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Summary text for the online Table of Contents

Extensive areas in the Tropics are dedicated to livestock production. Grazing activities in these 

areas, however, are highly restricted by forage availability. By using sensors in place of 

conventional methods of forage evaluation, higher number of forages can be reliably evaluated, 

while incurring minimal additional cost. The use of digital cameras and hyperspectral sensors 

to evaluate forage characteristics and production were found effective and potentially useful 

for selecting outstanding hybrids. 
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21 Abstract

22 In the American Tropics, livestock production is highly restricted by forage availability. In 

23 addition, the breeding and development of new forage varieties with outstanding yield and high 

24 nutritional quality is often limited by a lack of resources and poor technology. Non-destructive 

25 high throughput phenotyping offers a rapid and economical means to evaluate large numbers of 

26 genotypes. In this study, visual assessments, digital color images, and spectral reflectance data 

27 were collected from 200 Urochloa hybrids in a field setting. Partial least squares regression 

28 (PLSR) was applied to relate visual assessments, digital image analysis and spectral data with 

29 shoot dry weight (DW), crude protein (CP) and chlorophyll content. Visual evaluations of biomass 

30 and greenness, digital color imaging, and hyperspectral canopy data were collected in 68, 40 and 

31 80 minutes, respectively. Root mean squared errors of prediction for PLSR estimations of DW, 

32 CP, and chlorophyll were lower for digital image analysis followed by hyperspectral analysis and 

33 visual assessments. This study showed that digital color image and spectral analysis techniques 

34 have the potential to improve precision and reduce time for tropical forage grass phenotyping. 

35 Keywords: High throughput phenotyping, Urochloa, tropical forage grasses, plant breeding.

36  

37 Introduction

38 Livestock productivity depends on forage availability and quality. Grasses from the Urochloa (syn. 

39 Brachiaria) genus have been widely planted in the tropics as forage for grazing ruminant livestock 

40 and are considered the most important forages in the American Tropics (Miles et al. 2004). The 

41 International Center for Tropical Agriculture (CIAT) in Colombia conducts a Urochloa breeding 

42 program aimed at developing hybrids with outstanding performance on infertile, acidic soils with 
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43 superior forage productivity and nutritional quality. The hybrid development process is difficult 

44 and time consuming. In a regular, three-year breeding cycle, over 7000 hybrids are produced by 

45 open pollination, but fewer than 2% of these are retained for full evaluation. Approximately half 

46 of the population is discarded based on their reproductive mode (sexual genotypes are discarded 

47 and apomictic hybrids are kept); another major proportion is discarded based on visual evaluations; 

48 and only a limited number of hybrids (approximately 100) are finally evaluated for different biotic 

49 and abiotic stresses (Valheria Castiblanco, personal communication). The evaluation of genotypes 

50 is restricted mainly by insufficient economic resources and technology for rapid screening. 

51 Forage grasses exhibiting great biomass production and high nutritional quality are key 

52 determinants of the productivity of grazing animals (Herrero et al., 2013). Therefore, evaluations 

53 of shoot biomass production and quality parameters (i.e. crude protein) are among the most 

54 important traits for improvement in any forage grasses breeding program. However, owing to the 

55 destructive nature of these measurements and the insufficient economic resources, the evaluation 

56 of these parameters is postponed to final stages of the breeding program characterized by a reduced 

57 number of genotypes. Instead of analytical measurements of forage quality and destructive 

58 biomass harvests, periodic visual evaluations of plant performance (i.e., plant biomass and 

59 greenness) over time is traditionally used in Urochloa breeding programs to select superior plants 

60 at initial stages of the breeding scheme (Miles et al. 2004; Miles 2007). These visual evaluations 

61 are laborious and may not be sufficiently accurate especially in breeding populations characterized 

62 by high genetic diversity and substantial genotype x environment interaction (Walter et al. 2012). 

63 The use of new technologies for in-field non-destructive, high throughput phenotyping (HTP), 

64 including digital image analysis and proximal hyperspectral sensing, offers the possibility to 

65 precisely evaluate a larger number of genotypes than feasible in traditional ways, achieved at low 
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66 cost, and implemented in a short period of time (Montes et al. 2007; White et al. 2012; Andrade-

67 Sanchez et al. 2014). Proximal hyperspectral sensing provides continuous information along the 

68 visual and near-infrared electromagnetic spectrum. This information often relates to plant traits 

69 and has successfully been studied in grasses to estimate quality parameters (Skidmore et al. 2010; 

70 Pullanagari et al. 2012; Thulin et al. 2012; Ferner et al. 2015; Safari et al. 2016), diversity (Lopatin 

71 et al. 2017) and nutrient content (Fava et al. 2009; Knox et al. 2012; Ramoelo et al. 2013; Adjorlolo 

72 et al. 2015; Foster et al. 2017). Likewise, plant image analysis for phenotyping purposes is based 

73 on image segmentation to separate the soil background and the plant for further quantification of 

74 regions of interest (Tucker 1979; Woebbecke et al. 1995; Camargo 2004; Hunt et al. 2005). Digital 

75 image analysis has also been used for quantifying vegetation indices related to plant growth, 

76 greenness and nutritional status (Meyer and Camargo 2008; Hunt et al. 2013). Very few reports of 

77 hyperspectral (Numata et al. 2008) or image analysis of Urochloa grasses exist in literature 

78 (Jimenez et al. 2017). 

79 No studies combining hyperspectral information and image analyses and comparing them to 

80 conventional phenotyping methods is available. Moreover, hyperspectral data have not been used 

81 to evaluate target traits in Urochloa breeding programs. In this study, in-field visual evaluations, 

82 proximal hyperspectral data, and digital imaging were collected over canopies of Urochloa 

83 hybrids. Partial least squares regression was used to relate hyperspectral information to field 

84 measurements and machine learning (i.e. naive Bayes multiclass) was used to extract vegetation 

85 indices from overhead canopy images. The objectives of this study were to: 1) develop PLSR 

86 models for predicting CP, forage DW, and chlorophyll content; 2) extract plant traits from digital 

87 image analysis to relate with CP, forage DW, and chlorophyll; and 3) demonstrate the superiority 

88 of HTP techniques as compared to conventional visual evaluation of traits. Crude protein, forage 
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89 DW, and chlorophyll content were chosen as target traits in this study as they are key parameters 

90 determining both plant and cattle productivity. The development of HTP methodologies to 

91 evaluate tropical forages will increase the number of hybrids evaluated per selection cycle, thus 

92 permitting more intense selection and hence, genetic gain. The identification of new hybrids with 

93 outstanding performance (i.e. higher biomass, greener and high CP) will result in more productive 

94 pastures with concomitant increases in milk and meat production in livestock systems in tropical 

95 savannahs.

96 Materials and methods

97 Field experiment

98 Field data were obtained in August 2016 at the International Center for Tropical Agriculture 

99 (CIAT) in Cali, Colombia (Lat. 3° 29’ N; Long. 76° 21’ W; altitude 965 m). Four thousand 

100 Urochloa hybrids generated from crosses between the CIAT’s Urochloa breeding program 

101 population SX12 and U. decumbens cv. Basilisk (CIAT 606) were initially planted in an andisol 

102 soil in an augmented block design and spaced at 1.5x1.5 m. These plants were visually evaluated 

103 four times (data not shown) for persistence, vigor and greenness after sequential cuttings every 

104 three months for one year. After that period, 200 hybrids were randomly selected for further visual 

105 and HTP analysis. These 200 hybrids, instead of the entire population, were selected for economic 

106 and practical reasons. Visual evaluations of biomass and greenness, imaging and spectra collection 

107 were performed after 3 months re-growth after cutting (see information below). Plant heights 

108 ranged from 20 to 50 cm and shoot architecture varied with both decumbent and erectus growth. 

109 Visual evaluation 

110 Plant biomass was assessed using a nine-point visual scale, where level ‘9’ indicated high shoot 

111 biomass with many tillers and leaves while level ‘1’ indicated stunted growth with fewer tillers 
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112 and leaves. Plant greenness was visually evaluated using a five-point visual scale, where level ‘5’ 

113 represented intense dark green in all the leaves of the plant and level ‘1’ indicated yellow-pale 

114 color in all leaves of the plant. This visual evaluation was conducted in 68 minutes one week before 

115 the HTP measurements (Table 1). 

