB before visiting

another task. In this way, the vehicles would continue to use MD2WRP like normal,

without including the base as a “task”, but still maintain consistent visits to the base

node.

Finally, this work has addressed the problem of how to select tasks for gathering

PISR data, but how PISR data should be stored, accessed, and most importantly,

used remains an open question. The purpose of PISR is to provide continual real-time

surveillance but also to develop long term data about a region for trends analysis.

If live streaming data is available from the vehicles, it should be accessible by an

operator in real-time but also stored for future analysis. If data must be ferried back

to base, operators should be notified when new data is available. The continual nature

of PISR will result in large amounts of accumulated data. It would be helpful to store

the data by both location and time, with a visual interface for easy navigation by a

human user (software such as Google Earth or Systems Toolkit provide this capability)

but the database should also provide interfaces for data mining AI routines, which

excel at trends analysis.

178

Appendix A. PUMPS Code

The code for the current version of PUMPS, as of the time of this publishing, is

provided below. This code is intended to serve as a reference for understanding the

results presented in this document. It includes code for the main program as well as

each class file. For a working and up-to-date version of the PUMPS tool that includes

all external dependencies, setup files, and other auxiliary functions, please visit the

Github repository at https://github.com/Sacaraster/PISR-Simulation.

A.1 Main

from __future__ import division

import shutil

import os

import sys

import math

import pickle

import dubins

import numpy as np

from generateMapCoordinates import generateMapCoordinates

from Classes.TaskClass import Task

from Classes.VehicleClass import Vehicle

def loadTaskConfig(trade_config):

179

https://github.com/Sacaraster/PISR-Simulation

task_geometry = trade_config['task_geometry']

x_coords, y_coords = generateMapCoordinates(task_geometry)

priorities_vector = trade_config['priorities_vector']

init_ages_vector = trade_config['init_ages_vector']

task_activation_times_vector =

trade_config['task_activation_times_vector']↪→

task_termination_times_vector =

trade_config['task_termination_times_vector']↪→

print ''

print ' Instantiating task objects ({} tasks, "{}"

map)...'.format(len(x_coords), task_geometry)↪→

task_vector = []

for index, task in enumerate(x_coords):

taskID = index+1

x_coord = x_coords[index]

y_coord = y_coords[index]

priority = priorities_vector[index]

init_age = init_ages_vector[index]

t_activate = task_activation_times_vector[index]

t_terminate = task_termination_times_vector[index]

print ' Task {} @ ({},{}), Priority={}'.format(taskID,

x_coord, y_coord, priority)↪→

180

print ' Initial age={}, Activation time: {},

Termination time:

{}'.format(init_age,t_activate,t_terminate)

↪→

↪→

taskObj = Task(taskID, x_coord, y_coord, priority, init_age,

t_activate, t_terminate) #INSTATIATE TASK OBJECT↪→

task_vector.append(taskObj) #ADD OBJECT TO VECTOR OF TASK

OBJECTS↪→

return task_vector, task_geometry

def loadVehicleConfig(trade_config, task_vector):

init_locations_vector = trade_config['init_locations_vector']

init_headings_vector = trade_config['init_headings_vector']

veh_speeds_vector = trade_config['veh_speeds_vector']

veh_bank_angles_vector = trade_config['veh_bank_angles_vector']

veh_activation_times = trade_config['veh_activation_times']

veh_termination_times = trade_config['veh_termination_times']

print ''

print ' Instantiating vehicle objects ({}

vehicles)...'.format(len(init_locations_vector))↪→

vehicle_vector = []

for index, vehicle in enumerate(init_locations_vector):

vehicleID = int((index+1)*100)

181

print ' Vehicle', vehicleID

init_location = init_locations_vector[index]

init_location = task_vector[init_location-1] #re-assign

init_location to be a task object↪→

print ' Initial Task:', init_location.ID

init_heading = init_headings_vector[index]

#stored in radians↪→

print ' Initial

Heading:',init_heading*(180/math.pi), 'degrees.'

#output in degrees

↪→

↪→

veh_speed = veh_speeds_vector[index]

print ' Vehicle Speed:', veh_speed, 'meters/sec.'

veh_bank_angle = veh_bank_angles_vector[index]

#stored in radians↪→

print ' Vehicle Bank Angle: ',

veh_bank_angle*(180/math.pi), 'degrees.' #output

in degrees

↪→

↪→

turn_radius = veh_speed**2/(9.807*math.tan(veh_bank_angle))

print ' Vehicle Turn Radius: ',

np.around(turn_radius,1), 'meters.'↪→

veh_t_activate = veh_activation_times[index]

print ' Vehicle Activation Time: ', veh_t_activate,

'secs.'↪→

veh_t_terminate = veh_termination_times[index]

print ' Vehicle Termination Time: ',

veh_t_terminate, 'secs.'↪→

182

#Instantiate the vehicle object

vehicleObj = Vehicle(index, vehicleID, init_location,

init_heading, veh_speed, turn_radius, veh_t_activate,

veh_t_terminate)

↪→

↪→

vehicle_vector.append(vehicleObj)

#Load the modules for each vehicle

vehicle_vector = loadRoutingConfig(trade_config, vehicle_vector,

task_vector)↪→

vehicle_vector = loadPathingConfig(trade_config, vehicle_vector,

task_vector)↪→

vehicle_vector = loadCommConfig(trade_config, vehicle_vector)

vehicle_vector = loadDatabaseConfig(trade_config, vehicle_vector,

task_vector)↪→

return vehicle_vector

def loadRoutingConfig(trade_config, vehicle_vector, task_vector):

print ''

print ' Adding Routing modules...'

routing_type = trade_config['routing_type']

beta = trade_config['beta']

183

ws_vector = trade_config['ws_vector']

distance_measure = trade_config['distance_measure']

tours_vector = trade_config['tours_vector']

veh_start_index_vector = trade_config['veh_start_index_vector']

routing_data = [routing_type, beta, ws_vector, distance_measure,

tours_vector, veh_start_index_vector]↪→

for vehicle in vehicle_vector:

vehicle.add_routing(routing_data, task_vector)

print ' Vehicle {} Routing Data:'.format(vehicle.ID)

vehicle.routing.print_routing_data()

return vehicle_vector

def loadPathingConfig(trade_config, vehicle_vector, task_vector):

print ''

print ' Adding Pathing modules...'

pathing_data = trade_config['pathing_type']

for vehicle in vehicle_vector:

vehicle.add_pathing(pathing_data)

print ' Vehicle {} Pathing Data:'.format(vehicle.ID)

try:

184

vehicle.pathing.calc_nfz_impact_rating(pathing_data,

task_vector)↪→

except:

pass

vehicle.pathing.print_pathing_data()

return vehicle_vector

def loadCommConfig(trade_config, vehicle_vector):

print ''

print ' Adding Communication modules...'

comm_mode = trade_config['comm_mode']

comm_data = [comm_mode]

for vehicle in vehicle_vector:

vehicle.add_comm(comm_data)

print ' Vehicle {} Comm Data: {}'.format(vehicle.ID,

comm_data)↪→

return vehicle_vector

def loadDatabaseConfig(trade_config, vehicle_vector, task_vector):

185

print ''

print ' Adding Database modules...'

database_items = trade_config['database_items']

for vehicle in vehicle_vector:

vehicle.add_database(database_items, vehicle_vector,

task_vector)↪→

print ' Vehicle {} Database Items:

{}'.format(vehicle.ID, database_items)↪→

return vehicle_vector

def main():

