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Abstract

This dissertation focuses on improving the ability to detect dim stellar objects that
are in close proximity to a bright one, through statistical image processing using short
exposure images. The goal is to improve the space domain awareness capabilities with the
existing infrastructure. In this research, two new algorithms are developed to improve dim
object detection. The first one is through the Neighborhood System Blind Deconvolution
where the data functions are separated into the bright object, the neighborhood system
around the bright object, and the background function. The second one is through the
Dimension Reduction Blind Deconvolution, where the object function is represented by
the product of two matrices, whose ranks are lower than the size of the object function.
Both are designed to overcome the photon counting noise and the random and turbulent
atmospheric conditions. The performance of the algorithms are compared with that of the
multi-frame blind deconvolution approach by Schulz because the new algorithms also use
the Poisson noise model similar to Schulz. The new algorithms are tested and validated
with computer generated data. The Neighborhood System Blind Deconvolution is also
modified to overcome the undersampling effects since it is validated on the undersampled
laboratory collected data. Even though the algorithms are designed for ground to space
imaging systems, the same concept can be extended for space to space imaging. This

research provides two better techniques to improve closely spaced dim object detection.
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IMPROVING CLOSELY SPACED DIM OBJECT DETECTION THROUGH
IMPROVED MULTI-FRAME BLIND DECONVOLUTION

1. Introduction

1.1. Chapter Overview

This chapter starts with the motivation for the need to detect dim or small stellar
objects that are in close proximity to a bright object. Then, it explains the overall purpose
and specific research tasks to improve such capabilities. It also describes the assumptions
that are made throughout this research. This chapter is concluded with the organization of

this dissertation.

1.2. Motivation

The earth orbits have been increasingly congested ever since the launch of the
Sputnik I in October 1957 [1]. Each launch adds debris and rocket bodies into these earth
orbits. When China launched the anti-satellite (ASAT) weapon against their weather
satellite in January 2007, it added a cloud of debris into the already congested space [2].
In February 2009, the collision between a Russian satellite and an American Iridium global
communications satellite introduced an additional cloud of space debris [3]. Figure 1.1
shows the increasing trend for the total amount of space debris with two sharp increases in
2007 and 2009 from these events.

In addition, the SpaceWorks Enterprise, an aerospace engineering company that
specializes in the design and assessment of advanced space concepts for both government

and commercial customers, estimated in 2019 that there is a market for 2,000 to 2,800



nanosatellites and microsatellites to be launched over the next 5 years [4]. The

categorization of the satellites are shown in Figure 1.2.
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With the proliferation of nanosatellites and microsatellites and the huge amount of
space debris, maintaining situational awareness on the high value space assets is very
critical. These orbital debris and small objects can instantly destroy or disable the space
assets. A collision with a ten centimeter object would catastrophically damage a typical
satellite, a one centimeter object would likely disable a spacecraft, and a one millimeter
object could destroy a satellite sub-system [6]. For example, in 2013, when the Russian
nanosatellite called BLITS (“Ball Lens in the Space”) was knocked out of its orientation
by a debris from the 2007 Chinese ASAT [7]. Therefore, detecting these small objects is
very critical to ensure that they would not intentionally or unintentionally collide with the
high value space assets, damaging and degrading the critical missions and services for the

military, the commercial industries, and the science and academic institutions.

1.3. Overall Purpose and Research Tasks

Since dependable and safe operations in space are vital to the United States national
security as well as global economic viability [8], the United States Strategic Command
(STRATCOM) is charged with the space control mission, as one of its missions. The space
control mission is conducted at the Combined Space Operations Center (CSPOC), which
detects, tracks, and identifies all man-made objects in the Earth orbits [9]. The CSPOC
was transitioned from the Joint Space Operations Center (JSPOC) on 18 July 2019 to
improve coordination between the U.S,, its allies, and the commercial and civil partners
for defensive space efforts [10]. On 20 December 2019, the United States Space Force
(USSF) became the sixth branch of the armed forces because of the importance of space

for the way of life, the economy, and the national interests of the United States [11].



The overall purpose of this research is to help contribute the space control mission
of the USSF by improving the algorithm for detecting small objects through statistical
image processing techniques, using the existing infrastructures. In addition to the national
security applications, the techniques found in this research can be adopted for astronomy
and other academic disciplines. To support the overall purpose, this research proposes the
following tasks.

1. Develop algorithm(s) to improve the ability of detecting small space objects

using short exposure images.

2. Validate the algorithm(s) with computer generated data.

3. Validate the algorithm(s) with the telescope systems within the Space

Surveillance Network or the academic and scientific communities.

1.4. Sources of Image Degradation

This research addresses three major sources of image degradation. The first source
is the photon counting noises associated with the charge-coupled devices (CCD). The
second source is the atmospheric turbulence. The last source is the spatial undersampling.
The first two are random in nature and the last one is deterministic. In addition, for ground
to space imaging, the first two are always coupled, with or without the last one. Depending
on the image collection setup, such as the size of the CCD pixel and the geometry of the
CCD and the stellar objects of interest, the last source may or may not be coupled with the

first two.



1.5. Assumptions and Limitations
To address these sources of degradation, the following assumptions are made
throughout this research. They are explained in the Methodology chapter.
1. The Fresnel far-field propagation criteria is met, allowing to implement the
propagation as a Fourier Transform.
2. Theimaging region is smaller than the isoplanatic patch size, where the imaging
system is linear and shift-invariant.
3. The effects of the atmospheric turbulence is frozen for short exposure images.
4. The atmospheric point spread functions are uncorrelated.
5. The CCD introduces signal dependent Poisson noise.
6. The background noise also follows Poisson distribution.
7. The light incident on the CCD is temporally incoherent.

8. The intensities of the data function pixels are statistically independent.

1.6. Document Outline

This document is organized in the following way. Chapter 2 provides the relevant
background on the noise introduced by the CCD, the mathematical model for representing
and generating the atmospheric turbulence using the Zernike technique, and the evolution
of the blind deconvolution algorithm from the approach by Richardson and Lucy to the
multi-frame blind deconvolution (MFBD) approach by Schulz. It also explains the
Gerchberg-Saxton phase retrieval algorithm as well as the mathematical model for

describing the effects of spatial undersampling.



Chapter 3 provides the methodology where the assumptions are explained. The
mathematical model for the imaging system is explained, along with the parameters used
for generating atmospheric turbulence phase screens using the Zernike technique. These
phase screens along with signal dependent Poisson noise are used for generating the data
functions to test and validate the algorithms. A total of eight scenarios are generated where
the intensities of the dim object vary from 10% to 0.25% of the intensity of the bright
object. It also explains the two metrics for comparing the performance of the new
algorithms with the MFBD approach by Schulz.

In Chapter 4, the Neighborhood System Blind Deconvolution (NSBD) is derived,
where the data functions are separated into three sets, which are the primary bright object,
the neighborhood system around the bright object, and the background. The performance
of the NSBD algorithm is compared with that of the MFBD using the computer generated
data.

In Chapter 5, the NSBD is modified to overcome the undersampling effects so that
it can be used for testing the undersampled laboratory data collected at the Air Force
Institute of Technology. In addition, a computer generated data is created to mimic the
laboratory conditions to ensure that the performance results are consistent. The
performance of the undersampled NSBD is compared with that of the MFBD, which is also
modified to take into account for the undersampling effects.

In Chapter 6, the Dimension Reduction Blind Deconvolution (DRBD) is derived,
where the object function is represented as a product of two matrices, whose ranks are

lowered than the dimension of the object function. In the first case, the object function is



assumed to be spatially separable, meaning that it can be represented by the outer product
of two one-dimensional vectors. The second case no longer assumes the object function to
be spatially separable where the object function with the size of NxN pixels is
represented by the product of N x2 and 2x N matrices. The DRBD algorithm is tested on
the computer generated data and the performance results are compared with that of the
MFBD algorithm.

This dissertation is concluded with Chapter 7, which summarizes the work

completed. It also discusses the potential future work and the publications.



2. Background and Literature Review

2.1. Chapter Overview

This chapter presents the background and literature review as well as the foundation
for the tools and methods that are used throughout this research. As mentioned in Section
1.4, there are three major sources of degradation to the quality of astronomical images: (1)
the photon counting noise associated with the charge-coupled device (CCD), (2) the
atmospheric turbulence, and (3) the spatial undersampling. This chapter provides the
background for the sources of the degradation and the techniques to overcome them. It
starts with an overview of the astronomy detectors, including the CCDs. It then explains
the statistics of the associated photon counting noise. Next, it provides an overview of the
atmospheric turbulence and a technique to simulate the turbulence using the Zernike
polynomials since the turbulence can be observed in the point spread function (PSF).
Afterwards, it provides methods for overcoming the first two sources of image degradation
and an explanation for the last one. Then, it introduces the blind deconvolution algorithm
to recover the degraded images. Combining the developments in electrical engineering,
astronomy, statistics, and medical communities, this chapter shows how the Richardson-
Lucy method is evolved into the Expectation-Maximization (EM) based Multi-Frame
Blind Deconvolution (MFBD) algorithm, which is the current standard for the United
States Air Force’s Space Domain Awareness (SDA) applications and also used by the
scholars in the electro-optics community [12]-[15]. Then, this chapter describes a phase

retrieval method to recover the two-dimensional phase to address and overcome the image



degradation caused by the atmospheric turbulence. Lastly, it explains the process of the

spatial undersampling so that the effects can be compensated.

2.2. Evolution of Astronomy Detectors

Astronomers have been observing the skies in search of asteroids, planets, and stars
for centuries. The act of finding space objects with ground based telescopes has been
performed by astronomers since the 17th century [16]. Even though he did not invent the
telescope, Galileo Galilei was the first person to use a telescope to look at the celestial
bodies [17]. Since then, astronomy has made great strides. From observation through
naked eyes, the technology has evolved to photography, to photoelectric single-channel
devices, to plate scanners, to television-type imagers, to semiconductor-based devices, and
to energy-resolution arrays [18]. The CCDs and avalanche photodiode detectors fall under
the semiconductor-based device category, while the superconducting tunnel junction falls
under the energy resolution array category.

Different types of sensors introduce different types of limitations as well as
different types of noise. The CCDs have been the most common imaging sensors in the
astronomy and space surveillance communities for visible and near ultraviolet light since
the 1980s [19], [20]. Since the overall goal of this research is to improve closely spaced
dim object detection and image reconstruction using the existing infrastructure, the Poisson

noise model associated with the CCD is used throughout this research.

2.3.  Photon Counting Noise Overview
In any optical telescope system, there are many sources of noise that can negatively

affect the ability to detect closely spaced objects, especially when they are very dim. These

9



include photon counting or photo-conversion noise, background light, readout noise, non-
uniform flat-field response, non-uniform spectral response, and extraneous charge carriers
resulting from bias, dark current, and both internal and external background radiation [21],
[22]. The systems deployed for the SDA applications generally utilize the CCDs where
the primary concern is the Poisson distributed photon counting noise [23]-[25].
Additionally, the internal and external background radiation, the dark current, and the bias
are also Poisson distributed random variables [26]. As such, this research derives the new
algorithms using the Poisson noise model.

This section introduces the Poisson random variable and its key characteristics that

will be used throughout this research. Let {X,, X,,..., X} be a set of independent Poisson

random variables with their corresponding means of {/IXl A, e /IXK}.

X~ Poisson(ﬂX ) where j =1,..., K. (2.1)

i
The first key characteristic is that the sum of independent Poisson random variables
is also a Poisson random variable. In addition, the mean of the sum of the Poisson random
variables is equal to the sum of the means of the Poisson random variables [27]. In other
words,

Y =X +X,+...+ X,
A :ﬂ'xl +/1x2 +"""ﬂbev (2.2)
Y ~ Poisson (4, ).

The second key characteristic is that the conditional probability P(X J.‘Y) takes on

the form of a Binomial random variable [28]. To make the derivation simple, an
intermediate random variable, Z, is introduced.

10



K
Z=> X,
i=1

i)

A, = Z/lxi’ (2.3)

i)

Z ~ Poisson (4, ).
Next, the conditional probability is calculated as the following:

P(X;=kY =n)
P(Y =n)
P(X;=k,X;+Z=n)
P(X;+Z=n)
P(X; =k Z=n-k)
P(X;+Z=n)
P(X; =k)P(Z=n-k)
P(X;+Z=n)

P(X;=k|Y=n)=

(2.4)

After rearranging the variables, the probabilities on the right side of Equation (2.4)
are substituted with their associated Poisson probability mass functions (PMF).

Rearranging the terms results in a binomial PMF as shown in Equation (2.5).

11



{elxj ;l’Xj ][egz A'Zn_k }
k! (n—k)!

P(X;=k|Y=n)= :
o) By +22)

n!
o () )
ki(n—k)! (ﬂxjwz)“

n! Ay

n-k
! ,. A,
KIN=K)( A, + 4, | | A, + 22

B n! ﬂxj k ﬂv_lxj "
“Lkin=k) )l 4, A,

Xj

= PBinomial(Xj =k;N =n, pzf}

(2.5)

With the second key characteristic, the third key characteristic can be derived,

which is the conditional expectation, E[X,|Y =X,+..+ X, ], 1<k<N, using the

expectation of a binomial PMF described in Equation (2.6) [27].

EBinomial [X1 N1 p] = Np )

A A
EPoisson [XJ |Y :n]: EBinomia||:X; N =n, p:%}:ni_

A,

(2.6)

(2.7)

The above equation (2.7) plays an important role in the subsequent section on

deriving the blind deconvolution algorithm.

2.4. Atmospheric Turbulence Simulation

Since the atmospheric turbulence is one of the three major sources of image

degradation, the simulation of the atmospherically distorted waveforms is important in

12



understanding the propagation of light and imaging through the atmospheric turbulence.
The optical effects of atmospheric turbulence arise from random inhomogeneities in the
temperature distribution of the atmosphere [29]. This section explains the technique for
simulating such effects.

Even though there are many techniques such as Kolmogoroff, Tatarskii, von
Karman, and the exponential spectrum models [30]-[33], these techniques often
underrepresent the lower-order aberrations such as tilt, which makes up a majority of the
atmospheric energy spectrum [34], [35]. Since the Zernike polynomial-based phase screen
addresses such lower order aberrations [35], [36], the Zernike technique is used in this

research.

2.4.1. Zernike Polynomial Overview

This research uses the modified Zernike polynomial, proposed by Noll in 1976,
which permits all the statistical aberration strengths to be calculated analytically [37], even
though the Zernike representation was originally presented by Fried in 1965 [38]. In this
research, the modified Zernike polynomials are used and they are simply called the Zernike
polynomials.

The Zernike polynomials are a set of polynomials defined on a unit circle, with a
key property of being orthogonal over the unit circle. The Zernike polynomials are defined

as shown below.
Z'(r,0)=2(n+YR(r)G"(9), (2.8)

where r and @ are the radial distance and polar angle in the polar coordinate system, m and

n are non-negative integers, representing the azimuthal frequency and radial degree, such

13



that m<n, R"(r) is the radial factor, and G™(8) is the annular factor. However, it is

convenient to express the Zernike polynomials with one index as shown in the equation

below, compared to that shown in Equation (2.8).

Rn(r) m=0,
i (n-m)/2 “1*(n-=:s)! n-2s
R'(r) =Y n+r(n Al nsim o (2.10)
s=0 gl —s |l —s |! .
( 2 M 2 )
. sin(m@) i odd,
G (9)—{005(,“9) i even. (&1

Even though the mapping (n,m)—i looks complicated, it can be easily

implemented in programming languages, such as MATLAB. The graphical
representations for the first 15 Zernike polynomials are shown in Figure 2.1. The
mathematical equations for the first 24 Zernike polynomials are shown in Table 2.1, along
with their names. The orthogonality relationship for the Zernike polynomials is given by

the following equations.

TR (MR __ 1 sinn
{Rn (NRY(r) rdr= 2n+15(n,n ), (2.12)
me(H)Gm'(H)dé?zﬂ&(m,m'), (2.13)

2z

l

Z.(r,0)Z.(r,0) rdr dé=r5(i,i"), (2.14)

O Sy
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1 k=k'

0 k=k' (2.15)

5(k,k')={

With the polynomials completely defined, any wavefront, ¢@(r,€), can be
expressed as a linear combination of the Zernike polynomials with the corresponding

Zernike coefficients, a;, as shown in the equation below.

o0

¢(r,¢9):;aizi(r,¢9). (2.16)

Due to the orthogonality principle, the Zernike coefficients can be decomposed

using the following equation.

2fj‘¢(r,¢9)zi(r,6) rdrdé
a =20

1 27

jjzf(r,e) rdr do
00

(2.17)

When converted to the discrete two-dimensional Cartesian coordinates from the

polar coordinates, the Zernike coefficients are decomposed using the following equation.

D VZi(%,Y)

a = . (2.18)

ZZ ZH(x,y)

vX vy
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=
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Figure 2.1. The Graphical Representation of the first 15 Zernike Polynomials.



Table 2.1. The First 24 Zernike Polynomials [34].

/14 (15r° —20r* + 6r* ) cos(20)

n|\mi i | z"r@)or z(r,6) Name

0] 0|11 piston

1 (1|2 |2r Cos(g) X tilt

111 | 3 | 2rsin(6) y tilt

2 | 0| 4 \/5(2,-2 _1) defocus

2 | 2|5 | . J6r? sin(20) y primary astigmatism
2 | 2| 6 | . 6r? cos(20) X primary astigmatism
3 1 7 J§(3r3—2r)5|n(9) y primary coma

3 11| 8 \/§(Br3 _ 2r)cos(9) X primary coma

3 1 3| 9 | 8risin (36) y trefoil

3 | 3 |10 Jfart cos(36) X trefoil

4 | 0 |11 \/§(Gr4 —6r2 +1) primary spherical

4 | 2 | 12 \/1_0(4r4 —3r2 )Cos(zg) X secondary astigmatism
4 2 | 13 \/1_0(4r4 —3r?2 )sin (20) y secondary astigmatism
4 | 4 | 14| Jior cos(46) X tetrafoil

4 | 4 |15 | f10r¢sin (46) y tetrafoil

5| 1116 J1_2(10r5 —12r% + 3r)cos(0) X secondary coma
5|1 17 J1_2(10r5 —12r8+ 3r)sin () y secondary coma

5| 3 |18 J1_2(5r5 —4r3)cos(30) X secondary trefoil

51 3 |19 J1_2(5r5 —4r3)sin (36) y secondary trefoil
515 |20 | . 12r5 cos (56) X pentafoil

5 15 21| . 12r%sin (50) y pentafoil

6 | 0 | 22 ﬁ(ZOrG —30r* +12r2 _1) secondary spherical

6 | 2 | 23 J1_4(15r6 —20r* + 6r2)sin (20) y tertiary astigmatism
6 2 | 24 X tertiary astigmatism
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2.4.2. Zernike Phase Screen Generation

In this research, a set of Zernike coefficients is generated to simulate a turbulent
wavefront. As shown in Equation (2.16), a turbulent wavefront is made up of infinitely
many Zernike coefficients. Since it is impossible to generate infinitely many Zernike
coefficients in simulation, this research uses a fixed number of coefficients, p, to simulate
a wavefront.

The Zernike coefficients of an atmospheric wavefront is said to be Gaussian with
zero mean and some variance [35]. However, it is not possible to directly simulate a
wavefront by using Gaussian random numbers as the Zernike coefficients using Equation
(2.16) because there exists a covariance among the coefficients, meaning the Zernike
coefficients are not statistically independent [35].

In this research, the desire is to generate a set of uncorrelated atmospheric
wavefronts. To do such, an orthonormal basis with a set of completely uncorrelated
random variables is formed with the Karhunen-Loéve functions as described subsequently.

The following derivations are adopted from the work by Putnam and Cain [36] and
that by Roddier [35]. Let us define A as a vector of p Zernike coefficients and C is the
covariance matrix among the first p modes. Since the first Zernike polynomial is a piston

or a constant and it does not have any effects on the aberration, it is ignored.

A=[a, a, .. ap]T. (2.19)
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E[a,a,] E[a,a] - E[a,a,]
c-e[an]| Fal Elwal - Eaa]) (2.20)
Ela,a] Ela,a] - E[a,a,]
0.4557 0 0 0 0 0 —0.0144 0 0 0 0 0 0
0 0.4557 0 0 0 —0.0144 0 0 0 0 0 0 0
0 0 0.0236 0 0 0 0 0 0 —0.0039 0 0 0
0 0 0 0.0236 0 0 0 0 0 0 0 —0.0039 0
0 0 0 0 0.0236 0 0 0 0 0 —0.0039 0 0
0 —-0.0144 0 0 0 0.0063 0 0 0 0 0 0 0
—-0.0144 0 0 0 0 0 0.0063 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0025 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0025 0 0 0 0
0 0 —0.0039 0 0 0 0 0 0 0.0025 0 0 0
0 0 0 0 —0.0039 0 0 0 0 0 0.0025 0 0
0 0 0 —0.0039 0 0 0 0 0 0 0 0.0025 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0025

Figure 2.2. The covariance matrix, C, among the first (p = 14) Zernike modes without
the piston term, in (D/ro)*? units [35].

