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Abstract 

This thesis explores the benefits of flying in a tight formation, mimicking the 

natural behavior of migratory birds such as geese. The first phase of the research was to 

determine an optimal position for the wingman of a tight formation flight of T-38 Talon 

aircraft using the HASC95 vortex lattice code. A second wingman was then added to 

determine the benefit derived by increasing formation size. The second wingman was 

predicted to derive an even greater induced drag benefit than the first wingman for T-38s 

operating at Mach 0.54 at a 10,000-foot altitude. The predicted values were 17.5% 

savings for the second wingman versus 15% for the first wingman. 

The flight test phase flew two and three-ship formations to validate the 

computational work. The results of the two-ship flight tests showed with 80% confidence 

that the wingman saved fuel in the predicted optimal position (86% wingspan lateral 

spacing). This position yielded actual fuel savings of 8.8% ± 5.0% versus the predicted 

15%. The other lateral positions did not show a statistically significant fuel savings. The 

flight test team felt that the three-ship formation data was inconclusive due to the 

difficulty of trying to fly a stable position as the third aircraft in the formation without 

station-keeping ability. 

The analytical study was accomplished at the Air Force Institute of Technology, 

Wright-Patterson AFB. The flight test was conducted at the USAF TPS, Edwards AFB, 

California. The flight test was performed in three USAF T-38 Talon aircraft modified to 

give accurate fuel flow readings as a gauge of drag savings. 
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AN ANALYTICAL STUDY OF T-38 DRAG REDUCTION IN TIGHT 
FORMATION FLIGHT 

I. Introduction 

Background 

For centuries, humans have observed and tried to interpret the behavior of 

migratory birds such as geese, especially the natural tendency of the birds to fly in a tight 

formation. It stands to reason that birds have learned to work with the laws of nature, so 

the cooperative behavior of formation flight must be mutually beneficial to the flock as a 

whole. Indeed, this benefit is due to the effect of the vortex wake coming from the lead 

bird on the birds in trail. In the military, the formation concept has been used for its 

defensive value to the entire flight, not for fuel savings. The basic rationale for formation 

flight is to position the aircraft in such a way that they can enhance mutual survival in a 

hostile environment. This formation geometry became known as the fighting wing, or 

welded wing, concept (12:196-197). It has a strategic advantage, but offers no drag 

benefit. In today's environment of rising fuel costs and increasing demands on aircraft 

range, it is time to look back at the behavior of birds and apply nature's solution for drag 

reduction in aircraft formations. The results of this research will be extremely beneficial 

for manned flight with automatic station-keeping controllers to alleviate pilot workload, 

or to UAV or UCAV formations. 

The basic premise behind reducing induced drag in tight formations is to use the 

vortex of the lead aircraft to give a slight upwash vector (W) to the wingman's wing, 
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provided the wingman is properly positioned in the formation. The geometry of drag 

reduction is shown in Figure 1-1. 

Figure 1-1. Rotation of Lift and Drag due to Upwash (11:1235) 

Using small angle approximations, where L and D are the original lift and drag 

components and L' and D' are the lift and drag with upwash, W: 

Ljotai =L'cos(Aa)+D'sm(Aa)~ L' + D'Aa-L' (1-1) 

DTotal = D''cos(A«)- V'sin(Aa) ~ D''- L'Aa 

A small angle approximation gives the relation: 

Aa = tan~ 
W_ 

V 

Hence the drag reduction becomes: 

AD 
L'W 

V 

(1-2) 

(1-3) 

(1-4) 
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A finite wing produces a vortex trailing each wingtip. There are various degrees 

of fidelity in modeling the vortex flow behind the lead aircraft. The vortex generates a 

tangential velocity downward (relative to the aircraft) on the inboard side and upward on 

the outboard side. The simplest model is the Horseshoe Vortex Model (HVM) described 

by Hummel (6:3-4) among others. This model assumes a simple horseshoe shaped vortex 

with a span of reduced width, b' (b is the original wingspan). The derivation shows the 

value of b' to be: 

b' = — b, or roughly 3A span. (1-5) 

This model has been widely used, both for tight formation controller design (11) and in 

numerous papers on bird migratory behavior simulation (Hummel (5) and Lissaman and 

Schollenberger (8)). The Horseshoe Model predicts the position described by Equation 

(1-5) to provide the greatest drag savings for the wingman. 

In an attempt to increase the fidelity of the basic HVM, NASA developed a 

Vortex Lattice Code called HASC95 (2). Essentially, it breaks down the surface of the 

aircraft into a user-determined number of horseshoe vortices and predicts the overall 

vortex effect. Blake and Multhopp (3) did an extensive formation flight study comparing 

the HASC95 and HVM results. Their results for a rectangular wing predicted a vortex 

core approximately in line with the wingtip of the generating aircraft. The results for the 

given wing predicted the maximum drag reduction would occur at 5% wingspan overlap. 

This compared with the 22% overlap predicted by the HVM. The HASC95 method 

moved the wingman's optimal position towards the wingtip-to-wingtip, or "welded 

wing," line as opposed to the overlapping wingtips of the HVM. In both cases however, 
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this optimal position was found without due regard to the trim losses incurred by the 

wingman. As the wingman moves from directly behind the leader (assuming wing on left 

side of lead), the rolling moment will go from positive to negative, with the point of 

reversal occurring at about the 3A wingspan point. The HASC95 code prediction for 

optimal position put the wingman very near the point of maximum negative rolling 

moment. However, as the aircraft is trimmed in roll to negate this moment, trim drag will 

increase due to the required aileron deflections. This thesis will examine the effect of 

these deflections. 

An important consideration in the dynamics of the formation is the effect of the 

wingman on the lead aircraft in subsonic flow; if the wingman is close enough he will 

have an upstream effect on the leader. Blake and Multhopp also discussed this effect, 

represented by Figure 1-2. 

'0123 
Downstream Spacing Between Wings, c, 

Figure 1-2. Effect of Streamwise Spacing on Lead/Wing Benefit (3:477) 
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Figure 1-2 shows the spacing required for the wingman to incur most of the 

benefit of the drag reduction. The term, On/oi, is the percentage of the total drag 

reduction obtained by the wingman. The downstream spacing, £ is given in wingspans. 

At G12/O1 = 0.5, the two aircraft are side-by-side, i.e. the downstream spacing is zero. As 

the wingman moves back in the formation, he will enjoy more of the benefit in relation to 

the leader. The figure also gives a safety consideration reference for no lengthwise 

overlap of the fuselages for specific aircraft. For the T-38 Talon, the no-overlap point is 

at about 1.8 wingspans. The flight test portion of this research used a spacing of 2 Vi 

wingspans to give the wingman essentially all of the benefit. This spacing still provided 

good visual cues to the wingman, allowing the wing aircraft to stay in the optimal 

position with respect to the leader. This facilitated the measurement of the achieved 

reduction in drag since the wingman was the primary instrumented aircraft. For the 

formation to reap the benefits of range increases, the lead position would have to be 

rotated. This rotation will be discussed later in Chapter 2. Blake and Multhopp (3:480- 

481) provide an excellent discussion of various procedures to accomplish this rotation, 

preferring the echelon formation. 

Hummel published flight test results for a two-ship of Do-28 aircraft in a 

formation (6:8-12). He found a decrease in power required of about 15%. This 

deteriorated rapidly as the lateral spacing moved away from his optimal position of 

wingtip-on-wingtip separation. Longitudinal separation did not degrade his results 

appreciably until the wingman was four wingspans behind the leader. He did not present 

any data with less than wingtip-to-wingtip lateral clearance. 
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As for the effect of multiple wingmen, Hummel's paper hypothesized the 

formation benefits increase with more wingmen up to a limiting value for an infinite 

formation. Hummel predicted, using HVM, a 10% total power reduction for the two-ship 

formation, versus about 13-14% for a three-ship formation. The infinite number of 

aircraft formation asymptotically yields about 26% savings in power. His results are 

reproduced in Figure 1-3. 

Figure 1-3. Hummel's Theoretical Multi-Ship Formation Savings (6:4) 

In Figure 1-3, the vertical axis, E, is the efficiency factor, which is the 

improvement in range for the n-ship formation. The big, open circle on the horizontal 

axis represents the 7t/4 position, although Hummel did not flight test anything inside of 

his zero wingspan position. This is a different notation from this thesis in that one span 
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in this thesis corresponds to Hummel's zero wingspan. Hummel's -0.22 is therefore the 

7i/4 position. The figure shows the efficiency increasing asymptotically as it approaches 

Hummel's optimal position. This figure was based on a plane vortex sheet as opposed to 

a rolled-up vortex sheet with a core. The rolled-up sheet would exhibit behavior that 

would peak at the optimal point, then show a decrease in the efficiency as one would 

expect. This is discussed in Hummel's work as well. 

Objectives 

The objective of this thesis was to examine the induced drag reduction in tight, 

multi-aircraft formation. The intent was to validate the predictive power of two current 

vortex models (one simple, one complex) by comparing the results to flight test data. In 

an analysis where trim effects were ignored, the models gave two different optimal 

positions. The HVM predicted an approximately 3A wingspan optimal lateral spacing, 

while the HASC95 model predicted an optimal position closer to one wingspan. The 

analysis was restricted to an in-plane vertically (co-altitude), 2V2 wingspan longitudinal 

separation. Therefore, the only variable spacing was in the y-direction, or the lateral 

spacing. All spacings were non-dimensionalized to the wingspan, so that a spacing of 

one was when the wingtips would just touch each other if the longitudinal separation 

were zero (essentially a physically joined, or "welded wing"). To hold this position, the 

wingman had to trim the aircraft to relieve the associated control pressures, thus creating 

increased drag from the deflected ailerons. As the aircraft moved from the center of the 

trailing vortex to this optimal position, it would go from a very strong positive rolling 

moment to a strong negative moment (assuming the wingman was to the left of lead). As 
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it moved through the vortex, it would encounter a position of zero rolling moment. The 

drag reduction at this point is theoretically less than that achieved at the optimal position, 

but the optimal position calculation doesn't include the drag effects introduced by the 

deflected control surfaces to account for lateral retrim. This thesis investigated the 

optimal position of the wingman when the trim losses were taken into account. The flight 

test evaluated four positions to determine which was the best to fly for the wingman. The 

flight test showed that the HASC95 code with the trim drag effects included predicted the 

best of the four evaluated test points. 

The second part of the thesis extends the work to three airplanes (two wingmen) 

using the vortex lattice code HASC95 provided by AFRL at Wright-Patterson AFB. The 

code had not been run in a three-ship configuration, so this required modifications of 

existing code available at AFRL for a third airplane. These results give a theoretical 

prediction of the induced drag reduction benefit achieved by the third aircraft. The code 

predicts what effect the combination of the leader's and the first wingman's vortices has 

on the second wingman (third airplane). 

The final step was the flight test of the three-ship formation using the optimal 

position found in the two-ship flight test and comparing data with the code to determine 

its value as a multi-ship predictor of induced drag effects. Even if the #2 wingman sees 

the exact same benefit as the #1 wingman, the entire formation's range would be 

extended more than a single wingman's by simply rotating the lead aircraft at specified 

times. However, it was shown theoretically that the #2 wingman sees an even greater 

drag reduction benefit than the #1 wingman. Unfortunately, the three-ship flight test 

proved inconclusive for reasons discussed in Chapter 4. 
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The flight test portion was accomplished on specially instrumented T-38 Talon 

aircraft with the ability to accurately measure fuel flow as an indicator of induced drag 

reduction. The formation was a similar aircraft formation, meaning lead and both 

wingmen were T-38 Talons. The flight was manually flown without the benefit of an 

automatic controller, although a chase aircraft was utilized initially to provide position 

awareness to the formation. 

Research Focus and Limitations 

The focus of this effort was on incorporating a model of the T-38 into the 

HASC95 code and using it as a predictor of the effects of the vortex wake on a tight 

formation flight of two and three-ship formations of T-38 aircraft. The constraints of the 

HASC95 program affected the model, as the dimensions had to be altered slightly to 

produce a workable solution. This had a minimal effect on the results and was not 

determined to be a limiting factor in the project. This limitation is discussed in further 

detail in Chapter 2. 

The main focus in the two-ship phase of this research was to incorporate control 

surface deflections into the code and to determine the induced drag savings of the 

wingman flying a trimmed aircraft in the optimal position. This optimal position was 

then compared to the HVM and HASC95 models for use in predicting the most fuel- 

efficient lateral formation spacing. 

The focus of the three-ship formation research was to determine how well the 

HASC95 code predicted the induced drag reduction benefit when applied to multiple 

wingmen. Using the results of the two-ship flight test of the first phase, the three-ship 
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flight test focused on the position deemed optimal for the wingmen. One of the 

limitations in the three-ship case was the ability of the code to run a full-up 3-D model of 

all three airplanes due to internal constraints of the HASC95 program. The program only 

allowed a finite number of elements to complete an analysis of the formation. This 

limitation is discussed in detail in Chapter 2. 

Another limitation in the three-ship case was the current code's lack of ability to 

change the relative angles-of-attack on the three airplanes. They must all be trimmed at 

the same angle-of-attack for the code to run, resulting in different lift coefficients for 

each aircraft. Obviously, the formation dynamics dictate that all three airplanes must be 

operating at the same lift coefficient to maintain position, so a correction factor based on 

biplane theory is used to account for this problem. 

Perhaps the biggest limitation of HASC95 was the additive nature of the code, 

meaning the vortices produced from each element on the aircraft wing were directly 

added to any produced upstream. Because of this, the #2 wingman sees the vortex effects 

of the leader directly, without any ofthat vortex being altered by the #1 wingman. In 

reality, it is highly unlikely the flow would go unaltered as the code predicted. The flight 

test was unable to shed light on how much the vortex is altered from the simple, 

superposition-based, method. 

A final set of limitations came into play during the actual flight test. The first was 

the lack of an automatic station-keeping controller aboard the T-38s. The pilot had to 

manually hold the position using visual references and explore the envelope to feel for 

the maximum rolling moment or no-rolling moment positions. Unfortunately, without 

the benefit of an automatic controller, the pilot was limited in the amount of time spent 
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holding this spot due to the workload required. An automatic controller would have 

required the availability of an onboard sensor, which was beyond the scope of this 

project. Another limitation was the ability during the flight to accurately measure the 

position of one aircraft relative to another. The pilots did this by using visual cues 

briefed and tested on the ground, as well as a chase aircraft providing audio cues over the 

radio as needed. 

Payoff of Research 

With the availability of a formation-hold autopilot and a rotating lead aircraft, a 

formation's range can be extended in a very cost effective way compared to other 

modifications (power plant, airfoil, etc). This gain is solely based on using the laws of 

nature in a more efficient manner. The next chapter will show that HASC95 estimates 

the #1 wingman can achieve a 15% fuel savings and the #2 wingman can expect 17.5% 

fuel savings. If these optimally spaced wingmen were to achieve this reduction in fuel 

flow, the entire formation could extend its cruise range by 11.5%! This is totally free — 

nothing is added structurally, no wonderfully efficient engine has been designed, the 

payload remains the same, etc. The only cost would be a station-keeping system to 

relieve the pilot workload of staying in the optimal position. The fuel savings derived 

from tight formation flight are potentially groundbreaking in terms of economizing long- 

range flights of multiple aircraft such as Air Expeditionary Force (AEF) deployments or 

Unmanned Aerial Vehicle (UAV) formations. The payoff of this research is high. 
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II. HASC95 Analysis 

This chapter deals primarily with the vortex computer code portion of the project. 

The first step was to incorporate the T-38 aircraft geometry into a FORTRAN model that 

could be used by the vortex code. The second step involved comparing this model to 

actual aircraft data to see if the two were similar enough to consider the results credible. 

The third step was determining if a 2-D model would suffice instead of a 3-D model in 

the two-ship run. The 2-D model was more attractive in some aspects as will be 

discussed in the appropriate section. The next step was to run a sweep of the wingman 

through the leader's vortex to find the two-ship, no-trim loss, optimal position, in order to 

validate the model against past research. The fifth step of the project was the three-ship, 

no-trim loss run, to determine the additional benefits derived by the #2 wingman (or third 

ship). Next, the code was modified again to put aileron deflections in, and a two-ship, 

trimmed case was run to examine the effects of trimmed aileron deflections on the 

optimal position. Finally, the code was run again with the second aircraft trimmed, 

allowing the #3 wingman to sweep across an optimally placed #2 wingman. The last two 

steps were the main thrust of this thesis, as neither had been done before in past research 

with a vortex code. 

It is important to note the wingman terminology as far as numbering goes. This 

thesis will refer to the first aircraft as Lead, or the lead aircraft. The first wingman is the 

#1 wingman, while the second wingman is the #2 wingman. This may seem 

insignificant, however it is important to note that the number is NOT the position of the 

aircraft in the formation. The numbers refer only to the sequential number of wingmen. 
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Transforming the T-38 into a HASC95 Model 

The initial step of the project was choosing an aircraft. The T-38 was a logical 

choice due to its availability and operating cost (especially since three were needed to 

form the formation and one to chase). This also turned out to be a fortuitous choice due 

to its very simple geometry. It has no incidence on the wings and a simple planform 

shape that fit quite nicely into the file to be called by the FORTRAN code. 

As was pointed out in the Limitations section of Chapter 1, the geometry had to 

be modified slightly to make the lattice elements line up correctly. The trailing vortices 

from each lattice element are aligned with the element edges, while the control points are 

centered within the element. In order to obtain a good solution, no vortices can overlap a 

control point on an element downstream. For a single aircraft, this can easily be 

accomplished by defining suitable panel break points. For example, to model a wing and 

tail, the wing can be broken into two spanwise panels, with the panel edge corresponding 

to the tip of the tail. If an equal number of spanwise elements are used on the panel 

where the wing and tail overlap, there will be no vortex/control point problem. 

