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We report on the longitudinal and Hall resistivities of a HgTe quantum well with inverted energy spectrum 
(dQW = 20.3 nm) measured in the quantum Hall (QH) regime at magnetic fields up to 9 T and temperatures 2.9–50 K. 
The temperature dependence of the QH plateau–plateau transition (PPT) widths and of variable range hopping 
(VRH) conduction on the Hall plateaus are analyzed. The data are presented in a genuine scale form both for PPT 
regions and for VRH regime. Decisive role of the long-range random potential (the potential of remote ionized im-
purities) in the localization–delocalization processes in the QH regime for the system under study is revealed. 
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1. Introduction

A remarkable property of the HgTe-based quantum well 
(QW) structures is that transitions between band insulator 
(BI), topological insulator (TI) and semimetal (SM) phases 
may be achieved by tuning the quantum well thickness 
dQW [1–3] (see, for example, Fig. 1 in [2]). The ordinary 
2D insulator state is realized at small well widths (up to a 
critical thickness dc ≈ 6.3 nm) [1], while 2D TI exists at 
larger well widths (up to dQW ≈ 14 nm) [2]. For the width 
dQW ≈ 18–20 nm and wider quantum wells SM 2D state 
with overlapped conduction and valence 2D bands is real-
ized [2,3]. A clear model for the physics of the relevant 
subbands of HgTe/CdTe QW based on the bulk HgTe and 
CdTe band structure is presented in [1]. 

When Cd(Hg)Te/HgTe/Cd(Hg)Te structures with HgTe 
quantum well (QW) are grown, for a thin QW layer the 
quantum confinement gives rise to the “normal” sequence 
of subbands, similar to CdTe, i.e., the bands with primarily 
Γ6 symmetry are the conduction subbands and the Γ8 
bands contribute to the valence subbands (BI phase). 

As the QW thickness is increased, the material looks 
more like HgTe and for wide QW layers the band structure 
tends to be “inverted”. The inverted regime is achieved 
when QW width, dQW, exceeds a critical value dc ≅ 6.3 nm. 
At dQW ≈ dc the conduction and valence bands touch each 
other that leads to a single-valley gapless 2D Dirac-
fermion system where the quantum Hall effect (QHE) can 
be observed up to nitrogen temperatures [4]. 

At the critical thickness dc a topological phase transition 
from a 2D BI with ”normal” band ordering to a 2D TI with 
an “inverted” one occurs [2]. Recent years demonstrate 
astounding growth in research on topological insulators, 
the materials that have a bulk band gap like an ordinary 
insulator but support conducting states on their edge, so-
called quantum spin Hall (QSH) states [5]. 

The first 2D TIs discovered were based on 
HgTe/Cd(Hg)Te quantum wells. The origin of the 2D TI 
phase in HgTe/Cd(Hg)Te systems is caused by a peculiar 
size quantization for HgTe QWs with the inverted band 
structure [1]. 
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The gap between the ground-state heavy hole subband 
(H1) and the next adjacent subband exists for QW narrow-
er than 18 nm (for wider wells the QW is in a SM state). 
While the gap is open, a HgTe-based QW should be a 2D 
TI having edge states in the gap between subbands. Now 
the 2D TI is the most studied and trendy domain for the 
HgTe-based heterostructures (see, for example, [2,6] and 
references therein). 

In wide HgTe/Cd(Hg)Te QWs with an inverted energy 
band structure (dQW   18 nm) a novel 2D electron sys-
tem has been shown to exist: a 2D SM [3,7]. The exist-
ence of 2D SM in this system is due to the overlap by 
about a few meV of the conduction band minimum at the 
center of the Brillouin zone with the side maxima of the 
valence band. Calculation of the energy band structure 
[3] shows that a key reason for the overlap in wide QWs 
is the strain due to the lattice mismatch between HgTe 
and CdTe. 

When the Fermi level crosses both the valence and con-
duction bands, a number of interesting transport properties 
caused by the simultaneous presence of 2D electrons and 
holes have been observed in HgTe QWs. 

In SM domain the emphasis is made on a classical 
magnetoresistance, Shubnikov–de Haas oscillation (SHO) 
pattern and QHE for two [3] or even three [8,9] types of 
carriers in a single [3,8] or in a double [9] QW, in weakly 
doped structures or at different density ratios of the two-
dimensional electrons and holes in the structures with an 
applied gate voltage Vg [3,8,9]. 