The individual elements of the covariance matrix can be computed using the

following equations [35].

5/3

K,d,[(n+n'=5/4)(D/r,)

Ela;.a; - T((n-n'+17/3) /uz)zr((n'—n+17/3)/2)r((n+n'+23/3)/2) - @A
_T(14/3)[(24/5)r(6/5)]"[r(11/6)] (1) DD
' 272.2 (222)
—2.2698(-1)""*™"? [(n+1)(n'+1),
5Z:(m=m')A(parity(j,j')v(m=0)), (2.23)
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where n, m, n', and m' are the radial degrees and azimuthal frequencies of Z; and Z;
associated with the coefficients a; and a;., &, is a logical Kronecker symbol, D is the

diameter of the aperture of the optical system, and r, is the Fried’s seeing parameter.
From the numerical analysis by Roddier, C is known to be Hermitian as shown in
Figure 2.2. Therefore, there exists a unitary matrix U, (U™ =U"), such that
D=UCUT, (2.24)
where D is a diagonal matrix. Note that C is unique for every unique D /r, ratio. Next
another vector, N, is defined such that its elements are the coefficients of the Karhunen-
Loéve function as shown in Equation (2.26).
N=[n, n, .. np]T , (2.25)

N =UA. (2.26)
Next, the Cholesky decomposition of C can be derived by combining Equation
(2.20), Equation (2.24), and Equation (2.26).
UCU™ =U(E[AAT J)UT
=E[UAATU" | (2.27)
=E[NN"].
Since a set of independent Gaussian random variables are also uncorrelated,
selecting N to be a set of independent and identically distributed zero mean, unit variance
Gaussian random variables gives the following.

ucu’ =E[NNT]=|

(2.28)
c=U'u.
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Since N =UA, a set of Zernike coefficients is generated from a set of independent
or uncorrelated Gaussian random variables as the following.
A=U"N. (2.29)
With the resultant Zernike coefficients from the equation above, they can be used
in Equation (2.16) to simulate a turbulent wavefront. Since N is a set of independent
Gaussian random variables, any two wavefronts generated using this technique are

uncorrelated.

2.5. Point Spread Function
In an aberration free optical system, an aperture function is defined shown in the

equation below.

1 u e Transparent Region,

0 ueOpaque Region, (2:30)

A(u) ={

where u represents a region over which the two dimension aperture region is defined. The

physical and mathematical representations are shown in Figure 2.3.

Aperture Function Aperture Function
(Physical Representation) (Mathematical Representation)

Transparent .
Region [

Opaque
Region

Figure 2.3. Graphical Representation of Aberration Free Pupil Function.
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For incoherent light, an aberration free PSF, h, is defined as the square of the

magnitude of the Fourier Transform of the aperture function as shown in the equation
below [39].

h(x) = Ui\g{ AW)[, (2.31)

where x is a pixel in the discrete two-dimensional region over which the PSF is defined, &

is the Fourier Transform function, and U is some constant to ensure that the PSF is a

conservative process and sums up to unity as shown in the equation below.

In the presence of atmospheric turbulence, the atmospheric PSF can be derived as

shown in the equation below.

h(x) =U1\5{A(u)ei¢<u>}

=Sl of (2.39)

where ¢ is the atmospheric wavefront derived in Equation (2.16) and j is the imaginary

number. The Fourier Transform of the aperture function with an atmospheric wavefront,

3y, is defined as shown in the equation below. This term is used in the Gerchberg-Saxton

phase retrieval algorithm descried in the later section.

9(x) = F{ Au)e* '} (2.34)

The Fourier Transform of the PSF is called the optical transfer function (OTF),

which is represented by H.

H(f)=8&{h(x)}. (2.35)
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2.6. Blind Deconvolution Algorithm

In signal processing, convolution refers to computing the output function from a
given input function and an impulse response of a linear shift-invariant system as shown
in Figure 2.4. The dimensionality of the input, output, and impulse response functions is
dependent on the application. In the electro-optics community, the impulse response
function is also called the PSF. In this research, the output functions are two dimensional
short exposure speckled images. Conversely, deconvolution refers to as determining the
input function or the impulse response from the known output function in the off-line
processing. If deconvolution is performed for the real-time processing, it is referred to as
equalization [40]. In astronomy, since the estimation of the input function is conducted
after the image function or the output function is obtained, the problem falls under

deconvolution instead of equalization.

Input Impulse Output
(Object Function) Response (Image Function)

oX) ———~  h i)

Figure 2.4. Signal Processing System Diagram.

There are two categories of deconvolution problems. The first category includes
system identification, where the input function and the corresponding output function are
known. Alternatively, in some situations, the requirement is to calculate the input function

where the system impulse response and the output function are known. The second
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category is called blind deconvolution when both the input function and the impulse

response are not known, and the only available information is the output function. Since

the goal is to estimate the unknown astronomical object function that is passed through

some unknown impulse responses to generate the output image function, this research falls

into the blind deconvolution category.

Table 2.2. Signal Processing Categories.

) Impulse

Problem Processing Input Reszonse Output
Convolution Any Known Known Unknown
Deconvolution Off-Line Unknown Known Known
Deconvolutlor_l — Off-Line Known Unknown Known
(System Identification)

Equalization Real-Time Unknown Known Known
Equalization e e Real-Time Known Unknown Known
(System Identification)

Blind Deconvolution Off-Line Unknown Unknown Known
Blind Equalization Real-Time Unknown Unknown Known

Even though there are many well-known statistical filtering algorithms, such as the

Wiener and Kalman filters, they are known for removing the additive white Gaussian noise

(AWGN) that is independent of the signal [41]-[43]. The image processing model of these

types can be mathematically and pictorially described as shown in Equation (2.36) and

Figure 2.5.

i(y)=2,00)h(y—x)+n(y),
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where 0(x) is the object function, h(x) is the PSF, n(y) is the additive white Gaussian noise,
i(y) is the resultant image function, x is the two-dimensional (2D) coordinate for the object
function, and y is the 2D coordinate for the image function and the noise. The assumption
is made that the imaging region of interest is smaller than the isoplanatic patch size, where
the system is linear and shift-invariant [44]. Therefore, the image function can be

expressed as a convolution between the PSF and the object function.

Impulse Response Output
(Point Spread Function) (Image Function)
Input L Y
(Object Function) o) h N > W
Noise
(AWGN) )

Figure 2.5. Image Processing Model with Signal Independent Additive White
Gaussian Noise.

In addition to the Wiener and Kalman filters, there have been many researches and
studies on the blind deconvolution techniques [45]-[50]. Most assumed the noise is signal-
independent. However, this research uses the Poisson noise model, which is signal

dependent as shown in the figure below.

Point Spread Image Signal Dependent Data
Function Function Poisson Noise Function
Object : ~ i(y)
Function o) h 'Y * CCD )

Background B

Figure 2.6. Image Processing Model with Signal Dependent Poisson Noise.
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Le, Chartrand, and Asaki [51] and Jonsson, Huang, and Chang [52] introduced the
techniques for filtering signal dependent Poisson noise using the non-linear total variation
approach, originally proposed by Rudin, Osher, and Fatemi [53]. However, their
approaches were focused on edge-preservation denoising [48], [54], which is different from
the primary challenge in this research, which is to detect and estimate point sources. In
addition, another challenge with the Total Variation and Gradient Descent Algorithms is
that they are dependent on the parameters to control the step size and the smoothness
function. These parameters need to be estimated or guessed. The advantage of the blind
deconvolution is that it does not require these estimations.

As a result, this research is built on the blind deconvolution algorithm, which is
designed to reconstruct the point sources degraded by signal dependent noise in addition
to the atmospheric turbulence. Even though the blind deconvolution algorithm has been
used and developed for decades, its best known application has been the reconstruction of
blurred images from wide-field planetary camera from the Hubble Space Telescope (HST),
which was launched on 24 April 1990 [55]. Two decades prior to the HST launch,
Richardson (1972) and Lucy (1974) developed a Bayesian-based iterative deconvolution
algorithm while working independently in electrical engineering and astronomy [56], [57].
In 1977, Dempster, Laird, and Rubin received widespread attention in the statistics
community with their publication of an iterative Expectation-Maximization (EM)
algorithm, which optimizes the maximum likelihood function (MLE) functions [58]-[60].
In 1982, Shepp and Vardi introduced the EM based image reconstruction method in

emission tomography to the medical imaging community using Poisson distribution [61].
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In 1993, Schulz adapted the deconvolution algorithm from Shepp and Vardi and extended
it to multi-frame blind deconvolution of astronomical images [62]. The following

subsections provide the overviews of these developments.

2.6.1. Richardson-Lucy Method

The Fourier transform has been used successfully in image restoration when the
noise content is low or moderate; however the Fourier methods fail when the noise content
is high [63], [64]. Richardson and Lucy applied a Bayesian-based iterative method to
restore noisy degraded images in the spatial domain. In their approaches, they used the
Bayes’s postulate, also known as the equidistribution of ignorance, which will be explained
later in this section.

The object function is defined as {o(x): x e X} where X is the discretized two-

dimensional region over which the object function is defined. The object function passes

through a PSF, {h(y|x): xe X,y Y}, where Y is the discretized two-dimensional region

over which the image function, i(y), is defined as shown in Figure 2.7.

Object Point Spread Image
Function Function Function
ox) ———  h i(y)

Figure 2.7. Image Processing System Diagram.
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With the assumption that the imaging region is smaller than isoplanatic patch, the

image function can be described as a convolution of the object function with the PSF.

i(y)= 2 h(y-x)o(x), (2.37)

VxeX
where y is a pixel from Y and x is a pixel from X. The Bayesian probabilistic model for

the object function is shown in Equation (2.38).

P(i(y))
~ P(i(y)]0(x))P(0(x)) (2.38)
> P(i(y)[o(z))P(0(2))

VzeX

P(o(x)i(y))=

With the goal to estimate the object function, the probability of the object function
is expressed as the marginal probability function of the joint distribution function between
the object function and the image function as shown in Equation (2.39), which can also be

expressed in terms of Bayes’s Rule.

P(0(x))= > P(0(x),i(y))

vy

2.39
=2 P(oM)[iN P (i(y))- 239

Substituting Equation (2.38) into Equation (2.39) results in the following.
p(009)= Y| | LUWIONPD) g1y 1 (2.40)

5| 2. P(inlo(2))P(0(2))

VzeX
In the equation above, the desired solution, which is the object function, appears on
both sides of the equation. In many applications of the Bayes’s theorem, when the desired

solution is not known, an accepted practice is to make the best of a bad situation and use
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an estimate of P(0(x)) to obtain and approximation of P(o(x)|i(y)) [65]. Therefore, the

iterative solution becomes the following.

P(i(y) [o(x)P(i(y))
P(0™"(x) (o(x)) .
(0™09)=P )2, > P(i(y)|0(2))P(0(2)) (241)
VzeX
The iterative solution is currently in the form of probabilistic model. Using the
Bayes’s Postulate or the equidistribution of ignorance, which assumes a uniform
distribution for the object, image, and point spread functions, the approach converted from

the probabilistic domain to the spatial domain by dividing the value of the individual pixel

by the sum of all pixels of its corresponding spatial function.

P(0(x))= zc;(;(zz) = oéx)1 (2.42)

VzeX

P(i(y) ==Y

v S (2.43)

1
YveY

where S; is the sum of all pixels of the image function and So is the sum of all pixels in the
object function. Richardson defined the conditional probability P(i(y)|o(x)) as the

following.

P(i()1009) =2 <y ), (2.44)

h
where Sh is the sum of all pixels in the PSF, which is constrained to be one to ensure the
process is conservative. As a result, Si is equal to So. Substituting Equation (2.42) through

Equation (2.44) into Equation (2.41) results in the following equation.
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')
onew (X) _ oOId (X) h(y X) Si
So So vyeY z h(y _ Z) 00:(2) ’

VzeX 0

(2.45)

Simplifying the above equation results in the following Richardson-Lucy

deconvolution algorithm.

new _ Aold h(y—X)l(y)
=0T 2 S iy (2.49)

VzeX
In the next section, the EM algorithm is introduced, which is a further improvement
over the Bayes’s Postulate or the equidistribution of ignorance used by Richardson and

Lucy.

2.6.2. Expectation-Maximization Algorithm

In this section, the EM is explained in terms the electro-optic terms and variables
instead of the statistical terms. In 1976, Dempster, Laird, and Rubin introduced an iterative
maximum likelihood from the incomplete data via the generalized EM algorithm. The term
“incomplete data” stems from the existence of many-to-one mapping from one space to
another space [58]. The observed data is called the “incomplete data” which is formed

from the summation of the unobserved data or the “complete data” as shown below.

i(y)=21(y.%), (2.47)

VX
where i(y) is the “incomplete” image function and T(y,x) is the “complete” image

function. In the subsequent sections, the term “data” also appears as the data functions,

which is formed when the photon counting noise is introduced to the image functions. To
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avoid confusion, the “incomplete data” defined by Dempster will be simply called
“incomplete” for the remaining of this document. The term “data” will be reserved for
describing the data function which is the output of the CCD.

Since the image function is the convolution of the PSF, h, with the object function,
0, as shown in Equation (2.37), the complete image function can be expressed as a pixel-

by-pixel multiplication of the PSF and the object function as shown in the equation below.

1(y,X) =h(y—-x)o(x). (2.48)
Depending on the situation, either or both of the object function and the PSF are
unknown. To estimate the object function or the PSF or both, this approach takes the
maximum likelihood estimation (MLE) of the complete image function. For deconvolution
problems, the MLEs of the object function and the PSF are shown in Equation (2.49) and
Equation (2.50). For blind deconvolution problems, the MLE of both is shown in Equation

(2.51).

L(o)=TTITP(i(y. ), (2.49)

VX vy

L(h)=TTTTP((y.%), (2.50)

vx vy

L(o.h)=TTTTP(i(y.%). (2.51)

v vy

The EM algorithm requires maximizing the MLE functions. Instead of maximizing
them directly, it is much simpler to maximize the logarithm (log) of the MLE functions.
Due to the fact that log is a real (R), one-to-one, and strictly monotonic function for any

real (R) argument greater than zero, maximizing the log of a function will give the same

31



maximum location as the maximizing the function itself. Therefore, the log is applied on
the MLE function to obtain the log-likelihood function, ¢, as shown below.
((0)=logL(o)

=>" > log| P(i(y. %))} (2.52)

T~

Until converges, the EM algorithm iteratively calculates the conditional expectation
of the log-likelihood function in the Expectation Step (E-Step) and maximizes the resultant
conditional expectation function in the Maximization Step (M-Step) to estimate the object
function or the PSF or both. The E-Step and the M-Step are shown in Equation (2.53) and
Equation (2.54) for estimating the object function. The system diagram for the EM

algorithm is shown in Figure 2.8.
E-Step: Q(0) = E[£(0)|i(y)], (2.53)

M-Step: 6(x) =arg (nr;axQ(O)- (2.54)

((0) Gy

i(y) RIZOL% E-Step M-Step » 0(x)
e
Q)

Figure 2.8. Generalized Expectation-Maximization Algorithm for Estimating the
Object Function.

For blind deconvolution, the conditional expectation function from the E-Step will

be maximized with respect to both the true object function, o, and the PSF, h. Even though
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there is no requirement on the type of probability distribution function to be used for the
image function, Dempster, Laird, and Rubin used an exponential random variable whose
MLE function is easily computed, resulting in an easy computation for the E-Step and the
M-Step. Therefore, in this section, the image function, i, is treated as an exponential
random variable, which is not the case for the rest of this document. In the next section,
the EM algorithm is derived for the data functions with Poisson distribution since the

Poisson noise model is used for medical imaging devices and CCDs [22].

2.6.3. Expectation-Maximization in Medical Imaging

In 1982, Shepp and Vardi applied the EM algorithm for emission tomography, with
a Poisson random variable. This section also uses the terms and variables that are
consistent with the electro-optics instead of those from the medical imaging community.

The electro-optics equivalent of Shepp and Vardi’s problem is shown in Figure 2.9.

Object Point Spread  Image Data Deconvolution ~ Object
. . - Detector ) . .
Function Function  Function Function Algorithm Estimate
i(y) Poisson d(y)
h _ A~
o(x) vy —x) Noise EM 6(x)

Figure 2.9. Medical Image Reconstruction System Diagram.

From the figure above, the data function is formed by introducing the photon
counting noise to the image function. As a result, the relationship between the image

function and the data function can be described as the following.
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E[d(y)]=i(y). (2.55)
Since the sum of independent Poisson distributions is also a Poisson distribution,
the complete data function, d(y,x), and its probability mass function in terms of the

complete image function, 1(y, x), are defined as the following.

d(y)=>.d(y.x), (2.56)
E[d(y. ) ]=T(y.%), (2.57)

—i(y,x) iv(y! X)d(yYX)

T (2.58)

P(J(y, x))ze

The MLE function and the log-likelihood functions are shown in Equation (2.59)
and Equation (2.60). Since the Poisson distribution uses an exponential function, the

natural logarithm (In) is used in the log-likelihood function.

L(o)=TTITP(d(y.%), (2.59)

VX vy

((0)= ZZIn[P(d(y, x))}

VX vy

=ZZ|n{ef(y,x) r(y,X)&(y’X)} (2.60)

VX vy d~(y,X)|
= ZZ[—f(y, X)+d(y,x)Ini(y,x) +A.T.],

VX vy

where A.T. represents the additional term that does not affect the maximization [62]. In
the subsequent equations, this A.T. term will be dropped. With the log-likelihood function

derived, the conditional expectation given the incomplete data, d(y), can be calculated as

the following.
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0)=E[ £(0)[d(y)]

-E ZZ —|(y X)+d(y, ) In(i(y,)-In(d(y, x)')}‘d(y)} (2.61)
==Y S E[i(y0]d() ]+ X Y E[d(y, 0In(i(y,0)[d(y) |

Substituting T(y, x) =h(y—x)o(x) from Equation (2.48) into the equation above

gives us the following conditional expectation function.

=3 3 E[h(y-x)o(x)|d(y)]

VX vy

+3 Y E[ d(y, 0 In(h(y-x)0(9)[d(y) |

Vx vy

=->">"h(y—x)o(x) +

vx Wy

+Y > In(h(y - x)0(9)E[ d(y,)|d(y) ]

Vx vy

(2.62)

Since the object function and the PSF do not have probability distributions, their
conditional expectation functions are just themselves. The complete data function,
G(y,x), also takes on the Poisson distribution [62]. In Equation (2.7), the conditional
expectation function of a Poisson random variable given a sum of Poisson random variables
including itself, E[ X, |Y = X, +...+ X, |, was derived. Since the incomplete data is the
sum of complete data as shown in Equation (2.47) and both the incomplete data and the

complete data are Poisson random variables, the conditional expectation function of a

complete data given the incomplete data is given by the following equation.
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Ed(y0|d(y) |= E{d(y,x)\ > dy, z)}

VzeX

E[d(y, x)]

(y)
E{ 2 a(y’z)} (2.63)

h(y - x)o(x)
= d
S hy-2)0(2) Y

VzeX

_h{y=x)o(x) ,
) d(y).

In the EM algorithm, the new functions are iteratively updated from the estimations
of the old functions. Thus, Equation (2.63) represents the old terms. Substituting Equation
(2.63) into Equation (2.62) gives the following conditional expectation function, which is

the E-Step in the EM algorithm.

== 2 h(y-x)o(x)

old _ old (264)
+ZZ{In(h(y—x>o<x))(“ (y,?y;’ md(ﬁﬂ-

Next, the conditional expectation function is maximized with respect o(x) by

taking the derivative and setting it to zero.

6o(x) (0) 0
ny-x) (-0,
2h9 zLw(y x)o(x)( " (y) ()H °
1 hold(y_x)oold(x) (265)
-1 0
+o(x)vzyl () (Y)J

o°"’(x)z[ TR X)ol(y)j o(x)

Therefore, the update equation for the new estimate for the object function becomes
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0™"(x) =argmaxQ(0)
o(x)

oldfy, (2.66)
- o°'d(x)vzy[hi(fd—3£y)x)d (y)j.

Next, the techniques from this section are adapted and expanded for blind

deconvolution when the data functions from multiple unknown PSFs are available.

2.6.4. Multi-Frame Blind Deconvolution of Astronomical Images

The statistical model used by Shepp and Vardi for the medical imaging detector
took on a Poisson distribution, which is consistent with the statistical model of CCDs used
in electro-optics [22]. In 1993, Schulz adapted Shepp and Vardi’s algorithm and expanded
for multi-frame blind deconvolution for astronomical images.

With multiple atmospheric PSFs, {h, (x) :k =1,..., K}, where K is the total number

of PSFs, the corresponding image functions, i, (y), can be defined as the following.