Additional panel breaks can be inserted for fuselage, inlet, and flap segments. To do a 

formation flight analysis, each panel of the entire aircraft must be broken into elements of 

equal width. If the trail aircraft is moved laterally with respect to the lead aircraft in 

integer multiples of this width, the vortices and control points will never overlap. To 

accomplish this, slight adjustments to the actual aircraft geometry were made. For this 

case, an element spacing of 8.5 inches worked out nicely. This gave 36 total spanwise 

elements, which corresponds to a wingspan of 306 inches as opposed to the actual 

wingspan of 303 inches. All other dimensions were much closer than the three-inch 
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deviation on the wingspan. This difference in dimension was negligible to the results. 

The actual geometry of the T-38 is shown in Appendix C and can be compared to the 

model dimensions in Appendix A. 

Another limitation to work with was the number of panels allowed by the 

program, the limit being 20 panels. The addition of flight controls put the model right at 

20. Due to symmetry, this allowed 10 panels for each side. The panels can be seen in the 

model (Appendix A) and include: the 1) tailpipe, 2) elevator, 3) aft-fuselage, 4) outer 

wing, 5) aileron, 6), mid-wing, 7) inner wing, 8) mid-fuselage, 9) engine, and 10) forward 

fuselage. The code used a Leading Edge Suction Multiplier (or SPC) for the boundary 

condition on the panel (2). An SPC of zero implies that the leading edge of the panel 

does not see the flow, whereas a value of one implies that the leading edge of the panel 

sees 100% of the flow. This necessitated dividing the wing into four panels. The inner, 

mid, and outer wings get an SPC of one, along with the forward fuselage, and engine. 

The tail would have been logical to separate into two panels so it could get an SPC of one 

outboard of the fuselage line and a zero inboard of the line. The panel limit of 20 didn't 

allow this, so the tail is set with a boundary condition, or SPC, of .45, which is the area of 

that panel that sees the flow. 

The wing file for the aircraft build-up is shown in Appendix A along with the rest 

of the code. The mt38a.f 'file reads the wing file before the hasc (the vortex code) 

subroutine is called. The prisrf.f file is the code that breaks out the hasc data into the 

wing and lead aircraft and calculates the data of interest, i.e. lift and drag coefficients. 

The actual aircraft model in 2-D is shown in Figure 2-1. The 3-D model in formation is 

shown in Figure 2-2. The 2-D versus 3-D issue will be discussed later in this chapter. 
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Figure 2-1. 2-D Model of T-38 for HASC95 Input 

100 600 

Figure 2-2. The 3-D Model in Formation with Spacing = 1 
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Validation of the Model Against Actual T-38 Data 

The next step in the process was to compare model predictions to actual T-38 

data. This was done to confirm the theoretical data acquired from the code had some 

credibility when compared to the actual flight test. The best way to accomplish this task 

was to simply run the model as a single ship at a given condition. From the author's 

experience flying formation in the T-38, an altitude and airspeed of 10,000 feet and 300 

KIAS was chosen. This was a reasonable envelope to fly the formation due to the safety 

concerns of vortex ingestion into the T-38 engine at higher altitudes. This condition 

roughly translates to an angle-of-attack of three degrees and a Mach number of 0.54, 

which were the values used for the HASC95 analysis. The Special Program Office at 

Kelly AFB provided the T-38 Simulator Manual (7), which contained look-up tables for 

the Undergraduate Pilot Training simulators. Using these numbers, the lift and drag of 

the model were compared to the actual aircraft at the same conditions. The results were 

very close: 

Table 2-1. Comparison of Simulator Data to HASC Model 

SIM DATA HASC MODEL % DIFF 

CL = 0.2342 CL = 0.2344 0.09 % 

CDi = 0.0059 CDi = 0.0053 10.1% 

As can be seen from the data, the lift coefficient, CL, is almost perfect. The drag 

coefficient, CD, is further off, so the numbers were examined a different way to see if 

they make sense. Numerous textbooks such as McCormick (9:185-195) give the well- 
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known equation for induced drag from basic wing theory: 

2 

C„=fi±^- (2-1) 
D' KAR 

AR is the aspect ratio, which is 3.75 for the T-38, while eis an efficiency factor for non- 

elliptical wings. Using this formula with the HASC95 data, the elliptical wing at the 

same CL would give CD = 0.0047, so the efficiency factor is about 0.13, which is a 

realistic number for the airplane.   The higher number for the simulator data could be a 

factor of a non-parabolic drag polar curve. In the absence of actual T-38 data, data for 

the F-5B was obtained from the Air Force Research Lab (1). The F-5B, aerodynamically, 

is virtually the same aircraft with slight modifications. According to the data, there is a 

CL breakpoint around 0.5 Mach, resulting in a steeper CD curve at this point and beyond. 

Since this divergence occurs before the Mach = 0.54 point where the data was being run, 

it was most likely a factor in the accuracy of the absolute drag value. This may be why 

the simulator numbers don't agree better with the HASC95 numbers. The code did not 

account for this factor, but the results should be valid as long as they are used to predict 

relative savings, not exact drag numbers. 

The rest of the coefficients (side force, pitch moment, etc), while important, are 

very difficult to compare since a 2-D representation of the aircraft was used. For 

instance, without a vertical tail, the side force prediction was meaningless as a data point. 

The basic idea of comparing the data to the model was to get a reasonable idea of the 

predictive capability of the code as far as lift and drag were concerned. Overall, the 

computer model of the T-38 provided accurate results in approximating relative data like 

drag reduction, while it may not have done as well predicting absolute values like actual 
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induced drag. Since this research was only interested in the relative savings, the model 

was sufficient for the theoretical formation runs. 

Two-Dimensional Versus Three-Dimensional Model 

The third step in the theory build up pertained to the fidelity of the model in two 

dimensions versus the three-dimensional model. The three-dimensional model was 

actually a horizontal plane and a vertical plane, so in reality, it was not a true 3-D 

depiction of the aircraft. While it lacked roundness, the 3-D model did allow for a 

vertical tail and the ability to calculate side forces resulting from the tail. It also allowed 

for the analysis of the formation in a fully trimmed case, i.e. rudder, elevator, and 

ailerons. From this discussion, it seems the three-dimensional model should have been 

the model of choice. There was a very good reason it was not, however. 

Looking back at Figure 2-1, one can see the individual little squares in the grid. 

While the HASC95 program calls them panels, the nomenclature used here refers to 

panels as the 20 bigger surfaces, so they were termed elements. There were 664 elements 

on the 2-D model. The basic premise behind the HASC95 program was that it calculated 

a horseshoe vortex for each one of the elements depending on the geometry and boundary 

conditions. The program was not set up to run any system with more than 2000 elements. 

If the number of elements were reduced, the fidelity of the model suffered, especially if 

they were taken out of the wings. The 2-D, three-ship model used 1992 elements, or 

horseshoe vortices, for the calculation. Obviously, if the vertical plane were added to 

make the model 3-D, it would have far exceeded the 2000 element limit. 

One solution to this problem was to run the two-ship phase of the program with 
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the three-dimensional model and the three-ship phase with the two-dimensional model. 

This was not done since the optimal position results of the two-ship case were used to run 

the three-ship case. To see if this was reasonable, the 2-D and the 3-D cases were 

compared. 

The results of running the two cases showed almost no distinguishable difference 

between the two models as far as the drag savings went (drag calculations are discussed 

in later sections). Figure 2-3 shows the difference in rolling moment between the two 

cases. Again, there is almost no difference between the two models. 
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Figure 2-3. Comparison of the 2-D versus 3-D Model: Rolling Moment 
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Based on the results of comparing the two cases side-by-side, it can be seen that 

little was lost by going to the two-dimensional model for the rest of the project. Later 

research may want to investigate side forces, yaw coefficients, etc. and would require an 

enhanced model at the expense of running only two aircraft or a less accurate model. 

Another option would be to modify the HASC95 code. The last option was beyond the 

scope of this project. 

An important consideration in looking at Figure 2-3 was the roll stability of the 

wingman in the formation. The wingman (positioned to the left of Lead) will have 

positive stability when dQ/dy > 0, where Q is the rolling moment coefficient. From the 

figure, this means the wingman would be stable in roll from zero wingspan (i.e. as in air 

refueling) up to about 1/3 wingspan spacing, and again at one wingspan and greater 

spacing. A disturbance in lateral spacing outside of these points would introduce a 

rolling moment away from the direction that would return the wingman to the desired 

position. Therefore, the wingman was unstable in roll between these two points, making 

it challenging for the pilot to stay in the position. As pointed out previously, an 

automatic controller would immensely help the pilot in a tight formation geometry. 

Optimal Position Determination: Two-Ship, No-Trim Losses 

The next step entailed taking the model of the T-38 Talon and putting it into a 

two-ship formation to evaluate the optimal position, while neglecting the effects of 

retrimming the aircraft. The rolling moments were also evaluated and compared with 

past data such as Blake's rectangular wing formation model (3). 
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The basic idea of running the sweep was to move the wingman in increments of 

8.5 inches from directly behind the lead aircraft out to 1.5 wingspans, or 459 inches 

(38.25 feet). The aircraft were kept in the same plane and at the same streamwise 

distance of 2 Vi wingspans (or 63.75 feet) from wingtip-to-wingtip. A FORTRAN code 

was written with a call to the HASC95 vortex code embedded in the lateral sweep loop. 

For each spacing position, the aerodynamic coefficients were written to a separate file to 

be plotted after completing the run of the wingman through the entire sweep. 

The biggest challenge in this phase was evaluating the numbers for the lift and 

drag results. The problem was that the two aircraft came out with differing lift 

coefficients, CL (see Appendix B for data points). This obviously can't be the case in a 

real formation, as each aircraft must be operating at the same CL (assuming the same 

weight). If the lift coefficients are not the same, the formation dynamics (i.e. spacing and 

altitude between aircraft) could not be maintained. This issue of differing lift coefficients 

is nothing new. Biplane researchers were looking at this phenomenon as early as the 

1920s. Munk's stagger theorem, summarized in Prandtl's NACA paper (11), resolved 

this problem. From Munk's work, the induced drag for a wing in a system of aircraft is: 

CA/ =CA/. +XVÄ (2-2) 
"V 

The subscript, o, indicates the aircraft in single-ship flight. The summation is the effect 

of the other aircraft in the formation on the wingman. A quick glance at the equation 

shows that a negative value for K,j is desirable for reducing the induced drag of the 

wingman. The equation obviously allows for the differing lift coefficients of each 

aircraft. All of the following equations go against the wingman numbering system used 
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in this report to avoid using the letter L for Lead and Lift at the same time. Therefore, in 

the equations, the number is the actual aircraft position (Lead is 1, #1 wingman is 2, #2 

wingman is 3). 

Using Munk's equation, the induced drag for the wingman becomes: 

K0 is the correction factor from the wing theory induced drag equation for a single-ship 

aircraft. For the 2-D T-38 model, HASC95 gave K0 = .09646. Kj2 is the correction factor 

for the effect of the #1 aircraft on the #2 aircraft. The drag reduction is simply the ratio 

of Kj2 to K0, or percent savings = Kj2/K0. Solving for Kj2 gives: 

Kn = 7—^  (2-4) 

All of the data in the above equation can be pulled out of the code output, divided by K0, 

and plotted to evaluate the drag savings. 

It was useful to look at the case where the lift coefficients are the same to make 

sure the ratio does indeed give the drag savings. The term K0 is independent of the lift 

coefficients as it is the result of the drag polar curve for the single-ship aircraft. The drag 

ratio of the wingman to the leader is: 

^D,2 ^o^i,2    "*" ^12^1,1^1,2 

CD,\ KoCL,\ 

If CLJ = CL,2, equation (2-5) reduces to: 

(2-5) 

CD,\ Ko Ko 
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From examining equation (2-6), the drag saving was easy to see as the aforementioned 

ratio: 

Induced Drag Saving = K12 / K0. (2-7) 

In order to see an actual drag saving, the K12 correction factor must be negative. A 

positive Kj2 implied that the wingman was in the leader's downwash and was 

experiencing an adverse effect of flying in the formation. If the Kj2/K0 ratio was -0.6 for 

instance, the drag saving would be 60%. The ratio of the induced drag was indeed 

CD,2/CD,J = 0.4, or 40%, which agreed with the 60% savings. 

Figure 2-4 and Figure 2-5 show the results of running the two-ship, no-trim loss 

model. 
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From the figures above, it was evident that the results paralleled past results with 

different wings, i.e. Blake (3:478,483). The optimal, no-trim loss position was 

approximately 0.9 wingspan separation, although there was not a big difference between 

0.8 and about 0.95 spacing. However, this was also the range where the rolling moment 

increased to its maximum negative value (rolling away from lead). The rolling moment 

was zero at about the 3A wingspan point, which translated to a saving of about 55% as 

opposed to the saving of 62% at the best no-trim loss point. It was important to note this 

was a decrease in induced drag only, not in total drag (parasite, pressure, etc.). This was 

where previous research had stopped. The next two steps were to incorporate another 
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wingman, and to include the effect of aileron deflections for retrimming the wingman's 

aircraft. 

Drag Savings for a Three-Ship with No Trim Loss 

The next step in the process was to build up the code to take a third airplane. As 

was discussed earlier, there was a limit on the number of elements the code could handle. 

For this analysis, the wingmen were again swept across the vortex using a single 

formation spacing between Lead and the #1 wingman and the #1 and #2 wingmen. The 

lift coefficients for the three aircraft again came out all different, so they had to be 

corrected as in the two-ship case. The resulting equation, derived from equation (2-2), 

for the induced drag on the #2 wingman is: 

Substituting for CD.SO- 

^D,3 — ^o^£,3    """-^-13^i,l^L,3 """-^-23^L,2^L,3 i^~") 

The coefficient K0 remains the same in the three-ship case as it was in the two-ship case 

since single-ship dynamics were the same. The effect of the #1 wingman on the #2 

wingman in isolation was the same as the effect of Lead on the #1 wingman in the two- 

ship case since they were in the same relative position, therefore Kj2 = K23. Solving for 

Kj3, the effect of lead on the #2 wingman, gives: 

X13  = 77-7;  (2"10) 

Now the effect of the lead aircraft on the #2 wingman is simply Kis/K0 and the 

cumulative effect of both aircraft on the #2 wingman is: 
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Drag Savings for #2 wingman =      n -     n       12 

K„ K„ 

Figure 2-6 gives the results of the three-ship, no-trim loss analysis. 

(2-11) 
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Figure 2-6. Three-Ship, No-Trim Case 

The most important result of the three-ship case was that the #2 wingman 

received an additional benefit over the #1 wingman when the spacing was close enough 

for the #2 wingman to reap some benefits of the leader's vortex. The leader's effect on 

the #2 wingman started to disappear at a spacing of one wingspan, which meant the #2 

wingman was two wingspans away from the leader. Any spacing larger than that and the 

#2 wingman's savings approached the savings of the #1 wingman since lead's vortex was 

essentially not affecting the #2 wingman anymore. The results of the simulation showed 
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that the #2 wingman had a large, flat area of the curve from about 0.75 to 0.95 wingspans 

in which the #2 wingman derived about the same benefit. From Figure 2-6, the benefit 

was about 67% at a spacing of 0.8 wingspan. The #1 wingman had a savings of about 

58% at the same spot. At 0.9 wingspan, the #2 wingman saw a 65% savings, versus a 

62% savings for the #1 wingman. At about 0.97 wingspan, both of the wingmen 

experienced a 60% saving. 

It was interesting to see the bottom of the drag reduction curve slip to the left for 

the additional wingman. It begs the question as to whether or not the curve will continue 

to the left as more aircraft are added. This case was not run due to the limit on the 

number of finite elements, but it should not change significantly for a fourth aircraft. 

This is because the #3 wingman would see the vortex from #1 and #2 as seen in Figure 2- 

6, but the effect of the lead aircraft would not be a factor as the last wingman would be 

spaced too far laterally spaced to derive any benefit from lead's vortex. 

One of the limitations of the program was that it would not account for the 

leader's vortex being altered by the #1 wingman before reaching the #2 wingman. For 

this reason, these results were additive in nature, as was discussed earlier. Again, flight 

test proved inconclusive on this issue as discussed in Chapter 4. Another factor not 

accounted for was the rolling moment imparted to the wingman from the vortex and the 

trim losses to counteract it, which is the subject of the next section. 

Two-Ship Analysis with Trim Losses Included 

The next step was to include the trim drag caused by the aileron deflections 

required of the wingman to fly in a laterally trimmed condition in the leader's vortex. 

2-16 



Modifying the wing subroutine for the deflections was easy enough as the code could 

accept an angle of incidence for a panel. The hard part of this analysis was the time- 

consuming task of deflecting the aileron, running the sweep over a limited range, then 

interpolating between points to find the zero moment position. The T-38 aileron 

deflections are limited to 14°. In actuality, the greatest deflection (around 0.3 wingspan) 

was only 9°. The greatest deflection for the negative moment was 2°. Linear 

interpolation was used to find the zero moment case using 0.25° aileron deflection 

increments. The results shifted the curve around the zero moment point near the 3A 

wingspan lateral separation point, as expected. The results are shown in Figure 2-7. 
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The results show the new optimal position for the T-38 model to be at 0.86 

wingspan separation where the induced drag reduction is 59%. This result was important 

because in previous work the two optimal positions were assumed to be 7t/4 wingspan by 

Pacther (10) and Hummel (6) or nearly one wingspan as found by Blake and Multhopp 

(3). The results showed the best point was somewhere between the two previous points 

for the T-38 wing geometry. Another interesting point to look at was how much the 

curve shifted up as the lateral separation was reduced. The breakeven point shifted from 

0.5 wingspan to 0.6 wingspan separation due to the large aileron deflections required to 

trim this rolling moment. It resulted in a tighter envelope for the wingman to stay in to 

optimize drag reduction. 