###

LOAD CONFIGURATION FILES AND INSANTIATE OBJECTS

###

#Argument supplying the location of the simulation configuration

files↪→

sim_path = sys.argv[1]

#Create the directory where simulation data will be saved

sim_data_path = './Data/'

186

print '\nSimulation data will be saved to

{}\n'.format(sim_data_path)↪→

#open every pickle file in the directory

for file in os.listdir(sim_path):

if file.endswith("_Config.pickle"):

trade_config_pickle = '{0}{1}'.format(sim_path, file)

print 'Opening \"', trade_config_pickle, '\"\n'

trade_config = pickle.load(open(trade_config_pickle,

"rb"))↪→

tradeID = trade_config['tradeID']

print '***************************************'

print ' Loading TradeID={}

'.format(tradeID)↪→

print '***************************************'

sim_length = trade_config['sim_length']

sim_length_visits = sim_length[0]

sim_length_time = sim_length[1]

#Load the task parameters; returns a vector of task

objects↪→

task_vector, task_geometry = loadTaskConfig(trade_config)

#Load the vehicle parameters and all modules; returns a

vector of vehicle objects↪→

187

vehicle_vector = loadVehicleConfig(trade_config,

task_vector)↪→

##

##

np.set_printoptions(suppress=True) #Don't print in

scientific notation↪→

np.set_printoptions(threshold='nan') #Don't truncate

large arrays when printing↪→

MAIN SIM LOOP

print ''

print ' ***'

print ' ****** Beginning Simulation **********'

print ' ***'

visit_order = []

task_ages = []

visit_num = 1

time = 0

while ((visit_num < sim_length_visits+1) & (time <

sim_length_time+1)):↪→

print ' Task Visit #[{}]\n'.format(visit_num)

188

Decide which vehicle makes the next task selection,

based on earliest arrival time↪→

Only vehicle's within their active window are

considered↪→

decider = min((vehicle for vehicle in vehicle_vector

if (vehicle.t_terminate >

vehicle.routing.arrival_time)),

↪→

↪→

key=lambda x: x.routing.arrival_time)

print ' Vehicle', decider.ID, 'is selecting the next

task.'↪→

print ' Just arrived: Task {} @ {}

secs.'.format(decider.routing.destination.ID,

decider.routing.arrival_time)

↪→

↪→

print ' Vehicle heading: {}

degrees'.format(decider.heading*(180/math.pi))↪→

Update deciding vehicle location (old destination

is new location)↪→

decider.location = decider.routing.destination

decider.time = decider.routing.arrival_time

Zero-out age of visited task in deciding vehicle's

age tracker↪→

decider.database.age_tracker[int(

decider.routing.destination.ID)-1]= 0.0

189

Increment task object ages by travel time (time of

this arrival less time of previous arrival)↪→

↪→

for task in task_vector:

Only tasks within their active window are

incremented, all others have age '0'↪→

if ((decider.time >= task.t_activate) &

(decider.time < task.t_terminate)):↪→

task.age = task.age + (decider.time-time)

A task does not begin accruing age until

it's activation time↪→

if (time < task.t_activate):

task.age = task.age -

(task.t_activate-time)↪→

else:

task.age = 0

First, save task ages without setting visited task

age to 0↪→

task_age_vector = []

task_age_vector.append(decider.time) #first entry in

age vector is timestamp↪→

for task in task_vector:

task_age_vector.append(task.age)

task_ages.append(task_age_vector)

190

Zero out age of task that vehicle just arrived at

task_vector[decider.routing.destination.ID-1].age = 0

Now, save task ages again (@ +.01s) with age of

visited task at 0↪→

This is needed to perform the latency

calculations in the analysis script↪→

task_age_vector = []

task_age_vector.append(decider.time+.01) #first

entry in age vector is timestamp↪→

for task in task_vector:

task_age_vector.append(task.age)

task_ages.append(task_age_vector)

Document vehicle task visits, trajectory

information, and task ages↪→

visit_order format is [vehicleID, task, visit_time,

trajectory]↪→

visit_order.append([decider.ID, decider.location.ID,

decider.time, decider.pathing.trajectory])↪→

print ' Vehicle {} age tracker = \n

{}'.format(decider.ID,

np.around(decider.database.age_tracker, 3))

↪→

↪→

191

print ' True task ages = \n

{}'.format(np.around(task_age_vector[1:], 3))↪→

print ' Vehicle {} vehicle tracker =

\n{}'.format(decider.ID,

np.around(decider.database.vehicle_tracker, 3))

↪→

↪→

#Select the next task to visit

(Updates vehicle's destination)

decider.routing.get_next_task(decider, task_vector)

#Calculate path to selected task

(Updates trajectory, arrival_time, &

current_heading)↪→

decider.pathing.get_path(decider)

Increment task ages in vehicle's own age tracker by

travel time (time of the planned arrival less

current time)

↪→

↪→

tij = decider.routing.arrival_time-decider.time

for task in task_vector:

Only tasks within their active window are

incremented, all others have age '0'↪→

if ((decider.routing.arrival_time >=

task.t_activate) &

(decider.routing.arrival_time <

task.t_terminate)):

↪→

↪→

↪→

192

decider.database.age_tracker[task.ID-1] =

decider.database.age_tracker[task.ID-1] +

tij

↪→

↪→

#A task does not begin accruing age until

it's activation time↪→

if (decider.time < task.t_activate):

decider.database.age_tracker[task.ID-1] =

decider.database.age_tracker[task.ID-1]

- (task.t_activate-decider.time)

↪→

↪→

else:

decider.database.age_tracker[task.ID-1] = 0

#Communicate

decider.comm.talk(decider, vehicle_vector)

#Update visit number and current simulation time

↪→

visit_num += 1

time = decider.time

print ''

print ' Ready for next Task!\n'

print '

***\n'↪→

#Save the final task visits for each vehicle

193

for vehicle in vehicle_vector:

visit_order.append([vehicle.ID,

vehicle.routing.destination.ID,

vehicle.routing.arrival_time,

vehicle.pathing.trajectory])

↪→

↪→

↪→

visit_order = sorted(visit_order,key=lambda x: x[2])

visit_order = np.array(visit_order, dtype=object)

print ' ***'

print ' ****** Simulation Complete **********'

print ' ***'

#Display the visit history to screen

print ''

print ' Simulation Visit History:'

print(visit_order[:, 0:3])

print ''

#Save each trade into a pickle file...

print ' Pickling results...'

trade_results_pickle =

'{0}Trade_{1}_Results.pickle'.format(sim_data_path,

tradeID)

↪→

↪→

194

trade_results = [visit_order, task_ages, task_vector,

vehicle_vector, tradeID, task_geometry]↪→

pickle.dump(trade_results, open(trade_results_pickle,

"wb"))↪→

print ' Results pickled.'

if __name__ == '__main__':

main()

A.2 Classes

A.2.1 The Vehicle Class.

from __future__ import division

import random

import itertools

import math

import numpy as np

import dubins

from RoutingClass import RoutingFactory

from PathingClass import PathingFactory

from CommunicationClass import CommunicationFactory

from DatabaseClass import Database

class Vehicle:

195

"""A class for PISR vehicles."""

