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AFIT/GAQ/ENC/02M-01 

Abstract 

Norden (1970) uses the Rayleigh, which is a degenerative of the Weibull, to 

model manpower on research and development (R&D) programs. Several research 

efforts extend his work including Lee, Hogue, and Gallagher (1997) who build R&D 

program budgets based on Rayleigh expenditures. We demonstrate the theoretical 

limitations to the Rayleigh model and present the Weibull model, which mitigates those 

limitations. Using 102 completed R&D defense programs, we develop regression models 

to predict the requisite shape and scale parameters to forecast Weibull-based budgets. 

Using the remaining 26 completed R&D programs to validate the robustness of our 

regression models, we show that 100 and 96 percent of the least squares estimated shape 

and scale values respectively, fall within a 95 percent prediction interval. We determine 

the Weibull model's budget projection capability by comparing forecasted Weibull-based 

budgets to 128 completed R&D program budgets and report an average correlation of 

0.607. To determine the significance of our results we compare forecasted Rayleigh- 

based budgets to the same 128 completed program budgets. Using the Weibull over the 

Rayleigh model when applying Lee, Hogue, and Gallagher's (1997) methodology, we 

improve initial budget profile projections on average 60 percent. 

IX 



FORECASTING RESEARCH & DEVELOPMENT PROGRAM BUDGETS USING 

THE WEIBULL MODEL 

I. Introduction to the Research 

Problem Statement 

When Military Departments plan Research and Development (R&D) programs, 

they must project a budget profile. Lee, Hogue, and Gallagher (1997) present a method 

to derive an appropriate budget for a given expenditure profile. Porter (2001) and Unger 

(2001) indicate that a Weibull distribution model fits R&D program expenditures well. 

When a program begins; however, no method currently exists to determine the 

appropriate Weibull shape and scale parameters. This research provides a means to 

determine initial R&D program budgets based on a Weibull model. 

General Issue 

The program manager must project a budget profile when a new R&D program is 

planned. However, past cost and schedule projections for most new start R&D programs 

significantly underestimate the final program cost and schedule. Past research shows that 

R&D programs historically require significant increases to projected costs and program 

schedule duration. Unger (2001) studied 37 historical defense R&D programs and found 

that the final budgets and actual program durations exceed the initial budgets and 

estimated program durations on an average of 20 and 25 percent respectively. In some 



cases the program cost and schedule growth is very extensive. For example, Gallagher 

and Lee (1996) report that the R&D effort for the NavStar Global System cost nearly 

three times the original estimate, and the Trident Submarine program schedule stretched 

from 5 to 16 years, an increase of 320 percent. The Military Departments and the Office 

of the Secretary of Defense (OSD) Program Analysis and Evaluation (PA&E) need an 

accurate way to determine the reasonableness of new start R&D budget projections. 
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Figure 1. Factors Contributing to Development Cost (Belcher and Dukovich, 1999) 

Initial program development costs, schedules, and budget profiles are difficult to 

project considering the number of possible factors that affect the estimates. Based on 

expert opinion, Belcher and Dukovich (1999) present a macro view of proposed 

contributors to how development programs incur costs. Figure 1 shows their 3 major and 

12 supporting contributors they propose. Unger's (2001) study shows that 1 of the 12 

factors (funding constraints) explains 53.4 percent of cost overrun and 50.5 percent of 



schedule slip variation. Our study focuses on developing a method for determining an 

appropriate budget for new R&D program starts that should reduce cost and schedule 

growth. 

Lee, Hogue, and Gallagher (1997) present a method to derive appropriate budgets 

by using a Rayleigh distribution to project an expenditure profile. Unger (2001) 

evaluates 37 final R&D program expenditure profiles and finds that only 52 percent fit a 

Rayleigh distribution. Porter (2001) and Unger (2001) show that R&D program budgets 

more often support a Weibull distribution of expenditures. The Rayleigh distribution is a 

special case of the Weibull distribution. Since the Weibull is more flexible than the 

Rayleigh, we expect that a higher percentage of expenditure profiles from R&D programs 

fit a Weibull distribution. 

Research Approach 

Lee, Hogue, and Gallagher (1997) present a least squares approach that accounts 

for spend out patterns to develop annual budgets from a point estimate. They use the 

Rayleigh distribution with predicted total program cost and desired duration to model 

expenditures. Because the Rayleigh distribution suffers from theoretical limitations, we 

model R&D program expenditures with a Weibull distribution to mitigate those 

limitations. However, no method currently exists for determining the Weibull shape and 

scale parameters at program inception. Using multiple regression, our research 

determines a mathematical relationship between the Weibull shape and scale parameters 

with predictors including lead service, type of program, program final cost and duration. 



While we use actual final cost and duration to develop this approach, program managers 

will have to rely on estimates. 

The model building data for the Weibull shape and scale parameters are 

determined by fitting a Weibull distribution to derived program expenditures. The 

expenditure profiles are derived from 128 completed R&D program budgets from the 

Selected Acquisition Report (SAR) by applying average service spend out rates. We test 

our assumption that R&D program expenditures fit a Weibull model using Komolgorov- 

Smirnov, Cramer-von Mises, and Anderson-Darling goodness-of-fit statistics. The study 

finds a relationship between the Weibull shape and scale parameters and predictors from 

the SAR. Our method predicts the requisite shape and scale parameters for the Weibull 

model to provide a better quantitative method to determine initial R&D program budget 

profiles. 

Scope 

Several factors contribute to R&D program cost overrun and schedule slip. This 

research narrows the scope of contributing factors to funding constraints attributed to 

budget profiles that inadequately meet fiscal expenditure requirements. We seek to 

minimize R&D program cost and schedule growth by developing a better quantitative 

approach to forecast initial program budget profiles. Past research indicates that R&D 

budgets result in expenditures that follow a Weibull distribution. This research seeks to 

find relationships between estimated Weibull parameters for completed programs and 

explanatory variables including service type, program type, program final cost and 

duration. These relationships may be used to determine an expenditure distribution based 



on estimated total cost and desired program duration. An analyst may determine a budget 

from Weibull-based expenditures using Lee, Hogue, and Gallagher's (1997) approach. 

Research Benefits 

The research seeks to minimize R&D program cost and schedule growth by 

developing a better quantitative approach to project initial program budget profiles. This 

quantitative technique is potentially useful to all Military Departments and OSD PA&E 

to verify the reasonableness of proposed R&D program budget profiles. 

Chapter Summary 

This chapter proposes the Weibull model as a better approach to forecasting R&D 

program budget profiles. Chapter Two explores prior research that uses the Rayleigh and 

Weibull models. We discuss the limitations to the Rayleigh model and present the 

Weibull model, which mitigates those limitations. Chapter Three explains the 

methodology applied to historical DoD program data to predict the requisite shape and 

scale parameters to forecast Weibull-based R&D budgets. Chapter Four provides 

validation results to the methodology applied to historical DoD program data outlined in 

Chapter Three. We include an average correlation comparison between Rayleigh-based 

and Weibull-based budget profile projections to 128 completed R&D budget profiles. 

Chapter Five summarizes and concludes our proposed methodology, while addressing 

possible limitations and future research. 



II. Literature Review 

Chapter Overview 

Developing a budget profile that meets R&D expenditure requirements is 

essential to the success of a new program. As stated in Chapter One, Unger (2001) finds 

that over 50 percent of cost overruns and schedule slips are due to funding constraints. 

Insufficient program funding hinders progress, while over-funded programs inefficiently 

use resources that could be used elsewhere. Several mathematical models are employed 

to forecast an appropriate budget profile. Porter (2001) and Unger (2001) review the 

Beta, Sech-Squared, and Rayleigh Models. Currently, we know of no method to estimate 

the parameters at program inception for the Beta or Sech-Squared Models. 

This chapter relates budgets to expenditures, presents Norden's theory on 

Rayleigh and summarizes several applications. We present the Rayleigh model, identify 

Rayleigh model theoretical limitations, and discuss Porter (2001) and Unger's (2001) 

findings that the Weibull model better fits R&D program expenditures. We apply 

Norden's theory in terms of the Weibull function and present and graph the Weibull 

cumulative distribution function and probability density function. This chapter concludes 

with a discussion of the necessary shape and scale parameters to forecast Weibull-based 

budget profiles. 

When Military Departments plan R&D programs, they must project a budget 

profile. The defense R&D budget for any given year expends or outlays over several 

years. For the program to succeed, the budget profile must meet each fiscal year 

expenditure requirement. The challenge is to ensure sufficient funding in a particular 



year given each budget year's outlay pattern. Several models aid in forecasting fiscal 

requirements, we present the Rayleigh model with its limitations and the Weibull model, 

which mitigates those limitations. Both models provide an approach for modeling R&D 

program expenditures in constant dollars over time. Each of the models estimates 

expenditures by applying a cost factor in constant-year dollars to their respective 

cumulative distribution functions. Therefore, we present an initial discussion of 

converting budget profiles to expenditure profiles. 

Relating Budget Profiles to Expenditure Profiles 

When DoD budgets are determined, multi-year appropriations and inflation affect 

the computation. The budget or total obligation authority is the necessary funding to 

execute the program over multiple years. The OSD comptroller prescribes standard 

expenditure patterns or percentages of R&D funds to be spent in a given year. Outlay 

rates are the percent spent for each particular budget year. Inflation indices provide the 

necessary factor to calculate budget requirements in the out years of R&D programs. We 

convert a budget profile in current dollars to an expenditure profile in constant dollars by 

applying the outlay rates and removing inflation. 

We first apply the outlay rates to the budget profile to obtain the expenditure 

profile, Oj in current dollars for each z'th year with 

O, = Bßj + Bi.is2 + Bi_2s3 +...Bi-ßj, (1) 

where B, is the budget authority for the z'th year in current-year dollars, Sj are the outlay 

rates for they'th year of the budget, where the sum of Sj < 1, and J is the total number of 



years in the expenditure profile. The result is the expenditure profile in current-year 

dollars, which are yearly expenditures with the affects of inflation. 

We then convert the expenditure profile in current-year dollars to constant-year 

dollars by removing the inflation component with 

0,=— (2) 
c, 

where 0L are the expenditures for the z'th year in constant-year dollars, O, are the 

expenditures for the z'th year in current-year dollars, and c-, is the inflation index for the 

appropriate z'th year. The current dollar budget profile is now an expenditure profile in 

constant-year dollars using formulas (1) and (2). The expenditure profile in constant-year 

dollars is required to utilize the Rayleigh and Weibull models that theoretically account 

for development effort, which is not affected by inflation. The next section presents 

Norden's theory on Rayleigh, summarizes numerous applications and presents and 

graphs the Rayleigh model. 

Norden's Theory on Rayleigh 

Norden (1970) applies the Rayleigh distribution to manpower buildup and phase- 

out on development efforts. Norden bases his theory on skill level increasing linear with 

time. Because skill level is increasing linear with respect to time, the rate of learning is 

constant. The rate at which R&D programs acquire skills is not affected by inflation, 

thus the Rayleigh distribution models constant-year expenditures. The initial ramp-up in 

the Rayleigh model is due to linear skills acquisition. Since the rate of work completed is 



proportional to the work remaining, an exhaustion of the work causes the exponential 

decrease in the Rayleigh tail (Jarvis and Pohl, 1999:13). 

Putnam (1978) applies the Rayleigh model to software development. Based on 

budgetary data for 50 Computer System Command systems, Putnam determines that the 

Rayleigh estimates software development well. Since many software programs tend to 

follow the characteristic growth to a peak and exponential fall-off of the Rayleigh, 

Putnam declares that the Raleigh model relates to software development. 

Later research broadens the Rayleigh model application to DoD contracts. 

Watkins (1982) applies the Rayleigh model to defense acquisition cost and schedule data 

on 30 DoD contracts. Watkins reports that the Rayleigh modeled the earned value of 

contracts well. Abernethy (1984) applies the Rayleigh model to 21 completed Navy 

contracts. Although Abernethy did not meet his objective to use the Rayleigh model as a 

forecasting tool, he finds the Rayleigh adequately modeled DoD contract data. Lee, 

Hogue, and Gallagher (1997) continue the application by demonstrating that the Rayleigh 

model fits defense R&D acquisition program expenditures in constant-year dollars. Past 

research substantiates that the Rayleigh CDF models cumulative constant-dollar R&D 

defense program expenditures well (Gallagher and Lee, 1996:52). 

