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Abstract  

Technology adoption has been proven to be an efficient way to improve agricultural 

productivity as well as farmers’ income across the semi-arid regions of the globe. However, 

an upcoming method to improve food and livelihood security is through sustainable 

technology intensification. The study tries to assess the impact of climate-smart agriculture 

(CSA) technology intensification on farmers’ income using inverse probability weighted 

regression adjustment method. The results show a rise in average income for high 

intensified farmers in comparison to the low intensified farmers. The results also show a rise 

in income for CSA intensified farmers in comparison to the farmers adopting only improved 

technologies. Therefore, technology intensification of CSA technologies has been found to 

be an effective way in ensuring income security to the farmers. 
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Introduction 

Climate change has severely hit agricultural production and welfare of farmers in South Asia 

(Arshad et al. 2017; Aryal et al. 2019). Low and erratic rainfall, unpredictable weather 

conditions and hardships of the farm households are contributing to lower agricultural yields 

and farmers’ welfare.  Recent development economics and agricultural economics 

literatures have focussed on the importance of the adoption of new agricultural 

technologies for the improvement in agricultural productivity and farmers’ income (Pan et 

al. 2018; Asfaw et al. 2012, Pal et al. 2019). Various scientists have been proposing the use of 

climate-smart agriculture (CSA) technologies which are more effective and sustainable way 

of dealing with climate change adversities (Campbell et al. 2014; Dinesh et al. 2017; Sova et 

al. 2018). The use of such technologies not only increases crop yield and household incomes, 

but also enhances rural livelihoods and ease stress on natural resources (FAO 2013; Mendola 

2008). CSA is an integrative approach to address three interlinked challenges of food 

security, climate change, and greenhouse gas mitigation (Aryal et al. 2020; Sapkota et al. 

2015). In other words, it is an approach for transforming and reorienting agricultural 

development under the new realities of climate change (Lipper et al. 2014). Some of the 

methods that may be climate-smart, depending on context are, zero tillage, the making of 

broad bed furrows, micro-irrigation, intercropping, mulching, direct seeded rice, and laser 

land levelling, for example. Various adaption options have been suggested to date, but 

advancement and distribution of technologies is one of the most important solutions to 

confront the worsening impact of climate change on agriculture (UNFCCC 2006; Below et al. 

2010; Lybbert and Summer 2010). The long-term adaptation strategy in agriculture depends 

on addressing similar issues in the short term, recognizing the fundamental truth that 

adaptation is a location-specific and continuous learning process (FAO 2008). 

South Asian economies are agriculture based, so the land constitutes a valuable resource. 

The region shows extraordinarily diverse landforms due to the diverse climatic regimes, 

latitudes, altitudes and topography. Semi-arid region is one of the largest agroclimatic region 

in South Asia that spreads across India, Pakistan, Bangladesh and Sri Lanka. India, the largest 

country in South Asia, occupies the largest share of semi-arid region in South Asia. The semi-

arid region occupies 34% of total geographical land in India where farming is largely 
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dominated by monsoon rain. Water scarcity along with environmental stresses represent the 

most limiting factors for agricultural productivity in this agroclimatic region. Unpredictable 

weather, long dry seasons, inconsistent rainfall, and soils that are poor in nutrients make this 

region unique as compared to other agroclimatic region in India. Historically rise in average 

temperature along with declining trend of rainfall, the semi-arid region in India has been 

expanding. A recent study of Indian Institute of Tropical Meteorology (IITM), Pune has 

revealed that the semi-arid areas in India has been expanded by 10% during 1986-2005 than 

that was during 1950-1970.1 On the other hand, the economic survey of India 2017-18 cited 

that the average increase in temperature in India between the most recent decade and 

the 1970s is about 0.45 degrees and 0.63 degrees in the kharif and rabi seasons, 

respectively. Between the same period the kharif rainfall patterns have declined on an 

average by 26 millimetres and rabi rainfall by 33 millimetres. Further, it has been 

projected from climate models associated with the Intergovernmental Panel on Climate 

Change (IPCC) that temperature in India is likely to rise between 3–4 degrees Celsius by the 

end of the 21st century, depending on greenhouse gas emissions. As a result, the semi-arid 

region will continue to expand, and agriculture sector will become more vulnerable if 

suitable adaptation measures are not implemented.  

In this context, the government of the state Karnataka, one of the states located in the semi-

arid region of India, played a pro-active role to demonstrate and scale up modern and 

improved technologies for the agriculture sector of this state. A consortium of CGIAR 

institutions, agriculture universities in this state and the Indian Council of Agricultural 

Research (ICAR), was formed in the year 2015 to identify and demonstrate locally suitable 

and economically viable technology for the principal crop grown in this state. Initially four 

districts have been selected to experiment the effectiveness of the modern technologies at 

the local level and farmers have been trained to adopt those technologies. In addition, the 

government of Karnataka provided subsidy to the farmers to adopt those modern 

technologies. Although, this program does not consider climate-smart technology explicitly 

 

 
1 Please see: https://timesofindia.indiatimes.com/city/pune/semi-arid-places-now-about-34-of-countrys-total-

area/articleshow/65568752.cms#:~:text=Semi%2Darid%20places%20now%20about,Pune%20News%20%2D%20

Times%20of%20India 



 

 

but some of the modern technologies have potential to be climate-smart. Therefore, issue 

arises here whether the climate-smart technologies performed better than other improved 

technologies to enhance crop yield and farmers’ income. What factors drive farmers to 

adopt climate-smart technologies voluntarily? What constraints the adoption of climate-

smart technologies and how that can be mitigated to scale up climate-smart technology in 

the study state? 