#The base vehicle class holds attributes of the physical vehicle

only (e.g. speed and heading).↪→

#Vehicles implement "modules" that perform other functions. For

example, every vehicle loads a specific↪→

#type of "Pathing" module, which is defined by the Pathing

class. So a vehicle that flys Euclidean↪→

#paths implements the Euclidean sublcass of the Pathing module.

def __init__(self, _indexer, ID, init_location, init_heading,

speed, turn_radius, t_activate, t_terminate):↪→

self._indexer = _indexer #since IDs are usually 100, 200,

etc, this makes referencing vehicles easier↪→

self.ID = ID

self.location = init_location #a task object (vehicle is

located at a task)↪→

self.time = t_activate #current time for

vehicle↪→

self.heading = init_heading

self.speed = speed

self.turn_radius = turn_radius

self.t_activate = t_activate

self.t_terminate = t_terminate

196

#Add the "Routing" module to the vehicle. This determines how

the vehicle selects tasks.↪→

def add_routing(self, routing_data, task_vector):

routing_factory = RoutingFactory()

self.routing =

routing_factory.get_routing_module(routing_data, self,

task_vector)

↪→

↪→

#Add the "Pathing" module to the vehicle. This determines how

the vehicle travels between tasks.↪→

def add_pathing(self, pathing_data):

pathing_factory = PathingFactory()

self.pathing =

pathing_factory.get_pathing_module(pathing_data)↪→

#Add the "Communication" module to the vehicle. This lets

vehicles communicate.↪→

def add_comm(self, comm_data):

comm_factory = CommunicationFactory()

self.comm = comm_factory.get_comm_module(comm_data)

#Store task and sister vehicle information based on the

vehicle's type of "Database" module↪→

def add_database(self, database_items, vehicle_vector,

task_vector):↪→

197

self.database = Database(database_items, vehicle_vector,

task_vector)↪→

A.2.2 The Task Class.

class Task:

"""A class for PISR tasks"""

def __init__(self, ID, x, y, pri, init_age, t_activate,

t_terminate):↪→

self.ID = ID

self.location = [x,y]

self.priority = pri

self.age = init_age

self.t_activate = t_activate

self.t_terminate = t_terminate

A.2.3 The Routing Class.

import math

import numpy as np

from abc import ABCMeta, abstractmethod

198

import PathingClass

class Routing(object):

"""A class for routing of PISR Vehicles."""

__metaclass__ = ABCMeta

@abstractmethod

def get_next_task(self):

raise NotImplementedError("You must implement a get_next_task

method for this routing type!")↪→

@abstractmethod

def print_routing_data(self):

raise NotImplementedError("You must implement a

print_routing_data method for this routing type!")↪→

class MD2WRP_Routing(Routing):

def __init__(self, vehicle, task_vector, beta, w,

distance_measure):↪→

self.type = 'MD2WRP'

self.destination = vehicle.location # destination task (a

task object)↪→

self.arrival_time = vehicle.time

199

self.beta = beta

self.w = w

#generate a pathing object for calculating longest distance

between tasks↪→

pathing_object = PathingClass.Euclidean_Pathing()

avgDistance, longestDistance =

pathing_object.calcDistanceMatrixData(task_vector)↪→

self.norm_factor = longestDistance/vehicle.speed

if distance_measure == 1:

self.distance_measure = distance_measure

if distance_measure == 2:

self.distance_measure = ['Dubins']

if distance_measure == 3:

self.distance_measure = ['Tripath']

def print_routing_data(self):

print ' Type:', self.type

print ' Beta:', self.beta

print ' w:', self.w

print ' Measure:', self.distance_measure

print ' Norm Factor:', self.norm_factor

def get_next_task(self, vehicle, task_vector):

200

#Calculate travel times to every task based on the type of

distance measurement↪→

(This is not necessarily the physical pathing of the

vehicle)↪→

pathing_factory = PathingClass.PathingFactory()

pathing_object =

pathing_factory.get_pathing_module(vehicle.routing.distance_measure)↪→

measured_times_and_headings =

pathing_object.get_best_paths(vehicle, task_vector)↪→

measured_times = measured_times_and_headings[:,1]

utilities = []

for index, tij in enumerate(measured_times):

age_modifier = 0 #used to adjust the age of a task due

to visits from other vehicles↪→

for other_arrival_index, other_arrival in

enumerate(vehicle.database.vehicle_tracker[:, 0]):↪→

if ((other_arrival == index+1) & (other_arrival_index

!= vehicle._indexer)):↪→

#If another vehicle will arrive before me, reduce

the age of the task under consideration↪→

if

vehicle.database.vehicle_tracker[other_arrival_index,

1] < (vehicle.time+tij):

↪→

↪→

age_modifier = (vehicle.time+tij)- \

vehicle.database.vehicle_tracker[\

201

other_arrival_index, 1]

#...but only reduce the age if the other

vehicle's visit will result in a lower

future age than at my arrival time

↪→

↪→

if age_modifier <

(vehicle.database.age_tracker[index]+tij):↪→

print ' *** Task {} age changed to

{}s! (Interim visit)'.format(index+1,

np.around(age_modifier,3),)

↪→

↪→

age_modifier = -1*age_modifier +

(vehicle.database.age_tracker[index]+tij)

#negates all other age info

↪→

↪→

else:

age_modifier = 0

#If another vehicle will be arriving after me (or

at the same time), don't go to that task↪→

if

vehicle.database.vehicle_tracker[other_arrival_index,

1] >= (vehicle.time+tij):

↪→

↪→

age_modifier =

(vehicle.database.age_tracker[index]+tij)

#by making the effective (age + tij) term

zero, utility=0

↪→

↪→

↪→

print ' *** Task {} utility set to zero!

(Conflict)'.format(index+1)↪→

202

utility = (math.exp(-vehicle.routing.beta* \

(tij/vehicle.routing.norm_factor))*vehicle.routing.w[index]*

((vehicle.database.age_tracker[index]+tij- \

age_modifier)/ vehicle.routing.norm_factor))*100000

utilities.append(utility)

for index, utility in enumerate(utilities):

if vehicle.time < task_vector[index].t_activate:

utilities[index] = 0

print ' *** Task {} utility set to zero! (Not yet

active)'.format(index+1)↪→

if vehicle.time >= task_vector[index].t_terminate:

utilities[index] = 0

print ' *** Task {} utility set to zero!

(Terminated)'.format(index+1)↪→

print ' Calculated utilities for each task:'

for index, task_utility in enumerate(utilities):

print ' Task {} utility = {}'.format(index+1,

task_utility)↪→

max_utility = max(utilities)

selected_task = [index for index, utility in

enumerate(utilities) if (utility == max_utility)] #ID of

selected task

↪→

↪→

selected_task = task_vector[selected_task[0]] #the actual

task object↪→

203

print ''

print ' Task {} has the highest utility.

({})'.format(selected_task.ID, max_utility)↪→

vehicle.routing.destination = selected_task

class Manual_Routing(Routing):

def __init__(self, vehicle, seq_vector, veh_start_index_vector):

self.type = 'Manual'

self.destination = vehicle.location # destination task (a

task object)↪→

self.arrival_time = vehicle.time

self.current_stop = veh_start_index_vector[vehicle._indexer]

#not a task, but the index in the sequence↪→

self.sequence_vector = seq_vector[vehicle._indexer]

def print_routing_data(self):

print ' Type:', self.type

print ' Sequence:', self.sequence_vector

def get_next_task(self, vehicle, task_vector):

print " Selecting next task in the sequence,",

self.sequence_vector↪→

print ' Currrent task:

{}'.format(self.sequence_vector[self.current_stop])↪→

204

print ' Current task index: {}'.format(self.current_stop)

#Increase the current_stop counter by 1

self.current_stop += 1

if self.current_stop > len(self.sequence_vector)-1: #reset

stop counter to 0 when at the end of the sequence↪→

self.current_stop = 0

selected_task = self.sequence_vector[self.current_stop]

print ' Next task: {}'.format(selected_task)

print ' Next task index: {}'.format(self.current_stop)

selected_task = task_vector[selected_task-1] #the actual

task object↪→

vehicle.routing.destination = selected_task

class RoutingFactory:

def get_routing_module(self, routing_data, vehicle, task_vector):

if routing_data[0] == 'MD2WRP':

return MD2WRP_Routing(vehicle, task_vector,

routing_data[1], routing_data[2], routing_data[3])↪→

elif routing_data[0] == 'Manual':

205

return Manual_Routing(vehicle, routing_data[4],

routing_data[5])↪→

else:

raise NotImplementedError("Unknown routing type.")