()= SR (y-X0() = Y i (y,%). (267)
xeX xeX
Object Point Image Data Blind . Object
: Spread ; Detector . Deconvolution .
Function : Function Function : Estimate
Function Algorithm
i1 (y d
hl (y _ x) 1 ) l(y)
he (v — i2(y) d;(y)
o(x) 2(y = %) | Poisson —— 6(x)
Noise EM
ik () dg (v)
hy(y — %) -

Figure 2.10. System Diagram for Multi-Frame Blind Deconvolution.
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Using similar concepts as Shepp and Vardi, the incomplete image function for each

frame, i, (y), can be expressed as a sum of a complete image function for each frame,
i (Y,%).

(V)= 1 (¥.%), (2.68)

xeX

i, (¥, %) =h, (y=x)o(x). (2.69)
The data functions for the complete data and incomplete data for each of the frames

also assume Poisson distribution.

E[d.(W]=i(y), (2.70)
E[d (.0 ]=T(y.), (2.72)
d(y) = d(y,%). 2.72)

xeX
With multiple PSFs, the joint likelihood of the complete data, L, and the joint log-

likelihood, ¢, can be expressed as the following.

L.h) =TTTTTTP(d (v %), (2.73)

vk Wy Vx
((o,h))=InL(o,h,). (2.74)
Next, the Q-function for the E-Step is derived similar to that shown in the previous

subsection. See Equation (2.61) through Equation (2.64) for the detailed derivation of the

Q-function for a single frame image processing.
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Q(h,,0)=E[ ¢(h,,0)|d, (¥)]
=—>" > > h(y=x)0(x)

W VX vy (2.75)
+ZZZ{m(hk(y—x)o(x))(“f U (X)dkmﬂ.

Similar to Equation (2.65), the M-step maximizes the Q-function with respect to
the objection function as shown in Equation (2.76). In addition, since this is a blind

deconvolution problem, the M-step also maximizes the PSF functions as shown in Equation

@.77).
0" (x) =argmaxQ(h,,0)
o(x)
_ oold (X) hold(y_ X) g j (276)
K %:( iold(y) (Y
™ () = argmax Q(h, o)
hy (x)
~ l old 0old(y_ X) (277)
- U;ew hk (X)vzy[ iOId(y) dk(y)]!

where U™ is some constant to ensure the k™ PSF sums up to unity. The two update

equations above serve as the fundamental equations for this research. In the next section,

the Gerchberg-Saxton algorithm is introduced as a phase retrieval method.

2.7. Gerchberg-Saxton Phase Retrieval Overview

Since the optical systems cannot measure the phase directly, the phase retrieval
refers to recovering the two-dimensional phase of the optical system using only the
intensity data. It has a wide variety of applications in optical engineering [66]. Even

though there are many phase retrieval techniques available [67]-[69], this research uses the
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iterative method proposed by Gerchberg and Saxton (GS) in 1971 [70]. Any phase retrieval
method can be independently integrated with the blind deconvolution algorithm. The
integration between the two is explained in the next chapter.

When using the GS algorithm, the assumption is made that the aperture function is
known, A. In addition, the magnitude of %" is known and calculated from Equation (2.33)

and Equation (2.34) as shown in the equation below.

o (x)| = /h(x) , (2.78)

The Fourier Transform of any function can be expressed in terms of its magnitude

and phase as shown in the equation below.

a(x) = (X)]exp(ids (X)), (2.79)
where ¢, is the phase of the Fourier Transform associated with S7”. Initially, there is no
knowledge of the phases, ¢, or ¢. However, the magnitude of 3 and the aperture

function, A, are known. By iteratively going back-and-forth between the Fourier
Transform and the spatial domain of the aperture, where the atmospheric turbulence
introduces its effect, the GS algorithm estimates the atmospheric wavefront from the
intensity of the PSF. A pseudocode and a visual representation as well as of the GS
algorithm are shown in Equation (2.80) and Figure 2.11 respectively. The initialization

and the number of iterations are explained in detail in the next chapter.
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¢?(U) = ¢initial (U)

iterate {
() =8| AW exp( 1)}
5 (x) = angle| 97°(x)} (2.80)
a(u) =8 {JnG) exp id, (9|
#(u) =angle {a(u)}

APERTURE FOURIER TRANSFORM

Step 0: Initialize

A(H) ¢im’rfai (u)
&
Step 4: Replace with \ Step 1: Estimate

the known Aperture Fourier Transform

A(u) g;(u)

Step 3: Estimate the ; Step 2: Replace with
PSF Phase the known Magnitude

Jix) | 40

— | |7rw] | 4w

A

/](u) ga(u)

Figure 2.11. A Visual Representation of the Gerchberg-Saxton Algorithm.
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2.8. Spatial Undersampling

Unless the narrow field-of-view (FOV) optical systems are used, the data functions
from the CCDs could be undersampled. This section explains the process of spatial
undersampling using a mathematical model and the steps that the object function passes

through to generate an undersampled data function.

Object Function Atmospheric Phase Image Function

o(x),NxN 8, (), NxN i, (V),NxN

Data Function Decimated Image Function

> .N N Averaged Image Function
(2. i (), NxN

Figure 2.12. The process of undersampling, where NxN represents the number of
pixels in the functions sampled at the Nyquist rate and L is the undersampled factor.

As shown in Figure 2.12, assume that the object function, o(x), is sampled at the

Nyquist rate, with N x N pixels in size. It passes through an atmospheric PSF, hg, to
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generate an image function, i, (), which is also sampled at the Nyquist rate. The Nyquist

sampling size, 4, is defined as shown in Equation (2.81), where 4 is the wavelength, | is
the distance between the exit pupil and the detector, and D is the diameter of the source.

Al

A=——.
2D

(2.81)

The downsampling process starts with spatial averaging. The concept behind the
averaging filter is to reduce “sharp” intensities by replacing the value of every pixel in the
image function by the average of the intensity levels in the neighborhood defined by the
filter [71]. The averaging effects of the square CCD sensors modeled as a rectangle average

function, r(y), as shown in the equation below [24], [68].

1
-l Yel@D. L),

0  otherwise,

(2.82)

where L is the size of the neighborhood pixels. In addition, L is the decimating factor. It

is also assumed that N /L is an integer. From Figure 2.12, the averaged image function,
ikA(y), is obtained from convolving the image function with the rectangle function as

described in Equation (2.83). Note that if there are better models available to represent the

averaging effects of particular CCDs, they should be used instead.

i (y) :Zr(u)ik(y—u). (2.83)

You
Next, the decimated image function, {if(z) :2eZ}, is obtained by decimating the

averaged image function as shown in the equation below, where Z is the 2D discretized

region over which the undersampled functions are defined.
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i’ (2) =i (L2)
=33 o()r)h, (Lz—x~v). (2.84)

You VX
The undersampled data function, dk(z), can then be obtained by adding signal-
dependent photon counting noise. The relationship can be described such that the Poisson

mean of the data function is equal to the decimated image function.
E[dk(z)]zikD(z). (2.85)
In addition to the photon counting noise, the CCD also introduces signal-

independent additive white Gaussian noise (AWGN). Because the AWGN is modeled as
a zero-mean with some variance, o, it does not affect the equation above. Since a wide

FOV optical system will produce undersampled data, understanding the spatial

undersampling process is important in compensating the effects.

2.9. Summary

In summary, this chapter introduced the background for the tools and methods that
are used throughout this research. It explained the three major sources of image
degradation: (1) the photon counting noise associated with the CCDs, (2) the atmospheric
turbulence, and (3) the spatial undersampling. The chapter provided an overview of
astronomical detectors and the Poisson noise associated with the CCDs. Then, the
atmospheric model using the Zernike polynomials was introduced and the technique to
simulate the atmospheric wavefronts was explained. Afterwards, this chapter provided the
iterative Expectation-Maximization based Multi-Frame Blind Deconvolution to overcome

the signal dependent Poisson noise and the Gerchberg-Saxton phase retrieval to recover
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the atmospheric wavefronts from the intensity of the PSF. Finally, this chapter explained
the process for spatial undersampling so that it can be taken into account for processing

undersampled data functions.

45



3. Methodology

3.1. Chapter Overview

This chapter presents the methodology that is used throughout this research. It is
built on the tools and techniques described in the previous chapter. It builds a model for
each component of the imaging system, starting with an object function that contains the
stellar objects and ending with the estimation and detection of the objects after the object
function passes through an atmospheric turbulence, an imaging system, a detector, and a
blind deconvolution algorithm with phase retrieval. This chapter also describes the eight
assumptions made about the source, the detector, the point spread function (PSF), and the

data.

3.2. Assumptions
Assumption 1: The Fresnel far-field propagation criteria is met.

In this research, the statistical image processing is conducted using two-
dimensional (2D) Fourier transform. It is because the Fourier transforms are
computationally efficient. In addition, the concept of light propagation can be easily
simplified, understood, and implemented with the Fresnel propagation as a Fourier
transform, compared to the Rayleigh-Somerfield propagation. However, in order for us to
use the Fourier transform approach, the Fresnel criteria shown in Equation (3.1) must be

met [39].

3.1)
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where z is the propagation distance, D is the diameter of the object at the source plane, and
/. 1s the wavelength of the light.

For any digital imaging system, it is necessary that the Fresnel propagation is met
for the propagation between the stellar object and the aperture of the telescope as well as
that between the aperture of the telescope and the charge-coupled device (CCD) as shown
Figure 3.1. This allows each propagation to be implemented as a Fourier transform, which

in turn allows the entire propagation to be implemented as a Fourier transform.

Stellar Telescope .
Object Aperture cCb
15t Propagation 2nd Propagation

Figure 3.1. The light propagation from the stellar object to the telescope aperture
and then to the CCD.

In Table 3.1, the Fresnel criteria is calculated for a 10 meter diameter stellar object
that is in different orbital regimes, using an average visible wavelength of 550 nanometers.
From the table, it can be seen that the Fresnel criteria is met for all cases.

For the second propagation, it is dependent on the application. The aperture
diameters of a majority of the Space Domain Awareness (SDA) telescopes at the Starfire
Optical Range (SOR) in New Mexico and the Air Force Maui Optical & Supercomputing
Site (AMOS) in Hawaii are 1.6 meters or smaller, even though the SOR has a 3.5 meter
telescope and the AMOS has 3.6 meter telescope respectively [72], [73]. Even though this
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research does not use the data from these SDA telescopes, the Fresnel criteria is verified

for each application.

Table 3.1. The Fresnel Propagation Criteria for a 10 Meter Diameter Object

. . Altitude Fresnel Criteria
Orbital Regime ) 7 D*
(kilometer) [ﬂ?j
Low Earth Orbit 180 — 2,000 2.5%10° - 1.8x10°
Medium Earth Orbit 2,000 — 35,780 1.8x10° - 3.1x1013
High Earth and Geosynchronous Orbit > 35,780 <3.1x10%3

Assumption 2: The imaging region is smaller than the isoplanatic patch size, where the
imaging system is linear and shift-invariant.

Imaging systems are seldom isoplanatic over their entire object field. However, it
is possible to divide the field into small regions, the isoplanatic patches, such that the
system is approximately linear and shift-invariant [39]. This allows the image function to

be represented as the convolution between the object function and the PSF.

Assumption 3: The effects of the atmospheric turbulence is frozen for short exposure
images.

In a digital imaging system, the CCD converts the photons into the photoelectrons
by converting the intensity of the electromagnetic field that is incident on the CCD detector

for some integration time as defined in the equation below [74].
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t+T

0D =7 [ (v 27, @2)

where |, is the intensity functions, u,, is the field incident on the detector plane, T is

the integration time, t is the time at which the intensity measurement begins, and y is the
two-dimensional region over which the intensity is defined.

In this research, the integration time, T, is assumed to be much less than one second
so that the effects of the atmospheric turbulence is effectively frozen. Since the exposure
time depends on the effective wind velocity, the definition of the short exposure time varies
from 10 milliseconds or less as explained by Goodman [74], to 15 milliseconds as stated
by Hirsch, Harmeling, Sra, and Scholkopf [75], and to 60 milliseconds as used by Howell
and Horch to image and resolve a binary star system [76]. In Chapter 5, the short exposure
time of 30 milliseconds is used in collected the laboratory data to be tested and validated

for this research.

Assumption 4: The atmospheric point spread functions are uncorrelated.
The intensity functions are recorded at various times and they are simply called the
image functions as defined in the equation below.
i (Y) = L (Y1), (3.3)
where i, is the k™ image function obtained from the CCD at time tc and y is the 2D region
over which the intensity is defined.

In this research, the assumption is made that enough time has elapsed since the

previous image function was taken so that the atmospheric PSFs are no longer correlated.
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A time separation of one second between the two consecutive images (Atk > 1 second) is

considered to be sufficient to generate uncorrelated PSFs.

At =t ., -t >1sec, vk=1..K-1. (3.4)

Assumption 5: The CCD introduces signal dependent Poisson noise.

As mentioned in Section 2.3 and Section 2.6, the CCD introduces a Poisson photon
counting noise, in such a way that the statistical mean of each output pixel is equal to the
intensity of the same pixel on the image function. The resultant output function with a

Poisson noise is called the data function, which is shown in the equation below.

EPoisson I:dkStar (y)] = ilftar (y) ’ (35)

s star

where d®" is the noise-free data function, i’®" is the noise-free image function, and y is

the 2D region over which both the data function and the image function are defined.

Assumption 6: The background noise also follows Poisson distribution.

In addition, the CCD also introduces noise from the background light and dark

current in the form of Poisson distribution [22], [77]. The noise data function, d;**, from

s noise

the background noise, i,""", is shown in Equation (3.6).

EPoisson [dI?OiSG (y):| = il?Oise (y) . (36)
Since the sum of two Poisson distributions results in another Poisson distribution

as explained in Section 2.3, the data function, d, is formed from the summation of the

noise-free data function and the noise data function as shown in the equation below.
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EPoisson [dk (y)] = EPoisson |:dkStar (y):| + EPoisson [dEOise(y)]
=i (y) +i"™ (y) 3.7)
=1, (y)-

Assumption 7: The light incident upon the CCD is temporally incoherent.

The next assumption is that the light incident on the CCD is temporally incoherent
even though it may be spatially coherent. Temporal coherence is related to the intrinsic
spectrum bandwidth of the light source, while spatial coherence is affected by the size of
the light source and the propagation distance [78]. The light from the sun is temporally
incoherent and therefore the sun light reflecting from the object is also temporally
incoherent.

Next, the spatial coherence of the sun light will be considered. According to the

Van Cittert-Zernike theorem, the area of coherence, A., on the satellite body from the sun’s

spatially incoherent light is given by the following equation [74], [79].

(72)
A=——, (3.8
A
where 1 is the average wavelength, z is the distance between the source and the destination
of the light, and A, is the uniformly bright source area.
With the average distance between the sun and the earth is about 150 million
kilometers [80] and the surface area of the sun’s hemisphere is about 3.04x10'® square

meters [81], the area of coherence on the satellite body is calculated to be 4.16x10~° square
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meter or a square with 0.473 microns on each side. An average visible wavelength of 550

nanometers is used in the calculation.

550x10°mx150x10°m)’
=( — ) :2.24><10’9m2=(O.473x10’6m)2_ (3.9)
3.04x10°m

In the calculation above, the distance between the earth and the geosynchronous
orbit (GEO) of 35,780 kilometers is ignored since it is very small compared to that between
the sun and the earth [82]. Since the area of coherence on the satellite body is very small
compared to the size of the satellite, the light reflecting from the satellite body is assumed

to be spatially incoherent.

Satellite ______
i e

\z, = 3.6x107 n.

;' Optical '3 Sun
. System

Earth

Figure 3.2. Geometries among the Sun, the Earth, and the Optical System.

Next, the area of coherence on the telescope aperture from the satellite body will
be calculated. For this calculation, the propagation distance between the earth surface and
the GEO orbit of 35,780 kilometers, an average visible light wavelength of 550 nanometer,

and the satellite size of 100 square meters are used. With such parameters, the area of
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coherence is calculated to be an area with about 1.1 meters in radius or 2.2 meters in

diameter.

550x10°mx 35, 780x10°m)’
A =( e ) =39m?=7(111m)". (3.10)
2 m

Therefore, the whole satellite body becomes spatially coherent in the aperture plane

even though it is temporally incoherent.

Assumption 8: The intensities of the data function pixels are statistically independent.
To justify the assumption that the pixels of the data function are statistically

independent, the joint intensity function between two points will be calculated. The joint

intensity function, J, is defined as the mutual coherence function, I', with no time

difference as shown in the equation below [74].
J(Q.,Q,)=T(Q,Q,t=0), (3.11)

where Q, and Q, are any two points on the receiver plane as shown in Figure 3.3.
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Figure 3.3. Geometry for Propagation of Mutual Coherence.

The mutual coherence function can be calculated using the following equation [74].

r@Q.0-[[[fr(re it AN ke, e

ot Ar A,
where P, and P, are any two points on the source plane, r; is the distance between Q, and
P, 1, is the distance between Q, and P,, c is the speed of light, A is the average wave
length, y is the obliquity factor with value between 0 and 1, &, and &, represent the angle
between the normal of the surface and the propagation path, X, represents the area where
P, and P, canexist,and S, and S, represent the integration variables for the source and

receiver plane respectively. To make the calculation simple, the obliquity factors along
with their denominators from Equation (3.12) are omitted since they will only scale the
whole joint intensity function by a factor of some constant. The simplified equation can

be written as the following equation.
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Q@)= [T R s,

T, %,
ju*(Pz,t)}dsldSZ,

JifTE]u(pae

I %

(3.13)

where u and u” are the field and its complex conjugate and t is the time variable. The field
can be expressed in terms of its phasor amplitude and phase. Since the source field is
confined to an artificial aperture placed on the source, the field is multiplied by the aperture
transmittance function as shown in the equation below.
u(P,t)=A(P)U(P,t)exp(—j2zWt), (3.14)
where A is the aperture transmittance function as described in Equation (2.30), U is the
phasor amplitude, and V is the average frequency. Using Equation (3.14), the correlation
function from Equation (3.13) can be simplified as the following.

E{ (s 25 (pz,tﬂ : A(a)u[a,w%}e”””(”c

*

]A (P,)U" (P, t)e’*™

_E U(P t+ Cr)u (Pz,t)}A(P)A*(PZ)e_JZM[Zcrlj.

(3.15)

Recognizing that P, and P, are drawn from a spatially coherent field as described
in Assumption 7, the correlation between P, and P, becomes a constant, which will be
omitted to simplify the derivation. The average frequency, V, divided by the speed of

light, c, is also replaced with an average wavelength, A.

E{ (Pt+ er “(P, t)} A(a)A*(PZ)e_jZ”V[rZCrl]. (3.16)
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Substituting Equation (3.16) into Equation (3.13), the joint intensity function can
be simplified as the following. Note that the scale factor is omitted to simplify the

derivation.

Q)= [TAR)A (e T lasas, a1

DI}

In the previous sections and chapters, single variables, such as x and y, were used
to represent 2D regions. For the following equations from Equation (3.18) to Equation
(3.28), the following variable pairs will be used to represent the coordinates on the source
and detector planes as shown in Table 3.2.

With the two variable coordinates, Equation (3.17) can be expressed as shown in

Equation (3.18).

2
X1 Y1 %o, Y2 J-J.J.J- A exp{ J 7”(!’2 - Q):lduldvlduzdvz : (3.18)

PIED}

Table 3.2. Mapping Between Single Variable Coordinates and Two Variable
Coordinates.

Single Variable Coordinate Corresponding Two Variable Coordinate
R (%, %)
P (Xz’ y2)
Q (uy,v,)
Q, (U,,v,)

Next, the difference between the two distances will calculated as shown below.
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L—6=R-Ql-|P-Q]
7R () () )
= Z\/l—}- (ul_xl)2 +2(V1_y1)2 —Z\/l—{— (UZ—XZ)2 +(V2_y2)2.

z

(3.19)

Using the Taylor series expansion, the square root terms can be approximated as

the following.

rz—rlzz£1+(u1_x1)2+(V1—y1)2j_z[l+(u2_X2)2+(V2_y2)2J

27°

2 2 2 2
_(u1_X1) +(V1_y1) _(uz_xz) +(Vz_y2)
22 22 (3.20)
2 2 2 2 2 2 2 2
U =20 X XY =2V Y Y, _u, —2U,X, +X," +V," =2V, ¥, + Y,
22 2z
_ U’ —U" V7 =V, %7 =%+ Y = y," =20, =2,y + 20, +2V,Y,
2z '

Next, the substitutions x, =A +x, and y, =A, +Yy, are used to simplify Equation

(3.20).
Cr e U’ —U? +v2 —v,? .\ X, (Uy =Uy) + Yy (V, =V )+ U, AL +V,A
2 1~
% . ‘ (3.21)
XA, +y1Ay A +A,
z 2z

If the lenses are used to focus the light, the quadratic term will vanish. In addition,
since the mutual coherence function is integrated over the surface of the source plane, the
receiver plane variables can be pulled out of the integral. Since these terms represent some

constant value, they are omitted to simplify the derivation.

n-r] - X, (Uy —Up )+ Yy (V, =V ) +UA, +V,A | (3.22)

integral - 7
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Next, the substitutions A, =u, —u, and A, =v, —v, are used to further simplify the
difference between the two distances.