Norden's Theory in Terms of the Weibull 

The Rayleigh model is prevalent in R&D expenditure modeling (Norden, 1970; 

Putnam, 1978; Lee, 1997; Gallagher, 1996). Norden (1970) develops the Rayleigh model 

based upon engineers solving a fixed number of development project problems with 

increased linear learning. Although he states linear, Norden notes experiments with other 



than linear rates, which leads to the general class of the Weibull models. Porter (2001) 

and Unger (2001) show that the Weibull function models R&D program expenditures at a 

higher degree of accuracy than the Rayleigh model. 

The Weibull and Rayleigh are Related. The Rayleigh function is a degenerative 

of the Weibull function. Hines and Montgomery (1980) present the Weibull cumulative 

distribution function (CDF) with the location parameter as 

t-y 

F(t) = \-e"S), (3) 

and the Weibull probability density function (PDF), the derivative of the Weibull CDF, 

as 

o\   o   J 

where t is time in years, y is the location parameter, S is the scale parameter, and ß is 

the shape parameter. The results of the Weibull CDF with (3) always fall between 0 and 

1. The cost factor d scales the Weibull CDF to reflect the cumulative program 

expenditures. We present the Weibull cost model as the CDF in (3) multiplied by a cost 

factor d with 

f ,t_rsfi\ 

E(t) = d \-e"s 

V 

(5) 

The Weibull cost model calculates a program's total cumulative expenditures at a 

specified time t, for a given shape, scale, and location parameter. The Rayleigh CDF is a 

special case of the Weibull CDF in (3) when fixing the shape and location parameters to 

ß= 2 and y= 0. We define the Rayleigh CDF as 

10 



F{t) = \-e"s) , (6) 

and the Rayleigh PDF as 

f{t) = 2S-2te^2'2. (7) 

The foundational concept for the Weibull, and hence the Rayleigh, cost models is 

based upon solving a fixed number of development project problems with linear learning. 

The rate at which work is completed is a function of performance and remaining work, 

at 

wYiQXQp(t) is the performance and w(t) is the remaining work. Let z(t) = 1- w(t), so 

dz(t)    - dw(t)      , dz(t) , x  , x ,     f.      , x   ^   • 
 = and = -p(t)z(t) we solve tor w(t). By integrating 

dt dt dt 

ln(z(7)) = - \p(x)dx and evaluating both sides to the power of the base of the natural 

-  \p(T)dT 

logarithm, we obtain z(t) = e r=0        . We show the total work completed by substituting 

back in percent of work remaining at time t, w(t), in the following form 

r=t 

- \p(r)d(r) 

w{t) = \-e** 

We define performance on the program for any given time as a constant k multiplied by 

time to a constant power, p(t) = ktb. Since    | p{x)dx =   | kxhdx = tb+x, J J b + \ 

w(t) = l-e 
k 
—t 

6+1 

11 



We obtain the Weibull CDF in (3) when ß= b+\ and S=b^b + \lk. We obtain the 

Rayleigh CDF with linear growth in performance over time when the location parameter 

y= 0, ß= 2, and S=-j2/k . The percent work complete according to the Weibull CDF is 

derived if performance improves over time to a power other than one. 

The Rayleigh CDF. Figure 2 presents the Rayleigh CDF. We apply formula (6) 

given S= 6 and ß= 2. This figure shows the cumulative percent of expenditures incurred 

for an R&D effort. 

Figure 2. Rayleigh Cumulative Distribution Function (CDF) 

The Rayleigh PDF. The derivative of (6) gives the Rayleigh PDF in (7). Figure 3 

shows the Rayleigh PDF with the same parameters as in Figure 2. The Rayleigh PDF is 

the instantaneous rate that the percentage funds are expended. 

12 



Figure 3. Rayleigh Probability Density Function (PDF) 

The Rayleigh Model Parameters. The two varying parameters in the Rayleigh 

function are the scale and cost factor. The scale parameter, S, determines the steepness of 

the Rayleigh CDF curve, and the cost factor, d, scales the Rayleigh CDF to reflect the 

cumulative program expenditures. The S parameter determines the time period that 

manpower utilization is maximized (Norden, 1970:126). The results of the Rayleigh 

CDF with (6) always fall between 0 and 1. We model the cumulative expenditures with 

E(t) = d l-e (8) 

where d is the cost factor of the R&D project and t is the time from program inception to 

completion (Lee, Hogue, and Gallagher, 1997:31). Figure 4 shows how we apply (8) to 

illustrate the increasing gradient of the Rayleigh CDF scaled with d as the S parameter 

decreases. 

13 
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Figure 4. The Rayleigh CDF while changing the Ö parameter with d - 1000 

The derivative of the Rayleigh cost model (8) is the scaled Rayleigh PDF or 

expenditure rate for a modeled program. We define the Rayleigh PDF scaled with the d 

parameter as 

E\t) = 2ö-2dte-s2'2. (9) 

Figure 5 demonstrates the effects of changing the S parameter on the Rayleigh PDF. 

Notice that as the S parameter decreases, the time of peak expenditures occurs earlier and 

higher in the program. The maturity of a program is sooner when the rate of expenditures 

is higher than another program of equal value (in constant dollars). 

14 



450 

IX 360 
et 

© 
o 270 
<H 
o 
X 
a 
© 180 

90 1 

5       6       7       8       9      10      11      12      13 

Fiscal Year 

Figure 5. The Rayleigh PDF while changing the d parameter with d - 1000 

Figure 5 illustrates how the Rayleigh expenditure distribution provides important 

information about a modeled program. The shape of the expenditure distribution 

determines the peak time and magnitude of expenditures and the estimated program 

duration. Lee, Hogue, and Gallagher (1997) present two methods to determine the 

appropriate S parameter. The first technique is based on the time of peak expenditure 

rate and the other is based on the estimated program completion time. 

The Time of Peak Expenditure Rate Technique. This technique uses a program's 

estimated time of peak expenditure rate to determine the S parameter. The time of peak 

expenditure rate is estimated with some degree of reliability. For instance, aircraft R&D 

program's peak expenditure rate typically occurs at the time of first test flight (Lee, 

Hogue, and Gallagher, 1997:32). If the peak expenditure rate is known then the S 

parameter is defined as 

S = 4li peak (10) 

15 



by setting (7) equal to zero (Lee, Hogue, and Gallagher, 1997:32). Setting (7) equal to 0 

and solving for t results in the peak of a program's expenditure rate with respect to time. 

The Estimated Program Completion Time. When the time of peak expenditure 

rate is unknown, we use the estimated program completion time to determine an 

appropriate S parameter. Because the right side of the Rayleigh distribution has an 

infinite tail, a defined point must determine program completion. Lee, Hogue, and 

Gallagher (1997) define this point as tfmai, the time of final development. Final 

development occurs when the Rayleigh CDF reaches 97 percent of the constant-dollar 

cumulative R&D expenditures for a project in the Engineering, Manufacturing, and 

Development phase according to Lee, Hogue, and Gallagher (1997). Lee, Hogue, and 

Gallagher define the equation as 

D = E(tfmai) = 0.97d, (11) 

where D is the total R&D estimated program cost in constant dollars and d is the 

parameter that scales the Rayleigh CDF to program cost. When the program completion 

time is estimated, then Lee, Hogue, and Gallagher (1997) define the S parameter as 

£ = 0.5345^. (12) 

In conclusion, either the time of peak expenditure rate or the estimated program 

completion time technique determines an appropriate S parameter for the Rayleigh 

model. The time scale parameter, S, and cost factor, d, provide the necessary information 

to utilize the Rayleigh model. Lee, Hogue, and Gallagher (1997) demonstrate how a 

budget profile forecast is determined given an initial total R&D program cost estimate, D, 

and either the time of peak expenditures, tpeak, or the estimated program completion time, 
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tfinal- We turn our attention now to the characteristics that limit the Rayleigh model in this 

application. 

The Limitations of the Rayleigh Model. There are two characteristics that 

theoretically limit the Rayleigh distribution in modeling R&D program expenditures. 

The Weibull distribution simplifies to the Rayleigh distribution when removing the 

location parameter, y, and fixing the shape parameter ß= 2. These two characteristics of 

the Rayleigh distribution make the Rayleigh model somewhat rigid in its ability to model 

program expenditures. 

The Rayleigh Shape Parameter ß= 2. This characteristic of the Rayleigh 

distribution results in the peak expenditures occurring approximately at the 38th percentile 

of the total program duration (Gallagher and Lee, 1996:52). However, a program 

expenditure rate may peak earlier or later. For example, a program might have 

expenditures that stop shortly after the time of peak rate of expenditures, indicating a 

very short tail. In this case the Rayleigh shape parameter, which is fixed at two, causes 

the Rayleigh distribution to forecast reality inaccurately. The solution to this problem is 

allowing the shape parameter to vary, which leads us to the Weibull distribution. 

The Rayleigh Distribution Cannot Model Insignificant Funding. The Rayleigh 

model does not have a location parameter, which gives the Weibull distribution flexibility 

in modeling the relative start of a program. For example, initial R&D programs 

sometimes start out with a few years of minimal funding. The Rayleigh distribution lacks 

the ability to model this insignificant funding. The location parameter allows the Weibull 

distribution to model programs with no funding for the initial years of insignificant 

funding. 
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In summary, the Rayleigh function is somewhat rigid in its ability to model R&D 

expenditures. The varying shape parameter and additional location parameter make the 

Weibull distribution more flexible in modeling R&D program expenditures. For this 

reason our discussion now focuses on the Weibull function. 

The Weibull Model's Flexibility 

When discussing the Weibull verses the Rayleigh model there are two major 

differences. Notice that (3) and (6) are equivalent with the exception of the location 

parameter and the fixed shape parameter ß= 2. The location parameter gives flexibility 

to the Weibull function to model program expenditures when relatively insignificant 

funding occurs at the beginning of the program. Because the Weibull shape parameter 

varies, the time of peak expenditures does not fix the program completion time. Since a 

fixed shape parameter does not accurately model R&D program expenditures as well as 

one that varies, we use the three-parameter Weibull function allowing the shape 

parameter to vary. We obtain a better fit of the data using the Weibull model as opposed 

to the Rayleigh model. 

The Weibull function provides the flexibility to estimate various distributions. 

For example, when the shape parameter, ß= 1, it produces an exponential distribution. 

When ß= 2, as stated earlier, it produces the Rayleigh distribution. For /?= 3.4, the 

Weibull is approximately normally distributed. The Weibull shape parameter determines 

the time of peak expenditures. Figure 6 shows the effects of changing the Weibull shape 

parameter when holding the location and scale parameters constant. 
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Figure 6. Effects of changing Weibull shape ß, with y- 0, S-3,d- 1000 

Figure 7 demonstrates the effects of changing the Weibull scale S parameter while 

holding the shape and location parameters constant. Increasing the scale parameter 

extends a program's completion time. 
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Figure 7. Effects of changing Weibull scale S, with y= 0, /?= 2, </= 1000 

Figure 8 illustrates the Weibull location parameter's ability to model insignificant 

funding in the first few years of the program. In essence, the location parameter changes 

the start time t when R&D program expenditures are significant. 
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Figure 8. Effects of changing Weibull Location y with ß- 2, d- 3, d - 1000 

In summary, the characteristics of the Weibull models have an initial ramp-up, a 

peak, and an exponential tail. The initial ramp up is due to the improvement in 

performance. The exponential decrease in the tail is caused by the exhaustion of the 

work, since work performed is proportional to work remaining. 