An important factor to remember was that this analysis included only trimmed 

ailerons. The real aircraft would also need to be trimmed with the rudder for yaw 

moments and the elevator for pitch moments. A pitch trim calculation at the zero rolling 

moment point was accomplished and found to yield nearly the same drag savings. It was 

not investigated further since the pitch moment does not change much in the region of 

interest from 0.7 to 1.0 wingspans. The flight test bore this out as very little pitch trim 

relative to lateral trim was needed as the wingman moved into the vortex. The yaw 

moment could not be analyzed using a two-dimensional airplane model, so the effects of 

a trimmed rudder were not considered. Again, flight test showed little tendency for the 

aircraft to be out of trim directionally when stable in the vortex positions. Both pitch and 

yaw moments may be something to investigate in a future project with a 3-D model. 
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Three-Ship Analysis with Trim Losses Included 

The last HASC95 run was set up with the #1 wingman in the optimal 0.86 

wingspan separation position, allowing the #2 wingman to sweep from directly behind 

Lead, to positions between Lead and #1, then to the outboard of the formation. The 

following plots show the results of these runs. There were numerical problems directly 

behind the #1 wingman, thus the gap in the data. Figure 2-8 shows the entire sweep, 

while Figure 2-9 shows only the outboard portion of the sweep. 
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Figure 2-8. Three-Ship Case with Optimally Placed #2 
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Figure 2-9. Blow-Up of Figure 2.8 

The overall drag savings ratio became negative (i.e. beneficial) at 0.3 wingspan 

separation due to the larger influence of the Lead aircraft on the #2 wingman. There was 

no spot between Lead and the #1 wingman where the #2 wingman derived any benefit. 

The best spot for the #2 wingman relative to Lead was at zero (with respect to the #1 

wingman), which was actually where the #2 wingman was at the 0.86 wingspan 

separation point from Lead, as expected. It is very important to remember that this 

analysis optimized the position of each aircraft for its own drag reduction - it was not 

meant to represent the optimal overall formation benefit. The ability to optimize the 

aircraft in a formation with unequal spacings would require a code that was capable of 
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accurately predicting the alteration of the vortex by the #1 wingman. Since the HASC95 

code couldn't do this, each aircraft was optimized separately as to what was the best 

position for its own drag saving. It was then assumed that this was the best geometry for 

the overall formation. 

The #2 wingman derived a benefit of approximately 70% according to Figure 2-9. 

This was without the trim penalty however, so in reality the drag savings would be about 

2-3% less, as discussed in a previous section. This was due to the rolling moment that is 

shown in Figure 2-10. By trimming the #2 wingman, it can be expected that drag savings 

would decrease to about 67%, which was the number used for the following section. 

0.025 

0.02 

UJ  0.015 
O 

LU 
O o 

LU 

o 

0.01 

0.005 

2 -0.005 

O   -0.01 

-0.015 
-1    -0.8 -0.6 -0.4 -0.2    0     0.2  0.4   0.6   0.8    1 

LATERAL SPACING 
1.2   1.4 

Figure 2-10. Rolling Moment of #3 Wingman 

2-21 



Total Drag Savings 

As pointed out previously, the drag saving was only with respect to induced drag, 

not total drag. The total drag includes friction drag and pressure drag. For instance, in 

the two-ship case, the 59% saving in induced drag had to be incorporated with friction 

and pressure drag to get a meaningful total drag reduction result. Using the simulator 

look-up tables (7), the friction and pressure drag were estimated at CDO = 0.015. The total 

saving then becomes: 

CDtota     CDo+(l-DS)xCDUss 

c c   +c 
(2-12) 

DS is the Drag Saving for the second ship and CDi,ss is the single-ship induced drag 

coefficient (.0053 for the T-38 HASC95 case). With the second airplane seeing a 59% 

saving, the total drag relative to a single airplane becomes: 

CDtota     .015 + .41X.0053 

Cn_, .015+ .0053 
• = .85 (2-13) 

'' Dtot 

Thus, the total drag saving for the second ship in a formation is about 15%, a substantial 

savings. A similar application of Equation (2-12) shows the #2 wingman reaping a 

benefit of 17.5%. 

Implementation Considerations 

The fuel savings don't mean much for range if the formation is not rotated as the 

fuel burns off. If there were no rotation, the wingmen will simply be limited to the range 

of the leader, although the wingmen will land with more fuel. The total drag savings are 

simply the two values above (15% for #1, 17.5% for #2). The T-38 fuel savings 

associated with these drag savings are essentially one-to-one, therefore the fuel savings 
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are also 15% and 17.5% for this analysis. The real range benefit, and thus fuel benefit, 

comes if the lead ship is rotated to the back of an echelon formation after an incremental 

time. Table 2-2 shows how the fuel savings of the wingmen affects the cruise range of 

the formation. Each aircraft started at cruise with a non-dimensional fuel quantity of 10 

units and burned one unit of fuel in one unit of time in a single-ship case. The leader was 

rotated after burning one unit of fuel in the rotation case. The number in parenthesis is 

the ship number, not the wingman number (#1 is lead, then #2 and #3) and is provided for 

bookkeeping purposes. If the leader was not rotated, the final cruise time will be 10 units 

of non-dimensional time. The Time column shows a prefix of End 1, meaning the end of 

time 1, or Start2, meaning the start of time 2. These two times are the same, but the start 

time shows the aircraft after the rotation. For the rotation, it makes the most sense for the 

leader to drop to the back of the formation, as it requires backing off the thrust instead of 

increasing thrust (and fuel burn) trying to catch the front of the formation if the last ship 

were to rotate up to lead. Therefore, Lead becomes #3, #3 becomes #2, and #2 becomes 

Lead. Table 2-2 assumes the #1 wingman saves 15% in fuel while the #2 wingman saves 

17.5%. 

Table 2-2. Effect of Rotating Formation Positions 

TIME LEAD #2 WING #3 WING 

Start 1 10.00 (#1) 10.00 (#2) 10.00 (#3) 

Endl 9.00 (#1) 9.150 (#2) 9.175 (#3) 

Start2 9.150 (#2) 9.175 (#3) 9.000 (#1) 
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End2 8.150 (#2) 8.325 (#3) 8.175 (#1) 

Start3 8.325 (#3) 8.175 (#1) 8.150 (#2) 

End3 7.325 (#3) 7.325 (#1) 7.325 (#2) 

Start4 7.325 (#1) 7.325 (#2) 7.325 (#3) 

End4 6.325 (#1) 6.475 (#2) 6.500 (#3) 

Start5 6.475 (#2) 6.500 (#3) 6.325 (#1) 

End5 5.475 (#2) 5.650 (#3) 5.500 (#1) 

Start6 5.650 (#3) 5.500 (#1) 5.475 (#2) 

End6 4.650 (#3) 4.650 (#1) 4.650 (#2) 

Start7 4.650 (#1) 4.650 (#2) 4.650 (#3) 

End7 3.650 (#1) 3.800 (#2) 3.825 (#3) 

Start8 3.800 (#2) 3.825 (#3) 3.650 (#1) 

End8 2.800 (#2) 2.975 (#3) 2.825 (#1) 

Start9 2.975 (#3) 2.825 (#1) 2.800 (#2) 

End9 1.975 (#3) 1.975 (#1) 1.975 (#2) 

Start 10 1.975 (#1) 1.975 (#2) 1.975 (#3) 

End 10 0.975 (#1) 1.125 (#2) 1.150 (#3) 

Start 11 1.125 (#2) 1.150 (#3) 0.975 (#1) 

End 11 0.125 (#2) 0.300 (#3) 0.150 (#1) 

Start 12 0.300 (#3) 0.150 (#1) 0.125 (#2) 

Endl2.15 0.148 (#3) 0.021 (#1) 0.000 (#2) 
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Figure 2-11. Fuel Savings without Rotation 
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Figure 2-12. Fuel Savings with Rotation 
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From the table and figures above, we can see that the formation's cruise range has 

increased a significant 11.5%! Again, this is a FREE reduction in fuel. Although this 

analysis was accomplished on T-38s, it could easily be applied to large aircraft as well 

using HASC95 as a predictive tool. An interesting follow-on study to this thesis would 

be to incorporate large aircraft geometry into the code and look at the predictions. 

Another interesting follow-on would be to look at dissimilar aircraft such as a formation 

with a tanker lead and a fighter formation of wingmen. It could also increase a fighter's 

range while providing cover to a bomber acting as the lead aircraft. This is discussed 

again in Chapter 5. 
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III. Flight Test Setup 

Overview 

The analytical portion of this thesis dealt with drag savings because the HASC95 

code produced drag numbers. The flight test portion of the research used fuel savings, 

since that was directly measured by the instrumentation system on the aircraft. The fuel 

savings could then be converted to drag savings using an engine model, although since it 

is essentially a one-to-one conversion, they can be considered to be the same thing. 

The flight test had two phases. The first phase was to determine the formation 

position of a wingman that provided the best fuel savings. This phase was flown with a 

two-ship formation of Northrop T-38 Talon aircraft. The wingman explored four discrete 

points in the vortex behind the leader and data were post-processed to determine the 

optimal position. The second phase determined the effects of adding an additional 

wingman. This phase was flown with a three-ship of T-38s. The formation was flown 

with the optimal formation position as determined by the two-ship flight tests. The fuel 

savings of each wingman was compared to determine if the second wingman derived any 

additional fuel savings benefits over the first wingman. All fuel savings comparisons 

were made by comparing the fuel flow in the vortex to the required fuel flow for the same 

aircraft flying outside the vortex in free stream air. The test team also gathered 

qualitative workload data from flying in the formation positions. The workload 

assessment was not an objective of the test team, although it offered additional insight 

into the operational feasibility of flying the vortex position. 
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The test team consisted of four pilots (two C-5, one F-16, one B-l), a weapons 

system officer (B-l), and a flight test engineer. The team was put together from the 

USAF Test Pilot School (TPS), Class 01A. The author of this thesis was the Program 

Manager for the project. The project was known as TALON GAGGLE. Much of this 

information is also presented in the test team's final report (13). 

It is worthwhile to review the numbering scheme for the wingmen. The aircraft in 

the formation are referred to as lead, #1 wingman, and #2 wingman. For example, the #1 

wingman is the second aircraft in the formation, flying in the lead's vortex. 

The flight test evaluated four different formation positions. Two of the positions 

were theorized to be optimal in Hummel (6) and Blake (3), another was the position 

found in the previous chapter (the test team called it the Wagner optimal point), and a 

fourth that bounded the investigation. For this flight test, the aircraft were kept in-plane, 

or co-altitude, with a constant longitudinal (downstream) spacing of 2Vi wingspans, 

which equated to an 11.5 feet nose-tail separation for the T-38. This downstream spacing 

gave the wingman essentially all of the assumed benefit and provided good visual cues to 

the wingman for maintaining position. The four different positions were defined as the 

'vortex' positions. The vortex positions are described in Table 3-1 and illustrated in 

Figure 3-1. The test aircraft consisted of T-38As and a T-38C. 

Table 3-1: Lateral Positions 

Test Point Wingspan Separation 
(percent) 

Wing Overlap 
(feet) 

Description 

A 75 6.3 Hummel optimal point 
B 86 3.6 Wagner optimal point 
C 100 0 Blake and Multhopp optimal point 
D 114 -3.6 Outer bound 
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11.5 ft 
Nose-Tail Separation 

Figure 3-1: Lateral Separation Definitions 

The T-38 was used for this project because of the ready availability of four 

instrumented aircraft at USAF TPS. Three T-38A's and one T-38C were fully 

instrumented, which eliminated the need for modifications. The T-38 also had another 

advantage, in that all the test team pilots had previous experience in formation flying in 

the T-38, although not in the vortex positions. This allowed for a quick build-up 

approach to flying in the vortex positions. To maintain the proper vortex positions, the 

T-38's were fitted with special tape markings on the fuselage, wing, and the stabilator. 

These tape markings provided the necessary visual references to identify and maintain the 

proper vortex positions. Although the tape allowed the pilot to get close to the position, 

the pilot was never quite sure if it was exact due to the absence of a relative position 

sensor. 

All testing was conducted at the Air Force Flight Test Test Center (AFFTC), 

Edwards Air Force Base, California in October 2001.   The test team flew seventeen T-38 
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sorties (21.9 hours) including two-ship, three-ship, and calibration formation flights as 

well as chase and photo support flights. Three ground tests verified instrumentation and 

determined aircraft formation references. 

Test Procedures 

None of the pilots had previous flying experience in the vortex position, therefore 

the test team decided to follow a build-up approach. The first two calibration flights 

consisted of a two-ship of T-38's plus a chase ship, also a T-38. The chase crew verified 

that the wingman flew the proper vortex positions, and coached the wingman if required. 

The chase ship provided an opportunity to spot check the tape markings on the airplanes 

for the different vortex positions, while the wingman had a chance to practice flying in 

the four vortex positions. The test team then proceeded with two, two-ship data flights to 

evaluate which vortex position rendered the best fuel savings. Next the test team 

executed two, three-ship flights, in which the wingmen flew in the previously determined 

optimal vortex position. During the three-ship flights, the wingmen swapped positions 

multiple times in order to get the primary data aircraft into each position. This was 

important because the resolution of the C-model data was much higher than the A- 

model's data, making it the primary data aircraft. 

Since this was a new flight test procedure, the test team developed a special flight 

test technique (FTT) to gather data. The procedure for the FTT started with the 

wingman, or wingmen, in the route position. This position was defined as a 15-50 feet 

lateral spacing, with the wingmen slightly aft of lead. The lead aircraft stabilized on the 

test conditions, nominally 300 ± 2 KIAS and 10,000 ±100 feet pressure altitude. The 
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wingman then moved into the vortex after clearance from the leader. The formation then 

flew straight and level, unaccelerated flight at the test condition previously stated. Once 

the wingman was stable in the vortex, the throttles were not moved in order to collect a 

stable cruise point of approximately 20 seconds. At the conclusion of each data run the 

wingman recorded the airspeed, Vvortex, and called for the formation to take spacing. The 

lead then gently moved away from the wingman, effectively taking the wingman out of 

the vortex. The wingman would then slow down out of the vortex while maintaining 

altitude, heading, and power setting. The wingman recorded the new stabilized airspeed, 

Vcruise, when stable at the new cruise point (this was the Airspeed Method). Finally, the 

wingman readjusted the throttles for a cruise point (30 second duration target) at the same 

airspeed flown in the vortex, Vvortex, to collect fuel flow data (this was the Fuel Flow 

Method). 

The in-the-vortex portion of the data run consisted of at least a 20 second stable 

point before the lead moved away from the wingman. While data were recorded during 

the entire run, only the 20 second stable points designated by the wingman were used for 

data reduction. Recorded UHF radio calls and cockpit interphone were used as the 

primary means of correlating data. In addition, handheld data and timing information 

collected by the flight test engineer were used to reference the data on the data 

acquisition system (DAS) tape. Due to inadequate resolution of the onboard fuel 

counters, handheld data were found to be unsuitable for data analysis and DAS-recorded 

data were used exclusively for data reduction. 

Three-ship formation test flights were flown using the optimal location, position 

B, as was determined in the two-ship formation test flights. The same FTT was used to 
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collect data during the three-ship flights. Specific procedures were developed to safely 

orchestrate the formation changes, position swaps, and data collection. At the conclusion 

of each data run, the wingmen independently noted their airspeeds, Vvortex- Then both 

wingmen determined Vcrujse. Finally, the two wingmen independently adjusted their 

throttles to return to VVOrtex, thus collecting the out-of-vortex fuel flow data. The primary 

data aircraft, the T-38C, was mostly flown as the #2 wingman but was occasionally 

swapped into the #1 wingman position. 

3-6 



IV. Flight Test Results 

Overview 

The results of the two-ship flight tests show with 80% confidence that the 

wingman saved fuel in position B (86% lateral spacing). This position yielded fuel 

savings of 8.8% ± 5.0%. The other positions did not show a statistically significant fuel 

savings. The results were inconclusive as to the best of the four positions for the 

wingman to fly since none of them are statistically distinct. Although not statistically 

better than the other positions, the test team felt that position B tended to be the best 

position and therefore chose it to fly the three-ship formation. 

The three-ship formation did not yield the expected results. Not only was there 

no significant difference between the two wingmen, neither wingman showed any 

statistically significant fuel savings. The test team felt that the three ship formation data 

was inconclusive due to the difficulty of trying to fly a stable position as the third aircraft 

in the formation. While the pilots felt that flying as a lone wingman was relatively easy, 

they all thought that trying to fly as the third aircraft introduced errors by compounding 

position errors of the #1 wingman. These position errors were most likely in altitude (not 

quite co-planar) since any small change by the second aircraft was magnified to the third 

aircraft. The stability of the position also challenged the pilots in the three-ship 

formation. The #2 wingman had to wait to call a point stable until the #1 wingman was 

stable in position B. After both wingmen were stable, they had to stay on conditions 

together for at least 20 seconds, which was hard enough for one airplane to do in the two- 
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ship formation. The three-ship formation has the potential for excellent results, however 

accurate station-keeping is needed to achieve them. 

