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Abstract 

This dissertation focuses on improving the ability to detect dim stellar objects that 

are in close proximity to a bright one, through statistical image processing using short 

exposure images.  The goal is to improve the space domain awareness capabilities with the 

existing infrastructure.  In this research, two new algorithms are developed to improve dim 

object detection.  The first one is through the Neighborhood System Blind Deconvolution 

where the data functions are separated into the bright object, the neighborhood system 

around the bright object, and the background function.  The second one is through the 

Dimension Reduction Blind Deconvolution, where the object function is represented by 

the product of two matrices, whose ranks are lower than the size of the object function.  

Both are designed to overcome the photon counting noise and the random and turbulent 

atmospheric conditions.  The performance of the algorithms are compared with that of the 

multi-frame blind deconvolution approach by Schulz because the new algorithms also use 

the Poisson noise model similar to Schulz.  The new algorithms are tested and validated 

with computer generated data.  The Neighborhood System Blind Deconvolution is also 

modified to overcome the undersampling effects since it is validated on the undersampled 

laboratory collected data.  Even though the algorithms are designed for ground to space 

imaging systems, the same concept can be extended for space to space imaging.   This 

research provides two better techniques to improve closely spaced dim object detection.   
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IMPROVING CLOSELY SPACED DIM OBJECT DETECTION THROUGH 

IMPROVED MULTI-FRAME BLIND DECONVOLUTION 

 
 

1. Introduction 

1.1. Chapter Overview 

This chapter starts with the motivation for the need to detect dim or small stellar 

objects that are in close proximity to a bright object.  Then, it explains the overall purpose 

and specific research tasks to improve such capabilities.  It also describes the assumptions 

that are made throughout this research.  This chapter is concluded with the organization of 

this dissertation. 

1.2. Motivation 

The earth orbits have been increasingly congested ever since the launch of the 

Sputnik I in October 1957 [1].  Each launch adds debris and rocket bodies into these earth 

orbits.  When China launched the anti-satellite (ASAT) weapon against their weather 

satellite in January 2007, it added a cloud of debris into the already congested space [2].  

In February 2009, the collision between a Russian satellite and an American Iridium global 

communications satellite introduced an additional cloud of space debris [3].  Figure 1.1 

shows the increasing trend for the total amount of space debris with two sharp increases in 

2007 and 2009 from these events.   

In addition, the SpaceWorks Enterprise, an aerospace engineering company that 

specializes in the design and assessment of advanced space concepts for both government 

and commercial customers, estimated in 2019 that there is a market for 2,000 to 2,800 
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nanosatellites and microsatellites to be launched over the next 5 years [4].  The 

categorization of the satellites are shown in Figure 1.2. 

 

 

Figure 1.1. Number of Objects in Earth Orbit by Object Type [5]. 

 

 

Figure 1.2. Satellite Categorization [4]. 
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With the proliferation of nanosatellites and microsatellites and the huge amount of 

space debris, maintaining situational awareness on the high value space assets is very 

critical.   These orbital debris and small objects can instantly destroy or disable the space 

assets.  A collision with a ten centimeter object would catastrophically damage a typical 

satellite, a one centimeter object would likely disable a spacecraft, and a one millimeter 

object could destroy a satellite sub-system [6].  For example, in 2013, when the Russian 

nanosatellite called BLITS (“Ball Lens in the Space”) was knocked out of its orientation 

by a debris from the 2007 Chinese ASAT [7].  Therefore, detecting these small objects is 

very critical to ensure that they would not intentionally or unintentionally collide with the 

high value space assets, damaging and degrading the critical missions and services for the 

military, the commercial industries, and the science and academic institutions.    

1.3. Overall Purpose and Research Tasks 

Since dependable and safe operations in space are vital to the United States national 

security as well as global economic viability [8], the United States Strategic Command 

(STRATCOM) is charged with the space control mission, as one of its missions.  The space 

control mission is conducted at the Combined Space Operations Center (CSPOC), which 

detects, tracks, and identifies all man-made objects in the Earth orbits [9].  The CSPOC 

was transitioned from the Joint Space Operations Center (JSPOC) on 18 July 2019 to 

improve coordination between the U.S., its allies, and the commercial and civil partners 

for defensive space efforts [10].  On 20 December 2019, the United States Space Force 

(USSF) became the sixth branch of the armed forces because of the importance of space 

for the way of life, the economy, and the national interests of the United States [11].   
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The overall purpose of this research is to help contribute the space control mission 

of the USSF by improving the algorithm for detecting small objects through statistical 

image processing techniques, using the existing infrastructures.  In addition to the national 

security applications, the techniques found in this research can be adopted for astronomy 

and other academic disciplines.  To support the overall purpose, this research proposes the 

following tasks.  

1.  Develop algorithm(s) to improve the ability of detecting small space objects 

using short exposure images. 

2.  Validate the algorithm(s) with computer generated data. 

3.  Validate the algorithm(s) with the telescope systems within the Space 

Surveillance Network or the academic and scientific communities.  

1.4. Sources of Image Degradation 

This research addresses three major sources of image degradation.  The first source 

is the photon counting noises associated with the charge-coupled devices (CCD).  The 

second source is the atmospheric turbulence.  The last source is the spatial undersampling.  

The first two are random in nature and the last one is deterministic.  In addition, for ground 

to space imaging, the first two are always coupled, with or without the last one.  Depending 

on the image collection setup, such as the size of the CCD pixel and the geometry of the 

CCD and the stellar objects of interest, the last source may or may not be coupled with the 

first two.    
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1.5. Assumptions and Limitations 

To address these sources of degradation, the following assumptions are made 

throughout this research.  They are explained in the Methodology chapter. 

1.  The Fresnel far-field propagation criteria is met, allowing to implement the 

propagation as a Fourier Transform.   

2. The imaging region is smaller than the isoplanatic patch size, where the imaging 

system is linear and shift-invariant.  

3.  The effects of the atmospheric turbulence is frozen for short exposure images.  

4.  The atmospheric point spread functions are uncorrelated. 

5. The CCD introduces signal dependent Poisson noise. 

6. The background noise also follows Poisson distribution. 

7. The light incident on the CCD is temporally incoherent. 

8. The intensities of the data function pixels are statistically independent.  

1.6. Document Outline 

This document is organized in the following way.  Chapter 2 provides the relevant 

background on the noise introduced by the CCD, the mathematical model for representing 

and generating the atmospheric turbulence using the Zernike technique, and the evolution 

of the blind deconvolution algorithm from the approach by Richardson and Lucy to the 

multi-frame blind deconvolution (MFBD) approach by Schulz.  It also explains the 

Gerchberg-Saxton phase retrieval algorithm as well as the mathematical model for 

describing the effects of spatial undersampling. 
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Chapter 3 provides the methodology where the assumptions are explained.  The 

mathematical model for the imaging system is explained, along with the parameters used 

for generating atmospheric turbulence phase screens using the Zernike technique.  These 

phase screens along with signal dependent Poisson noise are used for generating the data 

functions to test and validate the algorithms.  A total of eight scenarios are generated where 

the intensities of the dim object vary from 10% to 0.25% of the intensity of the bright 

object.  It also explains the two metrics for comparing the performance of the new 

algorithms with the MFBD approach by Schulz.   

In Chapter 4, the Neighborhood System Blind Deconvolution (NSBD) is derived, 

where the data functions are separated into three sets, which are the primary bright object, 

the neighborhood system around the bright object, and the background.  The performance 

of the NSBD algorithm is compared with that of the MFBD using the computer generated 

data. 

In Chapter 5, the NSBD is modified to overcome the undersampling effects so that 

it can be used for testing the undersampled laboratory data collected at the Air Force 

Institute of Technology.  In addition, a computer generated data is created to mimic the 

laboratory conditions to ensure that the performance results are consistent.  The 

performance of the undersampled NSBD is compared with that of the MFBD, which is also 

modified to take into account for the undersampling effects. 

In Chapter 6, the Dimension Reduction Blind Deconvolution (DRBD) is derived, 

where the object function is represented as a product of two matrices, whose ranks are 

lowered than the dimension of the object function.  In the first case, the object function is 
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assumed to be spatially separable, meaning that it can be represented by the outer product 

of two one-dimensional vectors.  The second case no longer assumes the object function to 

be spatially separable where the object function with the size of N N  pixels is 

represented by the product of 2N  and 2 N matrices.  The DRBD algorithm is tested on 

the computer generated data and the performance results are compared with that of the 

MFBD algorithm. 

This dissertation is concluded with Chapter 7, which summarizes the work 

completed.  It also discusses the potential future work and the publications.  
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2. Background and Literature Review 

2.1. Chapter Overview 

This chapter presents the background and literature review as well as the foundation 

for the tools and methods that are used throughout this research.  As mentioned in Section 

1.4, there are three major sources of degradation to the quality of astronomical images: (1) 

the photon counting noise associated with the charge-coupled device (CCD), (2) the 

atmospheric turbulence, and (3) the spatial undersampling.  This chapter provides the 

background for the sources of the degradation and the techniques to overcome them.  It 

starts with an overview of the astronomy detectors, including the CCDs.  It then explains 

the statistics of the associated photon counting noise.  Next, it provides an overview of the 

atmospheric turbulence and a technique to simulate the turbulence using the Zernike 

polynomials since the turbulence can be observed in the point spread function (PSF).  

Afterwards, it provides methods for overcoming the first two sources of image degradation 

and an explanation for the last one.  Then, it introduces the blind deconvolution algorithm 

to recover the degraded images.  Combining the developments in electrical engineering, 

astronomy, statistics, and medical communities, this chapter shows how the Richardson-

Lucy method is evolved into the Expectation-Maximization (EM) based Multi-Frame 

Blind Deconvolution (MFBD) algorithm, which is the current standard for the United 

States Air Force’s Space Domain Awareness (SDA) applications and also used by the 

scholars in the electro-optics community [12]–[15].  Then, this chapter describes a phase 

retrieval method to recover the two-dimensional phase to address and overcome the image 
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degradation caused by the atmospheric turbulence.  Lastly, it explains the process of the 

spatial undersampling so that the effects can be compensated. 

2.2. Evolution of Astronomy Detectors 

Astronomers have been observing the skies in search of asteroids, planets, and stars 

for centuries.  The act of finding space objects with ground based telescopes has been 

performed by astronomers since the 17th century  [16].  Even though he did not invent the 

telescope, Galileo Galilei was the first person to use a telescope to look at the celestial 

bodies [17].  Since then, astronomy has made great strides.  From observation through 

naked eyes, the technology has evolved to photography, to photoelectric single-channel 

devices, to plate scanners, to television-type imagers, to semiconductor-based devices, and 

to energy-resolution arrays [18].   The CCDs and avalanche photodiode detectors fall under 

the semiconductor-based device category, while the superconducting tunnel junction falls 

under the energy resolution array category.     

Different types of sensors introduce different types of limitations as well as 

different types of noise.  The CCDs have been the most common imaging sensors in the 

astronomy and space surveillance communities for visible and near ultraviolet light since 

the 1980s [19], [20].  Since the overall goal of this research is to improve closely spaced 

dim object detection and image reconstruction using the existing infrastructure, the Poisson 

noise model associated with the CCD is used throughout this research. 

2.3. Photon Counting Noise Overview 

In any optical telescope system, there are many sources of noise that can negatively 

affect the ability to detect closely spaced objects, especially when they are very dim.  These 
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include photon counting or photo-conversion noise, background light, readout noise, non-

uniform flat-field response, non-uniform spectral response, and extraneous charge carriers 

resulting from bias, dark current, and both internal and external background radiation [21], 

[22].  The systems deployed for the SDA applications generally utilize the CCDs where 

the primary concern is the Poisson distributed photon counting noise [23]–[25].  

Additionally, the internal and external background radiation, the dark current, and the bias 

are also Poisson distributed random variables [26].  As such, this research derives the new 

algorithms using the Poisson noise model.   

This section introduces the Poisson random variable and its key characteristics that 

will be used throughout this research.  Let 
1 2{ , ,..., }KX X X  be a set of independent Poisson 

random variables with their corresponding means of 
1 2

{ , ,..., }.  
KX X X   

  ~ Poisson  where 1,..., .
jj XX j K   (2.1)  

The first key characteristic is that the sum of independent Poisson random variables 

is also a Poisson random variable.  In addition, the mean of the sum of the Poisson random 

variables is equal to the sum of the means of the Poisson random variables [27].  In other 

words,  

 

 
1 2

1 2 ... ,

... ,

~ Poisson .

   



   

   
K

K

Y X X X

Y

Y X X X

Y

 (2.2)  

 The second key characteristic is that the conditional probability  P jX Y  takes on 

the form of a Binomial random variable [28].  To make the derivation simple, an 

intermediate random variable, Z, is introduced.   
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Next, the conditional probability is calculated as the following: 
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 (2.4)  

 After rearranging the variables, the probabilities on the right side of Equation (2.4) 

are substituted with their associated Poisson probability mass functions (PMF).  

Rearranging the terms results in a binomial PMF as shown in Equation (2.5). 



 

12 

 

 
 

   

   

 

! !
P |

!

!

!( )!

!

!( )!

!

!( )!

X jj Z

X Z jj

j

j

j

j j

j j

k n k
X Z

j n

X Z

k n k

X Z

n

X Z

k n k

X Z

X Z X Z

k n

X Y X

Y Y

e e
k n k

X k Y n

e
n

n

k n k

n

k n k

n

k n k

 

 

 

 

 

 

 

   

  

 


 

 





  
  
      



 
  

  

    
              

    
            

BinomialP ; , .
j

k

X

j

Y

X k N n p






 
     

 

 

(2.5) 

With the second key characteristic, the third key characteristic can be derived, 

which is the conditional expectation, 1E ... ,1 ,k NX Y X X k N         using the 

expectation of a binomial PMF described in Equation (2.6) [27]. 

  BinomialE ; ,X N p Np , (2.6)  

 Poisson BinomialE | E ; ,
 

 

 
       

  

j jX X

j

Y Y

X Y n X N n p n . (2.7) 

The above equation (2.7) plays an important role in the subsequent section on 

deriving the blind deconvolution algorithm. 

2.4. Atmospheric Turbulence Simulation  

 Since the atmospheric turbulence is one of the three major sources of image 

degradation, the simulation of the atmospherically distorted waveforms is important in 
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understanding the propagation of light and imaging through the atmospheric turbulence.  

The optical effects of atmospheric turbulence arise from random inhomogeneities in the 

temperature distribution of the atmosphere [29].  This section explains the technique for 

simulating such effects.   

 Even though there are many techniques such as Kolmogoroff, Tatarskii, von 

Karman, and the exponential spectrum models [30]–[33], these techniques often 

underrepresent the lower-order aberrations such as tilt, which makes up a majority of the 

atmospheric energy spectrum [34], [35].  Since the Zernike polynomial-based phase screen 

addresses such lower order aberrations [35], [36], the Zernike technique is used in this 

research.    

2.4.1. Zernike Polynomial Overview 

This research uses the modified Zernike polynomial, proposed by Noll in 1976, 

which permits all the statistical aberration strengths to be calculated analytically [37], even 

though the Zernike representation was originally presented by Fried in 1965 [38].  In this 

research, the modified Zernike polynomials are used and they are simply called the Zernike 

polynomials.   

The Zernike polynomials are a set of polynomials defined on a unit circle, with a 

key property of being orthogonal over the unit circle.  The Zernike polynomials are defined 

as shown below. 

 ( , ) 2( 1) ( ) ( ) m m m

n nZ r n R r G  , (2.8) 

where r and θ are the radial distance and polar angle in the polar coordinate system, m and 

n are non-negative integers, representing the azimuthal frequency and radial degree, such 
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that ,m n  ( )m

nR r  is the radial factor, and  ( )mG   is the annular factor.  However, it is 

convenient to express the Zernike polynomials with one index as shown in the equation 

below, compared to that shown in Equation (2.8). 
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 
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sin  odd,
( )

cos  even.

m
m i

G
m i







 


 (2.11) 

Even though the mapping ( , )n m i  looks complicated, it can be easily 

implemented in programming languages, such as MATLAB.  The graphical 

representations for the first 15 Zernike polynomials are shown in Figure 2.1.  The 

mathematical equations for the first 24 Zernike polynomials are shown in Table 2.1, along 

with their names.  The orthogonality relationship for the Zernike polynomials is given by 

the following equations. 

 

1
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1
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2 1
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 , (2.12)  

 

2

'

0

( ) ( ) ( , ')
m mG G d m m


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2 1

'

0 0
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 (2.15) 

 With the polynomials completely defined, any wavefront, ( , ),r   can be 

expressed as a linear combination of the Zernike polynomials with the corresponding 

Zernike coefficients, ,ia  as shown in the equation below. 

    
1

, ,i i

i

r a Z r  




 . (2.16)  

Due to the orthogonality principle, the Zernike coefficients can be decomposed 

using the following equation. 

 

2 1

0 0

2 1
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. (2.17)  

When converted to the discrete two-dimensional Cartesian coordinates from the 

polar coordinates, the Zernike coefficients are decomposed using the following equation. 
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Figure 2.1. The Graphical Representation of the first 15 Zernike Polynomials.  
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Table 2.1. The First 24 Zernike Polynomials [34]. 

n  m  i  ( , )m

nZ r   or ( , )iZ r   Name 

0 0 1 1 piston 

1 1 2  2 cosr   x  tilt 

1 1 3  2 sinr   y  tilt 

2 0 4  23 2 1r  defocus 

2 2 5  26 sin 2r   y  primary astigmatism 

2 2 6  26 cos 2r   x  primary astigmatism 

3 1 7    38 3 2 sinr r   y  primary coma 

3 1 8    38 3 2 cosr r   x  primary coma 

3 3 9  38 sin 3r   y  trefoil 

3 3 10  38 cos 3r   x  trefoil 

4 0 11  4 25 6 6 1 r r  primary spherical 

4 2 12    4 210 4 3 cos 2r r   x  secondary astigmatism 

4 2 13    4 210 4 3 sin 2r r   y  secondary astigmatism 

4 4 14  410 cos 4r   x  tetrafoil 

4 4 15  410 sin 4r   y  tetrafoil 

5 1 16    5 312 10 12 3 cos r r r   x  secondary coma 

5 1 17    5 312 10 12 3 sin r r r   y  secondary coma 

5 3 18    5 312 5 4 cos 3r r   x  secondary trefoil 

5 3 19    5 312 5 4 sin 3r r   y  secondary trefoil 

5 5 20  512 cos 5r   x  pentafoil 

5 5 21  512 sin 5r   y  pentafoil 

6 0 22  6 4 27 20 30 12 1  r r r  secondary spherical 

6 2 23    6 4 214 15 20 6 sin 2 r r r   y  tertiary astigmatism 

6 2 24    6 4 214 15 20 6 cos 2 r r r   x  tertiary astigmatism  
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2.4.2. Zernike Phase Screen Generation 

In this research, a set of Zernike coefficients is generated to simulate a turbulent 

wavefront.  As shown in Equation (2.16), a turbulent wavefront is made up of infinitely 

many Zernike coefficients.  Since it is impossible to generate infinitely many Zernike 

coefficients in simulation, this research uses a fixed number of coefficients, p, to simulate 

a wavefront. 

 The Zernike coefficients of an atmospheric wavefront is said to be Gaussian with 

zero mean and some variance [35].  However, it is not possible to directly simulate a 

wavefront by using Gaussian random numbers as the Zernike coefficients using Equation 

(2.16) because there exists a covariance among the coefficients, meaning the Zernike 

coefficients are not statistically independent [35].   

In this research, the desire is to generate a set of uncorrelated atmospheric 

wavefronts.  To do such, an orthonormal basis with a set of completely uncorrelated 

random variables is formed with the Karhunen-Loève functions as described subsequently.   

The following derivations are adopted from the work by Putnam and Cain [36] and 

that by Roddier [35].  Let us define A as a vector of p Zernike coefficients and C is the 

covariance matrix among the first p modes.  Since the first Zernike polynomial is a piston 

or a constant and it does not have any effects on the aberration, it is ignored. 

