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Abstract

Background: Striga hermonthica (Benth.) parasitism militates against increased maize production and productivity
in savannas of sub-Saharan Africa (SSA). Identification of Striga resistance genes is important in developing
genotypes with durable resistance. So far, there is only one report on the existence of QTL for Striga resistance on
chromosome 6 of maize. The objective of this study was to identify genomic regions significantly associated with
grain yield and other agronomic traits under artificial Striga field infestation. A panel of 132 early-maturing maize
inbreds were phenotyped for key agronomic traits under Striga-infested and Striga-free conditions. The inbred lines
were also genotyped using 47,440 DArTseq markers from which 7224 markers were retained for population
structure analysis and genome-wide association study (GWAS).

Results: The inbred lines were grouped into two major clusters based on structure analysis as well as the neighbor-
joining hierarchical clustering. A total of 24 SNPs significantly associated with grain yield, Striga damage at 8 and 10
weeks after planting (WAP), ears per plant and ear aspect under Striga infestation were detected. Under Striga-free
conditions, 11 SNPs significantly associated with grain yield, number of ears per plant and ear aspect were
identified. Three markers physically located close to the putative genes GRMZM2G164743 (bin 10.05),
GRMZM2G060216 (bin 3.06) and GRMZM2G103085 (bin 5.07) were detected, linked to grain yield, Striga damage at
8 and 10 WAP and number of ears per plant under Striga infestation, explaining 9 to 42% of the phenotypic
variance. Furthermore, the S9_154,978,426 locus on chromosome 9 was found at 2.61 Mb close to the ZmCCD1
gene known to be associated with the reduction of strigolactone production in the maize roots.

Conclusions: Presented in this study is the first report of the identification of significant loci on chromosomes 9
and 10 of maize that are closely linked to ZmCCDT and amt5 genes, respectively and may be related to plant
defense mechanisms against Striga parasitism. After validation, the identified loci could be targets for breeders for
marker-assisted selection (MAS) to accelerate genetic enhancement of maize for Striga resistance in the tropics,
particularly in SSA, where the parasitic weed is endemic.
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Background

Striga hermonthica is a parasitic weed causing remark-
able reduction in maize yield in the SSA and threatens
the livelihoods of more than 300 million people [1].
Striga infestation is most severe in areas with low soil
fertility, low rainfall and farming systems characterized
by poor crop management practices and little use of in-
puts such as fertilizer, pesticides, and improved seeds
[2]. Yield losses attributable to Striga parasitism range
from 20 to 80% and the levels of infestation are often so
high that maize may suffer 100% yield loss, and farmers
could be forced to abandon their fields [3-6].

Striga seeds germinate in response to strigolactones in
the root exudates of maize plants. Germinated seeds de-
velop haustoria which attach to the roots of the host
plants through which photosynthates and nutrients are
transferred from the maize to the Striga plant [1]. Once
attached to maize roots, the Striga plants survive by
siphoning-off water and nutrients from the host plant
for its own growth and development. The development
of Striga plants impairs the normal host-plant growth,
resulting in a large reduction in plant height, biomass,
and eventually grain yield [7]. Feasible control options
include intercropping, rotation of cereals with crops that
are not susceptible to S. hermonthica such as cotton
(Gossypium spp), soybean (Glycine max L.), and cowpea
(Vigna unguiculata L.), herbicide treatment, hand-
pulling, use of catch and trap crops, high nitrogen
fertilization and use of tolerant and resistant varieties
[1]. Among these options, host plant resistance is the
most economical, sustainable and environmentally
friendly.

During the past two decades, the maize improvement
program of the International Institute of Tropical Agri-
culture (MIP-IITA) has placed a major emphasis on the
development of stable and durable resistance to Striga
from the wild maize (Zea diploperennis L.) and African
landraces. Through these efforts, several populations, in-
bred lines and hybrids with durable Striga resistance
have been developed. For example, the early-maturing
Striga resistant and drought-tolerant maize inbred line,
TZdEI 352, derived from a cross between the normal
endosperm white maize population TZEW Pop DT STR
and the Z. diploperennis, has displayed increased grain
yield and durable Striga resistance [8]. Akaogu et al. [8]
reported dominance gene effects to be higher than the
additive effects for the number of emerged Striga plants
in TZdEI 352, implying that non-additive gene action
conditioned inheritance of Striga resistance. This inbred
TZdEI 352 and other inbreds including TZEI 1203,
TZEI 1252, and TZEI 1348, have been reported to pos-
sess significant positive/negative general combining abil-
ity (GCA) effects for grain yield, Striga damage, number
of emerged Striga plants, ears per plant and ear aspect.
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The present focus of the IITA-MIP is to transfer novel
Striga resistance genes into Striga susceptible but out-
standing genotypes, through gene stacking. This will
allow the development of inbreds, hybrids and other
available maize germplasm with durable resistance and
increased maize production and productivity in SSA.
With the advent of rapid genome-wide high-density
marker data using high-throughput and next-generation
sequencing technologies, GWAS has become a common
tool for identifying resistance genes and/or loci through
genome-wide association mapping [9, 10]. Identified
genes and/or loci, once validated, could be fixed to pro-
vide maize germplasm with durable Striga resistance in
tropical maize.

Information on the identification of QTL for Striga re-
sistance in maize is very limited. Amusan [11] mapped
two putative QTL on chromosome 6 of maize, from an
F, mapping population involving a cross between the
Striga susceptible inbred line, 5057 and the resistant in-
bred line ZD05. These two QTL accounted for 55% of
the phenotypic variability with dominant effects overlap-
ping in importance. Unlike maize, the progress in the
identification of QTL for marker assisted selection in
sorghum is more advanced. The identification of Ig gene
mutant alleles at the LGS1 (Low Germination Stimulant
1) locus on chromosome 5 of sorghum has reduced
greatly the Striga hermonthica germination stimulant ac-
tivity [12]. This gene was found to code for a sulfo-
transferase enzyme, and when silenced led to a change
of 5-deoxystrigol into orobanchol compounds in the
root exudates [12]. In addition, other loci have been re-
ported to play important roles in parasitic resistance, in-
cluding the genes CCDI, CCD7 and CCDS8 [13, 14]. In
maize, roots with mycorrhizal formations have shown a
higher ZmCCD1 expression and induced lower germin-
ation of Striga [13]. Liu et al. [15] provided evidence for
strigolactones and strigolactone perception genes of the
MAX-2-type in Striga hermonthica, namely ShCCD7
and ShCCDS8. In tobacco, the silencing of CCD7 and
CCDS8 genes retarded the virus parasite formation in the
host, indicating that these two genes are key in parasitic
life cycle [14].