116 Imaging collection and analysis

117 Individual, digital color images for each of the 200 hybrids were taken at 1.2 m above the soil 

118 surface using a commercial digital 13-Megapixel camera (Coolpix P6000, Nikon, Japan) fixed to 

119 a buggy tractor. Digital images were saved in 4224 x 3168 pixel JPG format. The canopy cover 

120 (CC) and six vegetation indices including the normalized green red difference index (NGRDI), 

121 excess green index (ExG), excess red index (ExR), excess green minus excess red (ExGR), green 

122 ratio (GR) and green leaf index (GLI) were created using the formulae as indicated in Table 2. The 

123 canopy cover was extracted by dividing the total number of pixels representing the plant by the 

124 total number of pixels in each image. The vegetation indices were extracted using naive Bayes 

125 multiclass. Briefly, the distribution of colors in a set of digital color images (training set) was used 

126 to estimate the probability density function for each of the different region of interest (i.e. plant 

127 and background). Once the regions of interest were defined in the training set, the machine learning 

128 process was applied to all images to accurately classify and separate regions of interest. Therefore, 

129 every pixel in an image was classified into the previously defined plant and background classes. 

130 Every pixel characterizing the plant (but not the background) was then decomposed into red (R), 

131 green (G), and blue (B) channels. These channels were then normalized as follows:

132

133 𝑟 =
𝑅

𝑅 + 𝐺 + 𝐵;𝑔 =
𝐺

𝑅 + 𝐺 + 𝐵;𝑏 =  
𝐵

𝑅 + 𝐺 + 𝐵 

134
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135 Normalization makes the variations of light intensities uniform across the spectral distribution, 

136 thus, the individual color components (i.e. r,g,b) are independent from the overall brightness of 

137 the image (Cheng et al. 2011). Normalized channels were further used for the quantification of the 

138 vegetation indices (Table 2). Image analysis code was written in Java and run in ImageJ software 

139 (National Institutes of Health, Bethesda, Maryland, USA). Images were collected early in the 

140 morning to avoid beam solar radiation interferences. Digital images contained the whole plant in 

141 addition to the 23-cm diameter field-of-view (as indicated below for hyperspectral measurements, 

142 Supplementary Fig 1). The collection process took 40 minutes (Table 1). 

143

144 Spectral collection and analysis

145 Hyperspectral field data collections were performed on clear days at full sun exposure around 11 

146 am by positioning a hand-held field spectroradiometer (Fieldspec 2, Malvern Panalytical, Malvern, 

147 UK) directly above the plant canopy. The instrument was used with no foreoptics, which provided 

148 a 25-degree full conical angle field-of-view. To avoid soil background noise, the bare optical input 

149 was positioned at 50 cm from the top of the plant canopy to yield a 23-cm diameter field of view. 

150 The instrument collected information in 750 narrow wavebands from 325 to 1075 nm in 1 nm 

151 intervals. One or ten spectral scans were collected per plant and 50 plants were evaluated daily in 

152 about 20 minutes. Differences in the collection protocols were tested to evaluate the most effective 

153 way. Different spectra collection processes (1 or 10 scans) did not yield significant differences in 

154 the root mean squared error of prediction for the different traits evaluated (Supplementary Table 

155 1). Radiometric collections over a 99% Spectralon panel (Labsphere, Inc., North Sutton, New 

156 Hampshire) were used to describe incoming solar irradiance throughout the data collection 

157 process. The radiometric collections over the calibration panel were made before starting and after 

158 every five canopy scans or when slight changes in solar irradiance due to cloud cover occurred. 
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159 The values of the Spectralon panel radiance were used to compute the canopy reflectance of the 

160 plants in each wavelength over the time of spectra collection. Subsequently, 401 bands from 500 

161 to 900 nm were used for analysis. Based on visual inspection of reflectance spectra, these bands 

162 were typically less noisy, as compared to bands at the bounds of detector sensitivity. Spectral 

163 collection process was run in 80 minutes (Table 1).  

164 Laboratory sample collections

165 Plants were immediately harvested after spectra collection. Aboveground tissue was removed by 

166 cutting the area defined by a 23-cm diameter plastic circle co-located with the spectral data 

167 collection area. Tissues were packed in plastic bags and stored on ice in a cooler in the field and 

168 then transported to the laboratory. The extraction of chlorophyll was performed by adding 100 mg 

169 of fresh tissue to 80% (v/v) cold methanol, and the mix was homogenized using a pestle in a mortar 

170 until the plant residue was clear and the solution was uniform. This solution was then filtered and 

171 absorbance was determined with a spectrophotometer (Synergy HT, Biotek, Winooski, USA). 

172 Total chlorophyll concentration was calculated according to Lichtenthaler and Welburn (1983). 

173 Dry weight (DW) was measured on an electronic balance (PB602S, Mettler Toledo, LLC, 

174 Columbus, OH, USA) after oven-drying the samples for three days at 60 °C. Nitrogen 

175 concentrations in the dry tissue were determined by using an automated nitrogen-carbon analyser 

176 (Sercon, Crewe, UK). Urochloa and common bean (Phaseolus vulgaris) leaves were used as 

177 reference tissues for confirmation of the reliability of the analyses. The crude protein content was 

178 calculated by multiplying nitrogen content with 6.25, as protein is assumed to contain 16% 

179 nitrogen on average.

180

181 Statistical analysis
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182 Visual evaluations, digital image analysis, spectral reflectance, and plant trait data were 

183 incorporated into a partial least squares regression (PLSR) algorithm (Mevik and Wehrens 2007) 

184 within the R Project for Statistical Computing (http://www.r-project.org). Models were developed 

185 to predict each plant trait (i.e. CP, DW and chlorophyll) and to compare the precision for prediction 

186 of each of the different methods of phenotyping. Partial least squares regression was used in 

187 preference to conventional least squares analysis to reduce co-linearity effects. Thorp et al. (2011) 

188 provided the details on the PLSR methodology used in the present study. Briefly, if Y is an n×1 

189 vector of responses (i.e. CP, DW or chlorophyll content) and X is an n-observation by p-variable 

190 matrix of predictors (a set of visual evaluations, digital image analysis, or spectral reflectance 

191 data), PLSR aims to decompose X into a set of A orthogonal scores such that the covariance with 

192 corresponding Y scores is maximized. The X-weight and Y-loading vectors that result from the 

193 decomposition are used to estimate the vector of regression coefficients, βPLS, such that

194 Y = X βPLS + ε

195 where ε is an n×1 vector of error terms.

196 Leave-one-out cross validation was used to test model predictions for independent data. Results 

197 were reported for PLSR models with the number of factors that minimized the root mean squared 

198 error of cross validation. Pearson’s correlation coefficients were calculated for the different traits 

199 extracted from digital color images taken from Urochloa hybrids.

200 Results 

201 In this study, visual evaluations of biomass and greenness, digital color imaging and hyperspectral 

202 data were collected on 200 Urochloa hybrids in 68, 40 or 80 minutes, respectively (Table 1). High 

203 variability for the different characteristics of DW, CP and chlorophyll content evaluated on 200 

204 Urochloa hybrids was found (Table 3). 
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205 Visual assessments 

206 Partial least squares regressions for measured traits of DW, CP and chlorophyll based on visual 

207 evaluations of biomass and greenness performed with a root mean square error of prediction 

208 (RMSEP) of 8.47 g plant-1, 1.76% and 0.60 mg g FW respectively (Fig 1). 

209 Spectral data and digital image phenotyping

210 The PLSR models developed from the digital image analysis estimated DW, CP and chlorophyll 

211 with a RMSEP of 7.81 g plant-1, 1.53% and 0.57 mg g FW, respectively (Fig 2). Differences on 

212 the correlation coefficients among traits extracted from image analysis indicated that including 

213 different indices into the model added independent information to build stronger PLSR models 

214 (Supplementary Fig 2). The contribution of each trait extracted from digital image analysis to the 

215 overall prediction of each destructively-measured trait is shown in Table 4. The GLI had the 

216 stronger positive influence on the PLSR model for predicting DW. The ExGR had the stronger 

217 positive influence on the PLSR model for predicting both CP and chlorophyll content.

