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Abstract 

 
This research investigated value and utility functions in multiobjective decision 

analysis to examine the relationship between them in a military decision making context.  

New data is presented and data from an earlier study is also analyzed for this relationship.  

Further, the impact of these differences on the decision model was examined in order to 

improve implementation efficiency.  Specifically, the robustness of the decision model 

was examined with respect to the preference functions to reduce the time burden imposed 

on the decision maker. 

Data for decision making in a military context supports the distinction between 

value and utility functions.  Relationships between value and utility functions and risk 

attitudes were found to be complex.  Elicitation error was significantly smaller than the 

difference between value and utility functions.  Risk attitudes were generally neither 

constant across the domain of the evaluation measure nor consistent between evaluation 

measures.  An improved measure of differences between preference functions, the 

weighted root means square, is introduced and a goodness of fit criterion established.  An 

improved measure of risk attitudes employing utility functions is developed. 

Response Surface Methodology was applied to improve the efficiency of decision 

analysis utility model applications through establishing the robustness of decision models 

to the preference functions.  Which value-utility differences are significant was 

determined.  An algorithm was developed and employs this information to provide a 
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hybrid value-utility model that offers increased elicitation efficiency for the decision 

maker. 
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ROBUSTNESS OF MULTIPLE OBJECTIVE DECISION ANALYSIS PREFERENCE 

FUNCTIONS 

 

“When all available knowledge has been applied, the problem is reduced to one of 

preference.” (Matheson and Howard, 1968: 21) 

 
 
 

I.  Introduction 

Decision Analysis and Operations Research 

This research extends decision analysis theory and knowledge.  All Operations 

Research (OR) is concerned with making decisions.  The introductory remarks in 

Introduction to Operations Research (Hillier and Lieberman, 2001: 3) opines “to be 

successful, OR must … provide positive, understandable conclusions to the decision 

maker(s).”  Decision analysis (DA) provides a framework for examining complex 

decisions made under conditions of uncertainty, particularly for single, non-repeatable 

situations.  The DA literature continues to expand, testifying to its success.  Besides 

extensions to theory, DA has found application in many fields. 

Decision analysis provides a bridge between the objectivist and subjectivist 

formulations of probability, linking the decision maker’s intrinsic attitudes to the external 

environment with mathematical tools.  In a sense, DA has returned to the roots of 
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probability theory, to the work of Pascal and Bernoulli.  In providing this confluence, DA 

provides a solid analytical foundation for problems of increasing complexity. 

Decision makers likely will face increasingly complex situations because of 

increasingly complex technologies, more rapid communications, faster business 

practices, and increasing competition.  Frequently decisions involve objectives that are in 

conflict.  Acceptable alternatives are challenging to develop. Decisions often involve 

intangible aspects and are of interest to multiple groups with differing views and may 

involve multiple decision makers.  Often decisions involve expertise from several 

unrelated disciplines.  Uncertainty also has a significant impact on decisions. Important 

decisions typically involve high stakes, are complex in nature, are multi-disciplinary, and 

need to be defensible (Keeney, 1982: 803 – 806).  All these aspects of decisions 

challenge the decision maker, and the operations researcher.  Certainly without 

quantitative reasoning, our society will be less well disposed. 

The Purpose of Multiple Objective Decision Analysis 

Keeney (1982: 806) defines decision analysis as “a formalization of common 

sense for situations which are too complex for informal use of common sense.”  He also 

offers a more technical definition: “a philosophy, articulated by a set of logical axioms, 

and a methodology and collection of systematic procedures, based on those axioms, for 

responsibly analyzing the complexities inherent in decision problems.”  The term 

decision analysis is sometimes used more broadly to refer to the analysis of any decision 

(see, for example, [Wallace, 2000]).  In this document, the term decision analysis (DA) 
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refers to the OR methodologies derived from this axiomatic basis, those that produce a 

preference function. 

Multiple Objective Decision Analysis (MODA) is employed to permit the decision 

maker to clarify in her own mind which alternative she should select.  The intent of 

Multiple Objective Decision Analysis is to be prescriptive, to provide what is the most 

prudent course available in a bewildering decision context, as established from 

examination of underlying preference components.  Multiple objective decision analysis 

is not descriptive in that it does not attempt to replicate how an individual makes a 

decision.  It is also not normative in that it accounts for deviation from preferences that 

would be expected of one who was strictly a formalist in application of mathematical 

principles.  (Keeney and Raiffa, 1993: xv).  (A less fastidious taxonomy of decision 

making considers the categories normative and prescriptive to be identical.  For example, 

see Skinner [1999: 13].) 

Operations research is credited as being the first organized scientific discipline 

devoted to decision-making.  Emerging as a profession during the Second World War, 

operations research analysts played important roles in developing effective tactics for air 

and sea forces.  Postbellum, those skilled in OR techniques found applications in the 

private sector and operations research continued to develop.  The problems that were well 

suited for application of OR tools were repetitive in nature.  Whether searching for 

enemy aircraft or scheduling production, OR techniques were found to be useful.  

Operations research flourished at the lower and middle levels of management.  But 

executive decisions tend to be unique, not repetitive, involve large portions of an 

organization’s resources, characterized by high degrees of uncertainty, and typically 
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involve the decision maker’s personal risk attitudes.  Operations research techniques were 

found lacking for application in the boardroom.  (Matheson and Howard, 1968: 21 – 22) 

The term “decision analysis” is attributed to Howard (1963: 55).  That DA arose 

not until two decades after the genesis of OR is ascribed to three influences.  First, the 

development of electronic computational capability fostered the ability to develop 

computationally intensive mathematical models.  The ubiquity of computers, while 

assisting greatly in ciphering, had a negative aspect in organizations.  Managers were 

observed to say that computers made them feel as if they had less control, not more, over 

their organizations.  Decision analysis provided an analytic focus on managerial issues, 

and provided for employing the computer as an appropriate tool.  Finally, private 

corporations evolved more complex managerial structures and techniques.  Boards 

supplanted individual managers.  More complex financial arrangements increased 

auditing activities.  These trends required decisions to be more thoroughly reasoned and 

defensible.  (Matheson and Howard, 1968: 22 – 23) 

Decision analysis provides a number of advantages.  Besides extending analysis 

beyond repetitive decision situations, it codifies the process of making the actual 

decision.  Prior to the development of DA, many man-months of effort were devoted to 

analysis of particular problems.  This analysis may have been development and 

employment of a simulation, the application of statistical tools to historical or 

experimental data, or similar efforts.  The analytic results were reduced to graphs, tables, 

or other conveyances and presented to the decision maker.  The decision maker then was 

forced to absorb the information, process it in some internal, usually unspecified manner, 

and then announce his decision.  Decision analysis permits the tools of operations 
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research to be brought to bear on the decision itself to assist the decision maker.  Also, 

the decision analytic process itself has inherent advantages.  The DA process forces the 

decision maker to think hard about her preferences.  While this requires an investment of 

time, generally participants indicate that the exercise was beneficial in making them 

devote the effort to gain insight into the problem.  (For example, see Felli, Kochevar, and 

Gritton, 2000: 60 – 61).  Corner and Kirkwood (1991: 206) observe, “Decision analysis 

provides tools for quantitatively analyzing decisions with uncertainty and/or multiple 

conflicting objectives.  These tools are especially useful when there is limited directly 

relevant data so that expert judgment plays a significant role.”  Kirkwood (1992b: 37) 

notes that DA’s ability to perform tradeoffs among multiple objectives makes it valuable 

for government decision making.  Within decision analysis, multiattribute utility theory is 

considered the leading methodology.  Keeney and Raiffa (1993:  xi) state, “Decision 

analysis is widely recognized as a sound prescriptive theory.  When a decision involves 

multiple objectives – and this is almost always the case with important problems – 

multiattribute utility theory forms the basic foundation for applying decision analysis.”  

Decision analysis is widely applicable to military decision making.  Buede and 

Bresnick (1992) show that decision analysis is useful in the materiel acquisition process.  

Vendor engineers viewed value models distributed with the request for proposal for the 

US Marine Corps (USMC) Mobile Protected Weapon System to industry as helpful.  The 

USMC found that all ten conceptual responses to the request for proposal were 

“outstanding” (115).  Later work for the USMC involved adapting this value model for 

off-the-shelf procurement of the Light Armored Vehicle.  A utility model was employed 

to determine the best air defense system mix for a US Army heavy division.  The authors 
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used a utility model to assess whether control of the Patriot Air Defense System should 

be transferred from the US Army to the US Air Force.  A separate study group conducted 

the effort in parallel with a simulation approach.  The two efforts were in concordance, 

the DA results were more easily interpreted and more defensible, and the simulation was 

an order of magnitude more expensive and slower (121).  The authors include a list of 26 

other materiel acquisition projects that have successfully employed decision analysis.  

Other notable military decision analytic efforts are SPACECAST 2020 (Burk and Parnell, 

1997) and AIR FORCE 2025 (Jackson, 1996). 

Clemen (2001: 6 – 8) describes the decision analysis methodology as a five-step 

process.  The initial step is to identify the decision situation and articulate objectives. The 

second step is to identify alternatives.  Next the problem is decomposed and modeled.  

Three aspects are modeled: the problem structure, the uncertainty, and the preferences.  

The structure of the problem is typically modeled using decision trees and influence 

diagrams.  Concepts of probability theory are employed to capture aleatory aspects of the 

decision problem.  Preferences are represented with value or utility functions.  This step, 

according to Keeney (1982: 813), is unique to the discipline of decision analysis.  Next, 

the modeling effort is used to analyze the decision and the best alternative is chosen.  A 

sensitivity analysis is typically performed as the last step to determine the robustness of a 

solution.  This process is iterative, and repeated until an adequate solution is determined.  

Figure 1 shows the process graphically.  (Alternate, but similar, constructs of the decision 

analysis methodology are available in Skinner [1999: 15] and Keeney [1982: 807 – 820].) 
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No

Yes

Implement the chosen alternative. 

Is further analysis needed? 

Sensitivity analysis 

Choose the best alternative. 

Decompose and model the problem: 
1. Model of problem structure. 
2. Model of uncertainty. 
3. Model of preferences.

Identify alternatives.

Identify the decision situation 
and understand objectives. 

 

Figure 1.  The Decision Analysis Process (after Clemen, 2001: 6). 

Problem Description 

Research Questions.  The research primarily examines two related aspects of 

decision analysis.  Do value and utility functions differ, and, if they differ, when are the 

differences important and how should this be considered when applying decision 
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analysis, especially to achieve more efficient use of the decision maker’s time?  

Regarding the first point, researchers disagree about the relationship, if any, between 

these two preference functions.  Empirical data consist of single dimensional decision 

problems typically presented to subjects who are not subject matter experts.  The question 

exists as to whether professionals exhibit differences in value and utility functions for 

realistic multidimensional decision problems.  If differences are manifest, is a functional 

relationship discernable?  Additionally, the metrics for discerning differences between 

preference functions is not mature.  Only a general metric, root mean square error, has 

been widely accepted. 

Choice of either form of preference function should, except in certain specific 

cases, potentially have an impact on identification of the optimal alternative.  The second 

research topic addresses the robustness of decision analysis solutions to the form of the 

preference function.  When one accepts that there is a distinction between value and 

utility functions, when is it necessary to acknowledge that distinction in application?  A 

more pragmatic question is germane, how may a value function-based model be adapted 

to adequately represent the behavior of the corresponding utility function model? 

Preference Functions.  In decision analysis, the decision maker’s preferences 

under certainty are represented as a value function and under uncertainty or risk as a 

utility function.  Value functions reflect strictly preferences considered in a deterministic 

sense, while utility functions reflect those preferences as well as risk attitudes.  (In this 

document, all references to value functions are to “measurable” value functions, which 

provide cardinality.  Non-measurable value functions provide only ordinality and are less 

useful for multiobjective decision analysis models.)  However this interpretation is not 
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universal.  Opinions in the literature vary widely.  Some authors have used the terms 

interchangeably, e.g., Anandalingam (1987: 339).  Some argue that they are identical. For 

example, see Von Winterfeldt and Edwards (1986: 213).  Keeney opines that when 

measurable value functions and utility functions for a subject differ, this may indicate that 

the elicitation is inaccurate or incomplete (1992a: 187).  Others believe that no functional 

relationship exists, as noted by Bouyssou and Vansnick (1988: 110).  Finally, another 

group believes that a functional relationship is present, e.g., Pennings and Smidts (2000: 

1343). 

Value functions are elicited through asking questions about preferences under 

conditions of certainty.  Typically pairs of levels of an attribute are compared and 

adjusted until the decision maker believes that quantitative statements about his 

preferences have been captured.  The decision maker is asked to compare the differences 

in value between each pair of attribute levels.  Often this becomes a process of varying 

one interval until the value increase is identical to that of the other pair.  Utility functions, 

in order to capture the uncertain aspects, are elicited employing lottery-type questions.  

The decision maker, when composing an answer, must consider her attitudes about the 

uncertainty involved as well as preferences for various levels of the attribute in question.  

As well as this theoretical difference, empirical data tends to support the argument that 

the functions are distinct.  See Pennings and Smidts (2000: 1343) for a summary. 

If value and utility functions are functionally related, work by Pratt (1964: 122) 

provides a hypothesis of that relationship under varying risk attitudes.  However 

empirical data has failed to adequately validate these relationships.  See Keller (1985b: 

481 – 482) for a discussion.  The situations examined by Keller are restricted to the 

9 



univariate case.  If value and utility are separate constructs, the value function may be 

elicited from subject matter experts, rather than the decision maker.  Then the utility 

function, in the form of u v  may be elicited from the decision maker. Such a process 

offers the potential for reducing the contact time required with the decision maker.  As 

decision makers often face great time demands, such a reduction makes employment of 

decision analysis more practicable.  The first phase of the research examines the 

relationship of value and utility functions. 

( )( x
&

)

)

)

The initial research question is whether u x .  In order to address this 

question, the metric for determining the difference between preference functions will be 

considered.  Are current metrics acceptable?  A third question becomes what criterion 

should be considered representing a significant difference between the preference 

functions.  If , then what is the form of the function f ?  Does the 

multiattribute method of Kirkwood provide a reasonable approximation of single 

dimensional utility functions? 

( ) ( )(f v x=

( ) ( )(u x f v x=

Regardless of the relationship between value and utility functions, other 

conjectures and observations may be examined.  Do individuals maintain consist risk 

attitudes?  Does elicitation error overshadow the elicited differences between value and 

utility functions?  Does simplifying to a linear function in x provide reasonable 

approximations? 

( )u x

The final area of investigation into preference functions involves the decision 

attitudes of military decision makers.  Are there significant learning effects present 
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during elicitation sessions?  Do decision attitudes vary with experience, rank, education, 

or military occupational specialty? 

Preference Function Robustness. The final step of decision analytical effort is a 

sensitivity analysis.  The intent is to see how sensitive the optimal solution is to 

variability inherent in the problem.  A sensitive solution may indicate that additional 

analysis is desirable.  Alternatively, it may indicate that the best alternative is not the one 

that provides the highest mathematical expectation for the objective function.  Instead an 

alternative with somewhat lesser desirability under nominal conditions may retain its 

value relative to other alternatives better under varying conditions.  Such an alternative is 

considered “robust.” 

Typically, in decision analysis this is done in univariate fashion, varying a single 

input variable and observing the impact on the overall multivariate value or utility 

function.  While this produces valuable insights, it does not permit analysis of 

interactions.  The capability to do pair-wise examination of variables has been added to 

software packages in the last few years.  Until recently, the state of the art was to 

consider only three-way sensitivity, taking three variables at a time.  See Clemen (2001: 

183 – 184) or Borison (2000: 530 – 531). 

Other techniques have been employed, including Dependent Sensitivity Analysis, 

Rank Order Stability Analysis, and Response Surface Methodology (RSM).  These 

techniques are more powerful than simple sensitivity analysis and they are discussed in 

Chapter II.  To the author’s knowledge, no sensitivity analysis been employed to analyze 

preference functions. 
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The research question in this area is it possible to conduct sensitivity analyses on 

the preference function itself?  If this is tractable, then can a sensitivity analysis be 

employed to increase the operational efficiency of decision analysis employment?  A 

hybrid model, composed of a mixture of single dimensional value and utility functions, 

may be a useful construct that reduces the time required of a decision maker.  

Specifically, is it possible to create a hybrid model, using the appropriate value model as 

a base, that approximates the behavior of the utility model?  If so, when is the hybrid 

model sufficiently accurate and what is an acceptable criterion? 

Benefits of the Research 

As stated above, the unique aspect of decision analysis is the employment of the 

preference function.  Yet the nature of this function is in dispute.  This unsettled central 

issue leaves decision analysis open to criticism.  Further examination of this issue is 

clearly important for the continued acceptance of decision analysis.  This research 

extends previous work in this area into multivariate cases. 

In complex problems the number of attributes to be examined is large.  For 

example, the United States Air Force 2025 Study, which was commissioned to develop a 

recommendation for allocation of that service’s funds and organizational efforts towards 

development of key system concepts and their enabling technologies, had 134 attributes 

(Jackson, 1996; and Parnell, Conley, Jackson, Lehmkuhl, and Andrew, 1998).  (An effort 

for the National Reconnaissance Office had 69 evaluation measures [Parnell, 2001].)  The 

attributes ranged from operational performance issues to technical feasibility of untested 
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technology.  Clearly such large sets of attributes, which draw on expertise from multiple 

disciplines, is beyond the ability of a single individual to make informed preference 

statements.  Instead, the judgment of subject matter experts must be coalesced and 

presented to the decision maker.  Under conditions of uncertainty, common for 

challenging decision situations, utility functions must be elicited personally from the 

decision maker.  Such an approach is problematic, as for large, important decisions; the 

decision maker faces many competing demands upon her time.  The Chief of Staff of the 

Air Force, the senior uniformed officer of that service, for example, initiated the 2025 

study.  A methodology that permits the value model to be adapted to represent the 

decision maker’s utility model with the least decision maker interaction would be 

extremely valuable and critical for consideration of decision analysis in such cases. 

The research extends application of response surface methodology within 

decision analysis.  Current analysis of uncertain aspects of decision analysis problems 

lags behind developments applied in other research areas.  Specifically, response surface 

methodology will be employed to examine the sensitivity of the decision problem to the 

preference functions themselves.  This is a novel approach in sensitivity analysis. 

Finally, the research included analysis of military professionals’ preference and 

risk attitudes for a realistic tactical problem.  While certain industries and public sector 

groups have been subject to intensive decision analytical study, no similar work has been 

performed on military subjects. 
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Sequence of Presentation 

The balance of the dissertation is divided into five chapters.  Chapter II will 

review the literature regarding value and utility functions in decision analysis and 

response surface methodology.  Chapter III outlines the objectives of the research, 

delimits the research scope, and describes the methodology.  Chapter IV describes 

research regarding the relationship of value and utility functions.  Chapter V presents 

results from investigation of the robustness of the preference function.  Chapter VI briefly 

summarizes the dissertation. A glossary of technical terms is at Appendix A.  Details of 

results are available at Appendices B and C.  Appendix D contains a technical report 

providing the decision analysis of the automatic target recognition classification systems 

problem.  This work is extended into a hybrid value-utility model in Chapter V.  A 

bibliography is also included. 
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II.  Literature Review 

General 

As discussed in Chapter I, decision analysis is of recent development in 

operations research.  However, the concepts involved date to the Enlightenment, when 

mathematical tools were brought to bear on decision-making.  That work provided a 

foundation upon which modern economics rests, and within the last few decades has 

proven to be the inchoate form of decision analysis. 

History of Utility and Value Theory 

Pascal.  Hacking links the birth of scientific analysis of decision making to 

Pascal, and his well-known application of probability in what is now referred to as 

Pascal’s Wager (Hacking, 1975: 11).  Previous work with probability was limited to 

solving puzzles about games of chance.  Here Pascal wrestles with the concept that God 

either is, or is not.  If God exists, one should lead a pious life leading to salvation.  If not, 

one may enjoy one’s vices without regard to consequences after death.  However the 

matter is unresolved until after death, and the choice of how to live must be made now.  

With the objective probability of God’s existence unknown, Pascal focuses on the idea of 

the differing value of the potential outcomes, extending the ability to analyze uncertain 

situations beyond those posed about gaming tables.  He is responsible for recognizing 
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that the expected value of an uncertain (discrete) situation with n outcomes is equal to 

, where  represents the potential outcomes and  their corresponding 

probabilities.  Pascal vacillated on how to live his life, sojourning in a monastery, and 

then abandoning his refuge to the exhilaration of the casinos.  His final choice, as 

salvation was preferable to damnation regardless of the probabilities involved, was the 

decision to return to the monastery for good.  (Bernstein, 1996: 69 – 71). 

∑n
ii px

1 ix ip

Bernoulli.  The development of the concept of utility theory is credited to Daniel 

Bernoulli.  In a 1738 paper published by the Imperial Academy of Sciences in St. 

Petersburg, Bernoulli states, “the value of an item must not be based on its price, but 

rather on the utility that it yields.”  (Bernoulli, 1738/1954: 24).  He notes that under 

conditions of uncertainty, the expected value of an outcome is determined by multiplying 

the probabilities and the respective “gains.”  But he finds this inadequate for describing 

how individuals make decisions.  He proposed that an individual would make a decision 

in order to maximize expected utility, rather than maximizing the expected amount of 

money (ducats, for Bernoulli’s paper) or some other objective measure of worth.  The 

calculation is made by determining the mathematical expectation employing utility in 

place of the units of currency, employed by previous researchers, yielding , 

where u is the utility function.  He also asserted that for a given decision situation, 

different individuals would assign differing utilities to various possible outcomes. 

∑n
ii pxu

1
)(

Bernoulli extended his analysis by suggesting that an increase in utility resulting 

from a gain in wealth would be inversely proportional to the amount of previous 

possessions.  This was another key insight.  He provided a graph similar to Figure 2. This  
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Figure 2.  Bernoulli's Utility Curve. After Bernoulli (1738/1954). 

 
inverse relationship causes the concavity shown by the utility function.  He also 

demonstrated that two individuals with identical utility functions, who engage in a wager 

equally likely to cause either to pay the other a fixed amount, were both facing a loss of 

expected utility.  The concavity means that the increase in utility of winning is less than 

the reduction in utility of losing the same amount. 

Bernoulli used the concept of utility to solve a question originally posed by his 

cousin, Nicolas Bernoulli in 1713.  (With Daniel Bernoulli’s solution, this problem has 

become known as the St. Petersburg Paradox.)  Nicolas had developed a thought 

experiment where two individuals agree to a game between them with no house take.  

The first player will flip a coin repeatedly until the result is tails.  Then he will pay the 

second player 2 ducats (or dollars) where n is the number of coin flips.  Before the game 

begins, a third player wishes to buy the right to play from the second.  Nicolas notes that 

the expected value of the game in a monetary sense is infinite, as the payoff increases 

n
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infinitely and the probability of achieving another heads never reaches zero.  But most 

individuals would sell the game for some amount far less than infinity, say between 5 and 

20 ducats (or dollars).  Daniel Bernoulli’s utility provides the answer.  The concavity of 

the utility function keeps the perceived worth of the gamble far from infinity.  (Bernstein, 

1996: 99 – 115). 

Using a geometrical argument, Daniel Bernoulli proposed that the increase in 

utility for an individual with wealth B in Figure 2 to wealth P is given by 

αα abPO += log  where α  is his current wealth (equal to ), is the gain (equal to AB a

BP ), and b is unique to the individual.  Bernoulli then uses this relationship 

inappropriately (by misinterpreting a property of infinity and conveniently dropping the 

coefficient b , as explained by Sommer, [see Bernoulli, 1738/1954]) to show that for a 

man with nothing of value at all, the expectation of the game would be two ducats.  

Owning ten ducats would change his expectation to about three ducats.  He argues that 

very large initial wealth is required before someone would offer more than 20 ducats.  

(Bernstein [1996: 106] observes that a ducat would be worth about 40 dollars in today’s 

currency.)  Menger showed that the player’s expectation is actually equal to 

( ) ( ) ( )1 1 12 42 2 lognb blog 1α α α α


− + + + −
 (Bernoulli, 1738/1954: 32). 

According to Bernstein, Bernoulli first applied measurement to something that 

cannot be counted.  Bernstein also credits him with “an equally profound influence on 

psychology and philosophy, for Bernoulli set the standard for defining human rationality” 

(1996: 106).  Further, Bernoulli also introduced the idea of human capital, that one’s 

ability to produce is intrinsically valuable. 

18 



 

The concept of utility was recognized as valuable.  Adam Smith’s famous passage 

from The Wealth of Nations uses the concept.  Smith opined “The word value has two 

different meanings, and sometime expresses the utility of some particular object, and 

sometimes the power of purchasing other goods which the possession of that object 

conveys. The one may be called ‘value in use’; the other, ‘value in exchange.’”  (Smith, 

A., 1775/1976: 44)  Here we see, continued from Bernoulli, imprecision in the 

employment of the terms value and utility as value in use is defined as the utility of an 

object.  The problem persists to this day. 

Bentham.  Jeremy Bentham widely promulgated the concept of utility in England 

in 1789.  Bentham applied the concepts of utility to all aspects of society, including 

assessing the appropriateness of penal judgments.  Utility theory, although dormant for a 

period following Bentham, provided the foundation for later development of economic 

theory, particularly the Law of Supply and Demand, and remains an important economic 

concept today.  (Stigler, 1965: 89 – 92). 

Von Neumann-Morgenstern.  The developments of Bentham, while of interest 

to economists, contain little of direct interest to the development of decision analysis.  

John von Neumann provided the next significant development in utility theory, with 

respect to what would become decision analysis.  He developed game theory. In a simple 

game two opponents each make a binary decision.  The winner is determined by the 

results of the pair of binary decisions.  For example, in a game where the players secretly 

decide to show (not flip) heads or tails on a single coin, player A wins if both show the 

same side.  Player B wins if one shows heads, the other tails.  Von Neumann determined 

the best strategy for the players (which is a random display of heads and tails).  The point 
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of interest is that the laws of probability do not dictate the optimum strategy; the players 

themselves do so.  (Bernstein, 1996: 232 – 235). 

Later, in collaboration with Oskar Morgenstern, von Neumann published the book 

Theory of Games and Economic Behavior.  (Von Neumann and Morgenstern, 1953)  

They proposed an axiomatic basis for utility theory.  The axioms provide the necessary 

and sufficient conditions for the existence of a utility function.  Others have rewritten 

their axioms for clarity.  For their description, the presentation generally follows Biswas 

(1997: 17 – 18).  Let E denote the outcome set, so x E∈  is an outcome.  Let 

 be the vector of n possible discrete realizations from the outcome set, 

each with a respective probability of occurrence, .  Represent a lottery of these n 

outcomes with .  Preference relationships will be written for 

( nxxxX ,,, 21=

L =

,i j

)

ip

)( nn xpxpxp ,,, 2211

x x X∈ i as jx x  when ix  is preferred to jx , and ~i jx x  when a subject is 

indifferent between ix  and jx .  Similarly, to represent ix  is at least as preferred as jx , 

we write i jx x . Without loss of generality, we will assume that 1 2 nx x x . 

Axiom 1 (Ordering).  Preferences may be (totally) ordered between any 

two outcomes.  This ordering is a total ordering.  So for any ( ),i jx x  either i jx x  or 

j ix x .  Further, i jx x  and j kx x  implies i j kx x x . 

Axiom 2 (Reduction of Compound Lotteries).  An individual is 

indifferent between a simple lottery L, (a lottery with outcomes that are fixed) and a 

compound lottery (a lottery with one or more outcomes that are also lotteries) with the 

same outcomes when the probabilities of the simple lottery are determined in accordance 
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with standard manipulation of probabilities.  If a lottery ( )mL  is defined as 

( ) ( )n
m
n

mmm xpxpxpL ,,, 2211≡ , where the superscripts indicate membership in a 

compound lottery m, it follows that ( ) ( ) ( )( ) ( )nno xpxpxpqLqLq ,,,~,,, 2211
2

2
1

1

∼

oL  

where  and  represents indifference.  ( ) ( )o
ioiii pqpqp ++= 1

For clarity, this axiom will be detailed for the case of two lotteries each with 

possible outcomes and .  These lotteries are 1x 2x ( ) ( ) ( )( )2
1

21
1

1
1 , xpxpL =  and 

( ) ( ) ( )( )2x

( )

2
21

2
1

2 , pxpL =

( ) ( )

.  They are shown graphically in Figure 3.  Then 

( ) ( )nn xpxpx ,,,~ 221
o

o L p1qLqLq ,,, 2
2

1
1  becomes ( ) ( )( ) ( )2211 ,~ xpxp2

2
1

1 , LqLq  

where  or ( )
iii pqp = 1 ( )oq+ io p+ ( ) ( )2

1p2
1

111 qpqp +=  and ( ) (2
22 pq ) .  So an 

individual would be indifferent between the choice of the compound lottery or the 

corresponding outcomes with the associated reduced probabilities, 

1
22 pqp i +=

( ) ( )( ) ( )2x2, p11 x2
2

1
1 ~, pLqLq . 

  
( )1
2p  

  1x
( )1
1p  

2x  
( )2
2p  

 1x
( )2
1p  

Lottery ( )2L  

2x

Lottery  ( )1L

 2p  

 1x1p  

2x

Lottery  L

Figure 3.  Lotteries L(1) L(2), and L. 
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Axiom 3 (Continuity).  An individual will be indifferent between some 

 and a lottery with outcomes  and .  That is, there exists some probability  such 

that .  Define this lottery 

ix 1x

iq

nx iq

( )( )nii xxxxqx −1,,0,0,~ 221 ( )( )1, 1ix
i iL q x q x= −

∼

n . 

Axiom 4 (Substitutability).  In any lottery, may be substituted for . ixL
∼

ix

Axiom 5 (Transitive Preference over Lotteries).  Preference ordering is 

transitive over lotteries.  That is ( ) ( )iL L j  and ( ) ( )jL L k  implies ( ) ( ) (i jL L L )k

)2

. 

Axiom 6 (Monotonicity).  An individual prefers a lottery 

 to a distinct lottery ( )( 1, 1L px p x= − ( )( )1, 1L p x p x′ ′ ′= − 2 if and only if p p′> .  

Similarly, an individual is indifferent to a lottery ( )( )p x−1, 1L px=

)2 pp

2  when compared to 

another lottery  if and only if ( )( 1, 1L p x p x′ ′ ′= − ′= . 

As summarized by McCord and de Neufville (1983b: 279), the axioms imply the 

existence of a cardinal utility function (sometimes referred to as a von Neumann-

Morgenstern [vNM] function) that orders alternatives independent of probability 

distributions.  Further, this function may be used to rank uncertain alternatives by taking 

the mathematical expectation of the vNM utility.  That is, select the alternative with the 

highest expected utility as determined by, 

 ( )
1

I

i i i
i

U w E u x
=

=   ∑  (1) 

for each alternative, where  is the index of evaluation measures,  are 

the relative weights, 

, ( 1,2, , ),i i I= iw

ix  is the level of the ith evaluation measure, and  are the ( )i iu x
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corresponding single dimensional utility levels.  Hence this theory is referred to as 

expected utility theory. 

Criticisms of Expected Utility 

Criticisms of Expected Utility (EU) Theory largely are rooted in the observation 

that it is possible to construct situations where individuals, who subscribe to the axioms, 

later make choices that violate the axiomatic consequences.  The most famous example is 

that of Allais, and is now well known as the Allais Paradox (Allais, 1953: 503 – 505). 

Presented two sequential lottery choices, most subjects make alternative selections in 

each that are mutually incompatible without axiomatic violations.  Consider four 

lotteries.  The notation indicates the payoff then, parenthetically, the associated 

probability. 

 ( ) ( ) ( )1 : $30,000 0.33 ; $25,000 0.66 ; $0 0.01L     (2) 

 ( )2 : $25,000 1L     (3) 

 ( ) ( )3 : $30,000 0.33 ; $0 0.67L    (4) 

 ( ) ( )4 : $25,000 0.34 ; $0 0.66L    (5) 

Initially the subject must choose between  and .  Most subjects choose .  Then the 

subjects who chose generally choose  when presented with a choice between  

and .  This combination of choices violates expected utility.  Choosing  evinces  

1L

3L

2L 2L

2

2L 3L

4L L

 ( ) ( ) ( ) ( )0.33 30,000 0.66 25,000 0.01 0 25,000u u u u+ + <  (6) 
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which may be rewritten 

 ( ) ( ) ( )0.33 30,000 0.01 0 0.34 25,000u u u+ <  (7) 

When alternative  is preferred in the second decision situation, this leads to  3L

 ( ) ( ) ( ) ( )0.33 30,000 0.67 0 0.34 25,000 0.66 0u u u+ > + u  (8) 

which simplifies to 

 ( ) ( ) ( )0.33 30,000 0.01 0 0.34 25,000u u u+ >  (9) 

Clearly results (7) and (9) are incompatible.  Either the subject has not made 

choices in a rational manner, or expected utility theory fails to adequately represent 

rational decisions.  Simon (1972) proposed the theory of bounded rationality.  Perhaps 

the ability to calculate the utility differences in the lotteries, which differ only slightly in 

probabilities, but more noticeably in payoffs, is beyond the ability of a decision maker. 

Tversky and Kahnemann (1986) proposed that the presentation, or framing, of the 

decision situation was important and responsible for the Allais paradox.  They recast the 

decisions situations as compound lotteries.  When presented in this manner, the majority 

of subjects made choices in consonance with expected utility.  The explanation offered is 

that the subject’s view of what is the status quo is important.  In Figure 4 the status quo is 

seen as a $25,000 gain, and the status quo in Figure 5 is a gain of zero.  Decisions are 

made with this as a base state.  Now the results are that someone who chose  usually 

chose , consistent with utility theory.  (Biswas, 1997: 4 – 8) 

2L

4L

Ellsberg (1961: 653 – 655) presented another famous example.  Given an opaque 

container in which are 30 marbles, ten of red and the balance being either blue or yellow, 
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Figure 4.  Allais Paradox Initial Lottery, as a Compound Lottery 
 

Figure 5.  Allais Paradox Choice Two, as a Compound Lottery. 

and then offered two sequential bets with replacement: (1) Call red or blue, if correct win 

$5,000; and (2) Call red or blue, if wrong, collect $5,000; Ellsberg found that most 

subjects choose red for both bets.  This violates expected utility theory because red as the 

choice in bet (1) evinces 

 ( ) ( ) ( ) ( ) ( ) (5000 1 0 5000 1- 0r r bp u p u p u p u⋅ + − ⋅ > ⋅ + ⋅ )b  (10) 

where the subscripts r and b indicate the respective marble color.  The expected utility 

relationship of bet (2) is captured by 
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 ( ) ( ) ( ) ( ) ( ) ( )0 1 5000 0 1 5000r r b bp u p u p u p u⋅ + − ⋅ > ⋅ + − ⋅  (11) 

Multiplying both sides of (11) by 1−  produces 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 5000 0 1 5000r r b bp u p u p u p u− ⋅ − − ⋅ < − ⋅ − − ⋅  (12) 

which may be rewritten 

 ( ) ( ) ( ) ( )0 5000 0 5000r r b bp u p u p u p u− ⋅ + ⋅ < − ⋅ + ⋅  (13) 

Adding  to each side produces ( )0u

 ( ) ( ) ( ) ( ) ( ) ( )1 0 5000 1 0 5000r r b bp u p u p u p u− ⋅ + ⋅ < − ⋅ + ⋅  (14) 

Equation (14) may be rearranged to form  

 ( ) ( ) ( ) ( ) ( ) ( )b5000 1 0 5000 1-p 0r r bp u p u p u u⋅ + − ⋅ < ⋅ + ⋅  (15) 

Equations (10) and (15) contradict each other.  This violates expected utility theory.  

Ellsberg advanced the argument that decision makers are likely to place more confidence 

in objective rather than subjective probabilities.  The red probabilities are objective while 

those for blue are subjective, leading a decision maker so inclined to select red. 

Outside of scientific studies (See [Keller, 1992: 4 – 5] for additional references), 

human behavior has called expected utility theory into question.  In practice, the tenets of 

expected utility theory have been often observed to be violated, in the opinion of critics, 

when an individual demonstrates both risk seeking and risk averse behavior.  

Documentation exists in the work of Appleby and Starmer (1987), Kahneman and 

Tversky (1979), and Schoemaker (1980).  Prakash, Chang, Hamid, and Smyser (1996: 

239 – 240) provide a summary of common observations.  Some individuals purchase 

insurance, a risk averse behavior, yet gamble, which is risk seeking.  Investors will hedge 
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in some investments and speculate in others.  Investors buy into “long-shot bets.”  

Managers proceed with mergers that are expected to provide lower profit margins. 

One explanation is that an individual overestimates the probability of success.  An 

alternate explanation is that the participation in the gamble itself provides utility (Yaari, 

1965: 288).  A latter developed explanation is that risk aversion is affected by the 

decision context.  Recall that Bernoulli stated that the risk aversion, the concavity of the 

utility curve, was resultant from decreasing marginal utility as a function of total wealth.  

Viscusi and Evans (1990: 353) cite research where one’s health determines the shape of 

the utility function.  The contextual explanation has also been extended to include the 

individual’s self-assessment of one’s own competency. 

Obtaining the preference function in expected utility is demanding, and some 

authors suggest not worth the effort.  “It’s well documented that decision analysts often 

run into trouble getting the decision maker’s utilities, which turn out to be critical to the 

analysis,” according to Levitt (Samuelson, 2000: 25).  Edwards and Barron (1994: 311) 

argue that elicitation of functions is onerous enough that they recommend treating utility 

as a linear function in x.  Reneau and Blanthorne (2001:148) observe that it is well 

established in the literature that presentation sequence and presence of extraneous 

information influences effectiveness of elicitation sessions without causing the decision 

maker to be aware of the impact. 

Humphreys (1982: 147 – 163) provides a summary of several criticisms of 

Multiattribute Preference Theory.  He states that often risk is viewed as a single entity, 

generated as a by-product, which may be assessed.  Then activities generating risk above 

a threshold are avoided or mitigated.  He states that this has been named by others the 
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“phlogiston theory of risk” (147).  Conrad (1982) states that DA is not useful for 

managing risk in society as political aspects are not included in the analysis. 

Most work in the expected utility area has centered on relaxing axioms in an 

attempt to improve the descriptive ability (Kimbrough, 1994: 618).  This has led to the 

genesis of descriptive theories of decision making, which are beyond the scope of this 

discussion.  Descriptive theories address how an unassisted decision maker makes a 

choice.  They do not attempt to indicate which choice is, in fact, the best alternative.  The 

reader may consult Fishburn (1989). 

Keller (1992: 5) visualizes three types of responses to the observed behavioral EU 

violations.  First is the acceptance that EU is normative and compartmentalizes decision 

problems into those where EU may be used prescriptively and when it is not appropriate.  

The second are attempts to improve presentation and elicitation tools to assist the 

decision maker in providing coherent responses.  Finally, more generalized utility models 

have been developed that have descriptive aspects and which, perhaps may be used 

prescriptively under appropriate constraints. 

However, despite the criticisms, Kimbrough (1994: 618) remarked, “For 

prescribing behavior, expected utility is still by far the most accepted theory.”  This 

position is shared by Edwards (1992: xi), who points out experts in the field at a 1992 

conference “unanimously endorsed traditional SEU [subjective expected utility] as the 

appropriate normative model, and unanimously agreed that people don’t act as the model 

requires.”  Clearly, expected utility is the preeminent model for non-behavioral aspects of 

decision making. 
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Measurable value functions 

Measurable value functions were developed as a means of comparing an 

individual’s preferences among choices.  In brief, given a set of outcomes { } 

arranged in order of increasing preference, comparisons can be made between pairs of 

elements.  For example, someone may be indifferent between the respective increase in 

preference between certain element pairs, 

nxxx ,,, 21

( ) ( ), ~ ,i j k lx x x x .  This is read as the increase 

in preference from  to  is equal to the increase in preference from  to .  By 

establishing such relationships and normalizing the preferences over the unit interval (or 

any arbitrary interval), a measurable value function on an interval scale may be 

determined.  Note that preference statements are made under conditions of certainty, and 

therefore do not involve the subject’s risk attitudes. Fishburn (1967) provides a summary 

and classification of measurable value function methods.  For a discussion of 

measurement theory (scale types), see Stevens (1946), Roberts (1979) or Krantz (1971).  

A brief summary is available in Forman and Gass (2001: 470). 

ix jx kx lx

Measurable Value Function Axioms.  Farquhar and Keller (1989: 205) attribute 

the “strength of preference” concept to Pareto and Frisch.  Stigler (1965) provides a 

history.  Also known as “preference intensity,” this is a quaternary relationship 

comparing preference differences.  Krantz, Luce, Suppes, and Tversky (1971) provide a 

set of axioms that establish when relationships between objects may be defined as an 

algebraic difference structure.  (Other sources of the axioms, or alternative formulations 

of them, are [Fishburn, 1970], [Suppes and Winet, 1955], and [Debrau, 1960].)  When 
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these axioms hold, a real-valued function exists that provides cardinal preference 

information about the objects. 

Definition (Algebraic Difference Structure).  The notation  represents the 

increase in preference resultant from receiving object  in lieu of object .  Suppose A 

is a nonempty set and  is a binary relation on 

ab

b

A

a

A× . The pair ,A A× is an algebraic 

difference structure if and only if for all a b, , ,c d A, ,e f ∈ and all sequences 

, the following axioms hold true: 1 2, , , ,ia a a A∈

1.  ,A A×  is of weak order.  A relation, R , on a set, , is of weak order when 

it is transitive and strongly complete. Transitivity exists when and implies aRc  

for all a b .  A relation is strongly complete on a set when  or bRa  holds for 

all a b , including when .  (Roberts, 1979: 20 and 29) 

A

aRb bRc

,

∈

,c A∈

A

aRb

, a b=

2.  If , then . ab cd dc ba

3.  If and bc , then ac . ab de ef df

4.  If , then there exist ab cd aa ,e f A∈ , such that .  (The 

requirement that ab be ensures that  is increasing.  This is required so that 

 be members of the interval 

~ ~ae cd fb

cd aa ab

,e f [ ],a b .  When ,e f ab∈  then it must be true that 

.) ,e f A∈

5.  If  is a strictly bounded standard sequence for every 

in the sequence, not ; and there exists e f

1 2, , , ,ia a a 1 2~i ia a a a+ 1

1,i ia a + 2 1 1 1~a a a a , A∈ such that ef  

for all a in the sequence), then it is finite.  (Krantz, Luce, Suppes, and Tversky, 1971: 

151) 

1a feia

i
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Krantz et al show that if ,A A× is an algebraic difference structure, then there 

exists a real-valued function v on A such that, for all , , ,a b c d A∈ ,   iff 

 and v  is unique up to a linear transformation.  Methods of 

elicitation of measurable value functions are described by Fishburn (1967 and 1976); 

Johnson and Huber (1977); Kneppereth, Gustafson, Leifer, and Johnson (1974); Dyer and 

Sarin, (1979 and 1982); Farquhar and Keller, (1989); and Camacho (1980). 

ab cd

( ) ( ) ( ) ( )v a v b v c v d− ≥ −

Relationship of Value and Utility.  

Opinion regarding the relationship between value and utility functions is varied.  

Von Winterfeldt and Edwards, (1986: 213) state that there is no significant distinction.  

They argue that there are no truly riskless situations, so decision making under certainty 

is never actually encountered.  Secondly, they argue that concavity associated with risk 

aversion may be explained by marginally decreasing return of value or through a regret 

expression.  They also argue that repetition reduces risk aversion and most choices are 

truly repetitive over a lifetime.  Finally they opine that errors associated with elicitation 

of preference data exceed the distinctions between value and utility functions.  McCord 

and de Neufville (1983a) provide an empirical study supporting this position. 

Other authors disagree.  Keeney, in his book Value-Focused Thinking, states that 

value functions are used under conditions of certainty, and utility functions under 

conditions of uncertainty.  He further indicates that his value functions are ordinal only.  

Only measurable value functions and utility functions provide cardinality.  (1992: 132)  
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He also opines that when measurable value functions and utility functions for a subject 

differ, this may indicate that the subject has a hidden, or un-elicited, objective (1992: 

187).  Bouyssou and Vansnick (1988: 110) observe, “Many authors have argued that they 

see no reason why lottery comparisons should coincide with preference difference 

comparisons.”  Clemen (1996: 553) argues that for decision analysis the distinctions are 

not significant for applications.  Pennings and Smidts (2000) state that significant 

differences between utility functions and value functions were found by Krzysztofowicz 

(1983a and 1983b), Keller (1985b), Smidts (1997), and Weber and Milliman (1997).  

Their “results confirm the proposition that u and v are different constructs.” (1343) )(x )(x

If value and utility functions are distinct, it is intuitively appealing that they are 

related.  Both measure preference in a given decision context.  Utility has the additional 

consideration of probabilities of various desired and undesired outcomes, as well as 

possibly other factors.  Bouyssou and Vansnick (1988: 109) state, “That some idea of 

strength of preference interferes with risky choices is hardly disputable.”  They continue 

(110), “It seems many features do influence risky choice apart from strength of 

preference.  Among them, we feel regret, … disappointment, … the existence of a 

specific utility (or disutility) of gambling, the misperception of probabilities … and the 

avoidance of ruin are the most important ones.”  They state (109) “according to Bell 

[under certain conditions] that value is related to utility either by an affine or an 

exponential transformation.”  They also offer the observation that just because value and 

utility are both on an interval scale that does not mean that there exists a function that is a 

linear transformation from one to the other.  (107) 
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Von Winterfeldt and Edwards (1986: 213) observe that as of that writing, little of 

the literature addressed the relationship between value functions and utility functions.  

The proposed relationships applied only under constrained conditions.  They summarized 

the concept of mapping from the decision space into a preference space in a graph, 

adapted in Figure 6.  An attribute is measured on some scale, transformed into value, and 

then the corresponding value is transformed into utility.  Short cuts are also possible, 

bypassing intermediate steps, as shown in Figure 7, also adapted from Von Winterfeldt 

and Edwards (1986). 

 

 

Figure 6.  Mapping From Decision Space Into Preference Space (Von Winterfeldt and 
Edwards, 1986). 

Krzysztofowicz (1983b) makes the argument that ( )u w v=  for some 

transformation w.  He says that according to Pratt (1964) that the value to utility  
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Full Decomposition 

Objects       Natural or Constructed Scale      Value Scale     Utility Scale 

No Value Scale (Keeney and Raiffa, 1976) 

Objects       Natural or Constructed Scale                               Utility Scale           

No Natural or Constructed Scales (Bell and Raiffa, 1979) 

Objects                                                         Value Scale      Utility Scale 

No Natural or Constructed Scale, Value Equals Utility (Edward, 1977) 

Objects                                                         Value Scale = Utility Scale 

No Natural, Constructed or Value Scales (Raiffa, 1968) 

Objects                                                                                   Utility Scale 

 

Figure 7.  Decision Space To Utility Space Mapping Sequences, after von Winterfeldt 
And Edwards (1986). 

transformation  holds under the condition of constant relative risk aversion.  Using 

Pratt’s measure of local risk aversion c, 

w

 
2

2
( ) ( )( ) d u x du xc x

dx dx
= −  (16) 

He then proposes an equivalent value function measure of local risk aversion, m, 

 
2

2
( ) ( )( ) d v x dv xm x

dx dx
= −  (17) 

and for the function w, utility function measure of local risk aversion, n, 

 
2

2
( ( )) ( ( ))( )
( ) ( )

d w v x dw v xn x
dv x dv x

= −  (18) 

He then offers the theorem that a decision maker is relatively risk averse if and only if 

, relatively risk seeking if and only if 0)( >xn 0)( <xn , and relatively risk neutral if and 
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only if .  These relationships translate to concavity, convexity, and linearity of 

the function w. 

0)( =xn

Krzysztofowicz then provides a theorem for the transformation w: 

 
( )1( ) iff ( ) 0

1

bv x

b
eu x n x b

e

−

−

−
= ≡ >

−
 (19) 

 
( ) 1( ) iff ( ) 0

1

bv x

b

eu x n x b
e

−

−

−
= ≡ <

−
 (20) 

 ( ) ( ) iff ( ) 0u x v x n x b= ≡ =  (21) 

Krzysztofowicz’ (1983b: 110 – 111) analysis of his experimental results, as well 

as his analysis of data from the literature, supports that: 

• Value and utility functions are different measures, both in theory and as 

supported in use. 

• The classic von Neumann-Morgenstern utility function (1953) must be 

reinterpreted within a relative risk attitude framework. 

• Decision makers are relatively risk constant in a single decision context, and 

that the function w holds. 

• Relative risk attitude is not constant between decisions. 

• Group decision making results in relative risk neutrality. 

 

Keller (1985b) examined the relationship between value and utility functions in 

29 subjects for one of four decision situations.  She examined the fit of four models of the 

relationship between value and utility: linear, v )()( xux = , exponential (using 

Krzysztofowicz’ notation w), 
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( ( ))1( ( )) , 0

1

c v x

c
ew v x c

e

−

−

−
= ≠

−
 (22) 

logarithmic, 

 log( ( ) ) log( ( )) , 0
1log

v x c cw v x c
c

c

+ −
= >

+ 
 
 

 (23) 

and power, 

  (24) ( ( )) ( )cw v x v x=

These functions provide concave or convex smooth curves, except for the 

logarithmic function, which only provides concave curves.  She found that the linear 

model provided the best fit in only one instance, supporting the assertion that value and 

utility differ.  The exponential model was the best fit in nine cases, the power four, 

logarithmic three, and for twelve subjects no model produced an acceptable fit (root mean 

square error less than 0.05).  Her conclusions, the last two of which she cautions are 

preliminary, are: 

• Generally, v . )()( xux ≠

• Risk attitudes varied widely. 

• Risk attitudes vary for a subject between attributes. 

• Constant relative risk aversion appears to not be appropriate for all 

subjects. 

 

The final point differs with the work of Bell and Raiffa (1982) in that they 

hypothesized that individuals would exhibit constant risk aversion in all attributes.  Keller 

36 



 

proposes that constant relative risk aversion does not always produce an adequate model 

of decision making.  She also observes that her findings are in disagreement of 

Krzysztofowicz (1983b), who found the exponential family to provide good results. 

Methods of Comparing Preference Functions 

Several methods are present in the DA literature.  Two basic forms exist, those 

that evaluate preference functions at a specific point, and those that examine preference 

functions over the entire domain.  Pratt’s (1964) (and Arrow’s) measure of local risk 

aversion, ( ) ( ) ( )r x u x u x′′ ′= −

( ) xbeaxu /−−=

, may be used to compare two functions and so is an 

example of the former.  McNamee and Celona (1987: 94) suggests that an exponential 

utility function, , be fit to a subject’s preference data and the constant 

 is defined as the risk tolerance.  Alternatively, they define a risk-aversion 

coefficient as 1/R.  The risk tolerance or risk aversion coefficient may be used to compare 

preference functions at an arbitrary point (i.e., outcome), if the assumption of the 

exponential function is acceptable. 

R

0R >

McCord, and de Neufville (1983) compared value and utility functions with 

“relative difference.”  They selected an ordinate scale position, and then compared the 

differences between the corresponding abscissa values for two functions divided by the 

corresponding abscissa value for some selected reference function.  Figure 8 shows these 

values for two functions f  and  compared to a reference function h  evaluated at g
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Figure 8.  Measure of Relative Difference (McCord and de Neufville, 1983: 292). 

( ) ( ) ( )1 2 3f x g x h x= = = A .  They define the relative difference ( ) ,f g
D A  as 

 ( ) ( ) ( )
( )

1 1

1,f g

f A g A
D A

h A

− −

−

−
=  (25) 

Fishburn (1979) proposed RMSE, which permits evaluation across the entire 

domain rather than being limited to a specific point. Keller (1985b) employed RMSE in 

her comparison of value and utility functions and also introduced a measure, G, for 

comparing functions to the linear model of the relationship of value and utility, 

.  G is defined as  ( ) ( )u x v x=

 ( )
( ) (1 for

MSE BestFittingModel
G MSE Linear Model

MSE LinearModel
= − ≠) 0  (26) 

When MSE for the linear model is zero, then ( ) ( )u x v x=  and she defines G to be zero.  

She says Fishburn and Kochenberger (1979) presented a similar measure. 

Another possible discriminator exists.  Kimbrough and Weber (1994: 627) 

defined a measure called the preference area.  This is the area under the utility curve, 
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with the domain normalized to the unit interval.  A risk neutral DM would have a 

preference area equal to 0.5.  A risk averse DM would have a preference area greater than 

0.5, and a risk seeking decision maker would have a preference area less than 0.5.  When 

analyzing data, they equated risk neutrality to the interval [0.45, 0.55].  The preference 

areas of the preference functions could be compared, although this was not the intent of 

this construct.  However this metric would not discriminate between two non-identical 

functions that had the same area under the curve. 

Decision Analysis Methodologies 

A number of textbooks are dedicated to the subject of decision analysis and offer 

methodological approaches.  A selection of the more influential, in order of increasing 

age, is Clemen and Reilly (2001), Kirkwood (1997b), Keeney and Raiffa (1993), 

Kleindorfer, Kunreather, and Schoemaker (1993), Watson and Buede (1987), and von 

Winterfeldt and Edwards (1986).  Additionally, the work by Keeney (1992a), while not a 

textbook, has been very influential in decision analysis. 

SMARTS. A number of methods employing the underlying tenets of value and 

utility for decision analysis have been developed. Within the decision analysis 

community, the SMARTS (Simple Multiattribute Rating Technique using Swings) 

technique is well known. Originally developed by Edwards (1977) it has undergone 

minor modifications over time. It is summarized in Edwards and Barron (1994) along 

with some simplifying modifications not discussed here. The steps of SMARTS, in the 

author’s terminology, are: 
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1. Purpose and Decision Makers. Identify the purpose of the decision and those 

who will make it. 