XA, + YA, +U,A, +v2Ay
[rZ - r1]integral = )

(3.23)

z
When the simplified version from Equation (3.23) is substituted into Equation

(3.18), the joint intensity function can be expressed as shown in the equation below.

le( XA+ YA, U AL VA

3(A0A,) = [[ [ A, - 4,.v, - A,) A, v,)e Z JdAudAvduzdvz (3.24)

Next, the above equation is regrouped and rearranged the integral with respect to

the integration variables.

.er[xlAu +y1AV] _jZZz(UzAerVszJ
J(A.A,) =_|.J.{U A(=(A,—uy),—(A,—Vv,))e *1 dAudAVJA(uz,VZ)e L7 du,dv,,
(3.25)
Recognizing that the inner integral is a Fourier transform of the aperture function,

the integral is calculated as the following.

UpAy+VpA

J(AX,Ay):H{'/’/(—_ﬁ _ﬁje_ﬁ[w)JA(UQ,VZ)ej?[ : ]duzdvz

Az’ z

.z”[wl (3.26)

-

://(—%—%)H A(u,,v,)e du,dv,,

where .27 is the Fourier transform of the aperture function, A. Also, recognizing that the
remaining integral is also another Fourier transform of the aperture function, the joint

intensity function can be simplified as shown in the equation below.

Vs Xl yl ar AX+X1 Ay+y1
J AX’A =S| —=,—= || —=,—|. 27
( y) ( Az izj ( Az Az J (3.27)
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If the aperture function is an even function, then its discrete Fourier transform is

also an even function. Therefore, the above equation can be written as the following.

X V) XA NitA,
J A ,A 2/7 = ,= »7‘// —_— |- .
( " Y) (/12 iZj ( Az Az (3.28)

From Equation (3.28), it can be easily seen that the joint intensity function is a
product of the Fourier transform of the aperture function with the frequency shifted version
of itself. As a visual illustration, the cross section of the Fourier transform of a circular
aperture, the frequency shifted versions of the Fourier transform, and the joint intensity
function are shown in Figure 3.4 and Figure 3.5. From these two figures, when the two
points from the same scene are close together, there exists joint intensity between the two
points. However, when the two points from the same scene are located far apart, their joint
intensity becomes very small, meaning the two points are not correlated. In addition, as
explained in Sections 2.4 and 2.5, since statistically independent random variables are used
in generating uncorrelated PSFs, the assumption is made that different pixels in the data

function are statistically independent.

P(d, (%, Y1)dye (X5, ¥2)) = P(d (%, Y1) )P (0o (X, ¥,) ) TR # K (%, ¥1) # (%0 Y,) . (3.29)
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Figure 3.4. The joint intensity function is shown in Figure (a) as the product of the
Fourier transform of an aperture with a small frequency shift from Figure (b).
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Figure 3.5. The joint intensity function is shown in Figure (a) as the product of the
Fourier transform of an aperture with a large frequency shift from Figure (b).
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3.3. Computer Generated Data Model
In this research, the algorithms are tested and validated with computer simulated
data first. All implementations are completed in the MATLAB programming language on

a standard desktop. The MATLAB built-in functions are used throughout this research.

3.3.1. Detector Model

For modeling and simulation, the size of the detector is chosen to be a square N x N
pixel plane. For the computer generated data, N = 64 is chosen. Even though the number
chosen is arbitrary, it provides a size large enough to simulate the atmospheric PSF while
being small enough to test and validate the iterative blind deconvolution algorithm without
overtaxing the computational resources. In this research, the object function, the image

function, the PSF, and the data function have the same size.

3.3.2. Atmospheric Point Spread Function
In order to create an atmospheric PSF, an aperture function is first generated on the
N x N plane. The diameter of aperture is set to be N /2 pixels. The resultant aperture

function, A(u), is shown in Figure 3.6. The diffraction limited PSF, h,, , is generated

without any phase aberration as shown in Equation (3.30). The diffraction limited optical

transfer function (OTF), H,,, is the Fourier transform of the diffraction limited PSF, as

shown in Equation (3.31). The diffraction limited OTF and PSF are shown in Figure 3.7.

ho () = |F { AW}, (3.30)

Hp () :g{hm (X)} : (3.31)
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Figure 3.6. Aperture Transmittance Function (N = 64).
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Figure 3.7. Diffraction Limited OTF and PSF (N = 64).
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For the atmospheric PSF, the phase from atmospheric turbulence is combined with
the aperture function. To generate an atmospheric turbulence model, the turbulence
strength is needed to be defined, which the ratio between the diameter of the telescope
aperture, D, and the Fried’s seeing parameter, ro [83], [84]. For the simulation, the

turbulence strength is selected to be two, (D/ry =2). With a typical median r, value of

62



0.16 meters at the best astronomical sites [85], the chosen strength can be achieved with
any telescope with a 0.32 meter diameter. An atmospheric wavefront is generated using
the Zernike method as described in Section 2.4. Since an infinitely many Zernike
coefficients cannot be generated for modeling and simulation, a total of p =100 Zernike
coefficients are used in generating each wavefront. Even though this choice of p is
sufficient for (D/r,=2), higher number of Zernike coefficients should be used for
stronger turbulence [83], [84]. Using these parameters, a Zernike covariance matrix, C, is
generated using Equation (2.20). Then, a set of p=100 independent zero-mean, unit-
variance Gaussian random numbers are generated for each atmospheric wavefront. A set

of random numbers, Nioo, is first generated from independent and identically distributed

Zero-mean, unit-variance Gaussian distribution.
Nygo =[N, Ny ... Mo |, Where n, ~ Gaussian (12 =0,0 =1),Vk e {2,...,100}, (3.32)

where » and o are the mean and variance of the Gaussian random variable. As described

in Section 2.4, the set of random numbers is multiplied with the Cholesky decomposition,
U, of the Zernike covariance matrix, C, to generate a set of Zernike coefficients, Aioo, as

shown in the equation below.
A =U"N,g, where C=UTU, A,y =[a, a, ... a,50] - (3.33)

Next, a linear combination of the Zernike polynomials with the Zernike coefficients
generates one atmospheric wavefront as explained in Section 2.4 and in Equation (3.34).
Since the first Zernike polynomial is a constant or piston term, which represents a time

delay, it is not used in calculation. The atmospheric wavefront is then combined with the
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aperture function to generate the atmospheric PSF as explained in Section 2.5. For the

convenience for the readers, the two main equations from Sections 2.4 and 2.5 are shown

again in the equations below.

100

¢(u) = kZ:;,aka (U)’

2

h(x) = Ul\g{A(u)eW”)}

(3.34)

(3.35)

where ¢ is the atmospheric wavefront, and a, and Z, is the k™ Zernike coefficient and

polynomial, u is the two-dimensional discrete region over which the wavefront is defined,

h is the atmospheric PSF, A is the aperture function, & is the Fourier transform, x is the

2D discrete region over which the PSF is defined, and U is some constant to ensure that

the PSF is a conservative process and sums up to unity. Figure 3.8 shows a comparison

among an aberration free PSF and a set of five atmospheric PSFs generated with the

atmospheric turbulence strength of D/, =2.

Table 3.3. Parameters for Computer Simulated Data for a Scenario.

Parameter Value
Aperture Diameter to Fried’s Seeing Parameter Ratio (D / ro) 2
Number of Zernike Polynomials to Generate Atmosphere PSF 100
Number of Photoelectrons for the Bright Object 10,000
Number of Photoelectrons for the Dim Object 1,000 — 25
Number of Photoelectrons for the Background 10
Number of Pixels in Detector 64x64
Number of Pixels Separation Between the Bright and Dim Objects 1
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Figure 3.8. Comparison among aberration free PSF (Fig. a) and the five atmospheric
PSFs (Figs. b —f).

65



3.3.3. Mean Square Residual Phase Error

The mean square residual phase error for using a finite number of Zernike
coefficients, A, is given by Equation (3.24) [37]. For p =100, the mean square residual

phase error is calculated to be A,,, ~0.0176 rad®.

A, ~0.2944p~"2(D /1), (3.36)

The standard deviation of the phase error is calculated to be the following.

A, =V0.0176 rad? ( A j: 0.02114. (3.37)

27 rad

This value is much less than the surface irregularities reported by lens manufacturer

at 1/4 [86].

3.3.4. Object Function

Using the 64x64 pixel detector, the bright object is placed at the center of the
detector at pixel (32, 32). The dim object is placed two pixels away or with one pixel
separation at (32, 34) as shown in Figure 3.9. The intensity of the bright object is set to be
10,000 photoelectrons. The intensity of the dim object is varied from 1,000 to 25
photoelectrons so that the algorithm could be first tested and validated in an easier scenario
before using in more challenging scenarios as shown in Table 3.3. The scenarios for the
object function are shown in Table 3.4. The background level of 10 photoelectrons is added

to all pixels including the bright object and the dim object.
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Figure 3.9. An Object Function.

Table 3.4. Scenarios for the Object Function in Photoelectron Count.

Scenario Bright Object Dim Object Background
Scenario 1 10,000 1,000 10
Scenario 2 10,000 500 10
Scenario 3 10,000 250 10
Scenario 4 10,000 125 10
Scenario 5 10,000 100 10
Scenario 6 10,000 75 10
Scenario 7 10,000 50 10
Scenario 8 10,000 25 10

3.3.5. Image Function

The image function is generated by the convolution of the object function with the
atmospheric PSF as described in Section 2.6. With the five atmospheric PSFs for each

dataset, five image functions are generated from each object function.
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3.3.6. Data Function

The data function is formed from introducing signal dependent Poisson noise the
image function in such a way that the mean of the data function is equivalent to the image
function as shown in Equation (3.7). Figure 3.10 shows the comparison between two object
functions that pass through two random different atmospheric PSFs to form two different
data functions. The first and second columns show the data functions formed from an

object functions using the object intensities from Scenario 1 and Scenario 2 respectively.

3.3.7. Dataset Generation

As shown in Figure 2.10, an object function passes through five atmospheric PSFs
to generate five image functions, which in turn generates five data functions. These five
data functions make up a dataset. In order to generate statistics on the performance of the
blind deconvolution algorithm, a total of 500 datasets are generated for each scenario. A
scenario is defined as a unique combination of the intensities of the object. Table 3.4 shows
the scenarios for the object functions, along with the intensities for the bright object, the
dim object, and the background. All scenarios in Table 3.4 are generated using the
atmospheric turbulence strength of D/ry=2 and p=100 Zernike polynomials to

generate the atmospheric PSFs.
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Figure 3.10. Two data functions formed from two different object functions, passing
through two different atmospheric PSFs.
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3.4. Signal Processing Model

For this research, the combination of the Multi-Frame Blind Deconvolution
(MFBD) approach by Schulz and the Gerchberg-Saxton (GS) phase retrieval algorithm is
used as the baseline. It is because the MFBD has been adopted by the United States Air
Force for its Space Domain Awareness applications [12], [13]. In addition, it has been
used for comparison in the electro-optics society by other scholars [14], [15]. The
Expectation-Maximization (EM) based MFBD algorithm and the GS phase retrieval
algorithm are integrated such that the Expectation Step (E-Step) calculates the conditional
expectation of the log-likelihood of the object function and the PSFs. The conditional
expectation is maximized in the Maximization Step (M-Step) to iteratively update the
object function and the PSFs. The PSFs from the M-Step is fed into the GS algorithm to
recover their phases. Afterwards, the object function from the M-Step and the PSFs and
their phases from the GS algorithm are fed back into the E-Step. The system diagram in
Figure 3.11 shows one iteration of the blind deconvolution algorithm with the phase
retrieval algorithm. For additional information, the blind deconvolution and phase retrieval
algorithms are described in Section 2.6.4 and Section 2.7 respectively. Even though the
blind deconvolution algorithm and the phase retrieval algorithm are used together, their
operations are independent from each other. Therefore, a different phase retrieval
algorithm can be used instead of the GS phase retrieval algorithm.

A total of 1,000 iterations are completed in the blind deconvolution algorithm. For
each blind deconvolution iteration, a total of 100 phase retrieval iterations are completed.

The iteration numbers are arbitrary but large enough for the update functions to converge.

70



The diffraction limited PSF with no phase aberration, as described in Section 3.3.2, is used

as the initial PSF estimates, h. The initial estimated object function, 6, is formed from
the average of all the data functions. Prior to averaging, all the data functions are aligned

using the cross-correlation technique.

O (), p(x)|

{(0,h)

h(x), (x ;
d(y) D];IEgE . | E-Step M-Step [ G- )] © Phase Hh6(x)
’—_. Retrieve i
! ~_ A ‘
_O@h
Object Function: o(x) Data Functions: d(y) = [d,(v), ..., ds(N)]
Object Function Estimate: 8(x) Atmospheric PSFs: h(x) = [hy(x), ..., hs (x)]
Atmospheric PSF Estimates:  h (@) = [A (), ..., hs ()]
Phase Estimates: P (x) = [§,(x), ..., Ps (x)]

Figure 3.11. The Blind Deconvolution Algorithm with Phase Retrieval.

3.5. Performance Metrics

Each scenario, which consists of 500 datasets, produces 500 estimated object
functions after being processed through the blind deconvolution algorithm with phase
retrieval algorithm. In order to quantify performance, two performance metrics are used:

(1) dim object detection and (2) dim object average.
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3.5.1. Dim Object Detection

From the 500 estimated object functions, {[6(x)],,n=1...,N} where N =500, the
intensities of the dim object from the n dataset, [i,, ], , and that of the false alarm location

from the same dataset, i, ], , are calculated using a correlation method with a 2D Gaussian

mask function with a 0.5 pixel standard deviation in both X- and Y-axes. The Gaussian
mask function is centered at the locations of the dim object and the false alarm pixel to
calculate the intensities as shown in the equation below. The standard deviation value of
0.5 pixels provides good detection rates by averaging out the noise near the dim object and

the false alarm pixel.

VxeX 20—

i ] = > {[G(X)]n x 2”102 exp(—(x_xd“) (ZX_X"E‘)D , (3.38)

(] = 3| [660], 5= exp bxom) o) ) (3.39)

2
Vrex 2o 20

where xdet and xta are the locations for the dim star and the false alarm pixel, o is the standard
deviation of the Gaussian mask function, and x represents a pixel-by-pixel multiplication
between two functions.

As shown in Figure 3.12, the false alarm location is selected to be on the opposite
side of the dim object at the same distance from the bright object. This location is chosen
because it does not contain any object intensity. There are two other pixels that can be

used as the alternate false alarm location. These two are not optimal because they are

located at /2 pixels away from the dim object even though they are located two pixels

away from the bright object.
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Table 3.5. Dim Object and False Alarm Locations of an Estimated Object Function.

Description Values/Coordinates
Detector Size 64%64
Bright Object Location (32, 32)
Dim/Secondary Object Location (Xdet) (32, 34)
False Alarm Pixel Location (Xra) (32, 30)

64 Pixels

| False Bright Object |
Alarm e (32, 32)
L (32,30) - 1/
) 3
5 =
s / '\ g
False S i Estimated
Alarm Dim Object
(Alternate) 3

(32, 34)
i e

Pixel

Figure 3.12. Estimated Object Function.

Using the correlation method with the Gaussian masks, a set of 500 intensities from
the dim object and that from the false alarm pixel are then fitted to the gamma function.
See Appendix A for the technique to estimate the gamma distribution parameters. Figure
3.13 through Figure 3.20 show the probability distribution functions and the cumulative
distribution functions for the intensities of the dim object and the false alarm pixels for
each scenario, along with their corresponding gamma distribution fits. Except for the
intensities for the dim objects in Scenario 1 and Scenario 2, the intensities follow the shape
of the gamma distribution. Even though other functions, such as the Weibull function,

might be better fits for these two first scenarios, the separation between the dim object
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distribution and the false alarm pixel distribution is well separated, obviating the need to

fit to other types of functions.
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Figure 3.13. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 1 using the MFBD approach.
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Figure 3.14. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 2 using the MFBD approach.
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Figure 3.15. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 3 using the MFBD approach.
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Figure 3.16. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 4 using the MFBD approach.
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Figure 3.17. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 5 using the MFBD approach.
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Figure 3.18. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 6 using the MFBD approach.
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Figure 3.19. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 7 using the MFBD approach.
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Figure 3.20. The distributions of the intensities of the dim object and the false alarm
pixel for Scenario 8 using the MFBD approach.
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After the gamma fits are obtained, the survival function (SF) of the false alarm
intensities is compared with that of the dim object intensities for each scenario to generate
the receiver operating characteristic (ROC) functions. The survival function is defined as
the complement of the cumulative distribution function (CDF) as shown in the equation
below [87], [88].

SF=1-CDF. (3.40)

The ROC compares how well the distribution of the dim object is separated from
that of the false alarm. This metric is used because it plays a key role in the signal detection
communities [89], medical diagnostics [90], and machine learning [91].

The ROC curve for all eight scenarios are shown in Figure 3.21. As the intensity
of the dim object is reduced, the ability of the algorithm to detect the dim object also
decreases. In addition, Figure 3.21 also shows the performance of the blind deconvolution
algorithm using 2,000 iterations. A total of 100 phase retrieval iterations is used for each
blind deconvolution algorithm. From the results, it can be seen that performing additional

blind deconvolution iterations does not further improve the performance.
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Figure 3.21. The dim object detection performance of the MFBD algorithm for all 8
scenarios with 1,000 and 2,000 iterations.

3.5.2. Dim Object Average

The second performance metric is the average function, 0, (x), which is defined

avg
as the mean of all estimated object functions for each scenario. This metric complements
the first one because this one provides the average information, while the first one provides

the information about how well the two distributions are separated.

500

0. (X)=—
avg( ) 500 Lt

[6(x)], - (3.41)
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Figure 3.22. The dim object average performance of the MFBD algorithm for all eight
scenarios.

Important Note: The intensities of the bright object in Figure 3.22 are matched to the

second brightest pixel to reduce the contrast ratio for all scenarios.
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The average functions for all eight scenarios are shown in Figure 3.22. As the
intensity of the dim object is reduced, the ability to resolve the dim object from the bright

object is reduced. The system level diagram for obtaining the two metrics is shown in

Figure 3.23.
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Figure 3.23. System Level Diagram of the MFBD Algorithm as the Baseline.

3.6. Summary

This chapter explained the methodology that is used throughout this research. It
provided the detail implementations of the tools and techniques described in the previous
chapter. First, it explained the eight main assumptions made throughout this research.
Afterwards, the implementation for the detector model, the atmospheric PSF, the object
function, the image function, and the data function were explained. Then, it explained how
the Gerchberg-Saxton phase retrieval algorithm is integrated into the Multi-Frame Blind
Deconvolution algorithm. Next, this chapter explained the data functions for different
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scenarios for the object function, where the bright object and background intensities are
kept the same but the intensity of the dim object is gradually decreased. The turbulence
strength was kept the same for generating random atmospheric phase screens. Lastly, this
chapter showed the performance of the Multi-Frame Blind Deconvolution algorithm with
the Gerchberg-Saxton phase retrieval with two metrics, which are (1) dim object detection
and (2) dim object average. The results for the eight scenarios were also shown, using
these two metrics. The results also showed that the performance of the Multi-Frame Blind
Deconvolution saturated after some iteration. To gain additional performance, the next

chapter introduces the Neighborhood System Blind Deconvolution.
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4. Neighborhood System Blind Deconvolution

4.1. Chapter Overview

This chapter introduces a new Neighborhood System Blind Deconvolution (NSBD)
algorithm to further improve the dim object detection performance over the Multi-Frame
Blind Deconvolution (MFBD) algorithm. The performance results of the new algorithm
are compared with those of the MFBD algorithm using two metrics which are (1) the ability
to detect the dim object using the receiver operating characteristic (ROC) functions and (2)
the average intensity of the dim object as described in Section 3.5. The datasets used in

this chapter are the same as those explained in the previous chapter.
4.2. Algorithm Development

In Section 3.5, it has been shown that the performance of the MFBD algorithm
saturates after a certain point, meaning additional iterations of the blind deconvolution
algorithm no longer further improves the performance. Therefore, a new algorithm is
derived, which is built on the method proposed by Cain [77]. In this chapter, it is assumed

that the data is sampled at the Nyquist rate or higher.

The NSBD algorithm separates the object function into three functions, which are

a function of unknown neighborhood system around the bright object, 0,(x) , the amplitude
of the primary bright object that is known to exist, 0,(X) , and the background light and

dark current measured during the acquisition process, B. The assumption is made the

intensities of these three functions are statistically independent.
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0,(X) =5 (x-x,), (4.1)

0,(X) = 2t (X=X (4.2)
0,(x)=B, (4.3)

where xp and y are the location and the magnitude of the bright object, um is the number of
photoelectrons emitted from the m™ star in the system, M is the total number of pixels in
the system, and ¢ is the Dirac Delta function. In this chapter, xp and y are obtained from
either the results of the MFBD algorithm or the unprocessed data function. However, if

there exists some prior information about them, the known information should be used.