In Striga resistance breeding, the primary traits of
interest in selecting for resistance and high grain yield
are host plant damage, number of emerged Striga plants,
ears per plant and ear aspect [1, 16—18]. The host plant
damage is positively correlated with the number of
emerged Striga plants, and the two traits are negatively
correlated with yield. Therefore, there is need to identify
the genomic regions and genes that control the inherit-
ance of grain yield and closely associated traits for suc-
cessful use of MAS in maize improvement under Striga
field infestation. Identification of genomic regions for
Striga resistance would therefore facilitate rapid and
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efficient transfer of resistance genes to susceptible maize
genotypes. The objectives of this study were to i) deter-
mine the genetic structure of a panel of 132 diverse early
maturing white maize inbred lines with varying levels of
resistance to Striga hermonthica parasitism and ii) iden-
tify putative genes associated with grain yield and other
Striga adaptive traits under Striga-infested and Striga-
free environments, using GWAS.

Results

Evaluation of phenotypic traits

Analysis of variance (ANOVA) across Striga infested en-
vironments revealed significant genotype (G) and envir-
onment (E) mean squares for all measured traits except
environment mean squares for grain yield and Striga
damage at 8 WAP (Table 1). Significant G x E mean
squares were observed for ears per plant and number of
emerged Striga plants at 8 and 10 WAP. Broad sense
heritability (H?) estimates under artificial Striga infest-
ation ranged from 47% for number of emerged Striga
plants at 10 WAP to 71% for Striga damage at 10 WAP.
Moderately high heritability estimates >60% were re-
corded for the Striga resistance indicator traits (grain
yield, ears per plant, ear aspect, Striga damage at 8 and
10 WAP, and number of emerged Striga plants at 8
WAP) under Striga infestation. Under Striga-free condi-
tions, the combined ANOVA displayed significant G, E
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and G x E mean squares for grain yield, ears per plant
and ear aspect. Broad sense heritability estimates ranged
from 28% for ears per plant to 58% for ear aspect when
Striga-free.

The phenotypic correlations among grain yield and
other measured Striga adaptive traits differed under arti-
ficial Striga infestation (Fig. 1). Grain yield had signifi-
cant negative correlation with ear aspect (r = - 0.83**),
Striga damage at 8 WAP (r = - 0.75**) and 10 WAP (r =
- 0.74**), number of emerged Striga plants at 8 WAP
(r =-0.22*) and 10 WAP (r = - 0.24**), and significant
positive correlation with ears per plant (r = 0.41**). Simi-
larly, significant positive correlations were obtained be-
tween Striga damage at 8 WAP and Striga damage at 10
WAP (r = 0.84**), number of emerged Striga plants at 8
WAP and number of emerged Striga plants at 10 WAP
(r =0.90**), ear aspect and Striga damage (r = 0.71**).

Population structure and genetic diversity

A total of 47,440 SNPs were generated for the maize in-
bred lines using DArT sequencing technology. After
quality filtering of the unmapped and multilocation
markers, SNPs with missing values > 10%, heterozygosity
>20% and MAF < 5% were excluded and thus, a total of
7224 SNPs were retained for the analysis (Add-
itional file 1: Figure S1). The results of the summary sta-
tistics of the maize inbred lines based on the filtered

Table 1 Mean squares from the analysis of variance of grain yield and other agronomic traits of 132 tropical early maturing maize
inbred lines evaluated under Striga-infested and Striga-free environments, at Mokwa between 2017 and 2018

Source of Df  Yield, kg/ Ears per  Ear Striga damage rating  Striga damage rating  Emerged Striga Emerged Striga plants
variation ha plant aspect  at 8 WAP at 10 WAP plants at 8 WAP at 10 WAP
Striga-infested conditions

Environment 1 1,041,553 4.32%* 11.49%* 0.29 44.16** 12.81%% 19.58**

®

Block (Rep*E) 44  493501* 003 123 0.98 1.17% 0.15 0.09

Rep (B) 2 1117085 0.04 3.64% 0.36 0.58 0.66** 0.10

Genotype (G) 131 846079**  0.05** 2.24% 2.08** 2.65% 0.34** 0.26**

131 320,753 0.05** 0.92 0.71 0.84 0.14* 0.15**

Env*Genotype

Error 218 323,545 0.02 097 0.70 0.73 0.11 0.09

Heritability 0.63 0.61 0.60 0.67 071 0.60 047
Striga-free conditions

Environment 1 1484892*  4.13** 120.27**

G

Block (Rep*E) 44 352,004 0.06 0.83

Rep (B) 2 3428522** (0.35%* 5.38**

Genotype (G) 131 1059290** 0.15%* 3.10%*

Env* 131 495955**  0.10** 1.28**

Genotype

Error 218 347,667 0.07 0.73

Heritability 0.54 0.28 0.58
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Fig. 1 Correlation coefficients between Striga resistance indicator traits and other agronomic traits of early maturing maize inbred lines under
artificial Striga infestation at Mokwa between 2017 and 2018. YIELD = grain yield, CO1 = number of emerged Striga plants at 8 WAP, CO2 =
number of emerged Striga plants at 10 WAP, EASP - ear aspect, RAT1 = Striga damage symptoms rating at 8 WAP, RAT2 - Striga damage
symptoms rating at 10 WAP, EPP - number of ears per plant

7224 markers are displayed in Additional file 2: Table
S1. The PIC ranged from 0.09 to 0.37 with an average of
0.26 whereas the heterozygosity averaged 0.07 and varied
from 0.00 to 0.20. The minor allele frequencies of the
7224 primers recorded a mean of 0.24 with minimum
and maximum minor allele frequencies of 0.05 and 0.5,
respectively. Gene diversity varied from 0.10 to 0.50 with
an average of 0.33.