A.2.4 The Pathing Class.

import os

import subprocess

import math

import dubins

import numpy as np

from abc import ABCMeta, abstractmethod

class Pathing(object):

"""A class for pathing of PISR Vehicles."""

__metaclass__ = ABCMeta

@abstractmethod

def get_path(self):

raise NotImplementedError("You must implement a get_path

method for every Pathing type!")↪→

@abstractmethod

def get_best_paths(self):

206

raise NotImplementedError("You must implement a get_best_paths

method for every Pathing type!")↪→

@abstractmethod

def print_pathing_data(self):

raise NotImplementedError("You must implement a

print_pathing_data method for every Pathing type!")↪→

class Euclidean_Pathing(Pathing):

def __init__(self):

self.type = 'Euclidean'

self.trajectory = []

def print_pathing_data(self):

print ' Type:', self.type

def get_path(self, vehicle):

x0 = vehicle.location.location[0]

y0 = vehicle.location.location[1]

x1 = vehicle.routing.destination.location[0]

y1 = vehicle.routing.destination.location[1]

#Calculate length of Euclidean path

207

path_length = math.sqrt(math.pow(x1-x0, 2)+math.pow(y1-y0, 2))

#Calculate trajectory

trajectory = np.array([[x0, y0], [x1, y1]])

#update vehicle states

self.trajectory = trajectory

vehicle.routing.arrival_time = vehicle.time +

path_length/vehicle.speed↪→

vehicle.heading = 0

print ' Travel time to Task {} =

{}'.format(vehicle.routing.destination.ID,

path_length/vehicle.speed)

↪→

↪→

print ' Arriving @ {}

secs.'.format(np.around(vehicle.routing.arrival_time, 3))↪→

print ' Arrival heading: {}

degrees'.format(np.around(vehicle.heading*(180/math.pi),1))↪→

def get_best_paths(self, vehicle, task_vector):

times_and_headings = []

x0 = vehicle.location.location[0]

y0 = vehicle.location.location[1]

#For every candidate task...

208

for index, task in enumerate(task_vector):

#Coordinates of candidate task

x1 = task.location[0]

y1 = task.location[1]

#Calculate the distance between the current location and

candidate task↪→

dist = math.sqrt(math.pow(x1-x0, 2)+math.pow(y1-y0, 2))

#Convert distance to travel time

time = dist/vehicle.speed

#Save the travel time to each task

times_and_headings.append([task.ID, time, 0])

times_and_headings = np.array(times_and_headings)

print ' Shortest measured times to each task:'

print ''

print times_and_headings[:,0:2]

print ''

return times_and_headings

209

def calcDistanceMatrixData(self, task_vector):

cxyVector = []

for task in task_vector:

x = task.location[0]

y = task.location[1]

cxy = x+y*1j

cxyVector.append(cxy)

cxyVector = np.array([cxyVector], dtype=complex)

distanceMatrix = abs(cxyVector.T-cxyVector)

longestDistance = np.max(distanceMatrix)

avgDistance = np.sum(distanceMatrix)/ \

((distanceMatrix.shape[0]**2)-distanceMatrix.shape[0])

#don't divide by diaganol entries, which are

zero

↪→

↪→

return avgDistance, longestDistance

class Dubins_Pathing(Pathing):

def __init__(self):

self.type = 'Dubins'

self.trajectory = []

def print_pathing_data(self):

210

print ' Type:', self.type

def get_path(self, vehicle):

x0 = vehicle.location.location[0]

y0 = vehicle.location.location[1]

theta0 = vehicle.heading

x1 = vehicle.routing.destination.location[0]

y1 = vehicle.routing.destination.location[1]

path_length_vector = []

#Discretized arrival headings (try each of these and pick

the one with the shortest travel distance)↪→

thetas = np.arange(0, 20, 1.25)*(math.pi/10)

#If arriving at the current task at the current heading,

slightly change arrival angle (prevents travel time of

zero)

↪→

↪→

for theta_index, theta in enumerate(thetas):

if (int(vehicle.location.ID-1) ==

vehicle.routing.destination.ID) & (theta0==theta):↪→

thetas[theta_index] = theta0 + 0.0174533 #add 1

degree to arrivalangle↪→

for theta1 in thetas:

#Cacluate the path length for given arrival angle

211

path_length = dubins.path_length((x0, y0, theta0), (x1,

y1, theta1), vehicle.turn_radius)↪→

path_length_vector.append(path_length)

#find the shortest travel distance for all calculated

arrival heading options↪→

min_dist = min(path_length_vector)

min_dist_index = np.argmin(path_length_vector)

arrival_heading = thetas[min_dist_index]

#Calculate trajectory to destination

trajectory, _ = dubins.path_sample((x0, y0, theta0), (x1, y1,

arrival_heading), vehicle.turn_radius, 20)↪→

#update vehicle states

self.trajectory = trajectory

vehicle.routing.arrival_time = vehicle.time +

min_dist/vehicle.speed↪→

vehicle.heading = arrival_heading

print ' Travel time to Task {} =

{}'.format(vehicle.routing.destination.ID,

min_dist/vehicle.speed)

↪→

↪→

print ' Arriving @ {}

secs.'.format(np.around(vehicle.routing.arrival_time, 3))↪→

212

print ' Arrival heading: {}

degrees'.format(np.around(vehicle.heading*(180/math.pi),1))↪→

def get_best_paths(self, vehicle, task_vector):

times_and_headings = []

#Coordinates of current location and current heading

x0 = vehicle.location.location[0]

y0 = vehicle.location.location[1]

theta0 = vehicle.heading

#For every candidate task...

for index, task in enumerate(task_vector):

path_length_vector = []

#Coordinates of candidate task

x1 = task.location[0]

y1 = task.location[1]

#Discretized arrival headings (try each of these and pick

the one with the shortest travel distance)↪→

thetas = np.arange(0, 20, 1.25)*(math.pi/10)

#If arriving at the current task at the current heading,

slightly change arrival angle (prevents travel time

of zero)

↪→

↪→

for theta_index, theta in enumerate(thetas):

213

if (int(vehicle.location.ID-1) == index) &

(theta0==theta):↪→

thetas[theta_index] = theta0 + 0.0174533 #add 1

degree to arrivalangle↪→

for theta1 in thetas:

#Cacluate the path length for given arrival angle

path_length = dubins.path_length((x0, y0, theta0),

(x1, y1, theta1), vehicle.turn_radius)↪→

path_length_vector.append(path_length)

#find the shortest travel distance for all arrival

heading options↪→

min_dist = min(path_length_vector)

min_dist_index = np.argmin(path_length_vector)

heading = thetas[min_dist_index]