Given this backdrop, this study attempts to categorize the technologies that have been 

demonstrated through the above-mentioned program of the government of Karnataka and 

assess their impact on crop yield and farmers’ income. A primary survey has been conducted 

with a sample of 1466 farmer households selected from the four districts where this 

program was implemented. Using multinomial logit model, this study explores various 

characteristics of farmers, which facilitate or obstruct the adoption of climate-smart 

agriculture techniques. The impact on farmers’ income is evaluated by using Propensity 

Score Matching (PSM) and Inverse Probability Weighted Regression Adjustment (IPWRA). 

This method also helps us to do a comparative analysis between farmers’ current practice, 

improved but not climate-smart practice and climate-smart practices. Therefore, this study 

provides an empirical evidence on the effectiveness of climate-smart technologies to 

enhance crop yield and farmers’ income in the semi-arid region. This can help policy makers 

to take necessary steps for upscaling of the improved but climate-smart technology to adapt 

with the adverse agroclimatic condition and the negative impact of climate change in the 

long run.        

Literature review 

Impact of agricultural technologies on crop yield and farmers’ welfare has been studied by 

various researchers across the globe. Evenson et al. 2003; Villano et al. 2015; Zeng et al. 

2015; Bezu et al. 2014 have studied the effectiveness of adoption of improved varieties on 

crop yield and household income. According these studies, adoption of improved varieties 

which are developed to be suitable for local agro-climatic conditions are one of the most 

important means to boost crop yield and improve well-being. Apart from this, these studies 

have argued that age of farming experience, landholding size, level of education of farmer 
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households and asset ownership are key factors behind the adoption of improved seed 

varieties. Using inverse probability weighted with regression adjustment (IPWRA) technique, 

Adolwa et al. (2019) has shown that adoption of integrated soil fertility management 

improves mazie yield by 27% in Tamale (Ghana) and 16% in Kakmega (Kenya). Kassie et al. 

(2011) has shown that adoption of improved pigeonpea varieties has positive and significant 

impact on consumption expenditure and negative and significant impact on poverty, 

reducing poverty in the range between 8-10 percentage points. Khonje et al. (2015) showed 

using propensity score matching (PSM) that adoption of improved maize varieties in eastern 

Zambia increased crop income per hectare ranging between USD 448 to USD 455, along with 

raising consumption expenditure per capita in the range between USD 52 to USD 59. Manda 

et al. (2019) analysed the impact of adoption of improved cowpea varieties in Nigeria, 

stating increase in houseold income by USD 0.22 per capita/day, equivalent to 17%. 

Apart from the seed technology, there are studies that focus on adoption of farm 

management pratices to improve resource use efficiency. One such study has been 

conducted by Aryal et al. (2020) that have focused on the adoption of laser land levelling 

(LLL) and its impact on crop yield and farmers’ income in the state Haryana in India. This 

study has shown that adoption of LLL technology improves rice and wheat yield by 14% and 

11%, respectively, along with increasing net returns to rice and wheat farmers by 34% and 

22%, respectively. Apart from the LLL  technology, direct seeded rice (DSR) method of rice 

cultivation is gaining momentum over the puddled transplanted rice (PTR) method because 

of many advantages like narrowing soil erosion, reducing the loss of organic matter, 

alleviating water scarcity, and saving labour. Agronomic trials have stated that adoption of 

DSR method enhances land productivity and labour efficiency (Kumar and Ladha 2011). 

Adoption of DSR method has shown positive results for crop producing, indicating an 

increase in average treatment effect (ATT) of 3.1% in China (Sha et al. 2019) and 3.7% in 

eastern India (Mishra et al. 2017). On the other hand, the broad bed furrow (BBF) system 

helps in the soil in the preservation of water level for a longer duration and thus aids in 

stimulating crop growth. A field experiment was conducted in 2011-12 during the rabi and 

kharif season which showed the effect of BBF and nutrient management on maize crop 

recording productivity of 6.7 tonnes/ha for adopter farmers in comparison to 6.5 tonnes/ha 

for non-adopter farmers (Jnanesha et al. 2016).  



 

 

In case of India, there are various studies that have evaluated the impact of different 

technological interventions on crop yields and/or farmers’ income (Sahu and Das 2015; 

Kiresur et al. 2017; Wani et. al. 2017; Pingali et al. 2019). Several agro-ecological, socio-

economic and cultural factors play an important role in the adoption of new agriculture 

technologies (Aryal et al. 2015; Teklewold et al. 2013; Asfaw et al. 2012). Adoption decisions 

by farmers are also influenced by risk, uncertainty, human capital, and social networks 

(Becerril and Abdulai 2010).  

However, studies cited above consider either one technology or few individual technologies 

to asses their impact on crop yield, farmers’ income and analyse key drivers of their 

adoption. But considering the agro-climatic conditions and climate change impact, the 

package of technologies may yield better than an individual technology. For example, 

adoption of laser land levelling with improved seed variet may yield better return even 

under adverse climate conditions. Again, intensification of technologies and crops has been 

seen as an important means of addressing the challenges faced by global food systems like 

food security, environmental degradation, and welfare concerns (Balaine et al. 2020). But, 

there is scarcity of literature that highlights the factors influencing the adoption of different 

intensification levels of technologies and hence it is a research gap that this study attempts 

to fill. Therefore, this study has analysed the level of intensification of climate-smart 

agriculture techniques in the context of the semi-arid region in India and assessed its impact 

on crop farmers’ income. 