Population structure was inferred through the admix-
ture model-based clustering method [19]. The STRUCT
URE algorithm and STRUCTURE HARVESTER results
revealed delta K plot peak value of two (Fig. 2b). The re-
sults of the unweighted neighbor joining phylogenetic
tree, color coded from the STRUCTURE results, also in-
dicated two major groups (Fig. 2a). At k=2, 89% of the
inbred lines were assigned into two groups, and only
11% of the lines were assigned in the mixed group. A
total of 45 inbred lines were placed in group 1, 72 in
group 2 and 15 in the mixed group. Each group com-
prised inbred lines from two or more germplasm
sources. Of the 45 inbred lines placed in group 1, 26
were derived from the biparental crosses (TZE COMP
5-W DT C7 x TZEI 56, TZE COMP 5-W DT C7 x TZEI
65, TZE COMP 5-W DT C7 x TZEI 18), 8 were

obtained from TZE COMP 5-W DT C7 x TZEI 31 while
6 were extracted from TZE COMP 5-W DT C7 x TZEI
87, TZE COMP 5-W DT C7 x TZEI 2. Furthermore, the
inbred testers TZEI 1 and TZEI 18 (derived from popu-
lation TZE-W Pop STR Co) as well as TZEI 7, TZEI 31
and TZdEI 352 (derived from WEC STR S7, TZE-W
Pop x LD and TZE-W Pop STR 107, respectively), were
also classified into group 1. Of the 72 inbred lines classi-
fied into group 2, 36 were derived from the biparental
crosses (TZE COMP 5-W DT C7 x TZEI 56, TZE
COMP 5-W DT C7 x TZEI 65, TZE COMP 5-W DT
C7 x TZEI 18), 28 derived from TZE COMP 5-W DT
C7 x TZEI 87, TZE COMP 5-W DT C7 x TZEI 2 and 7
from TZE COMP 5-W DT C7 x TZEI 31. In addition,
the inbred tester TZEI 19 developed from TZE-W Pop
STR Co was placed in group 2. The inbred lines placed
in the two groups had in common the broad based
Striga resistant population TZE COMP 5-W DT C7.
However, the grouping of the inbred lines was largely
based on the reactions of the inbred lines to Striga as
each group contained both resistant and susceptible in-
bred lines. Using the IITA selection base index, 38 of
the 45 inbred lines placed in group 1 were Striga resist-
ant while 7 were susceptible (Table not shown). In



Adewale et al. BMC Plant Biology (2020) 20:203 Page 5 of 16

Deitak = mean(|L"(K)]) / sd(LIK))

B. 1.00
0.80
0.60
0.40
0.20

0.00

Fig. 2 (a) Neighbor-joining tree displaying the genetic relationship among the 132 maize inbred lines based on 7224 DArTseq markers. Inbred

lines are colour-coded according to the populations’ substructure assignment to clusters based on STRUCTURE results (b). Analysis of the
population structure of the 132 maize panel based on 7224 DArTseq markers using STRUCTURE at K=2

A

contrast, out of 72 inbred lines placed in group 2, there
were 52 each of Striga resistant and 20 susceptible in-
breds. It is interesting that the grouping of most of the
inbred testers was largely based on resistance to Striga.
For example, the Striga resistant inbred testers TZdEI
352, TZEI 7 and TZEI 1, the moderately resistant testers
TZEI 18, and susceptible tester TZEI 31 were placed in Chromosome  Size (Mb) Mean r* LD decay distance (Kb) at r* < 0.2
group 1 while the Striga susceptible inbred tester TZEI 16712 004 6971.163
19 was placed in group 2. 11722 004 7178097
140.09 0.03 7531.945
14196 003 8212815
105.37 0.04 6947.642

2
3
4
5
6 110.94 0.04 7893.009
7
8
9

Table 2 Details of LD decay distance observed at R? < 0.2 on
the different chromosomes and the entire maize genome

Population linkage disequilibrium (LD)

Linkage disequilibrium analysis revealed the presence of
359,926 loci pairs within a physical distance extending
up to 55,266,364 bp. About 22.05% (79,364) of the loci
pairs were in significant LD (P<0.001). In addition,
1231 (0.30%) of the loci pairs were in complete LD 11319 003 7923.937
(R?=1). Pearson’s correlation coefficients showed nega- 95.80 0.03 7412.867
tive and significant correlation (r = - 0.035) between the 9109 003 8367483
linkage disequilibrium (R?* and the physical distance
(bp) as well as between the P-value and R? (r =-0.59),
indicating the existence of linkage decay. The rate of LD

113.14 003 7921.105

Whole genome 12345 040 7542275
Average 119.59 0.03 7636.006
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decay differed across the chromosomes (Additional file 3:  chromosome 10 (8367 kb), followed by chromosome 4
Figure S2), ranging from 6948 kb for chromosome 5 to (8213 kb) and chromosome 8 (7924 kb).

8367 kb for chromosome 10 at r?<0.2 (Table 2). The

average pairwise r* and LD decay at r* < 0.2 for the en- Genome-wide association and LD analysis

tire genome was approximately 0.03 and 7636 kb, re- Under artificial Striga infestation, 24 significant SNPs
spectively. The slowest LD decay was observed for were detected for five different traits at a GWAS

Table 3 DArTseq markers having significant association with Striga-adaptive traits of 132 inbred lines evaluated under Striga-infested
and Striga-free conditions at Mokwa across years 2017 and 2018