Two-Ship Data 

The objective of the two-ship flight test was to evaluate the fuel savings for four 

different vortex positions. The only position that showed statistically significant savings 

with 80% confidence was position B, the predicted optimal point. The measured fuel 

flow savings were 8.8% ± 5.0% compared to the predicted fuel flow savings of 15% as 

shown by the HASC95 analysis. The predicted results assume the upwash vector is 

acting perpendicular to the wing, so if the wingman were not in the exact position, some 

of the benefit would be lost. Since it was hard to tell if the aircraft were in-plane or even 

the effects of the vortex sinking as it left the lead aircraft, the actual results were not as 

large as the computational results. The primary result of the first phase was confirmation 

that the predicted position produced measurable improvement in fuel flow. The other 

three positions did not yield statistically significant differences in fuel savings. Although 

the means of the other three positions showed positive savings, they were not statistically 

significant when compared to the out-of-vortex cruise points. The data are summarized 

in Figure 4-1, Figure 4-2, and Table 4-1. Figure 4-1 shows the fuel flow savings 

measured with both the "fuel flow" and "airspeed" methods, while Figure 4-2 shows the 

average of the results. The data reduction for these techniques is reported in detail in 

Appendix D. The results were inconclusive as to which of the positions was the best 

since the four positions did not yield statistically significant (80% confidence) 

differences. It is important to note that these data were for one altitude, configuration, 
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and airspeed. The program did not explore the effects of flying at different altitudes, 

configurations and airspeeds. All the flight hours were dedicated to increasing the 

fidelity of the data at the one test condition. 
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Fuel Flow Comparison 
Two-Ship Sortie, Wingman Position 
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Figure 4-2: Average Fuel Flow Comparison Between Lateral Positions 

Table 4-1: Two-Ship Results for Each Lateral Position 

LATERAL 
SPACING 

# OF RUNS FUEL FLOW 
METHOD 

AIRSPEED 
METHOD 

AVERAGE 

A 4 2.6 ±6.1 0.6 ±4.1 1.6 ±5.0 

B 4 10.9 ±6.1 6.7 ±4.1 8.8 ±5.0 

C 3 2.4 ±7.1 -0.1 ±4.8 1.1 ±5.8 

D 3 1.0 ±7.1 0.5 ±4.8 0.8 ±5.8 

Three-Ship Data 

The objective of the three-ship formations was to determine the difference in fuel 

flow savings between the first and second wingman. Based on the analytical work in the 

preceding chapters, the test team expected slightly better fuel savings from the #2 

wingman in a three-ship formation than the #1 wingman in a two-ship formation. During 
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test planning, the test team predicted the difference would not be statistically significant 

due to the small sample size and resolution of the DAS. All three-ship formations were 

flown in position B since that tended to be the best position from the two-ship sorties. 

The actual results were surprising since there was no apparent advantage to flying 

a three-ship formation. Neither wingman recorded a statistically significant fuel saving. 

The #2 wingman in the three-ship formation recorded a fuel benefit of 0.5% ± 3.7% 

compared to the #1 wingman who, from the previous section, recorded a benefit of 8.8% 

± 5.0% in a two-ship formation. The data are summarized in Figure 4-3, Figure 4-4, 

Figure 4-5, and Table 4-2. Figure 4-3 shows the "fuel flow" method results, while Figure 

4-4 shows the 'airspeed" method results. Figure 4-5 is the average of the two results. 

When the data aircraft changed formation position from the #2 wingman position to the 

#1 wingman position, calculated fuel flow savings suffered significantly. The test team 

did not anticipate this result and only had the data aircraft fly the #1 wingman position in 

the formation three times as a spot check when area orientation would not allow for a full 

three-ship run. Two of the three runs with the data aircraft in the #1 wingman position 

resulted in the test team accomplishing the "airspeed" method test, hitting an area 

boundary, then turning around and accomplishing the "fuel flow" method test. This was 

not as "clean" a data technique as the two-ship data points, but the group only planned on 

using it as a spot check. The small sample size and questionable data quality made this 

result inconclusive. 

A factor that could have contributed to the three-ship result was the wingmen 

flying in positions that deviated slightly from the correct formation position. The 
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backseat pilot of the T-38C, who flew every data sortie, observed small differences 

between the individual pilots when they flew in position B. If the #1 wingman had a 

small error in his formation position, it may have influenced the vortex from the lead 

airplane and thereby the data taken in the #2 wingman position, whether the #2 pilot flew 

the correct position or not. Pilots who flew in formation positions were generally good at 

observing small relative changes in their position, but generally not very good in 

assessing their absolute position. The lack of accurate feedback on the formation position 

in which the test team flew could have easily degraded the quality of the test data. Small 

errors in the #1 wingman's position were carried on to the #2 wingman, especially in 

altitude. This would decrease the fidelity of the three-ship data since the vortex savings 

are sensitive to being in-plane with the leader. Data quality could be significantly 

improved if accurate feedback on the actual formation position relative to the planned 

formation position were available. The test team's recommendation was to improve the 

station-keeping capability of the wingmen. 
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Two-Ship and Three-Ship Sortie Data 
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Fuel Flow Comparison 
Two-Ship and Three-Ship Sortie Data 
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Figure 4-5: Average Fuel Flow Comparison Between Formation Positions 

Table 4-2: Three-Ship Results For Varying Wingman Position 

WINGMAN 
POSITION 

#OF 
RUNS 

FUEL FLOW 
METHOD 

AIRSPEED 
METHOD 

AVERAGE 

1 3 0.3 ± 6.8 -0.8 ±5.7 -0.3 ± 6.0 

2 8 1.8 ±4.2 -0.8 ±3.5 0.5 ±3.7 

Pilot Comments 

The test team made a qualitative assessment of the workload in the different 

formation positions. Workload data were gathered via a questionnaire that pilots filled 

out after each flight. The workload was compared between flying in a vortex position and 

flying in other operational formation positions. These were formation positions taught at 

Undergraduate Pilot Training (UPT) and widely used throughout the USAF. These 
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positions were fingertip, route, and tactical formation positions. The fingertip formation 

positions were divided in different configurations, cruise (CR) and powered approach 

(PA), while accomplishing different maneuvers. The PA configuration for the T-38 was 

defined as landing gear down and flaps at 60%. The maneuvers were straight and level, 

unaccelerated flight (both CR and PA configurations), lazy-eight type maneuvers up to 

three-G (CR configuration only), and turns up to 45° angle of bank (PA configuration 

only).   The lowest workload task was assessed flying in tactical formation straight and 

level, unaccelerated flight. Flying in the fingertip position while accomplishing turns up 

to 45° angle of bank in the PA configuration, landing gear and flaps extended, was rated 

as the highest workload task. The workload in vortex position B, after four flights, was 

assessed as higher than flying in fingertip straight and level, unaccelerated cruise flight 

(CR). This means that flying normal formation was determined to be easier than vortex 

formation. However, the workload in position B was assessed as lower than flying in the 

fingertip position, straight and level, unaccelerated flight in the PA configuration. So 

although it was harder than the CR configuration, it was easier than PA configured 

formation. See Figures 4-6 and 4-7. 

4-9 



Question 5: How would you characterize the overall workload in Fingertip position,straight 
and level,cruise configuration? 

Number of opinions 1 

Answers a) Very high b) High c) Marginally high d) Marginally Low e) Lowf) Very Low 

Figure 4-6: Workload in Fingertip Formation - Cruise 

Question 6: How would you characterize the overall workload in Fingertip position,straight 
and level,powered approach configuration? 

Number of opinions 1 

Marginally   | Marginally 
high     J       low 

■ Lu" 

1 

Answer: a) Very high b) High c) Marginally high d) Marginally low ej Lowf) Very low 

Figure 4-7: Workload in Fingertip Formation - Powered Approach 
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Positions C and D 

The most noticeable effect when entering the vortex was the airplane's tendency 

to slide forward. This effect was comparable to the air-refueling experience with a large 

airplane. This was easily corrected for by a very small power reduction. It was easy to 

maintain the correct position, and the power setting was steady for prolonged periods of 

time (30 seconds to one minute). Positions C and D were easy to maintain. 

Position B 

In the 86% wingspan separation position, the roll moment, which seemed to push 

number two away from lead, was more apparent than the forward pull. Approximately 

six small clicks of aileron trim into lead significantly facilitated position keeping and 

almost trimmed the airplane laterally. To maintain position B was easy, once trimmed, 

and the learning curve was steep. This position felt very much like surfing on a wave. 

Figure 4-8 shows the results for position B. 
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Question 11: How would you characterize the overall workload in Vortex postion B? 
(after 4 flights). 

Number of opinions 

0 4- 

Very high      High : 

Marginally 
high 

Marginally 
low 

(illinium Very low 

^^^^^ .. ■P^ 

Answers: a) Very high b) High c) Marginally high d) Marginally low e) Low f) Very low 

Figure 4-8: Workload in Test Position B 

Position A 

Position A represented the 75% wingspan separation, and was the innermost 

position that was evaluated. The roll moment was very tricky at this point because it 

would change from rolling towards lead to rolling away from lead in a very small lateral 

distance. Aileron trim was not useful to trim out lateral forces since they tended to 

reverse as the aircraft made small changes laterally.   The chase ship was able to observe 

the aileron deflections as the wingman manually fought to maintain position near the roll 

reversal point. This position felt unstable, therefore a position inboard from position A 

should be avoided. When the aircraft ended up inadvertently on a position inboard from 

A, the pilot found that the airplane was still controllable, and could be moved out easily. 

The workload in position A was significantly higher than positions B, C, and D. This 
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resulted in less time in the correct position and less data. Once lead moved away, the 

pilot had to re-trim the airplane laterally to take a cruise point. 

Operational Feasibility of Vortex Position B 

The learning curve of tight formation vortex flying was steep. This was 

illustrated by the fact that only two out of the four pilots thought the vortex position 

would have an operational potential after the first flight. After four flights all four pilots 

thought the vortex position could be operationally feasible. The workload while flying in 

the vortex position was slightly higher than in an expected operational formation because 

the test team always strived for the perfect data point in which the throttles were not 

adjusted for at least 20 seconds. To achieve this the pilot had to find the optimal 

formation geometry, which was a relatively small envelope. It was not hard to fly the 

position, but it did require constant attention to be precise. An operational mission, 

flying in the vortex position without a formation hold autopilot, would result in less 

savings than experienced during this test program since the pilot would not be able to 

keep such tight tolerances and perform checklists, navigate, etc. Although this would 

result in slightly less fuel savings, the net result would still be a gain over not flying in 

tight formation at all. Figure 4-9 shows that the pilots thought that in the absence of an 

automatic controller, the workload was feasible for a 20-30 minute time period before 

swapping positions. 
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Question 29: How do you think the Vortex position could be flown operationally? 

Number of opinions 

Z. A. 

/~ 

3Q' 

Answer:  Continuous duration in Vortex position B would be: 
a)Feasible for 10 minute stretch to the practice area 

b) 20 minutes c) 30 minutes, then swap 
d)1Hr, then swap e) 2Hrs. f)>2 His. 

Figure 4-9: Operational Suitability 
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V. Conclusions and Recommendations 

The objective of this thesis is to examine the beneficial induced drag reduction 

effect achieved by flying aircraft in tight formation. The intent was to also validate the 

predictive power of the HASC95 vortex code by comparing the results to flight test data. 

The flight test data validated the vortex lattice method as a predictive tool in predicting 

drag savings for the two-ship formation. The flight test data showed a saving for the 

wingman of a two-ship formation of 8.8% ± 5.0% with 80% confidence. This compares 

to computational predictions of a 15% fuel savings. The difference was most likely a 

result of the aircraft not being perfectly in position so that the upwash vector was 

perpendicular to the wing. The three-ship formation was analytically shown to slightly 

improve the results, but the flight test data were inconclusive. 

This is a limited investigation in that it explored only one aircraft geometry, one 

altitude, and one airspeed. It was also limited in sample size by the time it took to take 

data points without the benefit of automatic station-keeping equipment. 

It was clear that flying in a lead aircraft's vortex improved fuel consumption, thus 

increasing range.   As mentioned above, a formation-hold autopilot would greatly 

enhance the pilot's ability to hold a near-perfect position and enjoy the full benefits of 

flying in the vortex. With a formation-hold autopilot, a formation of aircraft or UAVs 

could increase its range significantly for almost no additional cost other than the 

automatic control system. The author recommends research be continued using 

formation-hold autopilots to further define the savings at each position and reinvestigate 

the three-ship formation. Another recommendation of the author is to expand the 
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envelope of testing to a more realistic cruise altitude. The flight test for this work was 

done at 10,000 feet due to perceived engine anomalies with vortex ingestion at high 

altitude with the T-38. This was found not to be a factor at 10,000 feet. The use of F-16- 

type aircraft with a more robust engine would allow the test envelope to be expanded. A 

final recommendation would be to look at dissimilar formations such as tanker aircraft 

flying with fighter-size aircraft on the wing. Multiple smaller aircraft may be able to 

easily take advantage of a large aircraft vortex to significantly increase range for overseas 

deployments. 
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Appendix A: FORTRAN Files 

Note: Mr. Bill Blake of AFRL at Wright-Patterson AFB, OH wrote a large portion of 
this code (prisrf in particular) for a similar project. 1 was mostly responsible for 
reworking the subroutines to fit the T-38 geometry and allowing for a third aircraft. 

WING FILE (Also called Lead and Twowing in three-ship portion) 

This is the file that puts the T-38 geometry into a form to be called by hasc. The X,Y, 
and Z columns are the forward most point of the panel, with the length being the column 
labeled CORD1. The last line of each panel is the number of lateral elements (8.5 
inches), the number of chordwise elements, the SPC number, an unused number, then the 
incidence number for aileron deflections (in degrees). The last number is unused. 

PORT WING 
*SRTYP LNPAN ISYMFLG ENETAR FTAIL 
05 20 00 0.0 0.0   0. 0. 
*X1 Yl Zl CORD1 AINC1 
544.85 -17.0 0.0 37.25 0. 
546.34 0.0 0.0 35.76 0. 
2. 2. 0. 00 00 0.0 
********************************************************* 

546.34     0.0      0.0       35.76     0. 
544.85    17.0      0.0       37.25     0. 
2.        2.       0.        00        00        0.0 
********************************************************* 

518.9    -85.0      0.0       20.0      0. 
466.34     0.0      0.0       80.0      0. 
10.        8.       0.45      00        00        0.0 

********************************************************* 

466.34     0.0      0.0       80.0      0. 
518.9     85.0      0.0       20.0      0. 
10.        8.       0.45      00        00        1.0 

********************************************************* 

426.46   -34.0      0.0       60.9      0. 
429.15     0.0      0.0       37.19     0. 
4.        4.       0.        00        00        0.0 
********************************************************* 

429.15     0.0      0.0       37.19     0. 
426.46    34.0      0.0       60.9      0. 
4. 4.       0.        00        00        0.0 
********************************************************* 

390.11  -153.0      0.0       26.93     0. 
363.55  -110.5      0.0       56.86     0. 
5. 11.     1.0      00        00        0.0 

********************************************************* 

403.80  -110.5      0.0       16.61     0. 
399.50   -76.5      0.0       23.60     0. 
4.        5.      0.0      00        00        1.0 
********************************************************* 

363.55  -110.5      0.0       40.25     0. 
342.30   -76.5      0.0       57.20     0. 
4.        8.       1.0        00        00        0.0 
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********************************************************* 

342.3    -76.5      0.0       80.80     0. 
315.75   -34.0      0.0      110.71     0. 
5.        11.      1.0       00        00        0.0 

********************************************************* 

315.75   -34.0      0.0      110.71     0. 
294.5      0.0      0.0      134.65     0. 
4 . 11. 0.0 00 00 0.0 
********************************************************* 

294.5      0.0      0.0      134.65     0. 
315.75    34.0      0.0      110.71     0. 
4.        11.      0.0        00        00        0.0 
********************************************************* 

315.75    34.0      0.0      110.71     0. 
342.3     76.5      0.0       80.80     0. 
5. 11. 1.0 00 00 0.0 

********************************************************* 

399.5     76.5      0.0       23.60     0. 
403.8    110.5      0.0       16.61     0. 
4.        5.      0.0       00        00        1.0 
********************************************************* 

342.30    76.5      0.0       57.20     0. 
363.55   110.5      0.0       40.25     0. 
4 . 1.0 00 00 0.0 
********************************************************* 

363.55   110.5      0.0       56.86     0. 
390.11   153.0      0.0       26.93     0. 
5.        11.     1.0       00        00        1.0 

********************************************************* 

264.0    -34.0      0.0       51.75     0. 
264.0    -17.0      0.0       41.12     0. 
2.        4.       0.        00        00        0.0 
********************************************************* 

264.0 17.0 0.0 41.12 0. 
264.0 34.0 0.0 51.75 0. 
2.        4.       0.        00        00        0.0 
********************************************************* 

142.50   -17.0      0.0      162.62     0. 
52.5      0.0      0.0      242.0      0. 
2. 9.       0.        00        00        0.0 
********************************************************* 

52.5      0.0      0.0      242.0      0. 
142.50    17.0      0.0      162.62     0. 
2. 9.       0.        00        00        1.0 
********************************************************* 
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HEADER FILE (Two-Ship) 

This file defines such things as the number of surfaces, number of panels, Mach number, 
span length, reference area, number and values of AOA and Beta to run, etc. The three- 
ship header file is similar, but with 60 panels and 3 surfaces. 