 2 3 ...   A
T

pa a a . (2.19) 
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Figure 2.2. The covariance matrix, C, among the first (p = 14) Zernike modes without 

the piston term, in (D/r0)5/3 units [35]. 

 

The individual elements of the covariance matrix can be computed using the 

following equations [35]. 

 
  
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 (2.22) 

       ' parity , ' 0z m m j j m      , (2.23) 



 

20 

where ,  ,  ',n m n  and 'm  are the radial degrees and azimuthal frequencies of jZ  and 'jZ  

associated with the coefficients ja  and 'ja , z  is a logical Kronecker symbol, D  is the 

diameter of the aperture of the optical system, and 
0r  is the Fried’s seeing parameter.   

 From the numerical analysis by Roddier, C  is known to be Hermitian as shown in 

Figure 2.2.  Therefore, there exists a unitary matrix 1, ( ), U U U
T  such that  

 D UCU
T , (2.24)  

where D is a diagonal matrix.  Note that C is unique for every unique 0/D r  ratio.  Next 

another vector, N, is defined such that its elements are the coefficients of the Karhunen-

Loève function as shown in Equation (2.26). 

 2 3 ...   N
T

pn n n , (2.25)  

 .N UA  (2.26) 

Next, the Cholesky decomposition of C can be derived by combining Equation 

(2.20), Equation (2.24), and Equation (2.26). 

 

 E

E

E .

T T T

T T

T

   

   

   

UCU U AA U

UAA U

NN

 (2.27)  

Since a set of independent Gaussian random variables are also uncorrelated, 

selecting N to be a set of independent and identically distributed zero mean, unit variance 

Gaussian random variables gives the following. 

 
E

.

T T

T

   



UCU NN I

C U U

 (2.28)  
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Since N UA , a set of Zernike coefficients is generated from a set of independent 

or uncorrelated Gaussian random variables as the following. 

 A U N
T . (2.29)  

With the resultant Zernike coefficients from the equation above, they can be used 

in Equation (2.16) to simulate a turbulent wavefront.  Since N is a set of independent 

Gaussian random variables, any two wavefronts generated using this technique are 

uncorrelated. 

2.5. Point Spread Function  

 In an aberration free optical system, an aperture function is defined shown in the 

equation below. 

 
1 Transparent Region,

( )
0 Opaque Region,

u
A u

u


 


 (2.30)  

where u represents a region over which the two dimension aperture region is defined.  The 

physical and mathematical representations are shown in Figure 2.3. 

 

 

Figure 2.3. Graphical Representation of Aberration Free Pupil Function. 
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For incoherent light, an aberration free PSF, h, is defined as the square of the 

magnitude of the Fourier Transform of the aperture function as shown in the equation 

below [39]. 

  
21

( ) ( ) ,h x A u
U

 F  (2.31)  

where x is a pixel in the discrete two-dimensional region over which the PSF is defined, F  

is the Fourier Transform function, and U is some constant to ensure that the PSF is a 

conservative process and sums up to unity as shown in the equation below. 

 ( ) 1.
x

h x


  (2.32) 

 In the presence of atmospheric turbulence, the atmospheric PSF can be derived as 

shown in the equation below. 

   
2 2( )1 1

( ) ( ) ( )j uh x A u e x
U U

  HF , (2.33) 

where   is the atmospheric wavefront derived in Equation (2.16) and  j is the imaginary 

number.  The Fourier Transform of the aperture function with an atmospheric wavefront, 

,H  is defined as shown in the equation below.  This term is used in the Gerchberg-Saxton 

phase retrieval algorithm descried in the later section. 

  ( )( ) ( ) j ux A u e  FH . (2.34) 

 The Fourier Transform of the PSF is called the optical transfer function (OTF), 

which is represented by H. 

  ( ) ( )H f h x F . (2.35)  
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2.6. Blind Deconvolution Algorithm  

In signal processing, convolution refers to computing the output function from a 

given input function and an impulse response of a linear shift-invariant system as shown 

in Figure 2.4.  The dimensionality of the input, output, and impulse response functions is 

dependent on the application.  In the electro-optics community, the impulse response 

function is also called the PSF.  In this research, the output functions are two dimensional 

short exposure speckled images.  Conversely, deconvolution refers to as determining the 

input function or the impulse response from the known output function in the off-line 

processing.  If deconvolution is performed for the real-time processing, it is referred to as 

equalization  [40].  In astronomy, since the estimation of the input function is conducted 

after the image function or the output function is obtained, the problem falls under 

deconvolution instead of equalization.   

 

 

Figure 2.4. Signal Processing System Diagram. 

 

There are two categories of deconvolution problems.  The first category includes 

system identification, where the input function and the corresponding output function are 

known.  Alternatively, in some situations, the requirement is to calculate the input function 

where the system impulse response and the output function are known.  The second 
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category is called blind deconvolution when both the input function and the impulse 

response are not known, and the only available information is the output function.   Since 

the goal is to estimate the unknown astronomical object function that is passed through 

some unknown impulse responses to generate the output image function, this research falls 

into the blind deconvolution category. 

 

Table 2.2. Signal Processing Categories. 

Problem Processing Input 
Impulse 

Response 
Output 

Convolution Any Known Known Unknown 

Deconvolution Off-Line Unknown Known Known 

Deconvolution 

(System Identification) 
Off-Line Known Unknown Known 

Equalization Real-Time Unknown Known Known 

Equalization 

(System Identification) 
Real-Time Known Unknown Known 

Blind Deconvolution Off-Line Unknown Unknown Known 

Blind Equalization Real-Time Unknown Unknown Known 

 

Even though there are many well-known statistical filtering algorithms, such as the 

Wiener and Kalman filters, they are known for removing the additive white Gaussian noise 

(AWGN) that is independent of the signal [41]–[43].  The image processing model of these 

types can be mathematically and pictorially described as shown in Equation (2.36) and 

Figure 2.5. 

 ( ) ( ) ( ) ( )
x

i y o x h y x n y


   ,  (2.36) 
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where o(x) is the object function, h(x) is the PSF, n(y) is the additive white Gaussian noise, 

i(y) is the resultant image function, x is the two-dimensional (2D) coordinate for the object 

function, and y is the 2D coordinate for the image function and the noise.  The assumption 

is made that the imaging region of interest is smaller than the isoplanatic patch size, where 

the system is linear and shift-invariant [44].  Therefore, the image function can be 

expressed as a convolution between the PSF and the object function. 

 

 

Figure 2.5. Image Processing Model with Signal Independent Additive White 

Gaussian Noise. 

 

 In addition to the Wiener and Kalman filters, there have been many researches and 

studies on the blind deconvolution techniques [45]–[50].  Most assumed the noise is signal-

independent.  However, this research uses the Poisson noise model, which is signal 

dependent as shown in the figure below. 

 

 

Figure 2.6. Image Processing Model with Signal Dependent Poisson Noise. 
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Le, Chartrand, and Asaki [51] and Jonsson, Huang, and Chang [52] introduced the 

techniques for filtering signal dependent Poisson noise using the non-linear total variation 

approach, originally proposed by Rudin, Osher, and Fatemi [53].  However, their 

approaches were focused on edge-preservation denoising [48], [54], which is different from 

the primary challenge in this research, which is to detect and estimate point sources.  In 

addition, another challenge with the Total Variation and Gradient Descent Algorithms is 

that they are dependent on the parameters to control the step size and the smoothness 

function.  These parameters need to be estimated or guessed.  The advantage of the blind 

deconvolution is that it does not require these estimations. 

As a result, this research is built on the blind deconvolution algorithm, which is 

designed to reconstruct the point sources degraded by signal dependent noise in addition 

to the atmospheric turbulence.  Even though the blind deconvolution algorithm has been 

used and developed for decades, its best known application has been the reconstruction of 

blurred images from wide-field planetary camera from the Hubble Space Telescope (HST), 

which was launched on 24 April 1990 [55].  Two decades prior to the HST launch, 

Richardson (1972) and Lucy (1974) developed a Bayesian-based iterative deconvolution 

algorithm while working independently in electrical engineering and astronomy [56], [57].  

In 1977, Dempster, Laird, and Rubin received widespread attention in the statistics 

community with their publication of an iterative Expectation-Maximization (EM) 

algorithm, which optimizes the maximum likelihood function (MLE) functions [58]–[60].  

In 1982, Shepp and Vardi introduced the EM based image reconstruction method in 

emission tomography to the medical imaging community using Poisson distribution [61].  
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In 1993, Schulz adapted the deconvolution algorithm from Shepp and Vardi and extended 

it to multi-frame blind deconvolution of astronomical images [62].  The following 

subsections provide the overviews of these developments. 

2.6.1. Richardson-Lucy Method  

The Fourier transform has been used successfully in image restoration when the 

noise content is low or moderate; however the Fourier methods fail when the noise content 

is high [63], [64].  Richardson and Lucy applied a Bayesian-based iterative method to 

restore noisy degraded images in the spatial domain.  In their approaches, they used the 

Bayes’s postulate, also known as the equidistribution of ignorance, which will be explained 

later in this section.   

The object function is defined as { ( ) : }o x x X  where X is the discretized two-

dimensional region over which the object function is defined.  The object function passes 

through a PSF, { ( | ) : , }, h y x x X y Y  where Y is the discretized two-dimensional region 

over which the image function, ( ),i y  is defined as shown in Figure 2.7.  

 

 

Figure 2.7. Image Processing System Diagram. 
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With the assumption that the imaging region is smaller than isoplanatic patch, the 

image function can be described as a convolution of the object function with the PSF. 

 ( ) ( ) ( ),
x X

i y h y x o x
 

   (2.37)  

where y is a pixel from Y and  x is a pixel from X.  The Bayesian probabilistic model for 

the object function is shown in Equation (2.38). 

 

 
 

 

   

   

P ( ), ( )
P ( ) | ( )

P ( )

P ( ) | ( ) P ( )
.

P ( ) | ( ) P ( )
z X

i y o x
o x i y

i y

i y o x o x

i y o z o z
 






 (2.38)  

With the goal to estimate the object function, the probability of the object function 

is expressed as the marginal probability function of the joint distribution function between 

the object function and the image function as shown in Equation (2.39), which can also be 

expressed in terms of Bayes’s Rule. 

 

   

   

P ( ) P ( ), ( )

P ( ) ( ) P ( ) .

y

y

o x o x i y

o x i y i y












 (2.39)  

Substituting Equation (2.38) into Equation (2.39) results in the following. 

  
   

   
 

P ( ) | ( ) P ( )
P ( ) P ( )

P ( ) | ( ) P ( )

 

  
  

   
    


y

z X

i y o x o x
o x i y

i y o z o z
. (2.40)  

In the equation above, the desired solution, which is the object function, appears on 

both sides of the equation.  In many applications of the Bayes’s theorem, when the desired 

solution is not known, an accepted practice is to make the best of a bad situation and use 
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an estimate of  P ( )o x  to obtain and approximation of  P ( ) ( )o x i y  [65].  Therefore, the 

iterative solution becomes the following. 

    
   

   
new

P ( ) | ( ) P ( )
P ( ) P ( )

P ( ) | ( ) P ( ) 

 

 
y Y

z X

i y o x i y
o x o x

i y o z o z
. (2.41)  

The iterative solution is currently in the form of probabilistic model.  Using the 

Bayes’s Postulate or the equidistribution of ignorance, which assumes a uniform 

distribution for the object, image, and point spread functions, the approach converted from 

the probabilistic domain to the spatial domain by dividing the value of the individual pixel 

by the sum of all pixels of its corresponding spatial function. 

  
( ) ( )

P ( )
( )

 

 
 o

z X

o x o x
o x

o z S
, 

(2.42)  

  
( ) ( )

P ( ) ,
( ) i

v Y

i y i y
i y

i v S
 

 


 
(2.43) 

where Si is the sum of all pixels of the image function and So is the sum of all pixels in the 

object function.  Richardson defined the conditional probability   P ( ) | ( )i y o x  as the 

following. 

  
( )

P ( ) | ( ) ( ),
h

h y x
i y o x h y x

S


    (2.44)  

where Sh is the sum of all pixels in the PSF, which is constrained to be one to ensure the 

process is conservative.  As a result, Si is equal to So.  Substituting Equation (2.42) through 

Equation (2.44) into Equation (2.41) results in the following equation. 
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i
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o zS S
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S

 
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








, (2.45)  

Simplifying the above equation results in the following Richardson-Lucy 

deconvolution algorithm. 

 new old

old

( ) ( )
( ) ( )

( ) ( )y Y

z X

h y x i y
o x o x

h y z o z 

 








. 
(2.46) 

In the next section, the EM algorithm is introduced, which is a further improvement 

over the Bayes’s Postulate or the equidistribution of ignorance used by Richardson and 

Lucy.  

2.6.2. Expectation-Maximization Algorithm 

In this section, the EM is explained in terms the electro-optic terms and variables 

instead of the statistical terms.   In 1976, Dempster, Laird, and Rubin introduced an iterative 

maximum likelihood from the incomplete data via the generalized EM algorithm.  The term 

“incomplete data” stems from the existence of many-to-one mapping from one space to 

another space [58].  The observed data is called the “incomplete data” which is formed 

from the summation of the unobserved data or the “complete data” as shown below.   

   ( , )
x

i y i y x


 , (2.47)  

where ( )i y  is the “incomplete” image function and ( , )i y x  is the “complete” image 

function.  In the subsequent sections, the term “data” also appears as the data functions, 

which is formed when the photon counting noise is introduced to the image functions.  To 
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avoid confusion, the “incomplete data” defined by Dempster will be simply called 

“incomplete” for the remaining of this document.  The term “data” will be reserved for 

describing the data function which is the output of the CCD. 

Since the image function is the convolution of the PSF, h, with the object function, 

o, as shown in Equation (2.37), the complete image function can be expressed as a pixel-

by-pixel multiplication of the PSF and the object function as shown in the equation below. 

 ( , ) ( ) ( )i y x h y x o x  . (2.48)  

Depending on the situation, either or both of the object function and the PSF are 

unknown.  To estimate the object function or the PSF or both, this approach takes the 

maximum likelihood estimation (MLE) of the complete image function.  For deconvolution 

problems, the MLEs of the object function and the PSF are shown in Equation (2.49) and 

Equation (2.50).  For blind deconvolution problems, the MLE of both is shown in Equation 

(2.51). 

    P ( , )
x y

L o i y x
 

 , (2.49)  

    P ( , )
x y

L h i y x
 

 , (2.50) 

    , P ( , )
x y

L o h i y x
 

 . (2.51) 

The EM algorithm requires maximizing the MLE functions.  Instead of maximizing 

them directly, it is much simpler to maximize the logarithm (log) of the MLE functions.  

Due to the fact that log is a real (ℝ), one-to-one, and strictly monotonic function for any 

real (ℝ) argument greater than zero, maximizing the log of a function will give the same 
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maximum location as the maximizing the function itself.  Therefore, the log is applied on 

the MLE function to obtain the log-likelihood function, , as shown below. 

 

   

 

log

log P ( , ) .
x y

o L o

i y x
 



   
 (2.52)  

Until converges, the EM algorithm iteratively calculates the conditional expectation 

of the log-likelihood function in the Expectation Step (E-Step) and maximizes the resultant 

conditional expectation function in the Maximization Step (M-Step) to estimate the object 

function or the PSF or both.  The E-Step and the M-Step are shown in Equation (2.53) and 

Equation (2.54) for estimating the object function.  The system diagram for the EM 

algorithm is shown in Figure 2.8. 

 E-Step:    E ( )Q o o i y    , (2.53)  

 M-Step:  
( )

ˆ( ) arg max
o x

o x Q o . (2.54) 

 

 

 

Figure 2.8. Generalized Expectation-Maximization Algorithm for Estimating the 

Object Function. 

 

For blind deconvolution, the conditional expectation function from the E-Step will 

be maximized with respect to both the true object function, o, and the PSF, h.  Even though 



 

33 

there is no requirement on the type of probability distribution function to be used for the 

image function, Dempster, Laird, and Rubin used an exponential random variable whose 

MLE function is easily computed, resulting in an easy computation for the E-Step and the 

M-Step.  Therefore, in this section, the image function, i, is treated as an exponential 

random variable, which is not the case for the rest of this document.  In the next section, 

the EM algorithm is derived for the data functions with Poisson distribution since the 

Poisson noise model is used for medical imaging devices and CCDs [22]. 

2.6.3. Expectation-Maximization in Medical Imaging  

In 1982, Shepp and Vardi applied the EM algorithm for emission tomography, with 

a Poisson random variable.  This section also uses the terms and variables that are 

consistent with the electro-optics instead of those from the medical imaging community.  

The electro-optics equivalent of Shepp and Vardi’s problem is shown in Figure 2.9. 

 

 

Figure 2.9. Medical Image Reconstruction System Diagram. 

 

 From the figure above, the data function is formed by introducing the photon 

counting noise to the image function.  As a result, the relationship between the image 

function and the data function can be described as the following. 
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  E ( ) ( )d y i y . (2.55) 

 Since the sum of independent Poisson distributions is also a Poisson distribution, 

the complete data function, ( , )d y x , and its probability mass function in terms of the 

complete image function, ( , )i y x , are defined as the following. 

 ( ) ( , )
x

d y d y x


 , (2.56) 

 E ( , ) ( , )d y x i y x    , (2.57)  

  
( , )

( , ) ( , )
P ( , )

( , )!

d y x
i y x i y x

d y x e
d y x

 . (2.58) 

 The MLE function and the log-likelihood functions are shown in Equation (2.59) 

and Equation (2.60).  Since the Poisson distribution uses an exponential function, the 

natural logarithm (ln) is used in the log-likelihood function.   

    P ( , )
x y

L o d y x
 

 , (2.59)  

 

   

( , )
( , )

ln P ( , )

( , )
ln

( , )!

( , ) ( , ) ln ( , ) A.T. ,

x y

d y x
i y x

x y

x y

o d y x

i y x
e

d y x

i y x d y x i y x

 



 

 

 
 

 
  

 

     







 (2.60) 

where A.T. represents the additional term that does not affect the maximization [62].  In 

the subsequent equations, this A.T. term will be dropped.  With the log-likelihood function 

derived, the conditional expectation given the incomplete data, ( ),d y  can be calculated as 

the following. 
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   

   

 

E ( )

E ( , ) ( , ) ln ( , ) ln ( , )! ( )

E ( , ) ( ) E ( , ) ln ( , ) ( ) .

x y

x y x y

Q o o d y

i y x d y x i y x d y x d y

i y x d y d y x i y x d y

 

   

   

 
      

  

       



 

 (2.61)  

 Substituting ( , ) ( ) ( )i y x h y x o x   from Equation (2.48) into the equation above 

gives us the following conditional expectation function.  

 

 

 

E ( ) ( ) ( )

E ( , ) ln ( ) ( ) ( )

( ) ( )

ln ( ) ( ) E ( , ) ( ) .

x y

x y

x y

x y

Q o h y x o x d y

d y x h y x o x d y

h y x o x

h y x o x d y x d y

 

 

 

 

     

  
 

   

  
 









 (2.62)  

Since the object function and the PSF do not have probability distributions, their 

conditional expectation functions are just themselves.  The complete data function, 

( , ),d y x  also takes on the Poisson distribution [62].  In Equation (2.7), the conditional 

expectation function of a Poisson random variable given a sum of Poisson random variables 

including itself, 1E ... ,     k NX Y X X  was derived.  Since the incomplete data is the 

sum of complete data as shown in Equation (2.47) and both the incomplete data and the 

complete data are Poisson random variables, the conditional expectation function of a 

complete data given the incomplete data is given by the following equation. 
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E ( , ) ( ) E ( , ) ( , )

E ( , )
( )

E ( , )

( ) ( )
( )

( ) ( )

( ) ( )
( ).