Trait SNP Chr Position P-value Marker R?
Striga-infested conditions
Grain yield $10_96,965,850 10 96,965,850 495%107* 0343
S9_7,249,203 9 7,249,203 525%x 107" 0342
S10_133,224,759 10 133,224,759 843x 107" 0.336
Ears per plant S5_207,493,972 5 207,493,972 104x107" 0.130
S7_137,739,978 7 137,739,978 121x107* 0.127
S10_16,561,232 10 16,561,232 216x 107 0.118
S7_140475,074 7 140,475,074 6.08x 107" 0.101
$10_16,804,228 10 16,804,228 898x 107" 0.095
S5_215,584,703 5 215,584,703 944 x 107" 0.094
S4_76,136,186 4 76,136,186 981 x 107" 0.094
Striga damage at 8 WAP S10_133,224,759 10 133,224,759 441%x107° 0420
S7_79,624,222 7 79,624,222 514x 107" 0.393
S8_52,394,249 8 52,394,249 594x 107" 0.391
S10_112,661,466 10 112,661,466 801x 107" 0.388
S3_179,448,461 3 179,448,461 991x 107" 0.385
Striga damage at 10 WAP S10_133,224,759 10 133,224,759 355%x107° 0333
S10_112,661466 10 112,661,466 188x 107" 0311
S3_179,448,461 3 179,448,461 261x107° 0.307
$1.9,730,753 1 9,730,753 375% 1077 0303
$3_47343.213 3 47,343,213 432x107* 0301
S3_143,135,181 3 143,135,181 460% 107 0.300
S9_154,978,426 9 154,978,426 899x 10°* 0.292
Striga count at 8 WAP $1.102,219,766 1 102,219,766 342%x 1077 0221
Ear aspect S10_144,129,548 10 144,129,548 594x 107" 0.258
Striga-free conditions
Grain yield S4_177,968,538 4 177,968,538 809x 10°* 0.148
S3_188,682,443 3 188,682,443 912x107* 0.141
Ears per plant S2_210,201,646 2 210,201,646 686x 107" 0.143
S8_145372,017 8 145,372,017 755%107* 0.132
S1._67,606,758 1 67,606,758 857x 107" 0.130
S1._68,549,674 1 68,549,674 907 x 107" 0.129
Ear aspect $8_96,677,591 8 96,677,591 400%107* 0.207
S6_97,507,107 6 97,507,107 574x 107" 0.235
S3_176,205,016 3 176,205,016 557x107" 0.203
S8_161,625,705 8 161,625,705 6.00x 107 0201
S6_108,391,162 6 108,391,162 998x 107" 0.194
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threshold of —log (p) =4 (Table 3). The trait variation
explained by each marker R* varied from 9 to 42%. Of
the 24 SNPs that were significant, nine were located on
chromosome 10. Three markers located on chromo-
somes 10 and 9 were associated with grain yield and ex-
plained about 34% of the phenotypic variation. Ears per
plant was associated with seven markers located on
chromosomes 4, 5, 7, and 10. These markers revealed 9
to 13% of the phenotypic variation. Ear aspect had only
one significant SNP located on chromosome 10 under
Striga-infestation. Furthermore, five SNPs located on
chromosomes 3, 7, 8 and 10 were detected for Striga-
damage at 8 WAP, 7 SNPs on chromosomes 1, 3, 9 and
10 for Striga-damage at 10 WAP and one SNP on
chromosome 1 for number of emerged Striga plants at 8
WAP. The marker S10_133,224,759 explained the high-
est proportion of the phenotypic variance (42%) while
S5_215,584,703 and S4_76,136,186 explained the least
proportion (9%) of the phenotypic variation. Marker
S$10_133,224,759 located on chromosome 10 was found
associated repeatedly with grain yield and Striga damage
at 8 and 10 WAP. Similarly, marker S10_112,661,466 on
chromosome 10 was found to be common for Striga
damage at 8 and 10 WAP.

Under Striga-free conditions, 11 SNPs significantly as-
sociated with grain yield, ears per plant and ear aspect
were detected (threshold of —log (p) = 4), accounting for
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13 to 23% of the total phenotypic variation observed
among the traits. Two markers located on chromosomes
3 and 4 were associated with grain yield and explained
14 to 15% of the phenotypic variation in grain yield.
Number of ears per plant had four significant SNPs situ-
ated on chromosomes 8, 2 and 1 explaining 13 to 21% of
the phenotypic variation. In addition, five different SNPs
located on chromosomes 3, 6 and 8 were associated with
ear aspect, describing 19 to 24% of the phenotypic vari-
ation. Significant SNPs identified for grain yield, ears per
plant and ear aspect under Striga-infestation were differ-
ent from those under Striga-free conditions. The results
of the SNPs for grain vyield, ears per plant and Striga
damage under Striga infestation are illustrated in the
Manhattan and quantile-quantile plots (Figs. 3 and 4).
The quantile-quantile plots revealed good data adjust-
ment and a few significant SNPs above the interval for
the expected values of the null hypothesis. LD block
heatmaps of the three candidate gene loci identified are
shown in Fig. 5. LD analysis of each of the three loci re-
vealed that these markers had relatively low LD param-
eter (R?), indicating relatively low correlation with each
other.

Candidate loci for Striga hermonthica resistance
The genomic regions of the significant SNPs were exam-
ined to identify the protein-coding genes located in or
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Table 4 Candidate genes for each significant SNP associated with Striga adaptive traits under Striga infestation and Striga-free

conditions

Trait Chr Position  Gene ID

Encoding products

Striga-infested conditions

Grain yield and Striga 10 133,224, GRMZM2G164743
damage 759
Grain yield 9 7249203 GRMZM2G080044,
GRMZM5G898880
Striga damage 9 154,978, GRMZM2G057243
426
GRMZM2G010017
3 179448, GRMZM2G060216
461
Ears per plant 10 16,561, GRMZM2G310674
232
7 137,739, GRMZM2G016836
978
5 207493, GRMZM2G315127
972
5 215584, EREB139, GRMZM2G103085
703
Striga-free conditions
Ears per plant 2 210201, GRMZM2G009412,
646 GRMZM2G125527
1 67,606, GRMZM2G078806
758
1 68,549,  GRMZM2G125314
674
Ear aspect 8 96,677, GRMZM2G083344
591

amt5 (@ammonium transporter protein)
Cellular respiration, oxidative phosphorylation, alternative NAD (P) H
dehydrogenase activities.