Since the image function is a convolution between the object function and the PSF,

the image functions for the primary bright object, i, the neighborhood system, i;, and

the background, if , for the k™ observation are described by the following equations.

() =rh (y-x,). (4.4)
ik (¥) = 2 h (y=x)o,(x) . (4.5)
i (¥) =2 h (y=x)0,(x). (4.6)

The data functions from the CCD can be expressed as a sum of all the three data
functions formed from the three image functions mentioned above. In addition, as
described in Section 3.3.6, the CCD introduces signal dependent Poisson noise to the image

functions as shown in Equation (4.7) through Equation (4.10).
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dk(y)=dk"(y)+§di(y,X)+dE(y), 4.7)

E[d? (y)]=rh(y-x,), (4.8)
E[de (y1%)]=0,00h (y-x), (4.9)
E[d;(y)]=B (4.10)

Since the three functions are statistically independent, the likelihood function will
be at the maximum when the probability mass functions of the primary object function, the
neighborhood system function, and the background function are at their maximums.
Therefore, the likelihood function of the three sets of the data functions are expressed as

shown in Equation (4.11).

L(o.h) = TTTTTT[P(d2 (v)P(d (v1x))P(d? (¥))] (4.11)

vk vy Vx

Using the Expectation-Maximization (EM) algorithm on Equation (4.11), the
update equations for the new algorithm are obtained as shown in Equation (4.12) through
Equation (4.17). The derivations for the EM algorithm is similar to those described in
Section 2.6.3. The update equation for the PSF remains the same as the MFBD algorithm.
For the convenience for the readers, the update equation for the PSF is shown again in

Equation (4.16).

new old 1 Zzh (y0|dx )d ( ), (412)
vk vy y)
ogew OId ZZ i (yold E?/(; ( ) ’ (4.13)
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(=2 Wy s L) (4.14)

vk vy Old y)
0™ (x)= op™ (x)+0" (x)+0;™ (x), (4.15)

0™ (y—x)d, (y)

' (x) = h°'d(x)z ) (4.16)
i (y)= 2 h& (y—x)o™ (x). (4.17)

xeX
Even though the background function is assumed to be constant across all pixels as
shown in Equation (4.3), it is not constrained to be constant across all pixels at each

iteration.
4.3. System Implementation and Initialization

This section discusses about two ways to implement the system. They are: (1) the
coupled approach where the outputs of the MFBD algorithm is fed into the NSBD
algorithm and (2) the decoupled approach where the NSBD algorithm is processed

independently of the MFBD algorithm.
4.3.1. Coupled Approach

In the first approach, the MFBD algorithm and the NSBD algorithm are coupled,
where the NSBD algorithm uses the object function estimate and the PSF estimates from
the MFBD algorithm. Figure 4.1 shows the overall system, along with the methods for
modeling and simulation. The same 500 datasets for each scenario used in the MFBD
algorithm are also used in the NSBD algorithm. This approach was used for the results

that were presented at the 2019 AMOS Conference [92].
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Figure 4.1. The Overall System Implementation for the Coupled Approach.

For the MFBD algorithm, the object function is initialized with a 64x64 pixel plane
with a constant intensity of one. For the NSBD algorithm, the initial object functions are
also separated into three functions. For the primary object function, the estimates on the
brightness and location of the primary object are obtained from the MFBD algorithm. For
the neighborhood system function, a circle with radius of 4 pixels outside the bright object
and is centered at the bright object. The initial value of 10 is used for all scenarios. The
pixels of the primary object function and the neighborhood system function are mutually
exclusive so that there are no overlapping pixels shared by both functions. The
neighborhood system function is shown in Figure 4.2. For the background function, the
whole 64x64 pixel plane is initialized with the value of one. Therefore, the background
function overlaps with both the primary object function and the neighborhood system
function. These exact initial intensities are not required for the algorithm. As long as the

intensity of the primary object function is higher than that of the neighborhood system
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function, which in turn is higher than that of the background function, the NSBD will
provide consistent results.

24

26 28 30 32 34

36 38 40
Pixel

Figure 4.2. The Neighborhood System Function.

For the PSFs, the MFBD algorithm is initialized with the diffraction-limited PSFs.

However, the PSF estimates from the MFBD algorithm are used as the initial PSFs for the
NSBD algorithm.

4.3.2. Decoupled Approach

In the second approach, the MFBD algorithm and the NSBD algorithm are
decoupled, where the NSBD algorithm does not use the estimates from the MFBD

algorithm. The systems diagram for this method is shown in Figure 4.3.
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Figure 4.3. The Overall System Implementation for the Decoupled Approach.

For the NSBD algorithm, the intensity of the initial primary bright object is
calculated from the average of the pixel with the highest intensity from all data functions
within the dataset. The initial neighborhood system function and the background functions
are the same as those used in the coupled approach.

For the initialization for the PSFs, both the MFBD algorithm and the NSBD algorithm
are initialized with the diffraction limited PSF. Therefore, the estimates of the atmospheric

phases start at zero across the whole aperture.
4.4. Performance Comparison

In this section, the performance of the NSBD algorithm is compared with that of
the MFBD algorithm. Similar to the MFBD algorithm, a total of 1,000 EM iterations are

used for the NSBD algorithm for both coupled and decoupled approaches. For each EM
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iteration, 100 phase retrieval iterations are completed using the Gerchberg-Saxton method

for both coupled and decoupled approaches.
4.4.1. Dim Object Detection

Similar to the MFBD algorithm, the metric for the ability to detect the dim object
is accomplished using the ROC function as described in Section 3.5.1. In this section, the
same Gaussian masks from Equation (3.38) and Equation (3.39) are also used in calculating
the intensities of the dim object and that of the false alarm pixel respectively. The
intensities are also fitted with Gamma distributions. See Appendix B for the Gamma fitted
distributions for the coupled and decoupled approaches.

After the fitted gamma distribution functions for the intensities of the dim object
and the false alarm pixel are obtained, the survival function, which is the complement of
the cumulative distribution function, of the dim object is plotted against that of the false
alarm pixel to generate the ROC function for each scenarios.

In addition, the confidence interval bounds are added to both the MFBD algorithm
and the NSBD algorithm. The upper bound of the MFBD algorithm is compared with the
lower bound of the NSBD algorithm. In other words, the best case of the MFBD algorithm
is compared with the worst case of the NSBD algorithm for the given level of significance,
a. Figure 4.4 provides a graphical explanation for generating the confidence interval for

the ROC functions used in this research.
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Figure 4.4. The Process for Generating ROC Functions with Confidence Intervals.

Figure 4.5 through Figure 4.20 compare the performance comparison between the
MFBD algorithm and the NSBD algorithm for all scenarios for both coupled and decoupled
approaches using the ROC functions. The level of significance of & =0.10 is used for all

scenarios.
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Figure 4.6. The ROC Comparison for Scenario 1 for the Decoupled Approach for
Very Low False Alarm Rate.
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Figure 4.8. The ROC Comparison for Scenario 2 for the Decoupled Approach for
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Figure 4.9. The ROC Comparison for Scenario 3 for the Coupled Approach.

0.6 4

Detection Rate
o
[6)]

0.4 J

03} Scenario 3 - Decoupled 4
(Dim 250, o = 0.10)

0.2} MFBD Algorithm |

— — — - Confidence Bound
NSBD Algorithm
— — — - Confidence Bound

0 Il 1 1 1
0 0.2 0.4 0.6 0.8 1

False Alarm Rate

Figure 4.10. The ROC Comparison for Scenario 3 for the Decoupled Approach.
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Figure 4.11. The ROC Comparison for Scenario 4 for the Coupled Approach.
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Figure 4.12. The ROC Comparison for Scenario 4 for the Decoupled Approach.
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Figure 4.13. The ROC Comparison for Scenario 5 for the Coupled Approach.
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Figure 4.14. The ROC Comparison for Scenario 5 for the Decoupled Approach.
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Figure 4.16. The ROC Comparison for Scenario 6 for the Decoupled Approach.
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From the results, it can be seen that the NSBD algorithm outperforms the MFBD
algorithm for all scenarios. In addition, the performance is significantly different for
a =0.10 for most of the operating regions for Scenario 1 through Scenario 7 for both
coupled and decoupled approaches. The performance is not significantly different for
a =0.10 for both coupled and decoupled approaches, even though the NSBD algorithm
outperforms the MFBD algorithm. The performance between the coupled and decoupled
approaches are consistent. Therefore, the decoupled approach is better in a sense that it

requires less computational time and resources without degradation in performance.
4.4.2. Dim Object Average

Next, the performance of the NSBD algorithm is compared to the MFBD algorithm
using the average function as described in Section 3.5.2. The results are shown in Figure
4.22 through Figure 4.37. From the results, it can be seen that the NSBD algorithm
outperforms the MFBD algorithm in this performance metric for all eight scenarios, for
both coupled and decoupled approaches. A cross-sectional view of the average function

along the axis, y =32, is shown in the figures.
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Fig. (a) Top Down View Fig. (b) Cross-Sectional View along y=32
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Figure 4.21. Top Down vs Cross-Sectional View of the Average Function.
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Figure 4.22. The Average Functions for Scenario 1 for the Coupled Approach.
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Figure 4.23. The Average Functions for Scenario 1 for the Decoupled Approach.
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Figure 4.24. The Average Functions for Scenario 2 for the Coupled Approach.
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Figure 4.25. The Average Functions for Scenario 2 for the Decoupled Approach.
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Figure 4.26. The Average Functions for Scenario 3 for the Coupled Approach.
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Figure 4.27. The Average Functions for Scenario 3 for the Decoupled Approach.
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Figure 4.28. The Average Functions for Scenario 4 for the Coupled Approach.
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Figure 4.29. The Average Functions for Scenario 4 for the Decoupled Approach.
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Figure 4.30. The Average Functions for Scenario 5 for the Coupled Approach.
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Figure 4.31. The Average Functions for Scenario 5 for the Decoupled Approach.
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Figure 4.32. The Average Functions for Scenario 6 for the Coupled Approach.

120 T T I !
Scenario 6 - Decoupled :
(Dim 75)
100 + MFBD Algorithm

m  Dim Object

v  False Alarm

NSBD Algorithm

80 r m  Dim Object

v  False Alarm :
- Bright Object Location | :

Intensities

0 1 1
28 29 30 31 32 33 34 35 36

Pixel

Figure 4.33. The Average Functions for Scenario 6 for the Decoupled Approach.
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Figure 4.34. The Average Functions for Scenario 7 for the Coupled Approach.
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Figure 4.35. The Average Functions for Scenario 7 for the Decoupled Approach.
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Figure 4.36. The Average Functions for Scenario 8 for the Coupled Approach.
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Figure 4.37. The Average Functions for Scenario 8 for the Decoupled Approach.
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From the results, it can be seen that the NSBD algorithm outperforms the MFBD
algorithm for all scenarios for both coupled and decoupled approaches in that the dim
object is clearly discernible. In addition, the result from the coupled approach and that
from the decoupled approach for each of the scenarios are comparable. The decoupled
approach does not require the results from the MFBD algorithm and therefore saves the

computational time and resources.

4.5, Summary

In summary, the new Neighborhood System Blind Deconvolution algorithm was
developed and its performance was compared to that of the Multi-Frame Blind
Deconvolution algorithm using two performance metrics, which are (1) dim object
detection (2) dim object average. From the results, the Neighborhood System Blind
Deconvolution algorithm outperformed the Multi-Frame Blind Deconvolution algorithm
in both performance metrics. This chapter also used the confidence interval with the level
of significance of & =0.10. For Scenario 1 through Scenario 7, the Neighborhood System
Blind Deconvolution algorithm outperforms the Multi-Frame Blind Deconvolution
algorithm in a majority of the operating regions and the performance is significantly
different. For Scenario 8, even though the Neighborhood System Blind Deconvolution
algorithm outperforms the Multi-Frame Blind Deconvolution algorithm, the performance
is not significantly different. The Neighborhood System Blind Deconvolution algorithm
also outperforms in the average function for all eight scenarios. In the next chapter, the
algorithms are applied to the data collected at the Optics Laboratory of the Electrical and

Computer Engineering Department at the Air Force Institute of Technology.
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5. Undersampled Blind Deconvolution

5.1. Chapter Overview

In this chapter, the performance of the Multi-Frame Blind Deconvolution (MFBD)
algorithm is compared with the Neighborhood System Blind Deconvolution (NSBD)
algorithm using the data collected at the Optics Laboratory of the Electrical and Computer
Engineering Department at the Air Force Institute of Technology. The setup for the
laboratory experiment and the data collection process are explained. The data in this
chapter represents an undersampled case. Therefore, the algorithms are modified to
compensate for the undersampling effect, which is explained in Section 2.8. A set of
computer simulated data is also generated to mimic the laboratory data, using the statistical
photocalibration techniques. The effects of the detector gain and the readout noise are also
added. The performance results are shown with the two performance metrics described in

Section 3.5.
5.2. Laboratory Data

For the laboratory data, an object function is projected onto a computer monitor
and a lens is placed approximately two meters away from the monitor to form an
intermediate image. The lens has a diameter of 2.5 cm and F# of 10. The CCD is placed
30 cm away from the lens. A stream of hot air is blown across the lens to simulate
atmospheric turbulence as shown in Figure 5.1. The CCD is a monochromatic scientific

camera, Model Number 8050-TE-GE by Thorlab, with the pixel size of 5.5 umx5.5 um
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[93]. Using Equation (2.81), the Nyquist pixel size for this experiment is calculated to be

3 umx3 um, creating an undersampling effects with L = 1.83.

Object PSF Image Data
Function Function Function
hi(x) )

o(x) il(y) dy2)

AA A A

CCD [—>

Hot Air

«—— 2m 4+ 30 cm ’*‘

Figure 5.1. Laboratory Setup for Collecting the Experimental Data.

The object function projected on the monitor is created using MATLAB. It
contains a bright object and a dim object. The intensity of the dim object is set at ten
percent of the intensity of the bright object. The exposure time is set to 30 milliseconds.
Even though the CCD can capture up to 3296x2472 pixels, only the regions with 64x64
pixels that contain the objects are captured. A total of 2,500 data functions are collected
with one second delay between each collection. The one second delay allows enough time
for the atmospheric effects to be uncorrelated [74]. The delay is also the limitation of the
ThorLab camera to collect between any two frames. Next, a set of five data functions are
grouped together to form one dataset, generating a total of 500 datasets.

The dim object and the bright object are estimated to be located six pixels apart.

With the above conditions, it is very difficult to determine the center of the dim object,

111



even if the exposure time is increased to one second, as shown Figure 5.2 (). To determine
the dim object center, its intensity is temporarily increased to match that of the bright one

as shown in Figure 5.2 (b).

6 Pixels

o

10 20 30 40 50 60 10 20 30 40 50 60
Pixel Pixel
Figure(a) Figure(a)

Figure 5.2. Long Exposure Images for Determining Dim Object Location.

5.3. Computer Generated Data

In addition to the laboratory data, computer generated data are also created to mimic
the laboratory data. In Section 5.3.1, the average photon count, the variance of the readout
noise, and the gain of the detector are estimated using the statistical photocalibration
techniques [94], [95]. In Section 5.3.2, the remaining parameters are determined

empirically.
5.3.1. Statistical Photocalibration

In this section, the average photon count per pixel, the variance of the readout noise,

and the gain of the detector are estimated from the data functions, d’(z) and d"(z) that are

112



collected at two different exposure times. Their averages are given by the following
equations [94], [95].
d'(z) =G(z)K(z) +B(2), (5.1)
d"(z) = NgG(2)K(2) +B(2), (5.2)
where d’(z) and d"(z) are the means of the collected data with two different exposure
times, G(z) is the detector gain, K(z) is the average photon count, Ng is the factor of the
increase or reduction of the integration time between the two data functions, and B(z) is
the bias. The detector gain and the average photon count are then given by the following
equations [94], [95].

o2.(2) ~02(2)

G(z)= T a@ (5.3)

o _@@-T@)

“O N6 G4
0:(2) = 05.(2) -G*(2)K(2), (5.5)

where ¢2.(z) and o (z) are the variances of the data functions and &*(z) is the readout

noise variance. In the previous section, the laboratory data were collected with 30

millisecond exposure time. This data function is designated as d”(z). In the absence of

the availability of the data functions without any objects, the corner regions of the data
functions are good candidates to use for photocalibration because these regions experience
minimal effects from the object intensities. Assuming that the gain of the detector remains
the same over the imaging region, which is 64x64 pixel region, the top left 10x10 pixel

regions from all 2,500 data functions from the previous section are used in calculating its
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variance, ¢..(z). In addition, a different set of data collected at 15 millisecond exposure

time, designated as d’(z), is also used to calculate its variance, o (z).

distributions are shown in Figure 5.3.
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Figure 5.3. Distribution of Data Collected at Two Different Exposure Times. (a) Data
Collected with 15 Millisecond Exposure and (b) with 30 Millisecond Exposure.

From the figures, the data for both exposures are cutoff on the left hand side of their

distributions because the CCD only generates non-negative integers. In this section, the

workarounds to estimate the parameters are explained.

First, the means of the two sets of data are determined using the median value

because the mean and the median values of the Poisson and Normal distributions are close

in values when the distributions are not truncated. The two means are estimated to be 3

and 6 for d'(z) and d"(z) respectively.
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Next, the variances of the two sets of data are determined using the right side of the
estimated means because the variance is a measurement of the differences between the
mean and the observed values. Using this technique, the two variances are estimated to be

52.64 and 57.33 for d’(z) and d"(z) respectively.

With the means and variances, using Equation (5.3) and Equation (5.4), the detector
gain, the average photon count, and the variance of the readout noise are estimated to be
1.56, 1.92, and 47.94 respectively. In Equation (5.4), the value of N is 2 because the

exposure time for d"(z) is twice that for d’(z).

5.3.2. Empirical Estimation

The computer generated data are then created to simulate the laboratory data. The
goal is to mimic the average intensity of all laboratory data to that of all computer generated
data through empirical estimation. From Section 5.2, it is determined that the dim object
is located 6 pixels away and that the laboratory data is undersampled by a factor of
approximately L = 2. Because the laboratory region is 64x64 pixels in size, the computer
generated data is created on a 128x128 pixel plane. The bright object is placed at the center
of the plane and the dim object is placed 12 pixels apart. The bright object and the dim

object are created with a circular region of with 4 pixel radius as shown in Figure 5.4.
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Figure 5.4. The Object Function for Computer Simulated Data.

The intensities are set in a way that the ratio between the bright object to the dim
object is 1:0.10 and the ratio between the bright object and the background is 1:0.0267 .

From empirical estimation, the strength of the turbulence is estimated to be D/r, =10.

The Zernike phase screen generation technique described in Section 2.4.2 is used in
generating the random atmospheric phase with 120 polynomials. Next, the image functions
are formed with the resultant random and uncorrelated atmospheric PSFs. As described in
Section 2.8, each image function is averaged and decimated by a factor of L=2. Then,
the CCD gain of G =1.56 is multiplied after the signal-dependent Poisson noise is added

to the decimated image function. The readout noise with variance of o’ = 47.94 is added

to the Poisson noise to generate the data function. The gain and the readout noise values
are obtained from Section 5.3.1. Since the CCD only generates non-negative integer
values, the output of the simulated data is also rounded and any negative value is set to

zero. Similar to the laboratory data, a total of 2,500 data functions are generated. Then, a
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set of K =5 data functions are grouped together to form a total of 500 datasets. Figure 5.5
compares the instances of the two data functions, each of which is randomly selected from
the laboratory data and the computer simulated data respectively. Figure 5.6 compares the
average of the 2,500 data functions from the laboratory and that from the computer
simulated data. All the data functions are aligned first before averaged. A cross sectional
view is shown along the axis where the centers of both the bright object and the dim object

are located.

Laboratory Data Computer Simulation

Pixel

10 20 30 40 50 @60 10 20 30 40 50 60
Pixel Pixel
Figure (a) Figure (b)

Figure 5.5. Comparison between a Randomly Selected Data Function from the
Laboratory Data and the Computer Simulated Data.
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Figure 5.6. Cross Sectional Comparison between the Average Intensity of All
Laboratory Data Functions and that of All Computer Simulated Data Functions.

5.4. Undersampled Blind Deconvolution

In this section, the MFBD and the NSBD are derived for the undersampled data.
There are many interpolation techniques to reconstruct the images back on the Nyquist
space but they introduce artifacts [96]. Even though these artifacts might not affect the
human vision and perception in photography, they could become very problematic for
closely spaced object detection, especially the dim ones. Therefore, in this section, the
image reconstruction is done without interpolation, while taking into account the

undersampling effect in the derivation.
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5.4.1. Multi-Frame Blind Deconvolution

First, the complete data function is redefined to include the effects of the averaging

function and the decimation. As described in Section 2.6.3, the incomplete data function,
(:Tk(z, X,0) , is formed from a summation of the complete data functions, d, (z), as shown

in the equation below. It is similar to Equation (2.56) but it has an additional summation

term.

d (2)=2.> d.(z.x0). (5.6)

Yov VX

Taking the expectation of above equation results in the following.