2. Value Tree (Hierarchy). Elicit a structured view of the objectives for the 

decision.  

3. Objects of Evaluation. Define the alternatives with their attribute scoring 

scales and domain limits. 

4. Objects-by-Attributes Matrix. Create a matrix comparing alternatives and 

scores. 

5. Dominated Options. Remove from consideration all dominated alternatives. 

6. Single-Dimensional Utilities. Elicit, and then replace the scores in the matrix 

with utility levels.  

7. Rank Order Attributes. Order in declining importance. 

8. Quantify Attribute Weights. Quantify in terms the most important attribute. 

9. Decide. Analyze the decision, employing an overall utility model. The most 

common is the additive model. 

10. Determine the utility of each alternative as given by 

 ( )
1

I

h i i h
i

U w E u x
=

= i  ∑  (27) 

where is an index of alternatives, ih ),,2,1( Hh = ( 1,2, ,i I )=  is an 

index of attributes,  are the weights, iw hix  is the ith evaluation measure 

under the hth alternative, and ( )i hiu x  are the corresponding single 

dimensional utility levels. 
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For our purposes, without loss of generality, the preference functions will range in 

the unit interval and all attribute weights sum to one. That is, 

{ }( ), ( ) [0,1] : 0 1i iu x v x r r∈ = ∈ ≤ ≤  and 
1

1
K

k
k

w
=

=∑  with 0 1 for all kw k≤ ≤ .  Further, in 

this chapter, increasing levels of x  are preferred. Define 0x  as the least preferred level of 

x  and *x as the most preferred.  Then we have ( ) ( )0 0v x0u x = = ( )u x and .  

These conventions are well-known in the decision analysis literature. 

( )* * 1v x= =

Utility Elicitation.  There are several approaches for assessing the single 

dimensional utility functions.  The Lock-Step Procedure selects points in the attribute 

domain at some fixed interval (Kirkwood, 1997: 233).  At each point, indifference curves 

are constructed permitting a utility function to be established.  A more efficient, and 

widely used, approach is the Midvalue Splitting Technique (Kirkwood, 1997b: 233 – 

235, 235 – 237).  The domain is bisected, and the utility elicited at that point.  The two 

half-domains are similarly bisected, and those points elicited.  This procedure may be 

extended until the desired resolution is achieved.  

The elicitation of the utility at these points is frequently done employing one of 

two techniques, the certainty equivalent method or the probability equivalent method.  In 

both methods, the decision maker is presented a decision involving a choice between 

uncertain alternative A and a certain alternative B.  Alternative A has two possible 

outcomes.  One occurs with probability p  and yields outcome *x , the most preferred 

level of x .  The other occurs with probability ( )1 p−  and produces 0x , the least 
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preferred level of x .  Alternative B provides a sure payoff of , where Bx 0 *Bx x x< < .  

This is shown in Figure 9. 

*

*

 
Figure 9.  Decision Diagram. Squares represent decisions, circles uncertain events, 

parentheticals probabilities, and outcomes are expressed as the variable x. 

In the certainty equivalent method, the probability p  is equal to 0.50 , so 

Alternative A is a 50-50 bet between the high and low x values under consideration.  The 

decision maker is presented various values of  until she is ambivalent in choosing 

between the two alternatives.  By the expected utility axioms, the utilities of both 

alternatives must be equal at ambivalence.  Further, the utility of 

Bx

*x  is equal to one, and 

the utility of 0x  is equal to zero, by definition.  So 

 0( ) (1 ) ( ) ( ) ( )Bu x p u x p u x= − +  (28) 

 0( ) (.5) ( ) (.5) ( )Bu x u x u x= +  (29) 

 ( ) (.5)(0) (.5)(1) .5Bu x = + =  (30) 
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The utility may next be determined for the midpoints of the subregions [ ]0 , Bx x  and 

[ ]*,Bx x . 

In the probability equivalent method,  is fixed at some value and the 

probability 

Bx

p  is varied until the decision maker is ambivalent between the alternatives.  

This provides 

 0( ) (1 ) ( ) ( ) ( )Bu x p u x p u x*= − +  (31) 

 ( ) (1 )(0) ( )(1)Bu x p p p= − + =  (32) 

Since p  is known, the utility of  is known.  The utilities of subregions are then 

determined in similar fashion as in the certainty equivalent method. 

Bx

One the utility has been elicited at discrete points the utility function is 

established.  A typical assumption, that of constant risk aversion permits the fitting of an 

exponential curve.  In practice, often only a single midvalue point is used, and the curve 

fitted.  (Kirkwood, 1997b: 235) 

Value Elicitation.  Comparing the increase in preference for pairs of attribute 

levels permits value function elicitation.  Often this is done my determining a midvalue 

level.  If a decision maker is indifferent, for a given price paid, to go from 0x  to as 

from  to 

mx

mx *x , then  has value equal to 0.5.  This from mx

 ( ) ( ) ( ) ( ) ( ) ( )0 * 0 *, ~ ,m m m mx x x x v x v x v x v x   ⇒ − = −     (33) 

 ( ) ( )0 1mv x v x− = − m  (34) 

 ( )2 mv x 1=  (35) 
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 ( ) 1
2mv x =  (36) 

Similar comparisons over the resultant subregions permit additional value point 

estimates. 

Weight Elicitation.  Essentially, this is typically performed by starting with all 

attributes at their lowest levels, then “swinging” one attribute at a time from its lowest to 

highest levels.  Take the smallest reported increase in worth, and then express the other 

increase in terms of the smallest.  Normalize the weights so that they sum to one. 

(Kirkwood, 1997b: 68 – 70)  Clemen (1996: 546 – 552) also provides a description of 

this technique as well as pricing out and lottery weight techniques. 

Sensitivity Analysis.  Sensitivity analysis has a role in all decision making, not 

just within decision analysis.  “In solving a problem, a sensitivity analysis should be 

made in order to determine the variables to which the outcome is most sensitive” 

(Operations Analysis Study Group, 1977: 12).  A typical decision analysis effort involves 

first constructing a deterministic model of the decision opportunity.  Then the model is 

examined to see in where uncertainty causes important effects.  Those variables where 

uncertainty has a significant impact are then modeled as stochastic while the remaining 

variables are handled in a deterministic manner.  The determination of which variables 

should become stochastic members of the model is called sensitivity analysis and is and is 

ascribed to Howard and sometimes referred to as the “Stanford approach” (Reilly, T., 

2000: 551).  “The motivation behind sensitivity analysis is to reduce the assessment 

burden” (Reilly, T., 2000: 556).  Eschenbach (1992: 41) defines sensitivity analysis as 

“examining the impact of reasonable changes in base-case assumptions.”  Skinner (1999: 
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358) links the employment of sensitivity analysis specifically to uncertain aspects of a 

decision problem, rather than assumptions.  Eschenbach provides that the concern is for 

the sensitivity of the response variable to differing levels of independent variables.  He 

lists several considerations for sensitivity analyses: (1) establish reasonable bounds for 

independent variables, (2) establish the “unit impact” of these changes, (3) establish the 

maximum impact of the independent variables, and (4) establish the change required in 

each independent variable to effect alternative choices. 

Stanford Approach to Sensitivity Analysis.  In the Stanford approach, 

sensitivity analysis is usually conducted by singly perturbing each variable of a 

deterministic DA model.  Reilly (Reilly, T., 2000: 553 – 554) provides a summary of this 

approach.  This is often referred to as “one-way sensitivity analysis” (Clemen and Reilly, 

2001: 179 – 183).  Variables are varied singly, and the effect on the overall preference 

model is observed.  When the objective function score changes considerably, and 

especially when the preferred alternative changes within the range of change of the 

variable, the decision problem is sensitive to this variance.  Two-way sensitivity analysis 

is also done, where two variables are varied simultaneously. 

Reilly (Reilly, T., 2000: 552 – 554) summarizes the Stanford approach commonly 

as modeling the variables that create the greatest swing, ( )o iS X , where the swing is 

defined 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }max , , min , ,o i il ib ih il ib ihS X o x o x o x o x o x o x= −  

where  is the column vector of all input variables (evaluation 

measures and relative weights); 

( 1 2, , , T
nX X X=X … )

, ,  and il ib ihx x x  are the elicited possible low, most 
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expected (base), and possible high values of ix ; and ( )o x  is the preference (objective) 

function, with all k iX X≠  fixed at kbx .  A measure, the percent variance of iX , 

, may be used to select the number of variables to represent as stochastic 

variables.  The measure is defined by  

(o iPVE X

( )

( )

2

2

o i

o kS X
n

k =

  

∑

)iPVE

)

 ( )

1

o i

S X
PVE X =  (37) 

Reilly states that it is common to see use of (o X  lead to statements similar to 

“these four variables capture 95 percent of the variance in the value function. (Reilly, T., 

2000: 554).  He points out that such an interpretation is correct only if the variables are 

independent and jointly multivariate normal. 

Rank Order Stability Analysis.  Jolsh and Armstrong (2000: 537 – 538) 

indicate that sensitivity analysis may be accomplished through a technique referred to as 

Rank Order Stability Analysis (ROSA) and attributed to Einarson, Arikian, and Doyle 

(1995).  This approach is basically that of a standard sensitivity analysis.  Instead of 

varying a parameter through a range of values of interest and observing the response of 

the objective function and noting the change in optimum alternative, ROSA merely notes 

the range for the variable that retains the optimum alternative.  This is restating the 

standard approach results but presents less information.  However, this is a desirable 

technique when the decision maker wishes to control variables to maintain the optimum 

solution rather than indicate how the decision responds to changes. 
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Jolsh and Armstrong also define the elasticity of a variable, , as the relative 

change in the response variable to a relative change in a predictor variable, 

iE

 i
i

i

y
yE x
x

∆

=
∆

 (38) 

where y is the response variable and ix an independent variable.  The elasticity provides 

information analogous to the response surface methodology (RSM) coefficient for ix .  

However RSM provides statistical tests of the significance of the term and also is 

conducted in a multivariate framework rather than the ROSA univariate approach.  A 

multivariate approach permits the consideration of variable interactions. 

Dependent Sensitivity Analysis.  Reilly (Reilly, T., 2000) offers a 

methodology, dependent sensitivity analysis (DSA), for sensitivity analysis where the 

singular value decomposition of a correlation matrix is used to combine the independent 

variables into approximately uncorrelated synthetic variables.  The advantages of his 

method are that independent variable dependencies are not disallowed and the 

implementation is straightforward.  The disadvantages are the requirement for 

additionally eliciting measures of dependence relationships – Spearman’s rank 

correlation, the requirement to assess or assume the standard deviation of the predictor 

variables, the loss of specificity when considering independent variables grouped into the 

synthetic variables, and the additional comprehension burden for the decision maker of 

the concept of the synthetic variables themselves. 

Reilly’s DSA uses Spearman’s rank correlation to infer dependency among 

predictor variables. Asking the subject directly assesses this statistic, although he advises 

47 



 

that the research has not definitively validated this approach (2000: 555).  Using 

Spearman’s rank correlation requires that monotonicity be assumed and that the 

correlation matrix be positive definite.  The DSA approach constructs synthetic variables 

that are affine combinations of the predictor variables.  Let the matrix of rank correlation 

estimates  where r  is the rank correlation for ( )ijr=SR ij iX  and jX , i j .  

Then  is decomposed through singular value decomposition 

, 1, 2, , n= …

SR

  (39) T=SR LΛL

where LL , the columns of  being composed of the orthonormal 

eigenvectors have , and is a diagonal matrix of eigenvalues of . The estimates of 

the variable standard deviations,  for each 

T T= =L L I

SR

L

Λ SR

is iσ  associated with the iX , are placed into a 

diagonal matrix .  The synthetic variables are determined by S

 ( )1T −= −Y L S X M  (40) 

where  and .  The Y are approximately 

uncorrelated.  Rearranging _ to provide sensitivity analysis produces . For 

each 

( )1 2, , , T
nX X X=X …

i

( 1 2, , T
b b nbx x x=M … ) i

= +X SLY M

X  in o  the substitution becomes ( )X ( )in n1 1 2 2i i ii ibX x s= + L LY + Y L Y+ +  for 

.  Reilly states that this substitution is readily done using a spreadsheet. 1,= 2i , ,n…

Varying a synthetic variable Y  causes each i jX  to be perturbed by the addition of 

.  The direction of the perturbation is determined by  and the magnitude by the 

product of  and s .  The influence of the  provide that correlated 

ji i iL Y s jiL

jiL i jiL jX  vary together.  

The perturbation of each Y  should cover four standard deviations.  Because the synthetic i
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variable variation is approximately equal to the eigenvalues, Reilly recommends using 

varying Y  from i 2 iλ−  to 2 iλ .  The  matrix is also useful is indicating which L jX  

have significant influence.  Influential jX  will have L -coefficients “close to” 1 . 

Interpretation of the results is similar to that of the predictor variables except that the 

synthetic variables are combinations thereof.  For example, a tornado diagram (see 

below) may be constructed of the synthetic variables just as would be done with the basic 

predictor variables.  

, nx

x

ξ

Response Surface Methodology.  Reilly (Reilly, T., 2000: 570) 

comments that “No systematic approach has emerged to uncover influential groups of 

variables since the sheer number of all possible multiple-way sensitivity analyses make 

an exhaustive search prohibitive.”  This is not quite correct, although the information was 

not available to Reilly when he prepared his initial draft.  An area of promise is the work 

by Bauer, Parnell and Meyers (1999: 162 – 180), where response surface methodology 

(RSM) was employed as a demonstration of its efficacy for decision analysis sensitivity 

analysis.  Response surface methodology is “a collection of statistical and mathematical 

techniques useful for developing, improving, and optimizing processes” (Myers and 

Montgomery, 1995: 1). 

Response surface methodology provides the ability to model some system that 

behaves according to ( 1 2, ,y g x x ε= …

)

+ , where g is unknown, with 

( 1 2, , , ny f x x ε= … + , where f is determined with empirical data.  Generally f is either a 

first or second-degree polynomial, and forms the response surface.  Figure 10 illustrates 

how a system may be viewed as transforming inputs i  into some response y or  

)
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Figure 10. Representation of a System Modeled by RSM. 

( 1 2, , , ng ξ ξ ξ =… ) y .  Response surface methodology replaces g with a low degree 

polynomial f.  Response surface methodology is frequently used as a substitute for g or to 

gain insight into the important aspects of g.  Response surface methodology is sometimes 

referred to as regression analysis or meta-modeling.  (Bauer, 2001: 71) 

Response surface methodology may be thought of a polynomial surface over a 

region that approximates the surface of g.  Each alternative in a decision would generally 

have a differing surface g.  The independent variables, iξ , have upper and lower bounds 

 and U  respectively, when considered across all alternatives.  Generally in RSM the 

independent variables are coded 

iL i

02 i i
i

i i

x
U L
ξ ξ −

=  − 
 for i n1,2, ,= …  where 0iξ  is the 

midpoint between  and U .  This maps  and U  to –1 and +1, respectively, offering 

the advantage of working with unitless variables and facilitating experimental design.  

(Bauer, Parnell, Meyers, 1999: 164) 

iL i iL i

Response surface methodology produces a metamodel which models the response 

of the decision analysis model as the input is varied.  The response is the multiattribute 

preference function, and the input the decision parameters.  The hypothesized model 

describes the response 
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 (2
0

1 1

, 0,
n n

i i ij i j ii i
i i j i

y x x x x N )2β β β β ε
= < =

= + + +∑ ∑ ∑ ∼ σ  (41) 

where the β  are unknown coefficients. This approach is analogous to a Taylor’s series 

expansion of degree 2 for the true functional relationship.  These coefficients provide 

insight as to contribution of each variable, as well as the strength of variable interactions.  

Equation (41) may be simplified by omitting the 2
ix  term and the i jx x  interaction term 

may also to neglected.  As simplified, the expression is easier to solve and so is often 

used as a screening device early in the RSM process.  Employing the complete Equation 

(41) near the subregion of concern provides a better fit of the approximated surface.  The 

least squares estimated coefficients of the hypothesized model 

  (42) 2
0

1 1

ˆ
n n

i i ij i j ii i
i i j i

y b b x b x x b x
= < =

= + + +∑ ∑ ∑

is, in vector notation, 

 ( ) 1−′ ′=b X X X y  (43) 

The fitted surface is provided by 

 ŷ = Xb  (44) 

and residual error is 

 ˆ−e = y y  (45) 

The coefficient provides a ready indicator of the contribution for the associated variable 

and statistical tests provide a measure of significance.  (Myers and Montgomery, 1995: 

16 – 21) 

51 



 

Bauer, Parnell, and Meyers present Figure 11, a graphical representation of 

iterative application of RSM to a DA problem (1999: 165 – 166).  To reduce the analytic 

burden, variables that are believed to behave similarly may be grouped and a RSM 

screening conducted.  Those groups that have significant effects are then screened as 

individual factors.  Significant variables are then modeled with a first order equation and 

the fit is tested.  If the fit is insufficient, a second order model is employed. 

 
Figure 11.  RSM Paradigm (After Bauer, Parnell, and Meyers, [1999: 166]). 

Group Screening.  As Bauer, Parnell, and Meyers (1999) employ group 

screening, it deserves additional discussion beyond a review of RSM.  Meyers and 

Montgomery (1995) fail to mention group screening in their RSM text.  A screening 

design in experimentation is a selection of experimental inputs that permit establishment 
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of which factors are significant while minimizing the number of experimental iterations 

(usually referred to as runs in modeling) and so reducing associated costs.  Large 

numbers of factors force a prohibitively large number of runs or, when the number of 

runs is constrained, causes factors to be confounded and effects masked.  Madu and Kuei 

(1992: 96) caution that screening large numbers of variables is to be avoided.  Group 

screening reduces the number of factors considered by consolidating them into groups.  

These groups are then manipulated simultaneously so the experimental design has been 

reduced from the total number of factors to the number of groups. 

O’Geran and Wynn (1992) provide a history of the group screening methodology.  

The concept was first employed in 1943 to quickly screen human blood.  Samples from 

donated units were combined and tested.  With no positive results in pathological tests 

the units were quickly cleared for use.  When test results indicated pathogens were 

present, individual units were screened.  This concept was applied to the problem of 

detection of significant factors by Watson (1961).  Kleijnen (1975: 488) indicates that 

Patel and Li generalized this two-step process into n-steps independently in 1962.   

In the procedure, stated simply, variables are first aggregated into groups.  

Various authors have developed recommended differing grouping assumptions and 

strategies.  Then an acceptable experimental design based on the groups is selected.  

When the runs are complete, all variables contained in the groups found not to be 

significant are assumed to be non-significant.  Significant groups are decomposed and 

new groups formed, if required, and the process repeated.  Group screening has not been 

found in the DA literature beyond the work by Bauer, Parnell, and Meyers (1999).  Their 

efforts are shown graphically in Figure 11. 
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While standard decision analysis sensitivity analysis identifies which variables, 

without interaction, cause the solution to be sensitive, and DSA addresses interactions 

employing synthetic variables, RSM provides a quantitative estimate of the impact of 

each variable and interactions.   

Communicating Sensitivity Analysis Results.  Single-dimensional 

sensitivity analysis results are usually presented as a rainbow diagram.  This is a 

Cartesian plot of the objective function as a function of one of the predictor variables, the 

others held constant at their expected value levels.  The area under the curve is normally 

color-coded to indicate which alternative is the most optimal and this is responsible for 

the name.  An example rainbow diagram is shown in Figure 12.  A tornado diagram is 

used to show the effect of singly varying multiple predictor variables.  An example is 

provided in Figure 13.  The change in the dependent variable as each independent 

variable is varied is indicated by horizontal bars. Bar endpoints are positioned on a scale 

of the independent variable, so bar length is a measure of the sensitivity of the dependent 

variable to the corresponding independent variable.  Bar color is changed to indicate 

differing alternatives have achieved optimality.  The bars are arrayed in descending order, 

creating a graphic evocative of a tornado moniker.  This graphic device can accommodate 

a large number of independent variables and quickly shows their relative importance. 

Eschenbach (1992: 42 – 43) promulgates the spiderplot as an adjunct 

graphical device to display sensitivity analysis results.  The spiderplot is a Cartesian plot 

of response the dependent variable to percentage change in independent variables where 

each independent variable is represented by a curve.  The curves intersect at the base 

point (unperturbed independent variables) creating a spider web-like appearance.  The 
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Figure 12.  Sample Rainbow Diagram. 

 

 
Figure 13.  Sample Tornado Diagram. 

advantages of a spiderplot as compared to a tornado diagram are that the former shows 

the respective selected independent variable limits, the unit effect of changes in the 

independent variables, and the level of maximum impact of the independent variables.  

The disadvantages are the increased sophistication required to understand the diagram, 

tendency for the diagram to be incorrectly prepared, and the number of independent 

variables is restricted to a small number for clarity.  Eschenbach does not discuss 

presenting the effects of interactions.  An example of a spiderplot is shown in Figure 14. 
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Figure 14.  Sample Spider Plot.  After Eschenbach (1992: 43). 

Clemen and Reilly refer to the problem of presenting results of sensitivity analysis 

of two or three stochastic variables (2001: 183 – 192).  They observe that this is a 

“difficult problem” (2001: 183).  Their solution is the sensitivity graph.  For two 

variables, a Cartesian plot is prepared with each axis representing various levels.  The 

plot area is partitioned into regions by optimal solution, generating a plot analogous to a 

phase diagram in chemistry.  The plot may be extended into three dimensions to present a 

response surface.  This represents the state of the art in DA software.  For example, 

DPL® provides a “two-way rainbow diagram” that examines changes in two variables 

simultaneously (Borison, 2000: 530 – 539) as illustrated in Figure 15.  For three 

variables, if these may be expressed as a mixture, a ternary (or trilinear) chart may be 

used (Schmid, 1954: 170 – 171).  At least one software package, Data®, provides for 

“three-way sensitivity analysis” in the form of a “two-way” animated graph (Data 3.0, 

1996: 219 – 220).  The user interactively varies the third variable and observes the affects 

on the two-dimensional plot. 
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Figure 15.  Sample Two-Way Rainbow Diagram. 

Sensitivity Analysis of Preference Functions.  Sensitivity analysis in the 

decision analysis literature excludes discussion of preference functions.  The literature 

does not address the issue, although it does provide evidence that the issue is of import.  

Ghosh and Ray (1997) found that decision maker’s choices are both a function of risk 

attitudes and ambiguity tolerance.  Additionally, their results suggest that the decision 

maker often interprets ambiguity in a decision situation as risk.  This indicates that the 

preference function likely involves some inherent uncertainty. 

Besides the uncertainty present within the decision maker, elicitation sessions are 

vulnerable to human perception frailties.  An example of this includes framing, where the 

same situation presented in differing manners elicits consistently differing preferences.  

Anchoring is the phenomenon in which an individual presented with some estimate of a 

parameter of interest will often provide biased elicitation, assessing higher probabilities 
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against the estimate while significantly underestimating probabilities of severe events.  

Further, it is well documented that individuals will demonstrate more confidence in 

objective probabilities than subjective probabilities without discernable justification.  See 

Kirkwood (1997b: 110 – 127; 299 – 320) for discussion of these issues. 

Recommended Future Research 

Keller examined the relationship between value and utility functions in 29 

subjects for one of four decision situations.  She recommended that future research 

examine risk attitudes and relative risk attitudes across multiple attributes within subjects, 

and similarly within attributes across subjects.  She also recommended that future work 

examine Bell and Raiffa’s (1982: 345) conjecture that constant relative risk aversion 

should be observed.  Finally, she recommended repetitive elicitations in order to assess 

elicitation error.  Keller has indicated that she believes these remain “a fruitful area for 

further study” (2000: 1). 

Keller (1989a), Brown (1992), and Howard (1992) have all called for research on 

prescriptive decision analysis methods.  While differing in recommended approaches and 

definition of the term, they all use the term prescriptive to mean procedures that reduce 

the negative aspects of employment of decision analyses, while retaining the value DA 

provides.  In general, they see reducing the burden placed on the decision maker as 

fostering acceptance of the employment of DA. 
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III.  Research Overview 

The research had two major objectives, both pertaining to the relationship of 

value and utility preference functions in decision analysis.  This chapter will restate the 

objectives, summarize background material, provide more detail, delineate the scope of 

the research, and provide a summary of the methodology.  Detailed explanation of the 

methodology accompanies the presentation of the analysis and results in Chapters IV and 

V.  Results are summarized in Chapter VI. 

Objectives 

The major objectives were decomposed into supporting subobjectives.  

Additionally the first major objective, examining the relationship of value and utility 

functions, supports the second.  The second objective is predicated on the observation 

that value and utility functions differ. 

Objective 1.  Examine Relationship Between Single Dimensional Value And 

Utility Functions.  Examine the single dimensional preference (value and utility) 

functions of a group of military subjects within the context of a multiattribute decision 

situation. 

Objective 1.1.  Determine Functional Relationship of Single 

Dimensional Value and Utility Functions.  Examine whether single dimensional value 

and utility functions have any consistent functional relationship, including whether they 

are equivalent.  Consider the exponential, logarithmic, power, linear, and sigmoid 
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functions as candidates for this relationship.  In particular, scrutinize the linear case, 

which corresponds to the situation where the value function equals the utility function. 

Objective 1.2.  Examine Characteristics And Performance Of Various 

Common Decision Analysis Elicitation Methodologies.  Examine whether single 

dimensional utility functions elicited using the certainty equivalent and probability 

equivalent methods provide significantly differing constructs of a subject’s preferences.  

Examine whether the order of elicitation affects information quality.  Establish whether 

the multiattribute utility approach provides an acceptable substitute for single 

dimensional utility models.  When a subject fails to reach ambivalence under the 

multiattribute utility approach, examine whether bounding of the multiattribute utility 

function provides a sufficient answer. 

Objective 1.3.  Improve The Ability to Compare Between Preference 

Functions.  Develop an improved method for discriminating between preference 

functions.  Ascertain whether the elicitation error exceeds the differences between 

preference functions.  Establish acceptance criteria for fits of such models to empirical 

data. 

Objective 1.4.  Examine The Subject’s Risk Attitudes.  Examine the 

subject’s risk attitudes for constant relative risk aversion. Examine the concept of relative 

consistent risk attitude, where a subject maintains consist risk attitudes across evaluation 

measures. 

Objective 1.5.  Improve The Metric For Assessing Risk Aversion.  

Develop a new measure of risk aversion. 
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 Objective 2.  Establish Methods Of Increased Efficiency Of Decision 

Analysis Elicitation By Considering Robustness Of Employing Single Dimensional 

Value Functions As Surrogates For Utility Functions.  Examine the performance of a 

hybrid value-utility model as a more efficient, with respect to elicitation, DA model than 

a standard utility model. 

Objective 2.1.  Establish When Value-Utility Differences Are 

Significant.  Employ response surface methodology and principles of design of 

experiments techniques to assess when the form of the preference function itself is 

significant with respect to the decision analysis model. 

Objective 2.2.  Develop an Algorithm for Employment of a Hybrid 

Value-Utility Model.  A hybrid DA model adapts an existing value model to adequately 

represent the corresponding utility model.  The algorithm will prioritize the iterative 

procedure as well as specify stopping criteria. 

Background 

In decision analysis, a model of the decision problem is manipulated to gain 

insight.  The model must satisfactorily mimic the decision to be studied.  The model 

estimates will deviate from some central value due to external and internal variation.  

This variation must be low enough to prevent interference with determining the proper 

recommendation. 

External variation is that present in the environment in which the decision must be 

made.  For example, a decision often must be made where each alternative may produce 
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one of several possible outcomes.  The probability distribution of the outcomes is a 

source of variation external to the model, regardless of how the model is constructed. 

Internal variation is a function of the model itself.  In Expected Utility Theory, a single 

dimensional utility function is used to map levels of some measure into the unit interval 

preserving a decision maker’s attitudes regarding the levels and associated uncertainty.  

An example of this would be the function ( ) ( ) xxu ⋅= 101 where x is the number of days 

to complete a project, assuming that the function captured the attitudes and preferences of 

the decision maker.  However preference functions must be elicited from subjects and are 

subject to elicitation error.  This error is an example of internal variation. 

A taxonomy of decision analysis model variance is presented in Table 1.  External 

variation is often categorized as: none, known, or unknown.  Decision making under these 

conditions is referred to as being under certainty, risk, or uncertainty, respectively.  

(Some authors group risk and uncertainty in a single category employing the latter term.)  

These external sources of variation must typically be estimated in some fashion.  For 

example, a business decision may require that a projection be made for the interest rate 

for a loan in a future time period.  Likely the estimate will not exactly coincide with the 

rate that occurs.  These estimates are listed separately in the taxonomy as they are clearly 

not the external variation itself, but also are not due to the model proper, as any 

appropriate model may be applied.  Further, these estimates may be generated by the 

decision maker himself or by separate subject matter experts.  Therefore these subjective 

error sources may not be directly discernable. 

The internal error, that due to the model itself, is type specific.  A decision 

problem may be approached with a wide variety of techniques available to the operations 
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Table 1. Taxonomy of Variation. 

• External Sources 
o No Variation (Certainty). 
o Known (Risk). Probabilities are known. 
o Unknown (Uncertainty). Probabilities are unknown – sometimes referred 

to as states of nature. 
 

• Estimates of External Sources 
o Random Error. Subjective estimates of probabilities contain error, 

ε+= pp̂  
o Bias Error. Subjective estimates where probabilities are consistently high 

or low for certain portions of the domain. 
 

• Internal (Model) Error 
o Model Type Error 

 MCDM, LP, … 
 DA 

• Model Basis 
o Formalistic (Normative) 
o Behavioral (Descriptive) 
o Axiomatic (Rational) 

• Decision Maker 
o Objectives/Value Hierarchy Elicitation Error 
o Preference Function Elicitation Error 

 Preferences 
 Risk Attitudes 

o Relative Weights Elicitation Error 
o Alternatives 

 
• Time 

 
research practitioner.  These techniques include linear and non-linear programming 

(optimization), simulation, multi-criteria decision-making (MCDM), and other techniques 

as well as decision analysis.  Each technique will engender its own error sources.  For 

example, an infeasible optimization problem may still be solved, in a fashion, through 

relaxation of constraints.  However MCDM may provide a better solution.  When two 
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methodologies produce the same rank ordering of alternatives, they are considered 

strategically equivalent. 

For this research, only decision analysis expected utility modeling, or multi 

objective decision analysis (MODA), was considered.  Two major categories of variation 

are observed.  The first is the model basis.  There are three model categories. Formalistic 

models are strictly mathematical.  Referred to as normative models, they are the standard 

against which human preferences are measured.  Problems with formalistic models were 

recognized in early probability studies, and, as discussed in Chapter II, led to the St. 

Petersburg Paradox.  They will not be considered further here.  Descriptive models are 

designed to describe how decisions are made, and to predict what those decisions would 

be.  Such models are useful in adversarial situations where knowledge of a competitor’s 

decisions would be useful.  Obviously they have use in the economic private sector, 

sports, and international dealings in war and peace.  However descriptive models do not 

provide a recommendation of what would in fact be the best decision.  Rational models 

are designed to provide such recommendations.  They are referred to as rational because 

they provide the best decision given a model of a decision maker’s attitudes about the 

decision components.  (Again, inconsistency is present in the literature with respect to 

nomenclature.  Some use the term normative to represent rational, not formalistic models 

as described above.) 

The other internal error source is that incurred from the process of describing the 

pertinent aspects of the decision maker himself.  These aspects are not directly 

observable, hence not directly measurable.  They must be established through elicitation, 

and the resultant estimates will have error associated with them.  The objectives of the 
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decision maker must be established, to provide the structure for the balance of the 

elicitation.  Single dimensional preference functions are elicited by asking questions that 

are designed to determine the decision maker’s preference ordering and risk attitudes.  

The relative importance of the objectives must be assessed.  All these estimates are 

sources of error.  

An additional possible source of internal error is the process of generation of 

alternatives.  Failing to recognize an alternative may deprive the decision maker of best 

solution.  However this error source is not observable when comparing models.  Further, 

Keeney argues that Value-Focused Thinking provides the best methodology for avoiding 

this problem (Keeney, 1992).  Finally, variations in decision problems may be introduced 

when considering the time dimension.  It is possible that the decision context and also the 

decision maker’s preferences and attitudes may change over time.  The sources of 

variation are shown graphically in Figure 16. 

Decision analysis studies often examine external sources of variation.  Research 

regarding the internal sources is often limited to examining the preference weights, or to 

contrast one model basis with another.  For example, critics of Expected Utility Theory 

employ descriptive models that better explain choices contraindicated by the decision 

maker’s axiomatic preferences.  When the preference function is (rarely) considered as a 

source of variation, it has not been examined in the sense of its contributions to overall 

robustness.  
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Detailed Research Objectives 

Objective 1.  Examine Relationship Between Single Dimensional Value And 

Utility Functions.  The literature review in Chapter II summarizes the various positions 

regarding the relationship of value and utility.  Keller (1985b) examined the relationship 

between value and utility functions for single dimensional problems, and recommended 

that the work be extended into multiattribute problems and include repetitive elicitations 

in order to assess elicitation error.  Typical decision analysis empirical data involves 

subjects who are not professionals in the field of interest of the problem and monetary 

costs.  Military operational decision making   

Objective 1.1.  Determine Functional Relationship of Single Dimensional 

Value and Utility Functions.  Decision analysis modeling under uncertainty or risk has 

been performed both with single dimensional value functions or single dimensional 

utility functions. Various positions are argued regarding these functions.  Some argue that 

there is no theoretical difference between these functions.  Others assert that while 

differing in theory, the differences are not significant in application.  Finally, some argue 

that they differ significantly in theory and in employment.  Various functional 

relationships have been proposed.  Based on the work of Pratt (1964a: 353 – 375), 

researchers have examined the suitability of a transform from single dimensional value 

functions to a utility function.  These functions are the linear, exponential, logarithmic, 

and power functions.  The only linear function is when value and utility are equal.  The 

remaining functions form curves that are strictly concave or convex, (depending on the 
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coefficients).  This suggests the subject is strictly risk averse or risk seeking, respectively, 

over the entire domain.  Empirical evidence suggests that this is not always correct for 

example, see McCord and de Neufville, 1983a).  The sigmoid function permits both 

concavity and convexity to occur within the range but has not been examined for 

adequacy of representing empirical data for DA preference functions.  Establishing that 

the preference functions differ significantly for military decision makers is an essential 

task regarding the other objectives. 

Objective 1.2.  Examine Characteristics And Performance Of Various 

Common Decision Analysis Elicitation Methodologies.  McCord and de Neufville 

(1983a) provide data that suggest that the differences encountered in eliciting 

theoretically identical single dimensional utility functions by differing methods exceeds 

that of the differences found between corresponding single dimensional value and utility 

functions.  Kirkwood (1997b) also offers a multiattribute utility approach that converts 

from the value space to utility space on a multidimensional basis. 

Objective 1.3.  Improve The Metric For Comparison Between Preference 

Functions.  McCord and de Neufville (1983a: 184) point out that the literature provides 

few tools for comparing preference functions.  They offer a method, “average absolute 

difference,” which compares two functions against a reference function.  When 

comparing the degree to which a preference function approximates another, another 

measure used has been root mean square error (RMSE).  This metric weights each 

observation equally even though points near the limits of the domain are more 

constrained.  The domain endpoints have commonly defined ordinate values for all 
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preference functions.  It is logical that equal differences are less likely closer to the 

endpoints, or conversely, that equal differences are more significant near the endpoints.   

Objective 1.4.  Examine The Subject’s Risk Attitudes.  Bell and Raiffa (1988d: 

395) suggest that constant relative risk aversion is “an appealing idea.”  Relative risk 

aversion means that the utility function operating in the value domain, u , exhibits 

concavity. 

&

Object Objective 1.5.  Improve The Metric For Assessing Risk Aversion.  A 

measure of local risk aversion was developed by Pratt (1964a).  However no measure of 

risk aversion for an entire evaluation measure for a subject has been widely accepted.  

The basic measure is the utility curve shape with concavity (convexity)(linearity) 

indicating risk aversion (seeking) (neutrality).  However this fails to quantify the degree 

of the risk attitude when the curve is not strictly convex (concave) (linear).  The concept 

of a preference area was proposed, defined as the area under the utility curve (Kimbrough 

and Weber, 1994: 627).  However the set of all utility curves does not have a bijective 

relationship with the set of all preference area values so the measure cannot distinguish 

between different functions. 

Objective 2.  Establish Methods Of Increased Efficiency Of Decision Analysis 

Elicitation By Considering Robustness Of Employing Single Dimensional Value 

Functions As Surrogates For Utility Functions.  Sensitivity analysis in DA examines 

the impact of uncertainty and perturbation of model parameters.  However review of the 

literature has not produced an example of perturbing the preference function.  This is a 

key concept when consider the difference between value and utility functions.  By 

establishing when perturbations in the preference function are significant, it is determined 
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when changing form one preference function form (value or utility) to the other is 

significant. 

For large, complex decision situations, value functions are often constructed with 

the aid of subject matter experts.  When a utility model is desired, only the value 

functions that are significant when perturbed need be converted to utility functions.  Such 

a process has the potential to greatly reduce the time burden on the decision maker.  

Because for large, complex problems the decision maker typically has a critical schedule, 

this fosters acceptance of the process. 

Objective 2.1.  Establish When Value-Utility Differences Are Significant.  As 

discussed previously, work regarding value and utility functions focused on how the 

functions are related, or examined their impact when the entire DA model was 

constructed as a value model or as a utility model.  The idea of development of a hybrid 

model, with both single dimensional value and utility functions, is not recorded.  Such a 

hybrid, when properly constructed, should function as a surrogate for the utility model. 

Response surface methodology techniques have demonstrated efficacy in 

determining significant contributors from a set of factors for a variety of problem types.  

Bauer, Parnell, and Meyers (1999) demonstrated that RSM is applicable to DA problems, 

enhancing the information provided during the sensitivity analysis phase.  RSM has not 

been applied to the set of preference functions. 

Objective 2.2.  Develop an Algorithm for Employment of a Hybrid Value-

Utility Model.  No previous work has been done in this area. 
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Methodology and Scope 

Objective 1.  Examine Relationship Between Single Dimensional Value And 

Utility Functions.  Twenty subjects, all US Army soldiers, were interviewed.  Provided 

with a tactical situation requiring a decision and four evaluation measures, single 

dimensional value and utility and multiattribute utility functions were elicited.  Relative 

weights for the evaluation measures, and some demographic data, completed the 

elicitation session.  These data permit construction of value, utility, and multiattribute 

utility DA models.  Additionally, unpublished data from a study by Doyle (1998) was 

obtained for examination of value and utility function relationships. 

Objective 1.1.  Determine Functional Relationship of Single 

Dimensional Value and Utility Functions.  Single dimensional value and utility and 

functions were examined to see which functional relationships performed best as 

transforms between the two preference functions.  Possible transformation functions 

examined were linear, exponential, power, logarithmic, and sigmoid.  The best fitting 

transformation was identified. 

Objective 1.2.  Examine Characteristics And Performance Of Various 

Common Decision Analysis Elicitation Methodologies.  Single dimensional utility 

functions elicited using the certainty equivalent and probability equivalent methods were 

compared to determine elicitation error.  This error was compared to the differences 

between the mean utility function and the corresponding value function.  The two single 

dimensional utility functions, the value function, and multiattribute function-based 
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decision analysis models were investigated for each subject.  Decision analysis models 

differences for the differing preference function bases were examined. 

Objective 1.3.  Improve The Ability to Compare Between Preference 

Functions.  A weighted root mean square error was established to improve the measure 

of goodness of fit for Objective 1.2. 

Objective 1.4.  Examine The Subject’s Risk Attitudes.  The risk 

attitudes were examined to see if Bell and Raiffa’s conjecture regarding constant relative 

risk aversion held.  The risk attitudes were also examined within each subject to see if the 

risk attitudes were consistent across evaluation measures. 

Objective 1.5.  Improve The Metric For Assessing Risk Aversion.  A 

measure similar in concept to mean and variance was constructed to improve the ability 

to compare subjects’ risk attitudes. 

Objective 2.  Establish Methods Of Increased Efficiency Of Decision Analysis 

Elicitation By Considering Robustness Of Employing Single Dimensional Value 

Functions As Surrogates For Utility Functions.  After establishing an algorithm, it was 

tested in an automatic target recognition problem.  A US Air Force engineer served as the 

decision maker.  Full value and utility models were elicited, allowing employment of the 

approach. 

Objective 2.1.  Establish When Value-Utility Differences Are 

Significant.  Standard response surface methodology and design of experiments 

techniques were employed with respect to the robustness of the value function.  An 

exponential form for u  was assumed and the exponential coefficient varied throughout a 

reasonable range.  Analysis of results from a screening experimental design provided a 

&
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measure of significance, p value, and coefficients for a least squares model.  Non-

significant utility functions indicated that the respective value functions were adequate 

surrogates. 

Objective 2.2.  Develop an Algorithm for Employment of a Hybrid 

Value-Utility Model.  The significant utility functions were prioritized based on the 

magnitude of the least squares coefficients.  The algorithm consisted on iteratively 

substituting a significant utility function for its corresponding value function.  The 

iterations are terminated when the hybrid model estimate for the utility is sufficiently 

close to the true utility or when the rank ordering of the alternatives will no longer be 

affected.  The hybrid model then is an adequate model of the true utility model. 

Detailed Methodology and Results 

The methodology and results for Objectives 1 and 2 are presented in Chapters IV 

and V, respectively.  Detailed results are contained in the appendices, along with the raw 

data.  A summary of the research is provided in Chapter VI. 
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IV. Examination of Relationship of Value and Utility Preference Functions 

General 

As discussed in Chapter II, opinions vary widely with regard to the relationship 

between value and utility functions.  Often, research has employed money as a metric 

when assessing these functions.  Research has also suggested that industries or 

professional groups may share common preference function characteristics.  Little 

decision analysis research is available about preference function relationships for military 

personnel.  Military decision making presents a unique environment as typically 

operational military decision making does not consider monetary cost.  Most decision 

analysis research involves a dollar cost aspect, whether the decisions are public or private 

sector.  Additionally, military operational decisions rarely quantify risk, an aspect of the 

utility function but not the value function.  There are also military decisions that consider 

monetary cost, such as acquisition and managerial decisions.  Military operational 

decision making offers an area of decision analysis study that is little examined, yet has 

unique aspects.  This chapter will describe the elicitation of preference attitudes of 

military professionals, improved analytical techniques, and the analysis of these 

functions. 
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Army Tactical Scenario Value-Utility Data 

Tactical Preference Function Data.  Data was obtained from 20 Army 

professionals through elicitation sessions.  The elicited data permitted construction of 

alternate models of the subject’s preferences in a realistic military scenario. 

Description of the Elicitation Sessions.  A decision problem was 

developed to be pertinent to military professionals, regardless of grade or area of 

expertise.  The problem was developed from realistic situations a unit leader might face 

in an operational environment.  The decision problem is an example of administrative 

forward movement of a recently deployed unit in the communications zone.  The 

communications zone is, by US Army doctrine, the area to the rear of the tactical units 

conducting the fighting.  It is not intended that units in the communications zone 

encounter enemy units or fires.  Such encounters are possible. 

The subjects were told that they were in charge of a tactical unit, of size and 

organization commensurate with their (unspecified) experience and background.  Their 

unit was located in a marshalling area and was required to move to a forward tactical 

assembly area (TAA).  After arriving at the TAA their unit would receive an operational 

assignment.  The move to the TAA, which was nominally 600 miles, would be restricted 

to a single route during a 24-hour movement window beginning twelve hours from the 

present.  The situation is portrayed in Figure 17. 

The subjects were told that they would have to select one route from several 

choices.  Normally the decision maker communicates her concerns for a decision 

situation.  To facilitate comparison between subjects, for this study, the key values were  
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Figure 17.  Situational Graphic. 

 
instead presented to the subjects.  They were also told that, based on the situation, the 

pertinent aspects of the situation were force protection and logistical considerations.  All 

other potential considerations were either not of significant impact (e.g., weather) or were 

identical for all potential routes (e.g., enemy air threat).  The force protection aspects of 

interest were exposure to enemy artillery fire and exposure to enemy ambushes.  The 

scales for these two evaluation measures are the number of route miles within range of 

enemy artillery and the number of choke points suitable for establishment of ambushes.  

The logistical impact characteristics are the amount of basic load fuel remaining after 

completion of the move, in percent, and the required time to negotiate the route, in hours.  

The subjects were told that these measures were independent from each other.  For 

example, while longer routes required more fuel consumption, some routes had fuel 

resupply available.  The considerations of merit were presented in a value hierarchy that 

was made available to the subjects during the interview. (Figure 18.)  The domains of the 

pertinent evaluation scales were presented to the subjects.  This information is  
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Figure 18.  Value Hierarchy. 

summarized in Table 2.  The data for each route was not presented to the subjects.  

Additional minor details were presented to make the scenario plausible. 

Table 2.  Route Characteristics. 

 Miles in 
Enemy FA 

Range 

Potential 
Enemy 

Ambush Sites 

Percent of 
Fuel Basic 

Load 
Remaining 

Total 
Movement 

Time 

Maximum Value 500 50 100 24 
Minimum Value 0 0 0 12 

 

The Subjects.  The twenty subjects were all US Army soldiers assigned 

to, or in support of, the 2nd Battalion, 28th Infantry, a Basic Combat Training unit at Fort 

Jackson, South Carolina.  All were volunteers and received no compensation for 

participation.  Twelve of the subjects were officers; eight were enlisted soldiers.  The 
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officers varied in rank from First Lieutenant to Lieutenant Colonel.  The enlisted soldiers 

varied in rank from Private Second Class to Command Sergeant Major.  Two officers had 

previous enlisted service, one in the US Navy.  Eighteen of the subjects were male; two 

were female.  Years of service varied from two to 26 with a mean of 11.4.  Three subjects 

had spent part of their career in the Army Reserve.  All were on active duty at the time of 

the interview.  Thirteen of the subjects were from combat arms backgrounds, two from 

combat support, and five from combat service support. 

Elicitation.  The elicitation was accomplished through private interviews 

with the subjects.  The interviewer employed a questionnaire to guide the session.  

Figures 1 and 2 were displayed throughout the interview process for the subject’s 

reference.  Subjects were oriented to the interview with the explanation that they would 

be given a tactical scenario and then asked sets of questions about their preferences and 

attitudes.  These sets of questions would ask for similar information but in different ways.  

The subjects were told that there were no right or wrong answers in any absolute sense.  

Instead the intent was to examine the internal consistency of their answers despite 

altering the question structure.  They were told for this reason any assumptions they made 

should be maintained throughout the interview.  Subjects were advised that there was no 

attempt to trick them.  At any time the subject was free to change any information 

provided earlier.  Interviews took between sixty and ninety minutes to conduct, and took 

place in early 2000. 

The single dimensional weights for an additive value function were elicited 

following the procedures presented in Kirkwood (1997b: 68 – 70).  Then the single 

dimensional value and utility functions were elicited.  The utility functions were elicited 
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utilizing two methods: certainty equivalent and probability equivalent techniques 

(Clemen, 1996: 474 – 477).  These functional elicitations were done in two different 

sequences.  Each subject either provided information for his or her value function, 

followed by the certainty equivalent utility function, and finally the probability equivalent 

utility function, or the order of the first two elicitations was reversed.  Subjects were 

assigned to a sequence at random.  Then information regarding the subject’s 

multiattribute utility (Kirkwood, 1997b: 155 – 164) was elicited.  For subjects for whom 

there was no “swing” combination of attributes that provided ambivalence, four different 

certainty equivalents were established using values besides the domain bounds.  Finally 

some demographic data about the subject was recorded.  The interviews lasted about an 

hour per subject.  Several subjects were briefly interviewed a second time to elicit 

additional information to correct an error made by the interviewer.  The author believes 

that the correction did not alter the integrity of the experiment. 

Tactical Questionnaire Results.  The data analysis began with fitting piecewise 

linear curves to the points elicited for the value and single dimensional utility functions.  

This permits visual examination of the elicitation results.  An example is provided in 

Figure 19, which shows the three elicited preference functions for subject FJ1 for the 

enemy artillery attribute.  In this case, all three preference functions appear to agree well.  

This is in contrast to the results shown in Figure 20 for the same attribute but elicited 

from a different subject.  For subject FJ15 the single dimension utility functions agree 

well, but differ greatly from the corresponding value function.  Figure 21 shows an 

example of reasonable agreement between the value function and the probability  
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Figure 19.  Single Dimensional Preference Functions for Enemy Artillery, Subject FJ1. 
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Figure 20.  Single Dimensional Preference Functions for Enemy Artillery, Subject FJ15. 

equivalent utility, but poor agreement for the certainty equivalent utility function for the 

ambush site attribute. 
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Figure 21.  Single Dimensional Preference Functions for Subject FJ18. 

Additionally, multiattribute utility functions were elicited.  When the subject 

could not accept any combination of possible outcomes employed in Kirkwood’s method 

(1997b: 163), Kirkwood states the results may be used to bound the exponential form of 

the multiattribute utility function.  Figure 22 shows the results of this procedure for 

subject FJ18.  Another interesting observation is that subject FJ15’s responses indicated 

single dimensional utility functions that were either essentially linear or were moderately 

concave.  The standard interpretation of these morphologies is that they indicate risk 

neutral and risk averse behavior, respectively.  However, the subject’s multiattribute 

utility curve was extremely convex (Figure 23).  Results for each subject are contained in 

Appendix B. 

The elicited utility functions were compared to several models of transforms 

between the value and utility functions.  The single dimensional value and utility  
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Figure 22.  Multi Dimensional Preference Functions for Subject FJ18. 
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Figure 23.  Multi Dimensional Preference Functions for Subject FJ15. 

functions, , , and , respectively, were elicited at three domain points 

and linear interpolation employed to provide continuous curves for each evaluation 

( )v x ( )u x ( )u xCE PE
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measure ix .  The two single dimensional utility functions, and CEu PEu , were averaged to 

produce a mean single dimensional utility function, ( ) ( ) ( )( ) 2CE PE
ij k ij ij ku x

k

ku x= +u  for 

the curves for each subject, i, and each evaluation measure, j, at point 

x

x . 

The examined models of the relationship between the value and utility functions 

were those of Keller (1985): linear, 

 , (46) ( )( )ˆ ( )linu v x v x=
&

exponential, 

 
( ( ))1ˆ ( ( )) , 0

1

c v x
ex

c

eu v x c
e

−

−

−=
−&

≠ , (47) 

logarithmic, 

 log log( ( ) ) logˆ ( ( )) , 0
1log

v x c cu v x c
c

c

+ −=
+ 

 
 

&
>

>

 (48) 

and power, 

  (49) ˆ ( ( )) ( ) , 0pow cu v x v x c=
&

plus the sigmoid function. 

The sigmoid function, 

 ( ) 1
1 axf x e−= +  (50) 

maps from the reals to the unit interval, so this makes it attractive. The function may be 

made monotonically increasing or decreasing by selecting  or , respectively.  

(When .)  The difficulty of employing the sigmoid function for 

decision analysis is that the domain is  and that it is equal to .  In 

0>a 0<a

( )f

( )0, 0.5a f x= =

( ∞∞− , ) 50 0.=
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order to use this function, the domain must be translated from the attribute domain to a 

domain, z, where  and  ( ) 5.00 =f

( )0 *,f z z

5. ( )mu x

 
{ }
{ }
0,1 for decreasing levels preferred,
1,0 for increasing levels preferred

≈ 


 (51) 

To facilitate this, the midvalue mx , the point that satisfies the relationship  

should be selected as the point that will translate to zero.  Unless the DM is risk neutral, 

this will not be the midpoint of the interval, but as the function rapidly approaches the 

codomain limits this will likely provide little error in the tails and guarantee that the 

function fits at the midvalue.  By inspection the interval [-10, 10] provides reasonable 

behavior for a wide range of sigmoid coefficients a.  By this, we mean that the curves 

rapidly approach values of zero or one for a large range of coefficient values a.  However 

when the coefficient is close to zero, the function approaches the constant function 

.  Because of this, the assumption for interval should be checked.  If the 

coefficient is in the interval [-0.3, 0.3] the fit will likely be improved by extending the 

domain. 

( ) 0.5mu x =

( ) 5.0=xf

A method for this is proposed: 

1. Given the evaluation measure domain 0 *,x x 



, define the midvalue  where 

 or , as appropriate. 

mx

( ) 0=mxv 0.5=

2. Define the sigmoid function domain . Initially select and 

. 

0 *,z z 100 −=z

10* =z
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3. Determine the maximum distance  from  to the endpoints of xD mx 0 *,x x    

employing { }0 *max ,x mD x x= − − mxx .  

4. Similarly define the distance on the sigmoid function domain. Initially this is 

equal to 10. 

zD

5.  Define the ratio of the two scales zx DDR = . 

6. Determine the proper offset required to align the zero values on the two scales. If 

, then , else . mm xxxx −<− *0 ( ) ( 0* xxxxs mm −−−= ) 0=s

7. Transform the evaluation measure scale to the sigmoid function scale using 

( )( ) zii DRsxz −+= . 

8. Fit the sigmoid function to the set { } . ( )( ) ( )( ) (( )**1100 ,,,,,, xvzxvzxvz L )

9. Check that v z  or  where ( ) ( )0 *, 1 v z δ− < ( ) ( )0 *, 1u z u z δ− < δ is the 

acceptable value of tolerance of fit at the endpoints.  For this research, a sigmoid 

endpoint fit was deemed acceptable if .  If the tolerance criterion is not 

met, extend the interval of the sigmoid function domain by selecting new and 

values and return to step three. 