ZmCCD1 gene

Protein phosphatase 2C family protein

lg2 (basic leucine zipper protein transcription factor)
Polynucleotidy! transferase, ribonuclease H-like superfamily protein
NAD (P)-binding Rossmann-fold superfamily protein

Plant protein of unknown function

AP2-EREBP (ethylene-responsive element-binding proteins)

Zinc-binding ribosomal protein family protein
Putative uncharacterized protein
LOL3 (protein degradation)

Glucose-6-phosphate/phosphate translocator-related

close to the significant SNPs based on the data retrieved
from the maize genetic database (http://www.maizegdb.
org/). The list of annotated genes, including those en-
coding uncharacterized proteins of the most significant
SNPs are presented in Table 4. The SNP S10_133,224,
759 having significant association with grain yield and
Striga damage under Striga infestation was located
within the candidate gene amt5 (ammonium transporter
5) with identifier GRMZM2G164743. Similarly, SNP
S$10_16,561,232 having strong association with ears per
plant under Striga infestation was located on another
candidate gene GRMZM2G310674, which encodes a
Polynucleotidyl transferase putative protein, belonging
to the ribonuclease H-like superfamily protein. On
chromosome 9, SNP S9_7,249,203 associated with grain
yield under Striga infestation was physically located
within the putative genes GRMZM2G080044 and
GRMZM5G898880. These genes are responsible for cel-
lular respiration, oxidative phosphorylation and NAD (P)
H dehydrogenase activities. Additionally, SNP S9_154,
978,426 significantly associated with Striga damage was
located on the protein-coding putative gene

GRMZM2G010017 that encodes a protein phosphatase
2C family protein and 2.62Mb close to the Zmccdl
gene, GRMZM2G057243. On chromosome 5, S5_207,
493,972 and S5_215,584,703 associated with ears per
plant under Striga infestation were located on the
GRMZM2G315127 and 131.43kb  close  to
GRMZM2@G103085 putative genes, respectively. The pu-
tative gene GRMZM2G315127 encodes for an uncharac-
terized protein while the GRMZM2G103085/EREB139
putative gene encodes for ethylene-responsive element-
binding proteins. Marker S3_179,448,461 having signifi-
cant association with Striga damage was found 60.7 kb
close to the candidate gene Ig2, GRMZM2G060216,
which encodes a basic leucine zipper protein transcrip-
tion factor. On chromosome 7, S7_137,739,978 having
significant association with ears per plant under Striga
infestation was located on the putative gene
GRMZM2G016836, which encodes the NAD (P)-binding
Rossmann-fold superfamily protein.

Under Striga-free conditions, S1_67,606,758 and S1_
68,549,674 linked with ears per plant on chromosome 1
were found on the GRMZM2G078806 and
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GRMZM2@G125314 putative genes, respectively. These
genes encode for a putative uncharacterized protein and
LOL3 (protein degradation), respectively. Similarly, SNP
S$2_210,201,646 on chromosome 2 associated with ears
per plant was located on the putative genes
GRMZM2G009412 and GRMZM2G125527. These
genes encode for Zinc-binding ribosomal protein. SNP
S8_96,677,591 significantly linked to ear aspect was
found within the gene GRMZM2G083344, encoding
glucose-6-phosphate/phosphate translocator-related
proteins.

Discussion

The significant variation observed among the inbred
lines for grain yield and other agronomic traits revealed
the existence of adequate genetic variability among the
early maturing maize inbred lines under Striga-infested
and Striga-free research conditions. The significant en-
vironment mean squares observed for most traits in the
present study showed the distinctness of the environ-
ments in discriminating among the genotypes under
each research condition [20, 21]. Moderate to high herit-
ability estimates detected for grain yield and other Striga
adaptive traits implied increased power of SNP detection
in the maize panel allowing for identification of true as-
sociations between a marker and putative gene [22-24].
The significant positive correlation observed between
grain yield and ears per plant and significant negative
correlations between grain yield and Striga damage,
number of emerged Striga plants and ear aspect sug-
gested simultaneous improvement of these traits would
result in high yield under Striga infestation. Previous
studies identified grain yield, number of emerged Striga
plants, Striga damage, ears per plant and ear aspect as
the most reliable traits in selecting for Striga resistant
maize genotypes, thus justifying their inclusion in the se-
lection index for yield improvement in Striga-prone en-
vironments in SSA [17, 25].

Approximately 70% of the SNPs used in the study had
heterozygosity < 5%. The lower values of heterozygosity
observed among the inbred lines in the two groups indi-
cated that the SNPs were efficient in forming
homogenous groups. Thus, making them a valuable re-
source for genetic studies and association mapping
where uniformity of inbred lines and genetic divergence
are required [26]. The average PIC value of 0.26 ob-
tained in this study is higher than that reported by Adu
et al. [26] but comparable to those reported previously
by Simko et al. [27] and Zhang et al. [28]. This reveals
the informativeness of the markers used in this study.
The frequency of minor alleles is a crucial factor influen-
cing the accuracy of LD analysis and GWAS, especially
when using small number of genotypes [29, 30]. The fil-
tered high-quality SNPs used in this study had a large
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proportion of MAFs distributed uniformly across the
genome, frequencies greater than 5%. Most of the sig-
nificant SNPs identified in the present study had MAFs
greater than 10%, implying the positive detection power
of the GWAS as the biasness associated with rare alleles
was removed [31].

Estimation of population structure and within-group
relatedness in maize genomic association studies is ne-
cessary in order to reduce the risk of false-positives [22,
32]. The 132 inbred lines used in this study were classi-
fied into two major clusters (k=2) by the DArTseq
markers and each cluster was further partitioned into
sub-clusters. Results obtained from the population struc-
ture analysis were similar to those previously reported
by Cui et al. [33] in sesame, Campa et al. [34] in com-
mon bean, Mogga et al. [35] in rice, Maldonado et al.
[36] in maize. It is interesting that the grouping of the
inbred lines by the markers was mostly based on the re-
actions of the inbred lines to Striga as each group con-
tained both resistant and susceptible inbred lines. The
results of the population structure analysis were con-
firmed by the neighbor joining phylogenetic tree. The
average genome-wide LD decay was estimated at
7636kbp at r><0.2. Previous studies reported LD less
than 1000 bp for maize landraces, about 100 kb for com-
mercial elite breeding lines and about 830Kbp for di-
verse breeding lines [30, 37]. The existence of marker
pairs in LD over long distances in the present study was
expected since such large LD is a feature of advanced
maize inbred lines that have gone through selection [30].
The large LD could lead to the identification of SNPs in
genes that either cause or contribute to Striga resistance,
or which act as linked markers associated with Striga
resistance.