E[d,(2)]= E{ZZGK(Z, X,u)}

Yuv VX

=>> E[dk(z, X, u)].

Yv VX

(5.7)

It is shown in Equation (2.85) that the expectation of the data function is equal to

the decimated image function which is restated below.

i (2)=>.> o(x)r(h,(Lz—x-v). (5.8)

You VX
From Equation (5.6) and Equation (5.7), the expectation of the complete data

function can be expressed as shown below.
E[ d, (z.x,0) |=0()r()h, (L2 - x~v). (5.9)

The complete data function also follows a Poisson distribution because the sum of
Poisson random variables is also a Poisson random variable. Therefore, the probability

mass function (PMF) can be expressed as shown below.
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dk(Z,X,U)
—0(0)r (v)h (Lz—x-0) (O(X)r(U)hk (Lz—x- U))
d.(z,%x,0)! '

P(Jk(z,x,u)):e (5.10)

With the PMF defined, the joint log likelihood function can be defined as shown in

the equation below. This approach is similar to the one shown in Section 2.6.3.

t(o,h)=In| T P(dk(z,x,u))

vk,vz,
vx,Vov

=> In:P(oTk(z,x,u)):

vk,vz,
VXx,Vou

dy (z,x,0)
_ Z In| et (Lz-x-) (O(X)r(U)hE(LZ—X—U)) (5.11)
vk, d.(z,x,0)!
=- > o()r)h (Lz—x-v)+
vk,Vz,

VXx,Vo

> d(z,x,0)In[o(X)r(V)h, (Lz—x-v)]+AT.

vk,Vvz,
vx,Yu

In the equation above, the term that does not affect the maximization is designated
as the additional term (A.T.) [62]. This term will be ommitted in the subsequent equations.
Next, in the Expectation Step of the Expectation-Maximization (EM) algorithm, the
conditional expectation given the incomplete data function, Q, is calculated as shown
below.

Q(o.h )= E[f(o, h, )‘dk(z)]

= > o(x)r()h (Lz—x-v)+
vy (5.12)
> E[&k(z,x,u)|dk(z)}|n[o(x)r(u)hk(Lz—x—u)].

vk,Vz,
x,Yu
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Since the complete data function is the only random variable, the conditional
expectation applies only to it. The conditional expectation term can be derived as shown
in Equation (5.13) because both the complete data and the incomplete data are Poisson
random variables and the former is a part of the latter. In the EM algorithm, the new or
updated function is iteratively updated from the estimations of the old estimates.

Therefore, Equation (5.13) represents the old terms.

E[d(z.x0)[d,(2)]= a ‘X’“”?SE(SLZ =, (5.13)

Substituting Equation (5.13) into Equation (5.12) results in the following equation.

Q(o,h))==>" o(X)r(v)h (Lz—x-v)+

vk,Vz,
VX, Vv

old old 514
> 0 (X)r(’)i)gg(z()"z_x_”)dk(Z)'”[O(X)r(“)hk("z_x_u)]' o0

vx,Yo

In the Maximization Step of the EM algorithm, the conditional expectation term is
maximized with respect to the object function and the PSFs to obtain the iterative update
solutions. First, the conditional expectation function is differentiated with respect to each

pixel of the object function.

0
o Q0= 2 Lz mx0)

OOId(X)r(U)hI?Id(LZ—X—U) dk(z)i (515)

vz i(2) o(x)

The first term on the right hand side of the equation sums up to be K/L*. It is
because the PSF is constrained to sum up to unity to ensure that the process is conservative.

A convolution between a unity and the averaging function also results in unity. Decimation
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of the unity by a factor of L in both dimensions reduces the value of its summation by a
factor of L. Performing this over K frames results in K /L. Therefore, Equation (5.15)
can be simplified as shown below.

8
80(X)

_£+ 0%%(x) r(u)h?(Lz—x-v)
FTOT S, )

Q(o.h )= d (2). (5.16)

Setting the derivative to zero gives us the following update equation for the object

function.

0™ () = 0™ (¥ [2 20 S rom - x—u)j} 6.17)

e (2) 5
The PSF update equation can be derived similarly, using change of summation
variables. The new PSF is also constrained to sum up to unity by dividing with some

constant, U"™".

™ (00 = G 1 (x)(z SO S ron-x ‘U)D' 5.19)

Vz Ik Yov

Since the EM algorithm is derived to overcome the photon counting noise, the
Gerchberg-Saxton phase retrieval algorithm is applied on the PSF updates to overcome the

atmospheric turbulence.
5.4.2. Neighborhood System Blind Deconvolution

Similar to the technique mentioned in Chapter 4, to derive the NSBD, the data
function is separated into the primary object function, 0”(x), the neighborhood system
function, 0°(x), and the background function, 0°(x). The assumption is made that the

intensity of the three intensities are statistically independent of each other.
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0(X) = 0" (X) +0°(x) +0°(X).

(5.19)

Because the system is modeled as linear and shift-invariant, the data function can

also be separated into three data functions. The superscripts, p, s, and b represent the

primary function, the neighborhood system, and the background function respectively. The

subscript, k, represents the k™ frame.

d(2)=d¢ (D) +di (2) +d. (D).

(5.20)

Similar to Section 5.4.1, the corresponding complete data functions and their

Poisson PMFs are derived. Next, the conditional expectation function, Q, is calculated by

taking the conditional expectation of the joint log-likelihood function given the observed

incomplete data functions, similar to Equation (5.12). Maximizing the conditional

expectation function with respect to the primary object function, the neighborhood system

function, the background function, and the PSF results in the following update equations.

(x)— oF ()Z(Z fld((z))(zr(u)h;'d(Lz-x-u)

vz k You

0™ (0= 0" (X T2 Troh(Lz-x-0)

Vz Il?Id (Z) Yo

ob””(x):%ob”"’(x)z Z_dk(z) > r)h(Lz—x-v)

vz ||?Id ()&

™00 = o hf'd(x)(z ‘ﬂ,d(z) [Zr(u)o"'d(Lz x-0)

VZk()VU

123

)

)
)
)

(5.21)

(5.22)

(5.23)

(5.24)



Similar to the previous section, the Gerchberg-Saxton phase retrieval algorithm is
also applied on the PSF updates from the EM algorithm. The PSF update equations remain

the same as the one from the previous section.
5.5. Performance Comparison

In this section, the 500 datasets from the laboratory collected data and another 500
datasets from the computer generated data are processed with the MFBD and the NSBD
algorithms. Each dataset contains K =5 data functions. Since the undersampled factor is
L = 2, the estimated object functions are reconstructed on a 128x128 pixel plane even
though the data functions are of 64x64 pixels in size. A total of 200 EM iterations are
completed for both algorithms. A total of 100 Gerchberg-Saxton phase retrieval iterations

are completed for each EM iteration.
5.5.1. Results without Prior Knowledge

For the first set of results, the concept of blind deconvolution is applied in a sense
that no assumption about the primary object function is made. The primary object function
is assigned as a Dirac delta and the neighborhood system function is initialized with a
circular region with a radius of 30 pixels, which is large enough to over the region where
the dim object exists. The primary object function and the neighborhood system function
are mutually exclusive as shown in Figure 5.7.

The intensity of the primary object function is initialized with the average of the
highest pixels from the five data functions. That of the neighborhood system function is
initialized with twice the background estimate, which can be easily computed from the

corner regions of the data functions where there are very minimal influences from the
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primary object and the dim object. These exact initial conditions are not required for the
algorithm. As long as the intensity of the primary function is higher than that of the
neighborhood system function, which in turn is higher than that of the background function,
the NSBD will provide consistent results. For the PSF, all five are initialized as the

diffraction-limited PSF, where the phases are initialized as planes of zeros.

Primary Object Function Neighborhood System Function

20 20

40 40

g g
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Figure (a) Figure (b)

Figure 5.7. (a) Primary Object Function and (b) Neighborhood System Function used
in the NSBD Algorithm without any Prior Knowledge.

To use the ROC function as a performance metric, the intensities of the dim object
and the false alarm from the 500 estimated object functions from the output of each
algorithm are first estimated. To calculate the dim object intensity, a 4-pixel radius circular
region is used. It is centered 12 pixels away from the center of the primary object function
where the dim object is placed. The total value of the estimated object function in the

circular region is used as the intensity of the dim object. For the false alarm intensity, a 4-
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pixel radius circular area which is located 12 pixels away in the opposite direction is

selected as shown below.

12 12
pixels pixels
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Figure 5.8. The Regions for Calculating False Alarm and Dim Object Intensities.

The intensities are fitted using the Gaussian distributions and the ROC functions
are compared in Figure 5.9 and Figure 5.10 for the laboratory data and the computer
generated data respectively. The reason for selecting the Gaussian distribution is that, with
the exception of the distribution for the false alarm intensities from the computer generated
data processed with the NSBD algorithm, the three other distributions fail to reject the null
hypothesis that the data comes from a distribution in the normal family [97], [98]. The
comparison between the unfitted data and the fitted data are shown in Appendix C. From
the results, the NSBD outperforms the MFBD for both the laboratory data and the computer

generated data, even in the presence of the readout noise. However, with an 80 percent

confidence interval (= 0.20), the lower confidence bound of the NSBD overlaps with

the upper confidence bound of the MFBD.
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Figure 5.10. The ROC Comparison for the Computer Generated Data.

127



5.5.2. Results with Additional Knowledge

The advantage of the NSBD is that the further assumptions can be made about the
primary object function. In the next set of results, the assumption is made that the
approximate shape of the primary object function is known. The primary object function
is then initialized with a circular region with 4-pixel radius. This knowledge is based on
the computer simulated data, even though the exact knowledge for the laboratory data is
unknown. The neighborhood system function is kept the same at 30-pixel radius as shown

in Figure 5.11.
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Figure 5.11. (a) Primary Object Function and (b) Neighborhood System Function
used in the NSBD Algorithm with Prior Shape Knowledge.

For the primary object function initialization, the whole circular region is assigned
with the average of the highest pixels from the five data functions from each dataset. For
the neighborhood system function, the background function, the PSFs, and the phases are
initialized in the exact same manner as described previously. In addition, the technique for
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calculating the dim object intensity and the false alarm intensity are also kept the same for
generating the ROC functions. The number of EM iterations and phase retrieval iterations
are also kept the same. The intensities are also fitted with the Gaussian distributions. With
the exception of the distribution for the false alarm intensities from the computer generated
data processed with the NSBD algorithm, the three other distributions also fail to reject the
null hypothesis that the data comes from a distribution in the normal family. The results

are shown in Figure 5.12 and Figure 5.13.
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Figure 5.12. The ROC Comparison for the Laboratory Data with Additional

Knowledge about the Shape of the Primary Object Function for the Neighborhood
System Algorithm.
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Figure 5.13. The ROC Comparison for the Computer Simulated Data with Additional
Knowledge about the Shape of the Primary Object Function for the Neighborhood
System Algorithm.

From the results, when an estimated primary object function shape is given, the
NSBD algorithm can provide an additional performance increase over the blind technique.
To be consistent with the previous chapters, the averages of the estimated object functions
processed with the MFBD algorithm and the NSBD algorithm for the laboratory data and
the computer generated data are shown in Figure 5.14 and Figure 5.15. From the results,
it can be seen that the average of the intensities of the dim object are more pronounced for

the NSBD algorithm with the primary object function shape given.
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Figure 5.14. The Average Functions of the Intensities of the Estimated Object
Functions Processed with the MFBD and the NSBD for the Laboratory Data.
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Figure 5.15. The Average Functions of the Intensities of the Estimated Object
Functions Processed with the MFBD and the NSBD for the Computer Simulated
Data.
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5.6. Summary

In summary, this chapter showed the performance comparison between the Multi-
Frame Blind Deconvolution algorithm and the Neighborhood System Blind Deconvolution
algorithm for the laboratory data collected in the Optics Laboratory at the Air Force
Institute of Technology. The data was undersampled by a factor of two. The algorithms
were modified to take into account the undersampling effects in the derivation. A set of
computer generated data was created to simulate the laboratory data using the statistical
photocalibration techniques. The effects of the detector gain and the readout noise were
also introduced. The data from the two experiments were processed with both the Multi-
Frame Blind Deconvolution algorithm and the Neighborhood System Blind Deconvolution
algorithm.  The Gerchberg-Saxton phase retrieval algorithm was also applied in
conjunction with both algorithms. The estimated object functions were compared using
the Receiver Operating Characteristic function and the average function. From the results,
the Neighborhood System Blind Deconvolution algorithm outperformed the Multi-Frame
Blind Deconvolution algorithm. Furthermore, additional information about the primary
object function can be given prior to processing with the Neighborhood System Blind
Deconvolution. With the additional information, the performance of the Neighborhood
System Blind Deconvolution was further increased over the situation where no prior

information was given.
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6. Dimension Reduction Blind Deconvolution

6.1. Chapter Overview

In this chapter, the Dimension Reduction Blind Deconvolution (DRBD) is derived.
This approach is built on the One-Dimensional Multi-Frame Blind Deconvolution
algorithm (1DBD) [99]. The 1DBD algorithm assumes that the object function is spatially
separable, meaning that it can be described by an outer product between two one-
dimensional (1D) vectors. The DRBD algorithm is derived to make two improvements.
The first improvement is the ability to detect the dim objects that are in close proximity to
a bright one. The second improvement is the ability to perform image processing when the
object function is no longer spatially separable and cannot be described by an outer product
between two 1D vectors. The results are compared with the Neighborhood System Blind

Deconvolution (NSBD) as well as the Multi-Frame Blind Deconvolution (MFBD).

6.2. One-Dimensional Multi-Frame Blind Deconvolution
The algorithm makes the assumption that the objects are spatially separable, where
the object function can be described as the outer product between the two 1D object
functions, as shown in the equation below.
0=0,®0,, (6.1)
where 01 and 02 are the Nx1 and 1xM vectors respectively and & is the matrix
multiplication between the two 1D object functions. Each element can also be expressed

as the following.

O(Xv Xz) =0 (X1)02 (Xz) ) (6-2)
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0, =0,(x), wherex e{L2,..,N}, (6.3)
0, 20,(X,), Wherex, e{l,2,..,M}, (6.4)
0=0(x,X,), wherex, e{l,2,...,N}and x, e{1,2,....M}, (6.5)

where x1 and xz are the discretized region over which the Y-axis and X-axis are defined and
01 and 02 with x1 and xz indices represent the elements of the 1D vectors respectively. In
other words, the rank of the object function is one [100]. The object function is assumed
to meet the Nyquist sampling criteria.

To simplify the derivation, the assumption is made that the object function is a
square function, where N = M. Throughout this chapter, each variable is used for the 1D
coordinate for each axis, such as xi, X2, y1, and yz2, where the subscript annotates the
direction. The subscript “1” is used for Y-axis coordinates whereas the subscript “2” is
used for the X-axis coordinates. This is a departure from the previous chapters where one

variable is used to express a two-dimensional coordinate.
6.2.1. Algorithm Development

Using the same imaging model shown in Figure 2.10, the object function passes
through a set of uncorrelated atmospheric point spread functions (PSF) to form the image
functions. When the image functions arrive at the charge-coupled devices (CCD), they are
converted to the data functions. From the data functions, the total intensity of the object

function can be derived by averaging the total intensities of the data functions.

% Z de (Y1, Y,) = Z (%de(yl’yZ)j1 (6.6)

VK, VY, Y, Y1, 9,
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where K is the total number of PSFs used in multi-frame image processing. To make the
equations compact, the nested summations are annotated with multiple variables in the
subscript. Recognizing that the term inside the parentheses in Equation (6.6) is the sample

mean, the above equation is approximated as the statistical mean as shown below.

% z dy (Vi, ¥,) = Z E[dk(yl'yZ)]' (6.7)

vk, VY1, Y, VY1, Y,

From Equation (2.55), the Poisson mean of the data function is equal to the image
function, which is formed from the convolution between the object function and the

atmospheric PSF. Therefore, the above equation can be written as the following.

Z d, (Y1 o) = Z I (Yir Ys)

1
K VK, VY, VY, VY1,V

(6.8)
- Z ( z O(Xi’xz)hk(yl_xlwyz_xz)j-

WY1y, \ v,

Next, the nested summation is rearranged. Then, the concept of the conservative
nature of the PSF or the constraint to sum up to unity is applied. The above equation can
be simplified as the following.

% Z de (Y1, Y,) > Z [O(lexz) z hk(yl_XZL’yZ_XZ)J

vk, Yy, VY, VX, VXy Yy, VY,

= z (0(X1’ Xz)'l)

o (6.9)
= z O(Xil Xz)
VX, V%,
=3
where 7 is defined as the total intensities of the objects in the object function. In addition,

a constraint is made in such a way that the total intensity of the function oz is equal one.
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Zoz(xz) =1. (6.10)

VXy

As a result, the total intensity of the 01 object function is equal to #, as shown below.

o (x)=>0,(x)1

VX WX

=Zol(x1)(202<x2)j

VX VX,

= 3 0,(x)0,(%,) (6.11)

VX, VXy

= z O(le Xz)
VX, VX,
As explained in Section 2.6.2, the concept of complete and incomplete functions is

applied on the image functions and the data functions as shown below.

ik(yl’ Y2) = Z O(Xp Xz)hk(yl — XY, _Xz)

VX1, VXp

. (6.12)
= Z Ik(Xl’Xz’Ypyz)’
VX, VXy
where 1 is the complete image function which is defined as shown below.
i (4 %0 Y1 ¥2) 2 00, %), (Y; =X, Y, = %) - (6.13)

As explained in Section 2.3, the sum of Poisson random variables results in a
Poisson random variable, the incomplete data function can also be expressed as a sum of

complete data functions, as shown in the equations below.

E[dk(yl’ yz)] = ik(yl’ yz)

= > (X%, YY)
v><12,v:xzk X X0 Y1 Yo (6.14)

= Z E[&k (X0 %50 Yy yz):|1

VX, VX,
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where de is the complete data function which can be expressed as shown below.

E[d (% %0 Y00 ¥2) | =R (%0 %0, Y2 V). (6.15)

The probability mass function of the complete data function can then be expressed

as the following.

e—ik(xl-xz%)’z) i;((Xl, X, Yy yz)dk(xl'xzvylv)'z)
dy (%, %, Y1, ¥,)!

P(ak(xi’XZ’y17y2)): (6.16)

Using the natural logarithm (In), the log likelihood function is derived, similar to

the derivation in Section 2.6.2.

((0,,0,,h) =1In H P(dk(xv Xo0 Y1s yz))

VX, VX,
VY1, VYo,
vk

= 3 InP(d, (% %0 Y1, ¥))

VX, VX,
VY1, 9Y5,
vk

(6.17)

~ Z In eflwk(lesz)ﬁryz) ﬂ((xl’ X2’ yl’ yz)&k(xlvxzvyl'yz)
V¥, VXo, dk(xi’xz'yl’yZ)!

VY1, VY,
vk

= z (_ﬂ< (X11 Xos Yi» YZ) + CTk (le Xy Yo YZ) In ﬁ((xl’ Xy Yi» yz))+A-T-

VX, VX,
VY1, VYo,
vk

where A.T. is the additional term that does not affect the maximization [62]. Next, the
conditional expectation function, Q, is derived as shown in the equation below, where the
complete data function is only the random variable. The additional term is omitted in the

subsequent equations.
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Q(0,,0,,h) =E[Q(0,,0,,h) |d, (¥, Y,) ]
== Z i((xvxz’ )

VX, V%,

V}ﬁvvvkyz ) (6 1 8)
+ > E[ 0% ¥ ) 1A (5 ¥2) [INT 06 %, s, V).

V¥, V%, ,
VY1, 7Y,
vk

As shown in Equation (2.7) and Equation (2.63), the expectation term inside the

summation from the equation above can be derived as the following.

E[d, 0% % ¥2, )], (31, ¥2) | - 'k(ﬁ'(xyj: i.)yz) A (Yoo v2) - (6.19)

Substituting Equation (6.19) back into Equation (6.18) results in the following.

Q(0,,0,,h) =~ z i((xl’XZ’ )

VX, VX,
VYQVY()’zv
(XY 5 (6.20)
+Z:k£ﬁ2)“bmdwwﬁmuampww)
3;1,3;2: e (Y Y2)

vk
Equation (6.20) is the output of the Expectation Step (E-Step) of the Expectation-
Maximization (EM) algorithm. In the Maximization Step (M-Step), the conditional
expectation function is maximized with respect to the 1D object functions, o1 and o2, and

the PSF, hx. The M-Step for 01 is shown below.