Converting a Point Estimate to a Budget Profile 

When Military Departments plan Research and Development (R&D) programs, 

they must project a budget profile. The budget or total obligation authority (TOA) is the 

necessary funding to execute the program over multiple years. The OSD comptroller 

prescribes standard expenditure patterns or percentages of R&D funds to be spent in a 

given year. The targeted percentage of funds spent in a particular budget year is called an 

outlay rate. Inflation is also used to calculate the necessary budget requirements in the 

out years of R&D programs. 

The success of a program is determined by several factors. One important factor 

that this thesis effort hopes to improve is a forecasted budget profile that will better meet 
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each fiscal year expenditure requirement. The challenge is to ensure sufficient funding in 

a particular year given each budget year's outlay pattern. 

Lee, Hogue, and Gallagher (1997) present a method to derive the appropriate 

budget for a given total program cost estimate using Rayleigh distributed expenditures. 

This thesis effort uses their method of forecasting R&D program budgets, but with 

Weibull distributed expenditures. We present an example of Lee, Hogue, and 

Gallagher's (1997) method of determining a budget profile using the Rayleigh model 

when given R&D program estimates for total cost, D, and completion, tfinai. 

We demonstrate a simple hypothetical program with R&D expenditures of 500 

million dollars occurring over 10 years. The program is in base year 2000. Given D = 

500 and tfinai= 10, the Rayleigh model parameters calculated with (11) and (12) are d = 

515.46 and S= 5.345. Table 1 column 3 shows the Rayleigh cumulative constant-dollar 

expenditures, calculated using (8). Since the Rayleigh cumulative expenditures must be 

converted to annual expenditures, Oi for the z'th year of the program, we use the formula 

0, =£(*,)-£(*,_,), (13) 

where E is the constant-dollar cumulative expenditures in (8) and time t-, is the fiscal year 

end i. The hat represents modeled values, different from budget derived values with (1) 

and (2). Table 1 column 4 shows the annual constant-dollar expenditures and column 5 

shows the annual current-year dollars by multiplying the Air Force raw inflation indices, 

Cj, shown in the last column. 
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Table 1. Rayleigh-Based Expenditure Profile Example 

Rayleigh Rayleigh Rayleigh Air Force 
Cumulative Annual Annual Raw 

Fiscal Expenditures Expenditures Expenditures Inflation 
Year Time CY00$M CY00$M Current $M Indices 
2000 1 17.73 17.73 17.73 1.0000 
2001 2 67.34 49.61 50.36 1.0150 
2002 3 139.28 71.94 74.12 1.0302 
2003 4 221.03 81.74 85.48 1.0457 
2004 5 300.59 79.56 84.86 1.0666 
2005 6 369.25 68.66 74.70 1.0879 
2006 7 422.70 53.45 59.31 1.1097 
2007 8 460.59 37.89 42.89 1.1319 
2008 9 485.20 24.61 28.41 1.1545 
2009 10 499.90 14.70 17.31 1.1776 
Total 499.90 535.16 

To this point of the example, several key points are made. The Rayleigh 

cumulative expenditures show the necessary funding for the program's success in 

constant dollars. The Rayleigh annual expenditures in constant dollars provide the 

funding needed in base year 2000. The Rayleigh annual expenditures in current dollars 

provide the funding needed in the future years, taking into account inflation. For 

example in Table 1, in FY2009, the program needs $14.7M, expressed in FY2000 dollars 

or equivalently $17.3 IM expressed in FY2009 dollars. For the program manager to meet 

program expenditure requirements, the sum of previous and current budgets multiplied by 

the outlay rates should equal the annual expenditures in current-year dollars. 

The developed expenditure profile provides how much the program will spend 

each year. The task is to determine a budget profile that will meet a program's 

expenditure requirements. There is a difference between a budget profile and an 

expenditure profile. The budget profile contains the necessary funds for the life of the 
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program taking into account the OSD Comptroller outlay rates and inflation. The 

expenditure profile is comprised of a mixture of different years of budgeted funds 

according to the outlay percentages. 

The example continues with our approach to develop the necessary TOA or 

budget profile to meet fiscal expenditure requirements. To develop a budget profile we 

must take into account that the total appropriation for an R&D program cannot be spent 

during the year in which it is authorized. The outlay rates govern the amount of yearly 

budget funds a program is allotted each year. 

For our example we use hypothetical OSD comptroller published outlay rates of 

0.540, 0.324, 0.090, 0.020, 0.011, 0.004, and 0.002 for the first through seventh year 

respectively. This would suggest that if a program had $10M appropriated to it in the 

first year, only $5.4M should be expended. The second year the program manager should 

expend $3.24M of the first year's budget authority. If the expenditure requirements for 

the second year of the program are $15M, then the program manager should ask for 

$21.78M in appropriations for the second year. The example calculation is provided 

($15M needed - $3.24M Yr-1 appropriation)^.5400 Yr-1 outlay rate) = $21.78M. 

The complexity of developing a budget profile compounds according to the 

duration and size of the program. The expenditure profile is easily forecasted with the 

Rayleigh and Weibull models. The challenge is converting that expenditure profile to a 

budget profile when taking into account relevant appropriation years related to different 

outlay rates. Lee, Hogue, and Gallagher (1997) provide a nonlinear estimation approach, 

which is our final step in forecasting an R&D program budget profile. 
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This method allows the budget estimate, B. for each budget year i, to change 

simultaneously until an optimal solution is reached. We apply this approach by 

substituting the 5. in (1) and (2) and allow Microsoft Excel Solver function (2000) to 

select the yearly budget estimates that minimize the sum of squared errors between the 

Rayleigh modeled expenditures and the actual expenditures that result from the 

forecasted budget profile. Specifically, 

N+J-l 

mm inX(0,.-0;)
2 

(14) 

where B.>0 and Ö, is the Rayleigh modeled expenditure profile (13) and Oj is the 

actual expenditure profile for each z'th year from (1) and (2). N+J-l represents the total 

program and outlay years to calculate. Table 2 shows the results of our example program 

with a generated budget profile in the final column. 

Table 2. Rayleigh-Based Budget Profile Projection Example 

Fiscal 
Year Time 

Annual Current $M Expenditures 
Error (Error)2 

Budget Profile 
Current $M Rayleigh Estimated 

2000 1 17.73 17.75 -0.02 0.00 34.43 
2001 2 50.36 50.32 0.04 0.00 73.13 
2002 3 74.12 74.18 -0.06 0.00 87.14 
2003 4 85.48 85.37 0.11 0.01 91.72 
2004 5 84.86 85.04 -0.18 0.03 83.32 
2005 6 74.70 74.41 0.29 0.09 66.49 
2006 7 59.31 59.81 -0.50 0.25 50.61 
2007 8 42.89 42.01 0.88 0.78 29.97 
2008 9 28.41 29.92 -1.51 2.27 24.38 
2009 10 17.31 14.33 2.99 8.92 2.12 
2010 11 0.00 3.94 -3.94 15.53 0.00 
2011 12 0.00 1.21 -1.21 1.46 0.00 
2012 13 0.00 0.35 -0.35 0.12 0.00 
2013 14 0.00 0.09 -0.09 0.01 0.00 
2014 15 0.00 0.01 -0.01 0.00 0.00 
Total 535.16 538.72 -3.56 29.47 543.30 
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Chapter Summary 

Based on past research, the Rayleigh function provides a model to determine 

R&D expenditure profiles. This chapter details these fundamental assumptions starting 

with Norden who used the Rayleigh to model manpower and development effort over 

time. Putnam derived cumulative software costs using the Rayleigh model, and Lee, 

Hogue, and Gallagher employed the Rayleigh to model defense development 

expenditures. We justify using the Weibull function in modeling expenditure profiles 

according to the generalizations of the Rayleigh model. Following the description of the 

parameter characteristics, and limitations of the Rayleigh function, we focus on the 

flexible Weibull function. After deriving the Weibull function we explain the parameters 

and discuss its ability to model R&D program expenditures. A brief discussion of Lee, 

Hogue, Gallagher's method of forecasting a budget profile from an R&D cost estimate 

concludes this chapter. 
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III. Research Methodology 

Chapter Overview 

Past research shows that the Rayleigh cumulative distribution function models 

R&D program expenditures well. The Weibull function models R&D program 

expenditures better than the Rayleigh. This research employs the Weibull function to 

forecast an initial R&D budget profile by developing regression models to predict the 

necessary Weibull shape and scale parameters. A description of the methodology to 

develop the predictive shape and scale regression models to forecast Weibull-based 

budgets is the focus of this chapter. 

Appropriate data collection is the initial step in this research. The Selected 

Acquisition Report (SAR), maintained by the Office of the Secretary of Defense is our 

source of data. For each R&D program we collect various categorical characteristics and 

the final annual budget profile data. After we convert each budget profile in current 

dollars to expenditure profiles in fiscal year 2000 constant dollars, we estimate the 

Weibull shape and scale parameters. We test the assumption that the Weibull distribution 

fits program expenditures using Komolgorov-Smirnov, Cramer-von Mises, and 

Anderson-Darling goodness-of-fit (GOF) statistics. The least squares estimated shape 

and scale parameters are the responses or dependent variables we predict in our 

regression models. The final cost and schedule with various categorical data like branch 

of military service and type of program provide possible predictors or independent 

variables in our regression models. 

26 



We randomly select 80 percent of the full data set to build our Weibull shape and 

scale regression models, and set aside the remaining 20 percent for validation. We test 

for a mathematical relationship between the Weibull shape and scale parameters against 

possible predictors like military branch of service, program type, total cost and duration. 

Using multiple regression we develop predictive models for the Weibull shape and scale 

parameters. To validate the robustness of our resulting regression models, we determine 

if the remaining 20 percent completed R&D program least squares estimated shape and 

scale validation data values fall within a 95 percent prediction interval. To determine the 

Weibull model's budget forecasting capability, we compare forecasted Weibull-based 

budgets to 128 completed R&D program budgets using Lee, Hogue, and Gallagher's 

(1997) methodology. Using the same methodology we determine the significance of our 

results by comparing the average correlation of forecasted Weibull-based and Rayleigh- 

based budgets to the same 128 completed program budgets. 

Program Data Collection 

We gather R&D program funding data from the Selected Acquisition Reports 

(SARs) to evaluate our research hypothesis. Our data collection comprises final 

Research, Development, Test and Evaluation program annual budget profiles to 

Milestone III or equivalent, military branch of service, program type, and the final 

program cost and duration. Since the SAR did not report annual budget data prior to 

1982, our data collection includes only those programs with a final SAR report dated 

1982 or later. The SAR presents the budget profiles in millions of both constant and 

current-year dollars. We collect only current-year budget profiles for the purpose of 
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converting current to constant-year dollars consistently across programs. Our selection 

criteria include programs that were not terminated with at least a three-year budget 

profile to Milestone III. Our full data set comprises 128 R&D programs. Table 3 

presents the Air Force's Airborne Warning and Control System (AWACS) Radar System 

Improvement Program (RSIP) as an example final SAR budget profile. We graphically 

display the RSIP final program budget profile in Figure 9. 

Table 3. RSIP Final Program Budget Profile 

Fiscal Year 1989 1990 1991 1992 1993 1994 1995 1996 Total 
Current $M 44.2 63.7 71.8 117.1 15.4 38.4 42.7 31.1 424.4 
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Figure 9. RSIP Final Budget Profile 

Convert Budget Profiles to Expenditure Profiles 

We convert the program budget data into constant-dollar expenditures in two 

steps:  1) convert the budget profile into an expenditure profile and 2) adjust for inflation. 

The first step is to convert the current-dollar budget profile into current-dollar 
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expenditures. We achieve this conversion using (1) when multiplying each budget year 

by the appropriate outlay rates and summing the expended funds for each fiscal year. 

Since the yearly outlay rates vary slightly from year to year, we use average outlay rates 

from 1993 to 2001 for our calculations. 