We present a study of quantum magnetotransport in a 
20.3-nm-wide HgTe QW grown on the (013) GaAs sub-
strate, symmetrically modulation doped with In at both 
sides of QW. Formally, we are in a SM phase but doping 
with In ensures the Fermi level position in the conduction 
band above the lateral maximum of the valence band. Be-
cause of this we observe an ordinary picture of QHE for 
one type of carriers (electrons) that allows us to investigate 
more subtle effects of localization–delocalization in the 
QHE regime. It is an identification of scaling conditions 
both for the quantum phase plateau–plateau transition and 
for the variable-range hopping conductivity on the local-
ized states at the Hall plateaus. 

QHE plateau–plateau transition, as well as the plateau–
insulator transition, in high-quality HgTe QW with an in-
verted band structure were first studied and analyzed with-
in scaling concepts at T = 0.3–3.0 K [10] where it was con-
cluded that the applicability of scaling models to this 
system is problematic. 

In our previous work [11], we have presented the data 
on the temperature dependence of the PPT width, ν0(T), 
for a HgTe quantum well with inverted energy spectrum 
(dQW = 20.3 nm). The actual scaling behavior ν0(T) ∝ T 

κ 
is observed for the 1 → 2 PPT in a wide temperature range 
T = 2.9–30 K. 

Recently, using the scaling approach for the 1 → 2 PPT 
in non-inverted HgTe QW (dQW = 5.9 nm), Khouri et al. 
[12] have found an excellent agreement with the universal 
scaling theory: the scaling coefficient κ = 0.45 ± 0.04 at 
T = 0.3–60 K. 

As for the variable-range hopping conductivity in the 
minima of σxx, associated with the Hall plateau regions, it 
is a widely used method for a detection of the localization 
length divergence in QHE regime at a number of 2D sys-
tems (see, for example, [10–18] in Ref. 13). But for the 
HgTe-based 2D system, this method was first used by us 
[13,14]: an analysis of the VRH conductivity in the re-
gions of the first and second quantum Hall plateaus pro-
vided an opportunity to determine the value and the mag-
netic-field dependence of the localization length in the 
HgCdTe/HgTe/HgCdTe heterostructure with a wide HgTe 
quantum well. 

The objectives of this work are: 
— to revisit QHE regime and generalize the data by 

presenting them in a genuine scale form both for PPT re-
gions and for VRH regime; 

— to find more evidences of the scale of random impu-
rity potential in the QHE; 

— to dovetail our results on PPT and on VRH with a 
general picture of studies the localization effects in QHE 
for systems both with short-range and large-scale random 
impurity potential. 

The analysis has led us to the conclusion that, similarly 
to modulation-doped GaAs, for PPT in our HgTe QW we 
are in the intermediate between quantum tunneling and 
classical percolation region of localization length diver-
gence. On the other hand, the VRH regime in our system is 
realized by hopping between localized states in the tails of 
Landau levels, which is within the scope of the laws for 
classical percolation outside the region of quantum tunnel-
ing. All this indicates the decisive role of the long-range 
random potential (the potential of remote ionized In impu-
rities) for scattering and localization of carriers in the sys-
tem under study. 

2. Experimental results and discussions 

The sample is a 20.3-nm-wide HgTe quantum well be-
tween Hg0.35Cd0.65Te barriers grown on the (013) GaAs sub-
strate, symmetrically modulation doped with In at both sides 
at distances of about 10 nm spacers. The electron gas density 
is ns = 1.5⋅1015 m–2 with a mobility of 22 m2/(V⋅s). The sam-
ple is in the shape of a Hall bar with Ohmic contacts. 

Figure 1 shows the magnetic-field dependences of the 
longitudinal xxρ  and Hall xyρ  resistivities for the sample 
under study at T = 2.9 K. We observe the features charac-
teristic of the QHE regime, i.e., the regions of plateaus in 
the ( )xy Bρ  dependences 2/( )xy h ieρ =  with rather sharp 
transitions between them: for B ≥ 2 T, we can see plateaus 
with numbers i = 4; 3; 2; 1. 
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2.1. Temperature dependences of conductivity in the QHE 
plateau regions 

The temperature dependences of the σxx at ν = 1, 2 and 3 
for investigated sample are shown in Fig. 2 as well as the 
fit of ( )xx Tσ  dependences by the Arrhenius equation 
(straight lines in figure) in the range of more than one (for 
ν = 2 and 3) or even three (for ν = 1) orders of magnitude 
in conductivity at T ≈ 10–50 K. 