Q0N _ S o )™ (3, — 1, Y5~ )

o)
o . . . (6.21)
1 07 (%1005 ()" (V1 = X1, Y, = %)
+ new Z =old k(yl’ y2)
01 (X1) vk, VX, Ik (yli yz)

VY1, VY,

Setting the derivation to zero results in the following update equation for oa.
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0 (x,) 05 (%, ) (¥, = X, Y, = X,)
0new ( ) — — 1neW 2 2 .ko 1 2 2
vt >0 (x)hy (yl—&,yz—xz)w,zwz, i’ (Y1, Y,)

WK, VX, V1,9,
VY1, Y,

d (Y1, Ya) -

(6.22)
The first denominator on the right-hand side of Equation (6.22) seems problematic
because the updated equation for o1 depends on the updated o2 and hk. However, the nested
summations of the denominator can be rearranged as shown below.

z OgeW(XZ)hQGW(yl—Xl,yz—Xz)ZZ[ZOSQW(X2)£ Z h:ew(yl_xliyz_XZ)J]' (6.23)

VK, VX%, vk \ VX, Y1, VY,
YY1, VY,

Since the PSF sums up to unity, the above equation is simplified as below.

3 ogew(xz)h;wyl—xl,yz—xz)=Z(Zo;e“”(xz>-1}=Z(ZO£‘”<X2>J- (6.24)

vk, VX, vk \ VX, vk \ VX,
VY1, Y2

Using the constraint made in Equation (6.10) that o2 sums up to one, the above

equation can be further simplified as the following.

> O OO (Y =%, Y, —%,) = Y

VK, VX, , =1
VY1, 9y,

k (Zogew (Xz)] B ;1: K. (625)

VX,

The update equation for 01 can then be written as shown in the equation below.

(%) 5 OO (Y=Y, = %)
OneW( )= 1 2 2 -ko 1 11 )2 2
)= 2 T )

VY1, VY,

de (V1Y) - (6.26)

Using the same technique, the update equation for o2 is obtained as shown in the

equation below.
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ogew (Xz) — Ogld (Xz) Z Ofld (X1)h1?|d (yl - X1' y2 — X2)

o NP s de (Y1, Y)-
Z 0, (X:L)hk (yl_xvyz_xz)w,wz, 'kld(yl’yz) o
WK, VX, VY1, Y,
Y1, Y,

(6.27)
The first denominator can also be simplified using the conservative nature of the

PSF and the constraint made in Equation (6.11) as shown in the equation below.

Mx

z Olnew (Xl)hl?ew(yl - X, Y, _Xz) =

vk, VX,
VY1, VY,

Zol”e"”(xi)[ > hk”ew(yl—xi,yz—xz)D

VX VY1, Y,

=~
Il
N

D0 (x,) -1]

; (6.28)
OFEW (Xl)j

VX

Il
M I DM

n

=~
1
N

K.

Il
N

The update equation for 01 can then be written as shown in the equation below.

old old old _ _
ogew (Xz) — Oz (Xz) Z 01 (X1)h!<0|d(y1 X11 y2 Xz)
nK vk, VX, e (Y1 o)

VY1, VY,

de (Y1 Y2)- (6.29)

Using the same derivation techniques, the PSF update equation is obtained as

shown below.

new 1 0 OOId —X,Y, —X
W (%, %,) = = b (x,x,) § a4 YoTX) gy yy 630
U VY1, VY, Ik (yl’ y2)

where U™" is a constant to ensure that the new PSF also sums up to unity. Similar to the
algorithms developed Section 2.7, the Gerchberg-Saxton phase retrieval algorithm is

applied on the updated PSF in Equation (6.30) to recover the two-dimensional phase from

140



the intensity measurement only. The technique of spatial separation is not applied on the

Gerchberg-Saxton algorithm.
6.2.2. Algorithm Implementation

Unlike the algorithm developed in Chapter 4, the implementation is not as
straightforward. This section explains a step-by-step implementation. To do so, three
temporary functions, g,, f,, andu, are introduced. Even though these functions are
superfluous, the purpose is to make the implementation easy and simple to follow. A

pseudo MATLAB code is also provided using these functions.

To begin, the summation of the update equation for o1 from Equation (6.26) is

rearranged. First, the old object function, 0, is formed from o and 03" as shown in
the equation below.
new Old (X1) OOId (Xz)hOId (yl 1) — Xz)
(x) =2 LTSS 2 " di (Vs ¥)
vk Yy, Yy, VX, (yli yz)
=—ZZ((0°"‘(X1)0°"’(X )) DD (Y, =X Y, = %,)- oﬁ,(yl’ yZ)j (6.31)
vk VX, vy, VY, (yl’ yz)
=_ZZ£OOM(X1 X )ZZhOId(yl X, ¥, —X,)- o:fj(yl, yZ)j
vk VX, vy, Yy, (yli yz)

Next, the first temporary function, gk, is defined and Equation (6.31) can be written

as shown in Equation (6.33).

a (YL Y,)

9 (Y1, Y2) = (v (6.32)

new(xi)_ ZZ[OOM( Xz)[zzhfld(yl_)ﬁ’yz_Xz)gk(Y1’Y2)]J- (6-33)

vk VX, vy, VY,
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In the equation above, the term inside innermost parenthesis is a 2D convolution,

which is defined by the second temporary function, fx.

F( %) 2 D (Y, =%, Vo = %) 9k (Vi ¥s) - (6.34)

VY1 VY,

The update equation for o1 from Equation (6.31) can be written as the following.

01 (%) = 3 30 (%, %) (%, %). (6.35)

vk VX,

Using the distributive property, Equation (6.35) can be written as the following.

07" (%) = 2 0™ (%, X)X (%) (6.36)

VX, vk

Here, the last temporary function, u, is defined as the following.
(X, %) 2 > F (%, %,) . (6.37)
vk
Therefore, the update equation for o1 can be simplified as the following.

0™ (%) =%ZO°"‘(X1, X )U(X,, %) - (6.38)

VX,

Similarly, the update equation for o2 can also be simplified as the following.

0;™ (%,) = ULKZO""‘(XP X JU (X, X,) - (6.39)

le

Next, the constraints from Equation (6.10) and Equation (6.11) are applied on 02
and o1 respectively. These two equations ensure that the elements of the vector 02 sum up
to 1 and those of the vector 01 sum up to . Next, the update equation for the PSF can be

implemented by change of summation variables. It also requires creating the old 2D object

old

function, 0®, from the outer product of o; -

and o, , before convolving with gk.
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in

000 = 06 3 00y ) g 208
e o (6.40)

hOId (X, %,) Z 0°'d(y1 X, Yo = %) 9, (Vis Ya)-

VY1, VY,

U new

The pseudo MATLAB implementation example for the update equations is shown

the figure below.

I

°

u
h

e

o
o

o
[}

£

e

°—

P_

for k = 1:K

Pseudo MATLAB Implementation Example (One Expectation-Maximization Iteration)

old = ol_new * 02 new; % ol is Nxl1 vector and o2 is 1xN vector

= zeros(N,N); % N is the size of the square object function
old = h_new; % PSF Intensity
old = p _new; % PSF Phase

i _old(:,:,k) = real (ifft2(fft2(ol_old*o2_old).*fft2(h_old(:,:,k))));

g(:,:,k) = d(:,:,k)./i_old(:,:,k); % See Eq (6.32)
£(:,:,k) = real (ifft2(conj (££t2(h_old(:,:,k))).*£ft2(g(:,:,k)))); % See Eq (6.34)
u =u+ £(:,:,k); % See Eq (6.37)
nd

1 _new = sum(o_old.*u,2)/K; % See Eq (6.38)

2 new = sum(o_old.*u,l)/(eta*K); % See Eq (6.39)

1 new = alpha * ol_pew/sum(ol_pew(:)); % See Eq (6.11)

2_new = 02_new/sum(o2_new(:)); % See Eq (6.10)

or k = 1:K

h_new(:,:,k)
h _new(:,: k)
p_new(:,:, k)
nd

h new(:,:,k).*real (ifft2 (fft2(o_old) .*fft2(g(:,:,k)))) ;% See Eq (6.40)
h new(:,:,k)/sum(sum(h_new(:,:,k))); % PSF is conservative
GerchbergSaxton(h_new(:,:,k),p_old(:,:,k)); % See Section 2.7

Figure 6.1. Pseudo MATLAB Implementation for Spatial Separation Approach.

Next, Scenario 1 from Table 3.4 is used for validating the algorithm. In this

scenario, the bright object has a photoelectron count of 10,000 and the dim object has

1,000. The background noise with an average photoelectron count of 10 is added to all

pixels. For the 1DBD algorithm, o1 and o2 are initially assigned to as constant vector,

whose elements add up to » and 1 respectively. The PSFs are initialized as the diffraction-

limited PSFs, where the phases are planes of zeros. The performance of the 1DBD
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algorithm is compared with that of the MFBD algorithm, using the two performance
metrics described in Section 3.5. The MFBD algorithm is based on Schulz’s approach
explained in Section 2.6.4. For the first performance metric using the Receiver Operating
Characteristic (ROC) function, it can be seen that the current implementation of the 1DBD
algorithm does not perform as well as the MFBD algorithm for the dim object detection,
when the false alarm rate is very low as shown in Figure 6.2. For the second metric, the
average of the reconstructed object functions using the MFBD also outperforms that using
the 1DBD as shown in Figure 6.3.

Since the performance of the 1DBD algorithm does not exceed that of the MFBD
algorithm, additional scenarios are not processed. In the next section, the Dimension
Reduction Blind Deconvolution algorithm (DRBD) is introduced, where improvements are
made for dim object detection. In addition, the algorithm also allows when the object

function can no longer be represented by the outer product of two 1D vectors.

o
o

Detection Rate
o
(¢}

Scenario 1 (Dim 1000)

MFBD Algorithm | |
1DBD Algorithm

0 1 2 3 4 5
False Alarm Rate 1074

Figure 6.2. The ROC Comparison for Scenario 1 between the MFBD Algorithm and
the 1DBD Algorithm for Very Low False Alarm Rate.
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Scenario 1 (Dim 1000)
MFBD Algorithm
—&— Dim Object
—w— False Alarm
1DBD Algorithm
—&— Dim Object

3000 | —¥— False Alarm
Bright Object Location

4000 {

3500 f

2500 -

Intensities

2000 -
1500 [
1000 [

500 | -Z :
0 L 1 S

v

20 25 30 35 40
Pixel

Figure 6.3. The Average Function Comparison for Scenario 1 between the MFBD
Algorithm and the 1DBD Algorithm.

6.3. Dimension Reduction Blind Deconvolution

This section introduces the DRBD algorithm with two improvements made to the
1DBD. In Section 6.3.1, the emphasis is on improving the detection of the dim object. In
Section 6.3.2, the emphasis is on applying the algorithm when the object function is no
longer spatially separable and cannot be represented by the outer product between two 1D

vectors, meaning the rank of the object function is higher than one.

6.3.1. Spatially Separable Object Function

To understand the reason 1DBD algorithm does not outperform the MFBD
algorithm, the averages of reconstructed o1 and o2 from Section 6.2 are examined. From
Figure 6.4 (a), it can be seen that the reconstructed o1 background level is over twice of the

true value, while the peak value is at 7,212 instead of the true value of 10,000. One
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explanation is that the gap between the true value of 10,000 and the calculated peak value

of 7,212 is spread over the remaining pixels, causing the background level to rise.

= 40 T i T T T
Z = | — — — - Peak Value = 7212
7% = S T Y | A IOUROOOoon T Back; d Int it
g .qgg 30 F : rue Background Intensity | _|
= =
ElE |
£ 520 |
=2 I
5z |
Q5
= 5 10 |
\P_‘/ 1 1 [ 1 1 |
10 20 30 40 50 60
Pixel
Fig. (a) Averaged 1D Object Function (o;)
= T T T i T T T
z = 0.06 - I — — — -Bright Object Location i
g g [ I EEERSERES Dim Object Location
B3, B I —m— Dim Object Relative Intensity
= £ 004t !
— g U |
L =
22 |
& 002 I
o 8 I
2= I
\P_L 0 t t L
10 20 30 40 50 60
Pixel

Fig. (b) Averaged 1D Object Function (0;)

Figure 6.4. The Averages of the 1D Vectors Processed with 1DBD Algorithm.

One technique to address is by separating the background level, B, from the 1D
vectors shown in the equation below.
0(x,, X,) =0,(%)0,(X,)+B. (6.41)
The background level can be estimated from the regions in the data functions that
are far away from the bright object and the dim object and that contain no known objects,

as shown in Figure 6.5.
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Figure 6.5. Background Level Estimation.

Using similar derivation, the update functions can be derived as the followings.

1o (00000 0) + BN (3, =X, ¥, —X,)
o (X)) = — — de (Y1, o),
(X Kg%@ Ikm(yl’yz) k\Y1r Yo (6.42)
Y1, VY,

1Ly (07 (x)05"™ (%) + B) ¢ (v, = X, ¥, = %,)
nK kWX, ifld(yl’ Y,)

VY1, Y,

00 (x,) = de (Y1, Y2)- (6.43)

The update equation for the PSF remains the same as shown in Equation (6.41).
Similar to the implementation shown in Section 6.2.2, the two update equations can be

simplified as shown in the equation below.

01" (%) =~ 3 (08 (1)0E() + B)u(x, ,), (6.44)
oz“eW(xz)=niKZ(of'“(x1>o;’"‘(xz)+B)u(xi,xz)- (6.45)

From Equation (6.32), Equation (6.34), and Equation (6.37), u(x,, X,) is defined as

shown below.
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U(x, %) = Z[ZZh"“’(yl X, Y, — %) d((yyyy))j (6.46)

6.3.2. Non-Spatially Separable Object Function
A non-spatially separable object function is defined as one that cannot be
represented by the outer product of two 1D vectors as shown in the figure below, where

the rank of the object function is higher than one.

5 10 15 20 25 30
Pixel

Figure 6.6. Non-Spatially Separable Object Function

If the object function from Figure 6.6 were to be represented by an outer product of

two metrics, it would need to be an outer product between an N x2 matrix, 0;"*, and a
2xN matrix, o>V, as shown in Equation (6.47). Similar to the DRBD algorithm in
Section 6.3.1, the background level, B, is added as a separate variable.
0=(0"*®0;")+B (6.47)
Similar to Equation (6.10) and Equation (6.11), o;** is constrained to sum up to

the total intensity, 77, and 02" is constrained to sum up to unity as shown below.
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Y > 0(x.0) =17, (6.48)

V¥ v=1

> 20,(0,%,)=1. (6.49)

VX, v=1

The derivation is similar those shown in Sections 6.2.1 and 6.3.1. Instead of
summing along x1 and x2 as shown in Equation (6.44) and Equation (6.45), a singular value

decomposition (SVD) is performed on the term inside the summation [101]-[103].

USYT ((Olezo.d 902" )+ B)@%, (6.50)

where U isan N xM matrix, Sisan M xM diagonal matrix, and VTisan M xN matrix
since the assumption is made that the object function isasquare N x N matrix. Inaddition,
o is the piecewise matrix multiplication and % is the N xN matrix whose elements are

u(x;,X,) from Equation (6.46) as shown below.

u@ll - u@N)

%2 (6.51)

u(N,) --- u(N,N)
Even though the number of resultant singular values may exceed two (M > 2), only
the largest two singular values are used to match the dimensions of o;** and o>™".

Therefore, the update equations become the following.

N ><2I'IEW 1

o) ? ==Uu"? 6.52
' m ( )
2x N "ew l 2x2 Nx2 T

oyt =S (V) (6.53)

2
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ew

where 7, and 7, are some constants to ensure that O{“ 7 and 0§XN sumupto 7 and 1

respectively as shown in Equation (6.48) and Equation (6.49). S*? is a diagonal matrix
made up with the two largest singular values from S. U™ and (VNX2 )T are made up of
two columns and two rows that are associated with the singular values in S**. The PSF

update equation remains the same as the one shown in Equation (6.40). A pseudo

MATLAB implementation is shown in the figure below.

% Pseudo MATLAB Implementation Example for SVD )

[U, s, V] = svd( (0l_old * 02 _old) .* U ); % See Egq (6.50)
ol new = U(:,1:2) / etal; % See Eq (6.52)
o2 new = §(1:2,1:2) * (V(:,1:2)') / eta2; % See Eq (6.53)

Figure 6.7. Pseudo MATLAB Implementation for SVD Approach.

6.4. Performance Comparison

In this section, the results are shown for spatially separable object functions and
non-spatially separable object functions. The data used for spatially separable object
function is the same as that used in Chapter 3 and Chapter 4. However, instead of running
the algorithm through all eight scenarios from Table 3.4, this section shows the results for
only two scenarios, which are Scenario 1 and Scenario 8. The intensity of the bright object
is set to 10,000 photoelectrons for both scenarios, but that for the dim object is set to 1,000
photoelectrons for Scenario 1 and 25 for Scenario 8. The reason for selecting Scenario 1

is to make sure that the new algorithm does not suffer performance degradation for a trivial
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case. The reason for selecting Scenario 8 is to compare the performance for the most
challenging case.

For all the image processing completed in this section, a total of 500 EM iterations
are completed. For each EM iteration, a total of 100 Gerchberg-Saxton phase retrieval are
completed. Instead of using a Gaussian mask approach, the intensities at the false alarm
and the dim object locations are recorded. The intensities of the false alarm pixel and that
of the dim object intensities are compared using the ROC function. The average
information of all estimated object functions are also shown.

For all initializations, o1 and o2 are initialized with as constant vectors or constant
matrices while satisfying their constraints of summing up to » and 1 respectively. The
PSFs are initialized as the diffraction-limited PSFs where the phases are initialized with

planes of zeros.

6.4.1. Spatially Separable Object Function

This section presents the performance result of Scenario 1 and Scenario 8 using the
DRBD algorithm. Because the object function is spatially separable in these scenarios,
two approaches of the DRBD algorithm are used. The first one is the summation approach
as shown in Section 6.3.1. The second one is the SVD approach as shown in Section 6.3.2.
However, 01 and 02 are decomposed as N x1 and 1x N vectors instead of Nx2 and 2x N
vectors.

For Scenario 1, the ROC performances of the DRBD algorithm using the

summation approach and the SVD approach are shown are shown in Figure 6.8 and Figure

6.9. From the results, it can be seen that even for the very low false alarm rate (1x107"°),
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the DRBD gives perfect detection regardless of whether the summation approach or the
SVD approach is used. The average functions of the DRBD algorithm using two
approaches are shown in Figure 6.10 and Figure 6.11. From the results, the averaged
reconstructed intensities of the bright object and that of the dim object closely match their
true values.

For Scenario 8, the ROC performances of the DRBD algorithm using the
summation approach and the SVD approach are shown are shown in Figure 6.12 and Figure
6.13 respectively. Because these intensities of the false alarm and the dim object do not
follow Gamma, Gaussian, Weibull, or any known distributions, the ROC functions are not
fitted to a known distribution. Appendix D shows how fitting these intensities to Gamma
or Weibull could lead to inaccurate detection rates.

As a reference, the ROC performance of the DRBD algorithm is compared with
that of the NSBD algorithm and the MFBD algorithm from Figure 4.20. From the results,
the DRBD algorithm outperforms the NSBD algorithm and the MFBD algorithm for both
the summation approach and the SVD approach. The average function of the DRBD
algorithm using the two approaches are shown in Figure 6.14 and Figure 6.15. From the
results, even though the averaged dim object intensity is higher than that of the false alarm
pixel, they are very close to the background level. Therefore, the dim object is discernable
from the false alarm using the DRBD algorithm, even though the estimated intensity of the

dim object is significantly less than that of the true intensity.
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Figure 6.8. The ROC Performance for Scenario 1 Using the DRBD Algorithm with
the Summation Approach for Very Low False Alarm Rate.
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Figure 6.9. The ROC Performance for Scenario 1 Using the DRBD Algorithm with
the SVD Approach for Very Low False Alarm Rate.
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Figure 6.10. The Average Function for Scenario 1 Using the DRBD Algorithm with
the Summation Approach.
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Figure 6.11. The Average Function for Scenario 1 Using the DRBD Algorithm with
the SVD Approach.
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Figure 6.12. The ROC Comparison for Scenario 8 Using the DRBD Algorithm with
the Summation Approach.
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Figure 6.13. The ROC Comparison for Scenario 8 Using the DRBD Algorithm with
the SVD Approach.
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Figure 6.14. The Average Function for Scenario 8 Using the DRBD Algorithm with
the Summation Approach.
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Figure 6.15. The Average Function for Scenario 8 Using the DRBD Algorithm with
the SVD Approach.
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6.4.2. Non-Spatially Separable Object Function
For non-spatially separable object function, two new scenarios are generated where

the bright object is place in the center and the dim object is placed two pixels below and

two pixels to the right of the bright object at a \/E pixel separation as shown in the figure
below. Even though the bright object is placed at (32, 32) for the scenarios in Chapter 3
and Chapter 4, all performance comparisons in this research are based on the relative

positions between the bright object and the dim object instead of their absolute positions.
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(31’ 31) Br1ght
-~ Object -
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Figure 6.16. Non-Spatially Separable Object Function with Bright Object, Dim
Object, and False Alarm Pixel Locations.