Table 4. Average Service R&D Outlay Rates (as Percentages) 

Air Force 
FY00 FY99 FY98 FY97 FY96 FY95 FY94 FYOl FY93 Avg StDev 

Yrl 59.5 58.8 59.1     50.7 45.8 46.3 46.5 46.5 50.8 51.56 5.98 
Yr2 33.7 34.5 33.1     37.4 39.9 39.1 38.8 38.8 34.5 36.64 2.67 
Yr3 3.6 3.6 5.3      6.8 8.9 8.9 8.8 8.9 9.5 7.14 2.40 
Yr4 1.0 1.0 1.4      3.0 3.6 3.6 3.6 3.6 3.4 2.69 1.19 
Yr5 0.3 0.3 0.4      0.8 1.1 1.1 1.1 1.1 1.1 0.81 0.37 
Yr6 0.0 0.3 0.3      0.3 0.3 0.4 0.4 0.4 0.4 0.31 0.13 
Yr7 0.0 0.0 0.2      0.0 0.1 0.0 0.2 0.0 0.2 0.08 0.10 

98.1 98.5 99.8    99.0 99.7 99.4 99.4 99.3 99.9 99.23 

Arn »y 
FYOl FY00 FY99 FY98 FY97 FY96 FY95 FY94 FY93 Avg StDev 

Yrl 57.5 56.8 58.0    58.0 58.0 57.0 57.0 55.0 55.0 56.92 1.19 
Yr2 32.5 33.7 33.0    33.0 33.0 34.0 34.0 34.0 34.0 33.47 0.59 
Yr3 6.3 5.0 5.3      5.3 5.3 5.3 5.3 7.3 7.3 5.82 0.91 
Yr4 2.1 2.1 2.1       1.8 1.8 1.8 1.8 1.8 1.8 1.90 0.15 
Yr5 0.8 0.8 0.8      0.8 0.8 0.8 0.8 0.8 0.8 0.80 0.00 
Yr6 0.0 0.5 0.5      0.5 0.5 0.5 0.5 0.5 0.5 0.44 0.17 
Yr7 0.0 0.0 0.2      0.0 0.2 0.0 0.2 0.0 0.2 0.09 0.11 

99.2 98.9 99.9    99.4 99.6 99.4 99.6 99.4 99.6 99.44 

Nav y 
FYOl FY00 FY99 FY98 FY97 FY96 FY95 FY94 FY93 Avg StDev 

Yrl 59.5 59.3 60.5    58.0 55.9 55.9 54.0 55.0 55.0 57.01 2.35 
Yr2 31.4 33.6 32.5    33.1 31.5 31.5 32.4 33.4 33.4 32.53 0.89 
Yr3 5.9 4.5 4.5      5.4 8.2 8.2 8.0 7.8 7.8 6.70 1.61 
Yr4 1.9 1.0 1.0      2.0 2.0 2.0 2.0 1.3 1.3 1.61 0.45 
Yr5 0.7 0.3 0.3      0.6 1.1 1.1 1.1 1.1 1.1 0.82 0.35 
Yr6 0.0 0.2 0.2      0.2 0.4 0.4 0.4 0.4 0.4 0.29 0.15 
Yr7 0.0 0.0 0.0      0.0 0.6 0.0 0.2 0.0 0.2 0.11 0.20 

99.4 98.9 99.0    99.3 99.7 99.1 98.1 99.0 99.2 99.08 
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Table 4 shows the average outlay rates and the standard deviation for each military 

branch of service. Table 5 gives an illustration of our calculations. 

Table 5. RSIP Final Budget Converted to Expenditures (Current $M) 

Average Air Force Outlay Rates (1993-2001) 

Year 

Rate 

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 
0.5156 0.3664 0.0714 0.0269 0.0081 0.0031 

FY Budget 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 
1989 44.2 22.8 16.2 3.2 1.2 0.4 0.1 
1990 63.7 32.8 23.3 4.6 1.7 0.5 0.2 
1991 71.8 37.0 26.3 5.1 1.9 0.6 0.2 
1992 117.1 60.4 42.9 8.4 3.1 0.9 0.4 
1993 15.4 7.9 5.6 1.1 0.4 0.1 0.0 
1994 38.4 19.8 14.1 2.7 1.0 0.3 0.1 
1995 42.7 22.0 15.6 3.1 1.1 0.3 0.1 
1996 31.1 16.0 11.4 2.2 0.8 0.3 0.1 

Expenditures 22.8 49.0 63.5 92.4 58.1 36.4 41.1 36.0 16.0 3.7 1.3 0.4 0.1 

The final step converts the program current-dollar expenditures shown as the 

bottom line in Table 5, to constant-dollar expenditures by removing the effects of 

inflation. Table 6 shows the current to constant dollar conversion with (2). The current- 

dollar expenditures in row 2 are divided by the raw inflation indices in row 3, producing 

the desired constant-dollar expenditures in row 4. Figure 10 graphically illustrates the 

final budget profile, expenditure profile in current dollars, and the expenditure profile in 

constant dollars for the RSIP program. 

Table 6. RSIP Current $M Expenditures to Constant $M Expenditures 

Fiscal Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

Exp. (Current $M) 22.8 49.0 63.5 92.4 58.1 36.4 41.1 36.0 16.0 3.7 1.3 0.4 0.1 
Inflation Factor 0.787 0.818 0.854 0.877 0.901 0.919 0.937 0.955 0.975 0.982 0.990 1.000 1.015 

Exp. (Constant $M) 29.0 59.9 74.4 105.3 64.4 39.6 43.9 37.7 16.4 3.8 1.3 0.4 0.1 
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Figure 10. RSIP Budget and Expenditure Profiles 

Table 7 provides a summary of our conversion calculations with (1) and (2). 

Table 7. RSIP Budget to Expenditures Summary Conversion 

Fiscal Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

Budget (Current $M) 44.2 63.7 71.8 117.1 15.4 38.4 42.7 31.1 

Exp. (Current $M) 22.8 49.0 63.5 92.4 58.1 36.4 41.1 36.0 16.0 3.7 1.3 0.4 0.1 
Exp. (Constant $M) 29.0 59.9 74.4 105.3 64.4 39.6 43.9 37.7 16.4 3.8 1.3 0.4 0.1 

In summary, we convert a budget profile to an expenditure profile in constant 

dollars. We now turn our attention to the estimation of the Weibull parameters. We use 

the least squares error method by fitting the Weibull cumulative distribution of 

expenditures to the RSIP cumulative constant dollar expenditures. We test our 

assumption that R&D program expenditures are Weibull distributed using GOF statistics. 
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Estimate Weibull Parameters 

Nonlinear estimation is the method we used to estimate the Weibull shape, scale, 

and location parameters in (5). We allow the Weibull parameters to vary until we 

minimize the sum-squared difference between the actual cumulative constant-dollar 

expenditures and the Weibull modeled cumulative constant-dollar expenditures. From a 

budget profile, the actual cumulative constant-dollar expenditures are calculated with (1) 

and (2). The Weibull cumulative constant-dollar expenditures are calculated with (5). 

We use Microsoft Excel's Solver package (2000) as our nonlinear estimation tool. 

The target cell in Solver is set to minimize the sum of all the errors squared. The Weibull 

shape, scale, and location parameters are set as the changing cells. Solver determines the 

optimal values for the Weibull shape, scale, and location parameters that minimize the 

total sum-squared errors with (14). 

Table 8 shows the conversion process from the reported final budget to 

cumulative constant-dollar expenditures for the Air Force RS1P program. The final 

budget profile, conversion to current-dollar expenditures, conversion to constant-dollar 

expenditures, and resulting cumulative constant-dollar expenditures are displayed in rows 

2, 3, 4, and 5 respectively. 

Table 8. RSIP Cumulative Constant-Dollar Expenditure Profile 

Fiscal Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

Budget (Current $M) 44.2 63.7 71.8 117.1 15.4 38.4 42.7 31.1 

Exp. (Current $M) 22.8 49.0 63.5 92.4 58.1 36.4 41.1 36.0 16.0 3.7 1.3 0.4 0.1 

Exp. (Constant $M) 29.0 59.9 74.4 105.3 64.4 39.6 43.9 37.7 16.4 3.8 1.3 0.4 0.1 

Cum. Exp. (Constant $M) 29.0 88.9 163.3 268.6 333.0 372.6 416.5 454.2 470.6 474.4 475.7 476.1 476.2 
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We now estimate the Weibull parameters that minimize the sum-squared errors. Table 9 

presents the minimization outcome for the RS1P program. The total sum-squared error is 

greater than 510.1 for any other combination of Weibull parameters. 

Table 9. RSIP Minimized E(errors)2 

Cumulative CY00$M 
Fiscal 

Year 

Expenditures 

Error (Error)2 Actual Weibull 
1989 29.0 24.6 4.4 19.2 
1990 88.9 91.4 -2.5 6.5 
1991 163.3 174.0 -10.7 113.8 
1992 268.6 255.6 13.0 169.1 
1993 333.0 326.5 6.6 43.1 
1994 372.6 382.3 -9.6 92.9 
1995 416.5 422.8 -6.3 39.8 
1996 454.2 450.4 3.9 15.0 
1997 470.6 467.9 2.7 7.3 
1998 474.4 476.2 -1.8 3.2 
1999 475.7 476.2 -0.5 0.2 
2000 476.1 476.2 -0.1 0.0 
2001 476.2 476.2 0.0 0.0 

n errors)2 = 510.1 

Table 10 presents the estimated Weibull parameters that produce our minimization 

results. The cost factor is equal to the final cost of the program divided by 0.97. The 

initial search values for the shape and scale parameters are set greater than 0.1. The 

location parameter is set to zero to represent presumed immediate program start. 

Table 10. RSIP Least Squares Estimated Weibull Parameters 

Cost Factor Scale 8 Shape ß Location y 
490.93 4.540 1.694 0.213 
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Figure 11 demonstrates the resulting Weibull modeled constant-dollar 

expenditures fit to the cumulative constant-dollar expenditures. 
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Figure 11. RSIP Cumulative Least Squares Weibull Fit 

Figure 12 shows the resulting Weibull modeled constant-dollar expenditure fit to the 

cumulative constant-dollar expenditures converted to annual expenditures. 
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Figure 12. RSIP Cumulative Least Squares Weibull Fit Converted to Annual 
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In summary, minimizing the total sum-squared difference between the actual 

cumulative constant-dollar expenditures and the Weibull modeled cumulative constant- 

dollar expenditures provides the Weibull estimated parameters. The estimated Weibull 

shape and scale parameters provide the responses or dependent variables for our 

regression analysis. The categorical and the final cost and schedule data provide the 

predictors or independent variables for our regression model. 

Perform Goodness-of-Fit (GOF) Tests 

Porter (2001) and Unger (2001) find that the Weibull model better fits R&D 

program expenditures. The measurements we use to evaluate if expenditures follow the 

theoretical Weibull are three goodness-of-fit (GOF) statistics, the Komolgorov-Smirnov 

(K-S), Cramer-von Mises (CvM), and Anderson-Darling (A-D). Unger (2001) modifies 

each of these statistics to perform GOF tests on discrete distributions. Unger statistically 

compares the deviation between F„(x), which is the empirical distribution function (EDF) 

based on n data points, and F0(x), which is the hypothesized CDF. Using Unger's 

application, the EDF is the cumulative constant-year expenditures reported at the end of 

each fiscal year, from (13), divided by the cost factor, Fn(i) = Cj Id. The hypothesized 

model is (1) with the least squares estimates for the Weibull from (14). Unger defines the 

K-S, CvM, and A-D GOF statistics as 

K = max\Fn (/) - F0 (/)| for / = 1,2,..., N + J-l, (15) 

^D=«X[(F„(0)2(ln(Fo(/ + l))-ln(Fo(0))- 

(FB(/-l)-l)
2(lna-F0(/))-lna-F0(/-l)))]-«, (16) 
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n/=n+,r 

and 

W2 =^YXF0(i)-Fn(i-Y)f -(FQ(i-Y)-Fn(i-Y)f\ (17) 

respectively, linger provides a description and the derivations for the K-S, CvM, and A- 

D GOF statistics. 