( )

z X

z X

z X

d y x d y d y x d y z

d y x
d y

d y z

h y x o x
d y

h y z o z

h y x o x
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 

 

 

        

 
 

 
 
 















 (2.63)  

In the EM algorithm, the new functions are iteratively updated from the estimations 

of the old functions.  Thus, Equation (2.63) represents the old terms.  Substituting Equation 

(2.63) into Equation (2.62) gives the following conditional expectation function, which is 

the E-Step in the EM algorithm. 

 

 

 
old old

old

( ) ( )

( ) ( )
ln ( ) ( ) ( ) .

( )

x y

x y

Q o h y x o x

h y x o x
h y x o x d y

i y

 

 

  

  
   

  




 (2.64)  

Next, the conditional expectation function is maximized with respect ( )o x  by 

taking the derivative and setting it to zero. 
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 
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




   
     
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 
   

 

 
 

 

 





 (2.65)  

Therefore, the update equation for the new estimate for the object function becomes 
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 new

( )

old
old

old

( ) arg max

( )
( ) ( ) .

( )

o x

y

o x Q o

h y x
o x d y

i y



 
  

 


 (2.66)  

Next, the techniques from this section are adapted and expanded for blind 

deconvolution when the data functions from multiple unknown PSFs are available.  

2.6.4. Multi-Frame Blind Deconvolution of Astronomical Images   

The statistical model used by Shepp and Vardi for the medical imaging detector 

took on a Poisson distribution, which is consistent with the statistical model of CCDs used 

in electro-optics [22].  In 1993, Schulz adapted Shepp and Vardi’s algorithm and expanded 

for multi-frame blind deconvolution for astronomical images. 

With multiple atmospheric PSFs, { ( ) : 1,..., },kh x k K  where K is the total number 

of PSFs, the corresponding image functions, ( ),ki y can be defined as the following. 

 ( ) ( ) ( ) ( , )k k k

x X x X

i y h y x o x i y x
 

    . (2.67)  

 

 

Figure 2.10. System Diagram for Multi-Frame Blind Deconvolution. 
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Using similar concepts as Shepp and Vardi, the incomplete image function for each 

frame, ( ),ki y  can be expressed as a sum of a complete image function for each frame, 

( , )ki y x . 

 ( ) ( , )k k

x X

i y i y x


 , (2.68) 

 ( , ) ( ) ( )k ki y x h y x o x  . (2.69) 

The data functions for the complete data and incomplete data for each of the frames 

also assume Poisson distribution. 

  E ( ) ( )k kd y i y , (2.70)  

 E ( , ) ( , )k kd y x i y x    , (2.71) 

 ( ) ( , )k k

x X

d y d y x


 . (2.72) 

With multiple PSFs, the joint likelihood of the complete data, L, and the joint log- 

likelihood, ℓ, can be expressed as the following.    

  ( , ) P ( , )k k

k y x

L o h d y x
  

 , (2.73)  

 ( , ) ln ( , )k ko h L o h . (2.74) 

Next, the Q-function for the E-Step is derived similar to that shown in the previous 

subsection.  See Equation (2.61) through Equation (2.64) for the detailed derivation of the 

Q-function for a single frame image processing. 
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   

  
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

 
(2.75)  

Similar to Equation (2.65), the M-step maximizes the Q-function with respect to 

the objection function as shown in Equation (2.76).  In addition, since this is a blind 

deconvolution problem, the M-step also maximizes the PSF functions as shown in Equation 

(2.77). 

 

new

( )

old old

old

( ) arg max ( , )

( ) ( )
( ) ,

( )

k
o x

k

y

o x Q h o

o x h y x
d y

K i y



 
  

 


 (2.76)  
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( )

old
old

new old

( ) arg max ( , )

1 ( )
( ) ( ) ,

( )

k

k k
h x

k k

yk

h x Q h o

o y x
h x d y

U i y



 
  

 


 (2.77) 

where new

kU  is some constant to ensure the kth PSF sums up to unity.  The two update 

equations above serve as the fundamental equations for this research.  In the next section, 

the Gerchberg-Saxton algorithm is introduced as a phase retrieval method. 

2.7. Gerchberg-Saxton Phase Retrieval Overview   

Since the optical systems cannot measure the phase directly, the phase retrieval 

refers to recovering the two-dimensional phase of the optical system using only the 

intensity data.  It has a wide variety of applications in optical engineering [66].  Even 

though there are many phase retrieval techniques available [67]–[69], this research uses the 



 

40 

iterative method proposed by Gerchberg and Saxton (GS) in 1971 [70].  Any phase retrieval 

method can be independently integrated with the blind deconvolution algorithm.  The 

integration between the two is explained in the next chapter. 

 When using the GS algorithm, the assumption is made that the aperture function is 

known, A.  In addition, the magnitude of H  is known and calculated from Equation (2.33) 

and Equation (2.34) as shown in the equation below. 

 ( ) ( )x h xH , (2.78) 

 The Fourier Transform of any function can be expressed in terms of its magnitude 

and phase as shown in the equation below. 

  ( ) ( ) exp ( )x x j x
F

H H , (2.79) 

where F  is the phase of the Fourier Transform associated with H .  Initially, there is no 

knowledge of the phases, F  or  .  However, the magnitude of H  and the aperture 

function, A, are known.  By iteratively going back-and-forth between the Fourier 

Transform and the spatial domain of the aperture, where the atmospheric turbulence 

introduces its effect, the GS algorithm estimates the atmospheric wavefront from the 

intensity of the PSF.  A pseudocode and a visual representation as well as of the GS 

algorithm are shown in Equation (2.80) and Figure 2.11 respectively.  The initialization 

and the number of iterations are explained in detail in the next chapter.   
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H
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Figure 2.11. A Visual Representation of the Gerchberg-Saxton Algorithm. 
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2.8. Spatial Undersampling  

Unless the narrow field-of-view (FOV) optical systems are used, the data functions 

from the CCDs could be undersampled.  This section explains the process of spatial 

undersampling using a mathematical model and the steps that the object function passes 

through to generate an undersampled data function.       

 

 

 

Figure 2.12.  The process of undersampling, where N×N represents the number of 

pixels in the functions sampled at the Nyquist rate and L is the undersampled factor.  

 

 

 As shown in Figure 2.12, assume that the object function, o(x), is sampled at the 

Nyquist rate, with N N  pixels in size.  It passes through an atmospheric PSF, hk, to 
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generate an image function, ( )ki y , which is also sampled at the Nyquist rate.  The Nyquist 

sampling size, Δ, is defined as shown in Equation (2.81), where λ is the wavelength, l is 

the distance between the exit pupil and the detector, and D is the diameter of the source. 

 .
2

l

D


   (2.81) 

 The downsampling process starts with spatial averaging.  The concept behind the 

averaging filter is to reduce “sharp” intensities by replacing the value of every pixel in the 

image function by the average of the intensity levels in the neighborhood defined by the 

filter [71].  The averaging effects of the square CCD sensors modeled as a rectangle average 

function, r(y), as shown in the equation below [24], [68]. 

 
 2

1
(1,1),..., ( , ) ,

( )

0 otherwise,

y L L
r y L




 



 (2.82) 

where L is the size of the neighborhood pixels.  In addition, L is the decimating factor.  It 

is also assumed that /N L   is an integer.  From Figure 2.12, the averaged image function, 

( )A

ki y , is obtained from convolving the image function with the rectangle function as 

described in Equation (2.83).  Note that if there are better models available to represent the 

averaging effects of particular CCDs, they should be used instead.   

 ( ) ( ) ( ).A

k ki y r i y


 


   (2.83) 

 Next, the decimated image function, { ( ) : }D

ki z z Z , is obtained by decimating the 

averaged image function as shown in the equation below, where Z is the 2D discretized 

region over which the undersampled functions are defined. 
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( ) ( )

( ) ( ) ( ).

D A

k k

k

x

i z i Lz

o x r h Lz x


 
 



  
 (2.84) 

The undersampled data function, dk(z), can then be obtained by adding signal-

dependent photon counting noise.  The relationship can be described such that the Poisson 

mean of the data function is equal to the decimated image function.  

  E ( ) ( ).D

k kd z i z  (2.85) 

 In addition to the photon counting noise, the CCD also introduces signal-

independent additive white Gaussian noise (AWGN).  Because the AWGN is modeled as 

a zero-mean with some variance, 
2

n , it does not affect the equation above.  Since a wide 

FOV optical system will produce undersampled data, understanding the spatial 

undersampling process is important in compensating the effects. 

2.9. Summary 

In summary, this chapter introduced the background for the tools and methods that 

are used throughout this research.  It explained the three major sources of image 

degradation: (1) the photon counting noise associated with the CCDs, (2) the atmospheric 

turbulence, and (3) the spatial undersampling.  The chapter provided an overview of 

astronomical detectors and the Poisson noise associated with the CCDs.  Then, the 

atmospheric model using the Zernike polynomials was introduced and the technique to 

simulate the atmospheric wavefronts was explained.  Afterwards, this chapter provided the 

iterative Expectation-Maximization based Multi-Frame Blind Deconvolution to overcome 

the signal dependent Poisson noise and the Gerchberg-Saxton phase retrieval to recover 
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the atmospheric wavefronts from the intensity of the PSF.  Finally, this chapter explained 

the process for spatial undersampling so that it can be taken into account for processing 

undersampled data functions.    
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3. Methodology 

3.1. Chapter Overview 

This chapter presents the methodology that is used throughout this research.  It is 

built on the tools and techniques described in the previous chapter.  It builds a model for 

each component of the imaging system, starting with an object function that contains the 

stellar objects and ending with the estimation and detection of the objects after the object 

function passes through an atmospheric turbulence, an imaging system, a detector, and a 

blind deconvolution algorithm with phase retrieval.  This chapter also describes the eight 

assumptions made about the source, the detector, the point spread function (PSF), and the 

data.    

3.2. Assumptions 

Assumption 1: The Fresnel far-field propagation criteria is met. 

 In this research, the statistical image processing is conducted using two-

dimensional (2D) Fourier transform.  It is because the Fourier transforms are 

computationally efficient.  In addition, the concept of light propagation can be easily 

simplified, understood, and implemented with the Fresnel propagation as a Fourier 

transform, compared to the Rayleigh-Somerfield propagation.  However, in order for us to 

use the Fourier transform approach, the Fresnel criteria shown in Equation (3.1) must be 

met [39]. 

 
4

3
1

4

D

z




, (3.1) 
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where z is the propagation distance, D is the diameter of the object at the source plane, and 

λ is the wavelength of the light. 

For any digital imaging system, it is necessary that the Fresnel propagation is met 

for the propagation between the stellar object and the aperture of the telescope as well as 

that between the aperture of the telescope and the charge-coupled device (CCD) as shown 

Figure 3.1.  This allows each propagation to be implemented as a Fourier transform, which 

in turn allows the entire propagation to be implemented as a Fourier transform. 

 

 

Figure 3.1. The light propagation from the stellar object to the telescope aperture 

and then to the CCD. 

 

 In Table 3.1, the Fresnel criteria is calculated for a 10 meter diameter stellar object 

that is in different orbital regimes, using an average visible wavelength of 550 nanometers.  

From the table, it can be seen that the Fresnel criteria is met for all cases. 

 For the second propagation, it is dependent on the application.  The aperture 

diameters of a majority of the Space Domain Awareness (SDA) telescopes at the Starfire 

Optical Range (SOR) in New Mexico and the Air Force Maui Optical & Supercomputing 

Site (AMOS) in Hawaii are 1.6 meters or smaller, even though the SOR has a 3.5 meter 

telescope and the AMOS has 3.6 meter telescope respectively [72], [73].  Even though this 
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research does not use the data from these SDA telescopes, the Fresnel criteria is verified 

for each application.   

 

Table 3.1. The Fresnel Propagation Criteria for a 10 Meter Diameter Object 

Orbital Regime 
Altitude  

(kilometer) 

Fresnel Criteria 
4

34

D

z





 
 
 

 

Low Earth Orbit 180 – 2,000 2.5×10-6 – 1.8×10-9 

Medium Earth Orbit 2,000 – 35,780 1.8×10-9 – 3.1×10-13 

High Earth and Geosynchronous Orbit  ≥ 35,780  ≤ 3.1×10-13 

 

 

Assumption 2: The imaging region is smaller than the isoplanatic patch size, where the 

imaging system is linear and shift-invariant. 

 Imaging systems are seldom isoplanatic over their entire object field.  However, it 

is possible to divide the field into small regions, the isoplanatic patches, such that the 

system is approximately linear and shift-invariant [39].  This allows the image function to 

be represented as the convolution between the object function and the PSF.    

 

Assumption 3: The effects of the atmospheric turbulence is frozen for short exposure 

images. 

In a digital imaging system, the CCD converts the photons into the photoelectrons 

by converting the intensity of the electromagnetic field that is incident on the CCD detector 

for some integration time as defined in the equation below [74]. 
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21

( , ) ( , )

t T

det det

t

I y t y d
T

 


  u , (3.2) 

where 
detI  is the intensity functions, detu  is the field incident on the detector plane, T is 

the integration time, t is the time at which the intensity measurement begins, and y is the 

two-dimensional region over which the intensity is defined.   

In this research, the integration time, T, is assumed to be much less than one second 

so that the effects of the atmospheric turbulence is effectively frozen.  Since the exposure 

time depends on the effective wind velocity, the definition of the short exposure time varies 

from 10 milliseconds or less as explained by Goodman [74], to 15 milliseconds as stated 

by Hirsch, Harmeling, Sra, and Scholkopf [75], and to 60 milliseconds as used by Howell 

and Horch to image and resolve a binary star system [76].  In Chapter 5, the short exposure 

time of 30 milliseconds is used in collected the laboratory data to be tested and validated 

for this research. 

 

Assumption 4:  The atmospheric point spread functions are uncorrelated. 

The intensity functions are recorded at various times and they are simply called the 

image functions as defined in the equation below. 

 ( ) ( , )k det ki y I y t , (3.3)  

where ki  is the kth image function obtained from the CCD at time tk and y is the 2D region 

over which the intensity is defined. 

 In this research, the assumption is made that enough time has elapsed since the 

previous image function was taken so that the atmospheric PSFs are no longer correlated.  
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A time separation of one second between the two consecutive images (Δtk ≥ 1 second) is 

considered to be sufficient to generate uncorrelated PSFs.   

 
1 1 sec,  1,..., 1k k kt t t k K       . (3.4)  

 

Assumption 5:  The CCD introduces signal dependent Poisson noise. 

 As mentioned in Section 2.3 and Section 2.6, the CCD introduces a Poisson photon 

counting noise, in such a way that the statistical mean of each output pixel is equal to the 

intensity of the same pixel on the image function.  The resultant output function with a 

Poisson noise is called the data function, which is shown in the equation below. 

 PoissonE ( ) ( )star star

k kd y i y    , (3.5)  

where 
star

kd  is the noise-free data function, 
star

ki  is the noise-free image function, and y is 

the 2D region over which both the data function and the image function are defined.   

 

Assumption 6: The background noise also follows Poisson distribution. 

 In addition, the CCD also introduces noise from the background light and dark 

current in the form of Poisson distribution [22], [77].  The noise data function, 
noise

kd , from 

the background noise, 
noise

ki , is shown in Equation (3.6). 

 PoissonE ( ) ( )noise noise

k kd y i y    . (3.6)  

 Since the sum of two Poisson distributions results in another Poisson distribution 

as explained in Section 2.3, the data function, dk, is formed from the summation of the 

noise-free data function and the noise data function as shown in the equation below. 
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 Poisson Poisson PoissonE ( ) E ( ) E ( )

( ) ( )

( ).

star noise

k k k

star noise

k k

k

d y d y d y

i y i y

i y

       

 



 
(3.7)  

 

Assumption 7: The light incident upon the CCD is temporally incoherent.   

 The next assumption is that the light incident on the CCD is temporally incoherent 

even though it may be spatially coherent.  Temporal coherence is related to the intrinsic 

spectrum bandwidth of the light source, while spatial coherence is affected by the size of 

the light source and the propagation distance [78].  The light from the sun is temporally 

incoherent and therefore the sun light reflecting from the object is also temporally 

incoherent. 

Next, the spatial coherence of the sun light will be considered.  According to the 

Van Cittert-Zernike theorem, the area of coherence, ,cA  on the satellite body from the sun’s 

spatially incoherent light is given by the following equation [74], [79]. 

 
 

2

c

s

z
A

A


 , (3.8)  

where   is the average wavelength, z is the distance between the source and the destination 

of the light, and sA  is the uniformly bright source area. 

 With the average distance between the sun and the earth is about 150 million 

kilometers [80] and the surface area of the sun’s hemisphere is about 3.04×1018 square 

meters [81], the area of coherence on the satellite body is calculated to be 4.16×10–9 square 
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meter or a square with 0.473 microns on each side.  An average visible wavelength of 550 

nanometers is used in the calculation.  

 
 

 
1 18

2
9 9

2
9 2 6

2
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3.04 10

550 10 m 150 10 m
2.24 m 0.473 10 m

m
cA



 


  


 
 . (3.9)  

In the calculation above, the distance between the earth and the geosynchronous 

orbit (GEO) of 35,780 kilometers is ignored since it is very small compared to that between 

the sun and the earth [82].  Since the area of coherence on the satellite body is very small 

compared to the size of the satellite, the light reflecting from the satellite body is assumed 

to be spatially incoherent.   

 

 

Figure 3.2. Geometries among the Sun, the Earth, and the Optical System. 

 

Next, the area of coherence on the telescope aperture from the satellite body will 

be calculated.  For this calculation, the propagation distance between the earth surface and 

the GEO orbit of 35,780 kilometers, an average visible light wavelength of 550 nanometer, 

and the satellite size of 100 square meters are used.  With such parameters, the area of 



 

53 

coherence is calculated to be an area with about 1.1 meters in radius or 2.2 meters in 

diameter. 

 
 

 
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2
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22

2
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3.9 m 1.1
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1 m

1  

8

0

0

m
cA 

  
   . (3.10)   

Therefore, the whole satellite body becomes spatially coherent in the aperture plane 

even though it is temporally incoherent.  

 

Assumption 8:  The intensities of the data function pixels are statistically independent. 

 To justify the assumption that the pixels of the data function are statistically 

independent, the joint intensity function between two points will be calculated.  The joint 

intensity function, J, is defined as the mutual coherence function, Γ, with no time 

difference as shown in the equation below [74]. 

    1 2 1 2, , , 0Q Q Q Q t J Γ , (3.11)   

where 1Q  and 
2Q  are any two points on the receiver plane as shown in Figure 3.3. 
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Figure 3.3. Geometry for Propagation of Mutual Coherence. 

 

The mutual coherence function can be calculated using the following equation [74]. 

  
   

1 1

1 22 1
1 2 1 2 1 2

1 2

, ,0 , ,
r r

Q Q P P dS dS
c r r

   

  

 
  

 
 Γ Γ , (3.12)  

where 1P  and 2P  are any two points on the source plane, 1r  is the distance between 1Q  and 

1P , 
2r  is the distance between 

2Q  and 2P , c is the speed of light, 𝜆̅ is the average wave 

length, χ is the obliquity factor with value between 0 and 1, 1  and 2  represent the angle 

between the normal of the surface and the propagation path, 1  represents the area where 

1P  and 2P  can exist, and 1S  and 2S  represent the integration variables for the source and 

receiver plane respectively.  To make the calculation simple, the obliquity factors along 

with their denominators from Equation (3.12) are omitted since they will only scale the 

whole joint intensity function by a factor of some constant.  The simplified equation can 

be written as the following equation. 
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  

 

 
*

J Γ

u u

 (3.13) 

where u and u* are the field and its complex conjugate and t is the time variable.  The field 

can be expressed in terms of its phasor amplitude and phase.  Since the source field is 

confined to an artificial aperture placed on the source, the field is multiplied by the aperture 

transmittance function as shown in the equation below. 

    , ( ) ( , ) exp 2P t A P U P t j vt u , (3.14) 

where A is the aperture transmittance function as described in Equation (2.30), U is the 

phasor amplitude, and v  is the average frequency.  Using Equation (3.14), the correlation 

function from Equation (3.13) can be simplified as the following. 
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   
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*
u u

 

  (3.15)  

Recognizing that 1P  and 2P  are drawn from a spatially coherent field as described 

in Assumption 7, the correlation between 1P  and 2P  becomes a constant, which will be 

omitted to simplify the derivation.  The average frequency, ,v  divided by the speed of 

light, c, is also replaced with an average wavelength, .  