Data and methods 

Data 

As described above, this study is based on the state of Karnataka in India. Agriculture in this 

state provides livelihood opportunity to nearly 57% of the state’s workforce. Horticulture 

contributes 40% to the agricultural income, and 38% of the rural households have livestock 

and poultry, contributing significantly to their livelihoods (Ravindranath et al. 2014). The 

same study states that the state has warmed about 0.4 degrees Celsius, while rainfall trends 

indicate an overall decline in annual rainfall by 10%. Sorghum, millet, cowpea, chickpea, 

pigeon pea and groundnut are the principal crops that feed most people in this state. The 
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sample districts chosen from the state for our study are Bidar, Chikballapur, Dharwad and 

Udupi. The selection of the districts is not random; rather they are the districts where the 

government of Karnataka implemented its flagship program to promote modern technology 

through the consortium of CGIAR institutions, agriculture universities and ICAR. A sample of 

1466 farmer households has been selected and the primary survey was conducted using 

structured questionnaire in 2018-19. Among the selected sample farmer households, almost 

50% are adopter farmers who have adopted improved technology in different scale. The 

adopters were selected purposively with the help of expert consultation among the 

government officials, CGIAR scientists, farmers and rural agriculture offices. On the other 

hand, the non-adopter farmers have been selected based on being neighbours of the 

adopter farmers. The survey aimed at capturing information from the farmers about their 

socio-demographic characteristics, technology adoption, assets ownership, farming 

activities, and revenue and cost associated with their farming activities. The details about 

the survey location and basic characteristics of the districts are described in the following 

paragraphs.  

Bidar, a city in the north-eastern part of the Karnataka state has become vulnerable to 

climate change due to increased incidences of droughts, increases in temperatures, and 

erratic rainfall patterns. A study conducted by Banashree et al. (2019) illustrated that the 

farmers agreed that there has been change in rainfall patterns, increase in the number of dry 

spells in comparison to past years, uneven distribution of rainfall during different stages of 

crop growth, increase in temperature, depletion of groundwater obstructing irrigation by 

bore wells, and that return to investment has become uncertain in agriculture due to climate 

change.  

Chikballapur is situated in the south-eastern portion of Karnataka state. The district has 

become vulnerable to climatic shocks like increasing temperatures, rising emissions, 

decreasing rainfall, and poor irrigation. The agricultural and livelihood vulnerability 

assessment has shown that households are in the ‘moderate’ to ‘high’ categories for both 

the indexes causing lack of diversity of sources of income (Ravindranath et al. 2014).  

Dharwad is located in the north-western part of Karanataka state. Drought is the extreme 

climate shock along with other climatic factors experienced by the rainfed farmers in the 



 

 

district. Ashalatha et al. (2012) stated that yields of one of the major crops like cotton 

dropped by 60%, as cotton is highly susceptible to drought. Moreover, farmers from the 

district have reported that their farm income and crop yield had reduced over the years 

along with changes in climate and rainfall patterns (Ashalatha et al. 2012).  

Udupi is a district in the southwest part of the state. The main staple crop of Udupi is paddy 

which is highly dependent on rainfall but the district has witnessed a reduction in rainfall of 

more than 10% in last 20 years (Ravindranath et al. 2014). Farmers have adopted various 

coping strategies to mitigate the negative impacts of climate change which include changes 

in cropping patterns, the adoption of intercropping, usage of drought resistance/tolerant 

seed varieties, etc. Figure 1 below illustrates the location of the four districts. 

 

Figure 1. Study sites in Karnataka. 

In the context of climate change, vulnerability refers to the propensity of the entity to face 

climate shock and suffer loss in production and/or income from agriculture (Kavi Kumar et 

al. 2007). McCarthy et al. (2001) defines vulnerability as the function of character, 

magnitude, and rate of climatic variation to which a system is exposed, its sensitivity, and its 

adaptive capacity. Exposure is defined as the nature and degree to which a system is 

exposed to significant climatic variations while sensitivity is defined as the degree to which a 

particular system is affected either adversely or beneficially by climate-related stimuli (Rama 

Rao et al. 2013). Exposure is related to the climate stress upon a certain unit of analysis 

(Gbetibouo and Ringler 2009). Sensitivity is determined by environmental and demographic 
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conditions existing in a particular region. Adaptive capacity is the ability of a system to adjust 

to climate change, to neutralise potential damages, to take benefits of opportunities, and to 

cope with consequences (Rama Rao et al. 2013). Hence, adaptive capacity is a combination 

of wealth, technology, education, information, skills, infrastructure, access to resources, 

stability, and management capabilities (McCarthy et al. 2001). Table 1 depicts district-level 

analysis about their vulnerability to climate change. 

Table 1. District-level analysis about climate change. 