Regression Analysis 

We use multiple regression to determine if there is a mathematical relationship 

between the necessary Weibull parameters and possible predictors that a new start R&D 

program possesses. To build the Weibull shape and scale regression models, we select 

two categorical (nominal) and two numerical (continuous) predictor variables. The two 

categorical predictors are program lead branch of service (Air Force, Army, and Navy) 

and program system type (Aircraft, Electronic, Missile, Munitions, Ship, Space, and 

Vehicle). The lead service for joint programs is determined by the service that 

contributed the highest dollar value to the R&D effort. The two numerical predictors are 

the program total 2000 constant dollars (CY00$) and the program duration in years to 

Milestone III. Using the predictive values from our shape and scale regression models, 

we apply the Weibull model to forecast R&D program budget profiles. This leads to the 

final section of our methodology of relating the Weibull model to budget profiles. 

Convert Expenditure Profiles to Budget Profiles 

The shape and scale are the necessary parameters to utilize the Weibull model to 

forecast R&D program budget profiles. The Weibull shape and scale predictive models 

we obtain from our regression analysis provide the necessary predicted parameters to 
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employ the Weibull model. Lee, Hogue, and Gallagher (1997) forecast a budget profile 

from a point estimate using Rayleigh-based expenditures. We employ their method using 

Weibull-based expenditures. 

Chapter Summary 

This chapter explains the proposed methodology to predict the requisite shape and 

scale parameters to forecast Weibull-based initial R&D program budget profiles. We 

search for relationships to predict the Weibull shape and scale parameters using multiple 

regression analysis. We convert 128 program's current-dollar budget profiles to fiscal 

year 2000 constant dollar cumulative expenditure profiles. To build the response portion 

of our model data, we estimate the shape and scale parameters by minimizing the sum 

errors squared between the actual program cumulative expenditures and the Weibull 

modeled cumulative expenditures. We randomly selected 102 (80%) of the programs to 

perform our regression analysis, and the remaining 26 (20%) are saved for model 

validation. Finally, we forecast Weibull-based R&D program budget profiles by using 

the predicted shape and scale values from our regression models. In Chapter Four, we 

provide the results of our methodology application to completed R&D programs. 
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IV. Research Results 

Chapter Overview 

Chapter Three outlined the methodology to predict shape and scale parameters 

requisite to forecast Weibull-based R&D budget profiles. This chapter presents our 

research results when applying the 128 completed R&D defense programs to our 

methodology. We present the goodness-of-fit (GOF) results in support of our assumption 

that the Weibull model fits R&D program expenditures. We present our Weibull shape 

and scale predictive models, and demonstrate that both regression models are statistically 

significant. Using our predictive shape and scale models to utilize the Weibull function, 

we demonstrate the Weibull model's ability to forecast budget profiles. Finally, we 

demonstrate the improved forecasting ability of the Weibull model when compared to 

that of the Rayleigh model. 

Goodness of Fit Results 

The three GOF statistics we use to determine if the 128 R&D program 

expenditures are Weibull distributed are the Komolgorov-Smirnov (K-S), Cramer-von 

Mises (CvM), and Anderson-Darling (A-D). The test results are separated by the 

program budget duration in years. Programs that are accepted represent expenditures that 

are Weibull distributed. Tables 11-13 show the results for the K-S (89% accept), CvM 

(71% accept), and A-D (72% accept) GOF tests performed for all 128 programs 

respectively. 
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Table 11. Komolgorov- Smirnov Goodness-of-Fit Results 

Program Duration Programs Accept Reject % Accept % Reject 
Duration < 3 5 3 2 60% 40% 

3 < Duration < 4 17 11 6 65% 35% 
4 < Duration < 5 15 14 1 93% 7% 
5 < Duration < 6 14 14 0 100% 0% 
6 < Duration < 7 14 12 2 86% 14% 
7 < Duration < 22 63 60 3 95% 5% 

Total 128 114 14 89% 11% 

Table 12. Cramer-von Mises Goodness-of-Fit Results 

Program Duration Programs Accept Reject % Accept % Reject 
Duration < 3 5 0 5 0% 100% 

3 < Duration < 4 17 1 16 6% 94% 
4 < Duration < 5 15 7 8 47% 53% 
5 < Duration < 6 14 10 4 71% 29% 
6 < Duration < 7 14 13 1 93% 7% 
7 < Duration < 22 63 60 3 95% 5% 

Total 128 91 37 71% 29% 

Table 13. Anderson-Darling Goodness-of-Fit Results 

Program Duration Programs Accept Reject % Accept % Reject 
Duration < 3 5 0 5 0% 100% 

3 < Duration < 4 17 7 10 41% 59% 
4 < Duration < 5 15 11 4 73% 27% 
5 < Duration < 6 14 8 6 57% 43% 
6 < Duration < 7 14 10 4 71% 29% 
7 < Duration < 22 63 56 7 89% 11% 

Total 128 92 36 72% 28% 

Table 14 shows 77 percent of the 128 program expenditure profiles are Weibull 

distributed. The GOF test results to determine if R&D program expenditures are Weibull 
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distributed appears lower than expected; however, annual R&D program expenditures 

represent a discrete distribution. Many continuous GOF tests fail discrete distributions 

because of the infinite number of points between each discrete value. Unless the discrete 

distribution is highly populated as to approach a continuous distribution the GOF test will 

fail, linger (2001) adjusts the K-S, CvM, and A-D formulas to perform GOF statistics on 

program expenditures that are discretely distributed. The GOF tests do not penalize the 

expenditure profile any more or less than the previous expenditure year. This in essence 

converts the expenditure profile into a rigid continuous distribution increasing or 

decreasing with each expenditure year. The more rigid the expenditure profile the less 

likely the program expenditures are Weibull distributed. Smoother expenditure profiles 

are more likely for programs with many expenditure years, thus we expect higher failure 

rates for smaller program durations. 

Table 14. Overall Goodness-of-Fit Test Results 

Test Type Accept Reject % Accept % Reject 
Komolgorov-Smirnov (K-S) 
Cramer-von Mises (CvM) 
Anderson-Darling (A-D) 

114 
91 
92 

14 
37 
36 

89% 
71% 
72% 

11% 
29% 
28% 

Total 297 87 77% 23% 

The GOF results show high failure rates for the 51 programs with duration of six 

years or less. Table 15 indicates that only 56 percent of these 51 program expenditures 

are Weibull distributed. However, if monthly expenditure data were available for the 51 

programs with duration six years or less, we contend that 90 percent of the program 

monthly expenditures are Weibull distributed. Table 16 indicates that 91 percent of the 

77 programs with duration greater than six years are Weibull distributed. 
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Table 15. Goodness-of-Fit Results (Budget Profiles <= 6 Years) 

Test Type (51 Programs) Accept Reject % Accept % Reject 
Komolgorov-Smirnov (K-S) 
Cramer-von Mises (CvM) 
Anderson-Darling (A-D) 

42 
18 
26 

9 
33 
25 

82% 
35% 
51% 

18% 
65% 
49% 

Total 86 67 56% 44% 

Table 16. Goodness-of-Fit Results (Budget Profiles > 6 Years) 

Test Type (77 Programs) Accept Reject % Accept % Reject 
Komolgorov-Smirnov (K-S) 
Cramer-von Mises (CvM) 
Anderson-Darling (A-D) 

72 
73 
66 

5 
4 
11 

94% 
95% 
86% 

6% 
5% 
14% 

Total 211 20 91% 9% 

The GOF statistics supports the assumption that R&D program expenditures are 

Weibull distributed. The next section reports the results of our regression analysis to test 

for relationships that predict the Weibull scale and shape parameters. 

Weibull Scale and Shape Regression Models 

Research and Development (R&D) defense program expenditures are Weibull 

distributed. To apply Lee, Hogue, and Gallagher's (1997) method to forecast a budget 

profile from a point estimate using the Weibull model, we must predict the scale and 

shape parameters with information known to new start R&D programs. Appendix A 

shows the 128 completed R&D programs we use to determine a relationship that predicts 

the necessary Weibull scale and shape parameters. This section of the results will present 

the scale model, the shape model, and the validation results in predicting the scale and 

shape least squares parameter estimates. 
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Regression Analysis Setup. We randomly select 102 (80%) of the total 128 

programs to test for mathematical relationships for each of the Weibull scale and shape 

parameters. The response or dependent variables for each regression model are the 

Weibull shape and scale least squares parameter estimates from Solver. We use four 

possible predictors or independent variables. Branch of service and program system type 

are the first two categorical predictors converted from nominal data to continuous data 

via indicator variables. We set Air Force as the baseline and convert the branch of 

service column data into two separate predictor columns as indicator variables for Army 

and Navy. For the Army data column, we assign a one for Army programs and a zero for 

Air Force and Navy programs. For the Navy data column, we assign a one for Navy 

programs and a zero for Air Force and Army programs. We set Vehicle as the baseline 

for the second categorical predictor, program system type. We establish a data column 

for each of the remaining program system type categories (Aircraft, Electronic, Missile, 

Munitions, Ship and Space) in the same fashion as Army and Navy data columns. 

Program total cost in fiscal year 2000 constant dollars divided by 0.97 (cost factor, d) and 

program duration in total budget years minus the location estimate are the final two 

continuous predictor variables. We use multiple regression to find a relationship for the 

Weibull scale and shape parameters. 

The Weibull Scale Model. For the scale model results, we display graphically the 

least squares estimated scale via Solver by the model predicted scale. Statistically, we 

present the summary of fit, analysis of variance (ANOVA), and parameter model 

estimates. Finally, we discuss the scale model as a statistically significant predictor for 

the Weibull scale parameter. 
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Figure 13 displays the least squares estimated scale by the model's predicted 

scale. The figure clearly shows that the least squares estimated scale values are tightly 

arranged along the model's predicted scale regression line, indicating that our regression 

model predicts scale well. 

i       i       i       i       i 
10      12      14      16      1 

Scale Predicted P<.0001 RSq=0.92 RMSE=0.8244 

Figure 13. Least Squares Estimated Scale by Predicted Scale Plot 

9 9 
We select the adjusted R over R as the statistical measure of the model's ability 

to predict the response (least squares estimated scale). The adjusted R compares across 

models with different numbers of parameters by using the degrees of freedom in its 

computation (Sail, Lehman, and Creighton, 2001). In our analysis of several models we 

find that no additional predictor variables or interactions, other than program duration, 

significantly improve the adjusted R of 0.921. 

The ANOVA displays the overall F test, indicating a significant model. When the 

significance level or/rvalue is less than 0.05 the overall model is significant, indicating 

that at least one predictor is significant. Because program duration is our only predictor 

of scale, the t-test, which measures the significance of each predictor in the model, will 
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mirror the overall F test. Table 17 shows the summary of fit, the ANOVA, and parameter 

estimates. We define our final scale regression model, S-hat as 

S = 0.726(Duration). (18) 

Table 17. Scale Model Table of Statistics 

Scale Model Summary of Fit 
RSquare 0.921671 

RSquare Adj 0.920888 
Root Mean Square Error 0.824422 

Mean of Response 5.854373 

Observations (or Sum Wgts) 102 

Scale Model Analysis of Variance (ANOVA) 
Source                        DF Sum of Squares Mean Square F Ratio 
Model                           1 799.75149 799.751 1176.672 
Error                           100 67.96724 0.680 Prob > F 
C. Total                       101 867.71873 <.0001 

Scale Model Parameter Estimates 
Term                       Estimate Std Error t Ratio Prob>|t| 
Intercept                0.0683049 0.187391 0.36 0.7163 
Duration               0.7256199 0.021153 34.30 <.0001 

To test the statistical soundness of our scale regression model, we look for 

possible influential data points that bias what explanatory variables are selected, and test 

the model assumptions of normality, constant variance, and independence. 

Scale Model Influential Data Test. We test for possible influential data points by 

plotting Cook's D influence statistic. Cook's D influential statistic determines if an 

observation has a large effect on parameter estimates. Values greater than 0.5 are 

considered significant influential observations (Neter, Kutner, Nachtsheim, and 
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Wasserman, 1996:380). Figure 14 displays the overlay plot of values for Cook's D 

influential statistic, indicating that no observations are significantly influential. 