      
2 12

*2 1
1 2 1 2E , , .

r r
j v

cr r
P t P t A P A P e

c


 

  
 

   
   

  

*
u u  (3.16) 
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Substituting Equation (3.16) into Equation (3.13), the joint intensity function can 

be simplified as the following.  Note that the scale factor is omitted to simplify the 

derivation. 

      
2 1

1 1

2
*

1 2 1 2 1 2, .

r r
j

Q Q A P A P e dS dS




 
  

 

 

  J  (3.17) 

 In the previous sections and chapters, single variables, such as x and y, were used 

to represent 2D regions.  For the following equations from Equation (3.18) to Equation 

(3.28), the following variable pairs will be used to represent the coordinates on the source 

and detector planes as shown in Table 3.2. 

With the two variable coordinates, Equation (3.17) can be expressed as shown in 

Equation (3.18). 

      
1 1

1 1 2 2 1 2 2 1 1 1 2 2

2
, , , exp ( )x y x y A P A P j r r du dv du dv



 

 
   

 
 Γ . (3.18) 

 

Table 3.2. Mapping Between Single Variable Coordinates and Two Variable 

Coordinates. 

Single Variable Coordinate  Corresponding Two Variable Coordinate 

1P   1 1,x y  

2P   2 2,x y  

1Q    1 1,u v   

2Q    2 2,u v   

    

 Next, the difference between the two distances will calculated as shown below. 
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(3.19) 

Using the Taylor series expansion, the square root terms can be approximated as 

the following. 
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 (3.20) 

Next, the substitutions 
2 1xx x    and 2 1yy y    are used to simplify Equation 

(3.20). 

 

   2 2 2 2
1 2 1 1 2 1 2 21 2 1 2

2 1

2 2

1 1

2

.
2

x y

x y x y

x u u y v v u vu u v v
r r

z z

x y

z z

        
  
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 (3.21) 

If the lenses are used to focus the light, the quadratic term will vanish.  In addition, 

since the mutual coherence function is integrated over the surface of the source plane, the 

receiver plane variables can be pulled out of the integral.  Since these terms represent some 

constant value, they are omitted to simplify the derivation.    

  
   1 2 1 1 2 1 2 2

2 1 integral

x yx u u y v v u v
r r

z

      
  . (3.22) 
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Next, the substitutions 
2 1u u u    and 

2 1v v v    are used to further simplify the 

difference between the two distances.  

   1 1 2 2

2 1 integral

u v x yx y u v
r r

z

      
  . (3.23) 

 When the simplified version from Equation (3.23) is substituted into Equation 

(3.18), the joint intensity function can be expressed as shown in the equation below. 
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 Next, the above equation is regrouped and rearranged the integral with respect to 

the integration variables. 
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Recognizing that the inner integral is a Fourier transform of the aperture function, 

the integral is calculated as the following. 

 

 

   

2 21 2 1 2

2 1 2 1

22

1 1
2 2 2 2

2

1 1
2 2 2 2

, , ( , )

, ( , ) ,

x y

x y

u vx u y v
jj

zz

x y

u x v y
j

z

x y
e A u v e du dv

z z

x y
A u v e du dv

z z









 

 

           
   

     
 
 
 

  
         

 
   

 





J A

A

 
(3.26) 

where A  is the Fourier transform of the aperture function, A.  Also, recognizing that the 

remaining integral is also another Fourier transform of the aperture function, the joint 

intensity function can be simplified as shown in the equation below. 

   111 1, , ,
yx

x y

yxx y

z z z z   

    
       

   
J A A . (3.27)  
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 If the aperture function is an even function, then its discrete Fourier transform is 

also an even function.  Therefore, the above equation can be written as the following. 

   111 1, , ,
yx

x y

yxx y

z z z z   

    
     

   
J A A . (3.28) 

From Equation (3.28), it can be easily seen that the joint intensity function is a 

product of the Fourier transform of the aperture function with the frequency shifted version 

of itself.  As a visual illustration, the cross section of the Fourier transform of a circular 

aperture, the frequency shifted versions of the Fourier transform, and the joint intensity 

function are shown in Figure 3.4 and Figure 3.5.  From these two figures, when the two 

points from the same scene are close together, there exists joint intensity between the two 

points.  However, when the two points from the same scene are located far apart, their joint 

intensity becomes very small, meaning the two points are not correlated.  In addition, as 

explained in Sections 2.4 and 2.5, since statistically independent random variables are used 

in generating uncorrelated PSFs, the assumption is made that different pixels in the data 

function are statistically independent.   

      1 1 ' 2 2 1 1 ' 2 2 1 1 2 2P ( , ) ( , ) P ( , ) P ( , ) , ', ( , ) ( , )k k k kd x y d x y d x y d x y k k x y x y    . (3.29)  
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Figure 3.4. The joint intensity function is shown in Figure (a) as the product of the 

Fourier transform of an aperture with a small frequency shift from Figure (b).  

 

 

 

Figure 3.5. The joint intensity function is shown in Figure (a) as the product of the 

Fourier transform of an aperture with a large frequency shift from Figure (b). 

 



 

61 

3.3. Computer Generated Data Model 

In this research, the algorithms are tested and validated with computer simulated 

data first.  All implementations are completed in the MATLAB programming language on 

a standard desktop.  The MATLAB built-in functions are used throughout this research. 

3.3.1. Detector Model  

For modeling and simulation, the size of the detector is chosen to be a square N N

pixel plane.  For the computer generated data, N = 64 is chosen.  Even though the number 

chosen is arbitrary, it provides a size large enough to simulate the atmospheric PSF while 

being small enough to test and validate the iterative blind deconvolution algorithm without 

overtaxing the computational resources. In this research, the object function, the image 

function, the PSF, and the data function have the same size. 

3.3.2. Atmospheric Point Spread Function 

In order to create an atmospheric PSF, an aperture function is first generated on the 

N N  plane.  The diameter of aperture is set to be / 2N  pixels.  The resultant aperture 

function, ( )A u , is shown in Figure 3.6.  The diffraction limited PSF, 
DLh , is generated 

without any phase aberration as shown in Equation (3.30).  The diffraction limited optical 

transfer function (OTF), DLH , is the Fourier transform of the diffraction limited PSF, as 

shown in Equation (3.31).  The diffraction limited OTF and PSF are shown in Figure 3.7. 

  
2

( ) ( )DLh x A u F , (3.30) 

  ( ) ( )DL dlH f h x F . (3.31) 
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Figure 3.6. Aperture Transmittance Function (N = 64). 

 

 

Figure 3.7. Diffraction Limited OTF and PSF (N = 64). 

 

For the atmospheric PSF, the phase from atmospheric turbulence is combined with 

the aperture function.  To generate an atmospheric turbulence model, the turbulence 

strength is needed to be defined, which the ratio between the diameter of the telescope 

aperture, D, and the Fried’s seeing parameter, r0 [83], [84].  For the simulation, the 

turbulence strength is selected to be two, 
0( / 2)D r  .  With a typical median 

0r  value of 
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0.16 meters at the best astronomical sites [85], the chosen strength can be achieved with 

any telescope with a 0.32 meter diameter.  An atmospheric wavefront is generated using 

the Zernike method as described in Section 2.4.  Since an infinitely many Zernike 

coefficients cannot be generated for modeling and simulation, a total of 100p   Zernike 

coefficients are used in generating each wavefront.  Even though this choice of p is 

sufficient for 
0( / 2)D r  , higher number of Zernike coefficients should be used for 

stronger turbulence [83], [84].  Using these parameters, a Zernike covariance matrix, C, is 

generated using Equation (2.20).  Then, a set of 100p   independent zero-mean, unit-

variance Gaussian random numbers are generated for each atmospheric wavefront.  A set 

of random numbers, N100, is first generated from independent and identically distributed 

zero-mean, unit-variance Gaussian distribution.   

      100 2 3 100  ... , where ~ Gaussian 0, 1 , 2,...,100
T

kn n n n k     N , (3.32)  

where   and   are the mean and variance of the Gaussian random variable.  As described 

in Section 2.4, the set of random numbers is multiplied with the Cholesky decomposition, 

U, of the Zernike covariance matrix, C, to generate a set of Zernike coefficients, A100, as 

shown in the equation below. 

 100 100

TA U N  where C U U
T ,  100 2 3 100  ... 

T
a a aA . (3.33)  

 Next, a linear combination of the Zernike polynomials with the Zernike coefficients 

generates one atmospheric wavefront as explained in Section 2.4 and in Equation (3.34).  

Since the first Zernike polynomial is a constant or piston term, which represents a time 

delay, it is not used in calculation.  The atmospheric wavefront is then combined with the 
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aperture function to generate the atmospheric PSF as explained in Section 2.5.  For the 

convenience for the readers, the two main equations from Sections 2.4 and 2.5 are shown 

again in the equations below.   

    
100

2

k k

k

u a Z u


 , (3.34)  

  
2

( )1
( ) ( ) j uh x A u e

U

 F , (3.35) 

where   is the atmospheric wavefront, and ka  and 
kZ  is the kth Zernike coefficient and  

polynomial, u is the two-dimensional discrete region over which the wavefront is defined, 

h is the atmospheric PSF, A is the aperture function, F  is the Fourier transform, x is the 

2D discrete region over which the PSF is defined, and U is some constant to ensure that 

the PSF is a conservative process and sums up to unity.  Figure 3.8 shows a comparison 

among an aberration free PSF and a set of five atmospheric PSFs generated with the 

atmospheric turbulence strength of 
0/ 2D r  .  

 

Table 3.3. Parameters for Computer Simulated Data for a Scenario. 

Parameter Value 

Aperture Diameter to Fried’s Seeing Parameter Ratio  0/D r   2 

Number of Zernike Polynomials to Generate Atmosphere PSF 100 

Number of Photoelectrons for the Bright Object 10,000 

Number of Photoelectrons for the Dim Object 1,000 – 25 

Number of Photoelectrons for the Background 10 

Number of Pixels in Detector 64×64 

Number of Pixels Separation Between the Bright and Dim Objects 1 



 

65 

 

 

Figure 3.8. Comparison among aberration free PSF (Fig. a) and the five atmospheric 

PSFs (Figs. b – f).   



 

66 

3.3.3. Mean Square Residual Phase Error 

The mean square residual phase error for using a finite number of Zernike 

coefficients, p , is given by Equation (3.24) [37].  For 100p  , the mean square residual 

phase error is calculated to be 
2

100 0.0176 rad .    

The standard deviation of the phase error is calculated to be the following. 

 
2

100 0.0176 rad 0.0211 .
2  rad






 
   

 
 (3.37) 

 This value is much less than the surface irregularities reported by lens manufacturer 

at / 4   [86]. 

3.3.4. Object Function 

Using the 64×64 pixel detector, the bright object is placed at the center of the 

detector at pixel (32, 32).  The dim object is placed two pixels away or with one pixel 

separation at (32, 34) as shown in Figure 3.9.  The intensity of the bright object is set to be 

10,000 photoelectrons.  The intensity of the dim object is varied from 1,000 to 25 

photoelectrons so that the algorithm could be first tested and validated in an easier scenario 

before using in more challenging scenarios as shown in Table 3.3.  The scenarios for the 

object function are shown in Table 3.4.  The background level of 10 photoelectrons is added 

to all pixels including the bright object and the dim object. 

 

 

 

  
5/33/2

00.2944 /p p D r  . (3.36)  
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Figure 3.9. An Object Function. 

 

Table 3.4. Scenarios for the Object Function in Photoelectron Count. 

Scenario Bright Object Dim Object Background 

Scenario 1 10,000 1,000 10 

Scenario 2 10,000 500 10 

Scenario 3 10,000 250 10 

Scenario 4 10,000 125 10 

Scenario 5 10,000 100 10 

Scenario 6 10,000 75 10 

Scenario 7 10,000 50 10 

Scenario 8 10,000 25 10 

 

3.3.5. Image Function  

The image function is generated by the convolution of the object function with the 

atmospheric PSF as described in Section 2.6.  With the five atmospheric PSFs for each 

dataset, five image functions are generated from each object function.   
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3.3.6. Data Function  

The data function is formed from introducing signal dependent Poisson noise the 

image function in such a way that the mean of the data function is equivalent to the image 

function as shown in Equation (3.7).  Figure 3.10 shows the comparison between two object 

functions that pass through two random different atmospheric PSFs to form two different 

data functions.  The first and second columns show the data functions formed from an 

object functions using the object intensities from Scenario 1 and Scenario 2 respectively. 

3.3.7. Dataset Generation  

As shown in Figure 2.10, an object function passes through five atmospheric PSFs 

to generate five image functions, which in turn generates five data functions.  These five 

data functions make up a dataset.  In order to generate statistics on the performance of the 

blind deconvolution algorithm, a total of 500 datasets are generated for each scenario.  A 

scenario is defined as a unique combination of the intensities of the object.  Table 3.4 shows 

the scenarios for the object functions, along with the intensities for the bright object, the 

dim object, and the background.  All scenarios in Table 3.4 are generated using the 

atmospheric turbulence strength of 
0/ 2D r   and 100p   Zernike polynomials to 

generate the atmospheric PSFs.   
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Figure 3.10. Two data functions formed from two different object functions, passing 

through two different atmospheric PSFs. 
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3.4. Signal Processing Model  

For this research, the combination of the Multi-Frame Blind Deconvolution 

(MFBD) approach by Schulz and the Gerchberg-Saxton (GS) phase retrieval algorithm is 

used as the baseline.  It is because the MFBD has been adopted by the United States Air 

Force for its Space Domain Awareness applications [12], [13].  In addition, it has been 

used for comparison in the electro-optics society by other scholars [14], [15].  The 

Expectation-Maximization (EM) based MFBD algorithm and the GS phase retrieval 

algorithm are integrated such that the Expectation Step (E-Step) calculates the conditional 

expectation of the log-likelihood of the object function and the PSFs.  The conditional 

expectation is maximized in the Maximization Step (M-Step) to iteratively update the 

object function and the PSFs.  The PSFs from the M-Step is fed into the GS algorithm to 

recover their phases.  Afterwards, the object function from the M-Step and the PSFs and 

their phases from the GS algorithm are fed back into the E-Step.  The system diagram in 

Figure 3.11 shows one iteration of the blind deconvolution algorithm with the phase 

retrieval algorithm.  For additional information, the blind deconvolution and phase retrieval 

algorithms are described in Section 2.6.4 and Section 2.7 respectively.  Even though the 

blind deconvolution algorithm and the phase retrieval algorithm are used together, their 

operations are independent from each other.  Therefore, a different phase retrieval 

algorithm can be used instead of the GS phase retrieval algorithm. 

A total of 1,000 iterations are completed in the blind deconvolution algorithm.  For 

each blind deconvolution iteration, a total of 100 phase retrieval iterations are completed.  

The iteration numbers are arbitrary but large enough for the update functions to converge.  
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The diffraction limited PSF with no phase aberration, as described in Section 3.3.2, is used 

as the initial PSF estimates, ĥ .  The initial estimated object function, ô , is formed from 

the average of all the data functions.  Prior to averaging, all the data functions are aligned 

using the cross-correlation technique.  

 

 

Figure 3.11. The Blind Deconvolution Algorithm with Phase Retrieval. 

 

3.5. Performance Metrics  

Each scenario, which consists of 500 datasets, produces 500 estimated object 

functions after being processed through the blind deconvolution algorithm with phase 

retrieval algorithm.  In order to quantify performance, two performance metrics are used: 

(1) dim object detection and (2) dim object average.   
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3.5.1. Dim Object Detection  

From the 500 estimated object functions, ˆ{[ ( )] , 1,..., }no x n N  where 500N  , the 

intensities of the dim object from the nth dataset, ˆ[ ]det ni , and that of the false alarm location 

from the same dataset, ˆ[ ]det ni , are calculated using a correlation method with a 2D Gaussian 

mask function with a 0.5 pixel standard deviation in both X- and Y-axes.  The Gaussian 

mask function is centered at the locations of the dim object and the false alarm pixel to 

calculate the intensities as shown in the equation below.  The standard deviation value of 

0.5 pixels provides good detection rates by averaging out the noise near the dim object and 

the false alarm pixel. 

  
   

2 2

1ˆ ˆ( ) exp
2 2

T

det det

det nn
x X

x x x x
i o x

  

   
          

  
 , (3.38) 
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   

2 2

1ˆ ˆ( ) exp
2 2

T

fa fa

fa nn
x X

x x x x
i o x

  

   
          

  

 , (3.39) 

where xdet and xfa are the locations for the dim star and the false alarm pixel, σ is the standard 

deviation of the Gaussian mask function, and × represents a pixel-by-pixel multiplication 

between two functions.   

As shown in Figure 3.12, the false alarm location is selected to be on the opposite 

side of the dim object at the same distance from the bright object.  This location is chosen 

because it does not contain any object intensity.  There are two other pixels that can be 

used as the alternate false alarm location.  These two are not optimal because they are 

located at 2  pixels away from the dim object even though they are located two pixels 

away from the bright object.  
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Table 3.5. Dim Object and False Alarm Locations of an Estimated Object Function. 

Description  Values/Coordinates 

Detector Size 64×64 

Bright Object Location (32, 32) 

Dim/Secondary Object Location (xdet) (32, 34) 

False Alarm Pixel Location (xfa) (32, 30) 

 

 

Figure 3.12. Estimated Object Function. 

 

Using the correlation method with the Gaussian masks, a set of 500 intensities from 

the dim object and that from the false alarm pixel are then fitted to the gamma function.  

See Appendix A for the technique to estimate the gamma distribution parameters.  Figure 

3.13 through Figure 3.20 show the probability distribution functions and the cumulative 

distribution functions for the intensities of the dim object and the false alarm pixels for 

each scenario, along with their corresponding gamma distribution fits.  Except for the 

intensities for the dim objects in Scenario 1 and Scenario 2, the intensities follow the shape 

of the gamma distribution.  Even though other functions, such as the Weibull function, 

might be better fits for these two first scenarios, the separation between the dim object 
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distribution and the false alarm pixel distribution is well separated, obviating the need to 

fit to other types of functions.   

 

 

Figure 3.13. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 1 using the MFBD approach.   

 

 

Figure 3.14. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 2 using the MFBD approach. 
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Figure 3.15. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 3 using the MFBD approach.   

 

 

Figure 3.16. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 4 using the MFBD approach. 
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Figure 3.17. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 5 using the MFBD approach. 

 

 

Figure 3.18. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 6 using the MFBD approach.   
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Figure 3.19. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 7 using the MFBD approach.  

 

 

Figure 3.20. The distributions of the intensities of the dim object and the false alarm 

pixel for Scenario 8 using the MFBD approach. 
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After the gamma fits are obtained, the survival function (SF) of the false alarm 

intensities is compared with that of the dim object intensities for each scenario to generate 

the receiver operating characteristic (ROC) functions.  The survival function is defined as 

the complement of the cumulative distribution function (CDF) as shown in the equation 

below [87], [88]. 

 SF 1 CDF.   (3.40) 

The ROC compares how well the distribution of the dim object is separated from 

that of the false alarm.  This metric is used because it plays a key role in the signal detection 

communities [89], medical diagnostics [90], and machine learning [91].   

The ROC curve for all eight scenarios are shown in Figure 3.21.  As the intensity 

of the dim object is reduced, the ability of the algorithm to detect the dim object also 

decreases.  In addition, Figure 3.21 also shows the performance of the blind deconvolution 

algorithm using 2,000 iterations.  A total of 100 phase retrieval iterations is used for each 

blind deconvolution algorithm.  From the results, it can be seen that performing additional 

blind deconvolution iterations does not further improve the performance.  

 



 

79 

 

Figure 3.21. The dim object detection performance of the MFBD algorithm for all 8 

scenarios with 1,000 and 2,000 iterations.   