District Vulnerability Exposure factor 
Sensitivity 
factor 

Adaptive 
capacity factor 

Bidar 
Very high 
(35) 

Projected rise in 
minimum 
temperature 

(161) 

High NSA 
(156) 

Low NIA (435) 

Chikballapur High (149) 
Projected 
decrease in July 
rainfall (164) 

Low rainfall 
(240) 

Low groundwater 
availability (296) 

Dharwad  
Very high 
(108) 

Projected 
decrease in total 
rainfall (179) 

High NSA 
(248) 

Low NIA (346) 

Udupi (566) (510) (486) (194) 

Source: Rama Rao et al. 2013. 

Note: NSA – Net sown area; NIA – Net irrigated area; ranks in parenthesis. 

The details of sample size and their distribution across districts, with respect to technology 

adoption are presented in Table 2. The sample consists of 56.82% of the adopters and 

43.18% of the non-adopter farmer households. Altogether 12 technologies were considered 

which were categorised into improved and climate-smart based on the agronomic features 

of the technologies and farmers’ evaluation. Improved technologies are those which 

increase yield but do not reduce use of ground water, nitrogen and energy. In contrast, 

climate-smart technologies are those tjat led to improvement in either water or nitrogen or 

energy input use even if crop yield does not increase. The detail classification of technologies 

is presented in Table 3 below.  

  



 

 

Table 2. District-level selected sample. 

District 
Adopters Non-adopters 

Total 
Number Percent Number Percent 

Bidar 340 40.82 163 25.75 503 

Chikballapur 214 25.69 209 33.02 423 

Dharwad 176 21.13 179 28.27 355 

Udupi 103 12.36 82 12.95 185 

Total 833 100 633 100 1466 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19. 

Table 3: Classification of technologies between improved and climate-smart. 

Technologies Type 
Yield 
enhancement 

Water 
efficient 

Nitrogen 
efficient 

Energy 
efficient 

Broad bed furrow 
Climate-
smart 

Yes Yes No No 

Laser land levelling 
Climate-
smart 

Yes Yes No Yes 

Direct seeded rice 
Climate-
smart 

No Yes No Yes 

Mulching 
Climate-
smart 

No Yes Yes No 

Zero tillage 
Climate-
smart 

No No Yes Yes 

Micro irrigation 
Climate-
smart 

No Yes Yes Yes 

Intercropping 
(sugarcane with 
different crops; 
pigeon pea with 
finger millet)  

Climate-
smart 

Yes  Yes Yes  Yes 

Integrated nutrient 
management 

Climate-
smart 

Yes No Yes  No  

Improved seeds Improved Yes No No No 

Integrated pest 
management 

Improved Yes No No  No 

Nipping  Improved  Yes  No  No  No  

Source: Authors’ compilation using farmers’ evaluation. 

Further, the farmers who have adopted climate-smart technologies have been classified into 

three categories depending on the number of technologies they have adopted in the survey 

base year (i.e. 2018-19) and they are, namely, low, medium and highly intensified farmers. 

Low intensified farmers are recognized to be the farmer households adopting any 1 

technology, medium intensified farmers are those adopting any 2 technologies, and highly 
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intensified are those adopting more than 2 technologies. The district wise distribution of the 

technological intensified farmers is given in Table 4. 

Table 4. Distribution of farmers based on technology adoption. 

District Improved CSA Total 

  Low Medium High  

Bidar 115 (33.82) 6 (1.76) 62 (18.23) 157 (46.17) 340 

Chikballapur 57 (26.63) 18 (8.41) 81 (37.85) 58 (27.10) 214 

Dharwad 27 (15.34) 77 (43.75) 50 (28.41) 22 (12.5) 176 

Udupi 19 (18.45) 4 (3.88) 29 (28.16) 51 (49.51) 103 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19; percent values in parenthesis. 

Econometric modelling 

Multinomial logistic regression 

The use of logistic regression model is consistent with the literature on adoption which 

describes the process of adoption as taking on a logistic nature (Simtowe et al. 2011). 

Logistic regression is a statistical model used to model a binary dependent variable. An 

extension of the binary logistic model is the multinomial logit model which models a non-

dichotomous dependent variable. A logit model is used to estimate the key factors that 

affect the adoption of different levels of technology intensification. Here, the dependent 

variable has four classifications: improved, low CSA, medium CSA, and high CSA, and the 

explanatory variables are a combination of landholdings, education, and asset ownership. 

Hence, the multinomial logistic regression can be expressed as: 

𝑌 = 𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) = 𝛽0 +∑𝛽𝑖 𝑋𝑖 

where p is the probability of farmers adopting a certain level of technology intensification. 

These coefficients don’t portray the true picture of the effect explanatory variables have on 

the adoption of technology intensification. The estimated coefficients obtained from 

multinomial logistic regression are in log-odds scale, which are sometimes difficult to 

interpret. Therefore, we use marginal effects to interpret the model results, or more 

accurately, model parameters. It is simpler to interpret the coefficients of marginal effects, 

since it gives estimates in probability scale. Hence, further calculations made to estimate 

marginal effects of each independent variable is computed as follows: 



 

 

𝛿𝑌

𝛿𝑋𝑖
= 𝛽𝑋𝑖 ∗

exp⁡(𝑧)

[1 + exp(𝑧)]2
 

where z is equal to the sum of coefficients multiplied by the means of their respective 

variables added to the constant term. 