The extrapolation of )1/(xx Tσ  dependences to 1/T → 0 
is also demonstrated on Fig. 2. It is seen that the value of 

0 (1/ 0)xx Tσ =σ →  tends to 2
0  /e hσ =  for ν = 2 or 3, and 

2
0  2 /e hσ =  for ν = 1. The prefactor 0σ  of the activated 

conductivity in the QHE plateau region was studied theo-
retically by Polyakov and Shklovskii for the of case both a 
short-range [15] and of a long-range [16] random poten-
tials. It was shown that for a long-range potential the 
prefactor is universal and at an integer filling factor it is 
equal to 22 /e h, taking into account the contributions to the 

conductivity both of electrons on the upper Landau level 
and of holes on the lower one. 

Thus, our results are in good agreement with the work 
[16], especially for ν = 1. We also emphasize that in our 
experiment the activation law realized in a rather wide 
temperature range, as it should be just for the case of a 
smooth potential (see Fig. 1 in [16]). 

Deviations of experimental points from straight lines 
for T ≤ 10 K are explained by the variable range hopping 
among localized states at EF, which usually dominates for 
sufficiently low T. 

D.G. Polyakov, B.I. Shklovskii and I.L. Aleiner [17–19] 
showed that in the strongly localized electron system in the 
QHE-plateau regions, the dominant mechanism of the low-
temperature transport should be the variable-range hopping 
(VRH) near EF (see also Refs. 20, 21). Consequently, the 
temperature induced conductivity far from a peak in 

( )xx Bσ  should be exponentially small. The exponential 
factor should grow as EF approaches the LL center due to 
the divergence of the localization length: 

 N cB B −γ −γξ ∝ − ∝ ν −ν , (1) 

where BN is the value of B at which EF is in the center of 
Nth LL and the critical filling factor cν  is a half integer 
value of ν. Here γ is the critical exponent. The analytical 
calculation of γ is a difficult problem; for the short-ranged 
impurity potential, numerical methods give γ = 2.35 ± 0.03 
(see, for example, reviews [22,23]. 

Mott’s law describes the VRH for noninteracting 2D 
electrons [24]: 

 1/3
0 0exp ( / )xx T T σ = σ −  ,  (2) 

with 2
0 )/ ( FkT g E=β ξ , where ( )Fg E  is the finite density 

of states at EF and numerical constant β = 13.8 ± 0.8 [25]. 
When the 2D density of states has the form 

( ) ~ Fg E E E−  and Coulomb repulsion is included the 
Efros–Shklovskii’s (ES) VRH law is being fulfilled [26]  

 ( )1 2
0 1expxx T T σ = σ −  

, (3) 

with 2
01 /4T Cek = πεε ξ, determined by the Coulomb ener-

gy on the localization length ξ, C≈ 6.2 is a numerical con-
stant, ε  is dielectric constant. 

A great advantage of VRH method [17–19] is the abili-
ty to directly determine the critical index of localization 
length,  

 1 ~ 1/ ( ) ~ cT γξ ν ν − ν , (4) 

without the mediation of the inelastic collisions exponent, 
p, in contrast to a scaling method for the bandwidth of de-
localized states [23]. 

The concept of VRH conduction proved to be very 
productive for the interpretation of thermally activated 

Fig. 1. (Сolor online) The longitudinal and Hall components of 
the magnetoresistivity tensor as functions of magnetic field B at 
T = 2.9 K. 

Fig. 2. σxx(T) dependences at ν = 1, 2 and 3 with a fitting by Ar-
rhenius equation (straight lines). Values of σ0 are indicated near 
straight lines (see text). Dash lines are drawn through the σ0 = 2 
for ν = 1 and σ0 = 1 for ν = 3. 
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transport in the plateau regions of the integer QHE. Di-
rect determination of ξ and its scaling exponent from 
the ES VRH was done in previous measurements per-
formed on conventional 2DEGs, including Si-MOSFETs, 
GaAs/AlGaAs and n-InGaAs/InAlAs heterojunctions, as 
well as in the monolayer graphene and in other graphene-
based low-dimensional structures. 