The model fitness for the GWAS was confirmed by
inspecting quantile-quantile (QQ) plots that compared
the observed and expected p-values under the null hy-
pothesis of no associations. Our results revealed that
majority of points in the QQ plots were aligned on the
diagonal line for all the measured traits, indicating that
spurious associations due to population structure and fa-
milial relatedness were largely corrected. Similar findings
were reported by Kuki et al. [23], who identified gen-
omic regions, including putative genes, associated with
resistance to gray leaf spot disease in tropical maize
under natural disease infection.

Marker-trait association analyses have demonstrated
that association between specific phenotypes and geno-
types within a genome, could lead to the discovery of
genes controlling the traits [38]. In order to increase the
level of resistance to Striga in the available early matur-
ing tropical maize germplasm, 24 markers significantly
associated with Striga damage, number of emerged
Striga plants, number of ears per plant, ear aspect and
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grain yield under Striga infestation were identified, at
the threshold of —log (p) =4. These markers were lo-
cated on chromosomes 10, 9, 8, 7, 5, 4, 3 and 1. In con-
trast to the present results, Amusan [11] identified two
putative loci for resistance to Striga on chromosome 6
of maize, using SSR markers and composite interval
mapping (CIM) in a late maturing maize F, mapping
population. The first QTL was found between markers
umc2170 and bnlgl1142 whereas the second QTL was
found between SSR markers bnlgl867 and umcl014
[11]. These loci were found to govern the incompatible
response to Striga parasitism and accounted for 55% of
the phenotypic variation (PV) with predominance of
dominance genetic effects over additive genetic effects in
the expression of the two Striga resistance QTLs [11]. In
our present study, no significant loci were identified on
chromosome 6. The differences in the results of the two
studies could be attributed to the differences in the gen-
etic materials used in the two different studies. Further-
more, 11 markers were identified to be associated with
grain yield, ears per plant and ear aspect under Striga-
free conditions. These markers were located on chromo-
somes 8, 6, 4, 3 and 2. Lack of SNPs overlap for the
measured traits under Striga infested and Striga-free en-
vironments indicated the genetic divergence between the
two contrasting test environments. In addition, results of
the present study showed that the Striga resistance indi-
cator traits under artificial Striga-infested environments
were complex in nature and were controlled by multiple
minor QTLs with small effects distributed across the
maize genome. The markers having significant associ-
ation with Striga resistance indicator traits such as re-
duced Striga damage symptoms, increased number of
ears per plant and high grain yield under Striga infest-
ation could be used as candidate markers for simultan-
eous selection for the target traits in maize [1]. Allelic
variations at each significant SNP were associated with 9
to 42% of the phenotypic variance, suggesting that these
markers could be useful for marker-assisted selection for
improved Striga resistance in tropical maize improve-
ment programs. Striga resistance in maize is a polygenic
trait making it relatively difficult to achieve good pro-
gress from selection. However, the identification of mo-
lecular markers tightly linked to functional genes is an
important step towards development of genotypes with
enhanced levels of resistance through gene pyramiding.
The most noticeable candidate genes identified in the
present study are located at SNPs S9_154,978,426 and
$10_133,224,759 on chromosomes 9 and 10, respect-
ively. The SNP S9_154,978,426 is located at 2.62 Mb
from the ZmCCD1 gene on chromosome 9 [13]. It has
been shown that maize roots colonized by arbuscular
mycorrhizal fungi had a higher ZmCCD1I expression that
could limit Striga germination [13]. This finding is
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particularly interesting as it is well known that the low-
ering of strigolactone production is still the best-known
mechanism for preventing Striga germination [39, 40]).
Since the ZmCCDI gene is involved in the formation of
the yellow pigment apocarotenoids [13], it would be in-
teresting in the future to understand the carotenoid
levels of the lines and its relationship with Striga resist-
ance in the maize inbred lines. On chromosome 10, the
SNPs S10_133,224,759 and S10_112,661,466 are particu-
larly interesting because they are significant for Striga
damage at 8 and 10 WAP whereas S10_133,224,759 was
significant for grain yield under Striga infestation. The
SNP S10_133,224,759 located at the physical coordinates
chr 10: 133,224,759 had the largest proportion of pheno-
typic variance (46%) for Striga damage in the panel of
the IITA early maturing maize inbred lines. This SNP
marker is close to the functional gene
GRMZM2G164743 (bin 10.05), which encodes an am-
monium transporter protein (amt5). AMT genes have
been identified in many plant species including Zea
mays [41] and Sorghum bicolor [42]. Nitrate (NO™ %) and
ammonium (NH**) are the major forms of nitrogen (N)
uptake in higher plants. The NH"* ions accumulate in
cells either by direct uptake from the rhizosphere via
ammonium transporters (AMTs) or by reduction of
NO~ 3, Dechorgnat et al. [43] found ZmAMT2.1 gene (a
member of the AMT family) to be expressed in all or-
gans with some specificity to roots and tassels. Interest-
ingly, Koegel et al. [42] reported a similar expression
pattern of the ZmAMT2.1 orthologue in sorghum. The
authors observed that in sorghum, SPAMT2.1 was
expressed in all organs studied with higher expression in
roots and stamens. Nitrogen status of the plants is also
closely associated with plant defense against Striga para-
sitism as several authors have reported significant reduc-
tion in number of emerged Striga plants under high
nitrogen concentration [43, 44]. The SNP S10_133,224,
759 indicated that the candidate gene (amt5) identified
in the present study could be responsible for the defense
mechanism against Striga parasitism in maize. The gene
therefore could be a novel target for further unravelling
of the regulatory mechanism of Striga resistance in the
roots of maize plants and should be tested further in
breeding programs for its usefulness in selecting inbred
lines with resistance to Striga hermonthica parasitism.
Marked association around g2 gene was detected for
Striga damage. The SNP S3_179,448,461, located at the
long arm of chromosome 3, was found close (60.7 kb) to
the candidate gene GRMZM2G060216 (3.06), which is
associated with loci /g2 (liguleless2). The /g2 gene en-
codes a basic leucine zipper protein transcription factor
and has mutants known to affect leaf angle in maize. In
maize, lgl and /g2 mutants have no ligule or auricle,
leading to considerably more upright leaves than their
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normal counterparts, thereby increasing photosynthetic
activity and eventually leading to significant grain yield
increase in maize hybrids [45]. Thus, the /g2 gene may
be associated with maize plant defense mechanism
under Striga infestation. Previous studies have revealed
that Striga infection influences the rate of photosynthesis
in the host plants’ leaves by decreasing the effectiveness
of the photosynthetic process. This has been demon-
strated in sorghum, millet, cowpea as well as in maize
[7, 46-50]. The complex interplay between photosyn-
thesis and plant defenses have been recently elucidated
[51] and showed that both biological processes share
common regulators. It would be interesting to further
understand the contribution of the 1g2 gene to host
plant defense mechanisms under Striga infestation in the
inbred lines studied.