0.1δ ≤

0z

*z

The sigmoid function of interest is then given by 

 ( )( ) ( )
1ˆ
1

sig
cv zu v z

e−=
+&

 (52) 

The coefficient, c, of each model was selected to obtain the best least squares fit of the 

function, , to ( )( )ˆ iu v x
&

( )iu x , for each subject.  The five fitted u v were examined 

to see how good was the fit to 

( )(ˆ ix
&

)

( )u x . 
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Measuring Goodness of Fit 

Root Mean Square Error.  In order to assess the success of a model in fitting the 

elicited utility function, a measure of the fit must be employed. Keller (1985b: 479) 

recommended employing Root Mean Square Error (RMSE) as a measure of the 

differences between the two functions.  In this case the transformed utility function, 

, derived from the empirically based value functions must be compared to the 

mean empirical utility function, 

( )(û v x
&

)

( )xu .  Keller (1985b) followed the work of Dyer, Farrell, 

and Bradley (1973) and Fishburn and Kochenburger (1979) employing RMSE to test this 

fit.  She also proposed an “ad hoc” criterion of accepting a fit when RMSE ≤ . 05.0

The RMSE is determined employing the well-known formula 

 ( )( ) ( )
1

2 2

1

1 ˆ
K

i i
i

RMSE u v x u x
K =

 
= −     

∑
&

 (53) 

For the purpose of examining the error of u v , Equation (53) becomes ( )(ˆ x )

 ( )( ) ( )
1

2 2
model 1 model

1

ˆ
K

ij ij ij jk ij jk
k

RMSE K u v x u x−

=

 
= −     

∑
&

 (54) 

where the index type model { }ex,lin,log,pow,sig∈  representing the exponential, linear, 

logarithmic, power, and sigmoid models described in equations (46) through (52), 

{ }1,2, ,20i ∈ K  is the index for the subject, 

{ }1,2,3,4j ∈  is the index for the evaluation measure, and 

{ }1,2, ,k ∈ K K  is the index for the increment. 
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However, while RMSE is an attractive measure of fit, it possesses the displeasing 

characteristic of equally weighting all observations.  Utility functions by definition equal 

zero at the least preferred levels of the independent variable and equal one at the most 

preferred.  Because of this, the difference between  and ( )(û v x
&

) ( )xu  will be more 

constrained as x approaches the domain endpoints.  This suggests that a weighted RMSE 

(WRMSE) that gives more weight to the differences the further from the center of the 

independent variable midpoint would be a more accurate measure.  Such a weighted least 

squares fit is described by Maybeck (1979: 120). 

Weighted Root Mean Square Error.  Employment of a weighted root mean 

square error (WRMSE) approach required selection of an appropriate weighting function.  

Once accomplished, comparison of functions with WRMSE proceeds as with RMSE. 

Weighting Function Desired Characteristics.  Designate a weighting 

function for the WRMSE as .  Define the domain as ( )xj [ ]0 *,x x  and the midpoint 

( )* 0
1
2m 0x x x x= − +

j

.  Let n represent the number of observed data points.  The desirable 

characteristics for  are: (1) ( )x [ ]0 *: ,j x x +→  (Vinogradov, 1993:464); (2) that  

be symmetric about 

( )xj

mx ; (3) that be strictly monotonically decreasing on ( )j x

( ]0 , mx x (and this, with property (2), provides that will be strictly monotonically 

increasing on 

( )j x

[ )*,mx x

m

, further these properties provide that will be minimized at (j x)

x ); (4) that ; and (5) .  Note that when , 

 as the error is provided by the single datum point. 

( )j x

WRMSE RMSE=

0 *, x j as x x→→ ∞ ( ) 1=mx 1n =
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Chebyshev Polynomial Weighting Function.  Orthogonal polynomials 

provide a method of fitting curves without employing multiple regression techniques 

given the condition of evenly spaced data (Considine, 1989: 2105).  Orthogonal 

polynomials of degree n with respect to the weight h satisfy the condition nP

  (55) ( ) ( ) ( ) 0;
b

n ma
P x P x h x n m= ≠∫

where the weighting function h  (Hazewinkel, 1991: 30 – 33).  One of the 

classic orthogonal polynomials is the Chebyshev (or Tchébichef, and also sometimes 

Romanized as Tschebysheff) polynomial of the first type where 

( ) [ baxx ,,0 ∈≥ ]

( ) ( ) 2
121

−
−= xxh  and is 

defined on  (Beyer, 1987: 374 – 378).  This function is shown in Figure 24. ( 1,1− )
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Figure 24.  Chebyshev Polynomial Type 1 Weighting Function, h(x). 

The function  meets the characteristics discussed above when the domain is 

transformed from 

( )xh

[ ]*0 ,x x x∈ to , employing the relationship ( 1,1−∈z )
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12 0*

0
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−
−

=
xx
xxz i

i .  When the domain is in  vice in ( )v x x  (i.e., when the function 

under consideration is u v  rather than ), the domain is restricted to the unit ( )(ˆ x

∞=

)

1−

( )u x

)(

1,1−=z xh

( ) (del

1

K

k=

ˆjk iju jxz






∑ &

(h x

interval.  In this case the transform from v x  to  is simply .  The points 

, where , are neglected as there is no error contribution.  This function 

is illustrated in Figure 25.  Such an arrangement modifies the RMSE to 

z ( )2z v x=

( )

 
( )

)( ) ( )

1
2

2
mo model
ij

1

1 K

ij k ij jk
k

jk

WRMSE h v u x
h z =




 = −   


∑  (56) 
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Figure 25.  Relationship of selected values of x and z. 

Higher Order Chebyshev Polynomial-like Weighting Functions.  

Besides the Chebyshev Polynomial weighting function , functions of higher powers 

in meet the criteria expressed above. Other functions similar to the Chebyshev may be 

)

z

89 



created by modifying the exponent.  A family of equations, of which the Chebyshev is a 

member, may be expressed as  

 ( )
( ) 1

1,
1 p p

t z p
z

=
−

 (57) 

where t z .  These functions are illustrated in Figure 26 for several values of p.  

In order to select from this family of curves, it is noted that an additional desirable 

characteristic for the weighting function is that the rate of change of the weighting 

function be the same as that of the utility function.  This, in conjunction with the other 

characteristics described above, provides the closest match between the behavior of the 

weighting function and the preference function. 

( ) (, 2 h z= )

0
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z
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,p
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6

 

Figure 26.  Members of Family of Functions for several levels of p. ( ,t z p)

Because of the symmetry of the weighting function, the simplest case where the 

rate of change may be examined is when .  This case is analyzed below.  This 

provides two data points in each half domain for slope comparison, 

5K =

1 2,x x  for u x and 

the corresponding  for .  While the slopes are clearly different between a utility 

( )

1,z z2 ( )h x
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function and the weighting function, the ratios of the slopes may be maintained.  It is 

desired that ( )
( )

( )
( )

2 2

1 1

u x h z
u x h z

′ ′=′

( )

′

)

.  Without loss of generality, assume increased 

levels of x are preferred.  Figure 25 shows the data points and their respective functions. 

* * 01 10 ,1 10x x≡ − ∗ −

ρ

neutralρ

ρ

(

Unfortunately use of the weighting function will be with utility functions elicited 

from an unknown subject, so the form of  in a future analysis is unknown.  

Kirkwood indicates that the exponential functional form may commonly be employed, 

and further provides that the exponential constant for the function is generally in the 

range [ ]

( )(ˆij iju v x
&

( )0 , * 0x x∗ −ρ ρ  .  This provides a range of reasonable 

values for .  The exponential function with these values, [ ]0 *,ρ ρ , as well as for 

neutralρ = ∞ , is illustrated in Figure 27.  Without loss of generality (as the function is 

symmetric about the  curve), consider only *0 ρ ρ< < . 

We wish to designate some , call it mρ , that is representative of the family of 

curves evinced by this interval of exponential constants.  Selecting a mρ is illustrated in 

Figure 28.  The domain values corresponding to  for ( )( )ˆ 0.5ij iju v x =
&

*ρ  and neutralρ  are 

ax  and mx , respectively.  Then )
2

a m
b

x xx +=  and an exponential curve fitted through 

bx  has 0.522 mρ ρ= =  and represents a measure of central tendency for the interval 

*0 ρ ρ< < . 
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Figure 27.  Exponential Constants Effects. 

 

 
Figure 28.  Illustration of Determining mρ . 

For , the function fitted through ( )(u v x ) bx , the domain is the unit interval and 

the exponential function is  

 ( )( )
( )

0.522

1
0.522

1

1

v x
eu v x
e

−

−
−=
−&

 (58) 
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and the derivative of Equation (58) provides the slope 

 ( )( ) ( )( 1.9157 0.957852.2465 v xd u v x e
dx

− −=
&

)  (59) 

The ratio of the slopes of the two equidistant points in the right half-domain is 

( )( )
( )( )

( )
( )

2

1

0.833 0.388 0.853
0.667 0.455

u v x u
u v x u
′ ′

= = =
′ ′
& &

& &

2,4,6,8p =

.  The ratios of the function t z  for 

 are 4.02, 10.2, 35.5, and 131.5, respectively.  Plots of the curves of these 

functions are shown in Figure 26.  Increasing the parameter p moves the weighting 

function away from the desired slope ratio as the curve center is flattened, providing less 

discrimination.  We conclude that the basic Chebyshev weighting function h z  is the 

most appropriate selection from the family provided by Equation (57). 

( , p)

( )

With a method for quantifying the differences between functions established, the 

next concern is the amount of error inherent in the elicitation process.  As with any 

observed process, there will be error in the captured data.  Estimating this error is 

valuable before making comparisons of the process between functions. 

Estimate of the Elicitation Error.  In order to examine the fit of various models 

against the elicited utility function, the inherent error of that elicited utility function must 

be considered.  An opportunity to observe the elicited error is available through the 

analysis of the elicited single dimensional utility functions.  These utility functions were 

elicited through two different methods, the certainty equivalent method and the 

probability equivalent method.  Each elicitation produced a set of five points, three of 

which were unique to the subject.  (The endpoints are defined.)  However the 

independent variable (evaluation measure) differed for each set of observations.  To 
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observe the differences in the function instantiations, linear interpolation was employed 

to provide a continuous curve for each set.  Line segments joined the known endpoints to 

the elicited points, in sequence.  The mathematical mean, 

( ) ( ) ( )( ) 2CE PE
ij k ij k ij ku x u x u x= + , was then determined for the curves for each subject, i, 

and each evaluation measure, j, at point kx  at the kth point. 

For each evaluation measure 100 (50 for ambush) equally spaced observations 

were made of the two interpolated utility functions.  The root mean square error (RMSE) 

and weighted root mean square error (WRMSE) were then determined using these 

observations.  For this analysis, the RMSE is provided by 

 ( ) ( )
1

2 2
u 1 CE

1

K
PE

ij ij jk ij jk
k

RMSE K u x u x−

=

 
= −     

∑  (60) 

and the WRMSE by 

 
( )

( ) ( ) ( )

1
2

2
u
ij

1

1

1 K
CE PE

jk ij jk ij jkK
k

jk
k

WRMSE h z u z u z
h z =

=

 
 

= −   
  

∑
∑

 (61) 

where  

{ }1,2, ,20i ∈ K  is the index for the subject, 

{ }1,2,3,4j ∈  is the index for the evaluation measure, 

{ }1,2, ,k ∈ K K  is the index for the increment, 

and CE and PE indicate elicitation methods of certainty equivalent and probability 

equivalent, respectively. 
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An analysis of variance (ANOVA) was performed on the evaluation measures and 

then the subjects for both RMSE and WRMSE.  The intent was to determine if any subset 

of the errors appeared to have differing means.  The RMSE ANOVA for the evaluation 

measures (all subjects grouped), u
jRMSE• , is shown in Figure 29.  The diamonds 

represent 95 percent confidence intervals on the u
jRMSE•  data.  The horizontal bars near 

the top and bottom of the diamonds define the overlap interval (Sall, Lehman, and 

Creighton, 2001:  178 – 179).  Two diamonds must have the disjoint overlap intervals if 

the respective distributions differ at the 95 percent confidence level.  The lack of a 

significant difference is apparent.  The p value for the ANOVA, 0.403, confirms this.  

The same holds for the u
jMSE•WR as shown in Figure 30, where the p value is 0.560.  

Trimming the data is discussed below.  With the most outlying point removed, the 

differences between means are still not significant.  P values are 0.928 and 0.978 for 

u
jRMSE•  and u

jMSE•WR , respectively.  A significance level (alpha) of  is used in 

this study. 

0.05

This indicates that the errors associated with the elicitation process were not 

different for the separate evaluation measures, regardless of which measure is employed.  

This is both heartening and helpful.  It suggests no biases with respect to evaluation 

measures. It also supports the pooling of the elicited data so that it may be treated as one 

large sample when desired.  The errors associated with individual subjects is now of 

interest. 
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Figure 29.  ANOVA of Averaged Utility Function RMSE by Evaluation Measure for All 

Subjects, u
jRMSE• . 
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Figure 30.  ANOVA of Utility Function WRMSE by Evaluation Measure for All 

Subjects, u
jMSE•WR . 

Analysis based on the subjects provided the u
iRMSE •  graph in Figure 31 and the 

u
iWRMSE •  graph in Figure 32.  The p values were 0.0812 and 0.0330, respectively.  This 

indicates that there are likely significant differences between the means for the subjects. 
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Figure 31.  ANOVA of Utility Function RMSE by Subject for All Evaluation Measures, 

u
iRMSE • . 
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Figure 32.  ANOVA of Utility Function WRMSE by Subject for All Evaluation 

Measures, u
iMSE •WR . 

 
Inspecting Figure 31 and Figure 32, we see that there are two points that may be outliers.  

The first is one of the elicited evaluation measures of Subject 12.  Subject 12 

demonstrated very different behavior regarding the time evaluation measure for the two 

elicitation procedures.  When presented with the certainty equivalent lottery, the subject 
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was extremely risk seeking, preferring the uncertain alternative unless the certain 

alternative was at the best possible outcome.  The subject presented the diametric attitude 

when presented with the probability equivalent lottery.  Then the subject selected the 

uncertain alternative only when the probability of the more desired outcome was equal to 

unity.  In other words, for the probability equivalent lottery, the subject selected the 

uncertain outcome only when all uncertainty was removed.  Naturally under this 

condition the “uncertain” alternative provides a more desirable outcome than the certain 

alternative.  This is extreme risk aversion.  

Presenting completely opposite risk attitudes for the two elicitation methods is 

clearly disturbing.  A portion of the certainty equivalent data was elicited during a 

second, separate, session.  While the time interval of several weeks between the initial 

and the follow up session might have contributed to this contradiction, it is not the 

source.  The subject was shown the initial session data and the data were discussed.  

While the second session data is in consonance with the first session data, within each 

respective method, the first session data also demonstrates the incompatible risk attitudes.  

The contradiction was not presented to the subject, as it was not discovered until analysis 

had begun.  Apparently either the subject misunderstood, some other factor affected his 

risk attitudes, or one or more of these methods fail with this individual. 

A possible second outlier is the ambush site evaluation measure for Subject 18.  

During the certainty equivalent elicitation the subject was completely risk seeking, 

selecting the certain alternative only when it offered no ambush sites, the best possible 

outcome on the evaluation measure.  During the probability equivalent elicitation, the 

subject maintained risk-seeking behavior, but to a much less pronounced degree.  This 
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elicitation session was the longest, and the subject often seemed to reconsider the 

problem and his attitudes seemed to evolve during the session.  Other evaluation 

measures for this subject showed disagreement between methods that is higher than most 

other subjects as well, suggesting that the subject’s views were less firmly established or 

apparent.  The plots of the elicited utility functions for both these subjects are contained 

in Appendix B. 

As Subject 12 shows complete contradiction for time, that datum point will be 

treated as an outlier.  The extreme error point of Subject 18 will be retained, as 

justification for elimination is not clear.  The results are shown in Figure 33 and Figure 

34 for both error metrics with the Subject 12 outlier removed.  The p values then become 

0.011 and 0.012 for RMSE and WRMSE, respectively.  (Elimination of the Subject 18 

potential outlier produces p values of 0.049 for RMSE and 0.0012 for WRMSE.)  The 

differences between the means for trimmed data set are significant.  We conclude that 

there are significant differences between the elicitation errors across subjects.  Restated, 

individuals varied with respect to the amount of elicitation error that they exhibited.  The 

subjects provide a sample of the military decision making population.  As such, their 

error statistics provide insight when considering criteria for comparison of preference 

functions. 

As there are no significant differences with the error data based on the evaluation 

measures, the data will be pooled, less the single outlier, and used for an estimate of the 

elicitation error for the subjects as a group.  The distributions of the RMSE and the 

WRMSE are shown in Figure 35 and Figure 36, respectively.  The moments associated 

with these distributions are shown in Table 2.  Employing a 95 percent confidence two- 
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Figure 33.  ANOVA of Averaged Utility Function RMSE by Subject, u
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Figure 34.  ANOVA of Average Utility Function WRMSE by Subject, u
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Trimmed Data. 

 
tailed interval, the RMSE for any elicitation should fall between 0.0941 and 0.123, and 

the WRMSE should fall between 0.0796 and 0.110.  Interestingly, for this experiment, 

the RMSE threshold of 0.05 employed by Keller does not fall within the confidence 

interval.  As error below the confidence interval is not normally a concern, the error  
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Figure 35.  Average Utility uRMSE••  Histogram and Box Plot.  The Box Plot Rectangle 
Indicates the Upper and Lower Quartiles, the Internal Bar the Median, and the Diamond 

the Mean. 
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Figure 36.  Average Utility uMSE••WR  Histogram and Box Plot.  The Box Plot Rectangle 
Indicates the Upper and Lower Quartiles, the Internal Bar the Median, and the Diamond 

the Mean. 

Table 3.  uRMSE•• / uMSE••WR  Distribution Moments. 

 RMSE WRMSE 
Mean 0.10833 0.09554 

Std Dev 0.06340 0.066773 
Std Err Mean 0.0071329 0.0075125 
upper 95%  0.12254 0.10951 
lower 95%  0.094137 0.079598 
One-sided 95% 0.12004 0.10688 
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thresholds may be determined using a one-tailed test.  This provides the criteria of 0.120 

for RMSE and 0.107 for WRMSE for acceptable fit of utility functions. 

Returning to the concern of fitting  to the corresponding ( )(ˆij iju v x
&

) (ij ij )u x , the 

number of model fits for various acceptance criteria for RMSE and WRMSE is shown in 

Figure 37 and Figure 38.  The former shows how many evaluation measures have been fit 

by at least one model as a function of the RMSE or WRMSE criteria.  There are 80 fits 

for the 20 subjects, each subject with four evaluation measures.  The latter figure shows 

the total number of model fits as a function of the RMSE or WRMSE criteria.  There are 

400 possible fits, five models tested per four evaluation measures for the 20 subjects.  

Behavior of the two metrics is similar. 

 
Figure 37.  Model Fits of Evaluation Measures for RMSE/WRMSE Criteria. 
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Figure 38.  Total Model Fits for RMSE/WRMSE Criteria. 

At the acceptance criteria developed above, 0.120 for RMSE and 0.107 for 

WRMSE, the number of model fits is summarized in Table 4.  Almost all categories 

achieved a fit.  Roughly half of the attempts to fit a model were acceptable.  The number 

of fits employing the WRMSE is lower, suggesting that WRMSE is a more 

discriminating measure than RMSE.  To test this we assume that the normal 

approximation to the binomial is applicable to the total fit data.  This assumption is very 

reasonable because the sample size is so large ( ) for the two error 

measures.  The null hypothesis is that the proportions  for each error metric are equal, 

, 400RMSE WRMSEn n =

π

  (62) 0 : RMSE WRMSEH π π=

and the alternate hypothesis, 

 :A RMSE WRMSEH π π≠  (63) 

Under the assumption the test statistic Z  is a standard normal deviate and is defined by 
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( )
1

21 11

RMSE WRMSE

RMSE WRMSE

p p
Z

n n

−
=
  
Π − Π +  

  

 (64) 

where 

 RMSE RMSE WRMSE WRMSE

RMSE WRMSE

p n p n
n n

+Π =
+

 (65) 

and  are the proportion of fits for the RMSE and WRMSE metrics, 

respectively, and  is the sample size for the RMSE and WRMSE metrics, 

respectively (Kanji, 1999: 25). 

,RMSE WRMSEp p

,RMSE WRMSEn n

Table 4.  Model Fits at Recommended Criteria. 

 RMSE WRMSE 
Criterion 0.120 0.107 

Categories Fit 79/80 98.8 % 78/80 97.5 % 
Total Fits 219/400 54.8 % 211/400 52.8 % 

Calculating the proportions, 219 400 0.5475RMSEp = =  and 

.  The variable .  Calculating 0.5375Π = Z  using Equation 

(64) provides .  Because the critical value , we reject the null 

hypothesis and conclude that there is a significantly greater acceptance of fits by the 

RMSE metric.  This indicates that the weighted root mean square provides a more 

conservative measure of the differences than the root mean square. 

226.91Z = 0.05Z = ±1.64

211 400 0.5275WRMSEp = =
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Fit of Models 

The fit of the five models is summarized in Appendix B.  The best fits and 

Keller’s G values (see Equation (26), Chapter II) are presented in Appendix B.  A 

summary of the best fits, that met the WRMSE acceptance criterion, is presented in Table 

5.  Only in a few cases was an acceptable fit not achieved.  The sigmoid function was 

very successful as a model, fitting best in over 80 percent of the cases.  No other models 

achieved more than a four percent rate of best fit. It should also be noted that the linear 

model, , failing to fit indicates that utility and value are not identical 

for any subject for each of the evaluation measures. Finally, Table 5 also shows the 

number of best fits for each model if RMSE is used rather than WRMSE.  Inspection 

indicates that RMSE provided similar results except the exponential model fit increased 

to 7.5 percent and that the logarithmic function never fit best.  Table 6 shows how often 

the various models achieved an acceptable (not necessarily best) fit at the selected 

criteria.  Clearly the sigmoid function was very successful.  Exponential and power 

functions had about the same success rate.  The logarithmic was less successful and the 

poorest fit was the linear function.  This supports the hypothesis that the value and utility 

functions are different constructs and different within a professional population of 

subjects.  Further, it indicates that approximating a utility function with the corresponding 

value function is a poor approximation in the absence of other information. 

( )( )lin ( )ij ij iju v x v x=
&

The good performance of the sigmoid may be in part due to the elicitation over a 

fixed domain for all individuals.  This was done to ensure comparable data between 

subjects.  But inclusion of the domain for which the corresponding codomain is outside 
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Table 5.  Number of Best Acceptable Fits By Model Type. 

 RMSE WRMSE 
Linear 0 0 

Exponential 6 3 
Logarithmic 2 0 

Power 3 3 
Sigmoid 67 73 

None 2 1 

Table 6.  Total Acceptable Fits by Model Type. 

 RMSE WRMSE 
 Number Percent Number Percent 

Linear 19 4.75 17 4.25 
Exponential 46 11.5 44 11 
Logarithmic 31 7.75 28 7 

Power 50 12.5 45 11.25 
Sigmoid 78 19.5 77 19.25 

of the region where  may have introduced an artifact that enhances the 

probability that the sigmoid would be accepted. 

( ) ( ), 0,1v x i i= ∈

Curve Shape 

The utility curve shape is traditionally an indicator of the subject’s risk attitude.  

Concavity is indicative of risk aversion, convexity of risk affinity, and linearity of risk 

neutrality.  Keller (1985b), and others, also categorize some curve shapes into “s-shaped” 

when they exhibit both concavity and convexity.  A summary of the number of 

differently shaped curves resultant from the elicitations is presented in Table 7.  Most 

subjects were either risk averse or showed a mixture of risk aversion and risk affinity. 
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Table 7.  Utility Function ( )(u v x
&

)  Shapes. 

 Concave Convex Near Linear S-Shape 
Number 39 4 5 32 
Percent 48.75 5.00 6.25 40.00 

Figure 39 shows this information graphically in a mosaic plot by subject.  Mosaic 

plots are used to depict frequency information for ordinal and nominal data. The column 

width is proportional to the number of observations for the category and is equal as used 

in this document. Each vertical bar is partitioned into subregions representing, in this 

case, curve shapes, and the length of the subregion is proportional to the occurrence of 

that curve shape. A single bar at the right of the plot provides the overall curve type 

proportions.  It can be seen that instances of risk affinity and neutrality were spread 

among the subjects.  Differences in curve shape between subjects were nonsignificant 

with a p value of 0.71 when testing the negative log likelihood with the Pearson Chi 

Square test (Sall, Lehman, and Creighton, 2001: 247 – 248). 

u(
v(

x)
) S

ha
pe

0.00

0.25

0.50

0.75

1.00

FJ1
FJ10

FJ11
FJ12

FJ13
FJ14

FJ15
FJ16

FJ17
FJ18

FJ19
FJ2

FJ20
FJ3

FJ4
FJ5

FJ6
FJ7

FJ8
FJ9

Subject

Concave

Convex
Near Linear

S-Shape

 

Figure 39.  Mosaic Plot of Utility Function u(v(x)) Shapes by Subject. 
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Figure 40 shows a mosaic plot of the same information by evaluation measure.  

Interpretation of the risk attitudes is problematic when considering the s-shaped curves, 

as the relative amounts of risk aversion and affinity are not revealed by this summary.  

Simple risk aversion is greatest in the case of ambush.  Artillery shows the greatest risk 

neutrality and simple risk affinity.  The differences in proportion of curve shapes as a 

function of evaluation measure is highly significant, with a Pearson Chi Square test p 

value of 0.0087.  However the small number of near linear and convex cases makes these 

categories sparse and below the Cochran criterion (Sall, Lehman, and Creighton, 2001: 

245), so the results are suspect. 
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Figure 40.  Mosaic Plot of Utility Function  Shapes by Evaluation Measure. ( )(u v x
&

)
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Elicitation Error Compared to Value-Utility Differences 

It has been argued that elicitation methodology imparts error greater than what is 

observed between value and utility elicitation approaches, or 

( ) ( ) ( ) ( )CE i PE i i iu x u x u x v x− > −  for most ix .  Since and ( ) ( ) ( )0 0 0 0CE PEu x u x v x= = =

( ) ( ) ( ) 1*** === xvxuxu PECE , the argument presented above for WRMSE is germane. 

Employ  as a WRMS measure of the difference between the two elicited utility 

functions for the ith subject and the jth evaluation measure, defined  

ijε

 
( )

( ) ( ) ( )

1
2

2

1

1

1 K
CE PE

ij jk ij jk ij jkK
k

jk
k

h z u z u z
h z

ε
=

=

 
 

 = − 
 
 

∑
∑

  (66) 

Similarly, use  as a WRMS measure of the difference between the mean 

elicited utility function and the elicited value function, defined 

ijδ

 
( )

( ) ( ) ( )

1
2

2

1

1

1 K

ij jk ij jk ij jkK
k

jk
k

h z u z v z
h z

δ
=

=

 
 

 =  
 
 

∑
∑

−   (67) 

The null hypothesis may be stated as the elicitation error does not differ from the 

differences to be observed between the value and utility functions, then becomes 

  (68) 0 : ij ijH ε δ≥

And the alternate hypothesis 

  (69) 0 : ij ijH ε δ<

109 



The and terms are not independent, as the subject’s personal error affects 

both.  As the subjects’ errors differed significantly, the hypothesis was evaluated with a 

paired t test.  The results are shown in Figure 41.  The zero horizontal line in the plot 

represents the point where there are no differences between and .  The solid 

horizontal line enclosed by the dashed lines indicates the mean difference between and 

 enclosed by a 95 percent confidence interval.  We conclude that there are significant 

differences.  The corresponding p value for the t test is less than 0.0001.  The WRMS for 

is 0.191 and for  is 0.102.  We reject the null hypothesis and conclude that the 

differences between the value and utility functions are significantly larger than the 

elicitation error for this sample. 
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Figure 41.  Comparison of uu and uv Elicitations.  Paired t Test of Utility Function 
Elicitation Error (uu) and Differences in Elicited Value and Utility Functions (uv) 

Employing the Weighted Root Mean Square of the Differences. 
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Elicitation Learning Effects 

The elicitation was performed employing a questionnaire as a guide, with two 

permutations of the order of elicitations of the preference functions.  The two 

permutations were version A (value, certainty equivalent utility, probability equivalent 

utility [vuu]) and version B (certainty equivalent utility, value, probability equivalent 

utility [uvu]).  This provides the opportunity to check for learning effects.  It was 

hypothesized that if indeed utility is a function of both the decision maker’s preferences 

and her risk affinity, placing the value function elicitation first should cause her to clarify 

her thoughts on preferences before the latter two utility elicitations. 

This is testable with the null hypothesis 

  (70) 0 : uvu vuuH ε ε=

and the alternate 

 :  (71) A uvu vuuH ε ε≠

Where  is as defined above and the subscript indicates the elicitation sequence. ε

The results of an ANOVA of the WRMSE by version are shown in Figure 42.  

The difference is in the range of significance, with a p value of 0.0210.  A similar 

analysis on the RMSE data provided a p value of 0.0536.  Interestingly the version where 

the value function was elicited first had the higher error.  As will be shown below, the 

officer and enlisted soldiers had differing amounts of WRMSE.  The elicitation versions 

were assigned randomly; however as a check the version was plotted in a mosaic plot 

against the grade categories of officer and enlisted soldier.  This is shown in Figure 43.  

No pattern is apparent. 
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Figure 43.  Mosaic Plot of Questionnaire Version Versus Pay Grade Category. 

The results in Figure 42 are clearly affected by the two possible outliers.  As 

discussed above, elimination of one of these points is likely prudent, the other possible 
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but less justified.  Eliminating the most severe outlier produces a p value of 0.0214 

forWRMSE (p value of 0.0721 for RMSE).  This is illustrated in Figure 44.  Even when 

discarding the potential outlier we reject the null hypothesis and conclude that there are 

significant effects observed.  (Elimination of both outliers produces p values of 0.0299 

and 0.139 for WRMSE and RMSE, respectively.) 
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Figure 44.  ANOVA on the Preference Function Elicitation Order (Trimmed).  The Order 
of Elicitation for Version A was vuu, B was uvu. 

However the one-tail test that a  elicitation error is less than the  

elicitation, or the null hypothesis 

vuu uvu

  (72) 0 : uvu vuuH ε ε>

and the alternate 

 :  (73) A uvu vuuH ε ε≤
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provide a more accurate test of learning effects.  The p value for the untrimmed data set 

for WRMSE is 0.9893 or 0.9895 for the data set with the most distant outlier removed. 

Clearly we reject the null hypothesis that eliciting the value function first provides for 

learning and reduced elicitation error. In fact structuring the reverse construct as a 

hypothesis would be accepted with this data. This effect remains unexplained. However 

for these subjects eliciting the value function first led to higher elicitation error.  We 

conclude that learning effects were not present as hypothesized. 

Simultaneous Equations 

For the multiattribute utility elicitation, the recommended method of Kirkwood 

(1997: 162 – 163) was employed.  The approach is to place the evaluation measures in 

the certain alternative at either their best or worst levels ( 0 jx or * jx  for all j) and vary the 

combinations (a zero-one programming approach) of the certain alternative evaluation 

measures at best and worst levels until ambivalence is achieved.  The reference gamble, 

the uncertain alternative, is a 50-50 possibility of all evaluation measures at the most or at 

the least attractive levels.  This is depicted in Figure 45 for the tactical situation.  The 

uncertain alternative, labeled A, has a probability of 0.5 that the evaluation measures are 

all at the most preferred levels and a probability of 0.5 that the evaluation measures are 

all at the least preferred levels.  The certain alternative B has the evaluation measures 

undefined, where 0j jx x= or *j jx x=  for all j. 
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Figure 45.  Multiattribute Utility Elicitation Graphical Representation. 

For the subjects where no single combination of evaluation measures provided 

ambivalence to the reference gamble, simultaneous equations were gathered.  Each of the 

nine subjects who were not ambivalent to any of the *,oj jx x combinations was presented 

four sequential elicitations, where they were offered various combinations of the levels of 

the four evaluation measures.  The levels were adjusted continually in the natural number 

domain, 0 *,j j jx x x∈    for each j, rather than restricting each { }0 *,j j jx x x= , until 

ambivalence with the reference gamble was achieved. 

The elicitation of some combination of evaluation measures for alternative B such 

that the subject is indifferent between A and B provides a set of evaluation scores that is 

equivalent in utility to the uncertain alternative A.  By the expected utility axioms, 

ambivalence between alternatives A and B require where U is 

the objective function – the multiattribute utility function, generally defined by 

( ) ( )E u A E u B  =    ( )X
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  (74) ( ) (
1

J

j j j
j

U w u
=

=∑X )x

}

for the J evaluation measures, where  is the weight of the jth evaluation measure and jw

{ 1 2, , , T
JX x x x= K .  As we have different subjects and four elicitations per subject, 

further employ the standard definition of the utility of the uncertain outcome 

  (75) ( ) (
1

J

ik j ij jk
j

U p u
=

=∑X )x

=

*

where k indicates the elicitation, one through fours, for the ith subject.  The utility of 

alternative A is easily determined as the utility of all evaluation measures at the least 

preferred levels, X , is zero, and at the most preferred, , equal to one.  The utility of 

alternative A is given by 

0 *X

  (76) ( ) ( ) ( ) ( ) ( )
0 *0 * 0.5 0 0.5 1 0.5U A p U p U= + = +X XX X

where 
0
,p pX X

( ) (1 2U UX X

are the respective probabilities of realization of each possible outcome 

under alternative A.  As alternative A does not change for these four elicitations, 

.  Because the expected utility of both 

alternatives is equal, . 

) ( ) ( )3 4 0.5k k k kU U= = = =X X

( ) 0.5E u B  = 

The multiattribute value function V is 

  (77) ( ) ( )
1

J

j j j
j

V X w v x
=

=∑

and providing for multiple elicitations and subjects becomes 

  (78) ( ) (
1

J

ik j ij jk
j

V X p v x
=

=∑ )

116 



Because  for all four elicitations if there is a functional relationship 

between value and utility, w, then U B  for all elicitations.  Or 

 where 

( ) 0.5E U B =  

( )( ) ( )( )1 2
ˆ Û V B= =

( ) ( )( )ˆ 0.5U V B=

( )( ) ( )( )3 4
ˆ 0.5U V B= =

=

ˆU V B U V B kB  indicates the kth 

elicitation iteration.  This requires that V B  where d is 

some constant. 

( ) ( )1 2V B= = ( ( )4V B V B d=)3 =

Each elicitation of a combination of jx provides an opportunity to estimate d.  A 

histogram and q-q plot is shown in Figure 46.  The data is well behaved enough to 

assume normal distribution of the error.  A 95 percent confidence interval extends from 

0.41 to 0.54, including the nominal value of 0.5.  ANOVA results for these subjects are 

shown in Figure 47.  At least one subject has a significantly different error distribution 

with a p value of 0.037. 
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Figure 46.  Histogram and Q-Q Plot of the Simultaneous Equation Value Results. 
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Figure 47.  ANOVA of Simultaneous Equation Value Results. 

To compare the error in the multiattribute case, Mε , to that of the single 

dimensional elicitations, WRMSE is again appropriate.  Each of the four  kB for each 

subject provides a realization of an estimate of the true curve that corresponds to 

.  The four U V  curves were determined by Kirkwood’s method where 

an exponential constant is calculated that causes the curve 

( )( kU V B
&

) )( )(ˆ
kB

&

 ( )( )

( )

( )

1

1 ,ˆ
1

, otherwis

v x

e
U V B

e
v x

ρ

ρ
ρ

−

−


− ≠ ∞=  −


&

e,

)

 (79) 

to pass through the particular point .  As it is known that the alternative B has a 

utility equal to 0.5, the point 

( ,0.5MV

MV  is the point that provides U V  and is 

determined as provided by Kirkwood (1997: 162 – 164) using a simple look-up table for 

( )ˆ 0.5M =
&

ρ .  This table is provided in Table 8.  Each kB  provides a separate ρ  and therefore a 
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separate estimate of the multiattribute utility function, U V .  The error of the 

multiattribute utility function for each U V  is provided by 

( )(ˆ
lz

&
)

)( )(ˆ
lz

&

( ) ( )( ) ( )
1

ˆ
M jh z U=

&k lz U z 
( )
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&
U z  .  The Mε  for the kth elicitation and ith subject is denoted 

ikMε  

The 
ikMε

ikε

 results are summarized in Table 9 along with the single dimensional elicitation 

error, , as defined above, for comparison.  Results of an ANOVA, blocked on the 

subjects, are presented in Table 10.  In only two cases were the single and multiple 

dimensional elicitation error significantly different. For one of these two subjects the 

single dimensional WRMSE was higher, and the reverse was true for the other subject.  

The data are inconclusive as to whether one method provides superior accuracy. 

Decision Analysis Results 

The decision analysis models for the preference functions were compared using the DPL 

programming package.  The decision tree and influence diagram for the tactical problem 

posed in the questionnaire are shown in Figure 48 and Figure 49, respectively.  There is 

only a single decision, that of which route to select.  The uncertainties are conditional  
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Table 8.  Exponential Constants, ρ  (Kirkwood, 1997b: 69). 

 

probabilities affected by the route selection.  These probabilities were modeled as 

triangular distributions, with the parameters set as listed in Table 11. 

The results of the analysis are tabulated in Appendix B.  The results were 

calculated for each subject by route for the various preference functions: value 

function, ; utility function determined by the certainty-equivalent method, u x ; 

utility function determined by the probability-equivalent method, u ; utility function 

determined by averaging the certainty-equivalent and probability-equivalent methods, 

( )v x ( )CE

( )PE x

( )u x ; and the multiattribute utility method, u . ( )m x

The route alternatives ordered in descending preference appear in Appendix B.  

The mismatches between pairs of various preference functional models are presented in 
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20.5 R ZO.5 R Zo.5 R ZO.5 R 

0.00 0.25 0.410 0.50 Infinity 0.75 -0.410 

0.01 0.014 0.26 0.435 0.51 -12.497 0.76 -0.387 

0.02 0.029 0.27 0.462 0.52 -6.243 0.77 -0.365 

0.03 0.043 0.28 0.491 0.53 -4.157 0.78 -0.344 

0.04 0.058 0.29 0.522 0.54 -3.112 0.79 -0.324 

0.05 0.072 0.30 0.555 0.55 -2.483 0.80 -0.305 

0.06 0.087 0.31 0.592 0.56 -2.063 0.81 -0.287 

0.07 0.101 0.32 0.632 0.57 -1.762 0.82 -0.269 

0.08 0.115 0.33 0.677 0.58 -1.536 0.83 -0.252 

0.09 0.130 0.34 0.726 0.59 -1.359 0.84 -0.236 

0.10 0.144 0.35 0.782 0.60 -1.216 0.85 -0.220 

0.11 0.159 0.36 0.845 0.61 -1.099 0.86 -0.204 

0.12 0.174 0.37 0.917 0.62 -1.001 0.87 -0.189 

0.13 0.189 0.38 1.001 0.63 -0.917 0.88 -0.174 

0.14 0.204 0.39 1.099 0.64 -0.845 0.89 -0.159 

0.15 0.220 0.40 1.216 0.65 -0.782 0.90 -0.144 

0.16 0.236 0.41 1.359 0.66 -0.726 0.91 -0.130 

0.17 0.252 0.42 1.536 0.67 -0.677 0.92 -0.115 

0.18 0.269 0.43 1.762 0.68 -0.632 0.93 -0.101 

0.19 0.287 0.44 2.063 0.69 -0.592 0.94 -0.087 

0.20 0.305 0.45 2.483 0.70 -0.555 0.95 -0.072 

0.21 0.324 0.46 3.112 0.71 -0.522 0.96 -0.058 

0.22 0.344 0.47 4.157 0.72 -0.491 0.97 -0.043 

0.23 0.365 0.48 6.243 0.73 -0.462 0.98 -0.029 

0.24 0.387 0.49 12.497 0.74 -0.435 0.99 -0.014 



Table 9.  WRMSE for Single and Multiple Dimension Utility Elicitations. 

Subject Single 
Dimensional 

Error 
ikε  

Multi-
dimensional 

Error 
ikMε  

Subject Single 
Dimensional 

Error 
ikε  

Multi-
dimensional 

Error 
ikMε  

FJ1 0.0676 0.0253 FJ12 0.0712 0.0515 
FJ1 0.0289 0.0692 FJ12 0.0730 0.0124 
FJ1 0.0534 0.0457 FJ12 0.195 0.112 
FJ1 0.0717 0.0898 FJ12 0.728 0.160 
FJ4 0.0256 0.0734 FJ13 0.0773 0.133 
FJ4 0.0964 0.113 FJ13 0.0648 0.184 
FJ4 0.0528 0.0417 FJ13 0.136 0.193 
FJ4 0.0991 0.0049 FJ13 0.0616 0.124 
FJ6 0.116 0.0703 FJ16 0.0822 0.344 
FJ6 0.129 0.0122 FJ16 0.0725 0.174 
FJ6 0.157 0.0917 FJ16 0.120 0.174 
FJ6 0.0333 0.153 FJ16 0.0309 0.0469 
FJ9 0.143 0.0747 FJ18 0.148 0.135 
FJ9 0.150 0.180 FJ18 0.486 0.184 
FJ9 0.0956 0.0252 FJ18 0.200 0.0316 
FJ9 0.153 0.0811 FJ18 0.116 0.0248 
FJ10 0.107 0.036    
FJ10 0.0373 0.0077    
FJ10 0.0616 0.0065    
FJ10 0.0575 0.0348    

 
Table 10.  Comparison of WRMSE for Multi- and Single Dimensional Utility 

Elicitations. 

Subject Mean Single 
Dimensional 

WRMSE 

Mean 
Multidimensional 

WRMSE 

P Value 

FJ1 0.0554 0.0575 0.907 
FJ4 0.0685 0.0583 0.737 
FJ6 0.109 0.0818 0.522 
FJ9 0.135 0.0900 0.245 
FJ10 0.0658 0.0213 0.0378 
FJ12 0.267 0.0840 0.296 
FJ13 0.0848 0.159 0.0241 
FJ16 0.0764 0.185 0.140 
FJ18 0.237 0.0940 0.175 
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Figure 48.  Tactical Scenario Decision Tree. 
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Figure 49.  Tactical Scenario Influence Diagram for the Value Function. 
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Table 11.  Triangular Distribution Parameters. 
Field Artillery Exposure (miles) 

Route Minimum Mode Maximum 
A 0 1 50 
B 0 50 300 
C 150 300 400 
D 200 400 500 
E 300 499 500 
F 200 499 500 

Ambush (sites) 
Route Minimum Mode Maximum 

A 15 30 45 
B 25 45 50 
C 25 49 50 
D 20 35 50 
E 0 5 10 
F 0 1 10 

Fuel (percent) 
Route Minimum Mode Maximum 

A 0 20 40 
B 0 1 40 
C 0 20 50 
D 0 40 50 
E 50 99 100 
F 0 50 100 

Time (hours) 
Route Minimum Mode Maximum 

A 18 21 24 
B 16 23.9 24 
C 17 22 24 
D 14 21 23 
E 12 12.1 15 
F 12 12.1 16 

Table 12.  These mismatches occur when the different functional forms produce differing 

alternatives in corresponding ordinal positions.  For example, if the value function model 

indicates that route C is the third most preferred alternative and the certainty equivalent 

utility model produces route D for the same position, this is classified as a mismatch.  As 

there are six alternatives and six assignments per subject per model type, the possible 

number of mismatches per comparison is drawn from the set { .  Also 

contained in Table 12 is the number of mismatches for a deterministic situation where  

}0, 2,3, 4,5,6
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Table 12.  Mismatches Between Various Preference Functions. 

 Stochastic Deterministic 
Comparison Mismatches Percent Mismatches Percent 

( )CEu x -u x  ( )PE 28 0.23 22 0.18 
( )v x -  ( )CEu x 36 0.30 52 0.43 
( )v x -  ( )PEu x 33 0.28 49 0.41 
( )v x - ( )u x  37 0.31 56 0.47 

( )v x -  ( )
1mu x 12 0.10 0 0.00 

( )
1mu x -  ( )

2mu x 6 0.11 0 0.00 
( )CEu x - ( )u x  18 0.15 8 0.067 
( )PEu x - ( )u x  18 0.15 14 0.12 

( )u x -  ( )
1mu x 29 0.24 56 0.47 

( )u x -u x  ( )
2m 17 0.32 25 0.46 

there is no uncertainty and the route data employed was the modal data from the 

triangular distributions of the stochastic set of cases. 

Normally in employment of decision analysis the interest is in the best (greatest 

value or utility) alternative, or in those alternatives near the top.  Table 13 shows the 

mismatches for the best (highest) alternative, and the best two alternatives.  Mismatches 

for the latter category are the number of mismatches of the nonordered set { }1 2,a a  

foreach method being compared, where the  are the alternatives and the subscript 

indicates order of desirability based on the model.  The percentage error decreases for the 

majority of cases when two alternatives are considered.  This is expected as the number 

of possible combinations is reduced. 

ia

Examining the deterministic cases first, it is noticed that no differences exist 

between the value and multiattribute utility comparisons and also for comparisons  
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Table 13.  Mismatches Between Various Preference Functions. 

 Best Alternatives Best Two Alternatives 
Comparison Mismatches Percent Mismatches Percent 

( )CEu x -u x  ( )PE 1 0.05 4 0.10 
( )v x -  ( )CEu x 5 0.25 7 0.18 
( )v x -  ( )PEu x 5 0.25 5 0.13 
( )v x - ( )u x  6 0.30 5 0.13 

( )v x -  ( )
1mu x 1 0.05 3 0.075 

( )
1mu x -  ( )

2mu x 0 0 2 0.11 
( )CEu x - ( )u x  2 0.10 3 0.075 
( )PEu x - ( )u x  1 0.05 2 0.05 

( )u x -  ( )
1mu x 5 0.25 2 0.05 

( )u x -u x  ( )
2m 3 0.33 2 0.11 

between the multiattribute utility functions for the same subject (where they exist).  In the 

deterministic situation, the multiattribute utility merely provides a transform that 

preserved the ordinality of the value data, so no mismatches are possible.  Obviously 

employing multiattribute utility in a non-aleatory environment does not provide any 

additional ordinal information over that provided by a value function.  Clearly the 

concept of employing value and single dimensional utility functions interchangeably is 

not supported by these data.  The mismatches between these models almost reached half 

of the recommendations. 

For the stochastic data, the value and single dimensional mismatches occur in 

about 30 percent of the cases.  The two realizations of the single dimension utility curve 

produced mismatches in 23 percent of the pairs.  The averaged single dimensional utility 

and the multiattribute utility differed almost one-quarter of the time. 
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Examination of the mismatches only provides a cursory insight, as the binomial 

result contains no measure of the distance of the differences of the alternatives.  One 

question of interest is whether employing a single elicited realization of the single 

dimensional utility function significantly affects the results.  Figure 50 shows the 

pairwise comparison of  and for the alternatives grouped by subjects.  The 

differences approached significance with a p value of 0.0554.  The interpretation is that 

either preference realization may have been employed, but only barely. 

( )CEu x ( )PEu x
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Figure 50.  Pairwise Comparison of  and u  by Subject. ( )CEu x ( )PE x

Figure 51, illustrating a pairwise comparison between and ( )v x ( )u x , grouped by 

subject, shows that there is a significant difference between them, with a p value of 

<0.0001.  This is no surprise, as the value scores and utility scores were expected to 

differ.  The important consideration is if the scores are coherent, producing similar  
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Figure 51,  Pairwise Comparison of and ( )v x ( )u x . 

recommendations (identical ordering, or strategically equivalent recommendations).  As 

discussed above, almost a third of the highest scoring alternatives differed between these 

preference measures. 

Figure 52 illustrates the pairwise comparison between ( )u x and , grouped 

by subject, for the eleven subjects who did establish an ambivalence .  The two 

methods did produce significantly different scores, with a p value of 0.0018.  This 

indicates that the multiattribute utility construct is not identical with the single 

dimensional utility preference model, at least possessing differing means.  This result 

alone does not indicate that the multiattribute utility model (or the single dimension 

utility model, for that matter) is not acceptable, but that the subjects produced differing 

constructions for these two utility functions.  As indicated above, the multiattribute utility 

function produced 24 percent mismatches with the averaged single dimension utility 

( )
1mu x

( )x
1mu
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Figure 52.  Pairwise Comparison of ( )u x  and . ( )
1mu x

function model.  However the two elicited single dimension utility functions mismatched 

in 23 percent of the alternatives.  For five of twenty of the subjects, the comparison 

between ( )u x and u  produced differing answers for the best route.  When 

comparing u  and  for the best alternative, there was only a single 

disagreement.  This indicates that the two models are in fact different constructs, 

measuring the subject’s predilections differently, and which produce solution vectors that 

are not strategically equivalent. 

( )
1m x

( )CE x ( )PEu x
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Tactical Scenario Value and Utility Preference Function Summary 

The preference function information of 20 subjects, all military professionals, was 

examined with respect to differences in single dimensional value and utility functions. A 

new measure of comparing preference functions, the weighted root mean square error 

(WRMSE), was introduced.  The fit of five proposed transforms from value into utility 

were examined.  Acceptance criteria were developed and tested.  Previous work had used 

ad hoc criteria. 

The sigmoid function was very successful as a model, fitting best in over 80 

percent of the cases, with other models achieving no more than a four percent rate of best 

fit.  The analysis also conclusively confirms that value and utility are different functions 

and are poor surrogates, when individually considered, for each other, at least for these 

data.  The differences in the value and utility functions were significantly greater than the 

elicitation error.  The methods of probability equivalent and certainty equivalent utility 

elicitation provide (barely) similar results. 

Curve shape is indicative of risk attitudes when risk is included in the assessment 

protocol.  The subjects were risk averse for half of the evaluation measures.  They 

provided s-shaped utility curves in 40 percent of the cases, indicating both risk averse and 

risk seeking behavior across the evaluation measure domain.  The common assumption of 

risk aversion is poor for this problem and group of subjects, and suggests that this may be 

common for military decision making in operational settings. 

Order of elicitation of single dimensional value and utility information made 

significant differences in the elicitation error.  Eliciting functions in the sequence of 
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value, utility (certainty equivalent), then utility (probability equivalent) had higher 

internal error than utility (certainty equivalent), value, and then utility (probability 

equivalent).  If it is accepted that the probability equivalent and certainty equivalent 

methods produce theoretically identical constructs, then this supports the idea that 

eliciting value in between the two utility elicitations provides reduced elicitation error 

than eliciting the utility information sequentially without interruption.  Such an idea is 

counterintuitive, and suggests future work in this area.  In any case, typical application of 

decision analysis involves the use of only one method, and so this has no effect on 

practical use of DA. 

The multiattribute utility approach of Kirkwood is significantly different than the 

standard single dimension utility approach.  Nevertheless, the two methods provide 

similar levels of accuracy.  When eliciting single dimensional utility functions, either the 

certainty equivalent or the probability equivalent techniques may be employed, but the 

methods differ significantly with statistical difference approaching significance, as the p 

critical value was 0.055. 

Information Operations Value-Utility Data 

Information Operations Value-Utility Functions.  Doyle (1998) employed a 

decision analysis value-focused thinking approach to develop evaluation measures for the 

analysis of information operations.  This effort was the first use of decision analysis in 

information operations.  Doyle’s published research was based on single dimensional 

value functions.  However both value and utility functions were elicited from participants 
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in the study and so the data offer the opportunity to compare single dimensional value 

and utility functions elicited from the same decision makers who are professionals 

dealing with a operational military subject.  (Doyle, 2000)  These opportunities are rare, 

and provide the opportunity to validate the above results with data obtained from a 

separate researcher and separate subjects.  The background information presented in the 

next section provides a contextual summary as described by Doyle. 

Background.  Information Operations are defined by Joint Publication 3-13 

(Department of Defense, 1998: I-9) as those “actions taken to affect adversary 

information and information systems while safe guarding one’s own information and 

information systems.”  The intent is to affect the opponent’s capabilities and actions 

through influences on their information and information systems, which provides a more 

efficient defeat mechanism, at least under some circumstances, than more traditional 

methods.  During periods of conflict, information operations are referred to as 

information warfare (Department of Defense, 1998: I-11). 

Command and control warfare is an application of information warfare in military 

operations and consists of five components.  Operations security is a process of 

identification of critical information, and execution of corresponding safeguards to 

reduce enemy exploitation of this information (Department of Defense, 1997: GL-2).  

Military deception consists of those actions designed to deceive an enemy and causes the 

enemy to undertake actions, or fail to do so, that facilitate friendly success (Department 

of Defense, 1996c: I-1).  Psychological operations convey selected information to foreign 

audiences to create conditions favorable to friendly operations  (Department of Defense, 

1996a: I-1).  Electronic warfare is the use of electromagnetic or directed energy devices 
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to control the electromagnetic spectrum or attack the enemy.  Electronic warfare has three 

subcomponents: electronic attack engages enemy units and facilities to degrade their 

capability; electronic protection safeguards friendly electromagnetic systems; and 

electronic warfare support gathers information from electromagnetic emissions to provide 

information about enemy forces.  (Department of Defense, 2000: I-2 – I-3).  Physical 

destruction is the use of physical weapons against enemy targets as an element of 

command and control warfare (Department of Defense, 1996b: II-7). 

While historical examples of what is now known as information operations are as 

old as military history, the creation of the field of information operations is relatively 

recent.  As information operations span a number of areas of specialization, those 

charged with conducting them face the challenges of mastering an immature discipline 

with disparate proficiency requirements.  It was desired that a decision support tool be 

developed to assist in selection between information operations courses of action. 