Adequate measuring of the impact of a program under a non-experimental setting is non-

trivial and involves many challenges. The first of them is to have an appropriate counter-

factual, that is, having observations where the adoption has not taken place. Since farmers 

are not randomly distributed across the two groups of adopters and the non-adopters, but 

rather they have been purposely selected by the program agencies based on their 

propensity to participate, the adopters and the non-adopters of the program are 

systematically different from each other. This gives rise to possible selection bias, which 

needs to be addressed if the results to be meaningfully interpreted. Propensity score 

matching (PSM) and inverse probability weighted with regression adjustment (IPWRA) were 

used to respond to the above issues. The different factors affecting adoption were obtained 

using the multinomial logit model. 

Propensity score matching (PSM) 

Propensity score matching is used to evaluate the impact of CSA technology intensification 

on farmers’ net income. The main motive behind using PSM was introduced by Rosenbaum 

and Rubin (1983) who observed that self-selection bias can be reduced through matching 

the propensity scores between the treated (intensified) and untreated (non-intensified) 

groups. PSM has been applied to various other impact assessment studies (Asfaw et al. 2012; 

Khonje et al. 2015; Villano et al. 2015; Ali et al. 2016) to control for selection bias. In our 

study we apply PSM because the adoption of CSA technologies is not random but based on 

farmers’ decisions. Therefore, farmers who are highly intensified may differ from low 

intensified farmers based on key characteristics like landholdings, education, and assets 

ownership. Thus, the self-selection problem can be solved by implementing the PSM model 

which involves a binary choice model to generate propensity scores for each individual in the 

study (Bello et al. 2020). PSM is used to match the households and rank them based on their 

behaviour towards technology intensification to ascertain that the effects are evaluated 

among a group of farmers possessing similar characteristics (Mendola 2007). This method 

controls for self-selection bias arising due to unobserved characteristics and making 



12 

 

comparison between treatment and control groups in the region of common support 

(Becker and Ichino 2002; Villano et al. 2015). The balancing property indicates the matching 

quality of the samples (Bello et al. 2020). We have used the standard bias method to observe 

the matching quality which calculates mean difference of covariates between treatment and 

control group after matching. 

Rosenbaum and Rubin (1985) defined propensity score as the conditional probability of 

receiving a treatment which can be expressed as: 

𝑒(𝑥) = 𝑃𝑟(𝑊𝑖 == 1|𝑋𝑖 = 𝑥) = 𝐸[𝑊𝑖|𝑋𝑖 = 𝑥] 

where 𝑊𝑖 is the binary indicator; 1 = adopters and 0 = non-adopter, and 𝑋𝑖  is a vector of 

covariates including landholdings, education, and asset ownership. After the propensity 

scores have been evaluated, the causal effect of the technology intensification on farmers’ 

net income is calculated using the average treatment effect on the treated (ATT). ATT is 

computed as the difference between the treatment group matched with the control group 

who are balanced on the propensity scores and fall within the region of common support 

(Bello et al. 2020). The ATT is expressed as: 

𝐴𝑇𝑇 = 𝐸(𝑌1|𝑊 = 1) − 𝐸(𝑌0|𝑊 = 0) 

where 𝑌1 and 𝑌0 are the net income for the treatment and control groups, respectively. 

There are three different algorithms for running propensity scores: kernel bandwidth 

matching, nearest neighbourhood matching, and radius caliper method. In our analysis we 

used the nearest neighbourhood matching method to calculate the average treatment effect 

on the treated. PSM is often used for impact assessment studies to evaluate the effect of 

participation on certain outcomes like adoption. However, sometimes PSM fails to account 

for unobserved differences between adopters and non-adopters and hence produce biased 

estimates of the treatment effect (Abdulai and Huffman 2014). Therefore, to check for 

robustness of the estimates, we used another econometric method, IPWRA. 

Inverse probability weighted with regression adjustment (IPWRA) 

The estimators obtained from IPWRA method estimates for both the outcome and 

treatment variables to account for selection bias or non-random treatment assignment 

(Tambo and Mockshell 2018). The Inverse probability weighing (IPW) estimator can be used 



 

 

to demonstrate causality when it is not possible to conduct a controlled experiment but 

there are observed data to model. Regression adjustment (RA) estimators involve separate 

regressions being run for each treatment level to predict potential outcomes (i.e., the data 

that we wish we had to estimate the causal treatment effects) (Pomeans) and the difference 

between the ‘Pomeans’ is used to estimate the average treatment effect on the treated 

(ATT).  

IPWRA uses weighted regression coefficients to compute treatment effects where the 

weights are the estimated inverse probabilities of treatment (Wooldridge 2010). It is 

considered to be a double robust estimator because even if one of the models 

(treatment/outcome) is wrongly specified, the estimator is still consistent. RA and IPW 

estimators model the outcome and treatment, respectively, to explain the non-random 

treatment assignment (Huber 2015). On the other hand, IPWRA estimates model both the 

outcome and the treatment to account for the biased treatment assignment. 