The S5_215,584,703 is close (131.43 kb) to the gene
“GRMZM2G103085-ereb13- AP2-EREBP”. EREBPs (also
referred to as ethylene-responsive element-binding pro-
teins) containing a single AP2 domain are involved in
regulatory networks of response to hormones, pathogen
attack, and environmental signals involving DREBs (de-
hydration responsive element binding proteins) and
ERFs (ethylene responsive factors) [52, 53]. Interestingly,
Li et al. [54] identified TaPARG-2A and TaPRG-2G in
wheat, belonging to the AP2 subfamily of AP2/EREBP
transcription factors, that are involved in regulation of
diverse processes of plant development and stress re-
sponse. Hirota et al. [55] reported that the AP2/EREBP
gene PUCHI is required for morphogenesis in the early
lateral root primordium of Arabidopsis. However, this
putative gene has not been well investigated in maize
and needs further studies for better understanding of its
importance in Striga resistance.

Through this GWAS, we were able to detect reliable
QTLs associated with maize plant defense mechanisms
under Striga infestation. The information provided in
this study would serve as the starting point for func-
tional gene studies to clarify the genetic mechanisms
underlying Striga resistance in tropical maize inbred
lines. After validation, the significant loci identified in
this study could be targets for breeders in marker-
assisted selection to accelerate genetic enhancement of
maize for Striga resistance in the tropics, particularly in
the West and Central Africa sub-region.

Conclusions and recommendations

To the best of our knowledge, the present study is the
first report of genome-wide association analysis for
Striga resistance in maize. Twenty-four SNPs were sig-
nificantly associated with Striga adaptive traits in maize.
The candidate putative genes GRMZM2G060216,
GRMZM2G057243 and GRMZM2G164743, on chromo-
somes 3, 9 and 10, respectively, could be invaluable for
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the development of Striga resistant maize genotypes in
SSA. Further studies, using different mapping popula-
tions, are urgently needed to validate the markers identi-
fied in the present study so that marker-assisted
breeding for Striga resistance in tropical maize could be
a reality and widely adopted in SSA where Striga is
endemic.

Methods

Germplasm

A total of 132 early maturing tropical white maize in-
bred lines (comprising one hundred and twenty-six early
maturing Sg inbred lines, five standard inbred testers
and one inbred check) with combined resistance to
Striga hermonthica, and tolerance to drought stress de-
veloped in the IITA maize improvement program were
used in this study. Out of the 132 inbred lines, 126 were
second generation lines extracted from six F, popula-
tions derived from bi-parental crosses (TZE COMP 5-W
DT C7 x TZEI 56, TZE COMP 5-W DT C7 x TZEI 87,
TZE COMP 5-W DT C7 x TZEI 18, TZE COMP 5-W
DT C7 x TZEI 31, TZE COMP 5-W DT C7 x TZEI 2,
TZE COMP 5-W DT C7 x TZEI 65), which involved
crosses among a broad based Striga resistant population
(TZE COMP 5-W DT C7) and elite inbred lines from
TZE-W Pop x 1368 STR (TZEI 87, TZEI 2), TZE-W
Pop STR C, (TZEI 65, TZEI 18 and TZEI 56), and TZE-
W Pop x LD (TZEI 31). Of the five standard testers, in-
breds TZEI 18, and TZEI 19 were derived from TZE-W
Pop STR C,, inbred TZEI 31 from TZE-W Pop x LD, in-
bred TZEI 7 from WEC STR and inbred TZdEI 352
from TZE-W Pop STR.

The broad based Striga resistant population TZE
COMP 5-W DT C7 from which the inbred lines evalu-
ated in this study were derived, had gone through 7 cy-
cles of recurrent selection for improved Striga
resistance. TZE COMP 5-W DT C7 was crossed to the
inbred lines TZEI 65, TZEI 18, TZEI 31, TZEI 87, TZEI
2 and TZEI 56 selected for drought tolerance to improve
the population for drought tolerance. Following the
introgression of the drought tolerance genes into the
population, a program was initiated to extract inbred
lines with combined Striga resistance and drought toler-
ance using repeated self-pollination and selection for
Striga resistance and drought tolerance. After eight cy-
cles of inbreeding, the inbred lines were evaluated under
drought and Striga infestation. Based on the results of
the evaluations, the Sg inbred lines used in the present
study were selected.