AFIT T-38 
* 
* 

*LAX LAY HAG RUN 
00 01 0. 1. 
*REY NMACH MACH MACH 
1900000. 01 0.54 
*NALPHA ALPHAS 
04   0. 1 .2.3. 4 . 
*NBETA BETAS 
01 0.0 10. .0 
*PITCHQ ROLLQ YAWQ VINF 
0. 0. 0. 1. 
*SREF CBAR XBAR ZBAR 
24480. 92.76 350.0 0.0 

NPAN 
40 

NSURF 
02 0 

WS PAN 
306.0 

******************************************************************** 

MT38FILE (Two-Ship) 

This file reads in the geometry of the aircraft, then runs the sweep by calling the hasc 
routine at each iteration. It treats the last wingman as the origin and moves lead to the 
right in 8.5 inch increments. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

program move 

this code shift 
HASC95 input fi 
aircraft by def 

file "header2" 
file "wing" is 
file "lead" is 
file "ftemp" is 
file "fout" is 
file "final" is 
file "hasc.inp" 

+x = other vehi 
+y = other vehi 
+z = other vehi 

s the coordinates of a 
le to simulate a formation of 
ining new aircraft positions 

is the hasc header input 
the basic wing geometry for wingman 
the basic wing geometry for leader 
the aerodynamic result file from hasc 

the printed aerodynamic result file from hasc 
the normalized force/moment increment file 
is the generated hasc input file 

cle upstream 
cle right 
cle below 
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character*80 fl 
c 
c    data for sim tables 
c 
c    dimension xi(1) ,yi(43) ,zi (6) 
c    data xi/-4.,-3., -2 .,-1.6,-1.4,-1.2,-1.,-.8,- .6,- .4,-.3, -.2, -.1,0., 
C    x .1, .2, .3, .4, .6, .8,1.,1.2,1.4,1.6,2. ,3. ,4./ 
c    data yi/1.0/ 
c    data zi/0.,0.25,0.5,1.0,2.0,50.0/ 
c 
c    data for mesh plots  xi=2 
c 
c    dimension xi(l),yi(24) 

dimension yi(24) 
c    data xi/2.0/ 
c     data yi/0.,0.0833,.1667,0.25,0.3333,0.4167,0.5,0.5833,0.6667, 
c    x        0.75,0.8333,0.9167,1.0,1.0833,1.1667, 
c    x        1.25,1.333,1.5,1.6667,1.8333,2.,2.3333,2.6667,3./ 
c    data zi/0.,0.001,0.002,0.005,0.01,0.02,0.04,0.0833, 
c    x        .1667,0.25,0.3333,0.4167,0.5,0.5833,0.6667, 
c    x        0.75,0.8333,0.9167,1.0,1.0833,1.1667, 
c    x        1.25,1.333,1.5,1.6667,1.8333,2. ,2.3333,2.6667,3./ 
c 

open(9 0,file='header2',status='old') 
open(91,file='wing',status='old') 
open(95,file='lead',status='old') 
open(92,file='ftemp',status='unknown') 
open(102,file='fout',status='unknown') 
open(103,file='final',status='unknown') 
alpl=0. 
span=3 06. 

c 
c  enter downstream spacing (Set to 2.5 spans) 
c 
c    write(*,*)  'enter x/b' 
c     read(*,*) xi 

xi=2.5 
c 
c  loop on relative aircraft x,y,z positions 
c  for this thesis, only looped on y from 0 to 1.5 spans 
c 
c    do 1000 ix=l,l 

delx=xi*span 
c    delx=xi(1)*span 
c       do 2000 iz=l,l 
c       delz=zi*span 

delz = 0 . 
do 3000 iy=l,55 
dely=(iy-1)*8.5 
open(15,file='hasc.inp',status='unknown') 

c 
c  write header to hasc input file 
c 

do 3100 ii=l,16 
read(90,900) fl 
write(15,900) fl 

3100 continue 
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c 
c    rewind header for next case 
c 

rewind(90) 
c 
c  write trail wing to hasc input file 
c 

do 3200 ii=l,4 
read(91,900) fl 
write(15,900) fl 

32 0 0 continue 
do 3250 ii=l,20 
read(91,900) fl 
write(15,900) fl 
read(91,900) fl 
write(15,900) fl 
read(91,900) fl 
write(15,900) fl 
read(91,900) fl 
write(15,900) fl 

32 5 0 continue 
c 
c     rewind wing geometry file for lead wing processing 
c 

rewind(91) 
c 
c  write lead wing to hasc input file 
c 

do 3400 ii=l,4 
read(95,900) fl 
write(15,900) fl 

3400 continue 
do 3450 ii=l,20 
read(95,910) xl,yl,zl,cl,al 
write(15,910) xl-delx,yl+dely,zl-delz,cl,al+alpl 
read(95,910) xl,yl,zl,cl,al 
write(15, 910) xl-delx,yl+dely,zl-delz,cl,al+alpl 
read(95,900) fl 
write(15,900) fl 
read(95,900) fl 
write(15,900) fl 

3450 continue 
c 
c     rewind wing geometry file for next case 
c 

rewind(91) 
rewind(95) 

c 
c     rewind input file for hasc run 
c     rewind aero file so it can be written 
c 

rewind(15) 
rewind(92) 

c 
c  run hasc 
c 

call hasc 
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c     rewind aero file written by hasc so it can be read 
c 

rewind(92) 
read(92,92 0) aoa,ell,cdl,cl2,cd2,cm2,cy2,cll2,cln2 

c 
c 
c  print output files 
c 

write(103,925) dely/span,aoa,ell,cdl, 
cl2,cd2,cm2,cy2,cll2,cln2 

close(15,status='keep') 

3 000 continue 
c 2 000    continue 
c 1000 continue 
c 

900 format(a80) 
c 910 format(5(f9.3,lx)) 

910 format(f8.3,f9.3,f9.3,f9.3,f9. 3) 
920 format(lx,If8.3,8f9.4) 
925 format(lx,10fll.5) 
935 format(lx,9fl0.5) 

close(90,status='keep') 
close(91,status='keep') 
close(92,status='keep') 
close(95,status='keep') 
close(102,status='keep') 
close(103,status='keep') 
stop 
end 

PRISRFFILE (Two-Ship) 

This subroutine is responsible for breaking out the hasc data into a usable form for output 
by providing such information as lift, drag, forces, and moments for each aircraft. 

subroutine prisrf 

c . . .purpose: 
c   prints, by surface, forces and moments in body axis, 
c   wind axis, and stability axis. 

c...output:  unit 75 (hasc.out) 

c... subroutine called by hasc 
c   subroutine calls:  none 

c...discussion: forces and moments are initially in body axis, 
c they are translated to wind and stability axis, and printed 
c   out as a summary for each axis. 

parameter (lun=201, ntal=30) 
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include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 
include 

'flowopts.cmn' 
'set3.cmn' 
'set5.cmn' 
'set6.cmn' 
'set8.cmn' 
'set9.cmn' 
'setll.cmn' 
'setl2.cmn' 
'setl3.cmn' 
'setl4.cmn' 
'setl5.cmn' 
'set17.cmn' 
'set21.cmn' 
'set23.cmn' 
'set24.cmn' 
'forces.cmn' 
'print.cmn' 
'srffre.cmn' 
'surtit.cmn' 
'version.cmn' 

character*30 tempsrf 

pi  = 4.0 * atan(l.O) 
dtr = pi / 180. 

c...print heading with hasc version and release date 

104 
write(75,104) vtitle 
format(/,lx,a55) 

write(75,107) 
107  format(lx,'** Surface Force and Moments **',/) 

c...print out surface data 

write(75,105) jobtitl 
105  format(lx,a) 

write(75,120) mach(iq), -yawstb(ib) 
& pitchq,-rollq,-yawq,vinf 

12 0  format(' Mach = 
& lx,'Pitch rate 
& lx,'Roll rate 
& lx,'Yaw rate 
& lx,'Vinf 

f6.2,'  beta = 
,f7.2,'/sec',/, 
,f7.2,'/sec',/, 
,f7.2,'/sec',/, 
,fl0.2) 

f7.2,/, 

write(75,6662) sref,wspan,cbar 
6662 format(/,lx,'Sref = ',f9.3,'  Wspan 

write(75,6663) xbar, zbar 
6663 format(lx,'Xbar = ',f9.3,'  Zbar  = 

= ' ,f9.3, '  Cbar 

',f9.3) 

= ',f9.3) 

write(75,190) 
190  format (/,' ************     BODY AXIS SYSTEM ***************< 

do 600 isf = l,nsurf 
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tempsrf = srftitl(isf) 

write(73, 7316) isf, mach(iq), -yawstb(ib) 
7316    format('ZONE T="Surf ',i2,' M=',f5.2,' Beta=',f6.2,'", F=POINT' 

write(75,7503) isf,tempsrf 
7503    format(/,lx,'Surface ',i2,'  ',a30,'  Body Axis') 

300    write(75,310) 
310  format(lx,'  Alpha    Beta    CNsrf    CAsrf    Cmsrf ', 

& '   CYsrf    Crsrf    Cnsrf') 

do 6 01 ihh = l,nalpha 
write(75,320) alfstb(ihh),-yawstb(ib), 

&    scztot(isf,ihh),scxtot(isf,ihh),scqtot(isf,ihh)/cbar, 
&    scytot(isf,ihh),scptot(isf,ihh)/wspan, 
&    scrtot(isf,ihh)/wspan 

320 format(lx,2f8.3,6f9 .4) 
321 format(lx,If8.3,8f9 .4) 

c...unit 73 for tecplot 
cltemp=scztot(isf,ihh)*cos(alfstb(ihh)*dtr) 

& -scxtot(isf,ihh)*sin(alfstb(ihh)*dtr) 
cdtemp=scxtot(isf,ihh)*cos(alfstb(ihh)*dtr) 

& +scztot(isf,ihh)*sin(alfstb(ihh)*dtr) 
write(73,7332) alfstb(ihh),-yawstb(ib), 

&    scztot(isf,ihh),scxtot(isf,ihh),scqtot(isf,ihh)/cbar, 
&    scytot(isf,ihh),scptot(isf,ihh)/wspan, 
&    scrtot(isf,ihh)/wspan,cltemp,cdtemp 

7332      format(Ix,2f6.2,6f9.4,2fll.6) 
6 01     continue 

6 00   continue 

write(75,290) 
290  format (/,' ************  WIND AXIS SYSTEM  **************' 

do 602 isf = l,nsurf 

tempsrf = srftitl(isf) 

write(75,7504) isf, tempsrf 
7504    format(/,lx,'Surface ',i2,'  ',a30,'  Wind Axis') 

write(75,410) 
410  format(lx,'  Alpha    Beta    CLsrf    CDsrf    Cmsrf ', 

& '   CYsrf    Crsrf    Cnsrf) 

do 6 03 ihh = l,nalpha 
astb = alfstb(ihh) 

c... yawstb multiplied by -1 to give betstb 
sinast = sin(dtr*astb) 
sinbst = sin(dtr*(-yawstb(ib))) 
cosast = cos(dtr*astb) 
cosbst = cos(dtr*(-yawstb(ib))) 
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c...transform panel forces to wind axes 

cltotw = -sinast*scxtot(isf,ihh) + cosast*scztot(isf,ihh) 
cdtotw = cosbst*cosast*scxtot(isf,ihh) + sinbst*scytot(isf,ihh) 

&        + cosbst*sinast*scztot(isf,ihh) 
cytotw = sinbst*cosast*scxtot(isf,ihh) + cosbst*scytot(isf,ihh) 

&        + sinbst*sinast*scztot(isf,ihh) 
cmtotw =-sinbst*cosast*scptot(isf,ihh) + cosbst*scqtot(isf,ihh) 

&        -sinbst*sinast*scrtot(isf,ihh) 
crtotw = cosbst*cosast*scptot(isf,ihh) + sinbst*scqtot(isf,ihh) 

&        + cosbst*sinast*scrtot(isf,ihh) 
cntotw = -sinast*scptot(isf,ihh) + cosast*scrtot(isf,ihh) 

cmtotw = cmtotw /cbar 
crtotw = crtotw /wspan 
cntotw = cntotw /wspan 

write(75,320) alfstb(ihh), -yawstb(ib), cltotw, cdtotw, 
&   cmtotw, cytotw, crtotw, cntotw 

6 03    continue 
6 02  continue 

write(75,490) 
490  format (/,' ************     STABILITY AXIS SYSTEM ************* 

do 604 isf = l,nsurf 

tempsrf = srftitl(isf) 

write(75,7505) isf, tempsrf 
7505    format(/,lx,'Surface ',i2,'  ',a30,'  Stab Axis') 

write(75,510) 
510  format(lx,'  Alpha    Beta    CLsrf    CDsrf    Cmsrf ', 

& '   CYsrf    Crsrf    Cnsrf') 

do 6 05 ihh = l,nalpha 

astb  = alfstb(ihh) 
sinast = sin(dtr*astb) 
cosast = cos(dtr*astb) 

c...transfer total forces and moments to stability axis 

cltots = -sinast*scxtot(isf,ihh) + cosast*scztot(isf,ihh) 
cdtots = cosast*scxtot(isf,ihh) + sinast*scztot(isf,ihh) 
cytots = scytot(isf,ihh) 
cmtots = scqtot(isf,ihh) 
crtots = cosast*scptot(isf,ihh) + sinast*scrtot(isf,ihh) 
cntots = -sinast*scptot(isf,ihh) + cosast*scrtot(isf,ihh) 
cmtots = cmtots / cbar 
crtots = crtots / wspan 
cntots = cntots / wspan 

write(75,320) alfstb(ihh), -yawstb(ib), cltots, 
&   cdtots, cmtots, cytots, crtots, cntots 
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if(isf.eq.2) clfl=cltots 
clfl = -sinast*scxtot(2,ihh) + cosast*scztot(2,ihh) 
cdfl =  cosast*scxtot(2,ihh) + sinast*scztot(2,ihh) 
clf2 = -sinast*scxtot(1,ihh) + cosast*scztot(1,ihh) 
cdf2 =  cosast*scxtot(1,ihh) + sinast*scztot(1,ihh) 
cyf2 =  scytot(1,ihh) 
cmtots = scqtot(1,ihh) 
crtots = scptot(1,ihh) 
cntots = scrtot(1,ihh) 
cmf2 =  cmtots / cbar 
crf2 =  crtots / wspan 
cnf2 =  cntots / wspan 
alf2=alfstb(ihh) 

6 05     continue 
6 04   continue 

write(92,321) alf2,elf1,cdfl,elf2,cdf2,cmf2,cyf2,erf2,cnf2 

return 
end 

MT38aFILE (Three-Ship) 

This is the three-ship version. 

program move 
c 
c this code shifts the coordinates of a 
c HASC95 input file to simulate a formation of 
c aircraft by defining new aircraft positions 
c 
c file "header" is the hasc header input 
c file "wing" is the basic wing geometry 
c file "ftemp" is the aerodynamic result file from hasc 
c file "fout" is the printed aerodynamic result file from hasc 
c file "final" is the normalized force/moment increment file 
c file "hasc.inp" is the generated hasc input file 
c 
c +x = other vehicle upstream 
c +y = other vehicle right 
c +z = other vehicle below 
c 

character*80 fl 
c 
c data for sim tables 
c 
c dimension xi(1) ,yi(43) ,zi (6) 
c data xi/-4.,-3.,-2.,-1.6,-1.4,-1.2,-1.,-.8,-.6,-.4,-.3,-.2,-.1,0., 
C x         .1, .2, .3, .4, .6, .8,1. ,1.2,1.4,1.6,2. ,3.,4./ 
c data yi/1.0/ 
c data zi/0.,0.25,0.5,1.0,2.0,50.0/ 
c 
c data for mesh plots  xi=2 
c 
c dimension xi(l),yi(24) 
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dimension yi(24) 
c    data xi/2.0/ 
c     data yi/0.,0.0833,.1667,0.25,0.3333,0.4167,0.5,0.5833,0.6667, 
c    x        0.75,0.8333,0.9167,1.0,1.0833,1.1667, 
c    x        1.25,1.333,1.5,1.6667,1.8333,2.,2.3333,2.6667,3./ 
c    data zi/0.,0.001,0.002,0.005,0.01,0.02,0.04,0.0833, 
c    x        .1667,0.25,0.3333,0.4167,0.5,0.5833,0.6667, 
c    x        0.75,0.8333,0.9167,1.0,1.0833,1.1667, 
c    x        1.25,1.333,1.5,1.6667,1.8333,2. ,2.3333,2.6667,3./ 
c 

open(9 0,file='header2',status='old') 
open(91,file='wing',status='old') 
open(92,file='ftemp',status='unknown') 
open(95,file='lead',status='old') 
open(96,file='twowing',status='old') 
open(102,file='fout',status='unknown') 
open(103,file='final',status='unknown') 
alpl=0. 
span=3 06. 

c 
c  enter downstream spacing 
c 
c    write(*,*)  'enter x/b' 
c     read(*,*) xi 

xi=2.5 
c 
c  loop on relative aircraft x,y,z positions 
c 
c    do 1000 ix=l,l 

delx=xi*span 
c    delx=xi(1)*span 
c       do 2000 iz=l,l 
c       delz=zi*span 

delz = 0 . 
do 3000 iy=3,55 

c do 3 000 iy=3 7,3 7 
dely=(iy-1)*8.5 
open(15,file='hasc.inp',status='unknown') 

c 
c  write header to hasc input file 
c 

do 3100 ii=l,16 
read(90,900) fl 
write(15,900) fl 

3100 continue 
c 
c    rewind header for next case 
c 

rewind(90) 
c 
c  write trail wing #3 to hasc input file 
c 

do 3200 ii=l,4 
read(91,900) fl 
write(15,900) fl 

32 0 0 continue 
do 3250 ii=l,20 
read(91,900) fl 
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write(15,900) fl 
read(91,900) fl 
write(15,900) fl 
read(91,900) fl 
write(15,900) fl 
read(91,900) fl 
write(15,900) fl 

32 5 0 continue 
c 
c     rewind wing geometry file for lead wing processing 
c 

rewind(91) 
c 
c  write wing #2 to hasc input file 
c 

do 3300 ii=l,4 
read(96,900) fl 
write(15,900) fl 

33 0 0 continue 
do 3350 ii=l,20 
read(96,*) xl,yl,zl,cl,al 
write(15,*) xl-delx,yl+dely,zl-delz,cl,al+alpl 
read(96,*) xl,yl,zl,cl,al 
write(15,*) xl-delx,yl+dely,zl-delz,cl,al+alpl 
read(96,900) fl 
write(15,900) fl 
read(96,900) fl 
write(15,900) fl 