#calculate travel time based on vehicle speed

time = min_dist/vehicle.speed

times_and_headings.append([task.ID, time, heading])

times_and_headings = np.array(times_and_headings)

print ' Shortest measured times to each task:'

print ''

print times_and_headings[:,0:2]

print ''

return times_and_headings

214

class Tripath_Pathing(Pathing):

def __init__(self, task_geometry, nfz):

self.type = 'Tripath'

self.map = task_geometry #tells Tripath which map is in use

self.nfz = nfz #tells Tripath which no-fly zone

to use (an integer)↪→

self.trajectory = []

self.nfz_impact = 0 #ratio of average travel distance

with nfz to w/out nfz↪→

def print_pathing_data(self):

print ' Type:', self.type

print ' Map:', self.map

print ' NFZ:', self.nfz

print ' NFZ Impact Rating:', self.nfz_impact

def get_path(self, vehicle):

x0 = vehicle.location.location[0]

y0 = vehicle.location.location[1]

x1 = vehicle.routing.destination.location[0]

215

y1 = vehicle.routing.destination.location[1]

#Cacluate the path to the task

FNULL = open(os.devnull, 'w') #This prevents a terminal

window from popping up each time Tripath is called↪→

subprocess.call(

'/home/chris/Research/PISR_Sim_NGpp/Tripath_custom/bin/./setut

{} {} {} {} {} {}'.format(↪→

x0, y0, x1, y1, vehicle.pathing.map,

vehicle.pathing.nfz),↪→

cwd='/home/chris/Research/PISR_Sim_NGpp/Tripath_custom/bin/',

stdout=FNULL, shell=True)

path_data = np.genfromtxt(

'/home/chris/Research/PISR_Sim_NGpp/Tripath_custom/bin/path.txt',

delimiter = ",") #path_data is the trajectory data

xPath = path_data[:,0]

yPath = path_data[:,1]

#Calculate the length of the path

path_length = 0

for ind, entry in enumerate(xPath[0:-1]):

path_length = path_length +

math.sqrt(math.pow(xPath[ind+1]-xPath[ind],

2)+math.pow(yPath[ind+1]-yPath[ind], 2))

↪→

↪→

#update vehicle states

216

self.trajectory = path_data

vehicle.routing.arrival_time = vehicle.time +

path_length/vehicle.speed↪→

vehicle.heading = 0

print ' Travel time to Task {} =

{}'.format(vehicle.routing.destination.ID,

path_length/vehicle.speed)

↪→

↪→

print ' Arriving @ {}

secs.'.format(np.around(vehicle.routing.arrival_time, 3))↪→

print ' Arrival heading: {}

degrees'.format(np.around(vehicle.heading*(180/math.pi),1))↪→

def get_best_paths(self, vehicle, task_vector):

times_and_headings = [] #note...Euclidean, so heading is

always '0'↪→

#Coordinates of current location

x0 = vehicle.location.location[0]

y0 = vehicle.location.location[1]

#For every candidate task...

for index, task in enumerate(task_vector):

217

#Coordinates of candidate task

x1 = task.location[0]

y1 = task.location[1]

#Cacluate the path to the task

FNULL = open(os.devnull, 'w') #This prevents a terminal

window from popping up each time Tripath is called↪→

subprocess.call(

'/home/chris/Research/PISR_Sim_NGpp/Tripath_custom/bin/./setut

{} {} {} {} {} {}'.format(↪→

x0, y0, x1, y1, vehicle.pathing.map,

vehicle.pathing.nfz),↪→

cwd='/home/chris/Research/PISR_Sim_NGpp/Tripath_custom/bin/',↪→

stdout=FNULL, shell=True)

path_data = np.genfromtxt(

'/home/chris/Research/PISR_Sim_NGpp/Tripath_custom/bin/path.txt',

delimiter = ",")

xPath = path_data[:,0]

yPath = path_data[:,1]

#Calculate the length of the path

dist = 0

for ind, entry in enumerate(xPath[0:-1]):

218

dist = dist +

math.sqrt(math.pow(xPath[ind+1]-xPath[ind],

2)+math.pow(yPath[ind+1]-yPath[ind], 2))

↪→

↪→

#Convert distance to travel time

time = dist/vehicle.speed

#Save the travel time to each task

times_and_headings.append([task.ID, time, 0])

times_and_headings = np.array(times_and_headings)

print ' Shortest measured times to each task:'

print ''

print times_and_headings[:,0:2]

print ''

return times_and_headings

def calc_nfz_impact_rating(self, pathing_data, task_vector):

#First, calculate the average distance between all tasks

without the NFZ (Euclidean distances)↪→

cxyVector = []

for task in task_vector:

x = task.location[0]

y = task.location[1]

219

cxy = x+y*1j

cxyVector.append(cxy)

cxyVector = np.array([cxyVector], dtype=complex)

distanceMatrix = abs(cxyVector.T-cxyVector)

D_without_nfz = np.sum(

distanceMatrix)/((distanceMatrix.shape[0]**2)

-distanceMatrix.shape[0]) #don't divide by diaganol

entries, which are zero↪→

#Second, calculate the average distance between all tasks

taking into account the NFZ (Use Tripath)↪→

D_array = []

for start_task in task_vector: #for every task...

for end_task in task_vector: #to every task...

#Coordinates of starting task

x0 = start_task.location[0]

y0 = start_task.location[1]

#Coordinate of destination task

x1 = end_task.location[0]

y1 = end_task.location[1]

#Caclulate distance between start and end task

FNULL = open(os.devnull, 'w') #This prevents a

terminal window from popping up each time Tripath

is called

↪→

↪→

220

subprocess.call(

'../../Tripath_custom/bin/./setut {} {} {} {}

{} {}'.format(↪→

x0, y0, x1, y1, pathing_data[1],

pathing_data[2]),↪→

cwd='../../Tripath_custom/bin/', stdout=FNULL,

shell=True)↪→

path_data = np.genfromtxt(

'/home/chris/Research/PISR_Sim_NGpp \

/Tripath_custom/bin/path.txt',

delimiter = ",")

xPath = path_data[:,0]

yPath = path_data[:,1]

dist = 0

for ind, entry in enumerate(xPath[0:-1]):

dist = dist +

math.sqrt(math.pow(xPath[ind+1]-xPath[ind],

2)+math.pow(yPath[ind+1]-yPath[ind], 2))

↪→

↪→

D_array.append(dist)

D_array = np.array(D_array)

D_with_nfz =

np.sum(D_array)/(D_array.shape[0]-len(task_vector))

#don't divide by the zero entries of task x to task x

↪→

↪→

#calculate nfz impact rating and save

self.nfz_impact = D_with_nfz/D_without_nfz

221

class PathingFactory:

def get_pathing_module(self, pathing_data):

if pathing_data[0] == 'Euclidean':

return Euclidean_Pathing()

elif pathing_data[0] == 'Dubins':

return Dubins_Pathing()

elif pathing_data[0] == 'Tripath':

return Tripath_Pathing(pathing_data[1], pathing_data[2])

else:

raise NotImplementedError("Unknown pathing type.")

A.2.5 The Communication Class.

import numpy as np

from abc import ABCMeta, abstractmethod

class Communication(object):

"""A class for communication of PISR Vehicles."""