 

3.5.2. Dim Object Average   

The second performance metric is the average function, ˆ ( )avgo x , which is defined 

as the mean of all estimated object functions for each scenario.  This metric complements 

the first one because this one provides the average information, while the first one provides 

the information about how well the two distributions are separated.   

  
500

1

1
ˆ ˆ( ) ( )

500
avg n

n

o x o x


  . (3.41) 
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Figure 3.22. The dim object average performance of the MFBD algorithm for all eight 

scenarios.   

 

Important Note: The intensities of the bright object in Figure 3.22 are matched to the 

second brightest pixel to reduce the contrast ratio for all scenarios.  



 

81 

 The average functions for all eight scenarios are shown in Figure 3.22.  As the 

intensity of the dim object is reduced, the ability to resolve the dim object from the bright 

object is reduced.  The system level diagram for obtaining the two metrics is shown in 

Figure 3.23.   

 

 

Figure 3.23. System Level Diagram of the MFBD Algorithm as the Baseline. 

 

3.6. Summary 

This chapter explained the methodology that is used throughout this research.  It 

provided the detail implementations of the tools and techniques described in the previous 

chapter.  First, it explained the eight main assumptions made throughout this research.  

Afterwards, the implementation for the detector model, the atmospheric PSF, the object 

function, the image function, and the data function were explained.  Then, it explained how 

the Gerchberg-Saxton phase retrieval algorithm is integrated into the Multi-Frame Blind 

Deconvolution algorithm.  Next, this chapter explained the data functions for different 
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scenarios for the object function, where the bright object and background intensities are 

kept the same but the intensity of the dim object is gradually decreased.  The turbulence 

strength was kept the same for generating random atmospheric phase screens.  Lastly, this 

chapter showed the performance of the Multi-Frame Blind Deconvolution algorithm with 

the Gerchberg-Saxton phase retrieval with two metrics, which are (1) dim object detection 

and (2) dim object average.  The results for the eight scenarios were also shown, using 

these two metrics. The results also showed that the performance of the Multi-Frame Blind 

Deconvolution saturated after some iteration.  To gain additional performance, the next 

chapter introduces the Neighborhood System Blind Deconvolution.   
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4. Neighborhood System Blind Deconvolution 

4.1. Chapter Overview  

This chapter introduces a new Neighborhood System Blind Deconvolution (NSBD) 

algorithm to further improve the dim object detection performance over the Multi-Frame 

Blind Deconvolution (MFBD) algorithm.  The performance results of the new algorithm 

are compared with those of the MFBD algorithm using two metrics which are (1) the ability 

to detect the dim object using the receiver operating characteristic (ROC) functions and (2) 

the average intensity of the dim object as described in Section 3.5.  The datasets used in 

this chapter are the same as those explained in the previous chapter. 

4.2. Algorithm Development 

In Section 3.5, it has been shown that the performance of the MFBD algorithm 

saturates after a certain point, meaning additional iterations of the blind deconvolution 

algorithm no longer further improves the performance.  Therefore, a new algorithm is 

derived, which is built on the method proposed by Cain [77].  In this chapter, it is assumed 

that the data is sampled at the Nyquist rate or higher. 

The NSBD algorithm separates the object function into three functions, which are 

a function of unknown neighborhood system around the bright object, ( )so x , the amplitude 

of the primary bright object that is known to exist, ( )po x , and the background light and 

dark current measured during the acquisition process, B.  The assumption is made the 

intensities of these three functions are statistically independent.   
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  ( )p po x x x  , (4.1)  

  
1

( )
M

s m m

m

o x x x 


  , (4.2) 

 ( )bo x B , (4.3) 

where xp and γ are the location and the magnitude of the bright object, μm is the number of 

photoelectrons emitted from the mth star in the system, M is the total number of pixels in 

the system, and δ is the Dirac Delta function.  In this chapter, xp and γ are obtained from 

either the results of the MFBD algorithm or the unprocessed data function.  However, if 

there exists some prior information about them, the known information should be used.  

 Since the image function is a convolution between the object function and the PSF, 

the image functions for the primary bright object, 
p

ki , the neighborhood system, 
s

ki , and 

the background, 
b

ki , for the kth observation are described by the following equations. 

  ( )p

k k pi y h y x  . (4.4)  

 ( ) ( ) ( )s

k k s

x

i y h y x o x


  . (4.5) 

 ( ) ( ) ( )b

k k b

x

i y h y x o x


  . (4.6) 

The data functions from the CCD can be expressed as a sum of all the three data 

functions formed from the three image functions mentioned above.  In addition, as 

described in Section 3.3.6, the CCD introduces signal dependent Poisson noise to the image 

functions as shown in Equation (4.7) through Equation (4.10).    
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Since the three functions are statistically independent, the likelihood function will 

be at the maximum when the probability mass functions of the primary object function, the 

neighborhood system function, and the background function are at their maximums.  

Therefore, the likelihood function of the three sets of the data functions are expressed as 

shown in Equation (4.11). 

         ( , ) P P | Pp s b

k k k k

k y x

L o h d y d y x d y
  

 
  . (4.11) 

Using the Expectation-Maximization (EM) algorithm on Equation (4.11), the 

update equations for the new algorithm are obtained as shown in Equation (4.12) through 

Equation (4.17).  The derivations for the EM algorithm is similar to those described in 

Section 2.6.3.  The update equation for the PSF remains the same as the MFBD algorithm.  

For the convenience for the readers, the update equation for the PSF is shown again in 

Equation (4.16). 
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 Even though the background function is assumed to be constant across all pixels as 

shown in Equation (4.3), it is not constrained to be constant across all pixels at each 

iteration.   

4.3. System Implementation and Initialization 

This section discusses about two ways to implement the system.  They are: (1) the 

coupled approach where the outputs of the MFBD algorithm is fed into the NSBD 

algorithm and (2) the decoupled approach where the NSBD algorithm is processed 

independently of the MFBD algorithm. 

4.3.1. Coupled Approach 

In the first approach, the MFBD algorithm and the NSBD algorithm are coupled, 

where the NSBD algorithm uses the object function estimate and the PSF estimates from 

the MFBD algorithm.  Figure 4.1 shows the overall system, along with the methods for 

modeling and simulation.  The same 500 datasets for each scenario used in the MFBD 

algorithm are also used in the NSBD algorithm.  This approach was used for the results 

that were presented at the 2019 AMOS Conference [92].  
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Figure 4.1. The Overall System Implementation for the Coupled Approach. 

 

For the MFBD algorithm, the object function is initialized with a 64×64 pixel plane 

with a constant intensity of one.  For the NSBD algorithm, the initial object functions are 

also separated into three functions.  For the primary object function, the estimates on the 

brightness and location of the primary object are obtained from the MFBD algorithm.  For 

the neighborhood system function, a circle with radius of 4 pixels outside the bright object 

and is centered at the bright object.  The initial value of 10 is used for all scenarios.  The 

pixels of the primary object function and the neighborhood system function are mutually 

exclusive so that there are no overlapping pixels shared by both functions.  The 

neighborhood system function is shown in Figure 4.2.  For the background function, the 

whole 64×64 pixel plane is initialized with the value of one.  Therefore, the background 

function overlaps with both the primary object function and the neighborhood system 

function.  These exact initial intensities are not required for the algorithm.  As long as the 

intensity of the primary object function is higher than that of the neighborhood system 
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function, which in turn is higher than that of the background function, the NSBD will 

provide consistent results.   

 

 

Figure 4.2. The Neighborhood System Function. 

 

For the PSFs, the MFBD algorithm is initialized with the diffraction-limited PSFs. 

However, the PSF estimates from the MFBD algorithm are used as the initial PSFs for the 

NSBD algorithm. 

4.3.2. Decoupled Approach 

 In the second approach, the MFBD algorithm and the NSBD algorithm are 

decoupled, where the NSBD algorithm does not use the estimates from the MFBD 

algorithm.  The systems diagram for this method is shown in Figure 4.3. 
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Figure 4.3. The Overall System Implementation for the Decoupled Approach. 

 

 For the NSBD algorithm, the intensity of the initial primary bright object is 

calculated from the average of the pixel with the highest intensity from all data functions 

within the dataset.  The initial neighborhood system function and the background functions 

are the same as those used in the coupled approach.    

For the initialization for the PSFs, both the MFBD algorithm and the NSBD algorithm 

are initialized with the diffraction limited PSF.  Therefore, the estimates of the atmospheric 

phases start at zero across the whole aperture.  

4.4. Performance Comparison 

In this section, the performance of the NSBD algorithm is compared with that of 

the MFBD algorithm.  Similar to the MFBD algorithm, a total of 1,000 EM iterations are 

used for the NSBD algorithm for both coupled and decoupled approaches.  For each EM 
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iteration, 100 phase retrieval iterations are completed using the Gerchberg-Saxton method 

for both coupled and decoupled approaches.  

4.4.1. Dim Object Detection 

Similar to the MFBD algorithm, the metric for the ability to detect the dim object 

is accomplished using the ROC function as described in Section 3.5.1.  In this section, the 

same Gaussian masks from Equation (3.38) and Equation (3.39) are also used in calculating 

the intensities of the dim object and that of the false alarm pixel respectively.  The 

intensities are also fitted with Gamma distributions.  See Appendix B for the Gamma fitted 

distributions for the coupled and decoupled approaches. 

 After the fitted gamma distribution functions for the intensities of the dim object 

and the false alarm pixel are obtained, the survival function, which is the complement of 

the cumulative distribution function, of the dim object is plotted against that of the false 

alarm pixel to generate the ROC function for each scenarios.   

 In addition, the confidence interval bounds are added to both the MFBD algorithm 

and the NSBD algorithm.  The upper bound of the MFBD algorithm is compared with the 

lower bound of the NSBD algorithm.  In other words, the best case of the MFBD algorithm 

is compared with the worst case of the NSBD algorithm for the given level of significance, 

α.  Figure 4.4 provides a graphical explanation for generating the confidence interval for 

the ROC functions used in this research.   
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Figure 4.4. The Process for Generating ROC Functions with Confidence Intervals. 

 

Figure 4.5 through Figure 4.20 compare the performance comparison between the 

MFBD algorithm and the NSBD algorithm for all scenarios for both coupled and decoupled 

approaches using the ROC functions.  The level of significance of 0.10   is used for all 

scenarios. 
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Figure 4.5. The ROC Comparison for Scenario 1 for the Coupled Approach for Very 

Low False Alarm Rate. 

 

 

Figure 4.6. The ROC Comparison for Scenario 1 for the Decoupled Approach for 

Very Low False Alarm Rate. 
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Figure 4.7. The ROC Comparison for Scenario 2 for the Coupled Approach for Low 

False Alarm Rate. 

 

 

Figure 4.8. The ROC Comparison for Scenario 2 for the Decoupled Approach for 

Low False Alarm Rate. 
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Figure 4.9. The ROC Comparison for Scenario 3 for the Coupled Approach. 

 

 

Figure 4.10. The ROC Comparison for Scenario 3 for the Decoupled Approach. 
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Figure 4.11. The ROC Comparison for Scenario 4 for the Coupled Approach. 

 

 

Figure 4.12. The ROC Comparison for Scenario 4 for the Decoupled Approach. 
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Figure 4.13. The ROC Comparison for Scenario 5 for the Coupled Approach. 

 

 

Figure 4.14. The ROC Comparison for Scenario 5 for the Decoupled Approach. 
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Figure 4.15. The ROC Comparison for Scenario 6 for the Coupled Approach. 

 

 

Figure 4.16. The ROC Comparison for Scenario 6 for the Decoupled Approach. 
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Figure 4.17. The ROC Comparison for Scenario 7 for the Coupled Approach. 

 

 

Figure 4.18. The ROC Comparison for Scenario 7 for the Decoupled Approach. 
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Figure 4.19. The ROC Comparison for Scenario 8 for the Coupled Approach. 

 

 

Figure 4.20. The ROC Comparison for Scenario 8 for the Decoupled Approach. 
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 From the results, it can be seen that the NSBD algorithm outperforms the MFBD 

algorithm for all scenarios.  In addition, the performance is significantly different for 

0.10   for most of the operating regions for Scenario 1 through Scenario 7 for both 

coupled and decoupled approaches.  The performance is not significantly different for 

0.10   for both coupled and decoupled approaches, even though the NSBD algorithm 

outperforms the MFBD algorithm.  The performance between the coupled and decoupled 

approaches are consistent.  Therefore, the decoupled approach is better in a sense that it 

requires less computational time and resources without degradation in performance. 

4.4.2. Dim Object Average 

Next, the performance of the NSBD algorithm is compared to the MFBD algorithm 

using the average function as described in Section 3.5.2.  The results are shown in Figure 

4.22 through Figure 4.37.  From the results, it can be seen that the NSBD algorithm 

outperforms the MFBD algorithm in this performance metric for all eight scenarios, for 

both coupled and decoupled approaches.  A cross-sectional view of the average function 

along the axis, 32y  , is shown in the figures. 

 

 

Figure 4.21. Top Down vs Cross-Sectional View of the Average Function. 
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Figure 4.22. The Average Functions for Scenario 1 for the Coupled Approach. 

 

 

Figure 4.23. The Average Functions for Scenario 1 for the Decoupled Approach. 
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Figure 4.24. The Average Functions for Scenario 2 for the Coupled Approach. 

 

 

Figure 4.25. The Average Functions for Scenario 2 for the Decoupled Approach. 
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Figure 4.26. The Average Functions for Scenario 3 for the Coupled Approach. 

 

 

Figure 4.27. The Average Functions for Scenario 3 for the Decoupled Approach. 



 

104 

 

Figure 4.28. The Average Functions for Scenario 4 for the Coupled Approach. 

 

 

Figure 4.29. The Average Functions for Scenario 4 for the Decoupled Approach. 
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Figure 4.30. The Average Functions for Scenario 5 for the Coupled Approach. 

 

 

Figure 4.31. The Average Functions for Scenario 5 for the Decoupled Approach. 
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Figure 4.32. The Average Functions for Scenario 6 for the Coupled Approach. 

 

 

Figure 4.33. The Average Functions for Scenario 6 for the Decoupled Approach. 



 

107 

 

Figure 4.34. The Average Functions for Scenario 7 for the Coupled Approach. 

 

 

Figure 4.35. The Average Functions for Scenario 7 for the Decoupled Approach. 
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Figure 4.36. The Average Functions for Scenario 8 for the Coupled Approach. 

 

 

Figure 4.37. The Average Functions for Scenario 8 for the Decoupled Approach. 
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 From the results, it can be seen that the NSBD algorithm outperforms the MFBD 

algorithm for all scenarios for both coupled and decoupled approaches in that the dim 

object is clearly discernible.  In addition, the result from the coupled approach and that 

from the decoupled approach for each of the scenarios are comparable.  The decoupled 

approach does not require the results from the MFBD algorithm and therefore saves the 

computational time and resources. 

4.5. Summary  

In summary, the new Neighborhood System Blind Deconvolution algorithm was 

developed and its performance was compared to that of the Multi-Frame Blind 

Deconvolution algorithm using two performance metrics, which are (1) dim object 

detection (2) dim object average.  From the results, the Neighborhood System Blind 

Deconvolution algorithm outperformed the Multi-Frame Blind Deconvolution algorithm 

in both performance metrics.  This chapter also used the confidence interval with the level 

of significance of 0.10  .  For Scenario 1 through Scenario 7, the Neighborhood System 

Blind Deconvolution algorithm outperforms the Multi-Frame Blind Deconvolution 

algorithm in a majority of the operating regions and the performance is significantly 

different.  For Scenario 8, even though the Neighborhood System Blind Deconvolution 

algorithm outperforms the Multi-Frame Blind Deconvolution algorithm, the performance 

is not significantly different.  The Neighborhood System Blind Deconvolution algorithm 

also outperforms in the average function for all eight scenarios.  In the next chapter, the 

algorithms are applied to the data collected at the Optics Laboratory of the Electrical and 

Computer Engineering Department at the Air Force Institute of Technology.  
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5. Undersampled Blind Deconvolution 

5.1. Chapter Overview  

In this chapter, the performance of the Multi-Frame Blind Deconvolution (MFBD) 

algorithm is compared with the Neighborhood System Blind Deconvolution (NSBD) 

algorithm using the data collected at the Optics Laboratory of the Electrical and Computer 

Engineering Department at the Air Force Institute of Technology.  The setup for the 

laboratory experiment and the data collection process are explained.  The data in this 

chapter represents an undersampled case.  Therefore, the algorithms are modified to 

compensate for the undersampling effect, which is explained in Section 2.8.  A set of 

computer simulated data is also generated to mimic the laboratory data, using the statistical 

photocalibration techniques.  The effects of the detector gain and the readout noise are also 

added.  The performance results are shown with the two performance metrics described in 

Section 3.5. 

5.2. Laboratory Data 

For the laboratory data, an object function is projected onto a computer monitor 

and a lens is placed approximately two meters away from the monitor to form an 

intermediate image.  The lens has a diameter of 2.5 cm and F# of 10.  The CCD is placed 

30 cm away from the lens.  A stream of hot air is blown across the lens to simulate 

atmospheric turbulence as shown in Figure 5.1.  The CCD is a monochromatic scientific 

camera, Model Number 8050-TE-GE by Thorlab, with the pixel size of 5.5 μm×5.5 μm 
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[93].  Using Equation (2.81), the Nyquist pixel size for this experiment is calculated to be 

3 μm×3 μm, creating an undersampling effects with L = 1.83. 

 

 

Figure 5.1. Laboratory Setup for Collecting the Experimental Data. 

 

The object function projected on the monitor is created using MATLAB.  It 

contains a bright object and a dim object.  The intensity of the dim object is set at ten 

percent of the intensity of the bright object.  The exposure time is set to 30 milliseconds.  

Even though the CCD can capture up to 3296×2472 pixels, only the regions with 64×64 

pixels that contain the objects are captured.  A total of 2,500 data functions are collected 

with one second delay between each collection.  The one second delay allows enough time 

for the atmospheric effects to be uncorrelated [74].  The delay is also the limitation of the 

ThorLab camera to collect between any two frames.  Next, a set of five data functions are 

grouped together to form one dataset, generating a total of 500 datasets.   

The dim object and the bright object are estimated to be located six pixels apart.  

With the above conditions, it is very difficult to determine the center of the dim object, 
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even if the exposure time is increased to one second, as shown Figure 5.2 (a).  To determine 

the dim object center, its intensity is temporarily increased to match that of the bright one 

as shown in Figure 5.2 (b).   

 

 

Figure 5.2. Long Exposure Images for Determining Dim Object Location. 

 

5.3. Computer Generated Data  

In addition to the laboratory data, computer generated data are also created to mimic 

the laboratory data.  In Section 5.3.1, the average photon count, the variance of the readout 

noise, and the gain of the detector are estimated using the statistical photocalibration 

techniques [94], [95].  In Section 5.3.2, the remaining parameters are determined 

empirically. 

5.3.1. Statistical Photocalibration 

In this section, the average photon count per pixel, the variance of the readout noise, 

and the gain of the detector are estimated from the data functions, ( )d z  and ( )d z  that are 
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collected at two different exposure times.  Their averages are given by the following 

equations [94], [95].  

 ( ) ( ) ( ) ( ),d z G z K z B z    (5.1) 

 ( ) ( ) ( ) ( ),Gd z N G z K z B z    (5.2) 

where ( )d z  and ( )d z  are the means of the collected data with two different exposure 

times, ( )G z  is the detector gain, ( )K z  is the average photon count, NG is the factor of the 

increase or reduction of the integration time between the two data functions, and ( )B z  is 

the bias.  The detector gain and the average photon count are then given by the following 

equations [94], [95]. 