33 5 0 continue 
c 
c     rewind wing geometry file for lead wing processing 
c 

rewind(91) 
rewind(96) 

c 
c  write lead wing to hasc input file 
c 

do 3500 ii=l,4 
read(95,900) fl 
write(15,900) fl 

3500 continue 
do 3550 ii=l,20 
read(95,*) xl,yl,zl,cl,al 

c   the first line is for equal spacing, the second is for a fixed #2 
c write(15,*) xl-2*delx,yl+2*dely,zl-2*delz,cl,al+alpl 

write(15,*) xl-2*delx,yl+dely+2 63.5,zl-2*delz,cl,al+alpl 
read(95,*) xl,yl,zl,cl,al 

c write(15,*) xl-2*delx,yl+2*dely,zl-2*delz,cl,al+alpl 
write(15, *) xl-2*delx,yl+dely+2 63.5,zl-2*delz,cl,al+alpl 
read(95,900) fl 
write(15,900) fl 
read(95,900) fl 
write(15,900) fl 

3 55 0 continue 
c 
c     rewind wing geometry file for next case 
c 

rewind(91) 
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rewind(95) 
c 
c     rewind input file for hasc run 
c     rewind aero file so it can be written 
c 

rewind(15) 
rewind(92) 

c 
c  run hasc 
c 

call hasc 
c 
c     rewind aero file written by hasc so it can be read 
c 

rewind(92) 
read(92,92 0) aoa,ell,cdl,cl2,cd2, 

x      cl3,cd3,cm3,cy3,cll3,cln3 
c 
c  compute increments for sim table look-up 
c 
c  print output files 
c 

write(103,925) dely/span,aoa,ell,cdl,cl2,cd2 , 
1 cl3,cd3,cm3,cy3,cll3,cln3 

close(15,status='keep') 
c 
3 000 continue 

c 2 000 continue 
c 1000 continue 
c 

900 format(a80) 
c 910 format(f8.3,f9.3,f9.3,f9.3,f9 . 3) 

920 format(lx,If8.3,lOf10.5) 
925 format(lx,12fll.5) 
935 format(lx,9fl0.5) 

close(90,status='keep') 
close(91,status='keep') 
close(92,status='keep') 
close(95,status='keep') 
close(96,status='keep') 
close(102,status='keep') 
close(103,status='keep') 
stop 
end 

PRISRF FILE (Three-Ship) 

This is the three-ship version. 

subroutine prisrf 

c . . .purpose: 
c   prints, by surface, forces and moments in body axis, 
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c   wind axis, and stability axis. 

c...output:  unit 75 (hasc.out) 

c... subroutine called by hasc 
c   subroutine calls:  none 

c...discussion: forces and moments are initially in body axis, 
c they are translated to wind and stability axis, and printed 
c   out as a summary for each axis. 

parameter (lun=201, ntal=30) 

include 'flowopts.cmn' 
include 'set3.cmn' 
include 'set5.cmn' 
include 'set6.cmn' 
include 'set8.cmn' 
include 'set9.cmn' 
include 'setll.cmn' 
include 'setl2.cmn' 
include 'setl3.cmn' 
include 'setl4.cmn' 
include 'setl5.cmn' 
include 'setl7.cmn' 
include 'set21.cmn' 
include 'set23.cmn' 
include 'set24.cmn' 
include 'forces.cmn' 
include 'print.cmn' 
include 'srffrc.cmn' 
include 'surtit.cmn' 
include 'version.cmn' 

character*30 tempsrf 

pi  = 4.0 * atan(l.O) 
dtr = pi / 180. 

c...print heading with hasc version and release date 

write(75,104) vtitle 
104   format(/,lx,a55) 

write(75,107) 
107  format(lx,'** Surface Force and Moments **',/) 

c...print out surface data 

write(75,105) jobtitl 
105  format(lx,a) 

write(75,120) mach(iq), -yawstb(ib), 
& pitchq,-rollq,-yawq,vinf 

120  formate Mach = ',f6.2,'  beta = ',f7.2,/, 
& lx, 'Pitch rate =',f7 .2, '/sec',/, 
& lx, 'Roll rate  =',f7 .2, '/sec',/, 
& lx, 'Yaw rate  =',f7 .2, '/sec',/, 
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& lx, 'Vinf       =' ,flO.2) 

write(75,6662) sref,wspan,cbar 
6662 format(/,lx,'Sref = ',f9.3,'  Wspan = ',f9.3,'  Cbar = ',f9.3) 

write(75,6663) xbar, zbar 
6663 format(lx,'Xbar = ',f9.3,'  Zbar  = ',f9.3) 

write(75,190) 
190  format (/,' ************  BODY AXIS SYSTEM  ***************') 

do 600 isf = l,nsurf 

tempsrf = srftitl(isf) 

write(73, 7316) isf, mach(iq), -yawstb(ib) 
7316    format('ZONE T="Surf ',i2,' M=',f5.2,' Beta=',f6.2,'", F=POINT" 

write(75,7503) isf,tempsrf 
7503    format(/,lx,'Surface ',i2,'  ',a30,'  Body Axis') 

300    write(75,310) 
310  format(lx,'  Alpha    Beta    CNsrf    CAsrf    Cmsrf ', 

& '   CYsrf    Crsrf    Cnsrf') 

do 6 01 ihh = l,nalpha 
write(75,320) alfstb(ihh),-yawstb(ib), 

&    scztot(isf,ihh),scxtot(isf,ihh),scqtot(isf,ihh)/cbar, 
&    scytot(isf,ihh),scptot(isf,ihh)/wspan, 
&    scrtot(isf,ihh)/wspan 

320 format(lx,2f8.3,6f9 .4) 
321 format(lx,If8.3,lOf10 . 5) 

c...unit 73 for tecplot 
cltemp=scztot(isf,ihh)*cos(alfstb(ihh)*dtr) 

& -scxtot(isf,ihh)*sin(alfstb(ihh)*dtr) 
cdtemp=scxtot(isf,ihh)*cos(alfstb(ihh)*dtr) 

& +scztot(isf,ihh)*sin(alfstb(ihh)*dtr) 
write(73,7332) alfstb(ihh),-yawstb(ib), 

&    scztot(isf,ihh),scxtot(isf,ihh),scqtot(isf,ihh)/cbar, 
&    scytot(isf,ihh),scptot(isf,ihh)/wspan, 
&    scrtot(isf,ihh)/wspan,cltemp,cdtemp 

7332      format(lx,2f6.2,6f9.4,2f11.6) 
6 01     continue 

6 00   continue 

write(75,290) 
2 90  format (/,' ************  WIND AXIS SYSTEM  ************** 

do 602 isf = l,nsurf 

tempsrf = srftitl(isf) 

write(75,7504) isf, tempsrf 
7504    format(/,lx,'Surface ',i2,'  ',a30,'  Wind Axis') 
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write(75,410) 
410  format(lx,'  Alpha    Beta    CLsrf    CDsrf    Cmsrf ', 

& '   CYsrf    Crsrf    Cnsrf') 

do 6 03 ihh = l,nalpha 
astb = alfstb(ihh) 

c... yawstb multiplied by -1 to give betstb 
sinast = sin(dtr*astb) 
sinbst = sin(dtr*(-yawstb(ib))) 
cosast = cos(dtr*astb) 
cosbst = cos(dtr*(-yawstb(ib))) 

c...transform panel forces to wind axes 

cltotw = -sinast*scxtot(isf,ihh) + cosast*scztot(isf,ihh) 
cdtotw = cosbst*cosast*scxtot(isf,ihh) + sinbst*scytot(isf,ihh) 

&        + cosbst*sinast*scztot(isf,ihh) 
cytotw = sinbst*cosast*scxtot(isf,ihh) + cosbst*scytot(isf,ihh) 

&        + sinbst*sinast*scztot(isf,ihh) 
cmtotw =-sinbst*cosast*scptot(isf,ihh) + cosbst*scqtot(isf,ihh) 

&        -sinbst*sinast*scrtot(isf,ihh) 
crtotw = cosbst*cosast*scptot(isf,ihh) + sinbst*scqtot(isf,ihh) 

&        + cosbst*sinast*scrtot(isf,ihh) 
cntotw = -sinast*scptot(isf,ihh) + cosast*scrtot(isf,ihh) 

cmtotw = cmtotw /cbar 
crtotw = crtotw /wspan 
cntotw = cntotw /wspan 

write(75,320) alfstb(ihh), -yawstb(ib), cltotw, cdtotw, 
&   cmtotw, cytotw, crtotw, cntotw 

6 03    continue 
6 02  continue 

write(75,490) 
490  format (/,' ************  STABILITY AXIS SYSTEM  ************> 

do 604 isf = l,nsurf 

tempsrf = srftitl(isf) 

write(75,7505) isf, tempsrf 
7505    format(/,lx,'Surface ',i2,'  ',a30,'  Stab Axis') 

write(75,510) 
510  format(lx,'  Alpha    Beta    CLsrf    CDsrf    Cmsrf ', 

& '   CYsrf    Crsrf    Cnsrf) 

do 6 05 ihh = l,nalpha 

astb  = alfstb(ihh) 
sinast = sin(dtr*astb) 
cosast = cos(dtr*astb) 

c...transfer total forces and moments to stability axis 
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& 

605 
604 

cltots = -sinast*scxtot(isf,ihh) 
cdtots =  cosast*scxtot(isf,ihh) 
cytots =  scytot(isf,ihh) 
cmtots =  scqtot(isf,ihh) 
crtots =  cosast*scptot(isf,ihh) 
cntots = -sinast*scptot(isf,ihh) 
cmtots =  cmtots / cbar 
crtots =  crtots / wspan 
cntots =  cntots / wspan 

cosast*scztot(isf,ihh) 
sinast*scztot(isf,ihh) 

sinast*scrtot(isf,ihh) 
cosast*scrtot(isf,ihh) 

write(7 
cdtots, 
if (isf . 
clfl = 
cdfl = 
clf2 = 
cdf2 = 
clf3 = 
cdf3 = 
cyf3 = 
cmtots 
crtots 
cntots 
cmf 3 = 
erf 3 = 
cnf3 = 
alf2 = 

continue 
continue 
write (92,32 

5,320) alfstb(ihh), -yawstb(ib), cltots, 
cmtots, cytots, crtots, cntots 

eq.2) clfl=cltots 
-sinast*scxtot(3,ihh) + 
cosast*scxtot(3,ihh) + 
-sinast*scxtot(2,ihh) + 
cosast*scxtot(2,ihh) + 
-sinast*scxtot(1,ihh) + 
cosast*scxtot(1,ihh) + 
scytot(1,ihh) 

= scqtot(1,ihh) 
= scptot(1,ihh) 
= scrtot(1,ihh) 
cmtots / cbar 
crtots / wspan 
cntots / wspan 

alfstb(ihh) 

cosast*scztot(3,ihh) 
sinast*scztot(3,ihh) 
cosast*scztot(2,ihh) 
sinast*scztot(2,ihh) 
cosast*scztot(1,ihh) 
sinast*scztot(1,ihh) 

1) alf2,clfl,cdfl,clf2,cdf2,clf3,cdf3,cmf3, 
cyf3,erf3,enf3 

return 
end 
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Appendix B: Data and Matlab Files 

This appendix shows the data and the Matlab files used to produce the plots in the thesis. 

The first set set of data is from moving the aircraft with equal spacings in the three-ship 

case. The second set of data shows the data from fixing the #1 wingman and only 

moving #2 wingman on both the inboard and outboard side of the #1 wingman. 

OOOOOOOOOOOOOOC300COOOOOOOOOOOOOOOOOOOCDOOOOOOOOOOOOOOOOO 

OOOOOOiHiHrHtHiH>H>HtHiH-H>H>HiH<H^HiH00000000000007HOOOOOOOOOOOOOOOOOOO 
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCiOOOOOOOOOOOOOO 

OOOOOCDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
w^lnorOLn^H^^mlN^o^oo^dmlnHlnmo^'l,^0'*HHo^^lroH^oy}u^lDOlncslOl^u)^ml^^Hoo^coo}^^ 
orol/loDO^^w^raco^alalCoco^^)^m^ooD^lnm(NOHMro^ln|J3lXl^^o■^r^moJ(^lHHHHHHHHOOOOO 
OOOOiHv-(rHrHiH^t^l^HiH>HrHi-ltHtHTHTHiHiHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

OOO<3OOOOC>C5OOOC5C3CJCZ)C3C3C3OCJOO<3<3O<3OOOOOOOOC5CiC>C5C3C>C3<3OOO<30>OC5C>CiOCi 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

OOOO^^^THCNMr^fVirvIirirnrnf^CNOJCSCNiHiHOOOOOO-HtH.HrHiHiHiHiHOOOOOOOOOOOOOOOOOO 
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 
cOLn^^D^om^D^wcoa3^m^w^lNO^dnoor^oro^MVDmwlTl^u^mln(Xcoln^Ol^o^^rsoa5lßlnm(NHOffl 
HOON*^^^^WLfl^^LnLnMomu^HOln(0^^o^o^DtüooJrl^l/l^o^^'flr^NHooom(7lOlOlCOtoco(Bl)3cocD^ 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

OOOOOOOOOOOOOOOOOOOOOOCDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
■jmiOlßlOM--a)Wd01^in^>OH1la)HMLrHD>DOO}Mn<fnO)01HHOOOH«)M»010   000dHHHHHH!NM01 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCDOOOOOOOOO 
OOOOOOOOCDOOOOOOOOOOOOOOOOOOOOOOOOOOOOCDOOOOOOCJOOOOOOOOOO 

p ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

,-i OOOOOOOOOOOOOOOCiOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
•:j u3V£>r^c^rdnji>iri^^HCO^coor^^^oio^r^voLniJ^ocn^i^oMDLnH^^criM,ro^u^ 

OlnlnndOl^^ßlnu)^^coramalOlo^co^vDrno^D(N^d^^^coal0^oD^o^od^moo^^^M{\oölODco^^u}ln^ 
vo[^[^coo^c^o^(Nrn^Ln^i>(X)c^OiHr^rnM'Lnv^vor^[^coo3cocococoracooD 

<■■■■!  <\ OOOOOOdddddddddd^MNMMf\lMMMMnMf\M^WNM^(N^(N[NININr>lCNIN0J(N(N0J0)010]NtN0)M 

Tl   0 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

f]   rj OOOOOOOOOOOOOOCDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

d-i    - irii^LnLnifiiiiirimi/iLnLnLninininuiLninLnininLninininiJiiriuiLnLniriLnLniriin 
(N      OO0O00000O000OO0000OOOOOOOC3OOO0000000O000OOOOOOOOO0OO00 

i I C": OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC30000000000000 
d u      •  ■p OO000000OO000O000OOOOOOOOC3C3OO00000000O000OOOOO0OOOO0O00 

f{ OC>OOOOOOC30000CIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCIOOOOOOOOOO 
i>OTrororoc^a>a^a^oovd^^cNicNcNr^r^^^^^^LnLnLniJiLniJiL^ 

C>0<300000C50CDOOC5rOCDCiOC3C3C3C3C3C3C3C3C3C3C3C30000000<3000C)OOOC>OOOOOC3CZ>(Z)C^ 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 
p,  ffi OOOOOOOOOOOOOOOOOOCDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

-Id    O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCDOOOOOOO 
,c    i.G OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC300000000000 
01 ooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

£!    '-"5 X  VO  VJD 
„id   Pi            oco^mHOl^^lNO(c^ndOl^^JCNOo^^omdOl^^o)oa)lcmdm^'iJ||NO(X)^ar^dOl^•'*MOco^cr^dOl^'^lNo ^    - 
i-j  i/j            o^lnndco^^lNo^lnrndco^D^(^lo^l/lmH(OlO'lJo^o^m^lHCou)^f[NO^lnroHallD'3'CNlo^l/lmdco^D')|(^^o it v£)   ■■ 

o^lnl^H^ü^^(^o^ln^^HcovD^r^o^l/l(^d03^^(NO^u^^ndcou)^t^o^o^lJ^mHOD^'*olo^l^mda}vO'^lNO <ri —- 
</]  o'j            0(NLnKdr^^OlOJLn^or^lfla)d^^oo^waldr^^DalMl/l^ofl^o(OH^^o(NLnffld^|1U3^TllNln^omuDald'^l^o Oio  X 
.,-i -,-i            ooooHHHd(N^soJn^nro^^s|lli^l/llnln^^Du3^^^^cococorol^(^woooodddHMrN(NrnnMM^^fsr^ ö    ■ 

Ui    <H OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-HrHrH^H^id^HrHtdi-i^drdtHidiHiHtHTH^-l U    II 
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lnu)lnc^^oc^l^rN^o^OHOl^DHHOco^OlnLncolnH^^l^y3m(Nl>HHlrl0^or,lOCQ^fl^r^l^lHOfflalCO 
^^lrl^^^^fl^'aln'T^rlHOc^l^Lnf^lOHM■a,U}(XlOlO^^^^^^|£lln'dl^n^(^llNOJHHHHHHHOOO 
.H^HrH-HiH^HrHiHtHiHtHiHiHiHiHOOOOOOOOOOOiHr-l^trHOOOOOOOOOOOOOOOOOO 
oooooooooooooooooooooooooooooooooooooooooooooooo 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

oooooooooooooooooooooooooooooooooooooooooooooooo 

^kOHlnou)^mlnoOTo:o(7l^ln^[>^rom^coH^^^^Ov^Ttl^^ooJ(NMl■*c^lCOOln(^^HHO]^^Hln 
^oal^^^oro^c^^o^l^l0^l0^^^^^colTl'^^LflU)lo^alOl^lHH^lcrllJ^cNO^r~lO'a,r|^(NHo^?lCOco[^ 
C0OOtHiHiHtHOm0D^MD^CNlOC0\J3^r^OOMm^LnUDI>[^roi^Ul^mCNtNCN>HrHiH^Hr-tiHiHrHOOOO 
--ICNCNCNCNCNCNCNT-Hi-lrHvHi-IHiHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
oooooooooooooooooooooooooooooooooooooooooooooooo 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