__metaclass__ = ABCMeta

@abstractmethod

def talk(self):

222

raise NotImplementedError("You must implement a talk method

for every Communication type!")↪→

class No_Communication(Communication):

def __init__(self):

self.type = 'None'

def talk(self, decider, vehicle_vector):

pass

class Completion_Communication(Communication):

def __init__(self):

self.type = 'Completion'

def talk(self, decider, vehicle_vector):

for vehicle in vehicle_vector:

if vehicle.ID != decider.ID:

#Update sister vehicle age tracker's to account for

the task just serviced by this vehicle↪→

#(This is how old the task will now be when the

sister vehicle makes its next decision)↪→

vehicle.database.age_tracker[int(decider.location.ID-1)]

= vehicle.routing.arrival_time-decider.time

↪→

↪→

223

print ''

print ' Broadcasted completion of Task {} @ {}

secs.'.format(decider.location.ID, decider.time)↪→

class Destination_Communication(Communication):

def __init__(self):

self.type = 'Destination'

def talk(self, decider, vehicle_vector):

for vehicle in vehicle_vector:

if vehicle.ID != decider.ID:

#Update sister vehicle age tracker's to account for

the task just serviced by this vehicle↪→

#(This is how old the task will now be when the

sister vehicle makes its next decision)↪→

vehicle.database.age_tracker[int(decider.location.ID-1)]

= vehicle.routing.arrival_time-decider.time

↪→

↪→

#Let the sister vehicles know which task this vehicle

has just selected and what time it will arrive↪→

vehicle.database.vehicle_tracker[decider._indexer, 0]

= decider.routing.destination.ID↪→

vehicle.database.vehicle_tracker[decider._indexer, 1]

= decider.routing.arrival_time↪→

224

print ''

print ' Broadcasted completion of Task {} @ {}

secs.'.format(decider.location.ID, decider.time)↪→

print ' Broadcasted destination as Task {} @ {}

secs.'.format(decider.routing.destination.ID,

decider.routing.arrival_time)

↪→

↪→

class CommunicationFactory:

def get_comm_module(self, comm_data):

if comm_data[0] == 'None':

return No_Communication()

elif comm_data[0] == 'Completion':

return Completion_Communication()

elif comm_data[0] == 'Destination':

return Destination_Communication()

else:

raise NotImplementedError("Unknown communication type.")

A.2.6 The Database Class.

import numpy as np

class Database:

"""A class for different information needs of PISR Vehicles."""

def __init__(self, database_items, vehicle_vector, task_vector):

225

for entry in database_items:

if entry == 'Age_Tracker':

age_vector = []

for task in task_vector:

age_vector.append(task.age)

age_vector = np.array(age_vector)

self.age_tracker = np.zeros(len(task_vector))

for task in task_vector:

self.age_tracker[task.ID-1] = task.age

elif entry == 'Vehicle_Tracker':

self.vehicle_tracker = np.zeros((len(vehicle_vector),

2)) # format: [destination_task, arrival_time]↪→

226

Bibliography

1. Yann Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. Pro-

ceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent

Technology, 2004. (IAT 2004)., pages 302–308, 2004.

2. Ethan Stump and Nathan Michael. Multi-robot persistent surveillance planning

as a vehicle routing problem. IEEE International Conference on Automation

Science and Engineering, pages 569–575, 2011.

3. Soroush Alamdari, Elaheh Fata, and Stephen L. Smith. Persistent Monitoring

in Discrete Environments: Minimizing the Maximum Weighted Latency Between

Observations. pages 1–25, 2012.

4. Aydano Machado, Geber Ramalho, Jean Daniel Zucker, and Alexis Drogoul.

Multi-agent patrolling: An empirical analysis of alternative architectures. In

Multi-Agent-Based Simulation II, volume 2581, pages 155–170. 2003.

5. Nikhil Nigam and Ilan Kroo. Persistent Surveillance Using Multiple Unmanned

Air Vehicles. Aerospace Conference, 2008 IEEE, pages 1–14, 2008.

6. H. R. Everett. Unmanned Systems of World Wars I and II. The MIT Press,

2015.

7. John Sifton. A Brief History of Drones. The Nation, feb 2012.

8. Department of Defense. Unmanned Systems Integrated Roadmap. Technical

report, Department of Defense, 2013.

9. Steven Rasmussen, Krishnamoorthy Kalyanam, Satyanarayana Manyam, David

Casbeer, and Christopher Olsen. Practical Considerations for Implementing an

227

Autonomous , Persistent , Intelligence , Surveillance , and Reconnaissance Sys-

tem. In IEEE Conference on Control Technology and Applications. IEEE, 2017.

10. Department of Defense. Autonomy Research Pilot Initiative (ARPI) Invitation

for Proposals. 2012.

11. I. Michael Ross and Mark Karpenko. A review of pseudospectral optimal control:

From theory to flight. Annual Reviews in Control, 36(2):182–197, 2012.

12. Rina Dechter and Judea Pearl. Generalized best-first search strategies and the

optimality af A*. Journal of the ACM, 32(3):505–536, 1985.

13. Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, fifth edition, 2009.

14. G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management

Science, 6(1):80–91, 1959.

15. Tonci Caric and Hrvoje Gold. Vehicle Routing Problem. In-Teh, 2008.

16. O Bräysy and M Gendreau. Vehicle routing problem with time windows, Part

I: Route construction and local search algorithms. Transportation Science,

39(1):104–118, 2005.

17. Fabio Pasqualetti, Joseph W. Durham, and Francesco Bullo. Cooperative pa-

trolling via weighted tours: Performance analysis and distributed algorithms.

IEEE Transactions on Robotics, 2012.

18. Mo Li, Weifang Cheng, and Kebin Liu. Sweep Coverage with Mobile Sensors.

IEEE Transactions on Mobile Computing, 10(11):1534–1545, 2011.

19. Stephen L. Smith and Daniela Rus. Multi-robot monitoring in dynamic envi-

ronments with guaranteed currency of observations. Proceedings of the IEEE

Conference on Decision and Control, pages 514–521, 2010.

228

20. S. Lin. Computer solutions of the traveling salesman problem. Bell System

Computer Journal, 44:2245–2269, 1965.

21. S. Lin and B.W. Kerninghan. An effective heuristic algorithm for the traveling-

salesman problem. Operations Research, 21:498–516, 1973.

22. Majd Latah. Solving Multiple TSP Problem by K-Means and Crossover based

Modified ACO Algorithm. International Journal of Engineering Research & Tech-

nology (IJERT), 5(02):430–434, 2016.

23. San Nah Sze and Wei King Tiong. A Comparison between Heuristic and Meta-

Heuristic Methods for Solving the Multiple Traveling Salesman Problem. Inter-

national Journal of Mechanical, Industrial Science and Engineering, 1(1):27–30,

2007.

24. K S R College Technology Tiruchengode. Optimization of Non-Linear Multiple

Traveling Salesman Problem Using K-Means Clustering , Shrink Wrap Algorithm

and Meta-Heuristics. International Journal of Nonlinear Science, 9(4):171–177,

2010.

25. Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on

Information Theory, 28(2):129–137, 1982.

26. D Aloise, A Deshpande, P Hansen, and P Popat. NP-hardness of Euclidean

sum-of-squares clustering. Machine Learning, 75:245–249, 2009.

27. M.E. Celebi, H.A. Kingravi, and P.A. Vela. A comparative study of efficient

intialization methods for the k-means clustering algorithm. Expert Systems with

Applications, 40(1):200–210, 2013.

229

28. D J C MacKay. An Example Inference Task: Clustering. In Information The-

ory, Inference and Learning Algorithms, chapter 20, pages 284–292. Cambridge

University Press, 2003.

29. David Arthur and Sergei Vassilvitskii. K-Means++: the Advantages of Careful

Seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, 8:1027–1025, 2007.