For GaAs/AlGaAs heterostructures [27] the divergence 
of localization length with exponent γ = 2.3 was estimated. 
The results [39] for graphene monolayers should be em-
phasized: it is the first observation of the crossover from 
the Efros–Shklovskii’s to Mott’s VRH for a quantum Hall 
system, which happens when the localization length ex-
ceeds the screening length set by the metallic gate in ac-
cordance with the Aleiner and Shklovskii prediction [19]. 

For HgTe QW, the first study of the temperature-
induced transport at the QHE resistivity minima corre-
sponding to the QHE-plateau regions was done within the 
concept of variable-range hopping conductivity in our pre-
vious works [13,14] on the HgTe/HgCdTe system with 
inverted band structure. Here we returned to this theme 
summarizing the results obtained and presenting the data in 
a more universal form. 

The longitudinal conductivity σxx as a function of a fill-
ing factor at actual QHE minima near ν = 1, 2 and 3 is pre-
sented in Fig. 3. The activation behavior of ( )xxT Tσ  on 
(1/T)1/2 in minima with ν = 1 can be seen in the inset of 
Fig. 4. Solid lines are the ES law (Eq. (3)) fit of the data. 

In Fig. 3 we also show the localization length ξ(ν) 
computed by (Eq. (4)) from the values of T1(ν), extracted 
from ES VRH fits of ( )xx Tσ , for continuous values of the 
filling factor. For comparison, a graph of cyclotron radius, 
RC (multiplied by ten) dependence on ν for different mag-
netic fields is also shown. The minimal localization length 
found in the middle of QH plateaus is ξmin = 100 nm 
for ν = 1 (B1 = 6.3 T) and ξmin = 200 nm for ν = 2 (B2 = 
= 3.15 T) and ξmin = 300 nm for ν = 3 (B3 = 2.1 T), which 
is about ten times larger than RC. 

We emphasize that ξmin(ν) dependence is in correlation 
just with RC(ν) dependence (but not with lB(ν)) in accord-
ance with conclusions of Fogler et. al [29]. The fact that 
ξmin ≫ RC indicates a large-scale character of the random 
impurity potential. 

To probe the universality of a scaling law in the sur-
rounding area of cν  = 1.5 or 2.5 we have plotted all the 
conductivity data σxx(ν, T) as a function of a single param-
eter 1/ ~ /x T T Tγ= ∆ν . The values for γ are taken from 
the power-law fits of T1 depending on | |– .cν ν  An exam-
ple of scaling behavior for conductivity σxx as a function of 
x at cν  = 1.5 is shown in Fig. 4. 

Rescaling the axes shows that all experimental points 
fall onto straight lines for nearly four orders of conductivi-
ty at Δν  0.35 both for cν  = 1.5 and 2.5. Thus, Fig. 4 
demonstrates the universal single-parameter scaling for the 
conductivity in the VRH regime at QHE plateaus in analo-
gy with the observations of scaling behavior for VRH in 
GaAs/AlxGa1–xAs structure [30,31]. 

Note that the exponent values γ = 1.31 ± 0.03 
0.2 Δ 0.33( ν  ) at cν = 1.53 correlate well with the exact 
theoretical result γ = 4/3, obtained in a theory of classical per-
colation for systems with large-scale impurity potentials [32]. 

2.2. Plateau–plateau transition 

The integer quantum Hall effect regime can be consid-
ered as a sequence of insulator–metal–insulator quantum 
phase transitions when the density of states of a disordered 
2D system is scanned by EF in a quantizing magnetic field. 
We analyze data on the magnetic-field and temperature 
dependences of conductivity in the regions of the plateau–
plateau transitions within framework of a scaling hypothe-
sis for a quantum phase transition [23]. 

Let us concentrate our investigation on the region of the 
transition between the first and second QHE plateaus and 

Fig. 3. (Color online) Conductivity σxx in the QHE regime at 
different temperatures (solid lines) and the localization length ξ 
(open circles) extracted from ES VRH fits of σxx(T) in compari-
son with cyclotron radius RC as functions of a filling factor. 