 
2 2( ) ( )

( ) ,
( ) ( )

d dz z
G z

d z d z

  


 
 (5.3) 

 
( ) ( )

( ) ,
( 1) ( )G

d z d z
K z

N G z

 



 (5.4) 

 
2 2 2( ) ( ) ( ) ( ),n dz z G z K z     (5.5) 

where 
2 ( )d z   and 

2 ( )d z   are the variances of the data functions and 
2 ( )n z  is the readout 

noise variance.  In the previous section, the laboratory data were collected with 30 

millisecond exposure time.  This data function is designated as ( )d z .  In the absence of 

the availability of the data functions without any objects, the corner regions of the data 

functions are good candidates to use for photocalibration because these regions experience 

minimal effects from the object intensities.  Assuming that the gain of the detector remains 

the same over the imaging region, which is 64×64 pixel region, the top left 10×10 pixel 

regions from all 2,500 data functions from the previous section are used in calculating its 
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variance, 
2 ( )d z  .  In addition, a different set of data collected at 15 millisecond exposure 

time, designated as ( )d z , is also used to calculate its variance, 
2 ( )d z  .  The two 

distributions are shown in Figure 5.3. 

 

 

Figure 5.3. Distribution of Data Collected at Two Different Exposure Times.  (a) Data 

Collected with 15 Millisecond Exposure and (b) with 30 Millisecond Exposure.   

 

 From the figures, the data for both exposures are cutoff on the left hand side of their 

distributions because the CCD only generates non-negative integers.  In this section, the 

workarounds to estimate the parameters are explained. 

 First, the means of the two sets of data are determined using the median value 

because the mean and the median values of the Poisson and Normal distributions are close 

in values when the distributions are not truncated.  The two means are estimated to be 3 

and 6 for ( )d z  and ( )d z  respectively. 
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 Next, the variances of the two sets of data are determined using the right side of the 

estimated means because the variance is a measurement of the differences between the 

mean and the observed values.  Using this technique, the two variances are estimated to be 

52.64 and 57.33 for ( )d z  and ( )d z  respectively.   

 With the means and variances, using Equation (5.3) and Equation (5.4), the detector 

gain, the average photon count, and the variance of the readout noise are estimated to be 

1.56, 1.92, and 47.94 respectively.  In Equation (5.4), the value of NG is 2 because the 

exposure time for ( )d z  is twice that for ( )d z . 

5.3.2. Empirical Estimation 

The computer generated data are then created to simulate the laboratory data.  The 

goal is to mimic the average intensity of all laboratory data to that of all computer generated 

data through empirical estimation.  From Section 5.2, it is determined that the dim object 

is located 6 pixels away and that the laboratory data is undersampled by a factor of 

approximately L = 2.  Because the laboratory region is 64×64 pixels in size, the computer 

generated data is created on a 128×128 pixel plane.  The bright object is placed at the center 

of the plane and the dim object is placed 12 pixels apart.  The bright object and the dim 

object are created with a circular region of with 4 pixel radius as shown in Figure 5.4. 
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Figure 5.4. The Object Function for Computer Simulated Data. 

  

The intensities are set in a way that the ratio between the bright object to the dim 

object is 1:0.10  and the ratio between the bright object and the background is 1:0.0267 .  

From empirical estimation, the strength of the turbulence is estimated to be 
0/ 10D r  .  

The Zernike phase screen generation technique described in Section 2.4.2 is used in 

generating the random atmospheric phase with 120 polynomials.  Next, the image functions 

are formed with the resultant random and uncorrelated atmospheric PSFs.  As described in 

Section 2.8, each image function is averaged and decimated by a factor of 2L  .  Then, 

the CCD gain of 1.56G   is multiplied after the signal-dependent Poisson noise is added 

to the decimated image function.  The readout noise with variance of 
2 47.94n   is added 

to the Poisson noise to generate the data function.  The gain and the readout noise values 

are obtained from Section 5.3.1.  Since the CCD only generates non-negative integer 

values, the output of the simulated data is also rounded and any negative value is set to 

zero.  Similar to the laboratory data, a total of 2,500 data functions are generated.  Then, a 
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set of K = 5 data functions are grouped together to form a total of 500 datasets.  Figure 5.5 

compares the instances of the two data functions, each of which is randomly selected from 

the laboratory data and the computer simulated data respectively.  Figure 5.6 compares the 

average of the 2,500 data functions from the laboratory and that from the computer 

simulated data.  All the data functions are aligned first before averaged.  A cross sectional 

view is shown along the axis where the centers of both the bright object and the dim object 

are located.  

 

 

Figure 5.5. Comparison between a Randomly Selected Data Function from the 

Laboratory Data and the Computer Simulated Data. 
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Figure 5.6. Cross Sectional Comparison between the Average Intensity of All 

Laboratory Data Functions and that of All Computer Simulated Data Functions.  

 

5.4. Undersampled Blind Deconvolution  

In this section, the MFBD and the NSBD are derived for the undersampled data.  

There are many interpolation techniques to reconstruct the images back on the Nyquist 

space but they introduce artifacts [96].  Even though these artifacts might not affect the 

human vision and perception in photography, they could become very problematic for 

closely spaced object detection, especially the dim ones.  Therefore, in this section, the 

image reconstruction is done without interpolation, while taking into account the 

undersampling effect in the derivation. 
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5.4.1. Multi-Frame Blind Deconvolution 

First, the complete data function is redefined to include the effects of the averaging 

function and the decimation.  As described in Section 2.6.3, the incomplete data function, 

( , , )kd z x  , is formed from a summation of the complete data functions, ( )kd z , as shown 

in the equation below.  It is similar to Equation (2.56) but it has an additional summation 

term. 

 ( ) ( , , ).k k

x

d z d z x



 

  (5.6) 

 Taking the expectation of above equation results in the following. 
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 (5.7) 

 It is shown in Equation (2.85) that the expectation of the data function is equal to 

the decimated image function which is restated below. 

 ( ) ( ) ( ) ( ).D

k k

x

i z o x r h Lz x


 
 

    (5.8) 

 From Equation (5.6) and Equation (5.7), the expectation of the complete data 

function can be expressed as shown below.  

 E ( , , ) ( ) ( ) ( ).k kd z x o x r h Lz x         (5.9) 

The complete data function also follows a Poisson distribution because the sum of 

Poisson random variables is also a Poisson random variable.  Therefore, the probability 

mass function (PMF) can be expressed as shown below.  
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  
 

( , , )

( ) ( ) ( ) ( ) ( ) ( )
P ( , , ) .

( , , )!

k

k

d z x

o x r h Lz x k

k

k

o x r h Lz x
d z x e

d z x



   




    
  (5.10) 

With the PMF defined, the joint log likelihood function can be defined as shown in 

the equation below.  This approach is similar to the one shown in Section 2.6.3. 
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(5.11) 

 In the equation above, the term that does not affect the maximization is designated 

as the additional term (A.T.) [62].  This term will be ommitted in the subsequent equations.  

Next, in the Expectation Step of the Expectation-Maximization (EM) algorithm, the 

conditional expectation given the incomplete data function, Q, is calculated as shown 

below. 
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(5.12) 
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 Since the complete data function is the only random variable, the conditional 

expectation applies only to it.  The conditional expectation term can be derived as shown 

in Equation (5.13) because both the complete data and the incomplete data are Poisson 

random variables and the former is a part of the latter.  In the EM algorithm, the new or 

updated function is iteratively updated from the estimations of the old estimates.  

Therefore, Equation (5.13) represents the old terms.  

 
old old
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 Substituting Equation (5.13) into Equation (5.12) results in the following equation. 
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 In the Maximization Step of the EM algorithm, the conditional expectation term is 

maximized with respect to the object function and the PSFs to obtain the iterative update 

solutions.  First, the conditional expectation function is differentiated with respect to each 

pixel of the object function. 
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 The first term on the right hand side of the equation sums up to be 2/K L .  It is 

because the PSF is constrained to sum up to unity to ensure that the process is conservative.  

A convolution between a unity and the averaging function also results in unity.  Decimation 
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of the unity by a factor of L in both dimensions reduces the value of its summation by a 

factor of 
2L .  Performing this over K frames results in 2/K L .  Therefore, Equation (5.15) 

can be simplified as shown below. 

  
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 Setting the derivative to zero gives us the following update equation for the object 

function. 
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 The PSF update equation can be derived similarly, using change of summation 

variables.  The new PSF is also constrained to sum up to unity by dividing with some 

constant, newU . 
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 Since the EM algorithm is derived to overcome the photon counting noise, the 

Gerchberg-Saxton phase retrieval algorithm is applied on the PSF updates to overcome the 

atmospheric turbulence.  

5.4.2. Neighborhood System Blind Deconvolution 

Similar to the technique mentioned in Chapter 4, to derive the NSBD, the data 

function is separated into the primary object function, ( )po x , the neighborhood system 

function, ( )so x , and the background function, ( )bo x .  The assumption is made that the 

intensity of the three intensities are statistically independent of each other.   
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 ( ) ( ) ( ) ( ).p s bo x o x o x o x    (5.19) 

 Because the system is modeled as linear and shift-invariant, the data function can 

also be separated into three data functions.  The superscripts, p, s, and b represent the 

primary function, the neighborhood system, and the background function respectively.  The 

subscript, k, represents the kth frame.   

 ( ) ( ) ( ) ( ).p s b

k k k kd z d z d z d z    (5.20) 

 Similar to Section 5.4.1, the corresponding complete data functions and their 

Poisson PMFs are derived.  Next, the conditional expectation function, Q, is calculated by 

taking the conditional expectation of the joint log-likelihood function given the observed 

incomplete data functions, similar to Equation (5.12).  Maximizing the conditional 

expectation function with respect to the primary object function, the neighborhood system 

function, the background function, and the PSF results in the following update equations.   
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 Similar to the previous section, the Gerchberg-Saxton phase retrieval algorithm is 

also applied on the PSF updates from the EM algorithm.  The PSF update equations remain 

the same as the one from the previous section. 

5.5. Performance Comparison 

In this section, the 500 datasets from the laboratory collected data and another 500 

datasets from the computer generated data are processed with the MFBD and the NSBD 

algorithms.  Each dataset contains K = 5 data functions.  Since the undersampled factor is 

L = 2, the estimated object functions are reconstructed on a 128×128 pixel plane even 

though the data functions are of 64×64 pixels in size.  A total of 200 EM iterations are 

completed for both algorithms.  A total of 100 Gerchberg-Saxton phase retrieval iterations 

are completed for each EM iteration. 

5.5.1. Results without Prior Knowledge  

For the first set of results, the concept of blind deconvolution is applied in a sense 

that no assumption about the primary object function is made.  The primary object function 

is assigned as a Dirac delta and the neighborhood system function is initialized with a 

circular region with a radius of 30 pixels, which is large enough to over the region where 

the dim object exists.  The primary object function and the neighborhood system function 

are mutually exclusive as shown in Figure 5.7. 

 The intensity of the primary object function is initialized with the average of the 

highest pixels from the five data functions.  That of the neighborhood system function is 

initialized with twice the background estimate, which can be easily computed from the 

corner regions of the data functions where there are very minimal influences from the 



 

125 

primary object and the dim object.  These exact initial conditions are not required for the 

algorithm.  As long as the intensity of the primary function is higher than that of the 

neighborhood system function, which in turn is higher than that of the background function, 

the NSBD will provide consistent results.  For the PSF, all five are initialized as the 

diffraction-limited PSF, where the phases are initialized as planes of zeros. 

 

 

Figure 5.7. (a) Primary Object Function and (b) Neighborhood System Function used 

in the NSBD Algorithm without any Prior Knowledge. 

 

To use the ROC function as a performance metric, the intensities of the dim object 

and the false alarm from the 500 estimated object functions from the output of each 

algorithm are first estimated.  To calculate the dim object intensity, a 4-pixel radius circular 

region is used.  It is centered 12 pixels away from the center of the primary object function 

where the dim object is placed.  The total value of the estimated object function in the 

circular region is used as the intensity of the dim object.  For the false alarm intensity, a 4-
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pixel radius circular area which is located 12 pixels away in the opposite direction is 

selected as shown below.   

 

 

Figure 5.8. The Regions for Calculating False Alarm and Dim Object Intensities. 

 

 The intensities are fitted using the Gaussian distributions and the ROC functions 

are compared in Figure 5.9 and Figure 5.10 for the laboratory data and the computer 

generated data respectively.  The reason for selecting the Gaussian distribution is that, with 

the exception of the distribution for the false alarm intensities from the computer generated 

data processed with the NSBD algorithm, the three other distributions fail to reject the null 

hypothesis that the data comes from a distribution in the normal family [97], [98].  The 

comparison between the unfitted data and the fitted data are shown in Appendix C.  From 

the results, the NSBD outperforms the MFBD for both the laboratory data and the computer 

generated data, even in the presence of the readout noise.  However, with an 80 percent 

confidence interval  0.20  , the lower confidence bound of the NSBD overlaps with 

the upper confidence bound of the MFBD. 
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Figure 5.9. The ROC Comparison for the Laboratory Data. 

 

 

Figure 5.10. The ROC Comparison for the Computer Generated Data. 
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5.5.2. Results with Additional Knowledge 

The advantage of the NSBD is that the further assumptions can be made about the 

primary object function.  In the next set of results, the assumption is made that the 

approximate shape of the primary object function is known.  The primary object function 

is then initialized with a circular region with 4-pixel radius.  This knowledge is based on 

the computer simulated data, even though the exact knowledge for the laboratory data is 

unknown.  The neighborhood system function is kept the same at 30-pixel radius as shown 

in Figure 5.11.  

 

 

Figure 5.11. (a) Primary Object Function and (b) Neighborhood System Function 

used in the NSBD Algorithm with Prior Shape Knowledge. 

  

For the primary object function initialization, the whole circular region is assigned 

with the average of the highest pixels from the five data functions from each dataset.  For 

the neighborhood system function, the background function, the PSFs, and the phases are 

initialized in the exact same manner as described previously.  In addition, the technique for 
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calculating the dim object intensity and the false alarm intensity are also kept the same for 

generating the ROC functions.  The number of EM iterations and phase retrieval iterations 

are also kept the same.  The intensities are also fitted with the Gaussian distributions.  With 

the exception of the distribution for the false alarm intensities from the computer generated 

data processed with the NSBD algorithm, the three other distributions also fail to reject the 

null hypothesis that the data comes from a distribution in the normal family.  The results 

are shown in Figure 5.12 and Figure 5.13. 

 

 
Figure 5.12. The ROC Comparison for the Laboratory Data with Additional 

Knowledge about the Shape of the Primary Object Function for the Neighborhood 

System Algorithm. 
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Figure 5.13. The ROC Comparison for the Computer Simulated Data with Additional 

Knowledge about the Shape of the Primary Object Function for the Neighborhood 

System Algorithm. 

 

 

From the results, when an estimated primary object function shape is given, the 

NSBD algorithm can provide an additional performance increase over the blind technique.  

To be consistent with the previous chapters, the averages of the estimated object functions 

processed with the MFBD algorithm and the NSBD algorithm for the laboratory data and 

the computer generated data are shown in Figure 5.14 and Figure 5.15.  From the results, 

it can be seen that the average of the intensities of the dim object are more pronounced for 

the NSBD algorithm with the primary object function shape given.    
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Figure 5.14. The Average Functions of the Intensities of the Estimated Object 

Functions Processed with the MFBD and the NSBD for the Laboratory Data. 

 

 

Figure 5.15. The Average Functions of the Intensities of the Estimated Object 

Functions Processed with the MFBD and the NSBD for the Computer Simulated 

Data. 
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5.6. Summary 

In summary, this chapter showed the performance comparison between the Multi-

Frame Blind Deconvolution algorithm and the Neighborhood System Blind Deconvolution 

algorithm for the laboratory data collected in the Optics Laboratory at the Air Force 

Institute of Technology.  The data was undersampled by a factor of two.  The algorithms 

were modified to take into account the undersampling effects in the derivation.  A set of 

computer generated data was created to simulate the laboratory data using the statistical 

photocalibration techniques.  The effects of the detector gain and the readout noise were 

also introduced.  The data from the two experiments were processed with both the Multi-

Frame Blind Deconvolution algorithm and the Neighborhood System Blind Deconvolution 

algorithm.  The Gerchberg-Saxton phase retrieval algorithm was also applied in 

conjunction with both algorithms.  The estimated object functions were compared using 

the Receiver Operating Characteristic function and the average function.  From the results, 

the Neighborhood System Blind Deconvolution algorithm outperformed the Multi-Frame 

Blind Deconvolution algorithm.  Furthermore, additional information about the primary 

object function can be given prior to processing with the Neighborhood System Blind 

Deconvolution.  With the additional information, the performance of the Neighborhood 

System Blind Deconvolution was further increased over the situation where no prior 

information was given.    
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6. Dimension Reduction Blind Deconvolution 

6.1. Chapter Overview  

In this chapter, the Dimension Reduction Blind Deconvolution (DRBD) is derived.  

This approach is built on the One-Dimensional Multi-Frame Blind Deconvolution 

algorithm (1DBD) [99].  The 1DBD algorithm assumes that the object function is spatially 

separable, meaning that it can be described by an outer product between two one-

dimensional (1D) vectors.  The DRBD algorithm is derived to make two improvements.  

The first improvement is the ability to detect the dim objects that are in close proximity to 

a bright one.  The second improvement is the ability to perform image processing when the 

object function is no longer spatially separable and cannot be described by an outer product 

between two 1D vectors.  The results are compared with the Neighborhood System Blind 

Deconvolution (NSBD) as well as the Multi-Frame Blind Deconvolution (MFBD).  

6.2. One-Dimensional Multi-Frame Blind Deconvolution  

The algorithm makes the assumption that the objects are spatially separable, where 

the object function can be described as the outer product between the two 1D object 

functions, as shown in the equation below. 

 
1 2 o o o , (6.1) 

where o1 and o2 are the N×1 and 1×M vectors respectively and   is the matrix 

multiplication between the two 1D object functions.  Each element can also be expressed 

as the following. 

 
1 2 1 1 2 2( , ) ( ) ( )o x x o x o x , (6.2) 
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 1 1 1 1( ), where {1,2,..., },  o x x No  (6.3) 

 2 2 2 2( ), where {1,2,..., },  o x x Mo  (6.4) 

 1 2 1 2( , ), where {1,2,..., } and {1,2,..., },o x x x N x M o  (6.5) 

where x1 and x2 are the discretized region over which the Y-axis and X-axis are defined and 

o1 and o2 with x1 and x2 indices represent the elements of the 1D vectors respectively.  In 

other words, the rank of the object function is one [100].  The object function is assumed 

to meet the Nyquist sampling criteria.   

To simplify the derivation, the assumption is made that the object function is a 

square function, where N = M.  Throughout this chapter, each variable is used for the 1D 

coordinate for each axis, such as x1, x2, y1, and y2, where the subscript annotates the 

direction.  The subscript “1” is used for Y-axis coordinates whereas the subscript “2” is 

used for the X-axis coordinates.  This is a departure from the previous chapters where one 

variable is used to express a two-dimensional coordinate.   

6.2.1. Algorithm Development 

Using the same imaging model shown in Figure 2.10, the object function passes 

through a set of uncorrelated atmospheric point spread functions (PSF) to form the image 

functions.  When the image functions arrive at the charge-coupled devices (CCD), they are 

converted to the data functions.  From the data functions, the total intensity of the object 

function can be derived by averaging the total intensities of the data functions.   

 
1 2 1 2

1 2 1 2

, , , 1

1 1
( , ) ( , )

K

k k

k y y y y k

d y y d y y
K K     

 
  

 
   , (6.6) 
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where K is the total number of PSFs used in multi-frame image processing.  To make the 

equations compact, the nested summations are annotated with multiple variables in the 

subscript.  Recognizing that the term inside the parentheses in Equation (6.6) is the sample 

mean, the above equation is approximated as the statistical mean as shown below.  

  
1 2 1 2

1 2 1 2

, , ,

1
( , ) E ( , )k k

k y y y y

d y y d y y
K     

  . (6.7) 

 From Equation (2.55), the Poisson mean of the data function is equal to the image 

function, which is formed from the convolution between the object function and the 

atmospheric PSF.  Therefore, the above equation can be written as the following. 