0,0.15- - 

cc o 
a> 
a, 
g   0.1- m                                 . 
0 
3 

M— c 
■                                       ■ 

Q 0.05- 
C/3 ■                      ■ 

o 
■   ■                                             ■ 

■ 
o 
u     0- 

■                                                                                            ■                                                    m          m              m 

0                  20                 40                 60                 80                100 

Rows 

Figure 14. Scale Model Test for Influential Data Points 

Scale Model Normality Test. We test for normality by performing a GOF test to 

determine if the residuals from our regression model are normally distributed. Figure 15 

shows the normal distribution fit to the residual distribution and displays the normality 

test results. If the/rvalue is greater than 0.05 then the residuals are normally distributed. 

We display a/?-value of 0.901 indicating that the model residuals are normally 

distributed. 
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Figure 15. Scale Model Normality Test 

Scale Model Constant Variance Test. We test for constant variance by plotting 

the residuals by the predicted scale values. We visually conclude constant variance if the 

plotted values are uniformly distributed. Figure 16 displays a reasonably uniform 

distribution of values for the residual by predicted plot indicating that our model has 

constant variance. 
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Figure 16. Scale Model Test for Constant Variance 
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Scale Model Independence of Data Test. The test for independence is not 

performed. We assume independence in our data because we do not duplicate selected 

programs. Thus, no obvious serial pattern exists to test for independence. 

The Weibull Shape Model. For the shape model results, we display graphically 

the least squares estimated shape by model predicted shape. Statistically, we present the 

summary of fit, analysis of variance, and parameter model estimates. Finally, we discuss 

the shape model as a statistically significant predictor for the Weibull shape parameter. 

Figure 17 displays the least squares estimated shape by the model's predicted 

shape. This figure clearly shows that the least squares estimated shape values are not as 

correlated with our model's predicted shape in comparison to the scale model. This 

indicates that our shape regression model does not appear to predict shape as well as our 

scale model predicts scale. 
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Figure 17. Least Squares Estimated Shape by Predicted Shape Plot 
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Table 18. Shape Model Table of Statistics 

Shape Model Summary of Fit 
RSquare 0.310116 
RSquare Adj 0.274185 
Root Mean Square Error 0.763702 
Mean of Response 2.724529 
Observations ( or Sum Wgts) 102 

Shape Model. Analysis of Variance (ANOVA) 
Source DF Sum of Squares Mean Square F Ratio 
Model 5 25.169127 5.03383 8.6308 
Error 96 55.991124 0.58324 Prob > F 
C. Total 101 81.160251 <.0001 

Shape Model Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 1.299561 0.32514 4.00 0.0001 
ln(l/Duration) -0.973254 0.16037 -6.07 <.0001 
Army -0.423434 0.20643 -2.05 0.0430 
Navy -0.485661 0.18882 -2.57 0.0116 
Electronic -0.545079 0.18152 -3.00 0.0034 
Space -1.100189 0.56290 -1.95 0.0536 

Table 18 displays the summary of fit, ANOVA, and parameter model estimates. 

The adjusted R in the summary of fit table, 0.27, appears to indicate that our model is 

not a good fit for predicting shape. However, we show later that our shape model 

predicts the least squares estimated shape well enough to employ the Weibull model with 

significant results. The overall F test in the ANOVA table shows a/rvalue less than 

0.05, indicating that our overall shape model is significant. The t-test in the parameter 

estimates table shows /^-values less than 0.05 for all predictors except Space. When the 

/7-value is greater than 0.05, the predictor is statistically insignificant. Space is 
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statistically insignificant but not enough to give up to the additional predictability it adds 

to the overall shape model. Our shape model does possess one transformation, which 

implies that there is a better mathematical relationship between ln(l/Duration) and shape 

than duration simply itself. We define the final shape regression model, yö-hat, as 

ß = ß0-ßQn(rU)-ß2(X2)-ß3(X3)-ß4(X4)-ß5(X5), (19) 
x\ 

where ß, values are the parameter estimates and X-, are the shape model parameter terms 

listed in order in Table 18. 

To test the statistical soundness of our shape regression model, we look for 

possible influential data points that bias what explanatory variables are selected, and test 

the model assumptions of normality, constant variance, and independence. 

Shape Model Influential Data Test. Figure 18 displays the overlay plot of values 

for Cook's D influential statistic, indicating that no observations are significantly 

influential. 
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Figure 18. Shape Model Test for Influential Data Points 
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Shape Model Normality Test. In testing the normality assumption, Figure 19 

reveals that the residuals are barely normally distributed, with a/rvalue of 0.0802. 
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Figure 19. Shape Model Normality Test 

However, this is potentially misleading because of one skewed data point displayed in 

Figure 19 in the box and whiskers plot as a dot. 
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Shape Model Constant Variance Test. Figure 20 shows a reasonably uniform 

distribution of values for the residual by predicted plot indicating that our shape model 

has constant variance. 

Shape Model Independence of Data Test. The test for independence is not 

performed. We assume independence in our data because we do not duplicate selected 

programs. Thus, no obvious serial pattern exists to test for independence. 

Scale and Shape Model Validation 

We show that both the scale and shape models are statistically significant. The 

overall F test and the individual parameter t-tests indicate that both overall models and 

individual predictors within each model reports-values less than 0.05. To validate the 

robustness of our shape and scale regression models, we show that 100 and 96 percent of 

the remaining 26 (20% of full data set) completed R&D program least squares estimated 

shape and scale validation data values fall within a 95 percent prediction interval. Our 

validation results demonstrate that we did not over-fit the data to build the shape and 

scale regression models. Table 19 and Table 20 display the 95 percent prediction interval 

upper and lower bounds, the least squares estimated scale and shape values, and the 

accept/reject results for the scale and shape regression models respectively. 
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Table 19. Scale Model Validation Using a 95% Prediction Interval 

LB Actual ÜB Reject/ 
# Program Scale Scale Scale Accept 
1 ADDS 4.230 5.683 7.517 Accept 
2 ALCM 2.776 4.764 6.068 Accept 
3 ASM LOSAT 4.230 6.671 7.517 Accept 
4 ATACMS 6.402 8.432 9.699 Accept 
5 ATACMS-APAM 1.319 2.521 4.623 Accept 
6 AVENGER 0.588 2.546 3.902 Accept 
7 B-2 6.777 7.323 10.078 Accept 
8 BATTLESHIP 2.776 4.017 6.068 Accept 
9 C/MH-53E 2.753 3.930 6.044 Accept 
10 E-6A 2.228 4.568 5.524 Accept 
11 F-14 1.104 2.572 4.411 Accept 
12 GLCM 2.776 4.428 6.068 Accept 
13 HH-60D 2.048 3.619 5.345 Accept 
14 JAVELIN 7.123 6.583 10.428 Reject 
15 LANTIRN 3.504 5.631 6.792 Accept 
16 LASER HELLFIRE 6.402 8.553 9.699 Accept 
17 LBG 2.048 3.532 5.345 Accept 
18 MMIII GRP 3.504 4.571 6.792 Accept 
19 NAVSTAR GPS 7.844 9.900 11.158 Accept 
20 PATRIOT(Missile Seg) 12.148 14.683 15.563 Accept 
21 PLSS 7.844 11.017 11.158 Accept 
22 ROTHR 3.190 4.337 6.480 Accept 
23 RPV 8.564 11.186 11.890 Accept 
24 SCAMP 1.319 3.499 4.623 Accept 
25 SINCGARS 3.813 5.573 7.100 Accept 
26 SSN21 4.230 7.002 7.517 Accept 
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Table 20. Shape Model Validation Using a 95% Prediction Interval 

LB Actual ÜB Reject/ 
# Program Shape Shape Shape Accept 
1 ADDS 0.787 2.098 3.923 Accept 
2 ALCM 1.495 3.322 4.592 Accept 
3 ASM LOSAT 1.353 3.718 4.447 Accept 
4 ATACMS 1.657 3.512 4.763 Accept 
5 ATACMS-APAM 0.670 1.931 3.780 Accept 
6 AVENGER 0.378 1.957 3.513 Accept 
7 B-2 2.115 2.191 5.241 Accept 
8 BATTLESHIP 1.022 1.930 4.094 Accept 
9 C/MH-53E 1.016 1.915 4.089 Accept 
10 E-6A 0.312 3.289 3.452 Accept 
11 F-14 0.540 1.871 3.638 Accept 
12 GLCM 1.495 2.678 4.592 Accept 
13 HH-60D 1.317 2.521 4.415 Accept 
14 JAVELIN 1.738 2.273 4.851 Accept 
15 LANTIRN 1.096 2.764 4.201 Accept 
16 LASER HELLFIRE 1.657 3.769 4.763 Accept 
17 LBG 1.317 2.129 4.415 Accept 
18 MMIII GRP 1.644 2.207 4.743 Accept 
19 NAVSTAR GPS 1.690 2.429 4.812 Accept 
20 PATRIOT (Missile Seg) 2.112 3.845 5.247 Accept 
21 PLSS 1.690 4.094 4.812 Accept 
22 ROTHR 0.537 2.371 3.664 Accept 
23 RPV 1.882 4.043 5.007 Accept 
24 SCAMP -0.785 2.775 3.035 Accept 
25 SINCGARS 0.714 2.967 3.851 Accept 
26 SSN21 1.302 4.310 4.374 Accept 

The prediction interval calculation does not know to bound shape parameter values to 

strictly greater than zero. Thus, we note that data point 24, in Table 20, reports an 

unrealistic negative lower bound shape value. 
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Now that predictive models for the Weibull shape and scale parameters are 

established we can employ the Weibull model. In the next section we evaluate the 

capability of the Weibull model to forecast completed R&D program budget profiles. 

Weibull Model Prediction Capability to Actual Budget Profiles 

To this point we show that R&D expenditures are Weibull distributed with our 

GOF results. Our statistical analysis shows that our shape and scale regression models 

are significant and predict the least squares estimated shape and scale values well. In this 

section we discuss how we employ Lee, Hogue, and Gallagher's (1997) method to 

forecast R&D program budget profiles given a point estimate when applying the Weibull 

model. 

We convert completed R&D program budget profiles to Fiscal Year 2000 

constant dollar expenditure profiles using (1) and (2). We sum each program's constant 

dollar expenditure profile to establish a program point estimate, D in CY00$. We convert 

the total program cost estimate to a Weibull modeled constant dollar expenditure profile 

with (5) using the regression models to predict the scale and shape with (18) and (19). 

We convert the constant dollar expenditure profile to current expenditures by multiplying 

the appropriate raw inflation indices found in Appendix B. Finally, we utilize Lee, 

Hogue, and Gallagher's (1997) method of constrained nonlinear estimation to develop a 

budget profile. This method allows the budget estimates, Bi for each budget year i, to 

change simultaneously until an optimal solution is reached. We apply this approach by 

substituting the5;. in (1) and (2) and allow Microsoft Excel Solver function (2000) to 

select the yearly budget estimates that minimize the sum of squared errors with (14) to 
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the end of budget completion between the Weibull modeled expenditures and the actual 

expenditures that result from the forecasted budget profile. 

As a note, we minimize the sum of squared errors to the end of budget completion 

instead of to the end of expenditure completion to produce a more logical program budget 

profile. This slight change to Lee, Hogue, and Gallagher's (1997) methodology prevents 

Solver from producing unrealistic spikes at the end of a Weibull model forecasted budget 

profile. The methodology change does not improve our results to forecast actual budget 

profiles. 

To determine the capability of the Weibull model to forecast budget profiles, we 

compare the forecasted Weibull-based budget profiles to the 128 completed R&D 

program budget profiles. We determine the correlation between each completed budget 

profile and the Weibull forecasted budget profile. To determine the overall Weibull 

model effectiveness we average the 128 correlation calculations between the completed 

(Actual) and Weibull (Forecasted) budget profiles. Table 21 summaries our results. 