Fig. 4. Conductivity σxx(T, ν) as a function of the scale parame-
ter x = |Δν|γ/T, γ = 1.25 at ν < νc for νc = 1.53 (T = 2.9–15 K, 
|Δν| < 0.35). Inset: the log plot of Tσxx(T) as a function of 
1/T1/2. Solid lines are the ES law (Eq. (3)) fit of the data. 
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analyze the temperature dependence of the transition width 
in the vicinity of the critical magnetic field (Bc = 4.1 T). 
For a treatment of the data in a region of (i – 1) → i PPT, 
we used interpolation formulas via the so-called scattering 
parameter (see, e.g., [33] and references therein): 

 
2

2 2 , 
1 1

xx xy
s si
s s

σ = σ = −
+ +

, (5) 

where s varied from 0 to ∞, it is unity at the critical point 
ν = νc and exponentially depends on the filling factor in 
the vicinity of the critical point: 

 
0

exp
( )

s
T

 ∆ν
= − ν 

. (6) 

Here 0 ( )Tν  is the effective bandwidth of delocalized states 
at the temperature T. 

Scaling with a single parameter /cs T κ∝ ν −ν  with 
κ = 0.54 for the dependences both of σxx(ν, T) and of 
σxy(ν, T) at 1 → 2 QHE transition is presented on Figs. 5(a), 
(b). It is seen that a scaling behavior is valid for 0.7  s 
 2.5 at T = 2.9–10 K for σxx and T = 2.9–20 K for σxy. 

4. Discussion of results 

The consideration of the conductivity behavior in the 
QHE regime as an electron localization–delocalization–
localization quantum phase transition is the way of theoret-
ical description of this phenomenon, aroused already in the 

first papers on QHE interpretation [34,35] and allowed to 
understand its physical nature (see, e.g., the reviews 
[22,23,36–39]). The theoretical details are well introduced 
in [22,23,38–40]. 

A schematic representation of localization length di-
vergences with |ν – νc| is provided in Fig. 6 for a short-
range (inset) and a large-scale impurity potentials accord-
ing to theoretical considerations [22,23,38–40]. The solid 
lines in Fig. 6 are: the dependence (1) with γ = γp = 4/3 in 
regions of classical percolation (blue lines) and with γ = 
= γq in regions of the quantum tunneling processes (red 
lines). Here γq = 7/3 within a modified percolation model 
[41] and γq = 2.3 within the modern network model 
[22,23]. The dash lines in Fig. 6 show an intermediate 
region of Eq. (1) with 4/3 < γ < 7/3 (or 2.3) that gives 
0.42 < κ < 0.75 (with the exponent p = 2) in the interval 
of crossover from a classical percolation to the quantum 
tunneling as pointed out by Li et al. [42]. 

We believe that the critical exponent value for the 
bandwidth of delocalized states, κ = 0.54 ± 0.01 obtained 
by us, as well as a number of results with κ = 0.5–0.75 for 
systems with large-scale impurity potentials are driven by 
a situation schematically represented on Fig. 6: the line 
Lϕ = const crosses the curves ξ(ν) just at the intermediate 
region of γ values. This situation, quite possibly, is typical 
for modulation doped GaAs/AlGaAs heterostructures [40] 
resulting in “nonuniversal” values of parameter κ in the 
range of 0.5–0.7. Note that for HgTe-based heterostructure 
with inverted band spectrum (dW = 21 nm, n = 1.5⋅1015 m–2) 
a scaling regime in the QHE has been investigated earlier 
by Olshanetsky et al. [10] and a lower value, κ = 0.49, was 
obtained for 1 → 2 PPT at helium temperatures (0.3–3.0) K. 

Fig. 6. (Сolor online) Localization length dependences on the 
filling factor ν within a modern theoretical conception for a large-
scale impurity potential in QHE regime (see a description in the 
text). Inset: ξ(ν) dependences for a short-range impurity potential. 
A critical exponent of localization length theoretically is ξ ≈ 2.3 
for |ν – νc| ≤ 0.5. 