Results.  Doyle’s analysis provided both an objectives and cost value hierarchy.  

These are seen in Figure 53 and Figure 54, respectively.  As an example, the value and 

utility cost functions for Minimize Friendly at Risk Personnel are shown in Figure 55.  

The domain for each evaluation measure differs, but in Doyle’s work all preference 

functions map into [ ]0,10 .  Plots of all preference functions are contained in Appendix C.  

Not all preference functions were continuous. 

We now move beyond the analysis conducted by Doyle.  The continuous 

functions were normalized by converting their codomain from [ ]0,10  to [ ]0,1 .  Then 

analysis proceeded as above for the Measuring Goodness of Fit for the tactical scenario  
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Figure 53.  Objectives Hierarchy for Offensive Information Operations, after Doyle 
(1998: 3-11). 
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Figure 54.  Cost Hierarchy Offensive Information Operations, after Doyle (1998: 3-12). 

data.  Fits of the five proposed models were examined.  As there were no multiple 

elicitations of the same preference functions, confidence intervals could not be 

established for WRMSE as done previously.  The earlier criterion was employed. 
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Figure 55.  Minimize Friendly at Risk Personnel Functions. 

The fit of the five models is tabulated in Appendix C for the twelve continuous 

evaluation measures.  The best fitting models, and other acceptable fits are tabulated in 

Table 14 along with Keller’s measure G.  The sigmoid function provided the best fit in 

seven cases and the exponential in the remaining five.  Of the twelve continuous 

evaluation measures, the curve shapes of the assessed utility functions of the subject were 

not strongly risk averse: two were linear or near linear, four were S-shaped, four were 

convex, and two were concave.  The equivalent results employing RMSE are presented in 

Appendix C and Table 15.  The sigmoid function provided the best fit in eight cases and 

the exponential in the remaining four.  Using either measure, the linear fit was never the 

best, indicating that value and utility are significantly different in this analysis.  One-third 

of the  curves, the transform from value to utility, were S-shaped, indicating 

non-constant risk attitudes. 

( )(û v x
&

)

We conclude that this data set also supports the hypothesis that u v .  

Further, the fit of the sigmoid function indicates that constant risk attitudes are not 

present across the domain, as well as that the sigmoid is an efficacious representative  

( )( ) ( )x v x≠
&
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Table 14.  Summary of Model Fits for  Employing WRMSE.  “Lin” stands for 
linear, “Log” for logarithmic, “Pow” for power functions. 

( )(û v x
&

)

 Best 
Acceptable 

Fit 

G Other 
Acceptable 

Curve 
Shape 

Increase Recovery Time Expo 0.417267 Lin,Log,Pow,Sig Linear 
Degrade Update Sigmoid 0.890747 Lin,Exp,Log,Pow S-Shaped 

Increase Error Content Sigmoid 0.895757 Exp,Pow Convex 
Age Devaluation Sigmoid 0.863706 Exp,Pow Convex 

Decrease Accuracy Sigmoid 0.888913 Exp,Pow S-Shaped 
Reduce Timeliness Expo 0.884586 Lin,Log,Pow,Sig Near Linear 
Consume Essential 

Resources Expo 0.98388 Lin,Log,Pow,Sig Concave 
Consume Essential Time Expo 0.866733 Pow, Sig Convex 

Friendly at Risk Cost Sigmoid 0.931184 None S-Shaped 
System Survivability Cost  Expo 1 Pow Convex 
Collateral Damage Cost Sigmoid 0.90562 None S-Shaped 
Sensitive Information 

Security Cost Sigmoid 0.991695 None Concave 

 

Table 15.  Summary of Model Fits for u v  Employing RMSE.  “Lin” stands for 
linear, “Log” for logarithmic, “Pow” for power functions. 

( )(ˆ x
&

)

 Best 
Acceptable 

Fit 

G Other 
Acceptable 

Curve 
Shape 

Increase Recovery Time Expo 0.50013 Lin,Log,Pow,Sig Linear 
Degrade Update Sigmoid 0.931271 Lin,Exp,Log,Pow S-Shaped 

Increase Error Content Sigmoid 0.93979 Exp,Pow Convex 
Age Devaluation Sigmoid 0.919279 Exp,Pow Convex 

Decrease Accuracy Sigmoid 0.93384 Exp,Pow S-Shaped 
Reduce Timeliness Expo 0.894591 Lin,Log,Pow,Sig Near Linear 
Consume Essential 

Resources Expo 0.985921 Lin,Log,Pow,Sig Concave 
Consume Essential Time Sigmoid 0.888864 Exp,Pow Convex 

Friendly at Risk Cost Sigmoid 0.954836 None S-Shaped 
System Survivability Cost  Expo 1 Pow Convex 
Collateral Damage Cost Sigmoid 0.93656 None S-Shaped 
Sensitive Information 

Security Cost Sigmoid 0.995113 Pow Concave 

parametric function for u v .  These results agree with the findings of the analysis of 

the Army personnel considering the tactical situation described above. 

( )(ˆ x )
&
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Comparing Preference Functions 

The research question of interest is how may differences in risk attitudes as 

evinced by utility functions be compared?  Specifically, how does the risk attitude 

presented by a subject on one evaluation measure predict risk attitudes on other 

evaluation measures?  If inferences are possible, then efficiencies in elicitation may be 

achieved.  Define consistent risk attitude as the condition on the decision maker to 

maintain risk attitudes on all evaluation measures that are consistent with respect to being 

risk averse, risk neutral, or risk seeking. If this condition is present, then the decision 

maker is risk averse (neutral) (seeking) on all evaluation measures if she is risk averse 

(neutral) (seeking) on any single evaluation measure. 

In decision analysis a concave (convex) (linear) utility transform function, 

, indicates risk aversion (affinity) (neutrality).  Decision analysis literature 

suggests that when a decision maker is risk averse (seeking) (neutral) on a single 

evaluation measure then she will be risk averse (seeking) (neutral) on all evaluation 

measures.  Traditionally these utility functions are assumed to be strictly concave, 

convex, or linear.  However s-shaped curves are possible.  Indeed, s-shaped curves are 

common in the results of the tactical questionnaire data. 

( )(u v x
&

)

When examining the risk attitudes across evaluation measures within subjects, the 

curves may be grouped by shape.  Such a categorical grouping is rendered ineffectual as a 

risk attitude measure because s-shaped curves demonstrate both risk seeking and risk 

averse behavior. Grouping all s-curves will place those that are strongly risk averse in the 
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same taxon as those which are strongly risk seeking.  Clearly a quantified metric is 

desirable over the crude categorization provided by curve shape alone. 

As summarized in Chapter II, preference functions may be compared at discrete 

points or across the domain.  Under some circumstances a researcher may be interested in 

comparing preference functions at a specific point or points, but generally the interest lies 

in the aggregate.  Often a decision maker will be characterized as, say, risk averse, which 

is in reference to risk attitudes across the domain. 

One metric proposed for risk attitudes is the preference area.  This is the area 

under the utility curve, .  A risk neutral DM would have a preference area equal 

to 0.5. A risk averse DM would have a preference area greater than 0.5, and a risk averse 

decision maker would have a preference area less than 0.5 When analyzing data, risk 

neutrality is defined as corresponding to the interval [0.45, 0.55].  (Kimbrough and 

Weber, 1994: 627) 

( )(u v x
&

)

)

A shortcoming with the preference area is that for a given preference area, many 

curves may be constructed that enclose the same area.  For example, the curves shown in 

Figure 56 may be generated with the same area under the curve.  Clearly the preference 

area alone does not uniquely identify s-shaped curves, as Figure 56B and Figure 56C 

illustrate. 

It is desirable to have a measure of risk attitude that clearly distinguishes between 

risk aversion and risk seeking behavior.  Using a sign change to contrast risk seeking 

versus risk averse behavior provides this.  For the utility functions operating in the value 

domain, , we restrict the discussion to the class of functions  ( )(u v x
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Figure 56.  Alternate Utility Curves With Same Preference Area.  Graph A, ramp 
function; Graph B, inverse sigmoid function; Graph C, sigmoid function; and Graph D, 

step function. 

[ ] [ ]{ : 0,1 0,1X f= → f  is piecewise continuous and nondecreasing on 

[ ] ( ) ( ) }0,1 , 0 0, 1 1f f= = . 

As the preference area, with its single measure, fails to adequately describe risk 

attitudes, consider that parametric statistics frequently employ two parameters to describe 

distributions.  For example, the normal distribution is completely described by defining 

the mean and standard deviation.  Instead of comparing discrete observations to the mean 

(a function with slope equal to zero), we are interested in comparing these data to the 

corresponding risk neutral point. 

Define the risk neutral function .  The difference in preference area to 

the risk neutral situation is indicated by  

( )n x x=

 ( ) ( ) ( )1

0
R f f x n x= −∫ dx  (81) 
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and is illustrated in Figure 57.  The shaded area is the region measured by ( )R f . 

Because ( )1

0
1 10.5,  then ,2 2n x R  = ∈ − ∫ .  To gain a more appealing metric on the 

interval  

 

Figure 57.  Graphs of f and n. 

[ ]1,1− , equation (81) is modified to 

 ( ) ( ) ( )1

0
2R f f x n x= −∫ dx  (82) 

When ( )R f  is positive, the subject is exhibiting risk averse behavior.  When it is 

negative, risk seeking behavior is present.  Accepting the risk neutrality criteria of 

Kimbrough and Weber (1994: 627), neutrality is present when .  ( )0.1 0.1R f− ≤ ≤

( )R f

( )

 provides a measure of risk attitude, but like the preference area, is not unique.  

R f provides a measure of central tendency like the mean.  A measure of spread away 

would assist in characterizing the preference functions.  Variance would compare ( )f x  

to mean value, a horizontal construct.  Such a construct has no interpretation in decision 
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analysis.  Measure of spread with reference to is straightforward and is a metric that 

compares to a function, , that has a specific meaning in decision analysis.  Define  

( )n x

)x n= −

( )n x

( )  af

( )  and f

( )R

f (R f

  (83) ( ) ( ( )
1

2

0

3V f f x dx∫ 

where the coefficient 3 is employed to provide results on [ ]0,1 . 

The measures ( )nd R V

( )

f  provide different results than the preference area 

metric.  The graphs in Figure 56 all have a preference area of 0.5, but produce generally 

different results for R V f .  Examples of representative functions for those in 

Figure 56 are displayed in Table 16.  These metrics do discriminate between these 

functions in most cases and so this approach is an improvement to the preference area 

metric.  Where the preference area fails to discriminate, so does ( )R f .  However, V f  

provides discrimination when the functions are not reflections about .  The metric 

( )

( )n x

( )R f  does provide the aggregate risk attitudinal information, just as the preference area 

does. 

The functionals ( ) and f V f would be defined in the region shown in Figure 

58.  The lower bound of possible data points within the region is the parabola defined by 

( ) ( )2
3

R f V= .  Noting the definition of )  as provided in Equation (82), we 

note that 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0
2 2R f R f f x n x dx f x n x d≤ = − = −∫ ∫ x  (84) 

By the Schwarz inequality (Strang, 1988: 147), 
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Table 16.  Example Functions With Preference Areas Equal To 0.5. 
 ( )f x  ( )R f  ( )V f  

n(x)  ( ) ( )n x v x=  0 0 

Convex, 
concave 

( )( )

( )
( )

( )( )

/

0.5/

0.5 /

0.5/

1 , 0.15; 0,0.
1

1 , 0.15; otherwis
1

v x

v x

e x
eg v x

e
e

ρ

ρ

ρ

ρ

ρ

ρ

−

−

− −

−

 − = − ∈ −= 
− = −
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e

  

0 0.051 

Concave, 
convex 

( )( )

( )
( )

( )( )

/

0.5 /

0.5 /

0.5/

1 , 0.15; 0,0.
1

1 , 0.15; otherwi
1

v x

v x

e x
eh v x

e
e

ρ

ρ

ρ

ρ

ρ

ρ

−

−

− −

−

 − = ∈ −= 
− = − −

5
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Step 
( )( ) ( )

( )
0, 0.5
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v x
k v x

v x
 <=  ≥

 
0 0.25 

 

Figure 58.  Region Defined by ( ) ( ) and R f V f . 

( )V f

( )R f

1 

1 -1

 ( ) ( ) ( ) ( )1 1 1 22

0 0 0
2 2 1f x n x dx dx f x n x dx− ≤ −∫ ∫ ∫  (85) 

 ( ) ( ) ( ) ( )1 1 2

0 0
2 2f x n x dx f x n x dx− ≤ −∫ ∫  (86) 

 ( ) ( ) ( ) ( )1 1 2

0 0

32 2
3

f x n x dx f x n x dx− ≤ −∫ ∫  (87) 
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 ( ) ( ) ( ) ( ) ( )1 1 2

0 0

22 3
3 3

2f x n x dx f x n x dx V f− ≤ − =∫ ∫  (88) 

So 

 ( ) ( )1
22

3
R f V f≤  (89) 

It may be that a single subject may provide elicited responses that are grouped 

with in the region.  If so, it may be possible to draw inferences about subject’s responses.  

For example, after sampling a number of evaluation measures for a subject, it may be 

inferred at some level of confidence that the additional measures will lay within some 

radius about the centroid of the current observations.  If this is correct, then this may 

assist in efficiency of elicitations. 

The data from the tactical questionnaires was analyzed to determine the 

( ) ( ) and R f V

( )( )û v x
&

f  for each subject’s evaluation measures.  As the various  

functions are not standard functions, the analysis was performed numerically in 

Microsoft® Excel.  The domain was divided into 100 intervals (except for the ambush 

evaluation measure, which was treated as integer units) and the functions assumed to be 

linear over the interval of each subdomain.  The results are contained in Table 17.  Of the 

80  functions (four for each of the 20 subjects), 50 exhibited risk aversion, 15 

were risk neutral, and 15 were risk seeking.  Clearly the common assumption that risk 

aversion is present does not hold for these data where for almost two-fifths of the 

evaluation measures the subjects were not risk averse.  A two-way analysis of variance 

provides p values of 0.058 for the subjects and 0.016 for the evaluation measures.  The 

subjects could be pooled and treated as a group, but the difference of at least one subject  

( )( )û v x
&
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Table 17.  Tactical Questionnaire Results for ( ) ( ) and R f V f . 

Artillery  Ambush  Fuel Time 
Subject Number R(f) V(f) R(f) V(f) R(f) V(f) R(f) V(f) 

FJ1 -0.142 0.022 0.102 0.030 0.380 0.132 0.260 0.071 
FJ2 0.143 0.039 0.939 0.930 0.373 0.551 -0.393 0.187 
FJ3 -0.043 0.014 0.205 0.093 0.353 0.147 0.438 0.226 
FJ4 -0.154 0.030 0.422 0.204 0.247 0.058 0.235 0.134 
FJ5 -0.281 0.083 0.413 0.201 0.113 0.030 0.091 0.112 
FJ6 0.373 0.149 0.767 0.591 -0.097 0.022 -0.276 0.074 
FJ7 -0.083 0.036 0.418 0.182 -0.441 0.235 -0.039 0.052 
FJ8 0.095 0.028 -0.035 0.015 0.310 0.140 -0.122 0.057 
FJ9 -0.089 0.031 0.530 0.295 -0.238 0.075 -0.127 0.053 

FJ10 0.138 0.079 0.239 0.049 0.031 0.031 0.080 0.048 
FJ11 -0.197 0.069 0.424 0.206 0.640 0.425 0.357 0.170 
FJ12 0.683 0.470 0.370 0.133 0.233 0.137 0.102 0.163 
FJ13 0.065 0.065 -0.059 0.041 -0.158 0.043 -0.074 0.042 
FJ14 0.016 0.065 0.568 0.336 0.175 0.030 0.228 0.136 
FJ15 0.684 0.453 0.604 0.351 0.142 0.170 0.606 0.348 
FJ16 0.314 0.108 0.599 0.368 0.077 0.033 0.204 0.075 
FJ17 0.447 0.195 0.357 0.122 0.773 0.601 0.474 0.268 
FJ18 -0.279 0.088 -0.594 0.342 0.436 0.186 -0.167 0.040 
FJ19 -0.147 0.023 0.655 0.474 0.633 0.404 0.550 0.288 
FJ20 0.388 0.143 0.526 0.282 0.251 0.144 0.377 0.200 

approached significance.  The evaluation measures differed significantly, indicating that 

the subjects’ risk attitudes were not shared according to evaluation measure.  For 

example, while the risk attitudes of the subjects were (barely) similar, no conclusion may 

be drawn that they were, for example, risk averse to a certain degree regarding the enemy 

artillery threat.  A plot of  versus V f  appears as Figure 59. ( )R f ( )

As we have seen that knowledge of one subject’s risk attitudes cannot provide 

information on another subject’s attitude regarding that evaluation measure for this data 

set, we turn to examining the within subject risk attitudes.  If the risk attitudes are known 

for a number of evaluation measures for a specific subject, what inferences may be drawn 

about the subject’s risk attitudes on the remaining evaluation measures? 
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Figure 59.  Plot of ( )R f  versus V f  for the Tactical Questionnaire.  Limit shown as 
solid line. 

( )

First examining this issue employing ( )R f  alone, the ranges of the ( )R f , 

, where ( ) ( )* 0r R f R f= − ( ) ( ) ( )( ){ }*
1 2max , , j,R f R R f R= K

) ( )

f f  and 

( ) ( ) ({ }0 min 1 2, , , jR f R= f R f R fK , for the subjects of the tactical questionnaire are 

listed in Table 18.  As the ANOVA results permit pooling of the subjects’ data, assume 

that the ranges r are identically independently distributed.  Then the Central Limit 

Theorem provides that normality is present for sufficiently large samples.  Using the 

tactical questionnaire sample of r, with 20 samples, it is determined that r is distributed 

with a mean of 0.63 and a standard deviation of 0.28.  Constructing a 95 percent 

confidence interval for such a distribution provides a length of 1.10. 

The interpretation of this calculation is that, for subjects for which these are 

representative, presented with the tactical questionnaire, once three utility functions have 

been elicited, the fourth lies within 0.505 of the arithmetic mean of the known ( )R f  
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Table 18.  Values of , , and  for Tactical Questionnaire Subjects, Ascending Order. r N ∆

Subject r  Subject N  Subject ∆  
FJ10 0.21 FJ13 0.10 FJ13 0.06 
FJ13 0.22 FJ10 0.14 FJ10 0.07 
FJ20 0.28 FJ8 0.15 FJ20 0.09 
FJ17 0.42 FJ1 0.23 FJ8 0.15 
FJ8 0.43 FJ5 0.25 FJ3 0.17 
FJ3 0.48 FJ9 0.27 FJ1 0.18 
FJ1 0.52 FJ7 0.28 FJ4 0.18 

FJ16 0.52 FJ3 0.29 FJ14 0.19 
FJ15 0.54 FJ4 0.29 FJ16 0.20 
FJ14 0.55 FJ14 0.29 FJ5 0.20 
FJ4 0.58 FJ16 0.33 FJ17 0.20 

FJ12 0.58 FJ18 0.41 FJ15 0.20 
FJ5 0.69 FJ12 0.42 FJ12 0.23 
FJ9 0.77 FJ20 0.43 FJ7 0.26 

FJ19 0.80 FJ6 0.44 FJ9 0.27 
FJ11 0.84 FJ11 0.46 FJ11 0.28 
FJ7 0.86 FJ19 0.58 FJ19 0.32 

FJ18 1.03 FJ17 0.60 FJ18 0.33 
FJ6 1.04 FJ15 0.61 FJ6 0.43 
FJ2 1.33 FJ2 0.64 FJ2 0.53 

 
values with a probability of 0.95.  The extreme length of this confidence interval, 

extending across almost one-half of the domain space, renders it rather useless. 

An improved analysis would include V f .  Two approaches are considered, one 

with respect to the origin and the other with respect to the average 

( )

( )R f  and V f  for a 

subject.  The former is a measure of the distance from overall risk neutrality for the 

subject.  As we are working in two-dimensional Cartesian space, the total distance from 

the origin, , is straightforward and is defined 

( )

N

 ( ) ( )
0.52 2

1

1 J

j j
j

N R f V f
J =

= +∑ 


 (90) 

The distance from the average ( ) (
1

1 J

j
j

)R f R
J•

=

= ∑ f  and ( ) (
1

1 J

j
j

V f
J•

=

= ∑ )V f  is 

determined utilizing 
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 ( ) ( )( ) ( ) ( )(
0.52

1

1 J

j j
j

R f R f V f V f
J •

=

 ∆ = − + −  ∑ )2

•  (91) 

The values of  and  are presented in Table 18 in ascending order.  Inspection 

shows that these measures differ from each other as well as r.  As measures,  and  

provide more information and so are more appealing.  Similarly as was done for r, it is 

determined that ∆  is distributed with a mean of 0.23 and a standard deviation of 0.11, 

producing a 95 percent confidence interval of length 0.44.  A method of utilizing this 

information would be for an individual sharing the characteristics of this group of 

subjects, elicit utility functions for three of the evaluation measures.  The fourth utility 

function will possess 

N ∆

N ∆

( )R f  and V f  within a radius 0.22 of the mean of the three 

known functions with a probability of 95 percent.  Unfortunately, this radius is also rather 

large, making this approach inoperable as a useful approach. 

( )

The idea that subjects are risk attitude consistent is not supported by the tactical 

questionnaire data.  Thirteen of the 20 subjects exhibit ( )R f  that change sign.  

Removing the two subjects for whom the sign changes take place within the risk neutral 

region, eleven subjects were risk seeking for at least one evaluation measure and risk 

averse on at least one other. 

It is possible that future work with larger sample sizes and different decision 

situations could produce a confidence interval that is diminutive enough to be practical.  

Barring such improvements, the idea that a decision maker’s known risk attitudes may 

provide insight into risk attitudes on other evaluation measures is not operational. The 

data of this study suggest that the idea is not sound, but rather that risk attitudes are 
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completely independent for different evaluation measures for a single individual, 

particularly with respect to risk aversion and risk seeking behavior. 

We conclude this section by observing that ( ) ( ) and R f V f  provide improved 

an improved metric for evaluating risk attitudes over both curve shape and preference 

area.  Metrics for the assessment of risk attitude consistency are developed: r,  and .   

Risk attitude consistency is not demonstrated by the tactical questionnaire data.  Instead, 

the research subjects exhibit wide differences in risk attitude by evaluation measure. 

N ∆

Conclusions 

This research supports the hypothesis that single dimensional value and utility 

functions are not equivalent.  This conclusion was confirmed for two separate military 

decision making situations.  No single functional relationship defined the relationship of 

value and utility functions.  Certainty equivalent and probability equivalent and 

Multiattribute elicitation methodologies provided equivalent results.  Value and utility 

functions differed significantly more than can be explained by elicitation error. 

A new metric for assessing preference function fit, WRMSE, was developed.  The 

frequent assumption of risk aversion was a poor one for this subject group.  Risk attitudes 

were not found to be consistent between evaluation measures for the subjects.  New 

metrics for assessing risk attitudes were presented. 
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V.  Hybrid Value-Utility Decision Analysis Models 

General 

As discussed previously, decision analysis models may be utility-function-based, 

or value-function-based.  Research in Chapter IV showed that the two models differ 

significantly.  The utility-based model is appropriate when outcomes are not certain, as is 

typical for difficult decisions.  As utility functions incorporate the risk attitudes of an 

individual, they are specific to an individual.  Therefore construction of utility models 

requires a significant amount of the decision maker’s time.  For large decision problems, 

this personal commitment on the part of the decision maker is onerous and is a barrier to 

the use of multiple objective decision analysis.  Value-based models, appropriate under 

conditions of certainty, may be constructed through consultation with appropriate experts 

rather than the decision maker.  In fact, consultation with subject matter experts is 

generally required in any complex problem, regardless of methodology applied.  

If a utility-based model may be approximated by modification of a value-based 

model, reduction of the time demands on the decision maker may be realized.  For large, 

important decisions, these time demands are significant.  Reducing the time required of 

the decision maker improves the acceptance of the procedure and improves the 

probability that decision analysis will be employed.  The objective of this portion of the 

research is to determine when single dimensional value and utility functions differ 

significantly, and use this information to construct a hybrid value-utility model that may 

be used to estimate the performance of the utility model. 
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This chapter will first review pertinent background information.  An algorithm 

will be presented for construction of the hybrid model.  The algorithm will be tested on a 

simple example problem.  Next, the algorithm will be used to extend work preformed for 

a client to select an automatic target recognition classification system.  Finally the chapter 

is summarized and potential future work presented. 

Background 

Decision analysis models consist of a set of evaluation criteria for which 

preference functions are used to assess the decision maker’s strength of preference for 

various levels of the criteria, and often also attitudes regarding the uncertainty of the 

decision situation.  In a typical value-focused approach (Keeney, 1992a), the evaluation 

criteria are determined through decomposition of the decision maker’s strategic priorities 

until measurable criteria, the evaluation measures, are obtained.  This inverted dendritic 

structure, the value hierarchy, is shown in the upper portion of Figure 60.  Each 

evaluation measure is assessed using a single dimensional preference function.  Under 

conditions of certainty, the preference function is referred to as a value function and 

measures the decision maker’s strength of preference.  Under uncertainty, the preference 

function is referred to as a utility function and measures both the decision maker’s 

strength of preference and her attitude toward the risk inherent in the uncertain decision 

context.  The preference functions are contained in the second from bottom row of Figure 

60.  The various possible levels of the evaluation measure variables are represented as the 

bottom row of Figure 60.  A multiattribute (multidimensional) function employing 
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relative weights (relative importance) of the various evaluation measures combines the 

single dimensional preference functions and completes the model, permitting evaluation 

of alternatives.  Figure 60 represents a common view of decision analysis models, which 

assumes perfect information.  (In fairness, it must be observed that sensitivity analysis is 

often used to examine the assumption of perfect information.) 

 

 

Figure 60.  Common Decision Analysis Model Structure.  The bottom tier represents the 
evaluation measures and the next tier the preference functions.  The hierarchy represents 

the decomposed values of the decision maker. 

Decision analysis models are actually more complex.  This complexity is often 

largely ignored for tractability.  Figure 61 shows the taxonomy of variation in a DA 

model.  The bottom tier represents the evaluation measure levels.  These levels may be 

fixed, under certainty when the evaluation measure levels are known, or stochastic, under 

uncertainty or risk.  Under the latter condition the evaluation measure levels are 

distributed in a known or unknown way, respectively (usually referred to as under risk or 

uncertainty).  Additionally, the evaluation measure levels are often a function of an 

alterative, with different alternatives possessing differing distributions.  These 

distributions make the utility model a random variable. 

150 



 

Only one distribution is shown for each evaluation measure in the figure.  The 

figure shows continuous distributions, but discrete distributions and simple scalars (no 

variation) are possible.  The next higher tier represents the estimates of the true 

distributions.  The third tier from the bottom illustrates the value functions.  Above them 

are the value probability density function distributions created by transforming the 

evaluation measure distributions by the value functions.  Above the value distributions 

are the utility functions.  Two forms of utility functions are employed.  The domain of 

one form is the evaluation measure level domain.  The domain of the other is the value 

function codomain.  Depending which form is used, differing prior information is 

required, as indicated by the arrows on the right.  The utility functions provide utility 

probability density function distributions when the inherent uncertainty derived from the 

evaluation measures is transformed.  Note that both value and utility functions produce an 

associated preference distribution.  Each evaluation measure has an associated elicited 

weight.  Elicitation of these weights involves elicitation error, so that the weights, w , are 

associated with some distribution and represented by an estimate, .  For our purposes, 

in this document such error is disregarded, and .  Notation is indicated on the right 

hand side of Figure 61. 

i

ˆ iw

ˆ iw w= i

i 

Finally, a function is employed to aggregate the decision maker’s strength of 

preference and risk attitudes across the various dimensions of the decision.  A 

multiattribute function for a utility model is often written in the additive form.  This is 

  (92) ( )
1

I

j i i
i

U E w u x
=

= ∑
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Figure 61.  Taxonomy of Variables in a Decision Analysis Problem. 

 
where U is the utility of the jth alternative, is the weight (relative importance) of the 

ith evaluation measure, and u x is the single dimensional utility function for the ith 

evaluation measure, 

j iw

( )i i

ix is the random variable for the ith evaluation measure, and I  is the 

number of evaluation measures. 

Equation (92) may be rewritten in terms of the utility probability density function, 

or  
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 ( )( ) ( )(
1 1

ˆ,
I I

j i i i i ij i i i i ij
i i

E U E w f u x w E f u x
= =

  )ˆ, ′′ ′ ′′ ′  = =     
∑ ∑α α  (93) 

where if ′′ is the probability density function of the ith utility function, and α is a vector 

of parameters of the estimated evaluation measure distributions.  The DA problem may 

be stated as maximizing  through the selection of the jth alternative.  More 

formally, we take the maximum 

ˆ ij′

jE U 

  (94) Max jE U

such that 

 { }1 2, , ,jU U U U∈ K J

)ij



I

 (95) 

  (96) ( )(
1

ˆ,
I

j i i i i
i

E U E w f u x
=

 ′′ ′′  =    
∑ α

  (97) 1, ,i = K

 1, ,j J= K  (98) 

Figure 62 illustrates an example where there are two alternatives, A and B.  

Choosing A or B is the only decision and is followed by a differing uncertain event.  

These events have distinct distributions of overall utility associated with it. In Figure 62, 

choosing B will provide a higher expected value of utility.  Or to avoid the confusion 

associated with the statistical term “expected value,” one may say choosing B will 

provide a higher mathematical expectation of utility.  More often, this is shortened to 

stating that choosing B will provide a higher expected utility. 
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Figure 62.  Example Decision Tree.  Squares represent decisions, circles represent 
discretized uncertain events.  The utility PDF for each choice is shown at right.  These 

distributions are typically discretized for representation in decision analysis. 

 
For a value-based model, the additive multiattribute function is 

  (99) ( )
1

I

j i i
i

V w v
=

=∑ ix

)

i 

 

where V is the value of the jth alternative and  is the single dimensional value 

function for the ith evaluation measure.  Equation (99) contains no expectation operator, 

as it is intended for us under conditions of certainty.  However, it may be seen from 

Figure 61 that using value functions under uncertainty produces a value pdf that behaves 

similarly to the utility pdf.  Equation (99) then becomes 

j (i iv x

  (100) ( )
1

I

j i i
i

V E w v x
=

= ∑

In analogous fashion, an objective value function may be constructed 

 Max jE V    (101) 

such that 
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  (103) ( )(
1

ˆ,
I

j i i i i
i

E V E w f v x
=

 ′  =    
∑ α′

  (104) 1, ,i = K

 1, ,j J= K  (105) 

where if ′ is the probability density function of the ith value function, and α is a vector of 

parameters of the estimated evaluation measure distributions. The DA problem may be 

stated as maximizing  through the selection of the jth alternative. 

ˆ ij′

jE V  

In uncertain decision contexts Equation (93) is appropriate but for large problems 

of great import the are difficult to elicit from the decision maker because of the 

time involved.  As risk attitudes vary within an organization, it is not acceptable to use a 

surrogate for the decision maker to elicit utility functions.  Arguably, an organization 

should have a consensus for values in a decision situation, so parameters for Equation 

(99) are may be elicited from subject matter experts.  Modifying Equation (99) provides 

an approach to estimate Equation (92) to within some specified accuracy.  The advantage 

of employing a different model that adequately approximates Equation (92), but is based 

on Equation (99), is the reduction of the elicitation burden on the decision maker.  This 

onerous burden sometimes either precludes employing a utility approach or causes the 

selection of non-decision analysis techniques, and has been identified as a limitation of 

this methodology.  It is possible to do so as both 

( )i iu x

f ′  and f ′′  map from the real numbers 

into the unit interval, as was presented above in the discussion of Figure 61. 
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The proposed procedure is depicted graphically in Figure 63.  Starting with the 

value model, a hybrid model is created by replacing certain single dimension value 

functions with the corresponding utility functions.  The resultant hybrid model is then 

used as would the utility model to analyze the decision situation. 

 

 

Figure 63.  Basic Hybrid Value-Utility Model Approach. 

 
Typically, the initial step of building the value model is done through interview of 

the decision maker.  As we wish to minimize the time required of this individual, we will 

construct the value model using appropriate subject matter experts.  The decision maker 

then should validate the value model.  As we are concerned with complex decision 

situations, often we would expect the number of evaluation measures to be large.  Group 

screening is a method that efficiently examines large numbers of variables.  We anticipate 

that group screening will be employed as part of the step determining significance of the 
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evaluation measures.  Further development of the methodology outlined in Figure 63 is 

provided below. 

A Hybrid Value-Utility Algorithm 

Algorithm Development.  A method of approximating Equation (92) is desired.  

Beginning with Equation (99), one evaluation measure’s value function, , is 

replaced with the appropriate utility function, u x .  The model becomes 

(k kv x )

)

)ˆ, ijα

ˆ,i ijα

(k k

  (106) ( ) ( )( ) ( )(1

1,

ˆ ˆ,
I

j i i i i ij k k k k
i i k

E U E w f v x w f u x
= ≠

   ′ ′ ′′ ′′= +    
∑ α

where the kth evaluation measure value function has been replaced with the 

corresponding utility function and U  is an estimate of U after one substitution.   ( )1ˆ
j j

Equation (106) then becomes, after m substitutions,  

( ) ( ) ( )( ) ( )( )
1

ˆ ˆ1 ,
I

m
j i i i i i ij i i i i

i

E U E K w f v x K w f u x
=

    ′ ′ ′′ ′′= − +     
∑ α   (107) 

where  is an indicator variable corresponding to the substitutions defined for the ith 

evaluation measure as 

iK

  (108) 
( )
( )

0 when remains,    
1 when substituted

i i
i

i i

v x
K

u x


= 


This substitution protocol continues in an iterative fashion until the estimated utility, 

is sufficiently close to U .  This may be stated as ( )ˆ m
jU j

( )ˆ m
j jE U E U δ   −    ≤ , where 
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δ is the level of accuracy desired.  Then .  Equation (107) is a hybrid 

value-utility model that estimates the true utility model behavior. 

( )ˆ m
jE U E U  ≈   j 

Typically decision analytic studies proceed using either a value or a utility based 

approach.  Figure 64 illustrates that after the evaluation measure variation is estimated, 

the analyst adopts a preference model of value or utility.  Using the selected preference 

function for each evaluation measure, the evaluation measure scores are transformed into 

the value or utility space.  Typically these evaluation measures have uncertainty 

associated with them, so the various levels of value and utility have some associated 

probability.  Figure 64 shows probability density functions for value and utility levels.  

As shown at the top of Figure 64, Equation (107) bridges the division between value and 

utility regions.  In all cases in Figure 64, an additive value model is shown as an example. 

Substitution order.  Two additional considerations must be addressed in order to 

develop an algorithm.  These are the order of the substitutions of single dimensional 

utility for single dimensional value functions, and when the substitutions may be halted.  

The interview session time cost of each substitution (each evaluation measure) is roughly 

equal because the procedure is identical.  Some evaluation measures may require more 

reflection or definition, and so require longer elicitation periods.  This time cost is not 

considered in this analysis.  With this simplification, the substitutions should be made in 

order of decreasing impact upon the hybrid model (107).  The substitutions may be 

stopped when sufficient accuracy is achieved, as discussed below. 

Several candidates exist for prioritizing the substitutions.  The relative weight, , 

is an obvious possibility.  However the contribution of each evaluation measure is the 

iw
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Figure 64.  Bifurcation of Preference Functions. 

 
product of the weight multiplied by the corresponding preference function.  Evaluation 

measures with high relative importance may not be significant contributors to the overall 

value or utility.  That is, an ordering established by  may be very different than an 

ordering based on .  While the product 

iw

i iE w v( )i i iw v x ( )ix   may be calculated for each 

evaluation measure for the alternatives, this is not a good predictor of ( )i i iE w u x   .  As 

was shown in the last chapter, generally , so value is a poor predictor of 

utility. 

( )i iv x (iu x )i≠

While assumptions like consistent risk attitude across evaluation measures may be 

used to improve the estimate of ( )i i iE w u x   , response surface methodology (RSM) 

provides a means to assess the potential relative contributions of  without 

introducing additional constraints of the decision maker’s risk attitudes.  The coefficients 

( )i i iE w u x 
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of the regression model produced by RSM indicate the potential contribution of each 

model variable and permit the prioritization of substitution of the evaluation measures. 

The single dimensional preference functions transform the inherent problem 

variation into value and utility probability density functions.  While usually not directly 

considered, these derived PDFs affect the decision analysis model.  Differing single 

dimensional utility functions produce differing utility PDFs, as shown in Figure 65. 

Frequently, utility functions are approximated employing parametric functions 

fitted to the data (Kirkwood, 1997: 65).  When the exponential function, 

 ( )( )
( )

1
1ˆ

1

i i
i

i

v x

i i i
eu v x

e

ρ

ρ

−

−
−=

−&
 (109) 

is used to approximate a utility function the exponential constant, ρ , may be modified to 

examine an envelope of utility curves.  Setting iρ = ∞

( )( )i ix v=

 for u v  establishes that 

there are no risk attitudes and therefore u v .  Varying 

((ˆi&

)i

)ix )

(ˆ i x
&

iρ  permits 

employment of response surface methodology to determine whether each  

potentially exerts a significant effect on the hybrid model.  Kirkwood (1997b: 66) 

indicates that the absolute value of 

( )ˆi iu x

ρ  is typically greater than one-tenth of the evaluation 

measure domain, or max n
10i

mii ix xρ −≥

( )i i 0

.  The region bounded this relationship is 

illustrated in Figure 66.  Accepting the limits proposed by Kirkwood means that if we 

examine the two u x for ˆ .1ρ = ± , and they do not significantly affect the hybrid 

model, then the preference function for the th evaluation measure may remain a value  i
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Figure 65.  Affect of Various Utility Functions of the Utility PDF. 

function.  We do not expect the utility function for that evaluation measure to 

significantly affect the hybrid model. 

The limits proposed by Kirkwood, coupled with RSM, provide an excellent way 

to assess the potential significance of the utility functions.   Therefore RSM is a desirable 

methodology to use to order the substitution of the evaluation measures for the hybrid 

utility model algorithm. 
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Figure 66.  Exponential Utility Function Limits.  The straight line, where , 

occurs when 
( ) ( )i i i iu x v x=

ρ = ∞ .  The other curves show when ( )i iu x 0.1ρ = ± . 

Infinity
0.1
-0.1

( )ˆi iu x

( )i iv x

 

Stopping Criteria.  Replacing all potentially significant evaluation measures will 

ensure that the hybrid model adequately represents the utility model.  However, it is 

desired to halt the iterative substitutions when ( )ˆ m
j jE U E U δ   −    ≤

K

, which may occur 

before all the evaluation measures have been converted.  We may write the problem as a 

mathematical programming problem.  The optimization model is: 

 min m
1

I

i
i=

=∑  (110) 

subject to 

 ( )ˆ m
j jE U E U jδ   − ≤   ∀  (111) 

 [ ]0,1δ ∈  (112) 

However,  is unknown, so it is not directly possible to determine when  

is within  of .  When there is consistent risk aversion (risk affinity) then the set 

jE U

δ E U





( )ˆ m
jE U  

j
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of all possible , , is bounded below (above) by V  and above (below) by ( )ˆ m
jE U   jS j

jE U  

i iu v
&

.  See Figure 67 for examples of behavior of preference function under various 

risk attitudes.  When risk aversion is present for the ith evaluation measure, 

.  The reverse is found under risk seeking behavior.  Mixed risk 

attitudes, as typically encountered in this research (see Chapter IV), preclude such 

general conclusions.  Figure 68 shows iterative ordered substitutions of decreasing impact 

under conditions of risk aversion and risk seeking behavior. 
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Risk Averse Risk Seeking Mixed Risk Attitude

Figure 67.  Risk Attitudinal Effects on the Relationship of Value and Utility 
Functions. 

 
Definition (Substitution Distance).  Given a series of substitutions to create 

hybrid value-utility models for the jth alternative, ( ) ( ) ( ){ }1 2ˆ ˆ ˆ, , , , m
j j j j jU U U= K

( )m
jλ

S V , the 

distance between successive substitutions is given by , defined as  

 ( ) ( ) ( )1ˆ ˆm m
j jE U E Uλ −  = −    (113) 

where m indicates the number of substitutions, and . ( )0ˆ
j jE U E V   =   
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Figure 68.  Iterative Decreasing Ordered Substitutions.  Shown are the 
substitutions for a single alternative, j. 

When the set  is ordered with decreasing intervals between iterative estimates, jS
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, then  is a partially ordered set.  Under this condition, 

when , then 
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   ≤ .  When ( )  is 

encountered the substitutions of single dimensional utility functions for value functions is 

halted and the current accepted as accurately estimating . 
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Clearly it is not necessary to continue iterations, and so to increment m, when 

( )ˆ m
j jE E δ   − ≤  U U j∀ .  What is of interest is, naturally, the alternative with the 

greatest utility.  Therefore we are satisfied when the alternative with the greatest utility is 

alone within the accepted tolerance.  Define ( ) ( ) ( ) ( ){ }* 1 2
ˆ ˆ ˆmax , , ,m m m

JU U= L

( ) ( )

ˆ mU U  where m is 

the most recent iteration.  Define ( ) 1
* * *

ˆ ˆm m mE U −   = −   E Uλ  where * represents the 

evaluation measure with the greatest utility in the last, mth, iteration.  The mathematical 

programming formulation now becomes: 

 min m
1

I

i
i=

= K∑  (115) 

subject to 

  (116) ( ) ( )
*

mI m λ− δ≤

 [ ]0,1δ ∈  (117) 

When  is partially ordered, m is minimized when equation (116) is first found to hold.  

Stop the algorithm when ( )  and accept  as accurately estimating 

jS

( )
*

mI m λ− δ≤ 
( )
*

mE U

[ ]*E U  and the alternative corresponding to U  as being the optimal choice. ( )
*

m

Group Screening.  As stated previously, the class of decision analysis problems 

considered on which these techniques are likely to be beneficial are those with a large 

number of evaluation measures.  For such problems, group screening is likely to be 

required.  The group screening employment is as traditionally employed as presented in 

Chapter II.  Once the screening is completed, the information must be re-aggregated, 

which is a new contribution. 
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Employing groups screening permits examination of a large number of variables 

through decomposing the independent variables into subsets.  Once the groups screening 

is completed, it is desired to reassemble the variables into a single set, rank ordered by 

the degree of affect each has on the model.  The utility model is 

  (118) ( )(
1

ˆ ˆ
n

i i i i
i

U w u v x
=

=∑
& &

)

where, with the assumption of the exponential single dimensional model, the ith 

evaluation measure is determined by 
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When the kth element of (118) is examined separately, the model becomes 
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As equation (118) may be represented by a fit of a linear model based on the exponential 

constant 

 0
1

ˆ
n

i i
i

U c c ρ
=

= +∑  (121) 

the kth element of (120) may be decomposed from (121) and modeled by a least squares 

model 
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The coefficient c  provides a measure of importance of k kρ  relative to the other iρ . 
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If the kth element has been selected to be treated as a group of variables for 

screening, then it becomes necessary to decompose the kth group when it is determined to 

be significant.  Because the kth group may also be modeled by 

 0
1

n

k k ki ki
i

u c c ρ
=

= +∑  (123) 

the contribution to the overall model for the kmρ th variable is .  Similar 

combinations are made for all grouped variable coefficients to permit comparison of 

evaluation measure priorities.  The relative importance of utility functions for the 

evaluation measures is provided by the corresponding  where r is the 

number of screening sets in which the kth evaluation measure has been grouped.  Rank 

ordering the evaluation measures by relative importance provides the order for the 

substitutions from single dimensional value function to single dimensional utility 

functions when the hybrid model is created. 

k kmc c

( )1k rc −k km krc c cL

The Detailed Algorithm.  Refining the basic concept provided in Figure 63 by 

minimizing the interactions required with the decision maker, incorporating group 

screening, and using response surface methodology to assess potential significance 

provides the algorithm presented in Figure 69. 

 

The steps of this protocol are: 

1. Build Value Model. 

a. Establish the multiattribute functional form.  Typically the simple 

additive form is used, but the algorithm is independent of the  
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Build Value Model 

Elicit Value Hierarchy and Evaluation 
Measure Weights From Subject Matter 

Experts 

Verify Value Hierarchy and Evaluation 
Measure Weights With Decision Maker

Elicit Single Dimensional Value Functions from 
Subject Matter Experts 

Determine Potential Impact of  
Single Dimensional Utility 

Functions 

Group Evaluation Measures 

Design and Execute Experiment

Employ RSM to Evaluate Potential Significance 
of Each Evaluation Measure 

Replace Potentially 
Significant Evaluation 
Measure with Utility 

Determine if Hybrid Model is Adequate 

Conduct Analysis with 
Hybrid Model 

Select Best Alternative Based on Expected 
Values 

Perform Sensitivity Analysis 

Ungroup Variables and Determine 
Overall Relative Importance 

Replace Most Potentially Significant 
Single Dimensional Value Function with 
the Corresponding Utility Function

Establish Multiattribute Functional Form

Figure 69.  Steps to Create Hybrid Value-Utility Model. 
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multiattribute functional form.  A constraint on the algorithm is 

that the value model and the utility model must be of the same 

form. 

b. Elicit value hierarchy and evaluation measure weights, , from 

subject matter experts.  This avoids a significant time burden being 

placed upon the decision maker. 

iw

c. Verify the value hierarchy and evaluation measure weights with 

decision maker.  Clearly the model must be acceptable to the 

decision maker.  Verification at this point provides efficient 

elicitation of the single dimensional value functions. 

d. Elicit v x  for all i from subject matter experts. ( )i i

2. Determine potential impact of single dimensional utility functions. 

a. Group v x .  Grouping is done to permit group screening, which 

allows examination of large numbers of evaluation measures.  The 

value hierarchy provides a ready framework for grouping of 

variables.  An obvious approach is to group variables at the highest 

partitioning.  Each group may be subsequently examined, 

employing group screening as required.  An additional 

consideration is that if any interactions are believed to be present, 

the groupings should not separate those variables. 

( )i i

b. Develop and execute experimental design.  Design of experiments 

permits the significance of the predictor variables to be assessed 
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with the minimum number of experimental runs.  A run in this 

sense, is setting the variables at some level and observing the 

expected utilities of the various alternatives.  The variables of 

interest with respect to the hybrid model are the exponential 

constants of the u v  functions.  As the exponential 

constants assume values of 

( )(ˆi i ix
&

)

{ }0.1, ,0.1ρ = − ∞ , the fractional 

factorial with center point designs are attractive.  The experimental 

design is complicated by the consideration of the set of 

alternatives.  The alternative choice may be included as a variable 

in the experimental design.  If the set is large, the number of 

available experimental designs is small.  This step and the 

following step are repeated for each grouping of variables. 

c. Employ RSM.  Examine potential contribution of in the 

current model in place of  by employing response surface 

methodology to examine u v .  This analysis provides 

regression coefficients showing the contribution of each variable as 

well as significance information.  This provides data that facilitates 

determining the evaluation measures that need to be considered for 

conversion into utility, at some defined alpha level, as well as 

straightforward prioritization information.  This step is done for 

each grouping of variables. 

( )i iu x

( )i iv x

((ˆi i&
)ix )
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d. Ungroup v x .  The RSM information from the previous step is 

ungrouped to provide a common comparison for all evaluation 

measures.  Linear regression coefficients are multiplied by the 

coefficients for all parent groups to provide a single rank-ordered 

list of the potentially significant evaluation measures. 

( )i i

3. Replace potentially significant evaluation measures with utility functions.  

In priority order, perform iterative substitutions. This is done by: 

a. Set iteration counter  1m =

b. Select the remaining v x  from the list of potentially significant 

evaluation measures with the greatest coefficients from the RSM 

model. 

( )i i

c. Elicit u x for this evaluation measure. ( )i i

d. Determine U  for all j by substituting the  from the 

previous step. 

( )ˆ m
j ( )i iu x

e. If m  or if either stopping criteria is not met, increment 

 and return to step b. Otherwise stop and 

1=

m m=

( )

1+

[ ]* E U*



ˆ mE U   ≈ .  The stopping criteria are: 

i. All significant evaluation measures, as determined by 

RSM, have been converted from v x  to . ( )i i ( )i iu x

ii.  is sufficiently close to ( )ˆ m
jE U jE U   . 

4. The hybrid model is now used as would a standard utility model to: 
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a. Select the best alternative, U , from an expected value 

standpoint, and 

( )
*

ˆ m

b. Perform a sensitivity analysis. 

Example 

Problem Statement.  This example provides a simple situation with two 

alternatives and two evaluation measures.  Consider a project where a parking lot must be 

constructed.  As a lot must be constructed for some reason, the alternative of the status 

quo is not acceptable. The decision maker’s value hierarchy is provided in Figure 70.  

There are only two evaluation measures, cost and time.  Both are uncertain.  Two 

alternatives have been identified.  Alternative A is to employ in-house construction assets.  

Alternative B is to hire a contractor.  Alternative A is less expensive, but will take 

considerably longer.  Evaluation measure distributions are as provided by Law and 

Kelton (1991, 331 – 334).  The cost of Alternative A, measured in $k, is estimated to 

behave in accordance with the gamma(3,2) distribution.  The cost of Alternative B is 

estimated by the Weibull(5,10).  Time for project completion, measured in weeks, is 

estimated to follow the Weibull(3,8) distribution for Alternative A and the gamma (2,1) 

for Alternative B.  The relative weights of cost and time have been determined to be 

0.667 and 0.333, respectively.  The ranges for cost and time are [0, 20] for both 

evaluation measures.  These data and the preference functions are summarized in Table 

19.  As per the class of problems under discussion, the utility functions are unknown, 
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Figure 70.  Value Hierarchy and Evaluation Measures for Parking Lot Example. 

however they are listed in Table 19 for this example.  They are exponential in form, with 

1 8ρ =  and 2 2ρ = .  The balance of the information is known.  The issue is which, if any, 

of the utility functions must be discerned in order to adequately model the problem within 

the desired accuracy.  The value/utility estimate should agree to within 0.10 of the true 

problem utility. 

While this problem is small, with only two evaluation measures, the class of 

problems of interest consists of problems with many evaluation measures.  Often the 

influential evaluation measures are a small subset.  This is recognized in decision analysis 

literature as well as response surface methodology literature.  In RSM, the Scarcity-of-

Effect Principle indicates that a system is usually significantly influenced by a few main 

effects and low-order interactions (Myers and Montgomery, 1995: 134).  For efficiency 
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Table 19.  Parking Lot Example Information. 

 Cost, 1x  Time, 2x  
Alternative A, in-house gamma(3,2) Weibull(3,8) 

Alternative B, contractor Weibull(5,10) gamma(2,1) 
Range [0, 20] [0, 20] 

Value Function ( ) 1
1 1 1 20

xv x = −  ( )
( )220

10

2 2 20
10

1

1

x

ev x
e

− −

−

−=
−

 

Utility Function 
(unknown) ( )

( )120
8

1 1 20
8

1

1

x

eu x
e

− −

−

−=
−

 ( )
( )220

2

2 2 20
2

1

1

x

eu x
e

− −

−

−=
−

 

Weight 1 0.667w =  2 0.333w =  

 
in analysis it is desirable to screen the variables to reduce those under consideration by 

elimination of those that fail to influence the problem. 

In RSM, screening experiments typically fit a first order polynomial that 

approximates the response to the predictor variables.  Screening experiments reduce the 

number of variables by identifying those that do not significantly affect the system under 

consideration.  These nonsignificant variables may be eliminated from consideration.  

Typically in RSM, additional analysis is conducted employing higher order polynomials 

to better fit the response surface.  Such modeling is not required for the hybrid value-

utility algorithm. 

For this problem a pre-screen was used where some stochastic variables were 

treated in a deterministic fashion as an excursion.  Normally variables are not treated 

deterministically.  Additionally, the small number of variables in this example problem 

does not require group screening techniques, so they are omitted. 

Pre-Screen Phase.  Prior to screening the variables, a pre-screening experiment 

was performed as an excursion.  Rather than examining the stochastic variables, they 
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were treated deterministically as an approximation.  The intent was to compare the results 

of this deterministic approximation to a normal screening approach. 

Because this example problem has few variables, no group screening is required.  

Typical experimental designs are sufficient.  The pre-screen design selected was a  

plus center point.  This design consists of each variable set at two levels, high and low, 

plus the center point, the mid point between all variables.  The design is referred to as a 

 design as the number of required runs is equal to  where k is the number of 

variables, plus the center point runs.  The cost and time variables were treated in a 

deterministic fashion for the prescreen analysis.  The high and low values were those 

associated with probabilities of 0.4 and 0.6, respectively.  That is, each 

2k

2k 2k

ix  were selected 

such that  for the low point (represented by “-”) and  

for the high (represented by “+”) point.  The midpoint (represented by “0”) was 

( )
0

0.4ix
f y dy =∫ ( )f y dy

i

0

ix

∫ 0.6=

x  such 

that .  These probabilities produce different ( ) 0.5f y dy =
0

ix

∫ ix  for the two alternatives, 

so an indicator variable, a, was used to designate which alternative pertained to each run.  

The utility functions were varied by changing the coefficient of the exponential function, 

ρ , for each evaluation measure.  For the high point, 0.1iρ = .  For the low point, 

0.1iρ = −   At the midpoint, iρ = ∞ .  The input data is displayed in Table 20.  The 

symbols “+” indicate that the high level of the variable is to be used, “-” the low level, 

and “0” indicates the midpoint or nominal datum. 