218 The fitted PLSR models developed from 401 wavebands of canopy spectral reflectance estimated 

219 DW, CP and chlorophyll with a RMSEP of 7.90 g plant-1, 1.63% and 0.55 mg g FW, respectively 

220 (Fig 3). The contribution of each spectral waveband to the overall prediction of each destructively-

221 measured trait is shown in the Fig 4. In the PLSR model for DW, local extrema in regression 

222 coefficients were found at 701 and 674 nm, corresponding to red light near the inflection band and 

223 red light, respectively (Fig 4a). Strong positive contribution to DW estimation were with NIR (700-

224 750), and a strong negative contribution with red light (674-640). In the PLSR models for CP and 

225 chlorophyll, regression coefficient plots exhibited strong positive contribution for traits estimation 

226 in the visible green light (Fig 4b and c). The PLSR models for CP contrasted wavebands in the 

227 visible spectrum with positive contribution from wavebands around 503 nm and negative 
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228 contributions from wavebands at 678 nm. Similarly, regression coefficients for total chlorophyll 

229 indicated strong positive contribution in the visible spectrum around 504 nm and negative 

230 contribution throughout the visible wavebands, especially at 625 and 643 nm (Fig 4c). This is 

231 sensible considering visible light absorption is increased with additional leaf chlorophyll. 

232 Discussion

233 The results from this study demonstrate that the current visual assessment methodology at initial 

234 steps of the breeding cycle in the CIAT Urochloa breeding program can be improved using non-

235 destructive HTP techniques. Color imaging, hyperspectral analysis, and PLSR models are more 

236 precise and faster than visual evaluations, thus increasing the number of plants evaluated in the 

237 tropical forage breeding program. 

238 Visual evaluations of plant growth and greenness (characteristics associated with N content, and 

239 therefore CP and chlorophyll concentration in leaves) have traditionally been used to discard 

240 Urochloa hybrids at initial stages of plant phenotyping. The visual evaluation of an entire breeding 

241 population (i.e., 7,000 hybrids) is a slow, costly and tedious process, and is often biased by 

242 subjectivity and human fatigue, especially when phenotypic variation of such traits is high (Table 

243 3). In this study, the estimation of DW, CP, and chlorophyll content was more precisely and 

244 consistently estimated by HTP techniques. Dry weight and CP predictions were more accurate 

245 using digital image analysis, followed by spectral analysis and visual evaluations. Chlorophyll 

246 content was better estimated by the analysis of 401 spectral wavebands, followed by color image 

247 analysis and finally visual evaluations (Fig 1, 2 and 3). The time required to run non-destructive 

248 HTP evaluations was considerably shorter by 28 minutes per 200 plants for color image analysis 

249 than visual evaluations, but longer by 12 minutes per 200 plants in hyperspectral than in visual 

250 evaluations (Table 1).  
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251 The moderate trends in the relationship between Urochloa canopy imaging and reflectance and 

252 measured DW, CP and chlorophyll may indicate that the method is not appropriate for very precise 

253 estimations of these traits. However, for breeding purposes where a large percentage of hybrids 

254 are discarded without detailed evaluation due to scarce resources, a difference in DW of 7.90 g 

255 plant-1 or a difference of 1.63% in the CP content of plants may be acceptable during initial stages 

256 of plant breeding. This moderate trend between Urochloa canopy analysis and measured traits in 

257 this study can be explained by dissimilarities in the canopy architecture of the Urochloa genotypes 

258 (Numata et al. 2008), as well as different growth patterns during recovery from cutting. The further 

259 evaluation of breeding populations with contrasting canopy architecture will improve the accuracy 

260 of the PLSR model to predict the targeted traits. Nonetheless, by combining both digital image and 

261 hyperspectral analysis techniques, higher precision accuracy for DW, CP and Chlorophyll content 

262 can be achieved.  

263 The vegetation indices (see Table 2) extracted from color images of 200 Urochloa hybrids were 

264 originally developed to separate green plants from the background by extracting green and red 

265 colors from digital images. These indices have been related to different plant characteristics 

266 including biomass, chlorophyll content and nutritional status (Tucker 1979; Woebbecke et al. 

267 1995; Camargo 2004; Hunt et al. 2005; Meyer and Camargo 2008; Hunt et al. 2013; Lee and Lee 

268 2013; Wang et al. 2013). In this study, digital image analysis performed better than hyperspectral 

269 scanning analysis to estimate DW and CP (Fig 2 and 3). Nonetheless, the use of spectral analysis 

270 over grasses becomes more important when this technique is used to detect either nutritional or 

271 anti-nutritional compounds (i.e. metabolisable energy, digestibility, fiber) that are better estimated 

272 with the near-infrared regions of the electromagnetic spectra (Curran 1989; Pullanagari et al. 2012; 

273 Ferner et al. 2015). In this sense, the use of digital color image analysis and hyperspectral analysis 
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274 is complementary because by using both techniques a diverse set of plant traits can accurately be 

275 predicted and by adding extra factors to the prediction model, higher prediction accuracy can be 

276 achieved (cf. Numata et al. 2008). Future efforts will use data mining to fine-tune the spectral 

277 bands included in the PLSR model (Thorp et al. 2017), which can reduce model error and improve 

278 model fit statistics. Although testing multiple methods of analysis was not the intention of this 

279 study, future research could also test other techniques (e.g., artificial neural networks) for relating 

280 HTP measurements to plant traits. 

281 The regression coefficients for the PLSR for DW and chlorophyll content obtained in this study 

282 highlight that the key wavelengths for the prediction of these traits occur in the green, red, red-

283 edge and NIR regions of the electromagnetic spectrum (Fig 4). Previous hyperspectral studies have 

284 highlighted those regions as being highly representative for dry mass and chlorophyll content in 

285 plants (Lichtenthaler et al. 1996; Thenkabail et al. 2000; Mutanga and Skidmore 2004; Fava et al. 

286 2009; Thorp et al. 2011; Adjorlolo et al. 2015; Dou et al, 2018). Although some similarities were 

287 found between wavebands among the different traits, the general regression coefficients differed 

288 among the traits, thus demonstrating that the reflectance data in a given waveband contributed 

289 differently toward the estimation of a given trait. Given the logistical burden to collect and analyze 

290 hyperspectral scans, the identification of informative key bands associated with each evaluated 

291 trait can improve the HTP process (Thorp et al. 2017). Results from this study will help guide 

292 selection of optimal bands in the construction of multispectral sensors tailored to predict specific 

293 traits of interest in tropical forage breeding programs. 

294 The PLSR models for predicting DW, CP and chlorophyll content can be now used to evaluate the 

295 next generation of hybrids from the same Urochloa gene pool (i.e. U. ruziziensis – U. brizantha – 

296 U. decumbens). The accuracy of this prediction models relies on collection protocols similar to the 
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297 explained in the Materials and Methods section and evaluations on plants with comparable growth 

298 characteristics as the hybrids evaluated here (i.e. about three months after regrowth). The 

299 prediction accuracy will likely be reduced on larger plants with higher biomass (Hill 2004) and a 

300 greater proportion of senescent leaves (Asner 1998). The development of more precise PLSR 

301 models to predict variables of interest in a breeding program requires an ongoing effort. The 

302 collection of ground data every year while making improvements to standardize collection 

303 protocols and incorporate wider range of genotypes will result in more accurate and robust models. 

304 Larger data sets will increase estimation precision. 

305

306 Conclusions

307 In this study, 200 Urochloa hybrids were monitored in 40 and 80 minutes by digital imaging and 

308 spectral analysis, respectively (Table 1). At this pace, more than 1000 Urochloa hybrids could be 

309 evaluated in a period of less than 7 hours. This means that forage biomass and quality in a high 

310 number of genotypes would be reliably evaluated with minimal increased acquisition costs relative 

311 to destructive harvest. This demonstrates the superiority of HTP techniques as compared to 

312 conventional visual evaluation of traits. The PLSR models for predicting CP, forage DW, and 

313 chlorophyll content developed in this study supports the evaluation of higher numbers of genotypes 

314 at initial stages of the breeding program. The greater numbers of plants evaluated reliably every 

315 year in the Urochloa breeding program, the greater the genetic gain will be. Therefore, the use of 

316 image analysis and hyperspectral monitoring over Urochloa hybrids canopies will benefit the on-

317 going breeding program. The application of this HTP method could be of great help in rural remote 

318 areas lacking facilities to perform destructive harvest and plant chemical analysis. Research is 

319 underway to improve the utility of proximal sensing by considering a greater range of canopy 
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320 architectural configurations and evaluating the potential to assess nutritional quality, including 

321 characteristics such as metabolisable energy, fiber, digestibility, lignin and cellulose fractions in 

322 Urochloa grasses.   
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482 Table 1. Phenotyping techniques used in the present study, the time of evaluation, its application, 

483 advantages and disadvantages. 