Fig. 5. (Color online) Longitudinal σxx (a) and Hall σxy (b) con-
ductivities as functions of the scaling variable s, in the PPT 1 → 2 
region at νc = 1.5. The dashed black lines indicate fitting to Eq. (5). 
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On the other hand, in a recent study [12] on HgTe quan-
tum well with dW = 5.9 nm, that is below critical thickness 
dc, Khouri et al. observed a quantized Hall conductivity up 
to 60 K at high carrier concentration n = 4.6⋅1015 m–2. 
From the scaling behavior, realized for the PPT in a wide 
temperature range 0.3–30 K, they have found the coeffi-
cient κ = 0.45 ± 0.04 for the transition ν = 2 → 1 and κ = 
= 0.40 ± 0.02 for the ν = 3 → 2 transition in excellent 
agreement with the universal scaling theory for systems de-
scribed by short-range scattering (see, for example, [23]). 

The high carrier concentration [12], achieved by apply-
ing gate voltages for a tuning the Fermi energy deep into 
the conduction band, apparently promotes an effective 
screening of large-scale potential fluctuations as well as of 
any inhomogeneities. 

As for the variable-range hopping conduction, this 
mechanism of the low-temperature transport takes place in 
the regions of localized states at ξ(E) < Lϕ. In these re-
gions, localization length ξ and its critical exponent may 
be determined by a direct way. 

For a short-range potential (see inset on Fig. 6) a com-
bination of the values of κ ≈ 0.42 (if p = 2) from an analy-
sis of PPT width at ξ(E) > Lϕ and γ ≈ 2.3 from VRH anal-
ysis at ξ(E) < Lϕ should be observed. Just such a situation 
is, for example, implemented for monolayer graphene [28,43] 
(except the zero Landau level). Generally, the value of 
γ ≈ 2.3, which is predicted by a model for a short-range 
impurity potential [22,23], has been observed in a number 
of works on VRH (see references in Refs. 24, 25). 

On the other hand, in the AlGaAs/GaAs heterostructure 
(a symmetrical modulation-doped GaAs quantum well 
bounded by Si δ-doped AlGaAs layers on each side) the 
values of γ are found to be 1.3 ± 0.2 with a perfect fit of 
longitudinal conductivity σxx as a function of the scaling 
variable for the VRH regions at three filling factors ν = 5, 
6 and 7 [31]. 

These values, which correspond to γ = 4/3 in the theo-
ries of classical percolation [32,44], show that just classical 
percolation dominates scaling behavior in the samples due 
to the presence of the long-range potential fluctuation 
caused by remote ionized impurities in AlGaAs. 

Cobaleda et al. [45] measured the critical exponent in 
bilayer graphene (encapsulated by h-BN) for a number of 
PPTs, at different carrier densities tuned by the back gate 
voltage (Vg), both for negative and positive charge carriers. 
From the analysis of the longitudinal conductivity in the 
regime of variable range hopping at different Vg, a set 
of estimates for γ have been obtained with the mean value 
γ = 1.25 (0.96, 1.54). This value is entirely compatible with 
a classical percolation picture (γ = 4/3) and is definitely 
different from the value of γ = 2.38, which has been found 
in monolayer graphene [28]. 

In our system, the scaling in VRH regime is realized at 
a sufficiently large distance from the center of the Lan-
dau level: for | |–   0.2cν ν   (see Fig. 6), displaying the 

divergence of localization length with the exponents γ = 
= 1.31 ± 0.03 at νc = 1.5. Thus, we deal with the hopping 
between localized states in the tails of Landau levels, that 
is within the scope of the laws of classical percolation out-
side the region of quantum tunneling for a long-ranged 
impurity potential of the remote In ions. 

Let’s recall that in the system studied electrons are sup-
plied into the quantum well by indium impurities which are 
located in delta-layers at both sides of QW at distances of 
d ≈ 10 nm. It is natural to assume that the Coulomb poten-
tial of the remote charged In impurities is the primary 
source of carrier scattering in the 2D system which corre-
sponds to a smooth random potential for selectively doped 
systems with a sufficiently large spacer d, larger than the 
magnetic length λ [16,46,47]. 

In our sample, two alternative scaling laws for PPT width 
ν0(T) are valid for different regions of Δν: at | |–   0.1cν ν   
and within 0.2   0.3| 5|cν−ν   for VRH regime, that is 
indicated in Fig. 6 by the arrows, respectively. 