Following Manda et al. (2018), we use inverse weights equal to 1 for the treated and  
𝑝̅(𝑥)

1−𝑝̅(𝑥)
 

for the untreated, then following Hirano and Imbens (2001) propensity weights are defined 

as: 

𝑊𝑖 = 𝑇𝑖 + (1 − 𝑇𝑖)
𝑝̅(𝑥)

1 − 𝑝̅(𝑥)
 

where 𝑝̅(𝑥) are the estimated propensity scores. In contrast to the above IPW estimator, the 

RA estimator uses a linear regression model for treated and untreated units and averages 

the predicted outcomes to obtain the treatment effects (Manda et al. 2018). According to 

Wooldridge, (2010), the ATT for the RA model can be expressed as: 

𝐴𝑇𝐸𝑇𝑅𝐴 = 𝑛𝐴
−1∑𝑇𝑖[𝑟𝐴(𝑋, 𝛿𝐴) − 𝑟𝑁(𝑋, 𝛿𝑁)]

𝑛

𝑖=1

 

where nA is the number of technology adopters (A) and ri (X) is the postulated regression 

model for the adopters and non-adopters (N) based on the covariates X and the parameter 

δi = (αi, βi). The IPWRA estimator is obtained by combining the RA equation with the 

weighting equation. Hence, ATT for the IPWRA estimator can be expressed as: 
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𝐴𝑇𝐸𝑇𝐼𝑃𝑊𝑅𝐴 = 𝑛𝐴
−1∑𝑇𝑖[𝑟𝐴

∗

𝑛

𝑖=1

(𝑋, 𝛿𝐴
∗) − 𝑟𝑁

∗(𝑋, 𝛿𝑁
∗ )] 

Adolwa et al. (2019) states that to get unbiased estimates from IPWRA model, the analysis 

has to satisfy three assumptions: 

 Conditional independence, which implies that once we have controlled for all the 

observable variables, potential outcomes are not correlated with the treatment. 

 Overlap assumption, which signifies that each unit has non-zero probability of receiving 

the treatment. Manda et al. (2018) states that this assumption holds true when for each 

adopting farmer in the sample we observe non-adopter farmers with similar 

characteristics. 

 The sample is assumed to be independently and identically distributed. This ensures that 

the outcome and treatment status of the farmers are independent of output and 

treatment status of other farmers in the sample (Adolwa et al. 2019). 

Results and discussion 

Descriptive statistics 

Table 5 shows the descriptive statistics of the key variables used in our study. The following 

table depicts the mean and standard deviation for each variable for four different categories, 

i.e., improved, low, medium, and high intensification of CSA. Landholdings were categorised 

into four groups, marginal (<1 ha), small (1–2 ha), medium (2–4 ha), and large (>4 ha). 

Education level was been divided into four sub-groups: illiterate, primary, secondary, and 

higher-secondary and above. Improved technology adopters possessed 41% of marginal 

landholdings, 44% of small landholdings, 9% of medium landholdings, and 6% of large 

landholdings. The share of low intensified CSA farmers in marginal, small, medium, and large 

landholdings was 21%, 40%, 26%, and 13%, respectively. Medium CSA intensified farmers 

possessed 26% marginal, 50% small, 16% medium, and 85 large landholdings. Highly 

intensified CSA farmers owned 24%, 47%, 17%, and 12% marginal, small, medium, and large 

landholdings, respectively. The largest proportion of illiterate farmers had adopted improved 

technology (29%), while the lowest proportion was of highly intensified CSA adopters. 



 

 

Primary education was equal for low and medium CSA intensified farmers, each being 

around 28%, respectively. Highly CSA intensified farmer adopters had the highest secondary 

(30%) and higher-secondary and above (24%) levels of education. Livestock was owned by 

54% of improved technology adopters and by 68%, 66%, and 74% of low, medium, and 

highly CSA intensified farmers, respectively. Average ownership of a pumpset and tractor for 

improved technology adopters was 54% and 5%, respectively. Average ownership of a 

pumpset and tractor by low CSA intensified was 56% and 17%, respectively. Some 70% of 

medium CSA intensified farmers owned a pumpset and 13% of them possessed tractors. A 

pumpset and tractor were owned by 89% and 17%, respectively, of highly CSA intensified 

farmers. 

Table 5. Descriptive statistics of key variables. 

Variable 
Improved 
(N = 218) 

Low CSA 
(N =105) 

Medium CSA 
(N = 222) 

High CSA 
(N = 288) 

Landholding 

Marginal 0.408 0.209 0.261 0.236 

Small 0.436 0.400 0.500 0.469 

Medium 0.092 0.257 0.158 0.170 

Large 0.064 0.133 0.081 0.125 

Education 

Illiterate 0.294 0.295 0.252 0.208 

Primary 0.266 0.276 0.279 0.246 

Secondary 0.243 0.219 0.256 0.305 

Higher-secondary and above 0.197 0.209 0.212 0.239 

Asset ownership (Yes = 1, No = 0) 

Livestock 0.541 0.676 0.657 0.736 

Pumpset 0.536 0.562 0.698 0.885 

Tractor 0.050 0.171 0.126 0.167 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19. 

Factors affecting technology intensification – multinomial logit 

regression 

Table 6 displays the key factors affecting the adoption behaviour of different groups of 

intensified farmers. Here, we present the coefficients of marginal effects (dy/dx) obtained 

after running the multinomial logistic regression. We observe that the level of intensification 

increases with the landholding size. Small scale farmers are more likely to adopt medium 

and high intensification of technology in comparison to the non-adopters and low and 
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improved technology adopters. There is a 4.1% and 4.8% chance that small landholders are 

likely to adopt medium and high technology intensification, respectively. Medium landholder 

farmers are 3% more likely to adopt low level of technology intensification in comparison to 

other farmers. On the other hand, large farmers have a 8.6% chance of adopting high level of 

technology intensification. One interesting point that we can witness here is that small, 

medium, and large landholders have negative coefficient for improved level of technology 

which means that marginal farmers are more likely to adopt improved technology methods. 