 
1 2 1 2

1 2 1 2

1 2 1 2

, , ,

1 2 1 1 2 2

, ,

1
( , ) ( , )

( , ) ( , ) .
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d y y i y y
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o x x h y x y x
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   



 
   

 

 

 

 (6.8) 

 Next, the nested summation is rearranged.  Then, the concept of the conservative 

nature of the PSF or the constraint to sum up to unity is applied.  The above equation can 

be simplified as the following. 

 
 

1 2 1 2 1 2

1 2

1 2

1 2 1 2 1 1 2 2

, , , ,

1 2

,

1 2

,

1
( , ) ( , ) ( , )

( , ) 1

( , )

.

k k

k y y x x y y

x x

x x

d y y o x x h y x y x
K

o x x

o x x



      

 
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 



  





 (6.9) 

where η is defined as the total intensities of the objects in the object function.  In addition, 

a constraint is made in such a way that the total intensity of the function o2 is equal one.   
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2

2 2( ) 1
x

o x


 . 
(6.10) 

As a result, the total intensity of the o1 object function is equal to η, as shown below. 
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(6.11) 

 As explained in Section 2.6.2, the concept of complete and incomplete functions is 

applied on the image functions and the data functions as shown below. 
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 where ki  is the complete image function which is defined as shown below. 

 1 2 1 2 1 2 1 1 2 2( , , , ) ( , ) ( , )k ki x x y y o x x h y x y x  . (6.13) 

 As explained in Section 2.3, the sum of Poisson random variables results in a 

Poisson random variable, the incomplete data function can also be expressed as a sum of 

complete data functions, as shown in the equations below. 
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(6.14) 
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where kd  is the complete data function which can be expressed as shown below. 

 1 2 1 2 1 2 1 2E ( , , , ) ( , , , )k kd x x y y i x x y y    . (6.15) 

 The probability mass function of the complete data function can then be expressed 

as the following. 

  
1 2 1 2 1 2 1 2( , , , ) ( , , , )

1 2 1 2
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k
k

k

i x x y y
d x x y y

d x x y y



 . (6.16) 

 Using the natural logarithm (ln), the log likelihood function is derived, similar to 

the derivation in Section 2.6.2. 
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 (6.17) 

where A.T. is the additional term that does not affect the maximization [62].  Next, the 

conditional expectation function, Q, is derived as shown in the equation below, where the 

complete data function is only the random variable.  The additional term is omitted in the 

subsequent equations. 
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(6.18) 

 As shown in Equation (2.7) and Equation (2.63), the expectation term inside the 

summation from the equation above can be derived as the following.  

 1 2 1 2
1 2 1 2 1 2 1 2
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k k k

k

i x x y y
d x x y y d y y d y y

i y y
   

. (6.19) 

 Substituting Equation (6.19) back into Equation (6.18) results in the following. 
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 Equation (6.20) is the output of the Expectation Step (E-Step) of the Expectation-

Maximization (EM) algorithm.  In the Maximization Step (M-Step), the conditional 

expectation function is maximized with respect to the 1D object functions, o1 and o2, and 

the PSF, hk.  The M-Step for o1 is shown below. 
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 (6.21) 

 Setting the derivation to zero results in the following update equation for o1. 
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 (6.22) 

The first denominator on the right-hand side of Equation (6.22) seems problematic 

because the updated equation for o1 depends on the updated o2 and hk. However, the nested 

summations of the denominator can be rearranged as shown below. 
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 Since the PSF sums up to unity, the above equation is simplified as below. 
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 Using the constraint made in Equation (6.10) that o2 sums up to one, the above 

equation can be further simplified as the following. 
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 The update equation for o1 can then be written as shown in the equation below.   
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 Using the same technique, the update equation for o2 is obtained as shown in the 

equation below. 
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 The first denominator can also be simplified using the conservative nature of the 

PSF and the constraint made in Equation (6.11) as shown in the equation below. 
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(6.28) 

 The update equation for o1 can then be written as shown in the equation below.   
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 Using the same derivation techniques, the PSF update equation is obtained as 

shown below.  
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where newU  is a constant to ensure that the new PSF also sums up to unity.  Similar to the 

algorithms developed Section 2.7, the Gerchberg-Saxton phase retrieval algorithm is 

applied on the updated PSF in Equation (6.30) to recover the two-dimensional phase from 
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the intensity measurement only.  The technique of spatial separation is not applied on the 

Gerchberg-Saxton algorithm. 

6.2.2. Algorithm Implementation 

Unlike the algorithm developed in Chapter 4, the implementation is not as 

straightforward.  This section explains a step-by-step implementation.  To do so, three 

temporary functions, , ,  and k kg f u , are introduced.  Even though these functions are 

superfluous, the purpose is to make the implementation easy and simple to follow.  A 

pseudo MATLAB code is also provided using these functions.   

To begin, the summation of the update equation for o1 from Equation (6.26) is 

rearranged.  First, the old object function, oldo , is formed from 
old

1o  and 
old

2o  as shown in 

the equation below. 
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  Next, the first temporary function, gk, is defined and Equation (6.31) can be written 

as shown in Equation (6.33). 
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 In the equation above, the term inside innermost parenthesis is a 2D convolution, 

which is defined by the second temporary function, fk. 
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  . 
(6.34) 

 The update equation for o1 from Equation (6.31) can be written as the following. 

 
2

new old

1 1 1 2 1 2

1
( ) ( , ) ( , )k

k x

o x o x x f x x
K  

  . (6.35) 

 Using the distributive property, Equation (6.35) can be written as the following. 

 
2

new old

1 1 1 2 1 2

1
( ) ( , ) ( , )k

x k

o x o x x f x x
K  

   . (6.36) 

 Here, the last temporary function, u, is defined as the following. 

 1 2 1 2( , ) ( , )k

k

u x x f x x


 . (6.37) 

 Therefore, the update equation for o1 can be simplified as the following. 

 
2

new old

1 1 1 2 1 2

1
( ) ( , ) ( , )

x

o x o x x u x x
K 

  . (6.38) 

Similarly, the update equation for o2 can also be simplified as the following. 

 
1

new old

2 2 1 2 1 2

1
( ) ( , ) ( , )

x

o x o x x u x x
K 

  . (6.39) 

 Next, the constraints from Equation (6.10) and Equation (6.11) are applied on o2 

and o1 respectively.  These two equations ensure that the elements of the vector o2 sum up 

to 1 and those of the vector o1 sum up to η.  Next, the update equation for the PSF can be 

implemented by change of summation variables.  It also requires creating the old 2D object 

function, oldo , from the outer product of 
old

1o  and 
old

2o , before convolving with gk. 
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  

  




 (6.40) 

The pseudo MATLAB implementation example for the update equations is shown 

in the figure below. 

 

% Pseudo MATLAB Implementation Example (One Expectation-Maximization Iteration) 

o_old = o1_new * o2_new;   % o1 is Nx1 vector and o2 is 1xN vector 

u     = zeros(N,N);        % N is the size of the square object function 

h_old = h_new;             % PSF Intensity 

p_old = p_new;             % PSF Phase 

 

for k = 1:K 

  i_old(:,:,k) = real(ifft2(fft2(o1_old*o2_old).*fft2(h_old(:,:,k))));  

  g(:,:,k) = d(:,:,k)./i_old(:,:,k);                                  % See Eq (6.32) 

  f(:,:,k) = real(ifft2(conj(fft2(h_old(:,:,k))).*fft2(g(:,:,k))));   % See Eq (6.34) 

  u        = u + f(:,:,k);                                            % See Eq (6.37) 

end 

 

o1_new = sum(o_old.*u,2)/K;                 % See Eq (6.38) 

o2_new = sum(o_old.*u,1)/(eta*K);           % See Eq (6.39) 

 

o1_new = alpha * o1_new/sum(o1_new(:));     % See Eq (6.11)  

o2_new = o2_new/sum(o2_new(:));             % See Eq (6.10) 

 

for k = 1:K 

  h_new(:,:,k) = h_new(:,:,k).*real(ifft2(fft2(o_old).*fft2(g(:,:,k))));% See Eq (6.40) 

  h_new(:,:,k) = h_new(:,:,k)/sum(sum(h_new(:,:,k)));        % PSF is conservative      

  p_new(:,:,k) = GerchbergSaxton(h_new(:,:,k),p_old(:,:,k)); % See Section 2.7 

end 

Figure 6.1.  Pseudo MATLAB Implementation for Spatial Separation Approach. 

  

Next, Scenario 1 from Table 3.4 is used for validating the algorithm.  In this 

scenario, the bright object has a photoelectron count of 10,000 and the dim object has 

1,000.  The background noise with an average photoelectron count of 10 is added to all 

pixels.  For the 1DBD algorithm, o1 and o2 are initially assigned to as constant vector, 

whose elements add up to η and 1 respectively.  The PSFs are initialized as the diffraction-

limited PSFs, where the phases are planes of zeros.  The performance of the 1DBD 
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algorithm is compared with that of the MFBD algorithm, using the two performance 

metrics described in Section 3.5.  The MFBD algorithm is based on Schulz’s approach 

explained in Section 2.6.4.  For the first performance metric using the Receiver Operating 

Characteristic (ROC) function, it can be seen that the current implementation of the 1DBD 

algorithm does not perform as well as the MFBD algorithm for the dim object detection, 

when the false alarm rate is very low as shown in Figure 6.2.  For the second metric, the 

average of the reconstructed object functions using the MFBD also outperforms that using 

the 1DBD as shown in Figure 6.3. 

Since the performance of the 1DBD algorithm does not exceed that of the MFBD 

algorithm, additional scenarios are not processed.  In the next section, the Dimension 

Reduction Blind Deconvolution algorithm (DRBD) is introduced, where improvements are 

made for dim object detection.  In addition, the algorithm also allows when the object 

function can no longer be represented by the outer product of two 1D vectors.  

 

 

Figure 6.2. The ROC Comparison for Scenario 1 between the MFBD Algorithm and 

the 1DBD Algorithm for Very Low False Alarm Rate. 
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Figure 6.3. The Average Function Comparison for Scenario 1 between the MFBD 

Algorithm and the 1DBD Algorithm.  

 

6.3. Dimension Reduction Blind Deconvolution  

This section introduces the DRBD algorithm with two improvements made to the 

1DBD.  In Section 6.3.1, the emphasis is on improving the detection of the dim object.  In 

Section 6.3.2, the emphasis is on applying the algorithm when the object function is no 

longer spatially separable and cannot be represented by the outer product between two 1D 

vectors, meaning the rank of the object function is higher than one. 

6.3.1. Spatially Separable Object Function 

To understand the reason 1DBD algorithm does not outperform the MFBD 

algorithm, the averages of reconstructed o1 and o2 from Section 6.2 are examined.  From 

Figure 6.4 (a), it can be seen that the reconstructed o1 background level is over twice of the 

true value, while the peak value is at 7,212 instead of the true value of 10,000.  One 



 

146 

explanation is that the gap between the true value of 10,000 and the calculated peak value 

of 7,212 is spread over the remaining pixels, causing the background level to rise. 

 

 

Figure 6.4. The Averages of the 1D Vectors Processed with 1DBD Algorithm. 

 

One technique to address is by separating the background level, B, from the 1D 

vectors shown in the equation below. 

 
1 2 1 1 2 2( , ) ( ) ( ) .o x x o x o x B   (6.41) 

The background level can be estimated from the regions in the data functions that 

are far away from the bright object and the dim object and that contain no known objects, 

as shown in Figure 6.5. 
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Figure 6.5. Background Level Estimation. 

 

Using similar derivation, the update functions can be derived as the followings. 
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1 2
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 

  
   (6.43) 

 The update equation for the PSF remains the same as shown in Equation (6.41).  

Similar to the implementation shown in Section 6.2.2, the two update equations can be 

simplified as shown in the equation below. 

  
2

new old old

1 1 1 1 2 2 1 2

1
( ) ( ) ( ) ( , ),

x

o x o x o x B u x x
K 

   (6.44) 

  
1

new old old

2 2 1 1 2 2 1 2

1
( ) ( ) ( ) ( , ).

x

o x o x o x B u x x
K 

   (6.45) 

 From Equation (6.32), Equation (6.34), and Equation (6.37), 1 2( , )u x x  is defined as 

shown below. 
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 
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6.3.2. Non-Spatially Separable Object Function 

A non-spatially separable object function is defined as one that cannot be 

represented by the outer product of two 1D vectors as shown in the figure below, where 

the rank of the object function is higher than one. 

 

 

Figure 6.6. Non-Spatially Separable Object Function 

 

 If the object function from Figure 6.6 were to be represented by an outer product of 

two metrics, it would need to be an outer product between an 2N   matrix, 2

1

N
o , and a 

2 N  matrix, 2

2

N
o , as shown in Equation (6.47).  Similar to the DRBD algorithm in 

Section 6.3.1, the background level, B, is added as a separate variable.  

  2 2

1 2

N N B   o o o  (6.47) 

 Similar to Equation (6.10) and Equation (6.11), 2

1

N
o  is constrained to sum up to 

the total intensity,  , and 2

2

N
o  is constrained to sum up to unity as shown below. 
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  (6.48) 
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2

2 2

1

( , ) 1.
x

o x



 

  (6.49) 

 The derivation is similar those shown in Sections 6.2.1 and 6.3.1.  Instead of 

summing along x1 and x2 as shown in Equation (6.44) and Equation (6.45), a singular value 

decomposition (SVD) is performed on the term inside the summation [101]–[103]. 

   
old old2 2

1 2 ,N N B   T
USV o o U  (6.50) 

where U is an N M  matrix, S is an M M  diagonal matrix, and 
T

V is an M N  matrix 

since the assumption is made that the object function is a square N N  matrix.  In addition, 

 is the piecewise matrix multiplication and U  is the N N  matrix whose elements are 

1 2( , )u x x  from Equation (6.46) as shown below. 

 

(1,1) (1, )

.

( ,1) ( , )

u u N

u N u N N

 
 
 
  

U  (6.51) 

Even though the number of resultant singular values may exceed two ( 2)M  , only 

the largest two singular values are used to match the dimensions of 2

1

N
o  and 2

2

N
o .  

Therefore, the update equations become the following. 
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  
new2 2 2 2

2

2

1
,N N



  
T

o S V  (6.53) 
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where 1  and 1  are some constants to ensure that 
new2

1

N
o  and 

new2

2

N
o  sum up to   and 1 

respectively as shown in Equation (6.48) and Equation (6.49).  
2 2

S  is a diagonal matrix 

made up with the two largest singular values from S.  
2N

U  and  2N
T

V are made up of 

two columns and two rows that are associated with the singular values in 
2 2

S .  The PSF 

update equation remains the same as the one shown in Equation (6.40).  A pseudo 

MATLAB implementation is shown in the figure below.  

 

% Pseudo MATLAB Implementation Example for SVD ) 

[U, S, V] = svd( (o1_old * o2_old) .* U );    % See Eq (6.50) 

 

o1_new = U(:,1:2) / eta1;                     % See Eq (6.52) 

o2_new = S(1:2,1:2) * (V(:,1:2)') / eta2;     % See Eq (6.53) 

Figure 6.7.  Pseudo MATLAB Implementation for SVD Approach. 

 

6.4. Performance Comparison 

In this section, the results are shown for spatially separable object functions and 

non-spatially separable object functions.  The data used for spatially separable object 

function is the same as that used in Chapter 3 and Chapter 4.  However, instead of running 

the algorithm through all eight scenarios from Table 3.4, this section shows the results for 

only two scenarios, which are Scenario 1 and Scenario 8.  The intensity of the bright object 

is set to 10,000 photoelectrons for both scenarios, but that for the dim object is set to 1,000 

photoelectrons for Scenario 1 and 25 for Scenario 8.  The reason for selecting Scenario 1 

is to make sure that the new algorithm does not suffer performance degradation for a trivial 
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case.  The reason for selecting Scenario 8 is to compare the performance for the most 

challenging case.   

 For all the image processing completed in this section, a total of 500 EM iterations 

are completed.  For each EM iteration, a total of 100 Gerchberg-Saxton phase retrieval are 

completed.  Instead of using a Gaussian mask approach, the intensities at the false alarm 

and the dim object locations are recorded.  The intensities of the false alarm pixel and that 

of the dim object intensities are compared using the ROC function.  The average 

information of all estimated object functions are also shown. 

 For all initializations, o1 and o2 are initialized with as constant vectors or constant 

matrices while satisfying their constraints of summing up to η and 1 respectively.  The 

PSFs are initialized as the diffraction-limited PSFs where the phases are initialized with 

planes of zeros. 

6.4.1. Spatially Separable Object Function  

This section presents the performance result of Scenario 1 and Scenario 8 using the 

DRBD algorithm.  Because the object function is spatially separable in these scenarios, 

two approaches of the DRBD algorithm are used.  The first one is the summation approach 

as shown in Section 6.3.1.  The second one is the SVD approach as shown in Section 6.3.2.  

However, o1 and o2 are decomposed as 1N  and 1 N  vectors instead of 2N  and 2 N  

vectors.   

 For Scenario 1, the ROC performances of the DRBD algorithm using the 

summation approach and the SVD approach are shown are shown in Figure 6.8 and Figure 

6.9.  From the results, it can be seen that even for the very low false alarm rate 10(1 10 ) , 
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the DRBD gives perfect detection regardless of whether the summation approach or the 

SVD approach is used.  The average functions of the DRBD algorithm using two 

approaches are shown in Figure 6.10 and Figure 6.11.  From the results, the averaged 

reconstructed intensities of the bright object and that of the dim object closely match their 

true values.    

 For Scenario 8, the ROC performances of the DRBD algorithm using the 

summation approach and the SVD approach are shown are shown in Figure 6.12 and Figure 

6.13 respectively.  Because these intensities of the false alarm and the dim object do not 

follow Gamma, Gaussian, Weibull, or any known distributions, the ROC functions are not 

fitted to a known distribution.  Appendix D shows how fitting these intensities to Gamma 

or Weibull could lead to inaccurate detection rates.   

As a reference, the ROC performance of the DRBD algorithm is compared with 

that of the NSBD algorithm and the MFBD algorithm from Figure 4.20.  From the results, 

the DRBD algorithm outperforms the NSBD algorithm and the MFBD algorithm for both 

the summation approach and the SVD approach.  The average function of the DRBD 

algorithm using the two approaches are shown in Figure 6.14 and Figure 6.15.  From the 

results, even though the averaged dim object intensity is higher than that of the false alarm 

pixel, they are very close to the background level.  Therefore, the dim object is discernable 

from the false alarm using the DRBD algorithm, even though the estimated intensity of the 

dim object is significantly less than that of the true intensity. 
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Figure 6.8. The ROC Performance for Scenario 1 Using the DRBD Algorithm with 

the Summation Approach for Very Low False Alarm Rate. 

 

 

 

Figure 6.9. The ROC Performance for Scenario 1 Using the DRBD Algorithm with 

the SVD Approach for Very Low False Alarm Rate. 
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Figure 6.10. The Average Function for Scenario 1 Using the DRBD Algorithm with 

the Summation Approach. 

 

 

 

 

 

Figure 6.11. The Average Function for Scenario 1 Using the DRBD Algorithm with 

the SVD Approach. 
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Figure 6.12. The ROC Comparison for Scenario 8 Using the DRBD Algorithm with 

the Summation Approach. 

 

 

Figure 6.13. The ROC Comparison for Scenario 8 Using the DRBD Algorithm with 

the SVD Approach. 
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Figure 6.14. The Average Function for Scenario 8 Using the DRBD Algorithm with 

the Summation Approach. 

 

 

 

 

Figure 6.15. The Average Function for Scenario 8 Using the DRBD Algorithm with 

the SVD Approach. 
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6.4.2. Non-Spatially Separable Object Function 

For non-spatially separable object function, two new scenarios are generated where 

the bright object is place in the center and the dim object is placed two pixels below and 

two pixels to the right of the bright object at a 2  pixel separation as shown in the figure 

below.  Even though the bright object is placed at (32, 32) for the scenarios in Chapter 3 

and Chapter 4, all performance comparisons in this research are based on the relative 

positions between the bright object and the dim object instead of their absolute positions.   