484

Phenotyping 
technique

Time of 
evaluation* Applications Advantages Disadvantages

Visual 
evaluation 68 min

Visual observations of 
different plant 
characteristics

Easy operation, low 
cost, evaluations can be 

performed under 
diverse conditions and 

environments

Evaluation of low 
number of 
genotypes, 
evaluation 

subjected to human 
bias and fatigue

Image analysis 40 min

Quantification of 
canopy cover and 

vegetation indices in 
the visible 

electromagnetic 
spectrum

Easy operation, low 
cost, greater number of 

plants evaluated, 
determination of 

several vegetation and 
water indices

Changes in ambient 
light conditions limit 

calculation of 
vegetation indices, 

data analysis is 
moderately 

complex

Hyperspectral 
analysis 80 min

Canopy reflectance 
information in the 

visible and near infra-
red regions of the 
electromagnetic 

spectrum. Information 
can be used to predict 

biochemical 
composition of plants

Moderately easy 
operation,  greater 
number of plants 

evaluated, 
determination of 
nutritional and 

biochemical 
composition of 

leaf/canopy

Low solar radiation 
or cloudy days limit 
analysis, sensor and 

white reference 
calibration is 

frequently needed, 
data analysis is 

complex

485 * The time of evaluation refers to 200 Urochloa plants evaluated under the conditions of the 
486 present study.
487

488

489

490

491

492

493

494

Page 23 of 67

http://www.publish.csiro.au/nid/40.htm

Crop & Pasture Science



For Review Only

23

495 Table 2. Canopy cover and vegetation indices calculated from digital images of 200 Urochloa 

496 hybrids. Vegetation indices were extracted using a naive Bayes multiclass machine learning 

497 approach. Indices were then incorporated into a PLSR model to predict crude protein, dry weight 

498 biomass and chlorophyll content.

499

Plant traits Name Formula* Reference
CC** Canopy cover Nc/Nt -

NGRDI Normalized green 
red difference index (g-r)/(g+r) Hunt et al., 2005

ExG Excess green index 2g-r-b Woebbecke et al., 1995

ExR Excess red index 1.3r-g Meyer et al., 1998

ExGR Excess green minus 
excess red ExG-ExR Camargo 2004

GR Green ratio g/(r+g+b) Tucker 1979

GLI Green leaf index (2g-r-b)/(2g+r+b) Louhaichi et al. 2001

*r, g and b denote the normalized pixel values of each channel on the RGB colour mode.
** No normalization was performed for the canopy cover quantification. Nc= total number 
of pixels representing the canopy, Nt= total number of pixels in the picture.  

500

501

502

503
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504 Table 3. Plant traits measured in 200 Urochloa hybrids. 

505

Trait Min Max Mean CV (%)

Dry Weight (g plant-1) 6.74 64.1 30.22 34.81

Crude Protein (%) 6.76 21.58 11.23 19.68

Chlorophyll (mg g FW) 0.87 6.41 2.88 24.31

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520
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521 Table 4. Regression coefficients of the fitted partial least square regression models of seven traits 

522 extracted from digital image analysis. Positive and negative coefficients indicate positive and 

523 negative influence on the prediction model, respectively.   

Traits* Dry weigth (g.plant-1) Crude protein (% DW) Chlorophyll (mg.g-1)
CC 3.760545 -0.23114345 -0.01673706

NGRDI 9.948634 0.08600517 -0.03532585
ExG -14.3163 0.07760486 0.0730642
ExR -32.126212 -0.39106455 -0.07758547

ExGR 3.724492 0.26592971 0.10326555
GR -34.770799 -0.31158671 -0.03624834
GLI 80.87152 -0.31108316 -0.0357783

524 * CC= canopy cover, NGRDI= normalized green red difference index, ExG= excess green index, 
525 ExR= excess red index, ExGR= excess green minus excess red, GR= green ratio and GLI= green 
526 leaf index.
527

528

529

530

531

532

533

534

535

536

537

538

539
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540 Fig 1. Modeled versus measured dry weight, crude protein and chlorophyll content when fitting 

541 partial least square regression models to relate each biophysical characteristic to visual evaluations 

542 of biomass and greenness of 200 Urochloa hybrids.
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557 Fig 2. Modeled versus measured dry weight, crude protein and chlorophyll content when fitting 

558 partial least square regression models to relate each biophysical characteristic to digital image 

559 analysis of 200 Urochloa hybrids.
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572 Fig 3. Modeled versus measured dry weight, crude protein and chlorophyll content when fitting 

573 partial least square regression models to relate each biophysical characteristic to canopy spectral 

574 reflectance of 200 Urochloa hybrids. 
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587 Fig 4. Regression coefficients of the fitted partial least squares regression models for dry weight, 

588 crude protein and chlorophyll content. The regression coefficients represents the contribution of 

589 each spectral waveband to the overall prediction of each destructively-measured trait.
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604 Supplementary information

605 Supplementary Table 1. Different protocols of spectral data collection and their respective root 

606 mean squared error of prediction (RMSEP) for crude protein, dry weight and chlorophyll content. 

607

608

609

610

611

612

613

614 Fifty plants were evaluated daily * One scan collected per plant. ** Ten scans collected per plant.
615 ¥ Number of factors for which the root mean squared error of prediction was minimized in the 
616 model prediction.
617

618

619

620

621

622

623

624

625

Collection Trait Factors¥ RMSEP
Dry weight (g plant-1) 4 9.23

Crude protein (%) 11 1.29Day 1*
Chlorophyll (mg g FW) 4 0.49
Dry weight (g plant-1) 4 8.20

Crude protein  (%) 10 1.26Day 2*
Chlorophyll (mg g FW) 7 0.50
Dry weight (g plant-1) 4 7.63

Crude protein  (%) 11 2.07Day 3**
Chlorophyll (mg g FW) 5 0.54
Dry weight (g plant-1) 6 8.14

Crude protein n (%) 2 1.21Day 4**
Chlorophyll (mg g FW) 3 0.58
Dry weight (g plant-1) 6 7.90

Crude protein  (%) 5 1.63All days
Chlorophyll (mg g FW) 5 0.55
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626 Supplementary Fig 1. Schematic representation of the observation geometry of hyperspectral 

627 analysis (a) and digital image analysis (b) techniques evaluated in 200 Urochloa hybrids. White 

628 circle positioned at the center of the plant canopy in figure (a) represents the 23-cm field of view 

629 of the spectroradiometer at a distance of 50mm from the plant canopy. For the digital image 

630 analysis (figure b), the whole plant, and not the 23-cm section, was used for segmentation and 

631 further analysis. Scale bar= 10 cm.   

632

633

634

635

636

637

638

639

640

641
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642 Supplementary Fig 2. Binary relationships and Pearson’s correlation coefficients between seven 

643 plant traits extracted from digital images of 200 Urochloa hybrids. CC= canopy cover, NGRDI= 

644 normalized green red difference index, ExG= excess green index, ExR= excess red index, ExGR= 

645 excess green minus excess red, GR= green ration and GLI= green leaf index. Pearson’s correlation 

646 coefficients are indicated with their statistical significance as follows: *P≤0.1, **P≤0.01, 

647 ***P≤0.001.  

648

649
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21 Abstract

22 In the American Tropics, livestock production is highly restricted by forage availability. In 

23 addition, the breeding and development of new forage varieties with outstanding yield and high 

24 nutritional quality is often limited by a lack of resources and poor technology. Non-destructive 

25 high throughput phenotyping offers a rapid and economical means to evaluate large numbers of 

26 genotypes. In this study, visual assessments, digital color images, and spectral reflectance data 

27 were collected from 200 Urochloa hybrids in a field setting. Partial least squares regression 

28 (PLSR) was applied to relate visual assessments, vegetation indicesdigital image analysis and 

29 spectral data with shoot dry weight, nitrogen (N) content (DW), crude protein (CP) and chlorophyll 

30 content. Visual evaluations of biomass and greenness, digital color imaging, and hyperspectral 

31 canopy data were collected in 68, 40 and 80 minutes, respectively. Root mean squared errors of 

32 prediction for PLSR estimations of dry weight, NDW, CP, and chlorophyll were lower for 

33 vegetation indices digital image analysis followed by hyperspectral analysis and visual 

34 assessments. This study showed that digital color image and spectral analysis techniques have the 

35 potential to improve precision and reduce time for tropical forage grass phenotyping. 