Landholding size has direct relation with the adoption of technology and is similar to the 

results obtained by Hussain (2012) for Pakistan.  

Education is positively correlated with level of adoption of technology intensification. The 

higher the education, the higher the awareness is of farmers regarding the innovative 

methods of cultivation. Farmers with secondary education have 4.4% more chance of 

adopting high level of intensification in comparison to other farmers. Similarly, farmers 

having education level of higher-secondary and above have 3% and 7% more chance of 

adopting improved technology and high technology intensification, respectively. This result 

is consistent with the findings obtained by Buriro et al. (2014) for Sindh, Pakistan and 

Hasnain et al. (2015) for Bangladesh. 

Asset ownership plays a significant role in determining the adoption of climate-smart 

agriculture technology intensification. Livestock ownership increases a 2% chance of 

adopting low level of intensification and a 8% chance of adopting high level of 

intensification. Ownership of pumpset raises the adoption by 7% for medium technology 

intensification and by 20% for high technology intensification. There is a 13% likelihood of 

increasing high level of technology intensification for farmers possessing tractors. The results 

of asset ownership confirm with the results obtained by Ali et al. (2014) and Ali and Khan 

(2013) in Pakistan for livestock ownership.  

The Wald chi2 (296.50) estimate obtained from the model helps us to state that the model is 

a good fit. The log-likelihood ratio (LR) is found to be significant at 1 percent level of 

significance which implies that all the explanatory variables included in the model jointly 

influence farmer’ probability of adoption of different levels of technology intensification. 



 

 

Hence, given this goodness of fit measures, it can be concluded that logit model employed in 

the study has integrity and is appropriate. 

Table 6. Estimates from multinomial logit model. 

 Marginal effects (dy/dx) 

Variables 
Non-
adopters 

Improved Low Medium High 

Land category (Base: Marginal) 

Small -0.052* -0.034 -0.003 0.041** 0.048* 

 (0.029) (0.023) (0.010) (0.014) (0.025) 

Medium -0.0318 -0.079** 0.026* 0.022 0.048 

 (0.055) (0.034) (0.014) (0.025) (0.041) 

Large -0.055 
-
0.043*** 

0.003 0.009 0.086*** 

 (0.040) (0.010) (0.014) (0.023) (0.014) 

Education (Base: Illiterate) 

Primary -0.072* 0.030 0.001 0.024 0.018 

 (0.041) (0.039) (0.024) (0.023) (0.014) 

Secondary 
-
0.080*** 

0.019 0.002 0.015 0.044*** 

 (0.020) (0.020) (0.016) (0.018) (0.011) 

Higher-secondary and 
above 

-
0.136*** 

0.027** 0.008 0.032 0.069** 

 (0.034) (0.011) (0.016) (0.033) (0.040) 

Asset ownership (Yes = 1, No = 0) 

Livestock  -0.110** -0.003 0.020*** 0.011 0.076*** 

 (0.018) (0.025) (0.005) (0.010) (0.018) 

Pumpset  
-
0.286*** 

-0.010 0.028 0.066*** 0.203*** 

 (0.013) (0.042) (0.022) (0.025) (0.012) 

Tractor  
-
0.122*** 

-0.033 0.001 0.024 0.131*** 

 (0.055) (0.044) (0.017) (0.041) (0.031) 

Source: Authors’ calculation based on IFPRI-GoK survey, 2018-19; Robust standard errors in parentheses; *** p<0.01, ** 

p<0.05, * p<0.1. 

Impact of technology adoption on farmers’ net income—PSM 

and IPWARA 

Estimates from propensity score 

Table 7 displays the results for treatment effects obtained from propensity score matching 

for climate-smart agriculture intensified farmers in comparison to the farmers adopting 
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improved technologies. The detailed results of PSM are attached in the appendix. The 

assumption of common support has been satisfied which is well justifiable from Figures A1, 

A2, and A3. The upper half of the graphs shows propensity scores for treated individuals 

while the lower half displays the propensity scores for the control group. Tables A1, A2, and 

A3 depict the balance test for covariates before and after matching. There is significant 

reduction in bias after the matching has been implemented. It is evident from the results 

that CSA intensified farmers are better off than the farmers adopting only improved 

technologies. The results show that low intensified CSA farmer households have an 

additional income of Rs. 4772 in comparison to improved farmer households. Medium and 

highly intensified CSA farmers gain an additional Rs. 7091 and Rs. 8795, respectively in 

comparison to the improved farmers. Thus, the results clearly depict that as the level of 

technology intensification increases from improved level to low, medium, and high CSA, the 

level of income also increases. 

Table 7. Estimates from PSM model – Net Income. 

Category 
Observations in common support 

ATT (Rupees) 
Standard 
error Adopters Non-adopters 

Low 96 218 4772.058*** 1563.448 

Medium 204 218 7091.483*** 1060.854 

High  278 218 8795.491*** 1099.566 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19; *** p<0.01. 

Estimates from IPWRA 

Next, after obtaining the results from PSM, we employed the IPWRA method to check for 

robustness of our results. IPWRA is considered a powerful estimator for observational data. 

One of its merits is that it provides for more robust results to misspecification (Curtis et al. 