 

 

Figure 6.16. Non-Spatially Separable Object Function with Bright Object, Dim 

Object, and False Alarm Pixel Locations. 

  

To distinguish from the two new scenarios described in Table 3.4, the new ones are 

annotated with “N”.  For Scenario 1N and Scenario 8N, the intensities of the bright object, 

the dim object, and the background level are kept the same as those in Scenario 1 and 

Scenario 8.  The only difference is the placement of the dim object relative to the bright 

object.  The data functions are also generated using the same atmospheric turbulence 

strength of 
0/ 2D r  , using the Zernike technique with 100 polynomials as described in 

Section 3.3.7.  A total of 2,500 data functions are generated.  A set of 5 data functions are 

grouped to form one dataset, generating a total of 500 datasets per scenario. 
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Similar to Section 6.4.1, the ROC function and the average function are used for 

comparing the performance of the DRBD algorithm.  Because the object in this section are 

not spatially separable, only the SVD approach could be used where o1 and o2 are 

decomposed 2N  and 2 N  vectors.  For the average function, the intensities of the 

pixels on the diagonal line is recorded where the bright object, the dim object, and the false 

alarm are located as shown in the figure below. 

 

 

Figure 6.17. Average Function Used for Non-Spatially Separable Object Function. 

 

 The results for Scenario 1N and Scenario 8N are shown in Figure 6.18 through 

Figure 6.21 using the ROC function and the average function.  For Scenario 8N, the ROC 

functions are fitted with Weibull distribution because the dim object intensities and the 

false alarm intensities follow such distribution as shown in Figure D-9 in Appendix D [87], 

[104].  The ROC functions are shown along with that of the NSBD algorithm and the 

MFBD algorithm from Figure 4.20 for reference.  This is not a comparison because Figure 

4.20 shows the results from Scenario 8, which is different from Scenario 8N.  
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Figure 6.18. The ROC Performance for Scenario 1N Using the DRBD Algorithm with 

SVD Approach for Very Low False Alarm Rate. 

 

 

 

 

Figure 6.19. The Average Function for Scenario 1N Using the DRBD Algorithm with 

SVD Approach. 
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Figure 6.20. The ROC Comparison for Scenario 8N Using the DRBD Algorithm with 

the SVD Approach. 

 

 

 

 

Figure 6.21. The Average Function for Scenario 8N Using the DRBD Algorithm with 

SVD Approach. 
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 For Scenario 1N, the ROC function and the average function from the DRBD 

algorithm are shown in Figure 6.18 and Figure 6.19.  The DRBD algorithm gives a perfect 

detection even for very low false alarm rate 10(1 10 ) .  In addition, the average 

reconstructed intensities of the bright object and the dim object match their true values. 

For Scenario 8N, the ROC functions and the average functions from the DRBD 

algorithm are shown in Figure 6.20 and Figure 6.21.  From the results, the DRBD algorithm 

provides a better detection technique over the NSDB algorithm and the MFBD algorithm 

for low false alarm rates.  For the average function, the dim object is discernable from the 

false alarm with the DRBD algorithm, even though the estimated intensity of the dim object 

is significantly less than that of the true intensity. 

6.5. Summary 

In summary, this chapter provided a new Dimension Reduction Blind 

Deconvolution algorithm that was based on the One-Dimensional Multi-Frame Blind 

Deconvolution algorithm.  The latter requires the object function to be spatially separable, 

meaning that it needs to be represented by the outer product of two one-dimensional 

vectors.  In the Dimension Reduction Blind Deconvolution algorithm, two improvements 

were made.  The first one was the improved ability to detect dim objects in close proximity 

to a bright one.  The second one was the ability to perform image processing when the 

object function was no longer spatially separable.  Two existing scenarios were used for 

testing the first improvement where the object function was spatially separable.  Two new 

scenarios were generated for testing the second improvement where the object function is 
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no longer spatially separable.  The Receiver Operating Characteristic function and the 

average function were used to compare the performance.  The DRBD algorithm provides 

an improved technique to detect the dim object over the Multi-Frame Blind Deconvolution 

algorithm and the One-Dimensional Multi-Frame Blind Deconvolution Algorithm.   
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7. Conclusion 

7.1. Chapter Overview  

This chapter summarizes the purpose that this research is set out to address, which 

is to improve the closely spaced dim object detection.  It provides a summary of the 

algorithms developed to support the three tasks in fulfilling the purpose.  The potential 

future research is also explained.  In addition, the academic contributions are also listed. 

7.2. Research Purpose 

The overall purpose of this research to improve the detection of dim stellar objects 

that are in close proximity to a bright one through statistical imaging without the need to 

invest in additional hardware infrastructure.  To fulfill the purpose, this research 

accomplished three tasks. 

1. Develop algorithm(s) to improve the ability of detecting dim stellar objects using 

short exposure images. 

2. Validate the algorithm(s) through computer generated data. 

3. Validate the algorithm(s) on the telescope systems within the Space Surveillance 

Network (SSN) or the academic and scientific communities.  

Due to unavailability of the SSN telescope data, the data collected in the Optics 

Laboratory at the Air Force Institute of Technology is used instead. 
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7.3. Work Completed 

This section explains the work completed for each task in support of improving dim 

object detection.    

 

Task 1: Develop algorithm(s) to improve the ability of detecting dim stellar objects using 

short exposure images. 

 In Chapter 4, the Neighborhood System Blind Deconvolution (NSBD) Algorithm 

is developed.  This algorithm separates the data into three functions, which are the primary 

bright object function, the neighborhood system function around the primary object, and 

the background function.  In this chapter, it is assumed that the data functions are sampled 

at Nyquist rate such that there are no undersampling effects.  In Chapter 5, the NSBD 

algorithm is modified so that it can perform the statistical image processing when the data 

functions are undersampled. 

 In Chapter 6, the Dimension Reduction Blind Deconvolution (DRBD) algorithm is 

developed.  This algorithm is based on the One-Dimensional Multi-Frame Blind 

Deconvolution [99], which requires that the object function is spatially separable in a sense 

that it can be represented by the outer product of two one-dimensional (1D) vectors. The 

DRBD algorithm makes two improvements.  The first one is in improving the ability to 

detect dim objects that are in close proximity to the bright one.  The second one allows the 

DRBD algorithm to perform statistical image processing on the object functions that can 

no longer be represented by the outer product of two 1D vectors.   
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Task 2: Validate the algorithm(s) through computer generated data. 

 In Chapter 4, the performance of the NSBD algorithm is validated with computer 

generated data.  Eight scenarios are generated.  For all scenarios, the intensity of the bright 

object is fixed at 10,000 photoelectrons.  The intensities of the dim object are varied from 

10% to 0.25% of the intensity of the bright object as described in Table 3.4.  A constant 

background level of 10 photoelectrons is added to all pixels including the bright object and 

the dim object.  A Zernike phase screen generation technique is used in creating random 

atmospheric phase screens, using 100 polynomials.  The strength of the atmospheric 

turbulence, 0/D r , is set to two for all phase screens.  For each scenario, a total of 500 

datasets are generated with each dataset containing five data functions for multi-frame 

statistical image processing.  The phase screens are generated so that no two screens are 

statistically correlated.  The performance of the NSBD algorithm is compared with the 

Multi-Frame Blind Deconvolution (MFBD) implementation by Schulz [62], since the 

MFBD algorithm is used by many scholars in the electro-optics community for 

performance comparison.  Two performance metrics descried in Section 3.5 are used for 

performance comparison.  The first one is the Receiver Operating Characteristics (ROC), 

which compares how well the distribution of the dim object intensities is separated from 

that of the false alarm pixel, where no object intensities exist.  The second one is the 

average intensity of the reconstructed dim object.  From the results, the NSBD algorithm 

provides an improved technique over the MFBD algorithm for the dim object detection. 

In Chapter 6, a set of data functions are generated to simulate the laboratory 

collected data.  This data presents the undersampling case.  The readout noise is also 
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introduced to simulate the outputs of the charge-coupled devices.  In addition, the 

atmospheric strength is also higher at 
0/ 10D r  .  The NSBD algorithm is modified for 

the undersampled data.  The results are compared to the MFBD algorithm that is also 

modified for the undersampled data.  The results are presented in two cases.  In the first 

case, the NSBD algorithm does not assume any knowledge about the bright object, 

presenting a true blind deconvolution processing.  In the second case, the shape for the 

primary object is given to the NSBD algorithm.  From the results, the NSBD algorithm 

provides an improved technique over the MFBD algorithm.  In addition, the NSBD 

performance is further improved when the shape of the primary object is given for the 

second case.   

 In Chapter 6, to validate the performance of the DRBD algorithm, Scenario 1 and 

Scenario 8 from Table 3.4 are used for the cases when the object function is spatially 

separable.  For these two scenarios, the DRBD algorithm outperforms the MFBD 

algorithm.  Two new scenarios, Scenario 1N and Scenario 8N, are created where the object 

function is no longer spatially separable.  The DRBD algorithm also outperforms the 

MFBD algorithm for these scenarios.  

 

Task 3: Validate the algorithm(s) on the telescope systems within the SSN or the 

academic and scientific communities.  

In Chapter 5, the performance of the NSBD algorithm is compared using the data 

collected at the Optics Laboratory at AFIT.  This data is undersampled by a factor of 

approximately two.  Therefore, the data is processed with the modified NSBD algorithm 
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for undersampled data.  The performance is compared with that of the MFBD algorithm 

modified for the undersampled data.  Similar to the computer simulated data mentioned in 

Task 2, two cases are analyzed.  In the first case, the NSBD algorithm does not assume any 

knowledge about the bright object.  In the second case, the shape information of the bright 

object is given.  The NSBD algorithm outperforms the MFBD algorithm for both cases.  In 

addition, when the shape information is given, the NSBD algorithm provides additional 

performance gain over the case where no prior information is given.  The performance of 

the laboratory data is consistent that that of the computer generated data that mimics the 

former.  The list of the completed work for all three tasks is summarized in the table below. 

 

 

Table 7.1. Summary of Work Completed. 

Task 1: Algorithms Developed Task 2: 

Validation with 

Computer 

Generated Data 

Task 3: 

Validation with 

Laboratory Data Algorithm 

Name 

Nyquist 

Sampled 

Undersampled 

NSBD Chapter 4 Chapter 5 Chapter 4 

Chapter 5 

Chapter 5 

DRBD Chapter 6 - Chapter 6 - 
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7.4. Future Work 

There are several opportunities for continued research based on the work presented 

in this dissertation. 

 

Sub-Pixel Blind Deconvolution 

 In this research, the bright object and the dim object are located in different pixels 

even for the undersampled case.  For the sub-pixel undersampled case, the undersampling 

factor is high enough that a pixel from data function contains both the bright object and the 

dim object.  This dissertation provides the undersampled blind deconvolution technique to 

reconstruct in the Nyquist space.  The NSBD algorithm provides an image processing 

technique where the bright object is processed separately from its neighborhood system.  

Building on these foundations, the sub-pixel blind deconvolution algorithm needs to be 

further investigated.   

 

Undersampled Dimension Reduction Blind Deconvolution   

 Another area for further investigation is the undersampled DRBD algorithm, 

especially when the readout noise is introduced.  This dissertation provides the 

undersampled blind deconvolution derivation as well as the dimension reduction approach.  

A combination of these two provides the foundation to be further investigated for the 

undersampled DRBD algorithm and to process the undersampled laboratory data. 
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7.5. Publications 

To ensure the originality and significant contribution of the research in this 

dissertation, each portion of this research is submitted and published as either a conference 

or journal paper for evaluation and critic from experts within the field. 

Conference Presentation 

 Based on Chapter 4: 

R. M. Aung and S. C. Cain, “Multi-Frame Blind Deconvolution of Closely Spaced 

Dim Stellar Objects,” in Advanced Maui Optical and Space Surveillance 

Technologies Conference, 2019. 

Journal  

 Based on Chapter 5: 

R. M. Aung and S. C. Cain, “Improving closely spaced dim object detection 

through multi-frame blind deconvolution of near stellar neighbourhoods,” Journal 

of Modern Optics.  Submitted May 2020.  Accepted August 2020. 
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Appendix A: Estimation of Gamma Distribution 

The estimation methods for the gamma distribution parameters are adopted from 

Hahn and Shapiro [105].  Let { , 1,..., }ni n N  be the measured intensities that need to be 

fitted to the gamma probability distribution function.  The function takes on the following 

form, where a and b are the gamma distribution parameters and i the continuous random 

variable.    

 
1( ; , )
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 The estimation of the gamma distribution parameters, â and b̂, are given by the 

following equations. 
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 When using MATLAB, it is important to note that it defines b slightly different in 

the following manner. 

 
1

MATLABb
b

 . (A.6) 
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Appendix B: Gamma Distribution Fits from Chapter 4 

 This appendix shows the gamma distribution fits for the intensities of the dim object 

and the false alarm pixel for both the coupled and decoupled approaches using the 

Neighborhood System Blind Deconvolution algorithm developed in Section 4.4.1.  

 

Figure B-1. The Gamma Fits for the Coupled Approach for Scenario 1. 

 

 

Figure B-2. The Gamma Fits for the Decoupled Approach for Scenario 1. 
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Figure B-3. The Gamma Fits for the Coupled Approach for Scenario 2. 

 

 

Figure B-4. The Gamma Fits for the Decoupled Approach for Scenario 2. 
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Figure B-5. The Gamma Fits for the Coupled Approach for Scenario 3. 

 

 

Figure B-6. The Gamma Fits for the Decoupled Approach for Scenario 3. 
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Figure B-7. The Gamma Fits for the Coupled Approach for Scenario 4. 

 

 

Figure B-8. The Gamma Fits for the Decoupled Approach for Scenario 4. 
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Figure B-9. The Gamma Fits for the Coupled Approach for Scenario 5. 

 

 

Figure B-10. The Gamma Fits for the Decoupled Approach for Scenario 5. 

 



 

176 

 

Figure B-11. The Gamma Fits for the Coupled Approach for Scenario 6. 

 

 

Figure B-12. The Gamma Fits for the Decoupled Approach for Scenario 6. 

  



 

177 

 

Figure B-13. The Gamma Fits for the Coupled Approach for Scenario 7. 

 

 

Figure B-14. The Gamma Fits for the Decoupled Approach for Scenario 7. 
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Figure B-15. The Gamma Fits for the Coupled Approach for Scenario 8. 

 

 

Figure B-16. The Gamma Fits for the Decoupled Approach for Scenario 8. 
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Appendix C: Gaussian Distribution Fits from Chapter 5 

 This section shows the Gaussian distribution fits for the dim object intensities and 

the false alarm intensities obtained from the Multi-Frame Blind Deconvolution (MFBD) 

and the Neighborhood System Blind Deconvolution (NSBD) for the laboratory data and 

the computer simulated data from Chapter 5.  For the NSBD algorithm, two approaches 

are used.  The first one is the blind deconvolution approach as described in Section 5.5.1 

and the other one is processed with the prior knowledge of the shape of the primary object 

function as described in Section 5.5.2.  The distributions and their Gaussian distribution 

fits are shown in the following figures.  

 

 

Figure C-1. The Gaussian Distribution Fits for the Dim Object Intensities and the 

False Alarm Intensities of the Laboratory Data Processed with the MFBD. 
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Figure C-2. The Gaussian Distribution Fits for the Dim Object Intensities and the 

False Alarm Intensities of the Laboratory Data Processed with the NSBD. 

 

 

 

 

Figure C-3. The Gaussian Distribution Fits for the Dim Object Intensities and the 

False Alarm Intensities of the Laboratory Data Processed with the NSBD with the 

Shape of the Primary Object Function Given.  
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Figure C-4. The Gaussian Distribution Fits for the Dim Object Intensities and the 

False Alarm Intensities of the Computer Generated Data Processed with the MFBD. 

 

 

 

Figure C-5. The Gaussian Distribution Fits for the Dim Object Intensities and the 

False Alarm Intensities of the Computer Generated Data Processed with the NSBD. 
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Figure C-6. The Gaussian Distribution Fits for the Dim Object Intensities and the 

False Alarm Intensities of the Computer Generated Data Processed with the NSBD 

with the Shape of the Primary Object Function Given.  
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Appendix D: Distribution Fits from Chapter 6 

 This appendix shows the distributions of the dim object intensities and the false 

alarm intensities obtained from the Dimension Reduction Blind Deconvolution (DRBD) 

from Chapter 6.  Figure D-1 and Figure D-2 show the distributions for Scenario 1 using 

the summation approach and the singular value decomposition (SVD) approach.  Figure 

D-3 shows the distributions for Scenario 1N using the SVD approach.  For all scenarios, 

the intensities of the false alarm are well separated from those of the dim object that either 

Gamma or Weibull will provide a perfect detection rate.  

 

 

Figure D-1. The Distributions for Dim Object Intensities and False Alarm Intensities 

for Scenario 1 Using DRBD with Summation Approach. 
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Figure D-2. The Distributions for Dim Object Intensities and False Alarm 

Intensities for Scenario 1 Using DRBD with SVD Approach. 

 

 

Figure D-3. The Distributions for Dim Object Intensities and False Alarm 

Intensities for Scenario 1N Using DRBD with SVD Approach. 
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 Figure D-4 and Figure D-5 show the distributions for Scenario 8 using the 

summation approach.  In Figure D-4, the distributions are fitted with the Gamma 

distributions.  From the figures, it can be seen that fitting with the Gamma distributions 

will not provide accurate detection rates.  Therefore, the results shown in Figure 6.12 are 

not fitted with the Gamma distributions. 

 

 

Figure D-4. The Gamma Fitted Distributions for Dim Object Intensities and False 

Alarm Intensities for Scenario 8 Using DRBD with the Summation Approach.  
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In Figure D-5, the distributions are fitted with the Weibull distributions.  From the 

figures, it can be seen that fitting with the Weibull distributions will not provide accurate 

detection rates.  Therefore, the results shown in Figure 6.12 are not fitted with the Weibull 

distributions. 

 

 

 

Figure D-5. The Weibull Fitted Distributions for Dim Object Intensities and False 

Alarm Intensities for Scenario 8 Using DRBD with the Summation Approach.  
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 Figure D-6 and Figure D-7 show the distributions for Scenario 8 using the SVD 

approach.  In Figure D-6, the distributions are fitted with the Gamma distributions.  From 

the figures, it can be seen that fitting with the Gamma distributions will not provide 

accurate detection rates.  Therefore, the results shown in Figure 6.13 are not fitted with the 

Gamma distributions. 

 

 

Figure D-6. The Gamma Fitted Distributions for Dim Object Intensities and False 

Alarm Intensities for Scenario 8 Using DRBD with the SVD Approach.  
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In Figure D-7, the distributions are fitted with the Weibull distributions.  From the 

figures, it can be seen that fitting with the Weibull distributions will not provide accurate 

detection rates.  Therefore, the results shown in Figure 6.13 are not fitted with the Weibull 

distributions. 

 

 

Figure D-7. The Weibull Fitted Distributions for Dim Object Intensities and False 

Alarm Intensities for Scenario 8 Using DRBD with the SVD Approach.  
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 Figure D-8 and Figure D-9 show the distributions for Scenario 8N using the SVD 

approach.  In Figure D-8, the distributions are fitted with the Gamma distributions.  From 

the figures, it can be seen that fitting with the Gamma distributions will not provide 

accurate detection rates.  Therefore, the results shown in Figure 6.20 are not fitted with the 

Gamma distributions. 

 

 

Figure D-8. The Gamma Fitted Distributions for Dim Object Intensities and False 

Alarm Intensities for Scenario 8N Using DRBD with the SVD Approach.  
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In Figure D-9, the distributions are fitted with the Weibull distributions.  From the 

figures, it can be seen that fitting with the Weibull distributions track the data well.  

Therefore, the results shown in Figure 6.20 are fitted with the Weibull distributions. 

 

 

Figure D-9. The Weibull Fitted Distributions for Dim Object Intensities and False 

Alarm Intensities for Scenario 8N Using DRBD with the SVD Approach.  
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