36 Keywords: High throughput phenotyping, Urochloa, tropical forage grasses, plant breeding.

37  

38 Introduction

39 Livestock productivity depends on forage availability and quality. Grasses from the Urochloa (syn. 

40 Brachiaria) genus have been widely planted in the tropics as forage for grazing ruminant livestock 

41 and are considered the most important forages in the American Tropics (Miles et al. 2004). The 

42 International Center for Tropical Agriculture (CIAT) in Colombia conducts a Urochloa breeding 

Page 35 of 67

http://www.publish.csiro.au/nid/40.htm

Crop & Pasture Science



For Review Only

3

43 program aimed at developing hybrids with outstanding performance on infertile, acidic soils with 

44 superior forage productivity and nutritional quality. The hybrid development process is difficult 

45 and time consuming. In a regular, three-year breeding cycle (three years),, over 7000 hybrids are 

46 produced by open pollination, but fewer than 2% of these are retained for full evaluation. 

47 Approximately half of the population is discarded based on their reproductive mode (sexual 

48 orgenotypes are discarded and apomictic hybrids are kept); another major proportion is discarded 

49 based on visual evaluations; and only a limited number of hybrids (approximately 100) are finally 

50 evaluated for different biotic and abiotic stresses (Valheria Castiblanco, personal communication). 

51 The evaluation of genotypes is restricted mainly by insufficient economic resources and lacking 

52 technology for rapid screening. 

53 PeriodicForage grasses exhibiting great biomass production and high nutritional quality are key 

54 determinants of the productivity of grazing animals (Herrero et al., 2013). Therefore, evaluations 

55 of shoot biomass production and quality parameters (i.e. crude protein) are among the most 

56 important traits for improvement in any forage grasses breeding program. However, owing to the 

57 destructive nature of these measurements and the insufficient economic resources, the evaluation 

58 of these parameters is postponed to final stages of the breeding program characterized by a reduced 

59 number of genotypes. Instead of analytical measurements of forage quality and destructive 

60 biomass harvests, periodic visual evaluations of plant performance (i.e., plant biomass and 

61 greenness) over time has beenis traditionally used in the CIAT’s Urochloa breeding 

62 programprograms to select superior plants at initial stages of the breeding scheme (Miles et al. 

63 2004; Miles 2007). These visual evaluations are laborious and may not be sufficiently accurate 

64 especially in breeding populations characterized by high genetic diversity and substantial genotype 

65 x environment interaction (Walter et al. 2012). In this sense, the
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66 The use of new technologies for in-field non-destructive, high throughput phenotyping (HTP), 

67 including digital image analysis and proximal hyperspectral sensing, representsoffers the 

68 possibility to precisely evaluate a larger number of genotypes than feasible in traditional ways, 

69 achieved at low cost, and implemented in a short period of time (Montes et al. 2007; White et al. 

70 2012; Andrade-Sanchez et al. 2014). 

71 Proximal hyperspectral sensing provides continuous information along the visual and near-infrared 

72 electromagnetic spectrum. This information often relates to plant traits and has successfully been 

73 studied in grasses to estimate quality parameters (Skidmore et al. 2010; Pullanagari et al. 2012; 

74 Thulin et al. 2012; Ferner et al. 2015; Safari et al. 2016), diversity (Lopatin et al. 2017) and nutrient 

75 content (Fava et al. 2009; Knox et al. 2012; Ramoelo et al. 2013; Adjorlolo et al. 2015; Foster et 

76 al. 2017). Likewise, plant image analysis for phenotyping purposes is based on image 

77 segmentation to separate the soil background (i.e., soil) and the plant for further quantification of 

78 regions of interest (Tucker 1979; Woebbecke et al. 1995; Camargo 2004; Hunt et al. 2005). Digital 

79 image analysis has also been used for quantifying vegetation indices related to plant growth, 

80 greenness and nutritional status (Meyer and Camargo 2008; Hunt et al. 2013). Very few reports of 

81 hyperspectral (Numata et al. 2008) or image analysis of Urochloa grasses exist in literature 

82 (Jimenez et al. 2017). 

83 No studies combining hyperspectral information and image analyses and comparing them to 

84 conventional phenotyping methods is available. Moreover, hyperspectral data have not been used 

85 to evaluate target traits in Urochloa breeding programs. In this study, in-field visual evaluations, 

86 proximal hyperspectral data, and digital imaging were collected over canopies of Urochloa 

87 hybrids. Partial least squares regression (PLSR) was used to relate hyperspectral information to 

88 field measurements and machine learning (i.e. naive Bayes multiclass) was used to extract 
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89 vegetation indices from overhead canopy images. The objectives of this study were to: 1) develop 

90 PLSR models for predicting NCP, forage dry weightDW, and chlorophyll content; 2) compute 

91 vegetation indicesextract plant traits from digital image analysis to relate with NCP, forage dry 

92 weightDW, and chlorophyll; and 3) demonstrate the superiority of HTP techniques as compared 

93 to conventional visual evaluation of traits. Hyperspectral data or image analysis have not been 

94 used to evaluate forage biomass, N or chlorophyll in Urochloa breeding programs. Moreover, no 

95 studies combining hyperspectral information and image analysis and comparing it to conventional 

96 phenotyping methods is available.  Nitrogen, forage dry weightCrude protein, forage DW, and 

97 chlorophyll content were chosen as target traits in this study as they are key parameters 

98 determining both plant and cattle productivity. The development of HTP methodologies to 

99 evaluate tropical forages will increase the number of hybrids evaluated per selection cycle, thus 

100 permitting more intense selection and hence, genetic gain. The identification of new hybrids with 

101 outstanding performance (i.e. higher biomass, greener and high N contentCP) will result in more 

102 productive pastures with concomitant increases in milk and meat production in livestock systems 

103 in tropical savannahs.

104 Materials and methods

105 Field experiment

106 Field data were obtained in August 2016 at the International Center for Tropical Agriculture 

107 (CIAT) in Cali, Colombia (Lat. 3° 29’ N; Long. 76° 21’ W; altitude 965 m). Four thousand 

108 Urochloa hybrids generated from crosses between the CIAT’s Urochloa breeding program 

109 population SX12 and U. decumbens cv. Basilisk (CIAT 606) were initially planted in an andisol 

110 soil in an augmented block design and spaced at 1.5x1.5 m. These plants were visually evaluated 

111 four times (data not shown) for persistence, vigor and greenness after sequential cuttings every 
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112 three months for one year. After that period, 200 hybrids were randomly selected for further visual 

113 and HTP analysis. These 200 hybrids (and not, instead of the entire population), were selected for 

114 economic and practical reasons. Visual evaluations of biomass and greenness, imaging and spectra 

115 collection were performed after 3 months regrowthre-growth after cutting (see information below). 

116 Plant heights ranged from 20 to 50 cm and shoot architecture varied from very prostrate towith 

117 both decumbent and erectus growth. 

118 Visual evaluation 

119 Plant biomass was assessed using a nine-point visual scale, where level ‘9’ indicated high shoot 

120 biomass with many tillers and leaves while level ‘1’ indicated stunted growth with fewer tillers 

121 and leaves. Plant greenness was visually evaluated using a five-point visual scale, where level ‘5’ 

122 represented intense dark green in all the leaves of the plant and level ‘1’ indicated yellow-pale 

123 color in all leaves of the plant. This visual evaluation was conducted in 68 minutes one week before 

124 the HTP measurements (Table 1). 