To distinguish from the two new scenarios described in Table 3.4, the new ones are
annotated with “N”. For Scenario 1N and Scenario 8N, the intensities of the bright object,
the dim object, and the background level are kept the same as those in Scenario 1 and
Scenario 8. The only difference is the placement of the dim object relative to the bright
object. The data functions are also generated using the same atmospheric turbulence
strength of D/, =2, using the Zernike technique with 100 polynomials as described in
Section 3.3.7. A total of 2,500 data functions are generated. A set of 5 data functions are

grouped to form one dataset, generating a total of 500 datasets per scenario.
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Similar to Section 6.4.1, the ROC function and the average function are used for
comparing the performance of the DRBD algorithm. Because the object in this section are
not spatially separable, only the SVD approach could be used where 01 and o2 are
decomposed Nx2 and 2xN vectors. For the average function, the intensities of the
pixels on the diagonal line is recorded where the bright object, the dim object, and the false

alarm are located as shown in the figure below.

Intensity

/ | |
—_ .I {
5 10 15 20 25 30 5 10 15 20 25 30
Pixel Pixel
Figure (a) Figure (b)

Figure 6.17. Average Function Used for Non-Spatially Separable Object Function.

The results for Scenario 1N and Scenario 8N are shown in Figure 6.18 through
Figure 6.21 using the ROC function and the average function. For Scenario 8N, the ROC
functions are fitted with Weibull distribution because the dim object intensities and the
false alarm intensities follow such distribution as shown in Figure D-9 in Appendix D [87],
[104]. The ROC functions are shown along with that of the NSBD algorithm and the
MFBD algorithm from Figure 4.20 for reference. This is not a comparison because Figure

4.20 shows the results from Scenario 8, which is different from Scenario 8N.
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Figure 6.18. The ROC Performance for Scenario 1N Using the DRBD Algorithm with
SVD Approach for Very Low False Alarm Rate.
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Figure 6.19. The Average Function for Scenario 1N Using the DRBD Algorithm with
SVD Approach.
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Figure 6.20. The ROC Comparison for Scenario 8N Using the DRBD Algorithm with
the SVD Approach.

11 T T

| T T T
I Scenario 8N
109 - : (SVD Approach) B
| Dimension Reduciton
10.8 | — — — - Bright Object Center |
| —@— Dim Object Center
107 F : —w— False Alarm Center i
I
10.6 | B
> |
B |
0
g 1051 [ .
= I
= |
104 | -
I
10.3 - : i
I
10.2 I -
I
I
10.1 - | E
s
10 1 | | ! !
20 25 30 35 40 45 50

Pixel

Figure 6.21. The Average Function for Scenario 8N Using the DRBD Algorithm with
SVD Approach.
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For Scenario 1N, the ROC function and the average function from the DRBD

algorithm are shown in Figure 6.18 and Figure 6.19. The DRBD algorithm gives a perfect
detection even for very low false alarm rate (1x107°). In addition, the average

reconstructed intensities of the bright object and the dim object match their true values.
For Scenario 8N, the ROC functions and the average functions from the DRBD
algorithm are shown in Figure 6.20 and Figure 6.21. From the results, the DRBD algorithm
provides a better detection technique over the NSDB algorithm and the MFBD algorithm
for low false alarm rates. For the average function, the dim object is discernable from the
false alarm with the DRBD algorithm, even though the estimated intensity of the dim object

is significantly less than that of the true intensity.

6.5. Summary

In summary, this chapter provided a new Dimension Reduction Blind
Deconvolution algorithm that was based on the One-Dimensional Multi-Frame Blind
Deconvolution algorithm. The latter requires the object function to be spatially separable,
meaning that it needs to be represented by the outer product of two one-dimensional
vectors. In the Dimension Reduction Blind Deconvolution algorithm, two improvements
were made. The first one was the improved ability to detect dim objects in close proximity
to a bright one. The second one was the ability to perform image processing when the
object function was no longer spatially separable. Two existing scenarios were used for
testing the first improvement where the object function was spatially separable. Two new

scenarios were generated for testing the second improvement where the object function is

161



no longer spatially separable. The Receiver Operating Characteristic function and the
average function were used to compare the performance. The DRBD algorithm provides
an improved technique to detect the dim object over the Multi-Frame Blind Deconvolution

algorithm and the One-Dimensional Multi-Frame Blind Deconvolution Algorithm.
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7. Conclusion

7.1. Chapter Overview

This chapter summarizes the purpose that this research is set out to address, which
is to improve the closely spaced dim object detection. It provides a summary of the
algorithms developed to support the three tasks in fulfilling the purpose. The potential

future research is also explained. In addition, the academic contributions are also listed.

7.2. Research Purpose
The overall purpose of this research to improve the detection of dim stellar objects
that are in close proximity to a bright one through statistical imaging without the need to
invest in additional hardware infrastructure. To fulfill the purpose, this research
accomplished three tasks.
1. Develop algorithm(s) to improve the ability of detecting dim stellar objects using
short exposure images.
2. Validate the algorithm(s) through computer generated data.
3. Validate the algorithm(s) on the telescope systems within the Space Surveillance

Network (SSN) or the academic and scientific communities.

Due to unavailability of the SSN telescope data, the data collected in the Optics

Laboratory at the Air Force Institute of Technology is used instead.
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7.3. Work Completed
This section explains the work completed for each task in support of improving dim

object detection.

Task 1: Develop algorithm(s) to improve the ability of detecting dim stellar objects using
short exposure images.

In Chapter 4, the Neighborhood System Blind Deconvolution (NSBD) Algorithm
is developed. This algorithm separates the data into three functions, which are the primary
bright object function, the neighborhood system function around the primary object, and
the background function. In this chapter, it is assumed that the data functions are sampled
at Nyquist rate such that there are no undersampling effects. In Chapter 5, the NSBD
algorithm is modified so that it can perform the statistical image processing when the data
functions are undersampled.

In Chapter 6, the Dimension Reduction Blind Deconvolution (DRBD) algorithm is
developed. This algorithm is based on the One-Dimensional Multi-Frame Blind
Deconvolution [99], which requires that the object function is spatially separable in a sense
that it can be represented by the outer product of two one-dimensional (1D) vectors. The
DRBD algorithm makes two improvements. The first one is in improving the ability to
detect dim objects that are in close proximity to the bright one. The second one allows the
DRBD algorithm to perform statistical image processing on the object functions that can

no longer be represented by the outer product of two 1D vectors.
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Task 2: Validate the algorithm(s) through computer generated data.

In Chapter 4, the performance of the NSBD algorithm is validated with computer
generated data. Eight scenarios are generated. For all scenarios, the intensity of the bright
object is fixed at 10,000 photoelectrons. The intensities of the dim object are varied from
10% to 0.25% of the intensity of the bright object as described in Table 3.4. A constant
background level of 10 photoelectrons is added to all pixels including the bright object and
the dim object. A Zernike phase screen generation technique is used in creating random
atmospheric phase screens, using 100 polynomials. The strength of the atmospheric

turbulence, D/ry, is set to two for all phase screens. For each scenario, a total of 500

datasets are generated with each dataset containing five data functions for multi-frame
statistical image processing. The phase screens are generated so that no two screens are
statistically correlated. The performance of the NSBD algorithm is compared with the
Multi-Frame Blind Deconvolution (MFBD) implementation by Schulz [62], since the
MFBD algorithm is used by many scholars in the electro-optics community for
performance comparison. Two performance metrics descried in Section 3.5 are used for
performance comparison. The first one is the Receiver Operating Characteristics (ROC),
which compares how well the distribution of the dim object intensities is separated from
that of the false alarm pixel, where no object intensities exist. The second one is the
average intensity of the reconstructed dim object. From the results, the NSBD algorithm
provides an improved technique over the MFBD algorithm for the dim object detection.
In Chapter 6, a set of data functions are generated to simulate the laboratory

collected data. This data presents the undersampling case. The readout noise is also
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introduced to simulate the outputs of the charge-coupled devices. In addition, the

atmospheric strength is also higher at D/r, =10. The NSBD algorithm is modified for

the undersampled data. The results are compared to the MFBD algorithm that is also
modified for the undersampled data. The results are presented in two cases. In the first
case, the NSBD algorithm does not assume any knowledge about the bright object,
presenting a true blind deconvolution processing. In the second case, the shape for the
primary object is given to the NSBD algorithm. From the results, the NSBD algorithm
provides an improved technique over the MFBD algorithm. In addition, the NSBD
performance is further improved when the shape of the primary object is given for the
second case.

In Chapter 6, to validate the performance of the DRBD algorithm, Scenario 1 and
Scenario 8 from Table 3.4 are used for the cases when the object function is spatially
separable. For these two scenarios, the DRBD algorithm outperforms the MFBD
algorithm. Two new scenarios, Scenario 1N and Scenario 8N, are created where the object
function is no longer spatially separable. The DRBD algorithm also outperforms the

MFBD algorithm for these scenarios.

Task 3: Validate the algorithm(s) on the telescope systems within the SSN or the
academic and scientific communities.

In Chapter 5, the performance of the NSBD algorithm is compared using the data
collected at the Optics Laboratory at AFIT. This data is undersampled by a factor of

approximately two. Therefore, the data is processed with the modified NSBD algorithm
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for undersampled data. The performance is compared with that of the MFBD algorithm
modified for the undersampled data. Similar to the computer simulated data mentioned in
Task 2, two cases are analyzed. In the first case, the NSBD algorithm does not assume any
knowledge about the bright object. In the second case, the shape information of the bright
object is given. The NSBD algorithm outperforms the MFBD algorithm for both cases. In
addition, when the shape information is given, the NSBD algorithm provides additional
performance gain over the case where no prior information is given. The performance of
the laboratory data is consistent that that of the computer generated data that mimics the

former. The list of the completed work for all three tasks is summarized in the table below.

Table 7.1. Summary of Work Completed.

Task 1: Algorithms Developed Task 2: Task 3:
Validation with Validation with
Algorithm | Nyquist Undersampled | Computer Laboratory Data
Name Sampled Generated Data
NSBD Chapter 4 Chapter 5 Chapter 4 Chapter 5
Chapter 5
DRBD Chapter 6 - Chapter 6 -
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7.4. Future Work
There are several opportunities for continued research based on the work presented

in this dissertation.

Sub-Pixel Blind Deconvolution

In this research, the bright object and the dim object are located in different pixels
even for the undersampled case. For the sub-pixel undersampled case, the undersampling
factor is high enough that a pixel from data function contains both the bright object and the
dim object. This dissertation provides the undersampled blind deconvolution technique to
reconstruct in the Nyquist space. The NSBD algorithm provides an image processing
technique where the bright object is processed separately from its neighborhood system.
Building on these foundations, the sub-pixel blind deconvolution algorithm needs to be

further investigated.

Undersampled Dimension Reduction Blind Deconvolution

Another area for further investigation is the undersampled DRBD algorithm,
especially when the readout noise is introduced. This dissertation provides the
undersampled blind deconvolution derivation as well as the dimension reduction approach.
A combination of these two provides the foundation to be further investigated for the

undersampled DRBD algorithm and to process the undersampled laboratory data.
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7.5. Publications
To ensure the originality and significant contribution of the research in this
dissertation, each portion of this research is submitted and published as either a conference
or journal paper for evaluation and critic from experts within the field.
Conference Presentation

e Based on Chapter 4:
R. M. Aung and S. C. Cain, “Multi-Frame Blind Deconvolution of Closely Spaced

Dim Stellar Objects,” in Advanced Maui Optical and Space Surveillance
Technologies Conference, 2019.
Journal

e Based on Chapter 5:

R. M. Aung and S. C. Cain, “Improving closely spaced dim object detection
through multi-frame blind deconvolution of near stellar neighbourhoods,” Journal

of Modern Optics. Submitted May 2020. Accepted August 2020.

169



Appendix A: Estimation of Gamma Distribution

The estimation methods for the gamma distribution parameters are adopted from

Hahn and Shapiro [105]. Let {i.,n=1,...,N} be the measured intensities that need to be

fitted to the gamma probability distribution function. The function takes on the following

form, where a and b are the gamma distribution parameters and i the continuous random

variable.
H ba sa-1,-bi
f(|;a,b)=%| e, (A1)
@)= T i**e2di. (A.2)

The estimation of the gamma distribution parameters, d and b, are given by the

following equations.

Z(in _i—)z (A.3)
a=hi, (A4)
i==>1i. (A.5)

When using MATLAB, it is important to note that it defines b slightly different in
the following manner.

1

Buariae = b’ (A-6)
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Appendix B: Gamma Distribution Fits from Chapter 4

This appendix shows the gamma distribution fits for the intensities of the dim object
and the false alarm pixel for both the coupled and decoupled approaches using the

Neighborhood System Blind Deconvolution algorithm developed in Section 4.4.1.
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Figure B-1. The Gamma Fits for the Coupled Approach for Scenario 1.
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Figure B-2. The Gamma Fits for the Decoupled Approach for Scenario 1.
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Figure B-3. The Gamma Fits for the Coupled Approach for Scenario 2.
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Figure B-4. The Gamma Fits for the Decoupled Approach for Scenario 2.
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Figure B-5. The Gamma Fits for the Coupled Approach for Scenario 3.

100

200

T T T T

Scenario 3 (Dim: 250) - Decoupled
[ Dim Object Intensities 1
[JFalse Alarm Intensities

Gamma Distribution Fit

Gamma Distribution Fit

300 400
Intensities
Figure (a)

500 600

700

173

Cumulative Distribution Function

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

if| Scenario 3 (Dim: 250) - Decoupled | |

Dim Object Intensities
False Alarm Intensities
- Gamma Distribution Fit
- Gamma Distribution Fit

100

200

300 400 500 600
Intensities
Figure (b)

Figure B-6. The Gamma Fits for the Decoupled Approach for Scenario 3.
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Figure B-8. The Gamma Fits for the Decoupled Approach for Scenario 4.
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Figure B-9. The Gamma Fits for the Coupled Approach for Scenario 5.
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Figure B-10. The Gamma Fits for the Decoupled Approach for Scenario 5.
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Figure B-12. The Gamma Fits for the Decoupled Approach for Scenario 6.
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Figure B-13. The Gamma Fits for the Coupled Approach for Scenario 7.
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Figure B-14. The Gamma Fits for the Decoupled Approach for Scenario 7.
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Figure B-15. The Gamma Fits for the Coupled Approach for Scenario 8.
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Figure B-16. The Gamma Fits for the Decoupled Approach for Scenario 8.
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Appendix C: Gaussian Distribution Fits from Chapter 5

This section shows the Gaussian distribution fits for the dim object intensities and
the false alarm intensities obtained from the Multi-Frame Blind Deconvolution (MFBD)
and the Neighborhood System Blind Deconvolution (NSBD) for the laboratory data and
the computer simulated data from Chapter 5. For the NSBD algorithm, two approaches
are used. The first one is the blind deconvolution approach as described in Section 5.5.1
and the other one is processed with the prior knowledge of the shape of the primary object
function as described in Section 5.5.2. The distributions and their Gaussian distribution

fits are shown in the following figures.
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Figure C-1. The Gaussian Distribution Fits for the Dim Object Intensities and the
False Alarm Intensities of the Laboratory Data Processed with the MFBD.
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Figure C-2. The Gaussian Distribution Fits for the Dim Object Intensities and the
False Alarm Intensities of the Laboratory Data Processed with the NSBD.
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Figure C-3. The Gaussian Distribution Fits for the Dim Object Intensities and the
False Alarm Intensities of the Laboratory Data Processed with the NSBD with the
Shape of the Primary Object Function Given.
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Figure C-4. The Gaussian Distribution Fits for the Dim Object Intensities and the
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Figure C-5. The Gaussian Distribution Fits for the Dim Object Intensities and the
False Alarm Intensities of the Computer Generated Data Processed with the NSBD.
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Figure C-6. The Gaussian Distribution Fits for the Dim Object Intensities and the
False Alarm Intensities of the Computer Generated Data Processed with the NSBD
with the Shape of the Primary Object Function Given.

182



Appendix D: Distribution Fits from Chapter 6

This appendix shows the distributions of the dim object intensities and the false
alarm intensities obtained from the Dimension Reduction Blind Deconvolution (DRBD)
from Chapter 6. Figure D-1 and Figure D-2 show the distributions for Scenario 1 using
the summation approach and the singular value decomposition (SVD) approach. Figure
D-3 shows the distributions for Scenario 1N using the SVD approach. For all scenarios,
the intensities of the false alarm are well separated from those of the dim object that either

Gamma or Weibull will provide a perfect detection rate.
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Figure D-1. The Distributions for Dim Object Intensities and False Alarm Intensities
for Scenario 1 Using DRBD with Summation Approach.
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Figure D-2. The Distributions for Dim Object Intensities and False Alarm
Intensities for Scenario 1 Using DRBD with SVD Approach.
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Intensities for Scenario 1N Using DRBD with SVD Approach.
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Figure D-4 and Figure D-5 show the distributions for Scenario 8 using the
summation approach. In Figure D-4, the distributions are fitted with the Gamma
distributions. From the figures, it can be seen that fitting with the Gamma distributions
will not provide accurate detection rates. Therefore, the results shown in Figure 6.12 are

not fitted with the Gamma distributions.
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Figure D-4. The Gamma Fitted Distributions for Dim Object Intensities and False
Alarm Intensities for Scenario 8 Using DRBD with the Summation Approach.
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In Figure D-5, the distributions are fitted with the Weibull distributions. From the
figures, it can be seen that fitting with the Weibull distributions will not provide accurate
detection rates. Therefore, the results shown in Figure 6.12 are not fitted with the Weibull

distributions.

Scenario 8
(Summation Approach)

0.5 0.5
= [ False Alarm Intensities = [ Dim Object Intensities
2 04 Weibull Fit £ 04 Weibull Fit
2 2
o o
%03 %03
A A
> >
= 02 = 02
o) o)
2 2
g 01 2 0.1
A A
oS =l 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Intensity Intensity
Figure (a) Figure (b)
1
=
2 08
e .
=
h & 06
A g
: £
"% 04 Dim Object Intensities % 04
=T [ [ Weibull Fit A
g 02 False Alarm Intensities 0.2 Unfitted ROC
SN e Weibull Fit Weibull Fitted ROC
0 0
0 0.5 1 1.5 2 0 0.5 1
Intensity False Alarm Rate
Figure (c) Figure (d)

Figure D-5. The Weibull Fitted Distributions for Dim Object Intensities and False
Alarm Intensities for Scenario 8 Using DRBD with the Summation Approach.
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Figure D-6 and Figure D-7 show the distributions for Scenario 8 using the SVD
approach. In Figure D-6, the distributions are fitted with the Gamma distributions. From
the figures, it can be seen that fitting with the Gamma distributions will not provide
accurate detection rates. Therefore, the results shown in Figure 6.13 are not fitted with the

Gamma distributions.
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Figure D-6. The Gamma Fitted Distributions for Dim Object Intensities and False
Alarm Intensities for Scenario 8 Using DRBD with the SVD Approach.
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In Figure D-7, the distributions are fitted with the Weibull distributions. From the
figures, it can be seen that fitting with the Weibull distributions will not provide accurate
detection rates. Therefore, the results shown in Figure 6.13 are not fitted with the Weibull

distributions.
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Figure D-7. The Weibull Fitted Distributions for Dim Object Intensities and False
Alarm Intensities for Scenario 8 Using DRBD with the SVD Approach.
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Figure D-8 and Figure D-9 show the distributions for Scenario 8N using the SVD
approach. In Figure D-8, the distributions are fitted with the Gamma distributions. From
the figures, it can be seen that fitting with the Gamma distributions will not provide
accurate detection rates. Therefore, the results shown in Figure 6.20 are not fitted with the

Gamma distributions.

Scenario 8N
(SVD Approach)

0.5 0.5
= [ False Alarm Intensities = ‘ [ Dim Object Intensities
=] . =] .
=204 Gamma Fit =204 Gamma Fit
2 2
o o
% 0.3 % 0.3
A A
> >
= 0.2 = 0.2
2 2
2 2
° 0.1 © 0.1
[ [a B
o e 0 =
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Intensity Intensity
Figure (a) Figure (b)
1
g 0
+~ .
2 2
o ]
% 06 = 06
A g
2 i
% 04 Dim Object Intensities % 04
= b e, Gamma Fit A
% 0.2 False Alarm Intensities 0.2 Unfitted ROC
| ST J T Gamma Fit Gamma Fitted ROC
0 0
0 0.5 1 1.5 2 0 0.5 1
Intensity False Alarm Rate
Figure (c) Figure (d)

Figure D-8. The Gamma Fitted Distributions for Dim Object Intensities and False
Alarm Intensities for Scenario 8N Using DRBD with the SVD Approach.
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In Figure D-9, the distributions are fitted with the Weibull distributions. From the
figures, it can be seen that fitting with the Weibull distributions track the data well.

Therefore, the results shown in Figure 6.20 are fitted with the Weibull distributions.
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Figure D-9. The Weibull Fitted Distributions for Dim Object Intensities and False
Alarm Intensities for Scenario 8N Using DRBD with the SVD Approach.
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