^lnLn^[N^l^coco^u^O(NComm[^Hlrl^oLnH^H^(^cocGM^lJ^fSlo3^l^foa3^o^LnroHo^^voln'J 
H^^omln^cFl^l/)mHODsl|Olnu3Hr^^o^^f^^o3cococouD003^Dlrl^|'i|lr^r^(TlC^lo^o^[NHT^HHH 
rNCNr^rOr^romr^rnrnrnroOJrNIO0rHC>OOO1HiH--l--l>H>HTHTHiHiH>HOOOOOC>OOOC>C>OCDOOOO 
oooooooooooooooooooooooooooooooooooooooooooooooo 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

oooooooooooooooooooooooooooooooooooooooooooooooo 

al^fOH^J'*oocoLn^Ol^ON^OMOlcoconHlnHO(^l^r>l^'3|^o^HlNmnfflOLn^om^DOlnmHo 
^lJ^^^lrl0^spm^^^lJl^^o^nocNlJ^ro^a}^o(T^^(7lOU3kD^cN^■y30^^nra^ocoLnnHalco^)lXl^d|n 

oooooooooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooooooooooooooooooooooooo 

Orlo^o^Ln^msroraH^^Dtf)lno3co^HalODq^ollntNH'THcolo^(7lCO^lo^]'^0(^lnlOcoal^^o^ro'g| 
fs^^^c^lO^^(N^l^ll^^fflHrl^^olnMOo^^^D^IllJllrll/)lrllJ^^D^ml/^^D^coal(TlWOOOOooHHHH 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
oooooooooooooooooooooooooooooooooooooooooooooooo 
oooooooooooooooooooooooooooooooooooooooooooooooo 

mono]r^r^oa)^n]l^^lm^lrlOlmmo^^cO'Jlcocor>l0^floa}H^lrlco^'*oa)o^'Il^ool^lln^ffilDHO 
^olNOJo^^mraMHco^o^HO(NCNlnm^ocoookoco'dl'3|ln^Hf,^rqo^DcOf^lN'^|cO'JHOlCoo}o^H'^^ 
OLn^^lro^DOMLncooH{^l(^lo^o^mcoM^a)OlJlCO^^i)^H^I^]HlnH^s|lo^oco^Du^^oJHO^TlOlo^^ 
Hc^^mln^ocoolOdm^ln^D^cocoolmoooHoaooooolfflca^^«u3l0^öLnlntnLnlnlnlnf^f'3l1 

oooooooooooooooooooooooooooooooooooooooooooooooo 
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Appendix C: Actual T-38 Dimensional Data 

The next page is a schematic showing the actual T-38 dimensions that the model 

was built from. The picture is compliments of the T-38 SPO at Kelly AFB. The 

dimensions can be compared to the wing file from Appendix A to see where dimensions 

vary. The actual aircraft and the model are very close, however this schematic is shown 

for completeness. 
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Appendix D: Data Reduction Process 

This appendix is taken directly from the test team's final report, Reference 13. 

The cruise point for each run was qualitatively evaluated to verify approximately 

stabilized fuel flow, airspeed, and pressure altitude. This was necessary because the fuel 

flow was the baseline for comparison to the fuel flow in the vortex. The duration of most 

cruise points was approximately 25 seconds. For comparison, the T-38C Propulsion 

Modernization Program used a minimum of 30 seconds of stabilized data for their cruise 

test points because they had the ability to correct their data for non-zero test day excess 

thrust. They determined their test day excess thrust using the inertial velocities from the 

T-38C production embedded GPS/INS (EG1). 

In this particular test program, the stabilized cruise airspeed was compared to 

vortex data available from that data run. If the airspeed of the data taken in the vortex 

was not within two knots of the stabilized cruise airspeed, the data were assumed to be 

invalid. The data from only one of 26 runs were determined to be invalid. The test team 

used a similar method to account for any excess thrust as a function of altitude and 

airspeed deviations. The correction method to account for imperfect stabilized cruise and 

vortex runs will be described later in this section. 

The test team recorded a stable vortex point, a stable reduced-airspeed point, and 

a stable cruise point on each run. The stable reduced-airspeed point was recorded by not 

moving the throttle after a stable vortex point until the airspeed stopped decreasing after 

the lead aircraft moved away. There was fuel to accomplish approximately six runs per 
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test sortie. There were 14 runs recorded on the two two-ship data sorties and 11 runs 

recorded on the two three-ship data sorties for a total of 25 runs. The objective of the 

two-ship data sorties was to evaluate the fuel savings at four lateral positions in the 

vortex. Then the lateral position at which the highest average fuel flow savings was 

achieved was selected to be flown in the three-ship data sorties. The highest average fuel 

flow savings was achieved in position B. The number of runs for the two-ship and three- 

ship formations is shown in Table D-l and Table D-2 respectively. 

There were three types of corrections applied to the fuel flow measurements 

before determining the percent fuel flow savings on each run. The first correction 

accounted for the different gross weights and ambient air temperatures at which the test 

aircraft was flown on different runs over different flight test sorties. The next correction 

accounted for the difference in fuel flow between runs as a function of how far away 

from 300 KCAS the test run was flown. Finally, the last correction accounted for excess 

thrust that was experienced during each of the vortex and cruise runs. The following 

paragraphs describe how each of these corrections were calculated. 

Gross Weight and Ambient Air Temperature Correction 

Both fuel flow differences and airspeed differences between in and out of the 

vortex were measures of performance used to evaluate the fuel flow savings. The 

airspeed measurement differences were converted to fuel flow differences to obtain an 

overall percent fuel flow savings per run to compare to the overall fuel flow savings 

achieved on each run using fuel flow measurements. The ambient air temperature and 

the aircraft gross weight for each sample were used to correct the data from each run to 
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Standard day atmospheric conditions at 10,000 feet pressure altitude and a gross weight of 

11,000 pounds. 

The cruise section in the T-38A performance manual, T.O. 1T-38A-1, Part 4 (13) 

was used to determine a gross weight and ambient air temperature standardization 

formula. This correction factor formula was imbedded in the data processing 

spreadsheet. The test team used Figure FA4-1, Sheet 1 to determine a cruise basic 

reference number at 500 pound gross weight intervals for 0.55 Mach number, the Mach 

number associated with 300 KIAS at 10,000 feet. The test team then used this basic 

reference number in Sheet 3 to determine the nautical air miles per pound of fuel at each 

gross weight interval. Finally, the test team used this nautical air miles per pound of fuel 

at each gross weight interval in Sheet 4 to determine the fuel flow in pounds per hour per 

engine for different ambient air temperatures in 5° C intervals. At 10,000 feet, the 

standard day ambient air temperature is -5° C.   The runs were flown over an average 

ambient air temperature range between 5° C and 9° C and an average aircraft gross weight 

range between 9,830 pounds and 11,650 pounds. 

The data standardization factor from the flight manual was very small (i.e. 15 

pounds-per-hour-per-engine for every 10° C temperature deviation from standard day and 

20 pounds-per-hour-per-engine for every 500 pounds deviation from 11,000 pounds of 

aircraft gross weight). Since the nominal fuel flow at 10,000 feet and 300 KCAS was 

1000 pounds-per-hour per engine, these corrections were 1.5 percent and 2 percent of the 

total fuel flow per-engine respectively. The charts showed a roughly linear relationship 

between changes in fuel flow as a result of changes in ambient temperature and aircraft 

gross weight. The linear approximation for the fuel flow correction per engine from 
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Standard day at 10,000 feet is plotted in Figure D-l. Two weight and temperature fuel 

flow correction lines are plotted in Figure D-l. The top line is a correction factor for 5° C 

and the bottom line is simply a weight correction for -5° C, the standard day ambient air 

temperature. The following formulas show how to derive the final weight and 

temperature correction to standard day and mid-band weight. 

W is the aircraft gross weight in pounds. 
T is the ambient air temperature in degrees Celcius. 
öFFWT is the weight and temperature correction factor in gallons-per- 
minute (gpm) to standard day ambient temperature at mid-band gross 
weight of 11,000 pounds at 10,000 feet. 

SFFWT {W,T)=mW + b(W, T) 

b{0,T2)-b{0Jx) 
m2 

T —T 

-440-(-425)     . c 
m0 = 7—r— = 1.5 

-5-(-5) 

b(W,T) = b(0,Ti)-m2T] 

b{W,T) = -425 -1.5(5) = -432.5 

ÖFFWT{W,T) = ÖMW + 1.57-432.5 

SFFWT =0.04^ + 1.57-432.5 
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Fuel Flow Correction per Engine from Standard Day at 10,000 feet and 300 KCAS 

10,000 10,250 10,750 11,000 11,250 

Aircraft Gross Weight (lbs) 
2,000 

Figure D-l: Fuel Flow Model Correction for Gross Weight and Ambient Air 
Temperature 

The test team used the following conversion to convert the fuel flow correction factor 

formula obtained from the performance manual in lbs/hr/eng to gpm for both engines, 

assuming JP-8 fuel: 

SFFWT\gpm\ = 3FFW 
lb Ihr 

eng _ 
2eng gal 

60 min/ hr _ 

Fuel Flow Correction to 300 KCAS 

The calibrated airspeed, Vc (knots), at each sample during the run was used to 

calculate a standardized fuel flow, FFy (lb/hr). The following graph and accompanying 

formula, obtained from the T-38C Propulsion Modernization Program, illustrates this 

conversion. 
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Standardized Fuel Flow versus Calibrated Airspeed 
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Figure D-2: Standardized Fuel Flow versus Calibrated Airspeed 

FFV = -2.7081xlOwFc
4+2.4386x10^-4.7184x10^-3.0401Fc+2.841403xl0j 

The factor to correct the fuel flow, SFFy (gpm), back to 2073 lbs/hr, the 

standardized fuel flow at 300 KCAS and 10,000 feet was calculated as follows: 

SFFv[gpm] = [2073-FFv] 
\_hr 

hr 

60 min 

gal 

6.m_ 

This correction was only applied to the fuel flow measurement data since this correction 

factor would have cancelled itself out if it was applied to the fuel flow calculated from 

airspeed measurement differences in and out of the vortex. 

Excess Thrust Correction 

To account for small variations in altitude, H (ft), and true airspeed, Vr (ft/sec), 

during each vortex and cruise run, the following procedure was applied to determine an 

excess thrust correction, SFFFex (gpm). First, the specific excess power, Ps (ft/sec), was 
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calculated per run for both the vortex run and the cruise run using the following formula 

with g (32.2 ft/sec2): 

„     dH    VT dVT P. = + - T 

dt      g   dt 

The excess thrust, Fex (lbs), for both the vortex run and the cruise run, was calculated by 

using the average gross weight, Wavg (lbs), and the average Vr (ft/sec) for the vortex run 

and the cruise run respectively in the following formula: 

F_ = 
P W rSVr avg 

vT_._ 

Then, this excess thrust was converted to fuel flow, öFFFex (gpm), using the following 

formula for thrust specific fuel consumption, TSFC (per-hr): 

r1SFC = -3.8027xl0"9Fc
4+4.9149xl0"6Fc

3-2.3722xl0"3Fc
2+5.0550xl0"1Fc-38.0230 

&Fp\gpm] = -FeJSFC 
~lb~ 

hr 

hr 

60 min 

gal 

6.m_ 

Fuel Flow Savings using the Fuel Flow Method 

The percent savings in fuel flow rates for each run at a specific lateral spacing 

were calculated using the average corrected fuel flow per run, FFrun, for both the vortex 

run and the cruise run. The actual fuel flow measurement at each sample, FFreadi   , was 

corrected over N samples per run in the following formula to calculate, FFn 

iL(FF
reading,+öFFWTi+8FFv) 

FF    =- run 
N 

■ + SFFP 
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Since the goal was to calculate the percent fuel flow savings of flying in lead's vortex 

versus flying at cruise, the following formula was used to calculate the percent fuel flow 

savings per run at a specific lateral spacing treatment. 

%FF   . savings 

FF  .   -FF cruise vortex 

FF  . cruise 

xlOO 

Fuel Flow Savings using the Airspeed Method 

The average corrected fuel flow per run had to be calculated by first converting 

the calibrated airspeed into standardized fuel flow, FFy (lb/hr), at each sample in the 

vortex and outside the vortex after the lead aircraft moved away. Once again, the fuel 

flow correction back to 300 KCAS, SFFy (gpm), was not applied here since this 

correction factor would have cancelled itself out if it was applied to the fuel flow 

calculated from airspeed measurement differences in and out of the vortex. Therefore, 

the calculated average fuel flow from the airspeed measurements during the vortex run 

was corrected only for gross weight, temperature, and excess thrust variations using the 

following formula: 

ZK+^J 
FF^ex = + SFFF„ 

The data were simply collected for the cruise run in the airspeed measurement 

method by using the following procedure. Once the lead aircraft moved away from the 

test aircraft, without adjusting the throttle, the aircraft decelerated. As soon as the aircraft 

stopped decelerating, the new airspeed was read and this was used to calculate the 

average corrected cruise fuel flow, FF  .   ■ The average airspeed was taken ±1 second 
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of the determined new slower airspeed. Therefore, it was assumed that there were no 

excess thrust effects. Thei^F  .   was calculated using the following formula: 
cruise ^ ^ 

    J^(FFVI+SFFWT) 
i=\ FF   . cruise j. j 

In this case, in order to calculate the percent fuel flow savings, since there was no 

actual power reduction between in the vortex and out of the vortex, a power reduction 

corresponding to a fuel flow savings must be calculated based upon the decrease in 

airspeed once the aircraft left the vortex. Logically, the greater the airspeed loss, the 

greater the calculated power reduction and hence fuel flow savings, because in order to 

compare fuel flow at the new "cruise" power setting, the pilot would have to reduce 

power. The graph in Figure D-2 shows that as calibrated airspeed increases, the 

standardized fuel flow also increases. Therefore, the larger the airspeed difference, the 

larger the percent fuel flow difference, %FF'difference- 

%FF /01 1 difference 

FF -FF    . vortex cruise 

FF„ 
xlOO 

Remember, however, the larger the required power reduction, the larger the percent fuel 

flow savings. Therefore, 

0/T7T7 =    0/T7T7 /or r savings       ~ /°r r difference 

savings 

FF  .   -FF cruise vortex 

FF  . cruise 

xlOO 

The %FFsavings formula was the same for both the fuel flow method and the airspeed 

method, even though the derivation was different. 
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Both the percent fuel flow savings from the fuel flow method and the airspeed 

method are shown along with the data used to apply all the described corrections in Table 

D-l. These were the results for the two-ship runs flown in the 75% lateral spacing 

treatment. All of the data summary tables for all of the different lateral spacing 

treatments flown in either the two-ship or three-ship formations are included at the end of 

this appendix. 

Table D-l: Data Summary Table - Test Position A 

A 2-Ship 

Vleasured Parameter 

Run Number 

1 2 3 4 

M.O.P. Time (sec) Vortex Run 22 25 36 41 
Cruise Run 67 30 12 32 

Ambient Air Temperature (degrees C) 5.1 5.7 6.3 7.3 

Data Used 
for Average 

Pressure Altitude (feet)* 

Gross Weight (pounds) 

10,227 

10,915 

10,752 

10,750 

10,653 
10,599 

10,119 

10,272 

Corrections Vortex Airspeed (KCAS) 307.0 309.3 308.2 307.9 

Reduced Airspeed (KCAS) 292.2 302.2 303.1 304.5 

Cruise Airspeed (KCAS) 307.0 308.8 310.1 308.7 

Fuel Flow 
Method 

Average Corrected Vortex Fuel Flow (gal/min) 4.40 4.96 4.97 4.84 
Corrected Cruise Fuel Flow (gal/min) 5.01 5.06 4.56 5.11 

Fuel Flow Savings (percent) 12.17% 1.92% -8.80% 5.14% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 4.67 5.28 5.27 5.05 

Corrected Reduced A/S Fuel Flow (gal/min) 5.05 5.14 5.12 5.09 

Fuel Flow Savings (percent) 7.43% -2.61% -2.88% 0.61% 

* An ave rage of all t ie in and out of vortex pressure altitude : data pe rrun. 