5. Conclusions 

We have measured the longitudinal and Hall resisti-
vities in the quantum Hall regime at magnetic fields B up 
to 9 T and temperatures T = 2.9–50 K for a HgTe quantum 
well with inverted energy spectrum (dQW = 20.3 nm) 
symmetrically δ-doped by In with spacers of 10 nm. Tem-
perature dependence of the plateau–plateau transitions 
width, ν0(T), is studied and the actual scaling behavior 
ν0(T) ∝  T 

κ have been observed for the 1 → 2 plateau–
plateau transition (νc = 1.5) in a wide temperature range 
2.9–30 K. The extracted critical exponent κ = 0.54 ± 0.01 is 
in quite good agreement with experimental data for other 
systems with a large-scale impurity potential. 

A set of our experimental data on the temperature de-
pendence of conductance in the minima associated with the 
Hall plateau regions may be successfully interpreted in 
terms of the variable-range hopping in the presence of a 
Coulomb gap. We have found that the hopping conductivi-
ty dominates in the regions of both first and second Hall 
plateaus, thus we used the theory of hopping of interacting 
electrons to extract, in a straightforward way, the magnet-
ic-field dependence of the localization length, ξ(B). An 
analysis of the ξ(B) dependence revealed that for the HgTe 
quantum well we deal with the hopping between localized 
states in the tails of Landau levels in the investigated range 
of fields and temperatures that corresponds to the region of 
classical percolation through a long-range impurity poten-
tial of the remote In ions. 

The results we obtained suggest the possibility of im-
plementing the scaling regime both for the QHE plateau–
plateau transition (| |–   0.1)cν ν   and VRH regime within 
the Hall plateau regions (0.2   0.35| | )cν−ν   in the 2D 
structures based on mercury telluride. 
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Квантова яма телуриду ртуті з інвертованою 
зонної структурою: квантовий ефект Холла 

та великомасштабний домішковий потенціал 

С.В. Гудина, Ю.Г. Арапов, В.Н. Неверов, 
С.М. Подгорных, М.Р. Попов, Е.В. Дерюшкина, 
Н.Г. Шелушинина, М.В. Якунин, Н.Н. Михайлов, 

С.А. Дворецкий 

Експериментально досліджено поздовжній та холлівський 
опори в квантовій ямі телуриду ртуті з інвертованим зонним 
спектром (dQW = 20,3 нм), що виміряні в режимі квантового 
ефекту Холла (КЕХ) в магнітних полях до 9 Тл та інтервалі 
температур 2,9–50 К. Проаналізовано температурні залежності 
ширини переходу між плато КЕХ та провідність зі змінною 
довжиною стрибка в області плато КЕХ. Дані представлено в 
універсальній скейлінговій формі як в області переходу між 
плато, так і в режимі стрибкової провідності. Виявлено 
вирішальну роль великомасштабного випадкового потенціалу 
(віддалене легування через спейсер) в процесах локалізації–
делокализации носіїв заряду в режимі КЕХ в дослідженій 
системі.  

Ключевые слова: телурид ртуті, квантовий ефект Холла, 
стрибкова провідність, скейлинг, довжина локалізації, вели-
комасштабний випадковий потенціал. 

Квантовая яма теллурида ртути 
с инвертированной зонной структурой: квантовый 
эффект Холла и крупномасштабный примесный 

потенциал 

С.В. Гудина, Ю.Г. Арапов, В.Н. Неверов, 
С.М. Подгорных, М.Р. Попов, Е.В. Дерюшкина, 
Н.Г. Шелушинина, М.В. Якунин, Н.Н. Михайлов, 

С.А. Дворецкий 

Экспериментально исследованы продольное и холловское 
сопротивления в квантовой яме теллурида ртути с инверти-
рованным зонным спектром (dQW = 20,3 нм), измеренные в 
режиме квантового эффекта Холла (КЭХ) в магнитных полях 
до 9 Тл и интервале температур 2,9–50 К. Проанализированы 
температурные зависимости ширины перехода между плато 
КЭХ и проводимость с переменной длиной прыжка в области 
плато КЭХ. Данные представлены в универсальной скейлин-
говой форме как в области перехода между плато, так и в 
режиме прыжковой проводимости. Выявлена решающая 
роль крупномасштабного случайного потенциала (удаленное 
легирование через спейсер) в процессах локализации — де-
локализации носителей заряда в режиме КЭХ в исследован-
ной системе.  

Ключевые слова: теллурид ртути, квантовый эффект Холла, 
прыжковая проводимость, скейлинг, длина локализации, 
крупномасштабный случайный потенциал. 
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