For each row of the experimental design matrix, the variables are set at either the 

high or low level, or at the center point.  The variables are inserted in the utility function 
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Table 20.  Pre-Screen Experiment Input Data. 

  Alternative, a 
  A B 

Cost, 1x  0 5.3905 9.285 
 + 6.211 9.827 
 - 4.57 8.743 

Time, 2x  0 7.0825 1.67 
 + 7.77 2.022 
 - 6.395 1.376 

Utility, 1 2,ρ ρ  0 ∞  ∞  
 + 0.1 0.1 
 - -0.1 -0.1 

 
where the value function is as indicated in Table 19 and the utility function is  

 ( )( )
( )( )1

1
1

1

i i
i

i

v x

i i i
eu v x

e

ρ

ρ

− −

−
−=

−&
 (124) 

and the objective function is 

 . (125) ( )(
1

ˆ
I

i i i i
i

U w u v x
=

= ⋅∑
& &

)

The design matrix and the results are presented in Table 21.  The variable settings 

are indicated in order of the cost, time, cost utility exponential coefficient, time utility 

exponential coefficient, and alternative.  As above, the variable setting of high is 

indicated by a plus sign, low by a minus sign, and center points by a zero. 

A least squares model was fitted to the U  data in Table 21.  Figure 71 shows the 

observed data, U , plotted against the predicted values, U .  The two points that lie 

outside of the 95 percent confidence bounds are the center points, and indicate lack of fit 

of the model to the data.  Despite this, the 

&

&
ˆ
&

2R  value for the model was 0.99, the adjusted  
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Table 21.  Pre-Screening Experimental Design and Results. 

Row Pattern Û  Row Pattern Û  
1 ----- 0.068 18 +---+ 0.00488 
2 ----+ 0.00840 19 +--+- 0.337 
3 ---+- 0.375 20 +--++ 0.12 
4 ---++ 0.123 21 +-+-- 0.667 
5 --+-- 0.667 22 +-+-+ 0.663 
6 --+-+ 0.665 23 +-++- 0.974 
7 --++- 0.974 24 +-+++ 0.778 
8 --+++ 0.78 25 ++--- 0.03 
9 -+--- 0.68 26 ++--+ 0.00488 
10 -+--+ 0.00841 27 ++-+- 0.351 
11 -+-+- 0.389 28 ++-++ 0.163 
12 -+-++ 0.166 29 +++-- 0.667 
13 -++-- 0.667 30 +++-+ 0.663 
14 -++-+ 0.667 31 ++++- 0.988 
15 -+++- 0.988 32 +++++ 0.821 
16 -++++ 0.823 33 0000+ 0.414 
17 +---- 0.03 34 0000- 0.625 

 

0
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0.4

0.6

0.8

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
ˆ  PredictedU

 ObservedU

1

Figure 71.  Prediction Versus Actual Data Plot for Pre-Screen Experiment. 
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2R was 0.97.  Despite the lack of fit at the center points, analysis was continued.  The 

analysis of variance (ANOVA) results are provided in Table 22.  The p value for the F 

test indicates that the model is highly significant.  This means that the model provides a 

significantly better estimate of the problem than does the overall mean.  Parameter 

estimates are contained in Table 23.  The two utility coefficients were significant, 

indicating that the utility functions are important, at least at the margins of the utility 

function envelope.  Had this been a large model, likely not all utility functions would 

have been significant, permitting removing them from consideration for the hybrid utility 

model.  The alternatives were significant.  Only one interaction, the time utility and the 

alternative were significant. 

Table 22.  ANOVA Results from Model Fitted to Pre-Screen Data. 

Source DF Sum of Squares Mean Square F Ratio 
Model 15 3.80 0.253 80.285 
Error 18 0.0569 0.00316 Prob > F 

C. Total 33 3.86  <.0001 

 
Screening Experiment.  A standard screening experiment was conducted.  As 

mentioned in the prescreen section, the few variables of this example mean that no 

groups screening is required.  Typical experimental designs where the variables are 

considered individually are sufficient.  The experimental design was a full factorial plus 

center point replications.  The center point was repeated twice with each alternative, for a 

total of four center point runs.  The cost and time evaluation measures were handled 

normally as random variables.  The variables in the experiment are the exponential 
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Table 23.  Parameter Estimates.  Variable 1x  represents cost, 2x  time, 3x  the cost utility 
coefficient,  the time utility coefficient, and the alternative, a. 5x4x

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 0.463 0.00964 48.02 <.0001 

Cost -0.00541 0.00994 -0.54 0.593 
Time 0.00713 0.00994 0.72 0.483 

Costρ  0.319 0.00994 32.09 <.0001 

Timeρ  0.113 0.00994 11.33 <.0001 
a  0.0462 0.00964 4.80 0.0001 

Cost * Time 3.13e-8 0.00994 0.00 1.0000 
Cost * Costρ  0.00491 0.00994 0.49 0.628 
Time * Costρ  -3.44e-7 0.00994 -0.00 1.0000 
Cost * Timeρ  0.0000328 0.00994 0.00 0.997 
Time * Timeρ  0.00712 0.00994 0.72 0.483 

Costρ * Timeρ  0.000018 0.00994 0.00 0.999 
Cost *  a -0.00409 0.00994 -0.41 0.685 

Time *  a -0.00363 0.00994 -0.36 0.719 
Costρ *  a -0.00986 0.00994 -0.99 0.334 

Timeρ * a  0.0444 0.00994 4.47 0.0003 

 
coefficients for the evaluation measures, the cost weight variable, and a variable assigned 

for the alternative.  Only a single weight variable may be employed, as the weights must 

sum to one. Including the time weight causes colinearity problems.  The high and low 

levels for the cost weight were ±  percent of the nominal (elicited) value, and the time 

weight adjusted accordingly.  Table 24 displays the variable values for the screening 

experiment. 

10

The experimental design is illustrated in Table 25, along with the results of each 

run.  The experiment was not randomized, as is typically done in an experiment involving 

physical systems, as the results are completely from mathematical expressions and 

random number generation.  The pattern column of Table 25 indicates the settings of the 
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Table 24.  Screening Experiment Input Data. 

Variable Position Value 
Utility, 1 2,ρ ρ  Center point ∞  

 + 0.1 
 - -0.1 

Cost Weight,  1w Center point 0.667 
 + 0.7337 
 - 0.6003 

Alternative + B 
 - A 

 

Table 25.  Screening Experimental Design and Results.  Row indicates experimental 
design points.  Pattern indicates the condition of the variables 1ρ , 2ρ , the alternative, and 

. The observed utility is U , the predicted utility U . 1w ˆ

Row Pattern U  Û  Row Pattern U  Û  
1 ---- 0.0000356 0.0298 11 +-+- 0.595 0.690 
2 ---+ 0.000693 0.0885 12 +-++ 0.731 0.768 
3 --+- 0.00720 0.0444 13 ++-- 0.938 0.962 
4 --++ 0.00613 0.0908 14 ++-+ 0.858 0.952 
5 -+-- 0.229 0.323 15 +++- 0.727 0.770 
6 -+-+ 0.268 0.282 16 ++++ 0.67 0.749 
7 -++- 0.048 0.126 17 00+0 0.71 0.508 
8 -+++ 0.019 0.0723 18 00-0 0.677 0.414 
9 +--- 0.591 0.669 19 00+0 0.758 0.508 
10 +--+ 0.729 0.759 20 00-0 0.657 0.414 

four variables in the order of Costρ , Timeρ , alternative, and weight.  A minus sign indicates 

that the variable for that position is at the low setting.  The high setting is indicated by a 

plus sign.  A zero indicates that the variable is to be placed at the center point setting.  

Table 25 also contains the results of each experimental run, the observed utility U .  For 

ease of comparison, the utility estimated by the fitted least squares model, U  is also 

contained in Table 25. 

ˆ
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The predicted versus observed utility data is shown in Figure 72.  The 2R  and 

adjusted 2R  values for the model were 0.863 and 0.712, respectively.  The four points 

outside of the 95 percent confidence bounds are the four center points.  The two center 

points for alternative A are the vertical pair on the right.  The other pair is from center 

point runs with alternative B.  ANOVA results are presented in Table 26.  The model is 

highly significant when compared to the overall mean response. 

 

Figure 72.  Prediction Versus Actual Data Plot for Screening Experiment. 

 

Table 26.  ANOVA Results from Model Fitted to Screening Data. 

Source DF Sum of Squares Mean Square F Ratio 
Model 10 1.9071229 0.190712 5.6922 
Error 9 0.3015372 0.033504 Prob > F 

C. Total 19 2.2086602  0.0076 
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Table 27 contains the lack of fit statistics.  The lack of fit is significant, indicating 

that the model likely could be improved through the addition of higher order terms of the 

model predictor variables. This is not unusual for screening experiments. 

Table 27.  Lack of Fit Statistics. 

Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 7 0.30018524 0.042884 63.4373 
Pure Error 2 0.00135200 0.000676 Prob > F 
Total Error 9 0.30153724  0.0156 

    Max RSq 
    0.9994 

 
 

The estimates of the parameters are provided in Table 28.  The exponential 

constant for the cost utility function is highly significant.  This indicates that the true cost 

utility function has the potential to be significant in the hybrid model.  In contrast, the 

time utility function is not significant.  This indicates that within the range of exponential 

constant values normally encountered, the time utility function may be represented by the 

time value function. 

The parking lot example was analyzed using Logical Decisions® software.  In 

succession the single dimensional preference functions used in the model were both value 

functions.  Then the significant cost function was replaced with the appropriate single 

dimension utility function.  This completes the hybrid model.  For comparative purposes, 

the other two possible model combinations were examined.  These are the full utility 

model, with utility functions used for both single dimensional preference functions, and 

the remaining possible hybrid model combination, with cost modeled with a value  
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Table 28.  Screening Experiment Parameter Estimates. 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 0.461 0.0409 11.26 <.0001 

Costρ  0.329 0.0458 7.19 <.0001 

Timeρ  0.0686 0.0458 1.50 0.168 
Alternative 0.0472 0.0409 1.15 0.278 

Weight 0.00916 0.0458 0.20 0.846 
Cost Timeρ ρ∗  -0.000184 0.0458 -0.00 0.997 

Costρ *Alternative -0.00153 0.0458 -0.03 0.974 

Timeρ *Alternative 0.0530 0.0458 1.16 0.277 
 WeightCostρ ∗  0.00796 0.0458 0.17 0.866 
 WeightTimeρ ∗  -0.0250 0.0458 -0.55 0.598 

Alternative*Weight 0.00305 0.0458 0.07 0.948 

 
function and tine modeled with an utility function. These final two models are not called 

for in the algorithm and so would not be considered when employing the methodology 

for a complex decision.  These results are presented in Table 29. In each case Alternative 

A is the best choice. 

Table 29.  Results for Various Combinations of Value and Utility Functions for the 
Parking Lot Example. 

Alternative A Alternative B Sequence Preference 
Functions Model 

Results 
Difference 

from Utility 
Model 

Model 
Results 

Difference 
from Utility 

Model 
1 Value: Cost 

and Time  
 

0.742 0.177 
 

0.682 0.183 
2 Utility: Cost 

Value: Time 
 

0.862 0.057 
 

0.853 0.012 
Not 

Applicable 
Utility: Cost 

and Time 
 

0.919 0 
 

0.865 0 
Not 

Applicable 
Utility: Time 
Value: Cost 

 
0.799 0.12 

 
0.694 0.171 
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Examination the sensitivity of the alternatives to the relative importance (weight) 

of the evaluation measures is shown in Figure 73 through Figure 76.  Figure 73 depicts 

the sensitivity of the exclusively value model. Figure 74 illustrates the sensitivity of the 

algorithm’s hybrid model.  Figure 75 shows the sensitivity of the model using only utility 

functions.  The remaining possible combination, which is not called for in the algorithm, 

is shown in Figure 76.  Figure 76 most closely resembles the full utility model.  The 

vertical line in each graph indicates the nominal cost weight value, .  The 

RSM examination only varied  by ten percent.  The alternative choice is not 

sensitive within this range for the value model (Figure 73) and the utility model (Figure 

75).  However the hybrid model (Figure 74) is sensitive to the weights.  While the hybrid 

model incorporates the significant utility aspects, the response to other perturbations is 

not representative of the utility model (or the value model either).  This is a shortcoming 

in the methodology, but it  can be mitigated through performance of sensitivity analysis 

on both the hybrid model and the value model. 

0.667Costw =

Costw

Utility

Percent of Weight on Cost Measure

Best

Worst

0 100

A, In House
B, Contractor

 

Figure 73.  Weight Sensitivity for Parking Lot Example with Single Dimensional Value 
Functions. 
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Utility

Percent of Weight on Cost Measure

Best

Worst

0 100

A, In House
B, Contractor

 

Figure 74.  Weight Sensitivity for Parking Lot Example with Single Dimensional Cost 
Utility and Time Value Functions. 

Utility

Percent of Weight on Cost Measure

Best

Worst

0 100

A, In House
B, Contractor

 

Figure 75.  Weight Sensitivity for Parking Lot Example with Single Dimensional Utility 
Functions. 

Utility

Percent of Weight on Cost Measure

Best

Worst

0 100

A, In House
B, Contractor

 

Figure 76.  Weight Sensitivity for Parking Lot Example with Single Dimensional Cost 
Value and Time Utility Functions. 
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Example Summary.  The parking lot example problem has been investigated 

using both a prescreen approach, where the variables were treated deterministically, and 

with a stochastic screening methodology.  The two approaches are depicted graphically in 

Figure 77.  The prescreen indicated that both the utility functions may be significant 

aswell as the alternative and one pair of interactions.  The screening experiment identified 

only the cost utility function as being potentially significant.  The screening experiment 

was the more accurate approach.  The optimum alternative never did change, as predicted 

by the screening experiment in contrast with the prescreen.  The hybrid approach did 

perform potentially poorly with respect to the sensitivity of the hybrid model compared to 

the true utility models.  However the performance from an expected value perspective 

was satisfactory. 

 

Prescreen
Experiment 

Screening
Experiment 

, , , ,Cost Time Cost Timex x aρ ρ

, , ,Cost Time Timea aρ ρ ρ ∗

, , ,Cost Time a wρ ρ

Costρ

Significance 

 
 

Figure 77.  Prescreen and Screening for Parking Lot Example. 
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Demonstration of Value-Utility Hybridization 

Klimack, Bassham, and Bauer (2002) provide an example of application of 

decision analysis to an Automatic Target Recognition (ATR) problem.  This application 

of decision analysis included eliciting both single dimensional value and utility functions 

from the subject, an expert in the area.  This provides an opportunity to employ the 

Value-Utility Hybridization methodology.  The basic DA analysis is provided in 

Appendix D.  A brief summary is provided for background here. 

Background.  Automatic Target Recognition (ATR) is a processing problem 

where an image is examined to identify or otherwise characterize targets.  All ATR 

classification systems (CSs) have a number of desirable traits that may be used as 

evaluation measures when selecting from among candidate systems.  In general, these 

measures have not applied in total, but specific measures have been selected when 

considering alternatives for a specific program.  A decision analysis approach was 

employed.  A value model was constructed.  The value hierarchy is presented in Figure 

78, and captures the motivators important to the decision maker.  Besides the values, the 

problem is affected by the two mission profiles (combat identification [CID] and 

intelligence/surveillance/reconnaissance [ISR]) under which the ATR CS would be 

employed.  Additionally there are three alternatives under consideration.  Employing 

single dimensional value functions and single dimensional utility functions produced 

differing results, indicating that the problem was sensitive to preference function 

construction. 
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Figure 78.  The Value Hierarchy for the ATR System.  The dashed line under Overall 
Detection Performance indicates that either the Defined  or the ROC measures are 

employed.  The parenthetical numbers indicate the relative weights for a value, within the 
parent value. 

dP

Employing RSM to Prioritize Model Parameters.  The ATR DA problem has 

23 evaluation measures, 23 corresponding weights, two mission profiles (combat 

identification [CID] and intelligence/surveillance/reconnaissance [ISR]), and three 

alternatives.  This is a moderately large number of parameters.  As the weights sum to 

unity, they may not simply be perturbed in the RSM process.  The procedure provided by 

Kirkwood (1997b: 83 – 84) and implemented by Bauer, Parnell, and Meyers (1999: 168) 

was employed.  The relative weight deemed most important, , (generally the largest in 

magnitude) was varied by a factor of 0.1, or  and .  The remaining 

weights were adjusted to meet the summation constraint while retaining their relative 

ratios.  The weights then become a single variable in the regression to find the response 

surface. 

iw

−1.1i iw w+ = 0.9iw = iw

The remaining 25 variables (the 23 evaluation measure variables, the mission 

profile, and the alternative variables) are still a large number of parameters.  To reduce 

the number to a more tractable amount, the group screening technique was employed.  
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Bauer, Parnell, and Meyers (1999: 165 – 166) introduced this approach for the decision 

analysis context.  In this method, the input variables are grouped in some fashion.  

Perturbations are made uniformly within each group, that is, all group members are set at 

their high or low setting simultaneously.  If a variable group is found not to be 

significant, then all group members are not considered significant.  The group screening 

results are independent of how the grouping is performed, but in a DA context the value 

hierarchy offers an obvious cladistical grouping tool. 

In this application, the number of evaluation measures suggests that group 

screening will be employed iteratively.  Here the first decomposition of the value 

hierarchy, the second row from the top, will be used as an initial groups screening.  RSM 

will be employed on these groups to determine their significance.  RSM will then be 

employed separately for each decomposition of the value groups from the second row.  

The evaluation measure least square coefficients from the RSM analyses will then be 

combined to produce a single list of significant evaluation measures.  The list will be 

prioritized based on least squares model coefficients.  This prioritized list will then be 

used for construction of the hybrid value-utility model, which is then used to analyze the 

decision in a typical manner. 

Initial Group Screening.  For the ATR analysis, the grouping of the continuous 

variables was selected at the second level of the value hierarchy  (see Figure 79).  This 

provides seven groups: 

1. Robustness,  

2. Overall Detection Performance,  
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3. Employment Concept,  

4. Declaration Ability,  

5. Classification Ability,  

6. Cost, and  

7. Self-Assessed Accuracy. 

Counting the weight variable, there were eight continuous variables.  There are also two 

categorical variables: the mission profile, with two levels, CID and ISR; and the 

alternative, with three levels, ATR 33, ATR 55, and ATR 89.  The design was developed 

in the JMP® software package, which recommended a L36 Taguchi Design.  The 

categorical variables reduce the flexibility in choosing a design.  For this example only 

first order effects, without interactions, will be examined.  As no interactions are under 

consideration, aliasing concerns are avoided. 

 

Robustness
(0.2)

Overall
Detetction

Performance
(0.17)

Employment
Concept
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Declaration
Ability
[Pdec]
(0.13)

Classification
Ability
(0.11)

Cost
(0.10)

Self Assessed
Accuracy

(0.14)

ATR

Figure 79.  First Group Screening, Second Tier of Value Hierarchy. 

An alternative approach to using an experimental design that includes categorical 

variables would be to select a specific combination of categories.  For this problem, 

perhaps the CID profile and the ATR 55 alternative.  The problem is then reduced to 

continuous input variables, which lend themselves to traditional fractional factorial 

designs.  Working strictly with continuous variables also permits examination of 
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interactions, which was not considered here, because of the increased availability of 

orthogonal experimental designs.  Six center points were added to the L36 design, 

permitting the various combinations of profile and alternative to be examined. 

The L36 design employs the continuous variables at a high or low setting, 

indicated by a plus or minus sign, respectively, in the pattern notation.  The patterns for 

the matrix rows are shown in Table 30.  For the continuous variables, the minus sign 

indicates the variable of interest is set to the lower level, a plus sign indicates it is set to 

the higher level.  The number zero identifies center points.  For the categorical variables, 

which are handled by JMP with dummy variables, the minus, plus, and zero indicate 

different categories.  For example, the lead minus sign in row 1 indicates that the 

robustness variable is at the lower setting.  The order of the variables is as presented in 

the list above, then the profile and alternative variables.  The data for these setting are 

presented below in Equations (127) through (131).  More detailed information is 

available in Appendix E.  Also shown in Table 30 are the results for each combination 

(row), U . ˆ

To determine the response, the decision problem was modeled in the DPL® 

software package.  The various evaluation measure levels, ix , were passed to an Excel 

spreadsheet where  was calculated.  This intermediate result was used to determine 

 from 
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Table 30.  Initial Group Screening Design and Response for ATR Problem. 
Row Pattern Û  Row Pattern Û  Row Pattern Û  

1 ---------- 0.278 15 +-++-+---+ 0.627 29 ---+++-++0 0.360 
2 ---------0 0.302 16 ++-++-+--- 0.610 30 ---+++-+++ 0.376 
3 ---------+ 0.292 17 ++-++-+--0 0.623 31 +---+++-+- 0.524 
4 +-+---+++- 0.535 18 ++-++-+--+ 0.602 32 +---+++-+0 0.515 
5 +-+---+++0 0.505 19 +++-++-+-- 0.772 33 +---+++-++ 0.531 
6 +-+---++++ 0.506 20 +++-++-+-0 0.806 34 -+---+++-- 0.414 
7 ++-+---++- 0.480 21 +++-++-+-+ 0.795 35 -+---+++-0 0.433 
8 ++-+---++0 0.544 22 -+++-++-+- 0.512 36 -+---+++-+ 0.414 
9 ++-+---+++ 0.546 23 -+++-++-+0 0.565 37 00000000-- 0.509 

10 -++-+---+- 0.601 24 -+++-++-++ 0.583 38 00000000-0 0.556 
11 -++-+---+0 0.645 25 --+++-++-- 0.500 39 00000000-+ 0.525 
12 -++-+---++ 0.647 26 --+++-++-0 0.545 40 00000000+- 0.497 
13 +-++-+---- 0.574 27 --+++-++-+ 0.541 41 00000000+0 0.531 
14 +-++-+---0 0.622 28 ---+++-++- 0.381 42 00000000++ 0.497 

 
where  

  (127) 
0.1 for pattern "+"

for pattern "0"
0.1 for pattern "-"

iρ

= ∞
−

A zero indicates nominal setting, when u v . ( )( ) ( )i i i i ix v x=
&

The weight variable  is a vector.  The nominal value for the largest weight is 

that of the Robustness evaluation measure with a weight of 0.2.  However no data was 

available for the robustness for identification of class.  Because of this, the next largest 

evaluation measure weight was selected.  This was the Overall Detection Performance 

evaluation measure, denoted w , equal to 0.17.  Perturbing this by 0.1, or 

, and adjusting the remaining weights produces two weight vectors as 

called for by the high and low pattern indicators.  As with 

w%

2

2 2 0.1w w w= ± 2

iρ , a zero indicates nominal 

setting, or the elicited weights, . 0w%
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These vectors are 

  (128) 0

for pattern "+"
for pattern "0"
for pattern "-"

+

−


= 



w
w w

w

%

% %

%

where  

  (129) 0

0.1959 0.2 0.2041
0.187 0.17 0.153
0.1469 0.15 0.1531

, ,0.1273 0.13 0.1327
0.1077 0.11 0.1123
0.098 0.1 0.1020
0.1371 0.14 0.1429

+

     
     
     
     
    = = =    
     
     
     
          

w w w% % % − 


The categorical variables, which were handled by employing dummy variables, were set 

according to 

  (130) 
ISR for pattern "+"

Profile
CID for pattern "-"


= 


and 

  (131) 
ATR 89 for pattern "+"

Alternative ATR 55 for pattern "0"
ATR 33 for pattern "-"


= 



The response variable, utility U , is also presented in Table 30.  A plot of actual 

versus predicted values is contained in Figure 80.  The linear model fit well with 

 and .  The p value was less than 0.0001.  The parameters 

estimates and the significance information for the model are contained in Table 31.  The 

Declaration Ability and Self-Assessment groups are clearly not significant.  They may be 

ˆ

2 0.978R = 2 0.970adjR =
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dropped from consideration.   The weights are also not significant, which agrees with the 

sensitivity analysis performed as part of the basic DA analysis of the problem, and will be 

eliminated from further consideration.  The other groups are clearly significant.  Note that 

the coefficient estimates for the least squares model agree with the significance 

information.  The significant variables have coefficients that are an order of magnitude 

larger than those found to be non-significant.  The coefficients also provide a measure of 

importance.  Repeating the model fit with these groups removed would provide the same 

information (although the p-values would change slightly because of changes in the 

number of degrees of freedom) and so is not required. 
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Figure 80.  ATR Group Screening Model Actual versus Predicted Values. 

The significance information in Table 31 may be used to prioritize the order of 

converting the single dimensional value functions to their utility equivalents.  However 

the group screening has only eliminated five evaluation measures.  Further, four groups 

have their significance levels indicated as equal.  This fails to prioritize between eight 
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Table 31.  ATR Group Screening Parameter Estimates. 

Term Estimate Std Error t Ratio Prob > |t| 
Intercept 0.529 0.00316 167.50 <.0001 

Robustness 0.0647 0.00341 18.95 <.0001 
Detection Performance 0.0577 0.00341 16.92 <.0001 
Employment Concept 0.0738 0.00341 21.62 <.0001 
Declaration Ability 0.00211 0.00341 0.62 0.541 

Classification Ability 0.0456 0.00341 13.37 <.0001 
Cost 0.0139 0.00341 4.09 0.0003 

Self Assessment Accuracy -0.00528 0.00341 -1.55 0.132 
Weights -0.00556 0.00341 -1.63 0.114 

CID Profile 0.0109 0.00316 3.46 0.0016 
ISR Profile -0.0109 0.00316 -3.46 0.0016 

ATR 33 Alternative -0.0157 0.00447 -3.52 0.0014 
ATR 55 Alternative 0.0104 0.00447 2.32 0.0274 
ATR 89 Alternative 0.00536 0.00446 1.20 0.240 

 
evaluation measures.  For further refinement the next step is to decompose the groups, to 

determine the significance of the group members. 

Second Group Screening.  The candidate groups for decomposition and 

examination with RSM are: Robustness, Detection Performance, Classification Ability, 

and Cost.  The Employment Concept criterion is not decomposable, so cannot be 

examined further.  Employment Concept should be converted to utility in the hybrid 

model.  (However of note is that all three candidates have equal scores for this criterion.  

If no additional candidates are introduced with a differing score for Employment 

Concept, and no sensitivity analysis is performed on the Employment Concept scores, it 

may be retained as a value function.  Typically the sensitivity analysis restriction is 

onerous, but this point might be valuable where many utility elicitations are involved.)  

Eliminated from the immediate requirement to convert from value to utility functions are 

Declaration Ability and Self-Assessment.  Choosing the first subgroup to screen should 
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be done with consideration as to the potential for eliminating criteria.  The Cost measure 

provides this, but is complex with two sub-levels and eleven evaluation measures.  For 

simplicity Robustness is chosen; other groups will be addressed later.  The Robustness 

portion of the value hierarchy is shown in Figure 81. 

ID TGT/NonTGT
[% delta Pd]

(0.425)

ID Type
[% delta Pid]

(0.275)

ID Class
[% delta Pcc]

(0.3)

Robustness
(0.2)

Figure 81. Second Group Screening, Robustness Portion of Value Hierarchy. 

Robustness has three evaluation measures: Robustness in Detection ( ), 

Robustness in Typification ( ), and Robustness in Classification ( ).  The 

variables under consideration are the exponential constants for these measures.  Refer to 

them as 

dP∆

idP∆ ccP∆

1 2 3, ,  and ρ ρ ρ , respectively, for this portion of the analysis.  They take on values 

as indicated in equation (127).  The weights will be perturbed as above with the largest 

weight, that of Robustness in Detection, being perturbed ten percent about the nominal 

value.  The equivalent of equation (129) becomes 

  (132) 0

0.4675 0.425 0.3825
0.2547 , 0.275 , 0.2953
0.2778 0.3 0.3222

+

     
    = = =    
          

w w w% % % − 
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The profile and alternative information remains unchanged.  Categorical data 

again restricts the possible experimental designs available.  A Hunter L18 (SAS Institute, 

Inc., 2001: 57) design was selected.  This guarantees orthogonality and there are no 

aliasing concerns, as we do not investigate interactions here.   The Robustness screening 

experimental design is illustrated in Table 32, along with the results.  The pattern 

information indicates variables levels as explained above, with a variable order of 

Robustness in Detection, Robustness in Typification, and Robustness in Classification, 

weight, profile, and alternative.  Analysis of these data provides the coefficient estimates 

in Table 33. 

Table 32.  Robustness Screening Experimental Design and Response for ATR Problem. 

Row Pattern Û  Row Pattern Û  Row Pattern Û  
1 ---++- 0.0289 9 --+-+0 0.331 17 -----+ 0.324 
2 +++--- 0.949 10 ++-+-0 0.995 18 ++++++ 0.987 
3 -++--- 0.577 11 -+-+-0 0.534 19 000011 0.618 
4 +--++- 0.745 12 +-+-+0 0.708 20 000012 0.671 
5 -+--+- 0.577 13 -+++++ 0.526 21 000013 0.584 
6 +-++-- 0.745 14 +----+ 0.701 22 000021 0.618 
7 --++-0 0.286 15 -----+ 0.324 23 000022 0.671 
8 ++--+0 0.996 16 ++++++ 0.987 24 000023 0.584 

 
As can be seen from the data in Table 33, Robustness in Detection and 

Robustness in Typification are significant while Robustness in Classification is not 

significant.  The first two evaluation measures are candidates for conversion from 

to u x  while the last is excluded from consideration.  The mission profile is 

not significant.  Any other result would be surprising, as the input data for robustness was  

(j jv x ) )(j j

197 



 

Table 33.  ATR Robustness Screening Parameter Estimates. 

Term Estimate Std Error t Ratio Prob > |t| 
Intercept 0.628 0.0127 49.38 <.0001 

Robustness in Detection 0.226 0.0149 15.10 <.0001 
Robustness in Typification 0.140 0.0149 9.39 <.0001 

Robustness in Classification 0.0113 0.0149 0.75 0.461 
Weights(-1,1) -0.0214 0.0149 -1.43 0.171 
Profile[CID] 0.0109 0.0129 0.84 0.411 
Profile[ISR] -0.0109 0.0129 -0.84 0.411 

Alternative[ATR 33] -0.0207 0.0180 -1.15 0.267 
Alternative[ATR 55] 0.0213 0.0180 1.18 0.254 
Alternative[ATR 89] -0.000597 0.0180 -0.03 0.974 

 
not conditioned on mission profile.  The alternatives are not significant.  This indicates 

that the most desired alternative changes over the range of the perturbation introduced in 

this analysis. 

Third Group Screening.  Turning to consider cost, there are eleven evaluation 

measures.  The screening design must include twelve continuous variables to account for 

the evaluation measures and the weights (see Figure 82), plus a three-level categorical 

variable for the alternatives.  The profile may be neglected, as costs are not conditioned 

upon it. 

To handle the weights, the largest of the weights for the tier immediately below 

the cost category was selected – the redeployment cost weight.  Use has the highest 

relative weight and was varied 0.10, providing as before the weight vectors, 
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Figure 82.  Third Group Screening, Cost Portion of Value Hierarchy. 

The weights for the subcategories within development, redeployment, and use 

were not altered.  The Cost screening experimental design is illustrated in Table 34, along 

with the results.  The pattern information indicates variables levels as explained above, 

with a variable order of Development variables (Money, Time, Expertise, and Risk), 

Redeployment variables (Money, Time, Expertise, and Risk), Use variables (Money, 

Time, and Expertise), weight, and alternative.  Profile is not included as a variable as the 

data is identical for both mission profiles. 

The least squares fit of the data is provided in Figure 83 and Table 35.  The Cost 

Use Time is highly significant, but the model fit is mediocre, with  and 

.  Because of the fit, Cost Redeployment Time, Cost Use Experience, and 

Cost Redeployment Risk will be retained in the list of significant variables for the 

moment. 

2 0.657R =

2 0.523adjR =
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Table 34.  Cost Screening Design and Response for ATR Problem. 

Row Pattern Û  Row Pattern Û  
1 --++--++-+--- 0.642 27 +-++--++-++-+ 0.747 
2 ---+++++++-+0 0.617 28 -++---------++ 0.445 
3 +-+--++-+-+-- 0.612 29 +++-++-+-++-0 0.477 
4 -------+----+ 0.370 30 --+++-------+ 0.370 
5 +----++--+--- 0.439 31 -++++-+++---- 0.549 
6 +++-+--++---0 0.496 32 -----++-+---0 0.522 
7 ++++-++++--+- 0.703 33 ++-+-+++--+++ 0.552 
8 --+-+++++--+0 0.617 34 +-++----++++- 0.778 
9 ++-----+++++- 0.778 35 -+-------++-0 0.312 
10 ++-++-+--+-+0 0.443 36 -+--++-++++-+ 0.703 
11 +---++++-+++0 0.546 37 -++-+++--+++- 0.817 
12 ++++++-+++--+ 0.694 38 ++-++-+-----0 0.425 
13 -++-++-+--++- 0.703 39 +--++---+-+++ 0.456 
14 -++---+--+-+0 0.443 40 -+--+-----++- 0.664 
15 ++-+-+---+-++ 0.804 41 -+++-+--++-+0 0.468 
16 ---+---++-++- 0.664 42 -+-+-+++-++-+ 0.807 
17 --++-+----+-0 0.351 43 +---++-------- 0.612 
18 --+-+-+-+++-+ 0.756 44 ---+-+-+--++0 0.475 
19 -+-+++--++--- 0.705 45 --+-+-+--++++ 0.837 
20 +---+--+-+--- 0.642 46 ---++-++++-+- 0.778 
21 +-+--+--++-++ 0.815 47 +-+++--+--+-0 0.438 
22 +++---+++--++ 0.526 48 -+-++++-+-+-+ 0.553 
23 +-+++---++++0 0.444 49 00000000000- 0.719 
24 +---+++-+--++ 0.456 50 000000000000 0.500 
25 +++++++---+-- 0.612 51 00000000000+ 0.670 
26 ++----+-+-+-0 0.483    
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Figure 83.  ATR Cost Model Actual versus Predicted Values. 
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Table 35.  ATR Cost Screening Parameter Estimates. 

Term Estimate Std Error t Ratio Prob > |t| 
Intercept 0.590 0.0140 42.27 <.0001 

Development Money(-1,1) -0.00393 0.0143 -0.28 0.785 
Development Time(-1,1) 0.00171 0.0143 0.12 0.906 

Development  Expertise(-1,1) 0.0131 0.0143 0.91 0.368 
Development Risk(-1,1) -0.00183 0.0144 -0.13 0.899 

Redeployment Money(-1,1) 0.0101 0.0144 0.70 0.489 
Redeployment Time(-1,1) 0.0239 0.0144 1.66 0.106 

Redeployment Expertise(-1,1) 0.0170 0.0144 1.18 0.244 
Redeployment Risk(-1,1) 0.0231 0.0144 1.60 0.118 

Use Money(-1,1) 0.0169 0.0144 1.17 0.249 
Use Time(-1,1) 0.0569 0.0143 3.97 0.0003 

Use Expertise(-1,1) 0.0233 0.0144 1.62 0.115 
Weights(-1,1) 0.0261 0.0144 1.81 0.0787 
ATR[ATR 33] 0.0805 0.0196 4.10 0.0002 
ATR[ATR 55] -0.114 0.0196 -5.83 <.0001 
ATR[ATR 89] 0.0340 0.0196 1.73 0.0924 

 
Fourth Group Screening.  The Detection Performance taxon will now be 

examined.  This decomposes into two evaluation measures, False Alarm Rate given a 

Probability of Detection and the Probability of False Alarm given a Probability of 

Detection.  (Alternatively, it could have been structured on the Required Operating Curve 

False Alarm Rate and the Required Operating Curve Probability of False Alarm.)  This is 

depicted in Figure 84. 

The weight for Probability of False Alarm will be varied ten percent, with the 

weight of False Alarm Rate adjusted according so that the pair sum to one.  Coupled with 

the weights, there are three continuous variables plus the profile and alternative 

categorical variables.  The weight vectors are 

  (134) 00.3719 0.429 0.4861
, ,
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Figure 84.  Fourth Group Screening, Robustness Portion of Value Hierarchy. 

The experimental design and the response variables are contained in Table 36 and 

the least square variable significance and parameter estimates are in Table 37.  The 

pattern information in Table 36 indicates variables levels as explained above, with a 

variable order of DFAR P , FA DP P , weight, and alternative.  Profile data is again identical 

for both mission profiles.  As seen in Table 37, both the False Alarm Rate and the 

Probability of False Alarm were found to be significant. 

Table 36.  Detection Performance Screening Experimental Design and Response for ATR 
Problem. 

Row Pattern Û  Row Pattern Û  
1 ---+- 0.0850 13 -++++ 0.626 
2 +++-- 0.680 14 +---+ 0.486 
3 -++-- 0.317 15 ----+ 0.383 
4 +--+- 0.0850 16 +++++ 0.991 
5 -+--- 0.260 17 ----+ 0.383 
6 +-++- 0.104 18 +++++ 0.991 
7 --++0 0.0133 19 000-- 0.204 
8 ++--0 0.919 20 000-0 0.570 
9 --+-0 0.331 21 000-+ 0.464 
10 ++-+0 0.996 22 000+- 0.468 
11 -+-+0 0.522 23 000+0 0.562 
12 +-+-0 0.373 24 000++ 0.480 
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Table 37.  ATR Detection Performance Screening Parameter Estimates. 

Term Estimate Std Error t Ratio Prob > |t| 
Intercept 0.471 0.0247 19.02 <.0001 

FAR(-1,1) 0.1293 0.0290 4.46 0.0003 
Pfa(-1,1) 0.214 0.0290 7.38 <.0001 
w(-1,1) -0.0207 0.0290 -0.71 0.486 

Profile[CID] 0.00384 0.0250 0.15 0.880 
Profile[ISR] -0.00384 0.0250 -0.15 0.880 

ATR[ATR 33] -0.195 0.0350 -5.58 <.0001 
ATR[ATR 55] 0.0653 0.0350 1.86 0.0796 
ATR[ATR 89] 0.130 0.0350 3.72 0.0017 

Fifth Group Screening.  Examining Classification Ability (see Figure 85), the 

weight vectors are established by selecting the larger weight, that of Classification by 

Class, to vary by ten percent. 
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Figure 85.  Fifth Group Screening, Classification Ability Portion of Value Hierarchy. 

Table 38 contains the experimental design information and the response.  The 

pattern information indicates variables levels as explained above, with a variable order of 

, , weight, profile, and alternative.  The coefficients and significance statistics are  IDP CCP
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Table 38.  Classification Ability Screening Design and Response for ATR Problem. 

Row Pattern Û  Row Pattern Û  
1 ---+- 0.00106 13 -++++ 0.552 
2 +++-- 1.000 14 +---+ 0.529 
3 -++-- 0.684 15 ----+ 0.0436 
4 +--+- 0.508 16 +++++ 0.967 
5 -+--- 0.603 17 ----+ 0.0436 
6 +-++- 0.410 18 +++++ 0.967 
7 --++0 0.0150 19 000-- 0.811 
8 ++--0 0.995 20 000-0 0.769 
9 --+-0 0.110 21 000-+ 0.655 
10 ++-+0 0.990 22 000+- 0.293 
11 -+-+0 0.484 23 000+0 0.557 
12 +-+-0 0.455 24 000++ 0.374 

 
contained in Table 39.  Both Classify by Type and Classify by Class evaluation measures 

are highly significant. 

Table 39.  ATR Classification Ability Screening Parameter Estimates. 

Term Estimate Std Error t Ratio Prob > |t| 
Intercept 0.534 0.0204 26.12 <.0001 

Type(-1,1) 0.215 0.0240 8.97 <.0001 
Class(-1,1) 0.267 0.0239 11.2 <.0001 

w(-1,1) 0.00705 0.0239 0.29 0.772 
Profile[CID] 0.0649 0.0207 3.14 0.0060 
Profile[ISR] -0.0649 0.0207 -3.14 0.0060 

ATR[ATR 33] 0.00477 0.0289 0.16 0.871 
ATR[ATR 55] 0.0129 0.0289 0.45 0.661 
ATR[ATR 89] -0.0177 0.0289 -0.61 0.550 

 
Sixth Group Screening.  Finally the Self Assessed Accuracy category is 

considered.  This is depicted in Figure 86.  The data and both value and utility functions 

are identical for the three evaluation measures in this category.  The input data are all  
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Figure 86.  Sixth Group Screening, Self-Assessed Accuracy Portion of Value Hierarchy. 

unity, providing value and utility of zero, as this evaluation measure was not part of the 

ATR CS testing.  So testing this category as above is useless, as all combinations of 

weights and utility exponential values produce a utility of zero. Clearly the Self Assessed 

Accuracy measures are not significant. 

Prioritization of Evaluation Measures.  The ordered coefficients are contained 

in Table 40.  They were determined by multiplying coefficients by the coefficient of 

parent groups to provide a global comparison.  These provide a reasonable order in which 

single dimensional value functions should be converted to single dimensional utility 

functions in the hybrid model. 

The value hierarchy reduced to those evaluation measures that were determined to 

be significant for  during the screening process is depicted in Figure 87. 

Examining only these evaluation measures produces the subset of model coefficients 

listed in Table 41.  The entries of Table 41 are identical to the top eleven entries of Table 

40 except that Declaration Ability and Classification Robustness do not appear in Table 

41.  These evaluation measures were not found to be significant during the screening.   

0.10α =
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Table 40.  Rank Ordered, by Absolute Value, Model Coefficients. 

Evaluation Measure Coefficient 
Employment Concept 0.0738 
Detection Robustness 0.0146 

Probability of False Alarm 0.0123 
Classification by Class 0.0122 
Classification by Type 0.00980 

Identification Robustness 0.00907 
False Alarm Rate 0.00746 

Declaration Ability 0.00211 
Cost Use Time 0.000794 

Classification Robustness 0.000729 
Cost Redeployment Time 0.000334 

Cost Use Expertise 0.000324 
Cost Redeployment Risk 0.000322 

Cost Redeployment Expertise 0.000238 
Cost Use Money 0.000235 

Cost Development Expertise 0.000183 
Redeployment Money 0.000141 

Cost Development Money 55.48 x 10−−  
Cost Development Risk 52.55 x 10−−  
Cost Development Time 52.38 x 10−  

Es Pd 0 
Es Pid 0 
Es Pcc 0 

 
They are in the eighth and tenth positions of Table 40.  We conclude that employing the 

significance as a screening tool is reasonable. 

Employment of the Hybrid Value-Utility Model.  The hybrid utility algorithm 

was applied, using the priority sequence of variables presented in Table 41.  Iteration zero 

employs the value model.  Each succeeding iteration provides a hybrid model with the 

next highest priority evaluation measure value function replaced by the utility function.  

The results for the mission CID profile are presented in Table 42 and Table 43 contains 
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Figure 87.  Value Hierarchy Reduced to Significant Taxa.  The parenthetical 
numbers indicate the estimated coefficients.  Taxa significant at alpha equal to 0.1 and 

not when alpha equal 0.05 are indicated with an asterisk. 

Table 41.  Significant Rank Ordered Model Coefficients.  Those significant at an alpha 
equal to 0.1 and not when alpha equal 0.05 are indicated with an asterisk. 

Evaluation Measure Coefficient Priority 
Concept 0.0738 1 

Detection Robustness 0.0146 2 
Probability of False Alarm 0.0123 3 

Classification by Class 0.0122 4 
Classification by Type 0.00980 5 

Identification Robustness 0.00907 6 
False Alarm Rate 0.00746 7 

Cost Use Time 0.000794 8 
Cost Redeployment Time* 0.000334 9 

Cost Use Expertise* 0.000324 10 
Cost Redeployment Risk* 0.000322 11 

 
the results for the ISR profile.  The pure utility model results are also provided in the 

respective tables.  Results for conversion of all variables, not only the significant ones, 

from value to utility are provided in Appendix E. 
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Table 42.  CID Profile Value, Utility, and Hybrid Utility Results, Significant Evaluation 
Measures.  Those significant at an alpha equal to 0.1 and not when alpha equal 0.05 are 

indicated with an asterisk. 

 Notes ATR 33 ATR 55 ATR 89 
Goal Utility Model 0.572 0.507 0.518 

Iteration     
0 Value Model 0.509 0.556 0.525 
1 Employment Concept 0.464 0.511 0.480 
2 Detection Robustness 0.455 0.471 0.442 
3 Probability of False Alarm 0.529 0.500 0.512 
4 Classification by Class 0.536 0.509 0.524 
5 Classification by Type 0.538 0.511 0.528 
6 Identification Robustness 0.529 0.505 0.509 
7 False Alarm Rate 0.569 0.506 0.510 
8 Cost Use Time 0.569 0.506 0.513 
9 Cost Redeployment Time* 0.570 0.507 0.513 
10 Cost Use Expertise* 0.570 0.507 0.513 
11 Cost Redeployment Risk* 0.570 0.504 0.516 

Table 43.  ISR Profile Value, Utility, and Hybrid Utility Results, Significant Evaluation 
Measures.  Those significant at an alpha equal to 0.1 and not when alpha equal 0.05 are 

indicated with an asterisk. 

 Notes ATR 33 ATR 55 ATR 89 
Goal Utility Model 0.415 0.455 0.439 

Iteration     
0 Value Model 0.497 0.531 0.500 
1 Employment Concept 0.452 0.486 0.452 
2 Detection Robustness 0.443 0.446 0.414 
3 Probability of False Alarm 0.371 0.415 0.383 
4 Classification by Class 0.392 0.430 0.403 
5 Classification by Type 0.405 0.435 0.413 
6 Identification Robustness 0.395 0.429 0.394 
7 False Alarm Rate 0.412 0.455 0.432 
8 Cost Use Time 0.412 0.455 0.434 
9 Cost Redeployment Time* 0.413 0.455 0.434 
10 Cost Use Expertise* 0.413 0.455 0.434 
11 Cost Redeployment Risk* 0.413 0.452 0.434 
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The hybrid utility model results are shown graphically in Figure 88 for the ATR 

33 alternative.  Other alternatives behaved similarly and are omitted for clarity.  All three 

alternatives converge towards the utility model after an initial period of instability.  This 

is more readily observed in Figure 89 through Figure 92, where the differences between 

iterative hybrid model scores and the distance from the true utility model for the two 

mission profiles are illustrated.  The decreasing differences between iterations and the 

decreasing distance from the utility model are obvious.  The latter measure is a measure 

of the error of the hybrid model compared to the true utility model.  After the initial 

period this error remains small. 
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Figure 88.  ATR Hybrid Utility Iterations for ATR 33. 
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Figure 89.  Hybrid Utility Model Difference Between Successive Iterations, CID Profile. 
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Figure 90.  Hybrid Utility Model Difference Between Successive Iterations, ISR Profile. 
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Figure 91.  Hybrid Utility Model Difference Between Iteration and True Utility Model, 
CID Profile. 
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Figure 92.  Hybrid Utility Model Difference Between Iteration and True Utility Model, 
ISR Profile. 
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To understand the behavior of the hybrid model as it is modified during each 

iteration, we examine the initial step for the ATR 33 alternative (see Table 42 and Figure 

88).  The complete value model had an overall value of 0.509 for this alternative.  When 

the Employment Concept was converted to the single dimensional utility function, the 

hybrid utility became 0.464.  The Employment Concept rating for the ATR 33 alternative 

(indeed, all alternatives) was poorly defined.  The corresponding single dimensional 

value is 0.4.  The single dimensional utility for the poorly defined rating is 0.1, so the 

difference between the preference functions is 0.3.  When this difference is multiplied by 

the relative weight for the Employment Concept evaluation measure, 0.15, the result is 

0.45, the difference between the results obtained in the first iteration compared to the 

starting value model. 

It is interesting to note in Figure 88 that ATR 33 converges to the true utility 

model strictly from below for the CID profile, although the direction of movement was 

not identical for each iteration, while under the ISR case ATR 33 oscillated about the true 

utility value.  In no case was the movement strictly towards the true utility, as would be 

expected if the decision maker was strictly relatively risk averse (seeking). 

Once the significant evaluation measures, at , were converted from value 

to utility functions the hybrid function provided estimates that differed at most 0.003 

from the pure utility function result.  The evaluation measures that became significant 

between  and  provided no improved estimate. 

0.05α =

0.05α = 0.1α =

We conclude that for the example the evaluation measures determined to be 

significant through response surface methodology techniques provided an adequate set of 

variables to permit creation of an accurate hybrid model.  The hybrid model may be used 
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to represent the utility model.  The number of preference functions required to be elicited 

from the decision maker was reduced from 26 to eight for . 0.05α =

Further, the rank ordering by regression coefficient was successful in providing 

successive hybrid estimates that in general approached the true utility value, each with 

generally reduced difference (  from the previous estimate. )iδ

Hybrid Value-Utility Summary 

Research Summary.  This portion of the research permits several conclusions.  

The first objective under this area of research was to establish when value and utility 

functions differed significantly.  It was demonstrated that application of response surface 

methodology to the preference functions provides key information regarding the behavior 

of the utility model.  This provides information that indicates for which evaluation 

measures value and utility differ significantly.  This is a new contribution and is useful to 

identify those functions where discrimination must be made between value and utility.  It 

would also be useful to identify where a linear preference function, employed in the 

absence of data, is adequate.  When adequate, then no effort need be dedicated to 

determining the actual function. 

The second objective was to develop an algorithm that provides an adequate 

hybrid value-utility model.  The algorithm was successful in providing the hybrid model.  

The hybrid utility model, U , provided an adequate representation of the true utility 

model, U .  Elicitation of the hybrid utility model is more efficient with respect to 

ˆ
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decision maker participation than employing the strict utility model.  Under conditions of 

uncertainty and risk, the value model may provide differing results than the utility model, 

as was the case here, and so is not acceptable.  This agrees with the results of Chapter IV, 

that value and utility functions often differ significantly. 

Potential Future Work.  Future research could examine improvements in the 

stopping criteria of the algorithm.  Earlier stopping of the algorithm, within acceptable 

tolerances, provides returns on the efficiency with respect to the decision maker. 

The method of incorporation of the alternative in the experimental design may be 

an area where future research would increase the efficiency of the hybrid model 

methodology.  Treating the alternative as a categorical variable in the design greatly 

limits available designs.  If the set of alternatives may be reduced during the examination 

of the preference functions potential significance, many more experimental designs are 

available.  Clearly if a single alternative may be used for this step, the algorithm becomes 

much more efficient.  Less grouping of variables would be required, meaning that fewer 

successive group screening steps would be required.  Determination of sufficient 

conditions when this simplification is acceptable would be beneficial. 

Rank statistical methods may provide an additional stopping criterion.  If single 

dimensional substitutions are made in decreasing order of the strength of the subject’s 

risk attitudes, then each iteration will have decreasing effects of the hybridization 

process.  Each iteration i provides a set ( )iR  of the estimates of the utility for each 

alternative.  The Mann-Whitney (or Wilcoxon) test provides a means of determining if 

the rankings of each iteration are drawn from the same population (Conover, 1971: 213 – 

239).  If consecutive rankings are not  from significantly different populations, then the 
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model produced is not significantly different from its predecessor.  It is possible that the 

algorithm may be terminated, although likely certain conditions may be necessary. 
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VI.  Summary 

General 

The research had two major objectives, both pertaining to the relationship of 

value and utility preference functions in decision analysis.  The first was to examine this 

relationship itself between value and utility functions.  Possible relationships between the 

functions, each with underlying theoretical implications, were examined.  Clarification of 

the relationships provides insight into risk attitudes as well as facilitates representation of 

empirical data with functional forms.  The second was to improve the efficiency of 

decision analysis by determining when the distinctions between value and utility 

preference functions were significant.  This chapter will summarize the research, 

highlight the original contributions, and identify possible future work.  Detailed 

explanation of the results accompanies the presentation of the methodology, analysis, and 

results in Chapters IV and V. 

Relationship of Value and Utility Preference Functions 

Functional Relationship of Single Dimensional Value and Utility Functions.  

The analysis of the data for both the tactical scenario and the information operations 

study clearly show that the value and utility preference functions differ significantly and 

so are different constructs.  For the tactical scenario, the linear model of , ( ) ( )i i i iv x u x=
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i.e., a linear transformation of value into utility, failed to achieve the best fit for any 

subject on any evaluation dimension.  It achieved an acceptable fit, within the elicitation 

error, less than five percent of the time.  This was a poorer performance than any other 

model.  For the information operations analysis, the linear model also failed to achieve 

the best fit for any evaluation dimension.  The linear model had an acceptable fit for only 

one-third of the evaluation measures, which was again, along with the logarithmic model, 

the poorest performance.   

The sigmoid model, a sigmoid transformation of value into utility, performed 

well.  It provided the best fit in over 90 percent of the cases as determined using WRMS 

(84 percent for RMS).    The other functions were very poor performers, typically fitting 

best in only a few cases.  The best of these other functions was the exponential, which is 

typically the relationship of choice of the decision analyst.  The exponential and power 

functions achieved an acceptable fit (as opposed to best fit) about eleven percent of the 

time, logarithmic about seven, and linear less than in five percent of the cases.  This 

supports the hypothesis that the value and utility functions are different constructs and 

different within a professional population of subjects.  Further, it indicates that 

approximating a utility function with the corresponding value function is a poor 

approximation in the absence of other information. 

Characteristics And Performance Of Various Common Decision Analysis 

Elicitation Methodologies.  Initially it is important to consider if the distinction between 

value and utility are inconsequential.  Several researchers have reported, as reviewed in 

Chapter II, that elicitation error often exceeds the differences between value and utility 
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functions.  If so, then value and utility elicitation methods would be interchangeable in 

application.   