Phenotyping

The inbred lines were phenotyped for key agronomic
traits across two environments under artificial Striga in-
festation and two Striga-free environments at Mokwa,
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Nigeria (9°18'N, 5°%4'E, 457 m altitude, 1100 mm annual
rainfall) during the rainy seasons of 2017 and 2018. The
experimental design was 11 x 12 alpha lattice with two
replications. Each experimental unit consisted of 3m
single-row plots, with a row spacing of 0.75 m and intra-
row spacing of 0.4 m. The fields were injected with
ethylene gas at about 10 days before planting, to stimu-
late suicidal germination of residual Striga seeds in the
soil. The artificial Striga infestation at Mokwa was car-
ried out as recommended by IITA-MIP [56]. Striga seeds
collected from sorghum fields were stored for about 6
months to break seed dormancy and used for the infest-
ation. Each hole in the Striga plot received about 5000
germinable seeds of Striga mixed with fine sand in the
ratio 1:99. Fertilizer rate was reduced (30 kg N/ha, 30 kg
each of P and K applied as NPK 15-15-15) and applica-
tion was delayed till 3 weeks after planting to induce the
production of strigolactones which stimulate good ger-
mination of the Striga seeds and the attachment of the
Striga plants to the roots of host plants [57]. Under the
artificial Striga infestation, data were collected on num-
ber of emerged Striga plants and host plant damage syn-
drome rating at 8 and 10 weeks after planting (WAP).
The host plant damage syndrome rating was recorded
on a scale of 1-9 (1 =normal plant growth, no visible
symptoms, and 9 =complete scorching of all leaves,
causing premature death or collapse of host plant and
no ear formation). Under both Striga-infested and
Striga-free environments, data were collected on the in-
bred lines for ear aspect, number of ears per plant and
grain yield.

Phenotypic data analysis

Analyses of variance (ANOVA) were performed across
test environments for each experiment on plot mean
basis for grain yield and other key agronomic traits with
PROC GLM in SAS [58], using a RANDOM statement
with TEST option. Location-year combinations were
treated as environments. The IITA base index was used
to identify Striga resistant and susceptible inbred lines
under artificial Striga infestation [1]. The means of the
selected traits were expressed in standard deviation units
and the index scores were computed as: = ((2 x YLD) +
EPP - (SDR8+SDR10) — 0.5(ESP8 + ESP10)), where
YLD = grain yield of the Striga-infested plots, EPP is the
number of ears at harvest in the Striga infested plots,
SDR8 and SDR10 were Striga damage syndrome ratings
at 8 and 10 WAP, and ESP8 and ESP10 were number of
emerged Striga plants at 8 and 10 WAP. Broad sense
heritability (H?) estimates were calculated from pheno-
typic variance (GZP) and the genotypic variance (ng) [59].
Correlation analysis was done using the performance an-
alytics package in R [60].
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Genotyping and quality control

Samples of leaves were taken in the field at 2 weeks after
planting. The DArT protocol was used for genomic
DNA extraction (www.diversityarrays.com/files/DArT_
DNA_isolation.pdf). The quality and quantity of the
DNA was ascertained by running the gDNA in a 1%
agarose gel and measuring its concentration and purity
in a NanoDrop 2000 spectrophotometer. The DNA sam-
ples were sent to the Integrated Genomic Service and
Support (IGSS) genotyping platform, Nairobi, Kenya for
genotyping. High-throughput genotyping was conducted
in 96 plex DArTseq protocol as described previously
[26]. Reads and tags found in each sequencing result
were aligned to the Zea mays L. genome reference, ver-
sion AGPV3 (B73 Ref-Gen v4 assembly) [61], resulting
in a raw dataset of 47,440 markers. The 47,440 DArTseq
markers were filtered to eliminate SNPs with missing
rate greater than 10%, heterozygosity greater than 20%
and minor allele frequency (MAF) less than 5%. SNPs
with unknown or multiple chromosomes locations were
also eliminated. After quality filtering, a total of 7224
DArTseq markers distributed across the 10 maize chro-
mosomes were used for the population structure, phylo-
genetic analysis and GWAS analyses.

Population structure, linkage disequilibrium and marker-
trait association analyses

An admixture model-based clustering method was used
to infer population structure of the 132 genotypes using
the software package STRUCTURE, version 2.3.4 [62].
The assumed number of subpopulations was simulated
from k=1 to k=10 for an initial assessment of the most
likely number of subpopulations; each K was run 10
times with 10,000 iterations of burn-in followed by 10,
000 Markov chain Monte Carlo iterations and the ideal
number of subpopulations (K) was found by examining
the optimal AK value [19] in STRUCTURE Harvester
[63]. In the model-based method, membership coeffi-
cients (Q values) for each inbred line were estimated to
have its memberships in multiple subgroups. Inbred
lines with membership probabilities >0.70 were assigned
to the corresponding subgroup and lines with member-
ship probabilities < 0.70 were assigned to a mixed sub-
group. Linkage disequilibrium was determined using the
squared allele frequency correlations R* value from
which the number of significant allele pairs (P< 0.01)
was determined using 1000 permutations [64].. Associ-
ation analysis between the SNPs and traits was per-
formed wusing the mixed linear model (MLM)
implemented in the GAPIT (Genetic Association and
Prediction Integrated Tools) R package. The MLM
adopted was proposed by Yu et al. [32] with each mo-
lecular marker considered a fixed effect and evaluated
individually: Y =Xg+ W+ Q, +Z,+& where Y is the
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observed vector of means; 8 is the fixed effect vector (p
x 1) other than molecular markers effects and popula-
tion structure; « is the fixed effect vector of the molecu-
lar markers; v is the fixed effect vector from the
population structure; u is the random effect vector from
the polygenic background effect; X, W, and Z are the in-
cidence matrixes from the associated 5, a, v, and u pa-
rameters; and ¢ is the residual effect vector. MLM in
comparison with other models for detecting marker/trait
associations such as the general linear model (GLM),
could reduce the false-positive associations by control-
ling both types I and II errors [65, 66]. The Bonferroni
correction showed a very stringent threshold. Conse-
quently, a GWAS threshold of —log (p) =4 was used to
declare significant marker-trait associations, which was
determined based on the Q-Q plots and distribution of
p-values for all the traits [22, 35, 67]. To identify gene
models for Striga resistance, the physical positions of the
significant SNPs were compared with the MaizeGDB
database according to version 4 (RefGen_v4) from the
reference genome of the maize B73 inbred line, available
at the MaizeGDB database. Zoom mapping was con-
ducted on the chromosome where a significant SNP
marker was identified and associated with a trait. The
extent of local LD was evaluated for each selected sig-
nificant SNP to determine the interval of each locus.
The heatmap of regional LD was made with the LD
heatmap package [68] for SNPs with a MAF greater than
0.05 within 500 kb downstream and upstream of the top
associated SNP.
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