125 Imaging collection and analysis

126 Individual, digital color images for each of the 200 hybrids were taken at 1.2 m above the soil 

127 surface using a commercial digital 13-Megapixel camera (Coolpix P6000, Nikon, Japan) fixed to 

128 a buggy tractor. Digital images were saved in 4224 x 3168 pixel JPG format and vegetation indices 

129 were analyzed. The canopy cover (CC) and six vegetation indices including the normalized green 

130 red difference index (NGRDI), excess green index (ExG), excess red index (ExR), excess green 

131 minus excess red (ExGR), green ratio (GR) and green leaf index (GLI) were created using the 

132 formulae as indicated in Table 2. The canopy cover was extracted by dividing the total number of 

133 pixels representing the plant by the total number of pixels in each image. The vegetation indices 

134 were extracted using naive Bayes multiclass. Briefly, the distribution of colors in a set of digital 

135 color images (training set) was used to estimate the probability density function for each of the 
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136 different region of interest (i.e. plant and background). Once the regions of interest were defined, 

137 in the training set, the machine learning process was applied to all images to accurately classify 

138 and separate regions of interest; therefore. Therefore, every new pixel in an image was classified 

139 into the previously defined plant and background classes. Every pixel characterizing the plant (but 

140 not the background) was then decomposed into red, (R), green, (G), and blue (RGBB) channels 

141 for . These channels were then normalized as follows:

142

143 𝑟 =
𝑅

𝑅 + 𝐺 + 𝐵;𝑔 =
𝐺

𝑅 + 𝐺 + 𝐵;𝑏 =  
𝐵

𝑅 + 𝐺 + 𝐵 

144

145 Normalization makes the variations of light intensities uniform across the spectral distribution, 

146 thus, the individual color components (i.e. r,g,b) are independent from the overall brightness of 

147 the image (Cheng et al. 2011). Normalized channels were further used for the quantification of the 

148 vegetation indices. Seven vegetation indices including canopy cover, normalized red green 

149 difference index (Tucker 1979), excess green index (Woebbecke et al. 1995), excess red index 

150 (Meyer et al. 1998), excess green minus excess red (Camargo 2004), green ratio, and green leaf 

151 index (Louhaichi et al. 2001) were calculated. (Table 2). Image analysis code was written in Java 

152 and run in ImageJ software (National Institutes of Health, Bethesda, Maryland, USA). Images 

153 were collectingcollected early in the morning to avoid beam solar radiation interferences. Digital 

154 images contained the whole plant in addition to the 23-cm diameter field-of-view (as indicated 

155 below for hyperspectral measurements, Supplementary Fig 1). The collection process took 40 

156 minutes (Table 1). 

157

158 Spectral collection and analysis
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159 Hyperspectral field data collections were performed on clear days at full sun exposure around 11 

160 am by positioning a hand-held field spectroradiometer (Fieldspec 2, Malvern Panalytical, Malvern, 

161 UK) directly above the plant canopy. The instrument was used with no foreoptics, which provided 

162 a 25-degree full conical angle field-of-view. To avoid soil background noise, the bare optical input 

163 was positioned at 50 cm from the top of the plant canopy to yield a 23-cm diameter field of view. 

164 The instrument collected information in 750 narrow wavebands from 325 to 1075 nm in 1 nm 

165 intervals. One or ten spectral scans were collected per plant and 50 plants were evaluated daily in 

166 about 20 minutes. Differences in the collection protocols were deliberately done for comparison 

167 purposes.tested to evaluate the most effective way. Different spectra collection 

168 paradigmsprocesses (1 or 10 scans) did not yield significant differences in the root mean squared 

169 error of prediction for the different traits evaluated (Supplementary FigTable 1). Radiometric 

170 collections over a 99% Spectralon panel (Labsphere, Inc., North Sutton, New Hampshire) were 

171 used to describe incoming solar irradiance throughout the data collection process. The radiometric 

172 collections over the calibration panel were made before starting and after every five canopy scans 

173 or when slight changes in solar irradiance due to cloud cover occurred. The values of the 

174 Spectralon panel radiance were used to compute the canopy reflectance of the plants in each 

175 wavelength over the time of spectra collection. Subsequently, 401 bands from 500 to 900 nm were 

176 used for analysis. Based on visual inspection of reflectance spectra, these bands were typically less 

177 noisy, as compared to bands at the bounds of detector sensitivity. Spectral collection process was 

178 run in 80 minutes (Table 1).  

179 Laboratory sample collections

180 Plants were immediately harvested after spectra collection. Aboveground tissue was removed by 

181 cutting the area defined by a 23-cm diameter plastic circle co-located with the spectral data 
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182 collection area. Tissues were packed in plastic bags and stored on ice in a cooler in the field and 

183 then transported to the laboratory. The extraction of chlorophyll was performed by adding 100 mg 

184 of fresh tissue to 80% (v/v) cold methanol, and the mix was homogenized using a pestle in a mortar 

185 until the plant residue was clear and the solution was uniform. This solution was then filtered and 

186 absorbance was determined with a spectrophotometer (Synergy HT, Biotek, Winooski, USA). 

187 Total chlorophyll concentration was calculated according to Lichtenthaler and Welburn (1983). 

188 Dry weight (DW) was measured on an electronic balance (PB602S, Mettler Toledo, LLC, 

189 Columbus, OH, USA) after oven-drying the samples for three days at 60 °C. Nitrogen 

190 concentrations in the dry tissue were determined by using an automated nitrogen-carbon analyser 

191 (Sercon, Crewe, UK). Urochloa and common bean (Phaseolus vulgaris) leaves were used as 

192 reference tissues for confirmation of the reliability of the analyses. The crude protein content was 

193 calculated by multiplying nitrogen content with 6.25, as protein is assumed to contain 16% 

194 nitrogen on average.

195

196 Statistical analysis

197 Visual evaluations, vegetation indicesdigital image analysis, spectral reflectance, and plant trait 

198 data were incorporated into a partial least squares regression (PLSR) algorithm (Mevik and 

199 Wehrens 2007) within the R Project for Statistical Computing (http://www.r-project.org)). Models 

200 were developed to estimatepredict each plant trait (i.e. CP, DW and chlorophyll) and to compare 

201 the precision for prediction of each of the different methods of phenotyping. Partial least squares 

202 regression was used in preference to conventional least squares analysis to reduce co-linearity 

203 effects. Thorp et al. (2011) provided the details on the PLSR methodology used in the present 

204 study. Briefly, if Y is an n×1 vector of responses (i.e. N, dry weightCP, DW or chlorophyll content) 
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205 and X is an n-observation by p-variable matrix of predictors (a set of visual evaluations, vegetation 

206 indicesdigital image analysis, or spectral reflectance data), PLSR aims to decompose X into a set 

207 of A orthogonal scores such that the covariance with corresponding Y scores is maximized. The 

208 X-weight and Y-loading vectors that result from the decomposition are used to estimate the vector 

209 of regression coefficients, βPLS, such that

210 Y = X βPLS + ε

211 where ε is an n×1 vector of error terms.

212 Leave-one-out cross validation was used to test model predictions for independent data. Results 

213 were reported for PLSR models with the number of factors that minimized the root mean squared 

214 error of cross validation. Pearson’s correlation coefficients were calculated for the different traits 

215 extracted from digital color images taken from Urochloa hybrids.

216 Results 

217 In this study, visual evaluations of biomass and greenness, digital color imaging and hyperspectral 

218 data were collected on 200 Urochloa hybrids in 68, 40 or 80 minutes, respectively (Table 1). High 

219 variability for the different characteristics of dry weight, nitrogenDW, CP and chlorophyll content 

220 evaluated on 200 Urochloa hybrids was found (Table 23). 

221 Visual assessments 

222 Partial least squares regressions for measured traits of DW, NCP and chlorophyll andbased on 

223 visual evaluations of biomass and greenness performed with a root mean square error of prediction 

224 (RMSEP) of 8.47 g plant-1, 1.76% and 0.60 mg g FW respectively (Fig 1). 

225 Spectral data and digital image phenotyping
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226 The PLSR models developed from seven vegetation indices the digital image analysis estimated 

227 DW, NCP and chlorophyll with a RMSEP of 7.7981 g plant-1, 1.53% and 0.57 mg g FW, 

228 respectively (Fig 2). Differences on the correlation coefficients among traits extracted from image 

229 analysis indicated that including different indices into the model added independent information 

230 to build stronger PLSR models (Supplementary Fig 2). The contribution of each trait extracted 

231 from digital image analysis to the overall prediction of each destructively-measured trait is shown 

232 in Table 4. The GLI had the stronger positive influence on the PLSR model for predicting DW. 

233 The ExGR had the stronger positive influence on the PLSR model for predicting both CP and 

234 chlorophyll content.

235 The fitted PLSR models developed from 401 wavebands of canopy spectral reflectance estimated 

236 DW, NCP and chlorophyll with a RMSEP of 7.90 g plant-1, 1.63% and 0.55 mg g FW, respectively 

237 (Fig 3). 