No previous estimates of elicitation error were located, although Keller (1985b: 

479) had proposed an ad hoc criterion of RMSE less than or equal to 0.05 for acceptance 

of a model fit to elicited data.  This research includes an estimate of elicitation error 

between the certainty-equivalent and probability-equivalent methods of utility function 

elicitation.  This provides the criterion of 0.107 for WRMSE (or 0.120 for RMSE if 

WRMSE is not used) for acceptable fit of utility functions.  For the tactical scenario 

elicitations, which involved standard elicitation methodologies, the disparity between the 

value function and the mean utility function was 0.191.  These differences are statistically 

significant.  This indicates that value-based and utility-based approaches are not 

equivalent, and each should be used only in the proper context. 

The two single dimensional utility elicitation procedures examined in the tactical 

scenario, the probability and certainty equivalent approaches, were found to produce 

strategically equivalent results.  Employing either method alone would produce results 

that did not significantly differ, although the p critical value was 0.055.  This suggests 

that either method may be employed, but eliciting both and using an average of the two 

may be advisable in critical applications.  Subjects involved in the tactical scenario 

elicitations indicated that they were more comfortable providing answers to the 

probability equivalent approach rather than the certainty equivalent method.  Single 

dimensional value and utility functions were clearly different constructs.  This clearly 

supports employing value functions only under conditions of certainty, and using utility 

functions otherwise.   
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The multiattribute utility approach of Kirkwood (1997b: 155 – 166) was found to 

provide results that were not strategically equivalent.  This is discussed further below. 

Improving The Ability to Compare Between Preference Functions.  Previous 

work employed the root mean square error (RMSE) as the method for comparing two 

preference functions.  A weighted RMSE, WRMSE, which gives more weight to the 

differences further from the center of the independent variable midpoint, is more 

appealing.  Differences of equal magnitude between two functions that occur at different 

distances from the center point occur under differing constraints.  The functions are most 

constrained at the endpoints of the domain, so equal differences at different distances 

form the midpoint should be accorded different relative weighting.  Such a WRMSE was 

developed in this work, and is provided in equation (58) in Chapter IV. 

As utility functions were elicited employing two different, but compatible, 

methods, differences in these two elicited functions were assumed to capture the error of 

the elicitation process.  Analysis of this error provided the criteria of 0.120 for RMSE and 

0.107 for WRMSE for acceptable fit of utility functions.  Differences between two 

functions below these criteria are not statistically significant different from the elicitation 

error (for these data), at the  level.  These criteria are a new contribution to the 

literature.  It is recommended that the WRMSE be employed to detect significant 

differences between preference functions, with the criterion of 0.107.   

0.05α =

Examining The Subject’s Risk Attitudes.  The curve shape of the  

function (transformation function of value to utility) provides insight into a decision 

maker’s risk attitudes, as does which mathematical model best fits the elicited data.  In 

the tactical movement problem, the concave curve was exhibited most frequently (39 of 

( )( )û v x
&
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80 curves) and the curves were S-shaped in 32 of the cases.  The sigmoid fit best for 

more than ninety percent of the evaluation measures.  The exponential and logarithmic 

models fit for less than five percent of the cases.  The sigmoid model (being more 

flexible) fit best in almost sixty percent of the cases; the exponential in more than forty.  

For the information operations analysis, the sigmoid function provided the best fit in 

seven cases and the exponential in the remaining five.  Of the twelve continuous 

evaluation measures, the curve shapes of the assessed utility functions of the subjects 

were not strongly risk averse: two were linear or near linear, four were S-shaped, four 

were convex, and two were concave.   

This lack of dominance of concave utility functions and the fit of the sigmoid 

function suggests that risk attitudes are more complex than the constant risk attitudes 

usually assumed.  The usual assumption is constant risk aversion.  If a constant risk 

attitude is to be assumed, constant risk aversion was the best model, which is supported 

by the high number of fits of the exponential function.  However the assumption of 

constant risk aversion for military decision making is not supported by these data. 

Consistent risk attitude was defined as the condition that the decision maker 

maintains risk attitudes on all evaluation measures that are consistent with respect to 

being generally risk averse, risk neutral, or risk seeking. If this condition is present, then 

the decision maker is risk averse (neutral) (seeking) on all evaluation measures if she is 

risk averse (neutral) (seeking) on any single evaluation measure.  The subjects 

considering the tactical scenario did not demonstrate consistent risk attitudes.  A new 

metric, , was created and used to quantify the variability of the subjects’ risk attitudes.  

This metric combines measures of local and global risk attitudes on an evaluation 

∆
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measure, a new contribution.  It appears that the subjects’ risk attitudes varied widely 

between evaluation measures.  Such variance contraindicates the employment of the 

multiattribute utility approach of Kirkwood (1997b), which assumes risk consistency, for 

military decision making. 

Learning effects were studied. It was hypothesized that elicitation of single 

dimensional value functions would clarify the subjects’ thought.  So elicitation order of 

value-utility-utility should see lower elicitation error than utility-value-utility.  No 

learning effects were observed. 

Improving The Metric For Assessing Risk Aversion.  This research improved 

the ability to examine subjects’ risk attitudes.  The measures ( ) ( ) and R f V f

)

 were 

developed and provide more discrimination that the previous metrics – curve shape and 

preference area.  These metrics were also employed in the search for consistent risk 

attitudes for subjects, measured by , discussed above. ∆

Hybrid Value-Utility Decision Analysis Models 

The second major portion of the research dealt with the sensitivity of the decision 

analysis model to the preference function, and how to take advantage of lack of 

sensitivity.  The work of Chapter V is summarized here. 

Establishing When Value-Utility Differences Are Significant.  Response 

surface methodology was successfully applied to the problem of determining when the 

model is sensitive to the preference functions.  Response surface methodology was used 

to examine the margins of an envelope of reasonable curves for .  When the ( )(ˆi i iu v x
&
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function failed to be significant, then the true function was assumed to be not significant 

for evaluation measure i.   

Developing an Algorithm for Employment of a Hybrid Value-Utility Model.   

An algorithm was created that was successful in providing the hybrid model.  The 

hybrid multiattribute utility model, U , provided at adequate representation of the true 

multiattribute utility model, U .  Elicitation of the hybrid utility model is more efficient 

with respect to decision maker participation than employing the strict utility model, 

especially in cases where there are a large number of evaluation measures or cases where 

several of the measures require an inordinate amount of time to elicit additional utility 

information.  Such efficiency promotes use of decision analysis and encourages sound 

decision making. 

ˆ

Original Contributions 

The results discussed above include original contributions to the literature.  This 

study extended value-utility studies into multidimensional cases employing military 

professionals as subjects.  An improved measure of differences between preference 

functions, WRMSE, was created.  Acceptance criteria for adequate model fit, based on 

elicitation error, were established for WRMSE and RMSE.  The concept of a hybrid 

value-utility decision analysis model was first advanced.  The sensitivity of decision 

analysis models to perturbation of the preference functions was examined.  This involved 

the first use of RSM on the preference functions.  This information was used to establish 

an efficient algorithm for creation of hybrid value-utility models. 
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Future Research 

As with any work, additional research topics emerge.  The examination of value 

and utility function relationships presented in Chapter IV could be extended.  Simply 

enlarging the sample size would improve the clarity of the elicitation error information.  

Repeating elicitations but limiting the domain for the utility function elicitation to the 

region where v x , would provide stronger evidence for the usefulness of 

the sigmoid function if it continued to fit well.  Repeating the work with military 

professionals but employing a different scenario would strengthen insight that the 

preference function results are not scenario-specific.   

( ) (, 0,i i a a= ∈ )1

Learning effects discovered during the course of this research were significant, 

but counterintuitive.  Examination of this phenomenon may provide useful insights into 

risk attitudes.  Other weighting functions for the weighted root mean square calculations 

may offer improved metrics.  Application of WRMSE to discrete functions was not 

addressed in this research, and so remains an open question.   

Examination of the risk attitude metrics developed in this work for non-military 

decision making may show improved opportunity for use.  As risk attitude consistency is 

usually assumed, it may be present in other groups of decision makers.  If so, the metric 

 may prove useful.  If some professional group is found to possess consistent risk 

attitudes, then risk attitude information for a subset of evaluation dimensions and may 

be used to estimate risk attitudes on other dimensions.  Such an approach could provide 

improved efficiency for problems with many evaluation dimensions. 

∆

∆
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Improved stopping criteria for the hybridization algorithm would improve 

efficiency.  Rank order statistics may provide such a benefit, particularly if conclusions 

about strict monotonicity of preference functions could be elicited from the decision 

maker. 

Conclusion 

This work is the first to enter the literature regarding comparison of value and 

utility functions for decision analysis examining multidimensional data from military 

professionals as subjects.  This research supports the hypothesis that single dimensional 

value and utility functions are not equivalent.  This conclusion was confirmed for two 

separate military decision making situations.  No single functional relationship defined 

the relationship between value and utility functions.   Certainty equivalent and probability 

equivalent elicitation methodologies provided equivalent results.  Value and utility 

functions differed significantly more than can be explained by elicitation error.  

Aggregating single dimensional utilities into a multiattribute model and the Kirkwood 

(1997b) multiattribute utility produce results that are not strategically equivalent. 

The research demonstrated that response surface methodology may be applied to 

the preference function.  The potential significance of a preference function may be 

employed to construct a hybrid value-utility model that facilitates more efficient 

elicitation of information from the decision maker.  This promotes use of decision 

analysis techniques and therefore improves decision making for large multidimensional 

problems. 
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While value and utility are differing constructs, prudent exploitation of their 

differences and similarities permits more efficient use of the decision maker’s time.  This 

work emphasizes that the distinction between value and utility must not be ignored.  But 

the lack of strategic differences for specific cases may be identified and exploited. 
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Appendix A.  Glossary of Technical Terms 
 

 
ALLAIS PARADOX – Allais constructed two sequential lottery choices, that most 
subjects made alternative selections in each that are mutually incompatible without 
axiomatic violations of expected utility. Consider four lotteries. The notation indicates 
the payoff then, parenthetically, the associated probability.  

( ) ( ) ([ ]01.00$;66.0000,25$;33.0000,30$:1L )

)

)]

 
( )[ ]1000,25$:2L  

( ) ([ ]67.00$;33.0000,30$:3L  
( ) ( )[ ]66.00$;34.0000,25$:4L  

 
Initially the subject must choose between  and . Most subjects choose . Then the 
same subject who chose generally chooses  when presented with a choice between 

 and . This combination of choices violates expected utility. Counter arguments 
included bounded rationality, FRAMING, and DYNAMIC CONSISTENCY. (Biswas, 
1997: 5 – 6) 

1L 2L 2L

2L 3L

3L 4L

 
ALTERNATIVE – One of several courses of action that may be chosen (Decision 
Analysis Society, November 3, 2000). 
 
BETWEENESS AXIOM. – “If someone is indifferent between two lotteries and , 
then she is indifferent between either of these lotteries and the compound lottery 

1L 2L

([ αα −1),( 21 LL ,” where α is the associated probability of lottery . Normally this 
axiom is employed in conjunction with the WEAK INDEPENDENCE AXIOM. (Biswas, 
1997: 12) See INDEPENDENCE AXIOM. 

1L

 
CASH EQUIVALENT – See CERTAINTY EQUIVALENT. 
 
CERTAIN EQUIVALENT – See CERTAINTY EQUIVALENT. 
 
CERTAINTY – Condition under which decision are made with known deterministic 
alternatives. 
 
CERTAINTY EQUIVALENT – The quantity at which a decision maker is indifferent 
between two alternatives, one being that amount under certainty and the other an 
uncertain situation where the possibility exists of either a greater of lesser payoff, each 
with a specified probability. When the decision maker is risk averse, it is less than the 
expected monetary value. (Clemen and Reilly, 2001: 535) Also called CASH 
EQUIVALENT by Pratt (1964b: 122) and CERTAIN EQUIVALENT by Skinner (1999: 
57). See RISK PREMIUM. 
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CERTAINTY-EQUIVALENT (CE) ASSESSMENT TECHNIQUE – Utility function 
elicitation employing a two-result lottery with equal probability of each outcome and an 
alternative with a certain outcome that is variable. Adjustments are made to the certain 
alternative until the subject is ambivalent between the uncertain lottery and the certain 
alternative. (Clemen, 1996: 474-475) This method is referred to as the VARIABLE 
CERTAINTY EQUIVALENT METHOD by von Winterfeldt and Edwards (1986: 249). 
 
CLARITY OF ACTION – condition of the decision maker knowing the appropriate 
action although the outcome is uncertain. (Spradlin, 1997). 
 
COEFFICIENT OF VALUE SATIATION – See VALUE SATIATION. 
 
CONSISTENT RISK ATTITUDES – The condition of the decision maker maintaining 
risk attitudes on all evaluation measures that are consistent with respect to being risk 
averse, risk neutral, or risk seeking. If this condition is present, then the decision maker is 
risk averse (neutral) (seeking) on all evaluation measures if she is risk averse (neutral) 
(seeking) on any single evaluation measure. 
 
CONSTANT RISK ATTITUDES – The condition of the decision maker maintaining a 
risk attitude throughout the domain of an evaluation measure with respect to being risk 
averse, risk neutral, or risk seeking. If this condition is present, then the decision maker is 
risk averse (neutral) (seeking) over the entire domain of that evaluation measure if he is 
risk averse (neutral) (seeking) at any point in the domain for that evaluation measure. 
(Bell and Raiffa, 1988a) 
 
CONSTANT RELATIVE RISK ATTITUDES – The condition of the decision maker 
maintaining a risk attitude throughout the value domain ( v x ) of an evaluation measure 
with respect to being risk averse, risk neutral, or risk seeking. If this condition is present, 
then the decision maker is risk averse (neutral) (seeking) over the entire domain of that 
evaluation measure if he is risk averse (neutral) (seeking) at any point in the domain for 
that evaluation measure.  (Bell and Raiffa, 1988a) 

( )

 
DECISION – “A conscious, irrevocable allocation of resources with the purpose of 
achieving a desired objective” (Skinner, 1999: 11). 
 
DECISION ANALYSIS – 1.  A structured approach in analyzing how alternatives for a 
decision would produce a desired result (Decision Analysis Society, November 3, 2000).  
2.  Analysis of a decision problem strictly by employing a value or utility function 
approach (Keeney, 1982: 813).  
 
DECISION ANALYSIS CYCLE – “A systematic approach to solving problems: 
STRUCTURING a problem to capture the essentials, EVALUATION to gain insight and 
AGREEMENT with the world to make something happen” (Skinner, 1999: 356). 
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DECISION MAKER – “Person or team with the responsibility and authority to allocate 
resources and implement the decision” (Skinner, 1999: 356). 
 
DECISION MAKING UNDER RISK – Pertains to choice among lotteries that assign 
objective probabilities to outcomes (Karni, 1990). 
 
DECISION MAKING UNDER UNCERTAINTY – Pertains to choice among alternative 
acts that assign outcomes to states of nature whose likelihood of being realized is a matter 
of subjective belief (Karni, 1990). 
 
DECISION NODE – “A point in a decision tree where a decision must be made” 
(Skinner, 1999: 357). 
 
DECISION POLICY – A rule for the selection of alternatives. Decision policy designates 
which alternative to take at each and every decision node in a decision tree. Also referred 
to as a DECISION STRATEGY or STRATEGY.  (Skinner, 1999: 357) 
 
DECISION THEORY – “The mathematical theory of decision making under 
uncertainty” (Skinner, 1996: 357). 
 
DECISION TREE – A sequential graphical representation of decisions and uncertain 
events that provide all possible outcomes to a decision situation. (Skinner, 1999: 357) 
 
DYNAMIC CONSISTENCY – Maintenance of alternative choices when a subject is 
presented a decision with the decision in differing orders. For example, if a decision 
made with consideration of later probabilistic events, a decision maker is said to be 
dynamically consistent if she would maintain the same decision choice if the probabilistic 
events were known, i.e., occurring before the decision. (Biswas, 1997: 15) 
 
ECONOMIC VALUE – A value measured in units of currency (Spradlin, 1997). 
 
ELASTICITY – The relative change in the response variable to a relative change in a 
predictor variable, 

i
i

i

y
yE x
x

∆
= ∆

 
where y is the response variable and ix  an independent variable (Joish and Armstrong, 
2000: 537). 
 
ELLSBERG PARADOX – Given an opaque container in which are 30 marbles, ten of 
red and the balance being either blue or yellow, and then offered two sequential bets: (1) 
Call red or blue, if correct win $5,000; and (2) Call red or blue, if wrong, collect $5,000. 
Ellsberg found that most subjects choose red for both bets. This violates expected utility 
theory because red as the choice in bet (1) evinces  
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( ) ( ) ( ) ( ) ( ) (0p-15000015000 b uupupup brr ⋅+⋅>⋅−+⋅ )  
where the subscripts and indicate the respective probabilities of selecting a marble 
of that color. The expected utility relationship of bet (2) is captured by  

rp bp

( ) ( ) ( ) ( ) ( ) ( )500010500010 upupupup bbrr ⋅−+⋅>⋅−+⋅  
which may be manipulated to form 

( ) ( ) ( ) ( ) ( ) ( )010015000 upupupup bbrr ⋅−+⋅<⋅−+⋅ . 
This clearly violates the equation resultant from bet (1), and so violates expected utility 
theory. Ellsberg advanced the argument that decision makers are likely to place more 
confidence in objective rather than subjective probabilities. The red probabilities are 
objective while those for blue are subjective, leading a decision maker so inclined to 
select red. (Ellsberg, 1961: 653 – 655)  
 
ENCODING UNCERTAINTY – “The process by which individual judgments about an 
uncertain variable are characterized by a probability distribution” (Skinner, 1999: 357). 
 
EVALUATION CONSIDERATION – (1) “Any matter that is significant enough to be 
taken into account while evaluating alternatives.  Other terms sometimes used for 
evaluation considerations are EVALUATION CONCERN or AREA OF CONCERN.” 
(Kirkwood, 1997: 11-12)  (2) “A factor to compare alternatives (e.g., annual income).” 
(Kirkwood, 1997, as quoted by Parnell, undated) 
 
EVALUATION MEASURE –  “Measuring scale for the degree of attainment of an 
objective,” e.g., annual salary in dollars. Also called measure of effectiveness, measure of 
merit, or metric. (Kirkwood, 1997: 12) 
 
EXPECTED MONETARY VALUE – The weighted mean of outcomes, expressed in 
currency units.  Weighting is provided by multiplying the outcome by the corresponding 
probability.  (Skinner, 1999: 357). 
 
EXPECTED UTILITY – The theory as developed by von Neumann and Morgenstern 
(1947) that the alternative may be rank ordered by their expected utility.  The expected 
utility is determined by multiplying possible outcomes by their probabilities and 
summing.  (Keller, 1992: 4)  Also referred to as UTILITY THEORY. 
 
EXPECTED VALUE – 1.  “The mean of the values one would expect to obtain upon 
sampling from the distribution a large number of times” (Decision Analysis Society, 
November 3, 2000). Also known by the older term of MATHEMATICAL 
EXPECTATION.  2.  A variation of EXPECTED UTILITY where value functions 
replace utility functions. 
 
FOURFOLD PATTERN OF RISK ATTITUDES – Tversky and Kahneman (1992: 306 – 
307) found that subject’s risk behavior followed a pattern where risk seeking behavior 
was demonstrated for low probability potential gains and high probability potential 
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losses. Risk averse behavior was presented in the converse cases. This is summarized in 
Table 44. They state (1995: 1256) that numerous studies confirm this construct. 

 

Table 44.  Certainty Equivalents Under Extremes of Probability and Prospects. The 
Uncertain Alternative was for a Gain of 100 or a Loss of 100, with Probability of Either 

0.05 or 0.95. (Tversky and Kahneman, 1992: 307) 

 Gain Loss 
Low Probability ( ) 05.014 =u , risk seeking ( ) 05.08 −=−u , risk averse 
High Probability ( ) 78.095 =u , risk averse ( ) 95.084 −=−u , risk seeking 

 
FRAMING – The manner of presentation of questions employed in elicitation in decision 
analysis. Framing has been shown to be a significant factor affecting the answers 
received from the decision maker. (Tversky and Kahneman, 1986) 
 
GOAL –  (1) “Threshold of achievement with respect to an evaluation consideration,” 
(Kirkwood, 1997: 12). (2)  “Specific degree of satisfaction of a given objective” 
(Decision Analysis Society, November 3, 2000). 
 
INDEPENDENCE AXIOM – “Consider three lotteries, , , and . Suppose that the 
relation of the indifference (or strict preference) holds between and . The relation of 
indifference (or strict preference) must hold between the compound lotteries 

1L 2L 3L
L1L 2

([ ])αα −1),( 31 LL  and [ ( )]αα −1),( 32 LL ” where α is the associated probability of lotteries 
 and . (Biswas, 1997: 11) See BETWEENESS AXIOM. 1L 2L

 
INDIFFERENCE – Indifference between two objects indicates that the decision maker 
desires each equally.  The objects are considered to have equal value or utility.  (Skinner, 
1999: 357) 
 
INDIFFERENCE CURVE – The plot of continuous points in attributes where the 
utility (or value) is constant (Clemen, 1996: 540 – 541). Also known as isopreference 
curves. The concept of indifference curves was conceived by the economist Edgeworth 
(Stigler, 1950: 325). 

n

 
INDIRECT VALUES – “Things that the decision maker values that are not likely to 
show up on accounting statements.” (Spradlin, 1997). 
 
INFLUENCE DIAGRAM – A graphical representation of a decision situation. Decisions 
are represented by rectangles, ovals represent stochastic events, diamonds represent the 
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final outcome, and arcs indicate information status and conditional relationships.  
(Clemen and Reilly, 2001: 52). 
 
LAYER – The levels in the value tree. Also called a tier. (Kirkwood, 1997b, as quoted 
by Parnell, undated) 
 
LEVEL – “Specific numerical rating for a particular alternative with respect to a 
specified evaluation measure,” e.g., $55K; also called a SCORE (Kirkwood, 1997b: 12, 
55). 
 
LOCAL RISK AVERSION – Pratt (1964) introduced a measure of local risk aversion, 

( ) ( ) ( )r x u x u x′′ ′= − .  This was also independently developed by Arrow. 
 
MEASURABLE VALUE FUNCTION – “A value function that may be used to order the 
differences in the strength of preference between pairs of alternatives” (Dyer and Sarin, 
1979: 810). 
 
OBJECTIVE – (1) “The desired level of performance against a value” (Skinner, 1999: 
358). (2) “Preferred direction of attainment with respect to an evaluation consideration” 
(e.g., higher annual income). See STRATEGIC OBJECTIVE.  (Kirkwood, 1997: 12) (3) 
“What the decision maker hopes to achieve by allocating the resources” (Spradlin, 1997). 
 
OPTION – “An alternative that permits a future decision following revelation of 
information. All options are alternatives, but not all alternatives are options.” (Spradlin, 
1997). 
 
ORDINAL UTILITY FUNCTION – See VALUE FUNCTION. 
 
OUTCOME –  “The result of the decision situation measured on the scale of the decision 
maker’s values” (Spradlin, 1997). 
 
OUTCOME BRANCH – “A branch emanating from a probability node representing the 
possible outcome and its probability of occurrence” (Skinner, 1999: 358). 
 
PORTFOLIO PROBLEM –  “The various decisions faced in the strategy are of a similar 
nature, and the decision maker does not have sufficient resources for funding all 
combinations of alternatives.” (Spradlin, 1997). 
 
PREFERENCE – “The decision maker’s attitude toward the value, timing, and 
uncertainty of outcomes” (Skinner, 1999: 358). 
 
PREFERENCE AREA –  (1)  The area under the utility curve, plotted in a unit square, 
that serves as a measure of the decision maker’s risk attitude. Areas below 0.45  indicate 
risk aversion, above 0.55 indicate risk seeking, and between these values indicates risk 
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neutrality.  (Kimbrough and Weber, 1994:  627)  (2)  More generally, the same definition 
applied to any preference function. 
 
PREFERENCE FUNCTION –  Either a value or a utility function. 
 
PROBABILITY – “A number between zero and one (inclusively) representing the degree 
of belief a person attaches to the occurrence of an event” (Skinner, 1999: 358). 
 
PROBABILITY-EQUIVALENT (PE) ASSESSMENT TECHNIQUE – Utility function 
elicitation employing a two-result lottery where the probability p of the desired outcome 
is adjusted, the undesired outcome occurs with probability (1-p), and the alternative with 
the certain outcome is fixed. Adjustments are made to p until the subject is ambivalent 
between the uncertain lottery and the certain alternative. (Clemen, 1996: 475) This 
method is called the variable probability method by von Winterfeldt and Edwards (von 
Winterfeldt, 1986: 243), who also say the method is referred to as the basic reference 
lottery ticket (BRLT) method. 
 
PROBABILITY NODE – “A point in a decision tree where an uncertainty will be 
resolved; often called chance node” (Skinner, 1999: 358). 
 
RATING – v where is a value function; also called a “value.” (Kirkwood, 1997b: 
55). 

)(x v

 
RESPONSE SURFACE METHODOLOGY (RSM) – A collection of knowledge and 
techniques from statistical experimental design, regression modeling, and optimization 
(Myers and Montgomery, 1995: xiii). 
 
RISK –  (1) the chance of loss; (2) the possibility of loss; (3) uncertainty; (4) the 
dispersion of actual from expected results; (5) the probability of any outcome different 
from the one expected; (6) the probability of an event times the probable cost (or loss) if 
the event occurs (Dargahi-Noubary & Growney, 1998);  (7) the condition under which 
alternatives involve known probabilities. 
 
RISK AVERSION – See LOCAL RISK AVERSION. 
 
RISK AVERSION COEFFICIENT – When an exponential utility function is employed 

“ ( ) x
Ra be

−
= −u x   where x is the value (such as dollars), R is the risk tolerance  and a and 

b are parameters set by the choice of two points in the utility curve…One sometimes sees 
reference to the RISK AVERSION COEFFICIENT, which is defined as 1

R ” 

(McNamee, 1987: 94).  See also LOCAL RISK AVERSION and PREFERENCE AREA. 
 
RISK PREMIUM – The expected monetary value of an uncertain alternative less the 
CERTAINTY EQUIVALENT of the decision maker. It is a measure of the decision 
maker’s risk aversion. (Clemen and Reilly, 2001: 534) 
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RISK TOLERANCE – “Describes the decision maker’s attitude toward risk” (Spradlin, 
1997). 
 
RISK-AVERSE DECISION MAKER – “One who values alternatives at less than their 
expected values” (Spradlin, 1997). 
 
RISK-NEUTRAL DECISION MAKER – “One who is willing to play the long-run odds 
when making decisions and will evaluate alternatives according to their expected values” 
(Spradlin, 1997). 
 
RISK-SEEKING DECISION MAKER – One who values an alternative more than the 
expected value. 
 
REQUISITE DECISION MODEL – “A model whose form and content are sufficient to 
solve a particular problem.” (Phillips, 1984: 29) 
 
SCORE – See LEVEL. 
 
SCORING FUNCTION – “A single dimensional value function that assigns value to an 
evaluation measure level” (Kirkwood, 1997b, as quoted by Parnell, undated). 
 
SENSITIVITY ANALYSIS – (1) “Examining the impact of reasonable changes in base-
case assumptions (Eschenbach, 1992: 41).  (2) “Measuring the impact of each uncertainty 
on the value of an alternative to determine which are critical, i.e., would change the order 
of preference for the alternatives” (Skinner, 1999: 358). 
 
SENSITIVITY CHART – See TORNADO DIAGRAM (Skinner, 1999: 358). 
 
SIMPLE DECISION – “One in which there is only one decision to be made, even though 
there might be many alternatives.” (Spradlin, 1997). 
 
SPIDERPLOT – A Cartesian plot of response the dependent variable to percentage 
change in independent variables where each independent variable is represented by a 
curve.  The curves intersect at the case point ( ( )100%,E u x )    creating a spider web-like 

appearance.  The plot shows sensitivity of the decision problem. 
 
STRATEGIC EQUIVALENCE – (1)  Condition under which preference functions 
provide identical rank orderings of a set of alternatives (Kirkwood, 1997b: 229 and 245).  
(2)  Condition under which methodologies produce identical rank orderings of 
alternatives. 
 
STRATEGIC OBJECTIVE – “The ultimate objective for the decision” (Kirkwood, 
1997b, as quoted by Parnell, undated). 
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STRATEGY – A set of alternatives for sequential decisions in a decision situation where 
the alternatives follow some policy or principle.  For example, one strategy may involve 
only conservative alternatives while another competing strategy employs aggressive 
choices.  Also known s a POLICY. (Skinner, 1999: 358). 
 
STRATEGY GENERATION TABLE – Employed to create or display strategies.  The 
first column contains titles for generated strategies.  Decisions are assigned to each 
column.  The alternatives populate the column.  A strategy is indicated by linking the 
name to each alternative chosen under that strategy.  Strategy names are chosen to 
highlight differences among the strategies.  (Kirkwood, 1997b: 47 – 48) 
 
STRATEGY TABLE – See Strategy Generation Table (Skinner, 1999: 358).  
 
SUBJECTIVE EXPECTED UTILITY – The EXPECTED UTILITY approach where 
objective probabilities are replaced with subjective probabilities.  The idea was 
introduced by Ramsey (1954).  (Keller, 1992: 4) 
 
SUBJECTIVE PROBABILITY – “Numerical specification of an individual’s degree of 
belief that an uncertain event will occur (Kirkwood, 1997: 109). 
 
TORNADO DIAGRAM – A graphical representation of the decision analysis model 
optimal solution response to variation in model parameters.  The diagram is a series of 
horizontal bars, each representing the response variation.  By convention the bars are 
ordered in descending impact, creating an inverted triangle reminiscent of an atmospheric 
tornado.  Also known as a SENSITIVITY CHART. 
 
TRADE-OFFS – “Judgments about how much a decision maker is willing to sacrifice on 
one value in order to receive more of another” (Decision Analysis Society, November 3, 
2000). 
 
UNCERTAINTY – (1) “Any event for which the outcome is not known at the time a 
decision is made” (Skinner, 1999: 359).  (2) “Uncertainty means unknown probabilities,” 
(Bernstein, 1996: 133). This suggests a distinction beyond the division between 
deterministic and stochastic, or that a stochastic situation may either be known, and still 
certain, and unknown (uncertain). (3) “Uncontrollable elements” (Spradlin, 1997). 
 
UTILITY – “A mathematical function (curve) that represents the decision maker’s risk 
attitude” (Skinner, 1999: 359). 
 
UTILITY FUNCTION – (1) “… a real-valued function defined on a set and inducing or 
corresponding to a preference order by having u(x)<=u(y) exactly when y is preferred to 
x” (Borowski, 1991: 620). [Note that this is a definition from a non-DA source. The term 
VALUE FUNCTION does not appear in this source.] (2) “… encodes a decision maker’s 
attitude toward risk taking in mathematical form by relating the decision maker’s 
satisfaction with the outcome (or “utility” associated with the outcome) to the monetary 
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value of the outcome itself.” (Decision Analysis Society, November 3, 2000).  (3) “A 
preference function under uncertainty” (Dyer and Sarin, 1979: 810). 
 
UTILITY THEORY – See EXPECTED UTILITY. 
 
TIER – See LAYER. 
 
VALUE – (1) “An outcome measure, e.g., NPV” (Skinner, 1996).  (2) “v where is a 
value function; also called a ‘rating’” (Kirkwood, 1997b: 55). 

)(x v

 
VALUE FUNCTION – (1) A function is a value function if it is true that 

iff where and are specified but arbitrary levels of x (Kirkwood, 
1997: 229).  (2) Used under conditions of certainty to rank-order alternatives; also called 
ORDINAL UTILITY FUNCTIONS (Clemen, 1996: 552).  (3) “A preference function 
under certainty” (Dyer and Sarin, 1979: 810). 

)(xv
′′)()( xvxv ′′>′ xx ′′′ f x′ x

 
VALUE HIERARCHY – (1) “A value structure with a hierarchical structure”; also called 
a VALUE TREE. (Kirkwood, 1997: 12).  (2) “Pictorial representation of the structure of 
the evaluation considerations” (Kirkwood, 1997b, as quoted by Parnell, undated). 
 
VALUE OF INFORMATION – “The maximum price one should pay for knowing the 
actual value of uncertainty prior to making the decision” (Skinner, 1999: 359). 
 
VALUE MODEL – “A mathematical model of the value structure that includes scoring 
functions and weights” (Kirkwood, 1997b, as quoted by Parnell, undated). 
 
VALUE SATIATION – A construct introduced by Dyer and Sarin (1982: 877) for 
measurable value functions that is the analog of Pratt’s local risk aversion for utility 
functions.  The coefficient of value satiation, defined ( ) ( ) ( )m x v x v x′′ ′= − , is a local 
measure of strength of preference at asset level x. 
 
VALUE STRUCTURE –  “The entire set of evaluation considerations, objectives, and 
evaluation measures for a particular decision analysis.” (Kirkwood, 1997b: 12). 
 
VALUE TREE – See VALUE HIERARCHY. 
 
VALUES – Things that are important to you in a general sense (Clemen, 1996: 19). 
 
VARIABLE CERTAINTY EQUIVALENT METHOD – See CERTAINTY-
EQUIVALENT ASSESSMENT TECHNIQUE. 
 
VARIABLE PROBABILITY METHOD – See PROBABILITY-EQUIVALENT 
ASSESSMENT TECHNIQUE. 
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WEAK INDEPENDENCE AXIOM – “Consider three lotteries, , , and  and an 
individual who is indifferent between and . Given an y compound lottery 

 there must exist a such that the individual is indifferent between this 
compound lottery and [ ,” where 

1L 2L 3L

1L

)

2L

]
([ pLpL −1),( 31 )] q

q(LqL −1),( 32 p and  are the associated probabilities 
of lotteries  and . Normally this axiom is employed in conjunction with the 
BETWEENESS AXIOM to guarantee non-intersection of indifference curves. (Biswas, 
1997: 13) 

q

1L 2L

 
WEIGHTS – “Our relative preference for evaluation considerations and evaluation 
measures.  Weights depend on the domain of the scoring functions.” (Kirkwood, 1997b, 
as quoted by Parnell, undated) 
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Appendix B.  Tactical Questionnaire Detailed Results 
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Figure 93.  Subject FJ1’s Preference Functions. 
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Figure 94.  Subject FJ2’s Preference Functions.

238 



 

Subject FJ3 
  
 

Artillery

0
0.2
0.4
0.6
0.8

1

0 125 250 375 500

Miles of Exposure

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Potential Ambush Sites

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50

Number of Sites

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Fuel Remaining

0
0.2
0.4
0.6
0.8

1

0 25 50 75 100

Percent Remaining

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Travel Time

0
0.2
0.4
0.6
0.8

1

12 15 18 21 24

Hours

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Multiattribute Utility

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.00 0.50 1.00

Value

M
ul

tia
ttr

ib
ut

e 
U

til
ity

Figure 95.  Subject FJ3’s Preference Functions.
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Figure 96.  Subject FJ4’s Preference Functions. 
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Figure 97.  Subject FJ5’s Preference Functions. 
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Figure 98.  Subject FJ6’s Preference Functions.  
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Figure 99.  Subject FJ7’s Preference Functions. 
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Figure 100.  Subject FJ8’s Preference Functions.  
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Figure 101.  Subject FJ9’s Preference Functions.  
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Figure 102.  Subject FJ10’s Preference Functions. 
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Figure 103.  Subject FJ11’s Preference Functions. 
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Figure 104.  Subject FJ12’s Preference Functions.  
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Figure 105.  Subject FJ13’s Preference Functions. 
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Figure 106.  Subject FJ14’s Preference Functions.  

250 



 

Subject FJ15 
 

Artillery

0
0.2
0.4
0.6
0.8

1

0 125 250 375 500

Miles of Exposure

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Potential Ambush Sites

0

0.5

1

0 10 20 30 40 50

Number of Sites

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Fuel Remaining

0
0.2
0.4
0.6
0.8

1

0 25 50 75 100

Percent Remaining

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Travel Time

0

0.5

1

12 15 18 21 24

Hours

Va
lu

e/
U

til
ity Value

U (CE)
U (PE)

Multiattribute Utility

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

Value

M
ul

tia
ttr

ib
ut

e 
U

til
ity

 
  
  
 

Figure 107.  Subject FJ15’s Preference Functions. 
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Figure 108.  Subject FJ16’s Preference Functions. 
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Figure 109.  Subject FJ17’s Preference Functions. 
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Figure 110.  Subject FJ18’s Preference Functions. 
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Figure 111.  Subject FJ19’s Preference Functions.  
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Figure 112.  Subject FJ20’s Preference Functions. 
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Table 45.  Subjects’ Attribute Weightings and Utility Data. 
ID Weights CE Utility PE Utility Multattribute 

Utility 
 Att wi Att 0.25 0.5 0.75 Att Q1 Q2 Q3 Att xi 

FJ1 FA 0.27 FA 325 275 100 FA 0.30 0.55 0.80 FA  
 Amb 0.40 Amb 40 25 12 Amb 0.30 0.55 0.80 Amb  
 Fuel 0.22 Fuel 27 57 65 Fuel 0.80 0.55 0.30 Fuel  
 Time 0.11 Time 20 18.5 14 Time 0.30 0.55 0.80 Time  

FJ2 FA 0.17 FA 300 235 170 FA 0.03 0.25 0.63 FA 0 
 Amb 0.33 Amb 37 32 22 Amb 0.23 0.90 0.98 Amb 0 
 Fuel 0.33 Fuel 5  50 98 Fuel 0.88 0.50 0.13 Fuel 100 
 Time 0.17 Time 17 14 13 Time 0.13 0.50 0.70 Time 24 

FJ3 FA 0.45 FA 325 200 90 FA 0.35 0.70 0.81 FA 0 
 Amb 0.30 Amb 27 22 7 Amb 0.23 0.35 0.64 Amb 50 
 Fuel 0.21 Fuel 12 38 60 Fuel 0.76 0.65 0.42 Fuel 100 
 Time 0.04 Time 24 18 16 Time 0.62 0.75 0.94 Time 24 

FJ4 FA 0.25 FA 265 250 125 FA 0.18 0.45 0.67 FA  
 Amb 0.31 Amb  20  Amb 0.20 0.40 0.76 Amb  
 Fuel 0.27 Fuel  60  Fuel 0.85 0.50 0.20 Fuel  
 Time 0.18 Time  17  Time 0.20 0.50 0.75 Time  

FJ5 FA 0.05 FA  75  FA 0.15 0.50 0.75 FA 0 
 Amb 0.45 Amb  20  Amb 0.36 0.60 0.84 Amb 50 
 Fuel 0,17 Fuel  55  Fuel 0.80 0.50 0.20 Fuel 0 
 Time 0.33 Time  16  Time 0.51 0.60 0.80 Time 24 

FJ6 FA 0.22 FA 360 315 150 FA 0.16 0.40 0.64 FA  
 Amb 0.44 Amb 40 30 15 Amb 0.16 0.40 0.64 Amb  
 Fuel 0.11 Fuel 15 40 60 Fuel 0.64 0.40 0.16 Fuel  
 Time 0.22 Time 19 16 14 Time 0.16 0.40 0.64 Time  

FJ7 FA 0.17 FA 350 250 75 FA 0.16 0.40 0.64 FA 500 
 Amb 0.33 Amb 40 30 15 Amb 0.26 0.70 0.76 Amb 0 
 Fuel 0.17 Fuel 40 65 80 Fuel 0.52 0.40 0.12 Fuel 100 
 Time 0.33 Time 20 18 14 Time 0.28 0.40 0.64 Time 24 

FJ8 FA 0.63 FA 310 275 75 FA 0.20 0.50 0.75 FA 500 
 Amb 0.13 Amb 26 20 9 Amb 0.35 0.50 0.85 Amb 0 
 Fuel 0.20 Fuel 25 50 75 Fuel 0.75 0.70 0.35 Fuel 100 
 Time 0.05 Time 21 18 13.5 Time 0.25 0.70 0.73 Time 12 

FJ9 FA 0.42 FA 425 300 200 FA 0.16 0.40 0.70 FA  
 Amb 0.21 Amb 37 35 25 Amb 0.20 0.50 0.70 Amb  
 Fuel 0.12 Fuel 55 65 70 Fuel 0.76 0.40 0.24 Fuel  
 Time 0.24 Time 16 13 13 Time 0.08 0.40 0.52 Time  

FJ10 FA 0.25 FA 300 200 60 FA 0.25 0.50 0.80 FA  
 Amb 0.50 Amb 32 25 12 Amb 0.25 0.50 0.75 Amb  
 Fuel 0.17 Fuel 20 40 65 Fuel 0.75 0.50 0.25 Fuel  
 Time 0.08 Time 20 18 16 Time 0.30 0.50 0.75 Time  
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Table 45. Subjects’ Attribute Weightings and Utility Data, continued. 
ID Weights CE Utility PE Utility Multattribute 

Utility 
 Att wi Att 0.25 0.5 0.75 Att Q1 Q2 Q3 Att xi 

FJ11 FA 0.53 FA 325 250 75 FA 0.24 0.40 0.46 FA 0 
 Amb 0.27 Amb  30  Amb 0.24 0.40 0.76 Amb 0 
 Fuel 0.12 Fuel  25  Fuel 0.90 0.80 0.64 Fuel 0 
 Time 0.08 Time  20  Time 0.35 0.50 0.90 Time 12 

FJ12 FA 0.55 FA 300 300 175 FA 0.25 0.50 0.75 FA  
 Amb 0.11 Amb 35 25 15 Amb 0.36 0.60 0.80 Amb  
 Fuel 0.30 Fuel 45 70 80 Fuel 0.88 0.60 0.36 Fuel  
 Time 0.03 Time 12.15 12.1 12.05 Time 1 1 1 Time  

FJ13 FA 0.61 FA 350 250 100 FA 0.30 0.60 0.82 FA  
 Amb 0.06 Amb 35 20 11 Amb 0.30 0.50 0.80 Amb  
 Fuel 0.17 Fuel 53 70 72 Fuel 0.78 0.50 0.25 Fuel  
 Time 0.17 Time 22 17 14.5 Time 0.18 0.50 0.63 Time  

FJ14 FA 0.45 FA 300 200 125 FA 0.16 0.40 0.64 FA 0 
 Amb 0.38 Amb 42 30 15 Amb 0.20 0.50 0.70 Amb 50 
 Fuel 0.08 Fuel 35 50 67.5 Fuel 0.64 0.40 0.20 Fuel 0 
 Time 0.08 Time 22 19 17 Time 0.16 0.40 0.64 Time 12 

FJ15 FA 0.42 FA 400 250 175 FA 0.25 0.50 0.75 FA 0 
 Amb 0.42 Amb 39 35 17 Amb 0.25 0.50 0.75 Amb 0 
 Fuel 0.11 Fuel 10 25 35 Fuel 0.93 0.50 0.35 Fuel 0 
 Time 0.06 Time 22 20 17 Time 0.63 0.90 0.99 Time 24 

FJ16 FA 0.10 FA 250 200 100 FA 0.10 0.50 0.75 FA  
 Amb 0.81 Amb 27 25 12 Amb 0.12 0.60 0.76 Amb  
 Fuel 0.07 Fuel 50 70 75 Fuel 0.70 0.50 0.25 Fuel  
 Time 0.02 Time 22 20 15 Time 0.36 0.60 0.68 Time  

FJ17 FA 0.19 FA 340 300 150 FA 0.36 0.55 0.82 FA 0 
 Amb 0.56 Amb 35 30 15 Amb 0.33 0.60 0.82 Amb 50 
 Fuel 0.17 Fuel 25 50 65 Fuel 0.84 0.35 0.12 Fuel 100 
 Time 0.08 Time 23 21 13 Time 0.64 0.75 0.91 Time 24 

FJ18 FA 0.08 FA 235 220 150 FA 0.30 0.60 0.80 FA  
 Amb 0.08 Amb 0 0 0 Amb 0.12 0.30 0.51 Amb  
 Fuel 0.21 Fuel 3 10 30 Fuel 0.80 0.60 0.42 Fuel  
 Time 0.62 Time 23.5 16 14 Time 0.36 0.60 0.76 Time  

FJ19 FA 0.38 FA 325 200 75 FA 0.33 0.65 0.81 FA 500 
 Amb 0.38 Amb 30 30 16 Amb 0.28 0.50 0.73 Amb 50 
 Fuel 0.17 Fuel 10 25 45 Fuel 0.99 0.85 0.64 Fuel 100 
 Time 0.08 Time 22 18 16 Time 0.20 0.65 0.91 Time 12 

FJ20 FA 0.17 FA 350 200 125 FA 0.25 0.50 0.80 FA 0 
 Amb 0.33 Amb 42 35 20 Amb 0.36 0.60 0.76 Amb 0 
 Fuel 0.33 Fuel 30 50 75 Fuel 0.72 0.60 0.24 Fuel 0 
 Time 0.17 Time 21 18 15 Time 0.42 0.70 0..88 Time 12 

 
 
 
 
 

258 



 

Table 46.  Subjects’ Value Function Data. 

 

ID  FA Ambush Fuel Time 
FJ1 x 0 125 375 500 0 10 20 40 0 33 100  0 21 24  

 v 1 .8 .4 0 1 .8 .7 0 0 0 1  1 0 0  
FJ2 x 0 50 300 500 1 2 3 20 0 66 75 100 12 18 21 24 

 v 1 1 0 0 .5 .4 .3 0 0 0 .8 1 1 .8 0 0 
FJ3 x 0 125 375 500 0 10 20 35 0 25 75 100 12 15 18 24 

 v 1 .9 .2 0 1 .8 .15 0 0 0 .8 1 1 1 .15 0 
FJ4 x 0 125 250 500 0 23 50  0 33 100  12 21 24  

 v 1 .4 .1 0 1 .1 0  0 0 1  1 0 0  
FJ5 x 0 375 500  0 25 50  0 40 100  12 20 24  

 v 1 0 0  1 0 0  0 0 1  1 0 0  
FJ6 x 0 300 500  0 10 50  0 25 35 50 12 15 18 21 

 v 1 0 0  1 0 0  0 .3 .3 .5 1 .9 .5 .25 
 x         60 70 100  24    

 v         .77 .9 1  0    
FJ7 x 50 125 250 400 0 35 50  25 50 75 100 12 15 21 24 

 v .9 .9 .5 0 1 0 0  .25 .75 1 1 1 .9 0 0 
FJ8 x 125 250 375 500 0 10 40 50 25 50 75 90 15 18 22 24 

 v .8 .4 0 0 1 .9 .05 0 0 .25 .8 .95 1 .75 0 0 
FJ9 x 0 125 375 400 0 28 50  0 15 80 100 12 20 24  

 v 1 .8 .45 0 1 0 0  0 0 1 1 1 0 0  
FJ10 x 0 125 250 275 0 10 20 25 0 25 50 75 12 15 18 21 

 v 1 .85 .3 0 1 .7 .5 .3 0 .2 .4 1 1 1 .3 .1 
 x 500    30 40 50  100    24    
 v 1    .2 0 0  1    0    

FJ11 x 0 125 300 500 0 20 30 50 0 33 100  12 16 20 24 
 v 1 .75 0 0 1 .8 0 0 0 0 1  1 .8 0 0 

FJ12 x 0 125 500  0 30 50  0 50 75 100 12 21 24  
 v 1 .1 0  1 .1 0  0 0 .8 1 1 .1 0  

FJ13 x 150 250 350 500 10 20 30 40 25 50 75 100 12 15 21 24 
 v .9 .6 0 0 .9 .75 .4 0 .1 .5 .9 1 1 .9 .1 0 

FJ14 x 0 100 300 500 0 20 50  0 25 100  12 15 18 24 
 v 1 1 0 0 1 0 0  0 0 1  1 .95 .1 0 

FJ15 x 0 50 250 500 10 20 25 50 0 25 50 100 12 20 24  
 v 1 .3 .1 0 .3 .2 .1 0 0 0 1 1 1 .1 0  

FJ16 x 50 125 250 500 0 2 10 50 65 75 90 100 12 15 22 24 
 v .9 .5 .1 0 1 .75 .2 0 .3 .8 1 1 1 .8 0 0 

FJ17 x 0 300 500  0 35 50  0 75 100  12 21 24  
 v 1 .05 0  1 .05 0  0 .05 1  1 0 0  

FJ18 x 0 375 500  0 30 50  0 25 100  12 15 21 24 
 v 1 .5 0  1 .3 0  0 .15 1  1 .85 .5 0 

FJ19 x 0 125 500  0 3 15 50 0 50 80 100 12 18 24  
 v 1 .9 0  1 1 0 0 0 .2 .9 1 1 .1 0  

FJ20 x 0 250 500  0 25 50  0 50 75 100 12 15 18 24 
 v 1 .1 0  1 .1 0  0 .1 .9 1 1 .9 .1 0 
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Table 47.  Subjects’ Elicited Simultaneous Equation Coefficients. 
ID FA Ambush Fuel Time 
FJ1 100 25 50 14 

 250 10 75 14 
 200 28 100 12 
 300 8 5 24 

FJ4 300 20 50 18 
 300 35 100 12 
 400 15 50 19 
 200 12 20 24 

FJ6 100 4 100 18 
 300 2 60 20 
 300 1 40 12 
 125 10 60 19 

FJ9 100 25 70 18 
 400 18 50 18 
 75 20 30 20 
 200 10 90 20 

FJ10 450 25 70 18 
 200 22 20 20 
 300 15 45 24 
 50 28 30 18 

FJ12 300 30 80 15 
 100 0 40 21 
 50 10 50 24 
 300 5 50 18 

FJ13 425 25 60 18 
 350 50 30 15 
 75 0 30 21 
 200 15 50 24 

FJ16 75 0 55 18 
 75 15 75 18 
 0 10 55 20 
 0 5 30 20 

FJ18 100 10 20 18 
 200 10 80 12 
 500 16 60 14 
 250 15 100 18 
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Table 48.  Subjects’ Demographic Data. 

Ver YOS CA/NCA Age Gender 
FJ1 B 6 CA 29 O3 
FJ2 A 26 CA E9 
FJ3 A 2 M O2 
FJ4 B 33 M O3 
FJ5 14 CA 32 M E6 

24 CA 49 M O4 
B 2 NCA 21 M 

FJ8 A 10 NCA 44 O3 
FJ9 B 16 CA E7 

FJ10 B 5 M O3 
FJ11 B 31 M 

 
ID Grade 

M 
47 M 

NCA 24 
14 NCA 

B 
FJ6 A 
FJ7 E2 

M 
37 M 

CA 29 
11 CA O3 

FJ12 A 17 CA 36 M E8 
FJ13 B 6 NCA 27 F O3 
FJ14 B 3.5 NCA 25 F O2 
FJ15 B 8 CA M E6 
FJ16 A 9 CA 28 M E6 
FJ17 A 7 CA 29 M O3 
FJ18 A 6 NCA 26 M E4 
FJ19 A 21 CA 42 M O5 
FJ20 A 20 CA 41 M O5 

29 

 
 
 
 

Table 49.  WRMSE Model Fit Data for ( )( )u v x . 