Table 21. Actual by Weibull-Based Budget Profile Correlation Breakdown 

Correlation (c)       Coi "relation % Correlation 
Range                      Distribution Distribution 

c<0.5 37 29% 
0.5<c<0.6 12 9% 
0.6<c<0.7 17 13% 
0.7<c<0.8 23 18% 
0.8<c<0.9 19 15% 
0.9<c< 1.0 20 16% 

Total 128 100% 

Average Correlation 0.6068 
Minimum Correlation -0.9984 
Maximum Correlation 0.9986 
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We report an average correlation of 0.607 for the 128 programs. This shows that on 

average 61 percent of the forecasted Weibull-based budget profiles fits the 128 completed 

program budget profiles. 

We find that low correlations between Weibull projected budgets and actual 

budgets are a result of small program durations. Table 22 displays the percent 

distribution by budget year duration for programs with correlations less than 0.5. As 

stated earlier, our GOF results show that only 56 percent of expenditures are Weibull 

distributed for program durations less than seven years (small discrete distributions). The 

results show that roughly 59 percent of forecasted Weibull-based budgets are less than 50 

percent correlated to completed programs with less than five budget years. Thus, 

programs with durations less than five years are difficult to forecast budget profiles. 

Table 22. Percent Correlation Distribution by Program Duration 

# of Programs % of Programs 
Program Pi rogram w/Correlations w/Correlations 
Duration Distribution Less Than 0.5 Less Than 0.5 

3 5 3 60% 
4 12 7 58% 
5 19 6 32% 
6 15 6 40% 
7 12 3 25% 
8 16 4 25% 
9 9 4 44% 

>10 40 4 10% 
Summary 

Duration < 7 51 22 43% 
Duration > 7 77 15 19% 

Table 23 reports that 4 percent (5 of the 128) of the Weibull modeled budgets are 

negatively correlated to the actual completed budgets. The negative correlations are 
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primarily due to small program durations. As an example, Figure 21 displays the Army 

Avenger combat vehicle final program budget, and the forecasted Weibull-based budgets 

using the least squares estimates for the shape and scale parameters via Solver, and the 

predicted shape and scale parameters via our regression models. We show that a negative 

correlation exists between the actual budget and the Weibull-based budget using the least 

squares estimates for the shape and scale parameters, indicating that the Avenger 

expenditure profile is not Weibull distributed. We note, that four of the total five 

programs that report a negative correlation have less than five budget years. 
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Figure 21. Rayleigh-Based Budget Forecast with Negative Correlation 

Weibull and Rayleigh Model Prediction Comparison 

Currently, the Rayleigh is the only proven quantitative model we know ofthat 

forecasts R&D budget profiles. We define success as being able to improve our ability to 

forecast completed budget profiles with the Weibull model verses the Rayleigh model. 

We compare the two models by averaging the calculated correlation between actual and 

forecasted budget profiles. 
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We forecast budget profiles for the 128 completed R&D programs using the 

Rayleigh and Weibull models and compare the calculated average correlation for each 

model. Table 23 summaries our results and highlights a significant improvement in 

forecasting budget profiles with the Weibull model as opposed to the Rayleigh. On 

average, we increase our forecasting ability 60 percent using the Weibull model verses 

the Rayleigh model. Our findings show that the Weibull model is a better tool to forecast 

R&D program budget profiles than the current Rayleigh model. 

Table 23. Comparing Weibull and Rayleigh-Based Bud gets 

Correlation (c) Correlation Distribution % Correlation Distribution 
Range Rayleigh Weibull Rayleigh Weibull 

c<0.0 67 5 52% 4% 
0.0<c<0.1 3 3 2% 2% 
0.1<c<0.2 10 3 8% 2% 
0.2<c<0.3 6 5 5% 4% 
0.3<c<0.4 6 8 5% 6% 
0.4<c<0.5 14 13 11% 10% 
0.5<c<0.6 5 12 4% 9% 
0.6<c<0.7 5 17 4% 13% 
0.7<c<0.8 3 23 2% 18% 
0.8<c<0.9 3 19 2% 15% 
0.9<c< 1.0 6 20 5% 16% 

Total 128 128 100% 100% 

Summary 
c<.5 106 37 83% 29% 
c>.5 22 91 17% 71% 

Correlation Category Weibull Rayleigh Delta 
Average Correlation 0.6068 0.0021 0.6047 
Minimum Correlation -0.9984 -0.9051 -0.0934 
Maximum Correlation 0.9986 0.9599 0.0387 
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Our results also show that 83 percent of the Rayleigh modeled budget profiles are 

less than 50 percent correlated to the actual budget profiles. However, the low average 

correlation of 0.21 percent between the Rayleigh and actual budget profiles is a result of 

52 percent of the Rayleigh modeled budget profiles being negatively correlated with 

actual budget profiles. Because the Rayleigh model functions with a fixed shape 

parameter of two, projected budget profiles are over estimate up front and under 

estimated in the tails (inversely estimated) for 67 of the 128 programs, resulting in 

negative correlations. As an example, Figure 22 shows the Army Tactical Missile 

System (ATACMS) completed R&D program budget. The correlation between the 

ATACMS budget profile and the Weibull and Rayleigh modeled budget profiles is 

0.8954 and -0.1798 respectively. 
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Figure 22. Rayleigh and Weibull Model vs. Actual ATACMS Budget Profile 

59 



Chapter Summary 

This chapter provides the results of applying the methodology to 128 completed 

R&D defense program budget profiles. The goodness-of-fit results support our 

assumption that the Weibull model fits R&D program expenditures. We present the 

Weibull shape and scale predictive models, and demonstrate that both models are 

statistically significant. We validate the predictive regression models by showing that 

100 and 96 percent of the least squares estimated shape and scale values fall within a 95 

percent prediction interval. Using the regression models to predict shape and scale we 

forecast Weibull-based budgets for 128 completed R&D programs and report an average 

correlation of 61 percent. Moreover, we define research success as the ability to forecast 

budget profiles at a higher degree of accuracy using the Weibull as opposed to the 

Rayleigh model. This chapter reports significant results, showing that the Weibull out 

performs the Rayleigh model in forecasting 128 completed R&D program budgets on 

average 60 percent. Chapter Five summarizes and concludes our thesis effort, while 

addressing possible limitations and future research. 
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V. Conclusions 

Chapter Overview 

This chapter presents summary findings and conclusions of this research effort. 

We include a research summary of Chapters One, Two, and Three, and provide a 

summary of the results from Chapter Four. Next, we present the limitations to this 

research effort and provide recommendations for future research. Lastly, comparative 

conclusions are drawn upon the results of this research effort to previous efforts. 

Research Summary 

Chapter One introduces the difficultly in forecasting R&D program budget 

profiles that meet fiscal year expenditure requirements. In addition, it relays that 

expenditure shortfalls explain over 50 percent of cost overruns and schedule slips. We 

suggest the Weibull in lieu of the Rayleigh distribution to improve modeling of R&D 

expenditures. Finally, the chapter concludes with the purpose of determining a 

mathematical relationship that predicts the necessary shape and scale parameters to 

forecast Weibull-based program budget profiles. 

Chapter Two summarizes previous research in modeling R&D expenditures. We 

discuss several research efforts that support Rayleigh-based expenditures and budget 

projections. However, we discuss several theoretical limitations to the Rayleigh and 

introduce the Weibull model to mitigate those limitations. We present the shape and 

scale parameters necessary to forecast Weibull-based budget profiles. We conclude the 

chapter with an example of Lee, Hogue, and Gallagher's (1997) method of forecasting 

Rayleigh-based budget profiles given a point estimate. 
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Chapter Three contains our methodology to determine predictive relationships for 

the Weibull shape and scale parameters. We present the criteria for data selection. We 

explain the steps to convert R&D budgets to expenditures and our process of nonlinear 

estimation of the Weibull shape and scale parameters from the converted expenditures. 

Finally, we present the steps to building our predictive shape and scale models using 

multiple regression techniques. 

Chapter Four presents the results of our methodology applied to 128 completed 

R&D programs. Using goodness-of-fit statistics we demonstrate that R&D expenditures 

are Weibull distributed. Using 102 completed R&D defense programs, we develop 

regression models to predict the necessary Weibull shape and scale parameters. We use 

the remaining 26 completed R&D programs to validate the robustness of our regression 

models by showing that 100 and 96 percent of the least squares estimated shape and scale 

values respectively, fall within our 95 percent prediction intervals. To determine the 

Weibull model's budget projection capability, we compare 128 completed R&D program 

budgets to Weibull modeled budgets and report an average correlation of 0.607. To 

determine the significance of our results we compare the same 128 completed program 

budgets to Rayleigh modeled budgets. Success is defined as the ability to improve 

budget profile forecasts with the Weibull as opposed to the Rayleigh model. Using the 

Weibull over the Rayleigh model when applying Lee, Hogue, and Gallagher's (1997) 

methodology, we improve initial budget profile projections on average 60 percent. 
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Limitations 

The macro view of this research effort seeks to minimize R&D program cost and 

schedule growth by developing a better quantitative approach to forecast initial program 

budget profiles. However, several factors outside of the scope of this research contribute 

to R&D program cost overrun and schedule slip. Our focus narrows the research scope to 

funding constraints attributed to budget profiles that do not meet fiscal expenditure 

requirements. Within this scope of focus we find other limitations to forecasting 

Weibull-based budget profiles. First, R&D programs with four or less budget years 

rarely execute expenditures that follow any distribution consistently. Therefore, 

forecasted Weibull-based budgets on average show poor correlations to final programs 

with four or less budget years. Secondly, our research only applies to Army, Navy, and 

Air Force Acquisition Category One (ACAT I) R&D programs. This is due to our data 

source. The Department of Defense only requires system program offices to submit a 

Selected Acquisition Report (SAR) for ACAT I programs. 

Future Research 

We show in this research that the Weibull out performs the Rayleigh model in 

projecting R&D program budget profiles. Recommendations for future research include: 

a determination whether the Weibull model out performs current practices in forecasting 

initial R&D budgets, and applying the research methodology to other existing data bases 

that include lower ACAT R&D programs. We could not explore performance 

comparisons between historical initial forecasted R&D program budgets and Weibull- 

modeled budgets based on initial program cost and schedule estimates to the final 
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program budgets, because only 13 of the 128 programs had initial budget profile 

estimates. This number of programs is too low to draw any statistical conclusions. 

Conclusion 

We conclude by stating that our proposed methodology provides the requisite 

shape and scale regression models to forecast Weibull-based R&D budgets. Currently, 

the Rayleigh model serves as the only quantitative tool to project budget profiles. The 

Weibull out performs the Rayleigh in forecasting 128 completed R&D budgets on 

average 60 percent. We consider an average increase of 60 percent in budget profile 

prediction accuracy excellent results. Thus, we achieve our research objective and 

provide an improved R&D budget-forecasting tool. 
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Appendix A. Program Regression Model Building Data 

Table 24 Program Model Building Data 

Lead System Locn Scale Shape 
#    Programs Service    Type Dur- / Dur 7 S ß 

1. A-6E/F N Aircraft 5.000 5 0.000 3.811 2.649 
2. ABRAMS UPGRADE A Vehicle 10.000 10 0.000 6.501 2.598 
3. ACM AF Missile 3.582 5 1.418 2.483 1.755 
4. ADDS A Electronic 8.000 8 0.000 5.683 2.098 
5. AFATDS A Electronic 15.000 15 0.000 12.314 3.163 
6. ALCM AF Missile 6.000 6 0.000 4.764 3.322 
7. AMRAAM AF Missile 11.000 11 0.000 8.341 3.754 
8. AN/BSY-1 N Electronic 9.000 9 0.000 4.501 1.776 
9. AN/BSY-2 N Electronic 16.000 16 0.000 11.376 4.025 