238 The contribution of each spectral waveband to the overall prediction of each destructively-

239 measured trait is shown in the Fig. 4. In the PLSR model for DW, three bands characterized the 

240 dry weight of Urochloa. Locallocal extrema in regression coefficients were found at 543, 668701 

241 and 744674 nm, corresponding to visible green light, red light near the inflection band and NIR 

242 radiationred light, respectively (Fig. 4a). Strong positive contribution to dry weightDW estimation 

243 were with green light (543) and NIR (744700-750), and a strong negative contribution with red 

244 light (668674-640). In the PLSR models for NCP and chlorophyll, regression coefficient plots 

245 exhibited a noisy pattern with less defined extrema.strong positive contribution for traits estimation 

246 in the visible green light (Fig 4b and c). The PLSR models for NCP contrasted wavebands in the 

247 visible spectrum with positive contribution from wavebands around 513503 nm and negative 

248 contributions from wavebands at 676678 nm. Wavebands at 600 nm and in the NIR contributed 
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249 less to the model for N (Fig. 4b). RegressionSimilarly, regression coefficients for total chlorophyll 

250 indicated strong positive contribution from NIR wavelengths and strong in the visible spectrum 

251 around 504 nm and negative contribution throughout the visible wavebands, especially from 525 

252 toat 625 nm, and at the red edge at 705643 nm (Fig. 4c). This is sensible considering visible light 

253 absorption is increased with additional leaf chlorophyll. In the PLSR model for chlorophyll, local 

254 extrema in regression coefficients were found at 567, 674, 705 and 763 nm, which correspond to  

255 green light at the edge of yellow, red light, red light near the red inflection band and NIR radiation.       

256 Discussion

257 The results from this study demonstrate that the current visual assessment methodology at initial 

258 steps of the breeding cycle in the CIAT Urochloa breeding program can be improved by the use 

259 ofusing non-destructive high throughput phenotypingHTP techniques. The use of colorColor 

260 imaging, hyperspectral analysis, and PLSR models isare more precise and faster than visual 

261 evaluations, thus increasing the number of plants evaluated in the tropical forage breeding 

262 program. 

263 Visual evaluations of plant growth and greenness (characteristics associated with N content, and 

264 therefore CP and chlorophyll concentration in leaves) have traditionally been used to discard 

265 Urochloa hybrids at initial stages of plant phenotyping. The visual evaluation of an entire breeding 

266 population (i.e., 40007,000 hybrids) is a slow, costly and tedious process, and is often biased by 

267 subjectivity and human fatigue, especially when phenotypic variation of such traits is high (Table 

268 23). In this study, the estimation of DW, NCP, and chlorophyll content was more precisely and 

269 consistently estimated by HTP techniques. Dry weight and NCP predictions were more accurate 

270 using vegetation indicesdigital image analysis, followed by spectral analysis and visual 

271 evaluations. Chlorophyll content was better estimated by the analysis of 401 spectral wavebands, 
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272 followed by color image analysis and finally visual evaluations (Fig 1, 2 and 3). Likewise, theThe 

273 time required to run non-destructive HTP evaluations was considerably shorter by 28 minutes per 

274 200 plants for color image analysis than visual evaluations, but longer by 12 minutes per 200 plants 

275 in hyperspectral than in visual evaluations (Table 1).  

276 The moderate trends in the relationship between Urochloa canopy imaging and reflectance and 

277 measured DW, NCP and chlorophyll may indicate that the method is not appropriate for very 

278 precise estimations of these traits. However, for breeding purposes where a large percentage of 

279 hybrids are discarded without detailed evaluation due to scarce resources, a difference in DW of 

280 7.90 g plant-1 or a difference of 1.63% in the NCP content of plants may be acceptable during 

281 initial stages of plant breeding. This moderate trend between Urochloa canopy analysis and 

282 measured traits in this study can be explained by dissimilarities in the Urochloa genotypes canopy 

283 architecture of the Urochloa genotypes (Numata et al. 2008), as well as different growth patterns 

284 during recovery from cutting. The further evaluation of breeding populations with contrasting 

285 canopy architecture will improve the accuracy of the PLSR model to predict the targeted traits. 

286 Nonetheless, by combining both digital image and hyperspectral analysis techniques, higher 

287 precision accuracy for DW, CP and Chlorophyll content can be achieved.  

288 The vegetation indices (see materials and methodsTable 2) extracted from color images of 200 

289 Urochloa hybrids were originally developed to extractseparate green plants from the background 

290 by extracting green and red colors from the image data to estimatedigital images. These indices 

291 have been related to different plant characteristics including biomass, chlorophyll content and the 

292 nutritional status of plants (Tucker 1979; Woebbecke et al. 1995; Camargo 2004; Hunt et al. 2005; 

293 Meyer and Camargo 2008; Hunt et al. 2013; Lee and Lee 2013; Wang et al. 2013).  In this study, 

294 vegetation indices digital image analysis performed better than hyperspectral scanning analysis to 
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295 estimate DW and NCP (Fig 2 and 3). Nonetheless, the use of spectral analysis over grasses 

296 becomes more important when this technique is used to detect either nutritional or anti-nutritional 

297 compounds (i.e. proteinmetabolisable energy, digestibility, fiber) that are better estimated with the 

298 near-infrared regions of the electromagnetic spectra (Curran 1989; Pullanagari et al. 2012; Ferner 

299 et al. 2015). In this sense, the use of digital color image analysis and hyperspectral analysis is 

300 complementary because by using both techniques a diverse set of plant traits can accurately be 

301 predicted. and by adding extra factors to the prediction model, higher prediction accuracy can be 

302 achieved (cf. Numata et al. 2008). Future efforts will use data mining to fine-tune the spectral 

303 bands included in the PLSR model (Thorp et al. 2017), which can reduce model error and improve 

304 model fit statistics. Although testing multiple methods of analysis was not the intention of this 

305 study, future research could also test other techniques (e.g., artificial neural networks) for relating 

306 HTP measurements to plant traits. 

307 The regression coefficients for the PLSR for DW and chlorophyll content obtained in this study 

308 highlight that the key wavelengths for the prediction of these traits were locatedoccur in the green, 

309 red, red -edge and NIR regions of the electromagnetic spectrum (Fig 4). Previous hyperspectral 

310 studies have highlighted those regions as being highly representative for dry mass and chlorophyll 

311 content in plants (Lichtenthaler et al. 1996; Thenkabail et al. 2000; Mutanga and Skidmore 2004; 

312 Fava et al. 2009; Thorp et al. 2011; Adjorlolo et al. 2015; Dou et al, 2018). Although some 

313 similarities were found between wavebands among the different traits, the general regression 

314 coefficients differed among the traits, thus demonstrating that the reflectance data in a given 

315 waveband contributed differently toward the estimation of a given trait. Given the logistical burden 

316 to collect and analyze hyperspectral scans, the identification of informative key bands associated 

317 with each evaluated trait can improve the HTP process (Thorp et al. 2017). Results from this study 
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318 will help guide selection of optimal bands in the construction of multispectral sensors tailored to 

319 predict specific traits of interest in tropical forage breeding programs.  

320 The PLSR models for predicting DW, CP and chlorophyll content can be now used to evaluate the 

321 next generation of hybrids from the same Urochloa gene pool (i.e. U. ruziziensis – U. brizantha – 

322 U. decumbens). The accuracy of this prediction models relies on collection protocols similar to the 

323 explained in the Materials and Methods section and evaluations on plants with comparable growth 

324 characteristics as the hybrids evaluated here (i.e. about three months after regrowth). The 

325 prediction accuracy will likely be reduced on larger plants with higher biomass (Hill 2004) and a 

326 greater proportion of senescent leaves (Asner 1998). The development of more precise PLSR 

327 models to predict variables of interest in a breeding program requires an ongoing effort. The 

328 collection of ground data every year while making improvements to standardize collection 

329 protocols and incorporate wider range of genotypes will result in more accurate and robust models. 