Linear Exponential Logarithmic Power Sigmoid Subj  
WRMSE c WRMSE c WRMSE c WRMSE c WRMSE 

FA 0.075 -0.794 0.030 1.83E+13 0.070 1.334 0.024 -0.277 0.049 
Amb 0.098 0.223 0.097 3.19E+00 0.096 0.844 0.093 -0.251 0.037 
Fuel 0.182 2.307 0.125 4.59E+02 0.182 0.449 0.113 0.267 0.039 

1 

Time 0.133 -1.463 0.211 4.49E+13 0.114 1.676 0.219 -0.306 0.050 
FA 0.093 0.884 0.082 6.01E-01 0.080 0.699 0.076 -0.394 0.018 
Amb 0.588 112.967 0.342 1.14E+01 0.585 0.024 0.324 -0.537 0.029 
Fuel 0.275 -1.757 0.269 6.53E+04 0.275 2.012 0.269 0.215 0.022 

2 

Time 0.228 -4.860 0.079 4.31E+11 0.228 4.641 0.088 -0.326 0.064 
FA 0.067 -0.208 0.065 1.55E+06 0.067 1.014 0.067 -0.257 0.046 
Amb 0.155 2.245 0.135 7.40E-02 0.119 0.482 0.105 -0.307 0.035 
Fuel 0.193 2.227 0.155 5.47E+01 0.193 0.430 0.135 0.291 0.055 

3 

Time 0.266 7.094 0.103 1.00E-02 0.061 0.307 0.062 -0.286 0.062 
FA 0.091 -0.959 0.065 9.15E+09 0.091 1.308 0.075 -0.261 0.039 
Amb 0.227 5.796 0.146 3.79E+02 0.227 0.311 0.107 -0.256 0.034 
Fuel 0.111 1.435 0.073 2.72E-01 0.069 0.596 0.062 0.341 0.025 

4 

Time 0.185 3.774 0.113 5.10E-02 0.096 0.459 0.099 -0.277 0.043 
FA 0.153 -1.960 0.094 4.62E+07 0.153 1.816 0.110 -0.287 0.051 
Amb 0.235 5.963 0.159 3.63E+01 0.234 0.304 0.119 -0.243 0.036 
Fuel 0.092 0.485 0.088 1.35E+00 0.087 0.782 0.082 0.266 0.027 

5 

Time 0.189 3.034 0.148 6.00E-02 0.128 0.479 0.122 -0.212 0.062 
FA 0.188 2.279 0.147 7.00E-02 0.138 0.422 0.138 -0.251 0.043 
Amb 0.410 10.252 0.365 2.49E+01 0.409 0.130 0.363 -0.244 0.038 
Fuel 0.082 -0.459 0.075 1.03E+06 0.082 1.100 0.079 0.248 0.036 

6 

Time 0.131 -1.744 0.064 2.91E+07 0.131 1.695 0.079 -0.326 0.049 
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Linear Exponential Logarithmic Power Sigmoid Subj  
WRMSE c WRMSE c WRMSE c WRMSE c WRMSE 

FA 0.104 -0.880 0.089 2.95E+09 0.104 1.244 0.097 -0.268 0.041 
Amb 0.211 2.951 0.141 4.11E+02 0.211 0.370 0.117 -0.307 0.056 
Fuel 0.236 -4.194 0.153 1.01E+11 0.236 3.773 0.160 0.330 0.061 

7 

Time 0.126 -0.554 0.121 1.02E+06 0.126 1.060 0.125 -0.254 0.044 
FA 0.087 0.459 0.084 1.41E+00 0.083 0.794 0.079 -0.266 0.053 
Amb 0.068 -0.334 0.064 3.60E+09 0.068 1.048 0.068 -0.295 0.041 
Fuel 0.182 2.650 0.139 5.10E-02 0.122 0.417 0.111 0.274 0.054 

8 

Time 0.151 -1.063 0.142 1.81E+05 0.151 1.311 0.147 -0.254 0.072 
FA 0.098 -0.892 0.071 1.50E+06 0.098 1.404 0.070 -0.258 0.032 
Amb 0.273 4.346 0.205 3.40E+01 0.272 0.259 0.184 -0.326 0.062 
Fuel 0.122 -1.672 0.076 2.81E+07 0.122 1.712 0.086 0.386 0.058 

9 

Time 0.110 -1.068 0.082 1.04E+11 0.110 1.347 0.093 -0.342 0.101 
FA 0.146 0.064 0.147 6.92E+00 0.147 0.873 0.146 -0.277 0.032 
Amb 0.117 1.333 0.066 3.24E-01 0.063 0.627 0.056 -0.264 0.032 
Fuel 0.095 0.753 0.082 8.57E-01 0.081 0.788 0.080 0.276 0.037 

10 

Time 0.113 1.271 0.090 8.42E+01 0.113 0.676 0.081 -0.266 0.029 
FA 0.141 -1.359 0.114 8.01E+05 0.141 1.416 0.128 -0.235 0.067 
Amb 0.232 5.891 0.152 3.31E+01 0.231 0.307 0.113 -0.249 0.038 
Fuel 0.319 7.490 0.219 2.95E+01 0.318 0.183 0.195 0.447 0.098 

11 

Time 0.185 4.231 0.074 4.30E-02 0.058 0.438 0.072 -0.328 0.028 
FA 0.351 10.819 0.075 7.32E-03 0.113 0.292 0.150 -0.313 0.046 
Amb 0.183 2.980 0.075 5.80E-02 0.039 0.461 0.041 -0.280 0.031 
Fuel 0.193 1.100 0.190 2.10E-01 0.188 0.550 0.184 0.275 0.047 

12 

Time 0.237 1.229 0.229 1.24E-01 0.218 0.527 0.202 -0.085 0.163 
FA 0.131 -0.399 0.130 7.81E+03 0.131 0.976 0.131 -0.271 0.039 
Amb 0.106 -0.895 0.091 7.12E+09 0.106 1.272 0.098 -0.267 0.041 
Fuel 0.089 -1.121 0.061 6.54E+06 0.089 1.373 0.074 0.350 0.061 

13 

Time 0.109 -0.534 0.104 5.03E+05 0.109 1.033 0.109 -0.242 0.049 
FA 0.135 0.073 0.135 6.38E+00 0.135 0.862 0.134 -0.329 0.037 
Amb 0.323 5.069 0.271 3.13E+01 0.322 0.232 0.260 -0.256 0.041 
Fuel 0.092 0.952 0.068 5.78E-01 0.066 0.702 0.060 0.295 0.030 

14 

Time 0.178 3.984 0.128 3.90E-02 0.102 0.449 0.099 -0.253 0.034 
FA 0.367 6.729 0.016 1.50E+02 0.366 0.319 0.135 -0.254 0.037 
Amb 0.325 6.428 0.054 1.93E+02 0.325 0.327 0.106 -0.285 0.051 
Fuel 0.190 1.044 0.186 2.29E-01 0.184 0.562 0.180 0.364 0.064 

15 

Time 0.293 6.713 0.065 1.10E-01 0.148 0.302 0.088 -0.460 0.065 
FA 0.145 2.585 0.056 1.05E-01 0.040 0.544 0.053 -0.347 0.023 
Amb 0.320 5.224 0.088 1.85E+02 0.320 0.394 0.160 0.005 0.356 
Fuel 0.095 1.204 0.068 4.44E-01 0.065 0.721 0.063 0.326 0.059 

16 

Time 0.135 1.143 0.116 3.19E-01 0.111 0.602 0.098 -0.251 0.082 
FA 0.213 4.008 0.112 1.80E-02 0.055 0.376 0.054 -0.302 0.047 
Amb 0.169 2.536 0.079 4.48E+02 0.169 0.465 0.030 -0.314 0.050 
Fuel 0.366 19.519 0.080 1.63E+02 0.366 0.256 0.161 0.335 0.033 

17 

Time 0.280 3.625 0.217 7.44E+01 0.280 0.287 0.186 -0.245 0.115 
FA 0.152 -1.709 0.058 3.25E+07 0.152 1.851 0.049 -0.316 0.037 
Amb 0.326 -5.269 0.140 6.10E+10 0.326 4.925 0.150 -0.391 0.019 
Fuel 0.231 3.446 0.087 3.40E-02 0.037 0.381 0.037 0.303 0.081 

18 

Time 0.115 -1.377 0.052 1.54E+07 0.115 1.603 0.068 -0.194 0.055 
FA 0.082 -0.890 0.052 2.37E+13 0.073 1.309 0.060 -0.247 0.043 
Amb 0.354 7.302 0.317 3.47E+01 0.353 0.043 0.305 -0.296 0.051 
Fuel 0.322 7.665 0.042 1.97E+02 0.322 0.272 0.110 0.486 0.069 

19 

Time 0.252 5.780 0.061 2.57E+02 0.252 0.366 0.079 -0.327 0.023 
FA 0.186 3.446 0.075 4.80E-02 0.037 0.452 0.046 -0.282 0.040 
Amb 0.286 7.755 0.101 2.69E+02 0.286 0.316 0.085 -0.303 0.062 
Fuel 0.179 3.996 0.130 4.75E+01 0.178 0.451 0.101 0.272 0.048 

20 

Time 0.220 6.813 0.111 3.22E+01 0.219 0.364 0.088 -0.294 0.042 
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Table 50.  RMSE Model Fit Data for ( )( )xu v . 

Linear Exponential Logarithmic Power Sigmoid Subj  
RMSE c RMSE c RMSE c RMSE c RMSE 

FA 0.082 -0.794 0.034 1.830E+13 0.078 1.334 0.027 -0.277 0.046 
Amb 0.101 0.223 0.100 3.189E+00 0.100 0.844 0.096 -0.251 0.034 
Fuel 0.206 2.307 0.139 4.589E+02 0.206 0.449 0.123 0.267 0.037 

1 

Time 0.150 -1.463 0.239 4.493E+13 0.120 1.676 0.251 -0.306 0.052 
FA 0.104 0.884 0.090 6.010E-01 0.088 0.699 0.082 -0.394 0.015 
Amb 0.612 112.967 0.390 1.137E+01 0.609 0.024 0.370 -0.537 0.031 
Fuel 0.315 -1.757 0.309 6.530E+04 0.315 2.012 0.309 0.215 0.020 

2 

Time 0.258 -4.860 0.089 4.310E+11 0.258 4.641 0.100 -0.326 0.053 
FA 0.072 -0.208 0.070 1.550E+06 0.072 1.014 0.072 -0.257 0.040 
Amb 0.173 2.245 0.143 7.400E-02 0.123 0.482 0.108 -0.307 0.034 
Fuel 0.214 2.227 0.164 5.466E+01 0.213 0.430 0.141 0.291 0.045 

3 

Time 0.296 7.094 0.111 1.000E-02 0.067 0.307 0.066 -0.286 0.056 
FA 0.100 -0.959 0.070 9.153E+09 0.100 1.308 0.081 -0.261 0.035 
Amb 0.256 5.796 0.156 3.792E+02 0.255 0.311 0.111 -0.256 0.032 
Fuel 0.125 1.435 0.078 2.720E-01 0.073 0.596 0.065 0.341 0.022 

4 

Time 0.212 3.774 0.126 5.100E-02 0.105 0.459 0.105 -0.277 0.037 
FA 0.167 -1.960 0.099 4.622E+07 0.167 1.816 0.116 -0.287 0.043 
Amb 0.264 5.963 0.169 3.629E+01 0.263 0.304 0.124 -0.243 0.034 
Fuel 0.100 0.485 0.095 1.353E+00 0.094 0.782 0.087 0.266 0.023 

5 

Time 0.211 3.034 0.164 6.000E-02 0.141 0.479 0.132 -0.212 0.056 
FA 0.217 2.279 0.167 7.000E-02 0.156 0.422 0.146 -0.251 0.040 
Amb 0.440 10.252 0.403 2.494E+01 0.440 0.130 0.402 -0.244 0.036 
Fuel 0.090 -0.459 0.084 1.029E+06 0.090 1.100 0.088 0.248 0.029 

6 

Time 0.146 -1.744 0.069 2.910E+07 0.146 1.695 0.085 -0.326 0.042 
FA 0.135 -0.554 0.131 1.022E+06 0.135 1.060 0.135 -0.254 0.035 
Amb 0.235 2.951 0.150 4.111E+02 0.235 0.370 0.122 -0.307 0.054 
Fuel 0.267 -4.194 0.165 1.005E+11 0.267 3.773 0.173 0.330 0.053 

7 

Time 0.135 -0.554 0.131 1.022E+06 0.135 1.060 0.135 -0.254 0.037 
FA 0.095 0.459 0.090 1.414E+00 0.089 0.794 0.083 -0.266 0.053 
Amb 0.070 -0.334 0.066 3.602E+09 0.070 1.048 0.070 -0.295 0.040 
Fuel 0.207 2.650 0.151 5.100E-02 0.131 0.417 0.117 0.274 0.048 

8 

Time 0.163 -1.063 0.151 1.813E+05 0.163 1.311 0.157 -0.254 0.068 
FA 0.107 -0.892 0.073 1.503E+06 0.107 1.404 0.071 -0.258 0.026 
Amb 0.308 4.346 0.229 3.399E+01 0.307 0.259 0.206 -0.326 0.061 
Fuel 0.137 -1.672 0.079 2.808E+07 0.137 1.712 0.091 0.386 0.059 

9 

Time 0.117 -1.068 0.091 1.035E+11 0.117 1.347 0.102 -0.342 0.080 
FA 0.166 0.064 0.166 6.923E+00 0.166 0.873 0.165 -0.277 0.025 
Amb 0.123 1.333 0.068 3.240E-01 0.063 0.627 0.054 -0.264 0.031 
Fuel 0.104 0.753 0.089 8.570E-01 0.087 0.788 0.086 0.276 0.031 

10 

Time 0.125 1.271 0.098 8.418E+01 0.125 0.676 0.087 -0.266 0.024 
FA 0.154 -1.359 0.123 8.014E+05 0.154 1.416 0.137 -0.235 0.057 
Amb 0.260 5.891 0.163 3.309E+01 0.259 0.307 0.118 -0.249 0.037 
Fuel 0.356 7.490 0.232 2.950E+01 0.354 0.183 0.441 0.447 0.080 

11 

Time 0.214 4.231 0.084 4.300E-02 0.064 0.438 0.073 -0.328 0.025 
FA 0.394 10.819 0.081 7.316E-03 0.122 0.292 0.155 -0.313 0.047 
Amb 0.204 2.980 0.082 5.800E-02 0.043 0.461 0.038 -0.280 0.029 
Fuel 0.222 1.100 0.217 2.100E-01 0.215 0.550 0.210 0.275 0.044 

12 

Time 0.234 1.229 0.219 1.240E-01 0.205 0.527 0.186 -0.085 0.133 
FA 0.144 -0.399 0.143 7.805E+03 0.144 0.976 0.144 -0.271 0.034 
Amb 0.113 -0.895 0.095 7.120E+09 0.113 1.272 0.104 -0.267 0.039 
Fuel 0.101 -1.121 0.067 6.540E+06 0.101 1.373 0.081 0.350 0.060 

13 

Time 0.117 -0.534 0.112 5.025E+05 0.117 1.033 0.117 -0.242 0.042 
FA 0.149 0.073 0.149 6.384E+00 0.149 0.862 0.147 -0.329 0.032 
Amb 0.360 5.069 0.306 3.130E+01 0.359 0.232 0.294 -0.256 0.039 
Fuel 0.102 0.952 0.073 5.780E-01 0.070 0.702 0.064 0.295 0.024 

14 

Time 0.203 3.984 0.143 3.900E-02 0.112 0.449 0.106 -0.253 0.028 
FA 0.392 6.729 0.015 1.502E+02 0.392 0.319 0.130 -0.254 0.033 
Amb 0.354 6.428 0.057 1.928E+02 0.354 0.327 0.100 -0.285 0.049 
Fuel 0.209 1.044 0.205 2.290E-01 0.203 0.562 0.199 0.364 0.056 

15 

Time 0.333 6.713 0.074 1.100E-01 0.167 0.302 0.077 -0.460 0.055 
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Linear Exponential Logarithmic Power Sigmoid Subj  
RMSE c RMSE c RMSE c RMSE c RMSE 

FA 0.168 2.585 0.060 1.050E-01 0.042 0.544 0.055 -0.347 0.020 
Amb 0.340 5.224 0.094 1.850E+02 0.340 0.394 0.162 0.005 0.328 
Fuel 0.107 1.204 0.071 4.440E-01 0.067 0.721 0.065 0.326 0.055 

16 

Time 0.147 1.143 0.122 3.190E-01 0.116 0.602 0.102 -0.251 0.072 
FA 0.244 4.008 0.126 1.800E-02 0.062 0.376 0.053 -0.302 0.043 
Amb 0.188 2.536 0.084 4.480E+02 0.188 0.465 0.028 -0.314 0.049 
Fuel 0.407 19.519 0.087 1.628E+02 0.406 0.256 0.167 0.335 0.033 

17 

Time 0.311 3.625 0.230 7.437E+01 0.311 0.287 0.193 -0.245 0.091 
FA 0.172 -1.709 0.064 3.254E+07 0.172 1.851 0.054 -0.316 0.037 
Amb 0.312 -5.269 0.110 6.103E+10 0.312 4.925 0.124 -0.391 0.070 
Fuel 0.252 3.446 0.090 3.400E-02 0.041 0.381 0.032 0.303 0.065 

18 

Time 0.130 -1.377 0.048 1.543E+07 0.130 1.603 0.064 -0.194 0.048 
FA 0.090 -0.890 0.056 2.368E+13 0.079 1.309 0.064 -0.247 0.038 
Amb 0.395 7.302 0.358 3.470E+01 0.395 0.043 0.345 -0.296 0.052 
Fuel 0.368 7.665 0.048 1.975E+02 0.368 0.272 0.099 0.486 0.057 

19 

Time 0.288 5.780 0.069 2.572E+02 0.288 0.366 0.078 -0.327 0.018 
FA 0.212 3.446 0.084 4.800E-02 0.042 0.452 0.045 -0.282 0.036 
Amb 0.319 7.755 0.109 2.688E+02 0.319 0.316 0.079 -0.303 0.057 
Fuel 0.207 3.996 0.145 4.746E+01 0.206 0.451 0.109 0.272 0.045 

20 

Time 0.253 6.813 0.125 3.220E+01 0.252 0.364 0.090 -0.294 0.035 

 

Table 51.  Summary of Model Fits for ( )( )u v x  Employing RMSE.  “Lin” stands for 
linear, “Log” for logarithmic, “Pow” for power functions. 

Subject  Best 
Acceptable Fit 

G Other 
Acceptable 

Curve 
Shape 

FA 
Power 0.90 Lin, Exp, Log,Sig 

Near Linear 
Amb Sigmoid 0.89 Lin, Exp, 

Log,Pow S-Shape 
Fuel Sigmoid 0.97 None Concave 

1 

Time Sigmoid 0.88 None Concave 
FA Sigmoid 0.98 Lin, Exp, 

Log,Pow S-Shape 
Amb Sigmoid 1.00 None Concave 
Fuel Sigmoid 1.00 None S-Shape 

2 

Time Sigmoid 0.88 Exp,Power S-Shape 
FA Sigmoid 0.69 Lin,Exp,Log,Pow Near Linear 

Amb Sigmoid 0.96 Pow Concave 
Fuel Sigmoid 0.96 None Concave 

3 

Time Sigmoid 0.96 Exp, Log, Pow S-Shape 
FA Sigmoid 0.50 Lin,Exp,Log,Pow Convex 

Amb Sigmoid 0.98 Power Concave 
Fuel Sigmoid 0.97 Exp,Log,Pow Concave 

4 

Time Sigmoid 0.97 Log,Pow S-Shape 
FA Sigmoid 0.94 Exp,Power Convex 5 

Amb Sigmoid 0.98 None Concave 
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Subject  Best 
Acceptable Fit 

G Other 
Acceptable 

Curve 
Shape 

Fuel Sigmoid 0.95 Lin,Exp,Log,Pow Concave 
Time Sigmoid 0.61 None S-Shape 
FA Sigmoid 0.97 None Concave 

Amb Sigmoid 0.99 None Concave 
Fuel Sigmoid 0.90 Lin,Exp,Log,Pow Near Linear 

6 

Time Sigmoid 0.92 Exp,Power Convex 
FA Sigmoid 0.90 Lin,Exp,Log,Pow S-Shape 

Amb Sigmoid 0.95 None Concave 
Fuel Sigmoid 0.96 None S-Shape 

7 

Time Sigmoid 0.93 None S-Shape 
FA Sigmoid 0.69 Lin,Exp,Log,Pow Concave 

Amb Sigmoid 0.68 Lin,Exp,Log,Pow Near Linear 
Fuel Sigmoid 0.95 Pow Concave 

8 

Time Sigmoid 0.83 None S-Shape 
FA Sigmoid 0.94 Lin,Exp,Log,Pow S-Shape 

Amb Sigmoid 0.96 None Concave 
Fuel Sigmoid 0.82 Exp,Pow S-Shape 

9 

Time Sigmoid 0.53 Lin,Exp,Log,Pow S-Shape 
FA Sigmoid 0.98 None S-Shape 

Amb Sigmoid 0.94 Exp, Log,Pow Concave 
Fuel Sigmoid 0.91 Lin, Exp, 

Log,Pow S-Shape 

10 

Time Sigmoid 0.96 Exp, Pow S-Shape 
FA Sigmoid 0.86 None S-Shape 

Amb Sigmoid 0.98 Power Concave 
Fuel Sigmoid 0.95 None Concave 

11 

Time Sigmoid 0.99 Exp,Log,Pow S-Shape 
FA Sigmoid 0.99 Exp Concave 

Amb Sigmoid 0.98 Exp,Log,Pow Concave 
Fuel Sigmoid 0.96 None S-Shape 

12 

Time None 0.68 None S-Shape 
FA Sigmoid 0.94 None S-Shape 

Amb Sigmoid 0.88 Lin,Exp,Log,Pow 
13 

Time Sigmoid 0.87 Lin,Exp,Log,Pow S-Shape 
FA 

Sigmoid 
0.94 

Log,Pow 
Concave 

 

S-Shape 
Fuel Sigmoid 0.65 Lin,Exp,Log,Pow Concave 

Sigmoid 0.95 None S-Shape 
Amb 0.99 None Concave 
Fuel Sigmoid Lin, Exp, 

Log,Pow 
Concave 

14 

Time Sigmoid 0.98 S-Shape 
15 FA Expo 1.00 Sig 
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Subject  G Other 
Acceptable 

Curve 
Shape 

Best 
Acceptable Fit 

Amb Sigmoid 0.98 Exp,Power Concave 
Fuel Sigmoid 0.93 None S-Shape 

 

Time Sigmoid 0.97 Exp,Power Concave 
FA 

Expo 
0.73 

0.76 Log,Pow Concave 
FA Sigmoid 0.97 Log,Pow Concave 

Amb Power 0.98 Exp,Sig Concave 
Fuel Sigmoid 0.99 Exp Concave 

17 

Time Sigmoid 0.91 None 
FA Sigmoid 0.95 Exp,Power S-Shape 

Amb Sigmoid 0.95 Exp Convex 
Fuel Power 0.98 Exp,Log,Sig Concave 

18 

Time Sigmoid 0.87 Exp,Pow S-Shape 
FA Sigmoid 0.82 Lin,Exp,Log,Pow Near Linear 

Amb Sigmoid 0.98 None Concave 
Fuel Expo 0.98 Power,Sig Concave 

19 

Time Sigmoid 1.00 Exp,Power Concave 
FA Sigmoid 0.97 Exp,Log,Pow Concave 

Amb Sigmoid 0.97 Exp,Power Concave 
Fuel Sigmoid 0.95 Power S-Shape 

20 

Time Sigmoid 0.98 Exp,Power S-Shape 

Sigmoid 0.99 Exp,Log,Pow Concave 
Amb 0.92 None Concave 
Fuel 

Sigmoid 
Lin, Exp, 
Log,Pow S-Shape 

16 

Time Sigmoid 

Concave 

 
 
 

 

Table 52.  Summary of Model Fits for ( )( )model
ij iju v x  Employing WRMSE.  “Lin” stands 

for linear, “Log” for logarithmic, “Pow” for power functions. 

Subject  Best 
Acceptable Fit 

G Other 
Acceptable 

Curve 
Shape 

FA Power 0.9007 
Lin,Exp,Log,Sig Near 

Linear 
Amb Sigmoid 0.8601 Lin,Exp,Log,Pow S-Shape 
Fuel Sigmoid 0.9538 None Concave 

1 

Time Sigmoid 0.8588 None Concave 
2 FA Sigmoid 0.9607 Lin,Exp,Log,Pow S-Shape 
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Subject  Best 
Acceptable Fit 

G Other 
Acceptable 

Curve 
Shape 

Amb Sigmoid 0.9975 None Concave 
Fuel Sigmoid 0.9934 None S-Shape 
Time Sigmoid 0.9216 Exp,Pow S-Shape 
FA 

Sigmoid 0.5345 
Lin,Exp,Log,Pow Near 

Linear 
Amb Sigmoid 0.9483 Power Concave 
Fuel Sigmoid 0.9198 None Concave 

3 

Time Log 0.9470 Exp,Pow,Sig S-Shape 
FA Sigmoid 0.8111 Lin,Exp,Log,Pow Convex 

Amb Sigmoid 0.9775 Pow Concave 
Fuel Sigmoid 0.9510 Exp,Log,Pow Concave 

4 

Time Sigmoid 0.9456 Log,Pow S-Shape 
FA Sigmoid 0.8901 Exp Convex 

Amb Sigmoid 0.9763 None Concave 
Fuel Sigmoid 0.9117 Lin,Exp,Log,Pow Concave 

5 

Time Sigmoid 0.8903 None S-Shape 
FA Sigmoid 0.9473 None Concave 

Amb Sigmoid 0.9915 None Concave 
Fuel 

Sigmoid 0.8095 
Lin,Exp,Log,Pow Near 

Linear 

6 

Time Sigmoid 0.8584 Exp,Pow Convex 
FA Sigmoid 0.8444 Lin,Exp,Log,Pow S-Shape 

Amb Sigmoid 0.9295 None Concave 
Fuel Sigmoid 0.9334 None S-Shape 

7 

Time Sigmoid 0.8756 None S-Shape 
FA Sigmoid 0.6219 Lin,Exp,Log,Pow Concave 

Amb 
Sigmoid 0.6345 

Lin,Exp,Log,Pow Near 
Linear 

Fuel Sigmoid 0.9107 None Concave 

8 

Time Sigmoid 0.7692 None S-Shape 
FA Sigmoid 0.8938 Lin,Exp,Log,Pow S-Shape 

Amb Sigmoid 0.9494 None Concave 
Fuel Sigmoid 0.7740 Exp,Pow S-Shape 

9 

Time Expo 0.4439 Pow,Sig S-Shape 
FA Sigmoid 0.9530 None S-Shape 

Amb Sigmoid 0.9246 Exp,Log,Pow Concave 
Fuel Sigmoid 0.8460 Lin,Exp,Log,Pow S-Shape 

10 

Time Sigmoid 0.9356 Exp,Pow S-Shape 
FA Sigmoid 0.7766 None S-Shape 

Amb Sigmoid 0.9726 None Concave 
11 

Fuel Sigmoid 0.9051 None Concave 
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Subject  Best 
Acceptable Fit 

G Other 
Acceptable 

Curve 
Shape 

 Time Sigmoid 0.9770 Exp,Log,Pow S-Shape 
FA Sigmoid 0.9830 Exp Concave 

Amb Sigmoid 0.9711 Exp,Log,Pow Concave 
Fuel Sigmoid 0.9393 None S-Shape 

12 

Time None 0.5240 None S-Shape 
FA Sigmoid 0.9109 None S-Shape 

Amb Sigmoid 0.8477 Lin,Exp,Log,Pow S-Shape 
Fuel Expo 0.5359 Lin,Log,Pow,Sig Concave 

13 

Time Sigmoid 0.7950 Exp S-Shape 
FA Sigmoid 0.9233 None S-Shape 

Amb Sigmoid 0.9841 None Concave 
Fuel Sigmoid 0.8953 Lin,Exp,Log,Pow Concave 

14 

Time Sigmoid 0.9635 Log,Pow S-Shape 
FA Expo 0.9981 Sig Concave 

Amb Sigmoid 0.9751 Exp,Pow Concave 
Fuel Sigmoid 0.8877 None S-Shape 

15 

Time Sigmoid 0.9512 Exp,Pow Concave 
FA Sigmoid 0.9747 Exp,Log,Pow Concave 

Amb Expo 0.9248 None Concave 
Fuel Sigmoid 0.6097 Lin,Exp,Log,Pow S-Shape 

16 

Time Sigmoid 0.6289 Pow Concave 
FA Sigmoid 0.9516 Log,Pow Concave 

Amb Power 0.9680 Exp,Sig Concave 
Fuel Sigmoid 0.9918 Exp Concave 

17 

Time None 0.8318 None Concave 
FA Sigmoid 0.9394 Exp,Pow S-Shape 

Amb Sigmoid 0.9968 None Convex 
Fuel Power 0.9748 Exp,Log,Sig Concave 

18 

Time Expo 0.7959 Pow,Sig S-Shape 
FA 

Sigmoid 0.7212 
Lin,Exp,Log,Pow Near 

Linear 
Amb Sigmoid 0.9796 None Concave 
Fuel Expo 0.9830 Sig Concave 

19 

Time Sigmoid 0.9919 Exp,Pow Concave 
FA Log 0.9604 Exp,Pow,Sig Concave 

Amb Sigmoid 0.9532 Exp,Power Concave 
Fuel Sigmoid 0.9285 Power S-Shape 

20 

Time Sigmoid 0.9637 Power S-Shape 
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The results of the multidimensional analysis of the tactical problem are tabulated 

in Table 53.  The results are listed by subject by route for the various preference 

functions: value function,v x ; utility function determined by the certainty-equivalent 

method, ; utility function determined by the probability-equivalent method, 

; utility function determined by averaging the certainty-equivalent and 

probability-equivalent methods, 

( )

( )CEu x

( )PEu x

( )u x ; and Kirkwood’s (1997) multiattribute utility 

method, .  The last function has subscripts of one and two. Two functions are 

present for those subjects who were never ambivalent between the alternatives presented.  

The two functions bound the ambivalence of the subject. 

( )mu x

Table 53.  Route Alternative Mathematical Expectation Scores for Preference Functions. 

Subject Route ( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
A 0.404 0.487 0.523 0.505 0.501 0.414 
B 0.254 0.341 0.372 0.356 0.335 0.262 
C 0.180 0.263 0.303 0.280 0.244 0.185 
D 0.218 0.291 0.344 0.317 0.290 0.225 
E 0.679 0.673 0.703 0.688 0.762 0.688 

FJ1 
 
 
 F 0.610 0.613 0.660 0.637 0.702 0.620 

A 0.182 0.462 0.461 0.439 0.021 - 
B 0.144 0.313 0.230 0.271 0.016 - 

0.044 0.250 0.171 0.207 0.004 - 
D 0.073 0.308 0.271 0.290 0.007 - 
E 0.487 0.671 0.773 0.722 0.123 - 

FJ2 
 
 
 F 0.294 0.616 0.642 0.629 0.052 - 

A 0.470 0.588 0.621 0.605 0.307 - 
B 0.398 0.411 0.491 0.451 0.248 - 
C 0.220 0.268 0.407 0.336 0.122 - 
D 0.150 0.249 0.361 0.305 0.080 - 
E 0.539 0.516 0.556 0.536 0.373 - 

FJ3 
 
 
 F 0.486 0.496 0.562 0.529 0.326 - 

FJ4 A 0.282 0.497 0.419 0.458 0.274 0.544 

C 
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Subject Route ( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
B 0.234 0.347 0.289 0.318 0.227 0.474 
C 0.140 0.278 0.226 0.248 0.136 0.313 
D 0.135 0.345 0.262 0.304 0.131 0.298 
E 0.709 0.715 0.700 0.708 0.701 0.900 

 
 
 

F 0.617 0.651 0.617 0.634 0.607 0.847 
A 0.101 0.287 0.448 0.367 0.120 - 
B 0.072 0.181 0.301 0.241 0.085 - 
C 0.056 0.167 0.301 0.221 0.068 - 
D 0.108 0.268 0.413 0.340 0.127 - 
E 0.889 0.822 0.881 0.852 0.908 - 

FJ5 
 
 

 F 0.829 0.771 0.824 0.798 0.856 - 
A 0.289 0.495 0.398 0.447 0.600 0.077 
B 0.203 0.344 0.256 0.300 0.462 0.048 
C 0.106 0.271 0.181 0.222 0.277 0.021 
D 0.129 0.322 0.226 0.274 0.325 0.027 
E 0.539 0.727 0.676 0.702 0.829 0.023 

FJ6 
 
 

 F 0.555 0.712 0.656 0.684 0.837 0.245 
A 0.251 0.406 0.430 0.418 0.251 - 
B 0.186 0.278 0.276 0.277 0.186 - 
C 0.116 0.218 0.228 0.215 0.116 - 
D 0.197 0.308 0.304 0.306 0.197 - 
E 0.775 0.745 0.724 0.735 0.775 - 

FJ7 
 
 
 F 0.740 0.687 0.674 0.681 0.740 - 

A 0.664 0.673 0.528 0.701 0.767 - 
B 0.513 0.502 0.402 0.532 0.629 - 
C 0.211 0.331 0.280 0.347 0.294 - 
D 0.121 0.230 0.250 0.265 0.176 - 
E 0.347 0.371 0.378 0.386 0.463 - 

FJ8 
 
 
 F 0.267 0.353 0.361 0.375 0.365 - 

A 0.442 0.570 0.535 0.553 0.384 0.394 
B 0.362 0.436 0.384 0.410 0.308 0.317 
C 0.272 0.306 0.231 0.264 0.226 0.234 
D 0.225 0.305 0.229 0.267 0.187 0.193 
E 0.530 0.543 0.526 0.534 0.471 0.481 

FJ9 
 
 
 F 0.567 0.509 0.494 0.502 0.510 0.520 

A 0.390 0.461 0.498 0.479 0.234 0.390 
B 0.247 0.282 0.340 0.311 0.132 0.247 
C 0.082 0.202 0.256 0.227 0.039 0.082 
D 0.131 0.255 0.298 0.277 0.065 0.131 
E 0.642 0.693 0.696 0.694 0.468 0.642 

FJ10 
 
 
 F 0.580 0.667 0.669 0.668 0.403 0.580 

FJ11 A 0.551 0.715 0.670 0.692 0.073 - 
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Subject Route ( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
B 0.471 0.512 0.417 0.465 0.048 - 
C 0.257 0.369 0.318 0.341 0.012 - 
D 0.168 0.353 0.307 0.330 0.006 - 
E 0.482 0.504 0.496 0.500 0.050 - 

 
 
 

F 0.472 0.526 0.512 0.519 0.053 - 
A 0.507 0.620 0.702 0.661 0.119 0.490 
B 0.179 0.503 0.535 0.519 0.052 0.345 
C 0.041 0.325 0.389 0.355 0.018 0.208 
D 0.039 0.203 0.340 0.271 0.010 0.150 
E 0.394 0.388 0.480 0.434 0.029 0.268 

FJ12 
 
 
 F 0.198 0.310 0.426 0.368 0.023 0.220 

A 0.663 0.664 0.682 0.673 0.249 0.356 
B 0.581 0.510 0.567 0.539 0.182 0.277 
C 0.281 0.313 0.396 0.351 0.051 0.093 
D 0.163 0.247 0.321 0.284 0.025 0.048 
E 0.374 0.406 0.436 0.422 0.066 0.123 

FJ13 
 
 
 F 0.344 0.362 0.425 0.394 0.068 0.120 

A 0.460 0.664 0.600 0.632 0.421 - 
B 0.376 0.476 0.396 0.436 0.341 - 
C 0.076 0.268 0.237 0.251 0.066 - 
D 0.039 0.286 0.231 0.259 0.033 - 
E 0.430 0.536 0.508 0.522 0.392 - 

FJ14 
 
 
 F 0.431 0.535 0.511 0.523 0.393 - 

A 0.369 0.694 0.629 0.662 0.001 - 
B 0.135 0.494 0.448 0.471 0.000 - 
C 0.071 0.349 0.316 0.329 0.000 - 
D 0.092 0.405 0.315 0.360 0.000 - 
E 0.442 0.610 0.587 0.598 0.002 - 

FJ15 
 

F 
 
 0.461 0.623 0.584 0.604 0.003 - 

A 0.188 0.393 0.434 0.382 0.006 0.021 
B 0.106 0.214 0.194 0.181 0.003 0.010 
C 0.057 0.125 0.150 0.132 0.001 0.005 
D 0.082 0.192 0.248 0.221 0.002 0.008 
E 0.521 0.752 0.808 0.807 0.077 0.150 

FJ16 
 
 
 F 0.571 0.780 0.812 0.805 0.110 0.195 

A 0.300 0.516 0.518 0.517 0.437 - 
B 0.154 0.315 0.345 0.330 0.246 - 
C 0.060 0.254 0.283 0.264 0.100 - 
D 0.085 0.300 0.359 0.329 0.139 - 
E 0.635 0.748 0.780 0.764 0.768 - 

FJ17 
 
 
 F 0.599 0.714 0.729 0.721 0.741 - 

FJ18 A 0.420 0.416 0.382 0.399 0.812 0.219 
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Subject Route ( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
B 0.341 0.366 0.309 0.338 0.714 0.171 
C 0.371 0.351 0.337 0.323 0.762 0.186 
D 0.463 0.428 0.416 0.847 0.253 0.404 
E 0.856 0.745 0.833 0.789 0.985 0.719 

 
 
 

F 0.780 0.693 0.770 0.732 0.972 0.602 
A 0.387 0.618 0.616 0.617 0.670 - 
B 0.341 0.387 0.462 0.425 0.616 - 
C 0.215 0.385 0.322 0.442 - 0.264 
D 0.150 0.294 0.389 0.342 0.329 - 
E 0.579 0.613 0.642 0.627 0.824 - 

FJ19 
 
 
 F 0.543 0.606 0.654 0.630 0.796 - 

A 0.215 0.447 0.459 0.453 0.453 - 
B 0.128 0.326 0.315 0.315 - 0.305 
C 0.055 0.251 0.295 0.267 0.267 - 
D 0.076 0.346 0.374 0.360 0.360 - 
E 0.730 0.760 0.756 0.758 0.758 - 

FJ20 
 
 
 F 0.541 0.671 0.671 - 0.658 0.684 

 

The route alternatives ordered in descending preference appear in Table 54. 

Table 54.  Mathematical Expectation Ordered Route Alternatives for Preference 
Functions. 

Subject Order ( )v x  ( )CEu x ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x   
1 E E E E E E 
2 F F F F F F 
3 A A A A A A 
4 B B B B B B 
5 D D D D D D 

FJ1 
 
 
 6 C C C C C C 

1 E E E E E   
2 F F F F F   
3 A A A A A   
4 B D D B   B 
5 D D B B D   

FJ2 
 
 
 6 C C C C C   

1 E A A A E   FJ3 
 2 F E F E F   
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Subject Order ( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
3 A E F A   F 
4 B B B B B   
5 C C C C C   

 
 

D D D D D   6 
1 E E E E E E 
2 F F F F F F 
3 A A A A A A 
4 B B B B B B 
5 C D D D C C 

FJ4 
 
 

D C C C D D  6 
1 E E E   E E 
2 F F F F F   
3 D A A A   D 
4 A D D A   D 
5 B C B B   B 

FJ5 
 
 

 C C B C C   6 
1 E E F F F E 
2 E F F F E A 
3 A A A A B A 
4 B B B D B B 
5 D D D D D E 

FJ6 
 
 

 6 C C C C C C 
1 E E E E E   
2 F F F F F   
3 A A A A   A 
4 D D D   D D 
5 B B B B B   

FJ7 
 
 
 6 C C C C C   

1 A A A A A   
2 B B B   B B 
3 E E E E   E 
4 F F F F F   
5 C C C C C   

FJ8 
 
 

6 D D D D    D 
1 F A A A F F 
2 E E E E E E 
3 A F F F A A 
4 B B B B B B 
5 C C C C D C 

FJ9 
 

6 D D C D D 
 
 D 

1 E E E E E E FJ10 
2 F F F F F  F 
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Subject Order 
3 A A A A A A 
4 B B B B B B 
5 D D D D D D 

 

6 C C C C C C 
1 A A A A A   
2 E F F F F   
3 F B E E E   
4 B E B B B   
5 C C C C C   

FJ11 
 
 
 6 D D D D D   

1 A A A A A A 
2 E B B B B B 
3 F E E E E E 
4 B C F F F F 
5 C F C C C C 

FJ12 
 
 
 6 D D D D D D 

1 A A A A A A 
2 B B B B B B 
3 E E E E F E 
4 F F F F E F 

C C C C C C 

FJ13 
 
 
 6 D D D D D D 

1 A A A A A   
2 F E F F F   
3 E F E E E   
4 B B B B B   
5 C D C D C   

FJ14 
 
 
 6 D C D C D   

1 F A A A A   
2 E F E F F   
3 A E F E E   
4 B B B B B   

D D C D D   

FJ15 
 
 
 6 C C D C C   

1 F F F E F F 
2 E E E F E E 
3 A A A A A A 
4 B B D D B B 
5 D D B B D D 

FJ16 
 
 
 6 C C C C C C 

1 E E E E E   FJ17 
 2 F F F F F   

( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
 

5 

5 
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Subject Order ( )v x  ( )CEu x  ( )PEu x  ( )u x  ( )
1m

u x  ( )
2m

u x  
3 A A A A A   
4 B B D B B   
5 D D B D D   

 
 

6 C C C C C   
1 E E E E E E 
2 F F F F F F 
3 D A D D D D 
4 A D A A A A 
5 C B C B C C 

FJ18 
 
 
 6 B C B C B B 

1 E A F F E   
2 F E E E F   
3 A F A A A   
4 B B B B B   
5 C D D D C   

FJ19 
 
 
 6 D C C C D   

1 E E E E E   
2 F F F F F   
3 A A A A A   
4 B D D D D   
5 D B B B B   

FJ20 
 
 
 6 C C C C C   
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Appendix C.  Information Operations Detailed Results 
 
Information Operations Value and Utility Functions. 
 
Attack Information Realm Hierarchy.  Attack Information. 
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Figure 113.  Increase Minimum Update Goal. 
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Figure 114.  Age Devaluation Goal. 
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Figure 115.  Likely Accept False Goal. 
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Figure 116.  Likely Accept True Reject False Goal. 
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Figure 117.  Likely Reject Truth Goal. 

 
Attack Information Systems. 
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Figure 118.  Reduce Bandwidth Goal. 
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Figure 119.  Reduce Throughput Goal. 
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Figure 120.  Degrade Update Goal. 
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Figure 121.  Increase Error Content Goal. 
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Figure 122.  Penetrate System Goal. 
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Figure 123.  Increase Recovery Time Goal. 
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Figure 124.  Defeat Security Goal. 
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Figure 125.  Defeat Detection Goal. 

 
Attack Information-Based Processes. 
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Figure 126.  Consume Essential Resources Goal. 
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Figure 127.  Consume Essential Time Goal. 
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Figure 128.  Reduce Timeliness Goal. 
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Figure 129.  Decrease Accuracy Goal. 
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Figure 130.  Reduce Focus Goal. 
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Figure 131.  Reduce Resilience Goal. 

 
Minimize Cost Hierarchy. 
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Figure 132.  Friendly at Risk Cost. 
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Figure 133.  Maximum System Survivability Cost. 
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Figure 134.  Minimize Collateral Damage. 
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Figure 135.  Sensitive Information Security Cost. 

 
 
 

Table 55. WRMSE Model Fit Data for ( )( )xu v . 
Linear Exponential Logarithmic Power Sigmoid  

WRMSE C WRMSE C WRMSE c WRMSE c WRMSE 
Increase 
Recovery 

Time 0.00406 -0.045 0.00310 2.58E+08 0.00406 1.014 0.00353 0.528 0.0612 
Degrade 
Update 0.122 0.516 0.111 1.628 0.112 0.871 0.117 0.292 0.0402 
Increase 

Error 
Content 0.182 -3.745 0.0682 1.31E+11 0.182 3.396 0.0817 0.437 0.0588 

Age 
Devaluation 0.166 -3.556 0.0661 8.08E+10 0.166 3.21 0.0786 0.529 0.0611 

Decrease 
Accuracy 0.143 -0.962 0.109 2661000 0.143 1.421 0.0986 0.336 0.0478 
Reduce 

Timeliness 0.0683 -0.934 0.0232 1.06E+13 0.0774 1.37 0.0331 0.349 0.0499 
Consume 
Essential 
Resources 0.111 1.589 0.0140 0.263 0.0246 0.595 0.0434 0.701 0.0589 
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Linear Exponential Logarithmic Power Sigmoid  
WRMSE C WRMSE C WRMSE c WRMSE c WRMSE 

Consume 
Essential 

Time 0.140 -2.709 0.0510 9E+09 0.140 2.508 0.0648 0.528 0.0612 
Friendly at 
Risk Cost 0.224 -0.808 0.214 310700 0.224 1.317 0.210 -0.437 0.0588 
System 

Survivability 
Cost  0.138 -1.802 1.38E-05 1.93E+08 0.138 1.821 0.0211 -0.378 0.684 

Collateral 
Damage 

Cost 0.191 1.11 0.158458 0.412 0.162 0.779 0.170 -0.437 0.0588 
Sensitive 

Information 
Security 

Cost 0.524 1255 0.15913 13.293 0.522 0.098 0.131 -0.336 0.0478 

 
 
 

Table 56.  RMSE Model Fit Data for ( )( )xu v . 

Linear Exponential Logarithmic Power Sigmoid  
RMSE c RMSE c RMSE c RMSE c RMSE 

Increase 
Recovery 

Time 0.00470 -0.045 0.00332 2.58E+08 0.00470 1.014 0.00380 0.528 0.0494 
Degrade 
Update 0.128 0.516 0.114 1.628 0.115 0.871 0.120 0.292 0.0337 
Increase 

Error 
Content 0.196 -3.745 0.0728 1.31E+11 0.196 3.396 0.0853 0.437 0.0480 

Age 
Devaluation 0.174 -3.556 0.0701 8.08E+10 0.174 3.21 0.0812 0.529 0.0494 

Decrease 
Accuracy 0.155 -0.962 0.112 2661000 0.155 1.421 0.102 0.336 0.0399 
Reduce 

Timeliness 0.0770 -0.934 0.0250 1.06E+13 0.0866 1.37 0.0349 0.349 0.0415 
Consume 
Essential 
Resources 0.121 1.589 0.0143 0.263 0.0250 0.595 0.0402 0.701 0.0477 
Consume 
Essential 

Time 0.148 -2.709 0.0540 9E+09 0.148 2.508 0.0663 0.528 0.0494 
Friendly at 
Risk Cost 0.226 -0.808 0.206 310700 0.226 1.317 0.203 -0.437 0.0480 
System 

Survivability 
Cost  0.156 -1.802 1.55E-05 1.93E+08 0.156 1.821 0.0220 -0.378 0.633 

Collateral 
Damage 

Cost 0.191 1.11 0.163 0.412 0.168 0.779 0.171 -0.437 0.0480 
Sensitive 

Information 
Security 

Cost 0.571 1255 0.178 13.293 0.569 0.098 0.113 -0.336 0.0399 
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Table 57.  Number of Best Acceptable Fits By Model Type. 

 RMSE WRMSE 
Linear 0 0 

Exponential 5 5 
Logarithmic 0 0 

Power 0 0 
Sigmoid 7 7 

None 0 0 

Table 58.  Total Fits by Model Type. 

 RMSE WRMSE 
 Number Percent Number Percent 

Linear 2 16.7 4 33.3 
Exponential 9 75.0 9 75.0 
Logarithmic 4 33.3 4 33.3 

Power 10 83.3 9 75.0 
Sigmoid 11 91.7 11 91.7 
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Appendix D. Application of Decision Analysis to Automatic Target Recognition 

Programmatic Decisions 
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Abstract 

The purpose of this research is to demonstrate the application of decision analysis 

(DA) techniques to the decisions made throughout the lifecycle of Automatic Target 

Recognition (ATR) technology development. This work is accomplished in the hopes of 

improving the means by which ATR technologies are evaluated. The first step in this 

research was to create a flexible decision analysis framework that could be applied to a 

variety of decisions across several different ATR programs evaluated by the 

Comprehensive ATR Scientific Evaluation (COMPASE) Center of the Air Force 

Research Laboratory (AFRL). For the purposes of this research, a single COMPASE 

Center representative provided the value, utility, and preference functions for the DA 

framework through elicitation meetings with the authors. The DA framework employs 

performance measures collected during ATR classification system (CS) testing to 

calculate value and utility scores. The authors gathered data from the Moving and 

Stationary Target Acquisition and Recognition (MSTAR) program to demonstrate how 

the decision framework could be used to evaluate three different ATR CSs. A decision- 

maker may use the resultant scores to gain insight into any of the decisions that occur 

throughout the lifecycle of ATR technologies. Additionally, a means of evaluating ATR 

CS self-assessment ability is presented. This represents a new criterion that emerged 

from this study, and no present evaluation metric is known. 

11 
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Application of Decision Analysis to Automatic Target Recognition Programmatic 

Decisions 

1.0 Summary. The purpose of this research is to demonstrate the implementation of a 

decision analysis (DA) approach towards programmatic decision-making within the 

Automatic Target Recognition (ATR) field of research. Several decisions within the 

lifecycle of ATR research are based upon evaluations using many performance measures 

and program characteristics. Often, the evaluation of these raw performance measures 

and characteristics leads to non-dominating solutions among the various ATR programs 

and technologies competing for further development. Therefore, the decisions are 

finalized using the preferences and values of the decision-maker. Thus, it is clear that 

ATR research decision-makers should employ a formalized decision analysis framework 

to aid in selecting the best ATR research direction or ATR product available based upon 

the given performance characteristics of ATR classification systems (CSs) and to ensure 

evaluation fairness among competing technologies. The DA framework presented 

quantifies and rank-orders the preferences of the decision-maker, i.e., the desirable traits 

of a good ATR CS are weighted more heavily than less desirable traits. The numerous 

performance measures and characteristics of a given set of ATR CSs may then be 

synthesized through the DA model. The result is a single utility, or value, measure 

associated with each ATR CS under consideration. This methodology provides the 

decision-maker with a defensible approach that includes his own value structure of the 

problem for use in making programmatic decisions. This research uses past ATR data to 

illustrate that this technique is feasible and potentially very useful to the decision-makers 

involved in ATR research. 
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1.1 Introduction. Automatic Target Recognition is a processing problem where an 

image is examined in order to detect and classify objects of interest, or targets. The 

image is provided by one or more sensors, which typically are forward-looking infrared, 

millimeter wave, synthetic aperture radar, or laser radar systems. An ATR CS, in the 

form of a pattern recognition and classification algorithm, is then applied to the image in 

order to identify particular regions of interest (ROIs) and to then classify whether the ROT 

is a target or not. It is necessary to point out that both enemy and friendly objects of 

interest are referred to as targets. Typically, the targets are difficult to separate both from 

normal environmental objects, generally referred to as clutter, and objects with target-like 

signatures found within the image, often referred to in ATR research as con/users. 

Currently, human analysis far exceeds the capabilities of automated ATR systems. It is 

highly desirable to improve automated ATR capabilities, which would increase analytic 

capacity in military intelligence systems as well as permit ATR systems to be employed 

on unmanned platforms. Automatic Target Recognition is widely acknowledged as a 

critical military capability [4]. 

ATR CSs generally fall into three classes: statistical pattern recognition, neural 

networks, or model-based recognition. All ATRs have a number of quantifiable 

evaluation measures, such as ATR CS performance, robustness, estimate accuracy, 

employment doctrine, and cost, which may be used to compare multiple ATR CSs. In 

general, these measures are not assessed in total, but specific measures are selected when 

considering decisions for a specific program. No examples of employment of DA 

techniques with respect to ATR selection have been found in the literature. 
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2.0 Methods, Assumptions, and Procedures. The following section details the steps 

taken to construct a DA framework. The first step is defining the decision situation with 

a decision-maker. Next, the DA model is generated using quantitative representations of 

the preferences held by the decision-maker. Finally, the performance measures of 

multiple ATR CSs may then be introduced to the model for analysis. 

2.1 The Decision Situation. The objective of ATR evaluation is to determine which 

system performs best via performance measure assessment and comparison. During 

development of past ATR CSs, decisions that compared competing ATR CSs were not 

performed in a manner that collectively considered all pertinent aspects of the decision. 

Typically a subset of criteria was examined. Employment of decision analytic techniques 

permits all criteria to be considered and trade-offs performed when comparing systems. 

As an example of how these techniques can be applied, the Moving and Stationary Target 

Acquisition and Recognition (MSTAR) program, which was an investigative effort into 

synthetic aperture radar (SAR), model-based ATR development, provides an ideal 

scenario [5]. At the time, three ATR systems were tested as candidates for furthering the 

development of an advanced ATR system [5]. These ATR CSs are referred to as ATR 

33, ATR 55, and ATR 89. 

There are two basic ATR employment profiles under consideration. The Combat 

Identification (C1D) employment profile is implemented when the primary objective of 

the ATR CS is to select targets for weapon systems. In this scenario, the system is 

allowed to sacrifice detection performance in order to gain classification accuracy. Thus, 

the selection of a target must be associated with a high degree of confidence as to 
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minimize the number of false alarms. The Intelligence/Surveillance/Reconnaissance 

(ISR) employment profile is used when the primary objective of the ATR CS is to collect 

information for many potential targets. In this scenario, the CS is allowed to sacrifice 

classification accuracy for improved detection performance. Thus, the goal of the ATR 

CS is to detect as many potential targets as possible as to minimize the number of targets 

that evade detection. 

In order to assist the Comprehensive ATR Scientific Evaluation (COMPASE) 

Center, an Air Force Research Laboratory (AFRL) organization within the Sensors 

Directorate, with its assessment of which future ATR systems should be retained for 

further development, a feasibility study of value-focused decision analysis is performed 

upon the MSTAR data. Dr. Timothy Ross, COMPASE Center Director, served as the 

decision-maker. Dr. Ross participated in two elicitation sessions. The initial session 

developed the subject's value hierarchy and elicited single dimensional value functions 

for the evaluation measures. Single dimensional utility functions were elicited during the 

second session as well as follow up clarification on several minor issues. Additionally, 

the authors discussed minor points with Dr. Ross via e-mail. Throughout the elicitation 

process, the subject was comfortable expressing his preferences in a quantified manner. 

Discussions with Dr. Ross confirmed and refined the evaluation measures for the 

decision situation. 

2.2 Encoding the Value Hierarchy. In a test environment, ATR CS evaluation is 

accomplished using performance measure assessment and comparison. Assessment 

refers to the collection of several quantitative performance measures. Understanding the 

design of the testing environment is key to the understanding of performance measure 
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assessment. To begin, the test image is broken into two separate areas: the target truth 

area and the clutter scene area. Testing personnel place targets and confusers within the 

target truth area. The ATR CS examines this section of the scene for potential targets. 

Any target, declaration made against a confuser, or non-targets, is considered a false 

alarm. Next, the ATR CS scans the clutter scene area, which is known to be devoid of 

targets. Any target, declarations made by the ATR CS in this section are considered to be 

false alarms in clutter, since no confusers exist in this area. Figure 2.1 illustrates the 

manner in which an ATR test area is divided. When an ATR CS has scanned both areas, 

ATR performance may then be assessed. 

Target Truth Area 

I m 

& 

m 1:1 ü 

Clutter Area 

c mm 

Key: T -> Target        N -» Confuser 
C -> Clutter       □ -> Declared as Target 

Figure 2.1 Abstract Depiction of Target Truth and Clutter Areas- 

The primary performance measure is the probability of detection, PD-    This 

measure is defined as: 

Pp - NDET I NTGT (1) 
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where NDET is the number of targets detected by the ATR CS and NTGT is the total number 

of targets to be detected within the image. The probability of detection provides insight 

into how well the ATR CS is detecting the target it is designed to find. Beyond detecting 

targets, it is desirable that the ATR CS provides a conjecture of the taxon, or label, of the 

object. The ATR may or may not further refine the description of the target. Typically, a 

refined identification is bifurcated into class and type, but a target may be labeled at any 

level desirable to the decision-maker. Class describes a broad category of materiel. 