30. Nikhil Nigam, Stefan Bieniawski, Ilan Kroo, and John Vian. Control of mul-

tiple UAVs for persistent surveillance: Algorithm and flight test results. IEEE

Transactions on Control Systems Technology, 20(5):1236–1251, 2012.

31. Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean TSP and

other Geometric Problems. In Proceedings of 37th Conference on Foundations of

Computer Science, 1996.

32. William Cook. Solving TSPs: World TSP, 2013.

33. G Laporte. The traveling salesman problem: an overview of exact and approxi-

mate algorithms. European Journal of Operational Research, 59:231–47–231–47,

1992.

34. G Carpaneto and P Toth. Some new branching and bounding criteria for the

asymmetric travelling salesman problem. Management Science, 26:736–743, 1980.

35. E Balas and N Christofides. A restricted Lagrangean approach to the traveling

salesman problem. Mathematical Programming, 21:19–46, 1981.

36. Manfred Padberg and Giovanni Rinaldi. A Branch-and-Cut Algorithm for the

Resolution of Large-Scale Symmetric Traveling Salesman Problems Published by :

Stable URL : http://www.jstor.org/stable/20. Society for Industrial and Applied

Mathematics (SIAM) Review, 33(1):60–100, 1991.

230

37. William Cook. Concorde TSP Solver, 2003.

38. D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis, II. An analysis of several heuris-

tics for the traveling salesman problem. SIAM Journal on Computing, 6:563–581,

1977.

39. M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1(1):53–66, 1997.

40. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671–680, 1983.

41. Martin WP Savelsbergh. Local search in routing problems with time windows.

Annals of Operations research, 4(1):285–305, 1985.

42. Nicos Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures

for the computation of bounds to routing problems. Networks, 11(2):145–164,

1981.

43. Edward K Baker. An Exact Algorithm for the Time-Constrained Traveling Sales-

man Problem. Operations Research, 31(5):938–945, 1983.

44. Yvan Dumas, Jaques Desrosiers, Eric Gelinas, and Marius Solomon. An optimal

algorithm for the traveling salesman problem with time windows. Operations

Research, 43(2):367–371, 1995.

45. John N. Tsitsiklis. Special cases of traveling salesman and repairman problems

with time windows. Networks, 22(3):263–282, 1992.

231

46. M.M. Solomon. On the Worst-Case Performance of Some Heuristics for the Vehi-

cle Routing and Scheduling Problem with Time Window Constraints. Networks,

16:161–174, 1986.

47. M.M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problems

with Time Window Constraints. Operations Research, 35:254265, 1987.

48. W. Dullaert. A Sequential Insertion Heuristic for the Vehicle Routing Problem

with Time Windows with Relatively Few Customers Per Route. 2000.

49. J.Y. Potvin and J.M. Rousseau. A Parallel Route Building Algorithm for the

Vehicle Routing and Scheduling Problem with Time Windows. European Journal

of Operational Research, (66):331340, 1993.

50. P. Prosser and P. Shaw. Study of Greedy Search with Multiple Improvement

Heuristics for Vehicle Routing Problems. 1996.

51. F. Glover. Multilevel Tabu Search and Embedded Search Neighborhoods for the

Traveling Salesman Problem. 1991.

52. F. Glover. New Ejection Chain and Alternating Path Methods for Traveling

Salesman Problems. In O. Balci, R. Sharda, and S. Zenios, editors, Computer

Science and Operations Research: New Developments in Their Interfaces, page

449509. Pergamon Press, Oxford., 1992.

53. I.H. Osman. Metastrategy Simulated Annealing and Tabu Search Algorithms for

the Vehicle Routing Problems. Annals of Operations Research, 41:421452, 1993.

54. Y.A. Koskosidis, W.B. Powell, and M.M. Solomon. An Optimization-Based

Heuristic for Vehicle Routing and Scheduling with Soft Time Window Con-

straints. Transportation Science, 26:69–85, 1992.

232

55. P. Shaw. A New Local Search Algorithm Providing High Quality Solutions to

Vehicle Routing Problems. 1997.

56. Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar

Raghavan, and Madhu Sudan. The Minimum Latency Problem. In STOC ’94

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,

pages 163–171, Montreal, Quebec, Canada, 1994. ACM.

57. Bang Y. Wu, Zheng N. Huang, and Fu J. Zhan. Exact algorithms for the minimum

latency problem. Information Processing Letters, 92(6):303–309, 2004.

58. Michel Goemans and Jon M Kleinberg. An Improved Approximation Ratio for the

Minimum Latency Problem. Mathematical Programming, 82(1):111–124, 1998.

59. N. Garg. A 3-Approximation for the Minimum Tree Spanning k Vertices. In

Proceedings of the 37th IEEE Symposium on Foundations of Computer Science,

pages 302–309, 1996.

60. Aaron Archer and David P Williamson. Faster approximation algorithms for the

minimum latency problem. Proc. of the 14th annual ACM-SIAM symposium on

Discrete algorithms, (i):88–96, 2003.

61. Marcos Melo Silva, Anand Subramanian, Thibaut Vidal, and Luiz Satoru Ochi. A

simple and effective metaheuristic for the Minimum Latency Problem. European

Journal of Operational Research, 221(3):513–520, 2012.

62. Jing Guan, Jiafu Tang, and Yang Yu. An Ant Colony Optimization for Weighted

Traveling Salesman Problem and Analysis. In Chinese Control and Decision

Conference (CCDC), pages 3852–3857. IEEE, 2011.

63. Andrei M. Shkel and Vladimir Lumelsky. Classification of the Dubins set. Robotics

and Autonomous Systems, 34(4):179–202, 2001.

233

64. Xavier Goaoc, Hyo-sil Kim, and Sylvain Lazard. Bounded-Curvature Shortest

Paths through a Sequence of Points Using Convex Optimization. Society for

Industrial and Applied Mathematics (SIAM) Review, 42(2):662–684, 2010.

65. Ketan Savla, Emilio Frazzoli, and Francesco Bullo. On the point-to-point and

traveling salesperson problems for Dubins’ vehicle. In American Control Confer-

ence, 2005.

66. J Le Ny and E Feron. An Approximation Algorithm for the Curvature-

Constrained Traveling Salesman Problem. Allerton Conf. on Communications,

Control and Computing, 2005.

67. Jerome Le Ny, Emilio Frazzoli, and Eric Feron. The curvature-constrained travel-

ing salesman problem for high point densities. Proceedings of the IEEE Conference

on Decision and Control, pages 5985–5990, 2007.

68. X Ma and D A Castanon. Receding horizon planning for Dubins traveling sales-

man problems. Proceedings of the IEEE Conference on Decision and Control,

pages 5453–5458, 2006.

69. Jerome Le Ny, Eric Feron, and Emilio Frazzoli. On the Dubins Traveling Salesman

Problem. IEEE Transactions on Automatic Control, 57(1):265–270, 2012.

70. R J Kenefic. Finding Good Dubins Tours for UAVs Using Particle Swarm Op-

timization. Journal of Aerospace Computing Information and Communication,

5(2):47–56, 2008.

71. Xin Yu and John Y. Hung. A genetic algorithm for the Dubins Traveling Salesman

Problem. 2012 IEEE International Symposium on Industrial Electronics, pages

1256–1261, 2012.

234

72. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, Upper Saddle River, New Jersey, third edition, 2010.