Analysis of Variance 

In order to evaluate the fuel flow savings at four lateral positions in the vortex, the 

analysis of variance (ANOVA) method was used. The ANOVA method was used to 

analyze the variation of the response and assign portions of this variation to effects 

caused by different treatments. In this test, the response observation was either 

%FFSavi„gS obtained from the fuel flow method or the airspeed method found by flying in 
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the vortex. The treatments for this test were the four lateral spacings. If these treatments 

had big enough effects on the response, the ANOVA method would statistically show 

their significance. The single classification ANOVA function in Microsoft® Excel was 

used because the data were only classified a single way, that is by treatment. The 

statistical model for the completely randomized design is as follows: 

Yy=/i + Tl+£lJ, i = l,2,...,k     j = \,2,...,ni 

Yy is the jth response observation from treatment i 
k is the number of treatments 
rii is the number of runs per treatment 
ft is the overall mean 
X; is the nonrandom effect of treatment 
sy is the random error terms that are independent and randomly 
distributed 

The following table lists the percent fuel flow savings calculated from the two- 

ship sortie data by treatment and by run per treatment. In this case, the ANOVA method 

assumes the random samples have been drawn from four normal populations with means 

fti, H2, fi3, and fi4 with equal variances, GI=G2=ö3= 04. A complete set of tables is shown 

at the end of this appendix. 
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Table D-2: Two Ship Sortie Analysis of Variance Table 

% Fuel Flow Savings (Fuel Flow Method) 
Treatment Run 

(Lateral Position) 1 2               3 4 
75% 12.17% 1.92%      -8.80% 5.14% 
86% 23.88% 19.92%       3.76% -3.98% 
100% 1.92% 5.62%      -0.36% 
114% 3.26% -2.87%       2.60% 

Anova: Single Factor 

SUMMARY 
Groups Count        Sum      Average       Variance 

Row 1 

Row 2 

Row 3 

Row 4 

4 0.104373 0.026093 0.007613294 
4 0.435838 0.108959 0.017413254 
3 0.071799 0.023933 0.00090816 

3 0.029878 0.009959 0.001132373 

ANOVA 
Source of Variation SS df MS P-value F crit 

Between Groups 
Within Groups 

Total 

0.022798 
0.079161 

0.101959 

3 0.007599 0.959989962 0.448833 1.861398 

10 0.007916 

13 

In order to detect a difference in a set of more than two treatment population 

means, the following null hypothesis was established: 

The null hypothesis can hold only if all the treatment effects were zero. 

The alternate hypothesis was that at least one of the equalities in the null hypothesis did 

not hold, 

Ha : jUi # //z for some i and / if and only if Ha :ri # 0 for some i, i = 1,2,..., k is true 
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In order to reject the null hypothesis, the variance between groups must be 

significantly greater than the variance within groups. In other words, if sy became too 

large, it tended to cloud the treatment effect. The test team found that the data collected 

on each run had very small variances. However, because each treatment was flown with 

four different pilots and with no differential GPS to validate the pilot's opinion on 

whether or not the proper position in the vortex was maintained, variances within each 

treatment hindered the test team from making a decisive decision with respect to 

treatment effects. The following equations are used by Microsoft® Excel to calculate the 

ANOVA table values. 

y is the grand mean of all the runs 

y; is the treatment mean 

SS is the sum of square errors 
MSTis the mean sum of square of treatment errors (Between 
Groups) 
MSE is the mean sum of square errors (Within Groups) 

Z Z VIJ -yf = Z n< vi - y f + Z Z vu -yJ 

'-"-'Total        '-"-'' BetweenGroups       UiJWithmGroups 

Notice that the contribution of the grand mean was factored out because it was of no 

practical interest. Microsoft® Excel made all the calculations. The null hypothesis was 

rejected if, 

MSE 

a = 0.20 level of risk 
vx =(&-!); F-statistic numerator degrees of freedom 
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v2 =(ni+n2-\ \-nk—k); F-statistic denominator degrees of 

freedom 

PY      / * rc<i7       I WithlnGroups 

nx +n2-\ Ynk-k 

A confidence interval was established for each treatment using the following 

formula. This formula was used to create the error bars found in all of the fuel flow 

comparison plots. 

        t   a/ Ö 

C.I., = y, ±    J—     , v = (nl+n2-\ \-nk-k) degrees of freedom 

An example calculation is shown below for the percent fuel flow savings for the 86 

percent lateral spacing position in the vortex. 

.90o/o±(l-372)(V0.007916)(l00) = 1Q9Q% ± 61Q% = [AM%A1M%] 
0 savingsg6%spacing .sv'u r— 
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Table D-3: Data Summary Table - Test Position A, Two-Ship Sortie 

A 2-Ship 

Measured Parameter 

Run Number 

1 2 3 4 

M.O.P. Time (sec) Vortex Run 
Cruise Run 

22 
67 

25 
30 

36 
12 

41 
32 

Data Used 
for 

Corrections 
Average 

Ambient Air Temperature (degrees C) 

Pressure Altitude (feet)* 

Gross Weight (pounds) 

Vortex Airspeed (KCAS) 

Reduced Airspeed (KCAS) 

Cruise Airspeed (KCAS) 

5.1 

10,227 

10,915 

307.0 
292.2 

307.0 

5.7 

10,752 

10,750 

309.3 
302.2 

308.8 

6.3 

10,653 
10,599 

308.2 

303.1 

310.1 

7.3 

10,119 

10,272 

307.9 

304.5 

308.7 

Fuel Flow 
Method 

Average Corrected Vortex Fuel Flow (gal/min) 
Corrected Cruise Fuel Flow (gal/min) 

Fuel Flow Savings (percent) 

4.40 
5.01 

12.17% 

4.96 
5.06 

1.92% 

4.97 
4.56 

-8.80% 

4.84 
5.11 

5.14% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 

Corrected Reduced A/S Fuel Flow (gal/min) 

Fuel Flow Savings (percent) 

4.67 

5.05 

7.43% 

5.28 
5.14 

-2.61% 

5.27 
5.12 

-2.88% 

5.05 

5.09 

0.61% 

* An average of all the in and out of vortex pressure altitude data per run. 

Table D-4: Data Summary Table - Test Position B, Two-Ship Sortie 

B 2-Ship 

Measured Parameter 

Run Number 

1 2 3 4 

M.O.P. Time (sec) Vortex Run 12 27 29 60 
Cruise Run 24 12 7 24 

Ambient Air Temperature (degrees C) 5.3 5.5 6.4 5.8 

Data Used 
Average 

Pressure Altitude (feet)* 

Gross Weight (pounds) 

10,236 

11,562 

10,189 

11,358 

10,525 

10,993 

10,807 

9,836 

Corrections Vortex Airspeed (KCAS) 308.9 306.9 310.2 306.6 

Reduced Airspeed (KCAS) 309.0 300.3 305.9 303.1 

Cruise Airspeed (KCAS) 309.6 307.3 310.2 306.0 

Fuel Flow 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 3.98 4.56 5.01 4.73 

Corrected Cruise Fuel Flow (gal/min) 5.23 5.69 5.20 4.55 

Fuel Flow Savings (percent) 23.88% 19.92% 3.76% -3.98% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 4.36 4.75 5.27 5.01 

Corrected Reduced A/S Fuel Flow (gal/min) 5.39 5.23 5.24 4.97 

Fuel Flow Savings (percent) 18.98% 9.26% -0.59% -0.86% I I I" ~w * '""   ""'"'S" VM —V I    *"•■'"'" 

* An average of all the in and out of vortex pressure altitude data per run. 
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Table D-5: Data Summary Table - Test Position C, Two-Ship Sortie 

c 2-Ship 

Measured Parameter 

Run Number 

1 2 3 

M.O.P. Time (sec) Vortex Run 19 11 31 
Cruise Run 20 23 112 

Ambient Air Temperature (degrees C) 5.6 5.8 6.9 

Pressure Altitude (feet)* 10,182 10,151 10,408 
Data Used 

Average 
Gross Weight (pounds) 10,572 9,914 11,646 

Corrections Vortex Airspeed (KCAS) 308.2 306.5 306.5 

Reduced Airspeed (KCAS) 307.4 303.5 305.0 

Cruise Airspeed (KCAS) 308.8 306.9 306.6 

Fuel Flow 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 4.92 4.68 5.35 

Corrected Cruise Fuel Flow (gal/min) 5.02 4.96 5.33 

Fuel Flow Savings (percent) 1.92% 5.62% -0.36% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 5.18 4.84 5.51 

Corrected Reduced A/S Fuel Flow (gal/min) 5.18 4.99 5.33 

Fuel Flow Savings (percent) 0.00% 3.02% -3.37% 

* An average per run. 

Table D-6: Data Summary Table - Test Position D, Two-Ship Sortie 

D 2-Ship 

Measured Parameter 

Run Number 

1 2 3 

M.O.P. Time (sec) Vortex Run 

Cruise Run 
10 
38 

11 

23 
31 
112 

Data Used 
for 

Corrections 
Average 

Ambient Air Temperature (degrees C) 

Pressure Altitude (feet)* 

Gross Weight (pounds) 

Vortex Airspeed (KCAS) 

Reduced Airspeed (KCAS) 

Cruise Airspeed (KCAS) 

5.2 

10,185 

10,147 

309.0 
305.9 

309.3 

5.8 

10,151 
9,914 

306.5 

303.5 

306.9 

6.9 

10,408 

11,646 

306.5 

305.0 

306.6 

Fuel Flow 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 

Corrected Cruise Fuel Flow (gal/min) 

Fuel Flow Savings (percent) 

4.68 
4.84 

3.26% 

4.68 

4.96 

5.62% 

5.35 

5.33 

-0.36% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 

Corrected Reduced A/S Fuel Flow (gal/min) 

Fuel Flow Savings (percent) 

4.96 

5.07 

2.31% 

4.84 

4.99 

3.02% 

5.51 

5.33 

-3.37% 

* An average of all the in and out of vortex pressure altitude data per run. 
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Table D-7: Data Summary Table - Test Position B, Three-Ship Sortie, First Wingman 

B 3-Ship Wingman 1 

Measured Parameter 

Run Number 

1 2 3 

M.O.P. Time (sec) Vortex Run 

Cruise Run 

19 

27 
23 
22 

24 

25 

Data Used 
for 

Corrections 
Average 

Ambient Air Temperature (degrees C) 

Pressure Altitude (feet)* 

Gross Weight (pounds) 

Vortex Airspeed (KCAS) 

Reduced Airspeed (KCAS) 

Cruise Airspeed (KCAS) 

9.0 
10,221 

10,753 

301.8 

300.4 

303.1 

9.2 

10,190 
11,064 

307.4 

304.0 

305.8 

9.0 

10,240 

10,071 

307.6 

303.5 

307.8 

Fuel Flow 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 

Corrected Cruise Fuel Flow (gal/min) 

Fuel Flow Savings (percent) 

5.25 

4.96 

-5.76% 

5.23 

5.21 

-0.41% 

4.85 

5.22 

7.06% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 

Corrected Reduced A/S Fuel Flow (gal/min) 

Fuel Flow Savings (percent) 

5.26 
5.14 

-2.28% 

5.35 

5.25 

-1.81% 

4.96 

5.05 

1.66% 

* An average of all the in and out of vortex pressure altitude data per run. 

Table D-8: Data Summary Table - Test Position B. Three -Ship Sortie, Second Wingman 

B 3-Ship Wingman 2 

Measured Parameter 

Run Number 

1 2 3 4 5 6 7 8 

M.O.P. Time Vortex Run 16 28 24 21 28 25 23 24 
(sec) Cruise Run 20 15 25 27 30 22 25 19 

Ambient Air Temperature (degrees C) 9.2 8.9 9.2 8.6 8.4 9.3 9.2 8.7 

Pressure Altitude (feet)* 10,118 10,183 9,971 10,279 10,339 10,178 10,195 10,282 
Data Used 

Average 
Gross Weight (pounds) 11,651 11,361 11,074 10,336 10,070 11,770 11,359 10,414 

Corrections Vortex Airspeed (KCAS) 308.3 309.8 305.5 309.2 309.5 309.2 306.4 305.5 

Reduced Airspeed (KCAS) 301.5 308.4 292.9 302.7 306.3 303.7 301.2 303.1 

Cruise Airspeed (KCAS) 308.0 311.7 305.0 308.9 310.6 310.8 305.9 307.0 

Fuel Flow 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 5.30 5.26 5.31 5.00 4.80 4.41 5.30 5.28 

Corrected Cruise Fuel Flow (gal/min) 5.64 5.03 5.25 4.95 4.87 5.20 5.48 5.02 

Fuel Flow Savings (percent) 5.97% -4.50% -1.07% -1.09% 1.49% 15.10% 3.36% -5.27% 

Airspeed 
Method 

Average 
Corrected Vortex Fuel Flow (gal/min) 5.59 5.31 5.58 5.28 5.05 4.55 5.37 5.32 

Corrected Reduced A/S Fuel Flow (gal/min) 5.34 5.36 5.13 5.09 5.08 5.38 5.27 5.11 

Fuel Flow Savings (percent) -4.67% 1.02% -8.84% -3.82% 0.59% 15.41% -1.93% -4.10% 

* An a"\ /erage of all the in and out of vortex p ressure altituc e data per run 
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Table D-9: Two-Ship Sortie ANOVA (Fuel Flow) 

% Fuel Flow Savings (Fuel Flow Method) 
Treatment Rur i 

(Lateral Position) 1 2 3 4 
75% 12.17% 1.92% -8.80% 5.14% 
86% 23.88% 19.92% 3.76% -3.98% 
100% 1.92% 5.62% -0.36% 
114% 3.26% -2.87% 2.60% 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 
Row 1 4 0.104373 0.026093 0.007613294 
Row 2 4 0.435838 0.108959 0.017413254 
Row 3 3 0.071799 0.023933 0.00090816 
Row 4 3 0.029878 0.009959 0.001132373 

ANOVA 

Source of Variation SS JL MS F P-value F crit 
Between Groups 
Within Groups 

0.022798 
0.079161 

3    0.007599 
10   0.007916 

0.959989962     0.448833     1.861398 

Total 0.101959 13 
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Table D-10: Two-Ship Sortie AN OVA (Airspeed) 

% Fuel Flow Savings (Airspeed Method) 
Treatment Rur i 

(Lateral Position) 1 2 3 4 
75% 7.43% -2.61% -2.88% 0.61% 
86% 18.98% 9.26% -0.59% -0.86% 
100% 0.00% 3.02% -3.37% 
114% 2.31% -1.59% 0.87% 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 
Row 1 4 0.025611 0.006403 0.002302086 
Row 2 4 0.268041 0.06701 0.008921174 
Row 3 3 -0.00354 -0.00118 0.001021935 
Row 4 3 0.01584 0.00528 0.000390282 

ANOVA 

Source of Variation SS JL MS F P-value F crit 
Between Groups 
Within Groups 

0.011527 
0.036494 

3    0.003842 
10   0.003649 

1.052854701     0.411533     1.861398 

Total 0.048021 13 
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Table D-l 1: Two-Ship Sortie ANOVA (Average) 

% Fuel Flow Savings (Averaging Fuel Flow / Airspeed Methods) 
Treatment Run 

(Lateral Position) 1 2 3                       4 
75% 9.80% -0.34% -5.84%               2.88% 
86% 21.43% 14.59% 1.59%              -2.42% 
100% 0.96% 4.32% -1.86% 
114% 2.79% -2.23% 1.73% 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 
Row 1 4 0.064992 0.016248 0.004266028 
Row 2 4 0.351939 0.087985 0.012367121 
Row 3 3 0.034131 0.011377 0.000957348 
Row 4 3 0.022859 0.00762 0.000700529 

ANOVA 

Source of Variation SS JL MS F P-value F crit 
Between Groups 
Within Groups 

0.016541 
0.053215 

3    0.005514 
10   0.005322 

1.036097623       0.41801     1.861398 

Total 0.069756 13 
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Table D-12: Three-Ship Sortie ANOVA (Fuel Flow) 

Treatment 
% Fuel Flow Savings (Fuel Flow Method) 

Run 
(Lateral Position B) 

2-Ship 
Pos 2, 3-Ship 

1 
23.88% 
-5.76% 

2 
19.92% 
-0.41% 

3 
3.76% 
7.06% 

4 
-3.98% 

5 6           7 8 

Pos 3, 3-Ship 5.97% -4.50% -1.07% -1.09% 1.49% 15.10%   3.36% -5.27% 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 
Row 1 4 0.435838 0.108959 0.017413 
Row 2 3 0.008861 0.002954 0.004143 
Row 3 8 0.139821 0.017478 0.00433 

ANOVA 

Source of Variation SS df MS F P-value F crit 
Between Groups 0.027181 2 0.013591 1.795364 0.207917 1.845962 
Within Groups 0.090837 12 0.00757 

Total 0.118018 14 
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Table D-13: Three-Ship Sortie ANOVA (Airspeed) 

% Fuel Flow Savings (Airspeed Method) 
Treatment Run 

(Lateral Position B) 1 2 3 4 5                6 7 8 
2-Ship 18.98% 9.26% -0.59% -0.86% 

Pos 2, 3-Ship -2.28% -1.81% 1.66% 
Pos 3, 3-Ship -4.67% 1.02% -8.84% -3.82% 0.59%       15.41% -1.93% -4.10% 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 
Row 1 4 0.268041 0.06701 0.008921 
Row 2 3 -0.0243 -0.0081 0.000464 
Row 3 8 -0.06334 -0.00792 0.005271 

ANOVA 

Source of Variation SS df MS F P-value F crit 
Between Groups 0.01649 2 0.008245 1.531886 0.255555 1.845962 
Within Groups 0.064589 12 0.005382 

Total 0.081079 14 
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Table D-14: Three-Ship Sortie ANOVA (Average) 

% Fuel Flow Savings (Averaging Fuel Flow / Airspeed Methods) 
Treatment Run 

(Lateral Position B) 1 2 3 4 5                 6           7 8 
2-Ship 21.43% 14.59% 1.59% -2.42% 

Pos 2, 3-Ship -4.02% -1.11% 4.36% 
Pos 3, 3-Ship 0.65% -1.74% -4.96% -2.46% 1.04%        15.26%   0.72% -4.69% 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 
Row 1 4 0.351939 0.087985 0.012367 
Row 2 3 -0.00772 -0.00257 0.00181 
Row 3 8 0.038239 0.00478 0.004121 

ANOVA 

Source of Variation SS JL MS F P-value F crit 
Between Groups 
Within Groups 

0.021416 
0.069571 

2     0.010708 
12     0.005798 

1.847001     0.199841     1.845962 

Total 0.090988 14 
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