10. AN/SQQ-89 N Electronic 8.000 8 0.000 6.450 2.929 
11. AN/TTC-39 A Electronic 9.000 9 0.000 6.419 2.423 
12. AOE 6 N Ship 7.000 7 0.000 4.050 2.436 
13. APACHE (AH-64) A Aircraft 10.000 10 0.000 7.194 2.665 
14. ASAS A Electronic 8.000 8 0.000 5.776 2.590 
15. AS AT AF Missile 13.000 13 0.000 11.660 5.487 
16. ASM LOS AT A Vehicle 8.000 8 0.000 6.671 3.718 
17. ASPJ N Electronic 11.002 12 0.998 6.361 2.154 
18. ATACMS A Missile 11.000 11 0.000 8.432 3.512 
19. ATACMS-APAM A Missile 4.000 4 0.000 2.521 1.931 
20. ATARS AF Electronic 6.914 9 2.086 4.308 2.022 
21. AV-8B N Aircraft 8.000 8 0.000 6.201 3.233 
22. AVENGER A Vehicle 3.000 3 0.000 2.546 1.957 
23. B-l CMUP-JDAM AF Electronic 3.941 5 1.059 2.926 2.070 
24. B-1B AF Aircraft 4.000 4 0.000 3.471 2.622 
25. B-2 AF Aircraft 11.520 13 1.480 7.323 2.191 
26. B-52 OAS/CMI AF Electronic 4.980 5 0.020 4.068 2.735 
27. BATTLESHIP N Ship 6.000 6 0.000 4.017 1.930 
28. BFVS A Vehicle 15.000 15 0.000 12.631 4.498 
29. BFVS UPGRADE A Vehicle 7.000 7 0.000 4.221 2.010 
30. BLACKHAWK A Aircraft 6.818 9 2.182 5.675 3.421 
31. C/MH-53E N Aircraft 5.967 6 0.033 3.930 1.915 
32. C-17A AF Aircraft 9.000 9 0.000 8.366 5.922 
33. CAPTOR N Munition 12.000 12 0.000 9.420 4.063 
34. CH-47D A Aircraft 4.937 5 0.063 3.440 2.041 
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Lead System Locn Scale Shape 
#    Programs Service    Type Dur- y Dur r S ß 
35. CH-60S N Aircraft 4.955 5 0.045 3.690 2.610 
36. CMU AF Electronic 22.000 22 0.000 14.976 3.458 
37. COPPERHEAD A Munition 9.000 9 0.000 7.319 3.366 
38. CSRL AF Munition 4.000 4 0.000 3.298 2.390 
39. CV HELO N Aircraft 4.000 4 0.000 2.512 1.676 
40. CVN 68 N Ship 4.730 5 0.270 3.467 2.383 
41.DDG-51 N Ship 7.000 7 0.000 5.389 2.863 
42. DSCS III AF Space 5.396 6 0.604 3.400 1.771 
43. E-3A AF Aircraft 11.000 11 0.000 9.701 4.993 
44. E-6A N Electronic 5.247 6 0.753 4.568 3.289 
45. EF-111A AF Aircraft 6.913 7 0.087 4.772 2.606 
46. EJS AF Electronic 6.000 6 0.000 5.190 3.324 
47. F/A-18 N Aircraft 5.095 6 0.905 3.768 2.549 
48. F/A-18E/F N Aircraft 8.308 9 0.692 3.783 1.642 
49. F-14 N Aircraft 3.706 4 0.294 2.572 1.871 
50. F-14D N Aircraft 4.621 6 1.379 3.306 2.182 
51.F-16 AF Aircraft 2.489 3 0.511 2.381 2.457 
52. FAAD C2I A Electronic 8.000 8 0.000 6.213 2.302 
53. FAADS NLOS A Missile 5.000 5 0.000 3.452 2.332 
54. FDS N Electronic 13.000 13 0.000 9.444 3.408 
55. FFG 7 N Ship 2.156 3 0.844 1.367 1.405 
56. FMTV A Vehicle 3.690 4 0.310 2.515 1.855 
57. GLCM AF Missile 6.000 6 0.000 4.428 2.678 
58. HARM N Missile 10.000 10 0.000 8.386 3.266 
59. HARPOON N Missile 6.000 6 0.000 4.970 3.312 
60. HH-60D AF Aircraft 5.000 5 0.000 3.619 2.521 
61. I-S/AAMPE AF Electronic 3.318 4 0.682 1.632 1.125 
62. IUS AF Space 7.247 8 0.753 5.196 2.196 
63. JAVELIN A Missile 12.000 12 0.000 6.583 2.273 
64. JDAM AF Munition 7.879 8 0.121 4.401 1.891 
65. JSIPS AF Electronic 8.000 8 0.000 5.383 2.372 
66. JSOW N Missile 15.000 15 0.000 9.642 3.911 
67. JSTARS AF Electronic 15.000 15 0.000 10.756 2.693 
68. JTUAV N Aircraft 7.000 7 0.000 6.263 3.237 
69. KC-135R AF Aircraft 6.000 6 0.000 5.416 3.396 
70. KIOWA A Aircraft 6.000 6 0.000 4.457 2.914 
71. LAMPS N Electronic 13.000 13 0.000 11.186 4.574 
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Lead System Locn Scale Shape 
#    Programs Service    Type Dur- / Dur r S ß 
72. LANTIRN AF Electronic 7.000 7 0.000 5.631 2.764 
73. LASER HELLFIRE A Missile 11.000 11 0.000 8.553 3.769 
74. LBG AF Munition 5.000 5 0.000 3.532 2.129 
75. LCAC N Ship 5.000 5 0.000 4.392 3.889 
76. LHD 1 N Ship 3.321 5 1.679 1.275 1.014 
77. LONGBOW APACHE A Electronic 11.000 11 0.000 7.405 2.296 
78. LONGBOW HELLFIRE A Missile 5.000 5 0.000 3.429 2.022 
79. LSD 41 N Ship 5.000 5 0.000 3.509 2.033 
80. LSD 41 CV N Ship 6.000 6 0.000 4.940 3.514 
81. MAVERICK AF Missile 8.000 8 0.000 6.357 3.975 
82. MCM 1 N Ship 5.000 5 0.000 3.769 2.031 
83. MCS A Electronic 4.000 4 0.000 3.239 2.205 
84. MHC51 N Ship 3.546 4 0.454 2.520 1.815 
85. MK 48 ADCAP N Missile 7.000 7 0.000 5.484 2.894 
86. MK 50 TORPEDO N Missile 15.000 15 0.000 11.668 3.148 
87. MLRS A Munition 3.947 5 1.053 3.335 2.799 
88. MLRS-TGW A Munition 13.000 13 0.000 10.673 3.634 
89. MLS AF Electronic 7.000 7 0.000 6.077 4.176 
90. MMIII GRP AF Missile 7.000 7 0.000 4.571 2.207 
91. MMIII PRP AF Missile 7.000 7 0.000 5.172 2.614 
92. NAS AF Electronic 9.000 9 0.000 6.557 2.330 
93. NAVSTAR GPS AF Electronic 13.000 13 0.000 9.900 2.429 
94. NESP N Electronic 12.000 12 0.000 7.554 1.816 
95. OTH-B AF Electronic 2.698 3 0.302 2.550 2.487 
96. PATRIOT A Missile 16.000 16 0.000 11.990 3.005 
97. PATRIOT(Fire Unit) A Missile 10.000 10 0.000 7.015 2.327 
98. PATRIOT(Missile Seg) N Missile 19.000 19 0.000 14.683 3.845 
99. PEACEKEEPER AF Missile 4.000 4 0.000 2.644 1.768 

100. PERSHINGII A Missile 8.000 8 0.000 6.985 3.739 
101. PHOENIX N Missile 8.000 8 0.000 5.227 2.565 
102. PLS A Vehicle 2.295 3 0.705 1.453 1.560 
103. PLSS AF Electronic 13.000 13 0.000 11.017 4.094 
104. ROTHR N Electronic 6.569 7 0.431 4.337 2.371 
105. RPV A Aircraft 14.000 14 0.000 11.186 4.043 
106. RSIP AF Electronic 7.787 8 0.213 4.540 1.694 
107. SAD ARM A Munition 10.000 10 0.000 7.296 2.514 
108. SCAMP A Space 4.000 4 0.000 3.499 2.775 
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Lead System Locn Scale Shape 
# Programs Service    Type Dur- / Dur r S ß 

109. SFW AF Munition 10.000 10 0.000 6.615 2.202 
110. SGT YORK GUN A Munition 5.821 6 0.179 4.637 2.627 
111. SH-60R N Aircraft 14.000 14 0.000 9.365 2.620 
112. SINCGARS A Electronic 7.426 8 0.574 5.573 2.967 
113. SLAT N Missile 12.000 12 0.000 8.832 2.379 
114. SPARROW N Missile 6.000 6 0.000 4.593 2.127 
115. SRAM II AF Missile 8.000 8 0.000 6.866 4.123 
116. SSN21 N Ship 8.000 8 0.000 7.002 4.310 
117. STINGER A Missile 7.000 7 0.000 5.367 2.684 
118. T-45TS N Aircraft 10.666 13 2.334 7.428 2.917 
119. T-46A AF Aircraft 3.056 5 1.944 3.059 3.185 
120. TACTAS N Electronic 9.000 9 0.000 6.024 2.389 
121. T-AGOS N Ship 5.000 5 0.000 3.678 1.894 
122. TOMAHAWK N Missile 8.997 10 1.003 5.694 1.916 
123. TOW 2 A Missile 4.000 4 0.000 3.419 2.822 
124. TRIDENT II MSL N Missile 7.780 10 2.220 6.689 4.314 
125. TRI-TAC AF Electronic 8.395 10 1.605 5.391 2.043 
126. UGM-84 N Missile 4.789 5 0.211 2.404 1.765 
127. V-22 N Aircraft 19.000 19 0.000 13.165 2.379 
128. WISWAM AF Electronic 11.278 12 0.722 7.270 2.152 
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Appendix B. Service Raw Inflation Indices 

Table 25. RDT&E FY2000 Raw Inflation Indices 

FY Air Force Army Navy FY Air Force Army Navy 

1965 0.2100 0.2123 0.2163 1993 0.9011 0.9038 0.9038 

1966 0.2156 0.2194 0.2221 1994 0.9192 0.9219 0.9219 

1967 0.2225 0.2273 0.2293 1995 0.9366 0.9394 0.9394 

1968 0.2305 0.2350 0.2376 1996 0.9554 0.9582 0.9582 

1969 0.2414 0.2424 0.2488 1997 0.9754 0.9754 0.9754 

1970 0.2546 0.2577 0.2625 1998 0.9822 0.9822 0.9822 

1971 0.2676 0.2693 0.2760 1999 0.9901 0.9901 0.9901 

1972 0.2799 0.2796 0.2887 2000 1.0000 1.0000 1.0000 

1973 0.2923 0.2910 0.3012 2001 1.0150 1.0150 1.0150 

1974 0.3151 0.3082 0.3253 2002 1.0302 1.0302 1.0302 

1975 0.3491 0.3547 0.3608 2003 1.0457 1.0457 1.0457 

1976 0.3732 0.3750 0.3847 2004 1.0666 1.0666 1.0666 

1977 0.3985 0.4057 0.4060 2005 1.0879 1.0879 1.0879 

1978 0.4256 0.4346 0.4336 2006 1.1097 1.1097 1.1097 

1979 0.4614 0.4741 0.4700 2007 1.1319 1.1319 1.1319 

1980 0.5048 0.5243 0.5198 2008 1.1545 1.1545 1.1545 

1981 0.5648 0.5799 0.5749 2009 1.1776 1.1776 1.1776 

1982 0.6168 0.6240 0.6186 2010 1.2012 1.2012 1.2012 

1983 0.6470 0.6489 0.6489 2011 1.2252 1.2252 1.2252 

1984 0.6716 0.6736 0.6736 2012 1.2497 1.2497 1.2497 

1985 0.6944 0.6964 0.6965 2013 1.2747 1.2747 1.2747 

1986 0.7139 0.7160 0.7160 2014 1.3002 1.3002 1.3002 

1987 0.7332 0.7353 0.7353 2015 1.3262 1.3262 1.3262 

1988 0.7552 0.7574 0.7574 2016 1.3527 1.3527 1.3527 

1989 0.7869 0.7892 0.7892 2017 1.3798 1.3798 1.3798 

1990 0.8184 0.8216 0.8208 2018 1.4073 1.4073 1.4073 

1991 0.8535 0.8569 0.8561 2019 1.4355 1.4355 1.4355 

1992 0.8774 0.8826 0.8800 
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