73. Sui Ruan, Candra Meirina, Feili Yu, Krishna R. Pattipati, and Robert L. Popp.

Patrolling in A Stochastic Environment. In 10th International Command and

Control Research and Technology Symposium, 2005.

74. D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,

Belmont, MA, 3rd edition, 2005.

75. V Huynh, J Enright, and E Frazzoli. Persistent patrol in stochastic environments

with limited sensors. Proc. AIAA Conference on Guidance, Navigation, and

Control, (August):1–14, 2010.

76. Eric Jones, Travis Oliphant, Pearu Peterson, and Others. SciPy: Open source

scientific tools for Python, 2001.

77. A. Walker. Dubins-Curves: an open implementation of shortest paths for the

forward-only car, 2008.

78. A. Walker. PyDubins: code to generate and manipulate dubins curves, 2018.

79. Marcelo Kallmann. Graphsim Tripath Toolkit, 2010.

80. Marcelo Kallmann. Shortest Paths with Arbitrary Clearance from Navigation

Meshes. Proceedings of the Eurographics SIGGRAPH Symposium on Computer

Animation SCA, pages 159—-168, 2010.

81. M Kallmann. Dynamic and Robust Local Clearance Triangulations. ACM Trans-

actions on Graphics, 33(5):17, 2014.

235

Vita

Major Christopher Olsen is a native Texan, born and raised in the Dallas-Ft. Worth

metroplex. After graduating from Colleyville Heritage High School in 2003, he went

on to attend Texas A&M University in College Station, Texas where he joined the

Corps of Cadets and Air Force ROTC. He graduated in 2008 with an undergraduate in

Mechanical Engineering and was commissioned into the Air Force as a Developmental

Engineer.

His first assignment as a 2d Lt was to Wright-Patterson AFB, Ohio at the National

Air and Space Intelligence Center (NASIC). At NASIC, he worked in the Space

Analysis Squadron conducting technical analysis on space systems. While at NASIC,

he earned his Space Operations badge through the National Security Space Institute

(NSSI) in Colorado Springs, Colorado.

In 2011, he received orders to the National Security Agency (NSA) at Ft. Meade,

Maryland where he was assigned to the 34th Intelligence Squadron (34 IS). He spent

one year working crypto modernization in the Nuclear Communications branch of

NSA before being deployed to Camp Leatherneck, Afghanistan in 2012. While de-

ployed, he was given the role of a civil engineer. His primary duty was to aid the

Afghan National Police (ANP) and Afghan National Army (ANA) in the construc-

tion of bases and checkpoints to provide regional security, with the ultimate goal of

relieving U.S. Marines of security responsibilities. In October 2012, he redeployed to

Ft. Meade, where he resumed work on Nuclear Communications and served as both

a Branch Chief and Flight Commander.

In 2014, he was re-assigned to the 707th ISR Group (707 ISRG) as the comman-

der’s Plans and Programs officer. He helped create, document, and implement the

commander’s objective of reinvigorating the NSA-Air Force relationship.

236

While assigned to NSA, he also worked toward a M.S. in Systems Engineering

from the Air Force Institute of Technology (AFIT), which he completed in December

2014. Shortly after, his application to AFIT as an in-residence Ph.D. student was

accepted and, in September 2015, he began studies toward a Ph.D. in Aeronautical

Engineering. His specialty is in Optimization and Controls.

Upon graduating from AFIT with his Ph.D., Maj Olsen is headed to the Air

Force Research Laboratory, Aerospace Systems Directorate (AFRL/RQ) at Wright-

Patterson AFB.

Maj Olsen has a wife, a curious son, a very energetic Australian Shepperd, and

two standard house cats.

237

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

14–08–2018 Doctorate Dissertation Sept 2015 — Sept 2018

A HEURISTIC METHOD FOR TASK SELECTION
IN PERSISTENT ISR MISSIONS

USING AUTONOMOUS UNMANNED AERIAL VEHICLES

Christopher C. Olsen, Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-DS-18-S-067

Air Force Research Laboratory, Aerospace Systems Directorate (AFRL/RQQC)
Attn: Amy Burns
2210 8th Street
WPAFB, OH 45433-7542
DSN 674-6542, COMM 937-904-6542
Email: amy.burns.3@us.af.mil

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Additional sponsorship provided by Air Force Office of Scientific Research (AFOSR), 875 N. Randolph, Ste.325,
Arlington, VA 22203, Comm: 703-696-7797, Email: info@us.af.mil

The Persistent Intelligence, Surveillance, and Reconnaissance (PISR) problem seeks to provide collection and delivery of
data from prioritized ISR tasks using an autonomous Unmanned Aerial Vehicle (UAV). In this research, we investigate a

method for selecting tasks called the Maximal Distance Discounted and Weighted Revisit Period (MD2WRP) utility

function. We develop a two-step optimization method for the MD2WRP parameters for both single and multi-vehicle
scenarios. We also compare the performance of MD2WRP to other common methods for PISR task selection. We find
that the optimized MD2WRP function is competitive with these other methods. We also test MD2WRP under
simulated operational constraints. For each constraint, we demonstrate how MD2WRP needs to be modified to
compensate. Finally, we make practical suggestions about implementing MD2WRP , outline areas for future study, and
offer recommendations about the conduct of PISR missions in general.

Autonomy, Persistent Monitoring, Patrolling, UAVs, Optimization

U U U U 256

Dr. Donald L. Kunz, AFIT/ENY

(937) 255-3636, x4548; donald.kunz@afit.edu

	A Heuristic Method for Task Selection in Persistent ISR Missions Using Autonomous Unmanned Aerial Vehicles
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions, Scope, and Tasks
	Research Questions
	Research Scope
	Research Tasks & Ontology

	Assumptions
	Research Methodology
	Expected Contributions
	Document Outline

	Literature Review
	Introduction
	Autonomous Agents
	Definition of Autonomy
	Control of Autonomous Agents

	PISR as a Vehicle Routing Problem
	Strategies for Task Selection in PISR
	TSP Methods
	Utility Function Methods

	Survey of the Traveling Salesman Problem
	The 2D Euclidean TSP
	The TSP with Time Windows
	The Weighted TSP (or The Minimum Latency Tour Problem)
	The Dubins TSP

	Utility Theory
	Summary

	Methodology
	Overview
	Performance Measures for PISR
	The Maximal Distance Discounted & Weighted Revisit Period
	Derivation
	Normalization
	Using MD2WRP to Minimize Latency

	Simulation Environment (PUMPS)
	Architechture
	Data Flow and Algorithms

	Task Configurations
	Research Plan
	Characterization of MD2WRP
	Comparison Studies of MD2WRP
	MD2WRP and Operational Factors

	Results
	Characterization of MD2WRP
	Effect of MD2WRP Parameters on Vehicle Behavior
	The Value of Normalization
	Periodicity
	Optimizing and w

	Comparison Studies of MD2WRP
	MD2WRP with Different Communication Modes
	MD2WRP with Multiple Decision Lookahead
	Comparison to TSP-based PISR
	Comparison to Other Utility-based PISR

	MD2WRP and Operational Factors
	Dubins Constraints on Vehicle Motion
	Presence of No-Fly Zones
	Return to Base Requirements
	Mid-Mission Addition and Removal of Vehicles and Tasks

	Summary of Results

	Conclusion
	Conclusions from Results
	Future Work
	Contributions
	Recommendations

	PUMPS Code
	Main
	Classes
	The Vehicle Class
	The Task Class
	The Routing Class
	The Pathing Class
	The Communication Class
	The Database Class

	Bibliography
	Vita