Example class taxa are main battle tanks (MBTs) and surface-to-air systems. The type of 

the object is the specific nomenclature. The M-l Al and T-72 main battle tanks are 'type' 

examples of the MBT class. Given the targets detected by the ATR CS, additional 

performance measures conditional to PD may then be calculated concerning how well the 

ATR algorithm classifies the ROIs that it considers targets. The first performance 

measure, the probability of correct classification (Pec), is the ratio of the number of 

targets correctly classified by class (NCc) to the total number of detected targets (NDEr). 

Thus, Pec is defined as: 

Pcc = Ncc/NDET- ' (2) 

In other words, Pec measures the proportion of correctly labeled targets to the number of 

correctly detected targets, e.g., classifying a detected target as a MBT when it indeed is a 

MBT, and serves as an estimate of the probability of correctly classifying a target. A 

similar, but slightly more specific, performance measure is the probability of correct 

identification, or PID- This measure is the ratio of the number of targets correctly 

classified by type (NfD) to the total number of detected targets (iNW). Thus, Pm is 

defined as: 
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PjD = NID!NDET. (3) 

In other words, PID measures the proportion of correctly labeling, for example, a ROI as a 

T-72 MBT when it indeed is a T-72 MBT. 

While the previous performance measure indicate how well an ATR CS performs 

in detecting targets, the next set of measures provides insight into how often an ATR CS 

mistakes non-targets as targets. The probability of false alarm measure, denoted PFA> is 

the ratio of the number of detected confusers, or non-targets, (Nc) to the total number of 

known confusers in the image (NFA), and is defined as: 

PFA=NC/NFA. (4) 

A similar performance measure is the false alarm rate (FAR), which is the ratio of the 

number of false alarms in clutter (NCL) to the clutter scene area (A), defined as: 

FAR^NCL/A. (5) 

This performance measure indicates how likely an ATR is to mistake terrain or natural 

objects as a potential target. 

Typically, P& is changed for an ATR algorithm by adjusting a detection threshold 

internal to the CS. P& may be increased to any desired level as the detection threshold is 

adjusted, but there is a corresponding degradation in the ATR performance as more 

clutter and confusers are incorrectly declared as targets. That is, the false alarm rate 

(FAR) and probability of false alarm, PFAi never decrease, and should increase, as the 

probability of detection increases. For a given ATR CS, a receiver operating 

characteristic (ROC) curve illustrates the trade-off between the detection performance 

and the false alarm rate. Figure 2.2 depicts sample ROC curves along with an area under 

the curve measure, which is typically used in comparing multiple ROC curves.  When 
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evaluating ATRs, either the Pp is fixed for a particular mission profile, or the ROC curve 

is employed. In both cases, PD is not considered an evaluation measure as the ATR 

performs at that level by definition. The false alarm performance is then the concern. 

0       0.1       0.2      0.3      0.4       0.5      0.6      0.?      0.6       0.9        ? 

Probability of False Alarm 

Figure 2.2  Sample Receiver Operating Characteristic (ROC) Curve [2],   The 
ROC curve represents the performance of a given ATR CS as an internal detection 
threshold is varied. The plot above illustrates the ROC curve for four different ATR 
CSs and provides a sample area under the curve (A) performance measure for each 
(higher is better). 

Another desirable characteristic of an ideal ATR CS is its frequency of making 

declarations of targets and non-targets to be detected. Thus, a superior ATR system will 

declare a larger set of the known target population in an image than an inferior system. 

This measure hints at the confidence an ATR has in its detection ability. The probability 

of declaration, or PDEC, is defined as: 
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PDEC = NDEC I NTOTAL (6) 

where Noec represents the number of correct declarations (declaring a ROI to either a 

target or a non-target) made by the ATR CS and NTOTAL is the total number of test objects» 

both targets and confusers. Thus, NDEc consists of all ROIs declared as targets that are 

targets and all ROIs declared to be non-targets by the ATR CS that are confusers. 

It is also desirable that ATR performance is robust to target, environmental, and 

sensor differences; provide an assessment of its confidence in its target estimates; and 

have a well-developed employment concept. ATR CSs are typically trained against a 

given set of baseline, or nominal, target images. An example of ATR performance 

robustness occurs when an ATR CS is able tQ detect and possibly correctly classify an 

MBT even though it has not been presented with the particular configuration that the 

vehicle exhibits. Thus, the ATR CS detects and/or correctly classifies the MBT when a 

variety of external differences from the nominal image training set, such as open hatches, 

turret articulation, or external stores, appear. Performance measures based upon the 

nominal training set, which are generally near perfect, are then compared to the 

performance measures where at least one change is made in the target configuration. It is 

desirable that the probabilities of detection, typification, and classification (PPi Pm, Pcc) 

remain as close to their nominal values as possible. Degradation is measured in percent 

change from the nominal values for some specific target set where the targets are 

perturbed in some fashion. The percent change values for probability of detection are 

calculated in the following manner, and Pcc and PiD are assessed similarly. A nominal 

probability of detection measure (PD.NOM) is assessed against targets at the baseline 

configuration. Next, a probability of detection measure is assessed against all other target 
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configuration deviations of interest (PD-DEV)> which may include sensor, target, 

environmental, or some combination of changes to the configuration. The difference 

between the two measures is assessed: 

&PD = PD-NOM - PD-DBV (7) 

and the resultant difference estimate is between 0 and 1. For a large number of 

observations on a target array, the Central Limit Theorem permits the assumption of 

normality, and the formula: 

V n 
(8) 

can be used to create a probability density function, @(x), around the estimate for use in 

the decision analysis model [3]. To complete the procedure and create a percent change 

in the detection difference measure (%APD), the upper, lower, and mean values of the 

probability of detection difference estimate must be multiplied by 100. Though these 

estimates could be expressed as a normal distribution within the decision analysis model, 

they may be approximated by a triangular distribution. The triangular distribution forces 

the realizations to be bounded within the domain of elicitation of the DA information. 

The ATR CS self-assessment is a confidence, expressed as a probability of 

accuracy, for the detection, typification, and classification estimates, CD,CIP,CCC, 

respectively, as determined by the CS. For example, an ATR CS may have difficulty 

with the correct identification' of a target. Perhaps the target exhibits characteristics that 

indicate to some degree that it is a T-72 MBT, but other characteristics indicate that it is a 

T-80 MBT. The ATR CS provides an identification, declaring that it is either a T-72 or a 

T-80, and an associated confidence, Cm, for its declaration.  A CS may be designed to 

10 
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return a single target type with an associated confidence (e.g., 90 percent confidence that 

the target is a T-80), or a list of several possible target types each with an associated 

confidence (e.g., 60 percent confidence that the target is a T-80 and 40 percent 

confidence that the target is a T-72). Detection and classification confidences perform 

similarly. 

This self-confidence score is compared to the true target identity to assess the 

accuracy of the confidence estimate. The accuracy of these confidence estimates for 

detection, typification, and classification estimates (ES-PD, ES-PCC, ES-PID) are scored on the 

unit interval. The inclusion of the self-assessment measure accuracy in the DA model is 

for use on future ATR systems with this capability. The ATR CSs of the MSTAR 

program did not have the capability to provide or use these measures. 

One possible method of assessing ES-PD, ES.PCC, BS-PJD would be to compare 

CD,CID
tC

cc to the true nature of the target. Continuing with the identification case, 

each target is assigned c!f by the ATR CS, where the variable i indicates the target and 

the variable j indicates various identifications of the same target i by the CS. The self- 

assessment accuracy, ES-PID, may be determined from 

I      N      J 

''S-P1D =~^2J2J 
iy    .=1   y=J 

Z(i-r,)(<T) 
1—1=1—  

Xcf 
-V 

^K) (9) 

where / is the total number of possible target identifications for the ith target» N is the 

total number of targets, M is the total number of target identifications made by the CS, 

and Ttt is an indicator variable defined as: 

1.1 
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j 1,     ID correct 
1     [0,   ID incorrect 

(10) 

Similarly, ES-PD, and ES.PCC are defined by 

I      N      J 

Iy/ i=i j=\ 

Z0-r,)(^) 
«=1 

Xqf 
-V 

r,(cy) en) 

and 

JS-PCC 

1      iV      J 

4X2 A"£ /*» 

S0-r.)(cf) 
1—iHl __  

2*4^"V 
-V i=i 

r,(3*) (12) 

respectively. 

, Finally, cost is a consideration. Costs may be grouped by developmental costs, 

redeployment costs, and operational, or use, costs. Developmental costs are those 

incurred when bringing the ATR to an operational status. Redeployment costs are those 

incurred when moving the ATR from its base to an operational area. Operational costs 

are those incurred when employing the system. Each of these categorical costs may be 

further decomposed into the sub-costs of funding, time, expertise, and risk, except that 

there are no operational risks (with respect to the system performance). 

The value hierarchy that emerged from the elicitation is depicted in Figure 2.3. 

The parenthetical numbers are the weights representing the relative importance, within 

the parent value, of the values. The value hierarchy was decomposed until the bottom 

tier members were measurable. 

12 
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Figure 23 ,k The Value Hierarchy for ATR Decisions, The dashed line under 
Overall Detection Performance indicates that either the Defined PD or the ROC 
measures are employed. The parenthetical numbers indicate the relative weights for a 
value, within the parent value. 

In order to assess the categorical data, scales were constructed. For the adequacy 

of employment concept measure, the created scale categorized the employment concept 

as well defined, strongly defined, moderately defined, poorly defined, and no definition. 

Cost risks were assessed on a scale with low, medium, and high risk. Because these 

scales were developed in cooperation with the subject, no precise definitions were 

specified for the terms. 

2.3 Single Dimensional Value and Utility Function EHcitation. The single 

dimensional value functions were elicited for each of the evaluation measures (the bottom 

tier of the value hierarchy). It was explained that most and least preferred levels of an 

evaluation measure mapped to one and zero respectively, and the function captures 

intervening preference levels. Initial discussion introduced the idea of comparing relative 

13 
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differences in preference between pairs of evaluation measure observations. However, 

the subject was very comfortable with expressing preferences in a quantitative manner, 

usually commenting on a functional form and providing a value to fix the curve. For 

example, he often observed that his preference would decrease exponentially on a 

measure and pass through a point he specified. Direct assessment of the value functions 

was employed. 

Single dimensional utility functions were elicited for continuous evaluation 

measures employing the certainty equivalent lottery technique. In this process the subject 

chooses between uncertain alternatives with two equally likely outcomes, each at the 

extremes of the'evaluation measure domain, or. a certain alternative with some specified 

level of the evaluation measure. The certain alternative is varied until the subject is 

indifferent between the alternatives. As is considered standard practice, the certainty 

equivalent was approached "by alternately providing values from the margins of the 

evaluation measure domain to avoid anchoring. The initial lottery considered the entire 

domain for the evaluation measure under consideration at that point. This provides the 

datum point (known as a mid-value point) for which the subject assigns a utility of 0.5. 

This process was repeated for the sub-domains created about the mid-value point (the 

fractile approach). Thus each utility function is established with five data points, three of 

which are elicited and two defined. The subject again was comfortable with the 

elicitation methodology and often quickly determined his indifference points. As no 

functional form was evident from these elicitations, linear interpolation was employed for 

utilities between elicited points. 

14 
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For the evaluation measures with categorical scales, the probability equivalent 

lottery method was used. The subject is provided a choice between uncertain and certain 

alternatives. The uncertain alternative provides the most preferred level of the alternative 

with some probability p and the least preferred with probability (l-p). The certain 

alternative provides the evaluation measure level for which the corresponding utility will 

be determined. The p is varied until the subject is indifferent. The utility of the certain 

alternative is then equal to p. By considering each category between the least and most 

preferred levels, the utility for each category is determined. Again the subject rapidly 

provided indifference points for/?. 

2.4 ATR CS Alternatives. - Data for most of the evaluation measures of the three 

alternatives, ATR 33, ATR 55, and ATR 89, were available from past MSTAR test data. 

As the MSTAR data did not include all evaluation measures, assumptions were made to 

permit analysis. These assumptions were: 

• Developmental Costs are sunk. Value, v(x), and utility, u{x) are set equal 
to one in the model. 

• Robustness for classify by class {% A Pcc) data was not collected. Data 
have v(x) = w(x) = 1. 

• ATR CSs evaluated in the MSTAR program did not have the self- 
assessment capability: v(x) = M(X) = 0. 

• No Classify by Class data was collected, so it was assumed that PCc = PID- 
This provides a conservative estimate of Pcc. 

• Assumed that, costs for use time greater than 300 CPU seconds have 
v(x) = a(x) = 0and were truncated to stay within elicited domain for this 
evaluation measure. 

• The preference functions for the cost of redeployment of the system were 
elicited on a domain normalized for the Global Hawk system. The Global 
Hawk costs were assumed to be $60k for this study. 

• Operational costs were based on a $10k price for a workstation with a 
three-year lifecycle. 

• Distributions were assumed to be triangular. 

15 
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•    PDEC for all ATR CSs is assumed to be 1 since MSTAR CSs must make a 
declaration decision. 

Some data were fictionalized from their test values to mask competition sensitive 

information. Fictional data are representative and the results may be used to validate the 

methodological approach, but the results are not valid for ATR selection.  The analysis 

would have to be repeated with true data for an ATR selection decision. The data for the 

alternatives is available through the COMPASE Center. 

3,0 Results and Discussion. The expected value results for the alternatives examined 

with value functions (under conditions of uncertainty and certainty where the mean was 

treated as deterministic) and utility functions (under uncertainty) are provided in Table 

3.1. The results for the value functions under certainty differ slightly from those 

employing the value function under uncertainty (note the CID profile for ATR 55). This 

illustrates that using the mean of a distribution and treating it deterministically and using 

a value function does not provide identical results as considering the stochastic nature of 

the problem within the analysis. 

Table 3,1 ATR CS Expected Value and Expected Utility Results. 

ATR 33 ATR 55 ATR 89 
Value 

Functions 
(Certainty) 

CID 0.509 0.537 0.525 
ISR 0.497 0.531 0.497 

Value 
Functions 

(Uncertainty) 

CID 0.509 0.556 0.525 
1!JJK 0.497 0.531 0.497 

Utility 
Functions 

(Uncertainty) 

CID 0.572 0,507 0.51.8 
ISR 0414 0.455 0,439 

16 



[309] 

Comparing, by rank ordering the alternatives, the results of the value functions 

under uncertainty and the utility functions in Table 3.2, we see that the recommended 

alternative differs for the CID case. This indicates that the constructs of value and utility 

provide differing answers. As the problem involves uncertainty, the utility results are the 

appropriate choice. The two employment profiles provide differing recommendations. 

For CID missions, ATR 33 is the best choice. For ISR missions, ATR 55 is the preferred 

alternative. However ATR 89 was the second choice under both profiles. Should one 

ATR be required to perform both missions, ATR 89 may be the most appropriate choice. 

These results are depicted graphically in Figure 3.1. The risk profiles (as cumulative 

distribution functions [CDFs] are referred .to in DA terminology) for the utility 

distributions for the CID and ISR profiles are provided in Figures 3.2 and 3.3. Figures 

3.4 and 3.5 present tornado diagrams for the two profiles where the weights were varied 

by ten percent. The lack of color change (shading) in the bars indicates that the ATR 

choice is not sensitive to the weights elicited from the decision maker. 

Table 3.2 Recommended ATR CS Alternative by Expected Value and Utility. 

ATR 33 ATR 55 ATR 89 
Value Functions 

(Certainty) 
CID 3 1 2 
ISR 2 1 2 

Value Functions 
(Uncertainty) 

CID 3 1 2 
ISR 2 1 2 

Utility Functions 
(Uncertainty) 

CID 1 3 2 
TSR 3 1 2 

17 
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ATR89 ATR55 

ISR 

ATR89 

ATR33 
0.6 

ATR 55 

Figure 3.1 Radar Plots of ATR Value and Utility. Value results are represented by 
solid lines, utility by dashed. The Combat Identification (CID) results are above, the 
Intelligence/Surveillance/Reconnaissance (ISR) are below. 
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Utility 

Figure 3,2 Risk Profile for CID. 

0,43428 0.4545 0.4S47S Ü.4SS 6.4SS35 C1.45SS 0.45575 

Utility 

Figure 3.3 Risk Profile for ISR. 
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Figure 3.4 Sensitivity Analysis for CID Scenarios. 

0.455208 

Weight Pfa 

□.447766 0.5139/0.46265 

Weight Robust TGT/NonTGT 

0.44S666 0.3825/0.461751 

Weight Cost Use Time 

0,452193 0.3915/0.45822^ \ 
Weight Cv Det Perf i 

0.153/0 4 53699 0.456718 

Weight Coat Use 

0.63/0.4 53973      0.456444 

Weight Cost Redep Risk 

0.454948- 0.3213/0-455469 

Weight Cost Dev Risk 

0.36/0.455208 0.4552O8 

Weight Class Qass 

0.4734/0.455208 

Weight Ace Det 
0.2997 / 0.455208 

I I         I         I         I         I         I         I         I         I 

0.448 0.449 0.45 0.451 0.452 0.453 0.454 0.4550.456 0.457 0.45S 0.459 0.46 0.461 0.462 
Utility 

Figure 3*5 Sensitivity Analysis for ISR Scenarios. 
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The following figures illustrate that differing approaches, deterministic value, 

uncertain value and uncertain utility, provide differing answers. For the certain value 

approach, Figure 3.6 shows that for the CID employment profile, increasing cost of the 

ATR CS provides increasing value (benefit). For the ISR profile, ATR 33 dominates 

ATR 89. ATR 55 does provide improved value for an increased cost. These results hold 

for the uncertain value case, as illustrated in Figure 3.7. When utility is employed for the 

CID profile (Figure 3.8), ATR 33 dominates ATR 89, which in turn dominates ATR 55. 

For the ISR profile, increasing cost provides increasing utility (benefit). These 

interpretations agree with those of Table 3.2. Clearly both the mission profile and the 

DA methodology significantly affect the recommendation (answer). 
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0.42 
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Figure 3.6 ATR Value (With Uncertainty) Versus Redeployment Cost. 
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Figure 3.7 ATR Value (With Uncertainty) Versus Redeployment Cost. 
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Figure 3.8 ATR Utility (With Uncertainty) Versus Redeployment Cost. 

4.0 Conclusions. The conclusion can be drawn that the DA approach does indeed work. 

The decision-maker's preferences are encapsulated in the framework, and the resultant 
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utility measure provides a defensible argument towards selecting a given ATR CS over 

another. 

5.0 Recommendations. The authors recommend that these results should be applied 

towards a warfighter's perspective of the same problem. In a method parallel to the one 

detailed*in this report, a DA framework should be constructed that provides a utility 

function measure for combat model results generated using similar ATR CS performance 

measures. The utility of the warfighter perspective may then be used in conjunction with 

the ATR technology developer's utility results in order to positively affect the manner in 

which ATR products are evaluated and judged. 

It is recommended that the decision analysis approach should be incorporated into 

ATR research and development programs. Design of experiments and data collection 

efforts should serve to provide data to score alternatives in accordance with the value 

hierarchy. Assessment of ATR programs should include mission profile considerations. 

Decision analysis evaluations should be utility based unless all criteria are considered to 

be under conditions of certainty, which is unlikely. 
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Appendix A - Elicitation Results 

The results of the elicitation meetings between the authors and the COMPASE 

Center representative are summarized below. Elicitation sessions also included hand- 

drawn plots of the value functions, which are not presented here. 

1.   Robustness. 
a. Top level weight: 0.2 
b. Subvalues: 

i.  Detection Robustness 
1. Units:, percent change in Pd , 

2. Domain: [0,l]. 
3. Weight: 0.425. 
4. Value Function: exponential fitting {(0,1) (25,0.2) (50,0)}. 
5. Utility Function: {(p,l)> (3,0.75)(l0,0.5)(10,0.25) (50,0)}. 

ii.   Identification Robustness 
1. Units: percent change in P^. 

2. .Domain: [o,l]. 
3. Weight: 0.275. 
4. Value Function: exponential fitting {(0,l) (25,0.2) (50,0)}. 
5. Utility Function: {(0,l) (3,0.75) (l0,0.5) (10,0.25) (50,0)}. 

iii.   Classification Robustness 
1. Units: percent change in Pcc. 

2. Domain: [0,l]. 
3. Weight: 0.3. 
4. Value Function: exponential fitting {(0,l) (25,0.2) (50,0)}. 
5. Utility Function: {(0,l) (3,0.75) (10,0.5) (l0,0.25) (50,0)}. 

2.   Overall detection Performance. Note that this value decomposes into either the 
"defined Pd " subvalue or the "ROC" subvalue set, depending on which metric is 
used. 

a.   Top level weight: 0.17. 
b-   Subvalues: 

i.   Defined Pd. 

1.   FAR\Pd. Note, FAR\Pd =0.9 or FAR\Pd =0.5, 
depending on mission profile. 

a. Units: occurences I km2. 
b. Domain: [0,l]. 
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c. Weight: 0.429. 
d. Value Function: exponential fitting 

{(0,l)(l ,0.3) (1000,0)}. 
e. Utility Function: 

{(0,1) (3,0.75) (10,0.5) (50,0.25) (l 000,0)}. 
2.   PFA ! Pa, Note, PFA I Pd = 0.9 or PFA I Pd = 0.5, depending 

on mission profile. 
a. Units: probability. 
b. Domain: [0,l]. 
c. Weight: 0.571. 
d. Value Function: linear fitting {(0,l) (l,0)}. 
e. Utility Function: 

{(0,1) (0.1,0.75) (0.3,0.5) (0.4,0.25) (l,0)}. 
ii.   ROC. 

1. ROC FAR. 
a?  Units: area under ROC curve. 
b. Domain: [0,1000]. 
c. Weight: 0.429. 
d. Value Function: exponential fitting 

{(0,0) (500,0.1) (1000,1)}. 
e. Utility Function: 

{(0,0) (600,0.25) (750,0.5) (875,0.75) (1000,1)}. 
2. ROC PFA. 

a. Units: normalized area under ROC curve. 
b. Domain: [0,l]. 
c. Weight: 0.571. 
d. Value Function: exponential fitting 

{(0.5,0) (0.75,0.3) (1,1)}. 
e. Utility Function: 

{(0.5,0) (0.8,0.25) (0.875,0.5) (0.938,0.75) (l,l)}. 
3, Employment Concept.. 

a. Units: categorical, 
b. Domain: {None, Poorly Defined, Moderately Defined, Strongly Defined, 

Well Defined). 
c. Weight: 0.15. 
d. Value Function: {(None, 0), (Poorly Defined, 0.4), (Moderately Defined, 

0.6), (Strongly Defined, 0.9), (Well Defined, 1)}. 
e. Utility Function: {(None, 0), (Poorly Defined, 0.1), (Moderately Defined, 

0.5), (Strongly Defined, 0.9), (Well Defined, 1)}. 
4, Declaration Ability. 

a. Units: probability, 
b. Domain: [o.5,l], 
c. Weight: 0.13. 
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d. Value Function: exponential fitting {(0,0) (0.5,0.7) (l,l)}. 
e. Utility Function: {(0,0) (0.25,0.25) (0.5,0.5) (0.75,0.75) (u)}. 

5. Classification Ability. 
a. Top level weight: 0.11. 
b. Subvalues: 

i.   Correctly Classify by Type (p/0 ), 
1. Units: probability. 
2. Domain: [0.5,l]. 
3. Weight: 0.474. 
4. Value Function: exponential fitting {(0.5,0) (0.75,0.3) (l,l)}. 
5. Utility Function: 

{(0.5,0) (0.6,0.25) (0.7,0.5) (0.9.0.75) (l,l)>. 
ii.   Correctly Classify by Class (Pcc). 

1. Units: probability, 
2. Domain: [0,l]. 
3. Weight: 0.526. 
4. Value Function: exponential fitting {(0.5,0) (0.75,0.2) (l,l)}. 
5. Utility Function: 

ftO.5,0) (0.6,0.25) (0.7,0.5) (0.9.0.75) (l,l)}. 
6. Cost 

a. Top level weight: 0.1. 
b. Subvalues: 

l.   Development 
ii.  Weight: 0.01. 

1. Money. 
a. Units: $M. 
b. Domain: [0,10], 
c. Weight: 0.24. 
d. Value Function: exponential fitting 

{(0,1) (5,0.3) (10,0)}. 
e. Utility Function: 

{(0,1) (2.5,0.75) (5,0.5) (7.5,0.25) (10,0)}. 
2. Time. 

a. Units: months. 
b. Domain: [0,18]. 
c. Weight: 0.2. 
d. Value Function: exponential fitting 

{(0,1)(9,0.3)(18,0)| 
e. Utility Function: 

{(0,1)(4.5,0.75)(9,0.5)(13.5,0.25)(18,0)}. 
3. Expertise 

a.   Units: categorical. 
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b. Domain: {Technical Training, BS in Engineering, 
Graduate-level Engineer, Multi-location subject 
matter experts (SME), Single Site SME}. 

c. Weight: 0.16. 
d. Value Function: {(Technical Training, 1), (BS in 

Engineering, 0.8), (Graduate-level Engineer, 0.4), 
(Multi-location subject matter experts (SME), 0.2), 
(Single Site SME, 0)}. 

e. Utility Function: {(Technical Training, 1), (BS in 
Engineering, 0.9), (Graduate-level Engineer, 0.8), 
(Multi-location subject matter experts (SME), 0.7), 
(Single Site SME, 0)}. 

4.   Risk 
a. Units: categorical. 
b. Domain: Low, Medium, and High. 
c. Weight: 0.4. 
d. Value Function: exponential fitting: {(Low, 1), 
'  (Medium, 0.5), (High, 0)}. 

e. Utility Function: {(Low, 1), (Medium, 0.8), (High, 
0)}, 

iii.  Redeployment, 
iv.   Weight: 0.29. 

1, Money. 
a. Units: normalized on Global Hawk, 
b. Domain: [o,l]. 
c. Weight: 0.143. 
d. Value Function: linear, {(0,l)(l/3,0)(l,0)}. 
e. Utility Function: 

{(0,l)(0.15,0,75K0.333,0.5)(0.9999,0.25)(l,0)}. 
2, Time. t 

a. Units: days. 
b. Domain: [0,90]. 
c. Weight: 0.179. 
d. Value Function: exponential fitting 

{(0,l)(45,0.2X90,0)}. 
e. Utility Function: 

{(0,1) (15,0.75) (30,0.5) (50,0,25) (90,0)}. 
3, Expertise 

a. Units: categorical. 
b. Domain: {Technical Training, BS in Engineering, 

Graduate-level Engineer, Multi-location subject 
matter experts (SME), Single Site SME}. 

c. Weight: 0.321. 
d. Value Function: {(Technical Training, 1), (BS in 

Engineering, 0.95), (Graduate-level Engineer, 0.9), 
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(Multi-location subject matter experts (SME), 0.5), 
(Single Site SME,0)). 

e.   Utility Function: {(Technical Training, 1), (BS in 
Engineering, 0.95), (Graduate-level Engineer, 0.9), 
(Multi-location subject matter experts (SME), 0.8), 
(Single Site SME, 0)}. 

4. Risk 
a. Units: categorical. 
b. Domain: Low, Medium, and High. 
c. Weight: 0.357, 
d. Value Function: exponential fitting: {(Low, 

(Medium, 0.5), (High, 0)). 
1), 

e. Utility Function: {(Low, 1), (Medium, 0.2), (High, 
0)}. 

v.   Use, 
vi.   Weight: 0.7. 

1. Money. 
a.' Units: normalized on Global Hawk, 
b. Domain: [0,2]. 
c. Weight: 0.217. 
d. Value Function: exponential fitting 

{(0,1) (1,0.2) (2,0)}. 
e. Utility Function: 

{(0,1) (0.5,0.75) (1,0.5) (1.5,0.25) (2,0)| 
2. Time. 

a. Unitsi minutes. 
b. Domain: [0,5]. 
c. 
d. 

Weight: 0.435. 
Value Function: exponential fittine 
{(0,1) (2:30,0.3) (5,0)}. 

e.   Utility Function: 
{(0,1) (1,0.75) (2,0.5) (3,0.25) (5,0)}. 

3.   Expertise 
a. Units: categorical. 
b. Domain: {Technical Training, BS in Engineering, 

Graduate-level Engineer, Multi-location subject 
matter experts (SME), Single Site SME}. 

c. Weight: 0.348. 
d. Value Function: {(Technical Training, 1), (BS in 

Engineering» 0.4), (Graduate-level Engineer, 0.3), 
(Multi-location subject matter experts (SME), 0.1), 
(Single Site SME, 0)}. 

e. Utility Function: {(Technical Training, 1), (BS in 
Engineering» 0.2), (Graduate-level Engineer, 0.1), 
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(Multi-location subject matter experts (SME), 0.05), 
(Single Site SME,0)}. 

7.   Self-Assessed Accuracy. 
. a.   Es-Pd 

i.   Units: 
ii.   Domain: [0,1]. 

m\  Weight: 0.333. 
iv.   Value Function: exponential fitting {(0,l) (0.5,0.7) (lt0)}. 
v.   Utility Function: {(0,l) (0.25,0.75) (0.5,0.5) (0.75,0.25) (l,0)}. 

b. Es-Pid 
i.   Units: 

ii.   Domain: [0,1], 
iii.   Weight: 0.333. 
iv.  Value Function: exponential fitting {(0,l) (0,5,0.7) (l,0)}. 
v.   Utility Function: {(0,1) (0.25,0.75) (0.5,0.5) (0.75,0.25) (1,0)}. 

c. Es-Pcc 
i.   Units;    '     ? 

•   ii.   Domain: [0,1]. 
iii.   Weight: 0.333. 
iv.   Value Function: exponential fitting {(0,l) (0.5,0.7) (l,0)} 
v.   Utility Function: {(0,l) (0.25,0.75) (0.5,0,5) (0.75,0.25) (l,0)| 
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AFR.L 

AGRI 

ATR 

CTD 

COMPASE Center 

CS 

DA 

ISR 

MBT 

MSTAR 

ROC 

SAR 

TGT 

List of Acronyms 

Air Force Research Laboratory 

Air-to-Ground Radar Imaging 

Automatic Target Recognition 

Combat Identification 

Comprehensive ÄTR Scientific Evaluation Center 

Classification System 

Decision Analysis 

Intelligence/Surveillance/Reconnaissance 

Main Battle Tank 

Moving and Stationary Target Acquisition and Recognition 

Receiver Operating Characteristic 

synthetic aperture radar 

target 
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Appendix E.  ATR CS Hybrid Utility Detailed Results  

 

Background.  An application of decision analysis to the problem of selection of 

an Automatic Target Recognition (ATR) classification system (CS) is provided in 

Chapter V.  Detailed information is presented below.  Simply stated, these results are a 

series of group screening steps investigating the significance of the evaluation measures.    

First Group Screening.  The ATR CS hybrid utility information presented in 

chapter V included the algorithm results involving the significant variables.  The detailed 

experimental setup is shown in Table 59.  The subscripts for the exponential constant 

variables of the initial group screening, iρ , are: 

1. Robustness,  

2. Overall Detection Performance,  

3. Employment Concept,  

4. Declaration Ability,  

5. Classification Ability,  

6. Cost, and  

7. Self-Assessed Accuracy.   

Explanation of the variables and the values corresponding to the settings for each row are 

presented in Chapter V.  

 

Table 59.  Detailed Experimental Design and Results for ATR Problem. 
Row Pattern 

1ρ  2ρ  3ρ  4ρ  5ρ  6ρ  7ρ   
Profile Alternative Û  

1 ---------- -.1 -.1 -.1 -.1 -.1 -.1 -.1 −w  CID ATR 33 0.278 

2 ---------0 -.1 -.1 -.1 -.1 -.1 -.1 -.1 −w  CID ATR 55 0.302 

3 ---------+ -.1 -.1 -.1 -.1 -.1 -.1 -.1 −w  CID ATR 89 0.292 

4 +-+---+++- .1 -.1 .1 -.1 -.1 -.1 .1 +w  ISR ATR 33 0.535 

5 +-+---+++0 .1 -.1 .1 -.1 -.1 -.1 .1 +w  ISR ATR 55 0.505 

w
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Row Pattern 
1ρ  2ρ  3ρ  4ρ  5ρ  6ρ  7ρ  

Profile Alternative Û  
 

6 +-+---++++ .1 -.1 .1 -.1 -.1 -.1 .1 +w  ISR ATR 89 0.506 

7 ++-+---++- .1 .1 -.1 .1 -.1 -.1 -.1 +w  ISR ATR 33 0.480 

8 ++-+---++0 .1 .1 -.1 .1 -.1 -.1 -.1 +w  ISR ATR 55 0.544 

9 ++-+---+++ .1 .1 -.1 .1 -.1 -.1 -.1 +w  ISR ATR 89 0.546 

10 -++-+---+- -.1 .1 .1 -.1 .1 -.1 -.1 −w  ISR ATR 33 0.601 

11 -++-+---+0 -.1 .1 .1 -.1 .1 -.1 -.1 −w  ISR ATR 55 0.645 

12 -++-+---++ -.1 .1 .1 -.1 .1 -.1 -.1 −w  ISR ATR 89 0.647 

13 +-++-+---- .1 -.1 .1 .1 -.1 .1 -.1 −w  CID ATR 33 0.574 

14 +-++-+---0 .1 -.1 .1 .1 -.1 .1 -.1 −w  CID ATR 55 0.622 

15 +-++-+---+ .1 -.1 .1 .1 -.1 .1 -.1 −w  CID ATR 89 0.627 

16 ++-++-+--- .1 .1 -.1 .1 .1 -.1 .1 −w  CID ATR 33 0.610 

17 ++-++-+--0 .1 .1 -.1 .1 .1 -.1 .1 −w  CID ATR 55 0.623 

18 ++-++-+--+ .1 .1 -.1 .1 .1 -.1 .1 −w  CID ATR 89 0.602 

19 +++-++-+-- .1 .1 .1 -.1 .1 .1 -.1 +w  CID ATR 33 0.772 

20 +++-++-+-0 .1 .1 .1 -.1 .1 .1 -.1 +w  CID ATR 55 0.806 

21 +++-++-+-+ .1 .1 .1 -.1 .1 .1 -.1 +w  CID ATR 89 0.795 

22 -+++-++-+- -.1 .1 .1 .1 -.1 .1 .1 −w  ISR ATR 33 0.512 

23 -+++-++-+0 -.1 .1 .1 .1 -.1 .1 .1 −w  ISR ATR 55 0.565 

24 -+++-++-++ -.1 .1 .1 .1 -.1 .1 .1 −w  ISR ATR 89 0.583 

25 --+++-++-- -.1 -.1 .1 .1 .1 -.1 .1 +w  CID ATR 33 0.500 

26 --+++-++-0 -.1 -.1 .1 .1 .1 -.1 .1 +w  CID ATR 55 0.545 

27 --+++-++-+ -.1 -.1 .1 .1 .1 -.1 .1 +w  CID ATR 89 0.541 

28 ---+++-++- -.1 -.1 -.1 .1 .1 .1 -.1 +w  ISR ATR 33 0.381 

29 ---+++-++0 -.1 -.1 -.1 .1 .1 .1 -.1 +w  ISR ATR 55 0.360 

30 ---+++-+++ -.1 -.1 -.1 .1 .1 .1 -.1 +w  ISR ATR 89 0.376 

31 +---+++-+- .1 -.1 -.1 -.1 .1 .1 .1 −w  ISR ATR 33 0.524 

32 +---+++-+0 .1 -.1 -.1 -.1 .1 .1 .1 −w  ISR ATR 55 0.515 

33 +---+++-++ .1 -.1 -.1 -.1 .1 .1 .1 −w  ISR ATR 89 0.531 

34 -+---+++-- -.1 .1 -.1 -.1 -.1 .1 .1 +w  CID ATR 33 0.414 

35 -+---+++-0 -.1 .1 -.1 -.1 -.1 .1 .1 +w  CID ATR 55 0.433 

36 -+---+++-+ -.1 .1 -.1 -.1 -.1 .1 .1 +w  CID ATR 89 0.414 

37 00000000-- ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  CID ATR 33 0.509 

38 00000000-0 ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  CID ATR 55 0.556 

39 00000000-+ ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  CID ATR 89 0.525 

40 00000000+- ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  ISR ATR 33 0.497 

41 00000000+0 ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  ISR ATR 55 0.531 

w
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Row Pattern 
1ρ  2ρ  3ρ  4ρ  5ρ  6ρ  7ρ  

Profile Alternative Û  
 

42 00000000++ ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  ISR ATR 89 0.497 

 

Second Group Screening.  The group screening experimental design for the 

robustness group is presented in Table 60. 

 

Table 60.  Robustness Screening Experimental Design and Response for ATR Problem. 
Row Pattern 

1ρ  2ρ  3ρ  w  Profile Alternative Û  
1 ---++- -.1 -.1 -.1 +w  ISR ATR 33 0.0289 

2 +++--- .1 .1 .1 −w  CID ATR 33 0.949 

3 -++--- -.1 .1 .1 −w  CID ATR 33 0.577 

4 +--++- .1 -.1 -.1 +w  ISR ATR 33 0.745 

5 -+--+- -.1 .1 -.1 −w  ISR ATR 33 0.577 

6 +-++-- .1 -.1 .1 +w  CID ATR 33 0.745 

7 --++-0 -.1 -.1 .1 +w  CID ATR 55 0.286 

8 ++--+0 .1 .1 -.1 −w  ISR ATR 55 0.996 

9 --+-+0 -.1 -.1 .1 −w  ISR ATR 55 0.331 

10 ++-+-0 .1 .1 -.1 +w  CID ATR 55 0.995 

11 -+-+-0 -.1 .1 -.1 +w  CID ATR 55 0.534 

12 +-+-+0 .1 -.1 .1 −w  ISR ATR 55 0.708 

13 -+++++ -.1 .1 .1 +w  ISR ATR 89 0.526 

14 +----+ .1 -.1 -.1 −w  CID ATR 89 0.701 

15 -----+ -.1 -.1 -.1 −w  CID ATR 89 0.324 

16 ++++++ .1 .1 .1 +w  ISR ATR 89 0.987 

17 -----+ -.1 -.1 -.1 −w  CID ATR 89 0.324 

18 ++++++ .1 .1 .1 +w  ISR ATR 89 0.987 

19 000011 ∞  ∞  ∞  0w  CID ATR 33 0.618 

20 000012 ∞  ∞  ∞  0w  CID ATR 55 0.671 

21 000013 ∞  ∞  ∞  0w  CID ATR 89 0.584 

22 000021 ∞  ∞  ∞  0w  ISR ATR 33 0.618 

23 000022 ∞  ∞  ∞  0w  ISR ATR 55 0.671 

24 000023 ∞  ∞  ∞  0w  ISR ATR 89 0.584 

 

w
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Third Group Screening.  The group screening experimental design for the cost 

group is presented in Table 61. 

 

Table 61.  Cost Screening Design and Response for ATR Problem. 
Row Pattern 

1ρ
 

2ρ
 

3ρ
 

4ρ
 

5ρ
 

6ρ
 

7ρ
 

8ρ
 

9ρ
 

10ρ
 

11ρ
 

w  ATR Û  

1 --++--++-+--- -.1 -.1 .1 .1 -.1 -.1 .1 .1 -.1 .1 -.1 −w  33 0.642 
2 ---+++++++-+0 -.1 -.1 -.1 .1 .1 .1 .1 .1 .1 .1 -.1 +w  55 0.617 
3 +-+--++-+-+-- .1 -.1 .1 -.1 -.1 .1 .1 -.1 .1 -.1 .1 −w  33 0.612 
4 -------+----+ -.1 -.1 -.1 -.1 -.1 -.1 -.1 .1 -.1 -.1 -.1 −w  89 0.370 
5 +----++--+--- .1 -.1 -.1 -.1 -.1 .1 .1 -.1 -.1 .1 -.1 −w  33 0.439 
6 +++-+--++---0 .1 .1 .1 -.1 .1 -.1 -.1 .1 .1 -.1 -.1 −w  55 0.496 
7 ++++-++++--+- .1 .1 .1 .1 -.1 .1 .1 .1 .1 -.1 -.1 +w  33 0.703 
8 --+-+++++--+0 -.1 -.1 .1 -.1 .1 .1 .1 .1 .1 -.1 .-1 +w  55 0.617 
9 ++-----+++++- .1 .1 -.1 -.1 -.1 -.1 -.1 .1 .1 .1 .1 +w  33 0.778 
10 ++-++-+--+-+0 .1 .1 -.1 .1 .1 -.1 .1 -.1 -.1 .1 -.1 +w  55 0.443 
11 +---++++-+++0 .1 -.1 -.1 -.1 .1 .1 .1 .1 -.1 .1 .1 +w  55 0.546 
12 ++++++-+++--+ .1 .1 .1 .1 .1 .1 -.1 .1 .1 .1 -.1 −w  89 0.694 
13 -++-++-+--++- -.1 1 .1 -.1 .1 .1 -.1 .1 -.1 -.1 .1 +w  33 0.703 
14 -++---+--+-+0 -.1 .1 .1 -.1 -.1 -.1 .1 -.1 -.1 .1 -.1 +w  55 0.443 
15 ++-+-+---+-++ .1 .1 -.1 .1 -.1 .1 -.1 -.1 -.1 .1 -.1 +w  89 0.804 
16 ---+---++-++- -.1 -.1 -.1 .1 -.1 -.1 -.1 .1 .1 -.1 .1 +w  33 0.664 
17 --++-+----+-0 -.1 -.1 .1 .1 -.1 .1 -.1 -.1 -.1 -.1 .1 −w  55 0.351 
18 --+-+-+-+++-+ -.1 -.1 .1 -.1 .1 -.1 .1 -.1 .1 .1 .1 −w  89 0.756 
19 -+-+++--++--- -.1 .1 -.1 .1 .1 .1 -.1 -.1 .1 .1 -.1 −w  33 0.705 
20 +---+--+-+--- .1 -.1 -.1 -.1 .1 -.1 -.1 .1 -.1 .1 -.1 −w  33 0.642 
21 +-+--+--++-++ .1 -.1 .1 -.1 -.1 .1 -.1 -.1 .1 .1 -.1 +w  89 0.815 
22 +++---+++--++ .1 .1 .1 -.1 -.1 -.1 .1 .1 .1 -.1 -.1 +w  89 0.526 
23 +-+++---++++0 .1 -.1 .1 .1 .1 -.1 -.1 -.1 .1 .1 .1 +w  55 0.444 
24 +---+++-+--++ .1 -.1 -.1 -.1 .1 .1 .1 -.1 .1 -.1 -.1 +w  89 0.456 
25 +++++++---+-- .1 .1 .1 .1 .1 .1 .1 -.1 -.1 -.1 .1 −w  33 0.612 
26 ++----+-+-+-0 .1 .1 -.1 -.1 -.1 -.1 .1 -.1 .1 -.1 .1 −w  55 0.483 
27 +-++--++-++-+ .1 -.1 .1 .1 -.1 -.1 .1 .1 -.1 .1 .1 −w  89 0.747 
28 -++---------++ -.1 .1 .1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 +w  89 0.445 
29 +++-++-+-++-0 .1 .1 .1 -.1 .1 .1 -.1 .1 -.1 .1 .1 −w  55 0.477 
30 --+++-------+ -.1 -.1 .1 .1 .1 -.1 -.1 -.1 -.1 -.1 -.1 −w  89 0.370 
31 -++++-+++---- -.1 .1 .1 .1 .1 -.1 .1 .1 .1 -.1 -.1 −w  33 0.549 
32 -----++-+---0 -.1 -.1 -.1 -.1 -.1 .1 .1 -.1 .1 -.1 -.1 −w  55 0.522 
33 ++-+-+++--+++ .1 .1 -.1 .1 -.1 .1 .1 .1 -.1 -.1 .1 +w  89 0.552 
34 +-++----++++- .1 -.1 .1 .1 -.1 -.1 -.1 -.1 .1 .1 .1 +w  33 0.778 
35 -+-------++-0 -.1 .1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 .1 .1 −w  55 0.312 
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Row Pattern 
1ρ
 

2ρ
 

3ρ 4ρ
 

5ρ 6ρ 7ρ 8ρ 9ρ 10ρ 11ρ
 

w  ATR Û  
       

36 -+--++-++++-+ -.1 .1 -.1 -.1 .1 .1 -.1 .1 .1 .1 .1 −w  89 0.703 
37 -++-+++--+++- -.1 .1 .1 -.1 .1 .1 .1 -.1 -.1 .1 .1 +w  33 0.817 
38 ++-++-+-----0 .1 .1 -.1 .1 .1 -.1 .1 -.1 -.1 -.1 -.1 −w  55 0.425 
39 +--++---+-+++ .1 -.1 -.1 .1 .1 -.1 -.1 -.1 .1 -.1 .1 +w  89 0.456 
40 -+--+-----++- -.1 .1 -.1 -.1 .1 -.1 -.1 -.1 -.1 -.1 .1 +w  33 0.664 
41 -+++-+--++-+0 -.1 .1 .1 .1 -.1 .1 -.1 -.1 .1 .1 -.1 +w  55 0.468 
42 -+-+-+++-++-+ -.1 .1 -.1 .1 -.1 .1 .1 .1 -.1 .1 .1 −w  89 0.807 
43 +---++-------- .1 -.1 -.1 -.1 .1 .1 -.1 -.1 -.1 -.1 -.1 −w  33 0.612 
44 ---+-+-+--++0 -.1 -.1 -.1 .1 -.1 .1 -.1 .1 -.1 -.1 .1 +w  55 0.475 
45 --+-+-+--++++ -.1 -.1 .1 -.1 .1 -.1 .1 -.1 -.1 .1 .1 +w  89 0.837 
46 ---++-++++-+- -.1 -.1 -.1 .1 .1 -.1 .1 .1 .1 .1 -.1 +w  33 0.778 
47 +-+++--+--+-0 .1 -.1 .1 .1 .1 -.1 -.1 .1 -.1 -.1 .1 −w  55 0.438 
48 -+-++++-+-+-+ -.1 .1 -.1 .1 .1 .1 .1 -.1 .1 -.1 .1 −w  89 0.553 
49 00000000000- ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  33 0.719 
50 000000000000 ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  55 0.500 
51 00000000000+ ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  ∞  0w  89 0.670 

 

Fourth Group Screening.  The group screening experimental design for the 

detection performance group is presented in Table 62. 

 

Table 62.  Detection Performance Screening Experimental Design and Response for ATR 
Problem. 

Row Pattern 1ρ  2ρ  w  Profile ATR Û  
1 ---+- -.1 -.1 −w  ISR ATR 33 0.0850 
2 +++-- .1 .1 +w  CID ATR 33 0.680 
3 -++-- -.1 .1 +w  CID ATR 33 0.317 
4 +--+- .1 -.1 −w  ISR ATR 33 0.0850 
5 -+--- -.1 .1 −w  CID ATR 33 0.260 
6 +-++- .1 -.1 +w  ISR ATR 33 0.104 
7 --++0 -.1 -.1 +w  ISR ATR 55 0.0133 
8 ++--0 .1 .1 −w  CID ATR 55 0.919 
9 --+-0 -.1 -.1 +w  CID ATR 55 0.331 
10 ++-+0 .1 .1 −w  ISR ATR 55 0.996 
11 -+-+0 -.1 .1 −w  ISR ATR 55 0.522 
12 +-+-0 .1 -.1 +w  CID ATR 55 0.373 
13 -++++ -.1 .1 +w  ISR ATR 89 0.626 
14 +---+ .1 -.1 −w  CID ATR 89 0.486 
15 ----+ -.1 -.1 −w  CID ATR 89 0.383 
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Row Pattern ρ  ρ  w  Profile ATR ˆ1 2 U  
16 +++++ .1 .1 +w  ISR ATR 89 0.991 
17 ----+ -.1 -.1 −w  CID ATR 89 0.383 
18 +++++ .1 .1 +w  ISR ATR 89 0.991 
19 000-- ∞  ∞  0w  CID ATR 33 0.204 
20 000-0 ∞  ∞  0w  CID ATR 55 0.570 
21 000-+ ∞  ∞  0w  CID ATR 89 0.464 
22 000+- ∞  ∞  0w  ISR ATR 33 0.468 
23 000+0 ∞  ∞  0w  ISR ATR 55 0.562 
24 000++ ∞  ∞  0w  ISR ATR 89 0.480 

 

 

Fifth Group Screening.  The group screening experimental design for the 

classification ability group is presented in Table 63. 

 
 

Table 63.  Classification Ability Screening Design and Response for ATR Problem. 

Row Pattern 1ρ  2ρ  w  Profile ATR Û  
1 ---+- -.1 -.1 −w  ISR ATR 33 0.00106 
2 +++-- .1 .1 +w  CID ATR 33 1.000 
3 -++-- -.1 .1 +w  CID ATR 33 0.684 
4 +--+- .1 -.1 −w  ISR ATR 33 0.508 
5 -+--- -.1 .1 −w  CID ATR 33 0.603 
6 +-++- .1 -.1 +w  ISR ATR 33 0.410 
7 --++0 -.1 -.1 +w  ISR ATR 55 0.0150 
8 ++--0 .1 .1 −w  CID ATR 55 0.995 
9 --+-0 -.1 -.1 +w  CID ATR 55 0.110 
10 ++-+0 .1 .1 −w  ISR ATR 55 0.990 
11 -+-+0 -.1 .1 −w  ISR ATR 55 0.484 
12 +-+-0 .1 -.1 +w  CID ATR 55 0.455 
13 -++++ -.1 .1 +w  ISR ATR 89 0.552 
14 +---+ .1 -.1 −w  CID ATR 89 0.529 
15 ----+ -.1 -.1 −w  CID ATR 89 0.0436 
16 +++++ .1 .1 +w  ISR ATR 89 0.967 
17 ----+ -.1 -.1 −w  CID ATR 89 0.0436 
18 +++++ .1 .1 +w  ISR ATR 89 0.967 
19 00011 ∞  ∞  0w  CID ATR 33 0.811 
20 00012 ∞  ∞  0w  CID ATR 55 0.769 
21 00013 ∞  ∞  0w  CID ATR 89 0.655 
22 00021 ∞  ∞  0w  ISR ATR 33 0.293 
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23 00022 ∞  ∞  0w  ISR ATR 55 0.557 
24 00023 ∞  ∞  0w  ISR ATR 89 0.374 

 

 

Hybrid Value-Utility Algorithm.  The results from applying the algorithm to all 

evaluation measures for each mission profile are presented here. 

 

Table 64.  CID Profile Value, Utility, and Hybrid Utility Results, All Evaluation 
Measures. 

 Notes ATR 33 ATR 55 ATR 89 
Goal Utility Model 0.572 0.507 0.518 

Iteration     
0 Value Model 0.509 0.556 0.525 
1 Employment Concept 0.464 0.511 0.480 
2 Detection Robustness 0.455 0.471 0.442 
3 Probability of False Alarm 0.529 0.500 0.512 
4 Classification by Class 0.536 0.509 0.524 
5 Classification by Type 0.538 0.511 0.528 
6 Identification Robustness 0.529 0.505 0.509 
7 False Alarm Rate 0.569 0.506 0.510 
8 Declaration Ability 0.569 0.506 0.510 
9 Cost Use Time 0.569 0.506 0.513 
10 Classification Robustness 0.569 0.506 0.513 
11 Cost Redeployment Time 0.570 0.507 0.513 
12 Cost Use Expertise 0.570 0.507 0.513 
13 Cost Redeployment Risk 0.570 0.504 0.513 

14 
Cost Redeployment 

Expertise 0.570 0.506 0.516 
15 Cost Use Money 0.570 0.507 0.516 

16 
Cost Development 

Expertise 0.570 0.507 0.516 
17 Redeployment Money 0.572 0.507 0.518 
18 Cost Development Money 0.572 0.507 0.518 
19 Cost Development Risk 0.572 0.507 0.518 
20 Cost Development Time 0.572 0.507 0.518 
21 Es Pd 0.572 0.507 0.518 
22 Es Pid 0.572 0.507 0.518 
23 Es Pcc 0.572 0.507 0.518 
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Table 65.  ISR Profile Value, Utility, and Hybrid Utility Results, All Evaluation 
Measures. 

 Notes ATR 33 ATR 55 ATR 89 
Goal Utility Model 0.415 0.455 0.439 

Iteration     
0 Value Model 0.497 0.531 0.500 
1 Employment Concept 0.452 0.486 0.452 
2 Detection Robustness 0.443 0.446 0.414 
3 Probability of False Alarm 0.371 0.415 0.383 
4 Classification by Class 0.392 0.430 0.403 
5 Classification by Type 0.405 0.435 0.413 
6 Identification Robustness 0.395 0.429 0.394 
7 False Alarm Rate 0.412 0.455 0.432 
8 Declaration Ability 0.412 0.455 0.432 
9 Cost Use Time 0.412 0.455 0.434 
10 Classification Robustness 0.412 0.455 0.434 
11 Cost Redeployment Time 0.413 0.455 0.434 
12 Cost Use Expertise 0.413 0.455 0.434 
13 Cost Redeployment Risk 0.413 0.452 0.434 

14 
Cost Redeployment 

Expertise 0.413 0.455 0.437 
Cost Use Money 0.413 0.455 0.437 

16 
Cost Development 

Expertise 0.413 0.455 0.437 
17 Redeployment Money 0.415 0.455 0.439 
18 Cost Development Money 0.415 0.455 0.439 
19 Cost Development Risk 0.415 0.455 0.439 
20 Cost Development Time 0.415 0.455 0.439 
21 Es Pd 0.415 0.455 0.439 
22 Es Pid 0.415 0.455 0.439 
23 Es Pcc 0.415 0.455 0.439 

15 
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