330 Larger data sets will increase estimation precision. 

331

332 Conclusions

333 In this study, 200 Urochloa hybrids were successfully monitored in 40 and 80 minutes by digital 

334 imaging and spectral analysis, respectively (Table 1). At this pace, more than 1000 Urochloa 

335 hybrids cancould be evaluated in a period of less than 7 hours. This means morethat forage biomass 

336 and quality in a high number of genotypes couldwould be reliably evaluated with minimal 

337 increased acquisition costs (comparedrelative to destructive harvest).. This demonstrates the 

338 superiority of HTP techniques as compared to conventional visual evaluation of traits. The PLSR 

339 models for predicting CP, forage DW, and chlorophyll content developed in this study supports 
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340 the evaluation of higher numbers of genotypes at initial stages of the breeding program. The greater 

341 numbernumbers of plants evaluated reliably every year in the Urochloa breeding program, the 

342 greater the genetic gain will be. Therefore, the use of image analysis and hyperspectral monitoring 

343 over Urochloa hybrids canopies will benefit the on-going breeding program. Likewise, theThe 

344 application of this methodologyHTP method could be of great help in rural remote areas without 

345 appropriatelacking facilities to perform destructive harvest and plant chemical analysis. Additional 

346 studies on Urochloa plants with contrasting architectures need to be performed to optimize PLSR 

347 models. Moreover, more careful field measurements over plants with similar regrowth capacity 

348 are requiredResearch is underway to improve the prediction models. Furthermore,utility of 

349 proximal sensing by considering a greater range of canopy architectural configurations and 

350 evaluating the potential to assess nutritional quality traits, including proteincharacteristics such as 

351 metabolisable energy, fiber, digestibility and non-digestible fractions of the forage (, lignin and 

352 cellulose) must be evaluated through proximal hyperspectral sensing to improve phenotyping 

353 fractions in Urochloa grasses.   
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524

525

526 Table 1. Phenotyping techniques used in the present study, the time of evaluation, its application, 

527 advantages and disadvantages. 

528

Phenotyping 
technique

Time of 
evaluation* Applications Advantages Disadvantages

Visual 
evaluation 68 min

Visual observations of 
different plant 
characteristics

Easy operation, low 
cost, evaluations can be 

performed under 
diverse conditions and 

environments

Evaluation of low 
number of 
genotypes, 
evaluation 

subjected to human 
bias and fatigue

Image analysis 40 min

Quantification of canopy 
cover and vegetation 
indices in the visible 

electromagnetic 
spectrum

Easy operation, low 
cost, greater number of 

plants evaluated, 
determination of 

several vegetation and 
water indices

Changes in ambient 
light conditions limit 

calculation of 
vegetation indices, 

data analysis is 
moderately 

complex

Hyperspectral 
analysis 80 min

Canopy reflectance 
information in the visible 

and near infra-red 
regions of the 

electromagnetic 
spectrum. Information 
can be used to predict 

biochemical 
compositionscomposition 

of plants

Moderately easy 
operation,  greater 
number of plants 

evaluated, 
determination of 
nutritional and 

biochemical 
composition of 

leaf/canopy

Low solar radiation 
or cloudy days limit 
analysis, sensor and 

white reference 
calibration is 

frequently needed, 
data analysis is 

complex

529 * The time of evaluation refers to 200 Urochloa plants evaluated under the conditions of the 
530 present study.
531

532

533

534

535

536
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537

538

539 Table 2. Canopy cover and vegetation indices calculated from digital images of 200 Urochloa 

540 hybrids. Vegetation indices were extracted using a naive Bayes multiclass machine learning 

541 approach. Indices were then incorporated into a PLSR model to predict crude protein, dry weight 

542 biomass and chlorophyll content.

543

Plant traits Name Formula* Reference
CC** Canopy cover Nc/Nt -

NGRDI Normalized green 
red difference index (g-r)/(g+r) Hunt et al., 2005

ExG Excess green index 2g-r-b Woebbecke et al., 1995

ExR Excess red index 1.3r-g Meyer et al., 1998

ExGR Excess green minus 
excess red ExG-ExR Camargo 2004

GR Green ratio g/(r+g+b) Tucker 1979

GLI Green leaf index (2g-r-b)/(2g+r+b) Louhaichi et al. 2001

*r, g and b denote the normalized pixel values of each channel on the RGB colour mode.
** No normalization was performed for the canopy cover quantification. Nc= total number 
of pixels representing the canopy, Nt= total number of pixels in the picture.  

544

545
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546

547

548 Table 3. Plant traits measured in 200 Urochloa hybrids. 

549

Trait Min Max Mean CV (%)

Dry Weight (g plant-1) 6.74 64.1 30.22 34.81

NitrogenCrude Protein (%) 6.76 21.58 11.23 19.68

Chlorophyll (mg g FW) 0.87 6.41 2.88 24.31

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564
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565 Table 4. Regression coefficients of the fitted partial least square regression models of seven traits 

566 extracted from digital image analysis. Positive and negative coefficients indicate positive and 

567 negative influence on the prediction model, respectively.   

Traits* Dry weigth (g.plant-1) Crude protein (% DW) Chlorophyll (mg.g-1)
CC 3.760545 -0.23114345 -0.01673706

NGRDI 9.948634 0.08600517 -0.03532585
ExG -14.3163 0.07760486 0.0730642
ExR -32.126212 -0.39106455 -0.07758547

ExGR 3.724492 0.26592971 0.10326555
GR -34.770799 -0.31158671 -0.03624834
GLI 80.87152 -0.31108316 -0.0357783

568 * CC= canopy cover, NGRDI= normalized green red difference index, ExG= excess green index, 
569 ExR= excess red index, ExGR= excess green minus excess red, GR= green ratio and GLI= green 
570 leaf index.
571

572

573

574

575

576

577

578

579

580

581

582

583
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584 Fig 1. Modeled versus measured dry weight, nitrogencrude protein and chlorophyll content when 

585 fitting partial least square regression models to relate each biophysical characteristic to visual 

586 evaluations of biomass and greenness of 200 Urochloa hybrids.
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601 Fig 2. Modeled versus measured dry weight, nitrogencrude protein and chlorophyll content when 

602 fitting partial least square regression models to relate each biophysical characteristic to vegetation 

603 indicesdigital image analysis of 200 Urochloa hybrids.
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616 Fig 3. Modeled versus measured dry weight, nitrogencrude protein and chlorophyll content when 

617 fitting partial least square regression models to relate each biophysical characteristic to canopy 

618 spectral reflectance of 200 Urochloa hybrids. 
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631 Fig 4. Regression coefficients of the fitted partial least squares regression models for dry weight, 

632 nitrogen and chlorophyll contentcrude protein and chlorophyll content. The regression coefficients 

633 represents the contribution of each spectral waveband to the overall prediction of each 

634 destructively-measured trait.
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648

649 Supplementary information

650 Supplementary Table 1. Different protocols of spectral data collection and their respective root 

651 mean squared error of prediction (RMSEP) for nitrogencrude protein, dry weight and chlorophyll 

652 content. 

653

654

655

656

657

658

659

660 Fifty plants were evaluated daily * One scan collected per plant. ** Ten scans collected per plant.
661 ¥ Number of factors for which the root mean squared error of cross validationprediction was 
662 minimized in the model prediction.
663

664

665

666

667

668

669

670

Collection Trait Factors¥ RMSEP
Dry weight (g plant-1) 4 9.23

NitrogenCrude protein (%) 11 1.29Day 1*
Chlorophyll (mg g FW) 4 0.49
Dry weight (g plant-1) 4 8.20

NitrogenCrude protein  (%) 10 1.26Day 2*
Chlorophyll (mg g FW) 7 0.50
Dry weight (g plant-1) 4 7.63

NitrogenCrude protein  (%) 11 2.07Day 3**
Chlorophyll (mg g FW) 5 0.54
Dry weight (g plant-1) 6 8.14

NitrogenCrude protein n 
(%) 2 1.21Day 4**

Chlorophyll (mg g FW) 3 0.58
Dry weight (g plant-1) 6 7.90

NitrogenCrude protein  (%) 5 1.63All days
Chlorophyll (mg g FW) 5 0.55
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671

672 Supplementary Fig 1. Schematic representation of the observation geometry of hyperspectral 

673 analysis (a) and digital image analysis (b) techniques evaluated in 200 Urochloa hybrids. White 

674 circle positioned at the center of the plant canopy in figure (a) represents the 23-cm field of view 

675 of the spectroradiometer at a distance of 50mm from the plant canopy. For the digital image 

676 analysis (figure b), the whole plant, and not the 23-cm section, was used for segmentation and 

677 further analysis. Scale bar= 10 cm.   
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687

688 Supplementary Fig 2. Binary relationships and Pearson’s correlation coefficients between seven 

689 plant traits extracted from digital images of 200 Urochloa hybrids. CC= canopy cover, NGRDI= 

690 normalized green red difference index, ExG= excess green index, ExR= excess red index, ExGR= 

691 excess green minus excess red, GR= green ration and GLI= green leaf index. Pearson’s correlation 

692 coefficients are indicated with their statistical significance as follows: *P≤0.1, **P≤0.01, 

693 ***P≤0.001.  

694

695

696
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