2007). We implemented a test to check whether the matched samples are balanced or not. 

This helped us to ascertain that the matched samples are properly balanced. Figures in the 

appendix show that all the covariates are balanced since there are no signs of change in 

distribution of the raw and weighted scores. 

Table 8 presents treatment effects for different levels of CSA intensified farmers with 

respect to farmers adopting only improved technology. The potential net income for farmer 

households adopting improved technologies is Rs. 6961. The average treatment effect on 

treated group of low, medium, and high intensified CSA farmer households is Rs. 4845, Rs. 



 

 

6801, and Rs. 7858, respectively. This clearly shows that CSA intensified farmers are more 

better off than improved technology farmers. The results also show that under CSA 

intensification, the level of income increases from low to medium to high intensified farmer 

households. 

Table 8. Treatment effect for different levels of technology intensification. 

Outcome – Net Income Coefficient Standard error 

ATET   

Low 4845.877*** 1170.367 

Medium 6801.697*** 1026.571 

High 7858.08*** 1253.486 

Pomeans   

Improved 6961.258*** 695.316 

Source: Authors’ calculation based on IFPRI-GoK survey, 2018-19; *** p<0.01. 

Table 9 displays results of treatment effects for CSA intensified farmers with reference to 

low intensified CSA farmer households. The potential output for low intensified CSA farmers 

comes out to be Rs. 10691 and the average treatment effect on the treated medium and 

high intensified CSA farmer households is Rs. 3907 and Rs. 4463, respectively. This result also 

indicates that as the intensification of CSA technologies increase, the net income earned by 

those group of farmer households also rises. Hence, we can state that CSA technologies are 

more efficient and effective in increasing farmers’ income and higher the degree of CSA 

intensification, the higher the level of income is. 

Table 9. Treatment effect for different levels of CSA technology intensification. 

Outcome – Net income  Coefficient Standard error 

ATET   

Medium 3907.008*** 1256.04 

High 4463.854*** 1272.845 

Pomeans   

Low 10691.6*** 1075.029 

Source: Authors’ calculation based on IFPRI-GoK survey, 2018-19; *** p<0.01. 
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Discussion 

Karnataka state has approximately 7.5 million hectares of rainfed area with diverse agro-

ecological features. The state is susceptibe to intermittent rounds of floods and droughts 

leading to crop failure, creating food and income insecurity. In the year 2016, the 

government of Karnataka introduced a flagship program named Bhoosamrudhi for the 

welfare of the agriculture community on a pilot basis in four districts. The program aimed at 

boosting crop productivity of the rainfed agriculture through the introdcution of science-led 

interventions. The key objectives of the program were mechanization, crop intensification 

and diversification, water management, nutrient management, feeder and fodder 

management. The main technologies demonstrated to the farmers include laser land 

levelling, direct seeded rice, broad bed furrow, mulching, nipping, etc. Adoption of 

technology has become high in India and other developing nations, but what is more 

important now is technology intensification. Intensification of technology can be defined as 

the application of multiple technologies by the farmers on their farms to boost crop as well 

as land productivity, demanding high net returns in the end. Technology distribution is one 

side of the coin, but adoption and effectiveness remains another side which requires 

extensive analysis to justify its impact. 

Whenever any innovation is made, efforts are required to increase its adoption. Despite the 

government trying to disburse the technologies to the farmers, the adoption of mordern and 

innovative methods has remained low. We analysed the key characteristics such as the size 

of landholdings, education, and asset ownership of the farmers to understand how these 

parameters affect the adoption of the technology intensification. We observe that 

landholding size has a positive correlation with the degree of technology intensification. As 

the landholding size increases, there is higher technology adoption and vice versa. Similar 

case is observed with the level of educational qualifications. This is true because as the level 

of knowledge increases, farmers’ awareness increases regarding modern and innovative 

methods of farming. Higher degree of literacy escalates the probability of farmers in 

adopting higher intensification of technologies. This result corroborates with the ones 

obtained by Yamano et al. (2018) for Bangladesh and Kassie et al. (2013) for rural Tanzania. 

Following our discussion on key factors deciding farmers’ adoption, we also witness that 



 

 

possession of livestock, pumpset, and tractors also has a positive effect in determining the 

adoption of different levels of CSA technology intensification.  

Further, we examined the effectiveness of the technology intensification on the farmers’ 

income, especially climate-smart agriculture technologies. Adoption of climate-smart 

agricultural techniques is strengthening across the globe to make agriculture adaptive to 

climate change without compromising on food and income security to the world citizens. We 

used PSM and IPWRA methods to match for the treatment and control groups and compute 

the average treatment effect of the adoption of varied levels of intensification on the 

farmers’ net returns. We found that as the intensification of CSA technologies increases, the 

net income generated to the farmers also increases. Under PSM method, we see that low, 

medium, and high CSA intensified farmers gain by Rs.4772, Rs. 7091, and Rs. 8795, 

respectively, in comparison to the farmers adopting only improved technologies. 

Subsequently we used IPWRA method to check for robustness of the results and to control 

for unobserved endogeneity and selection bias; we notice that incomes for low, medium, 

and high CSA intensified farmers rise by Rs.4845, Rs.6801, and Rs.7858, respectively, in 

comparison to farmers adopting just improved technologies. Lastly, to check for the 

effectiveness among the CSA intensified farmers, we find an increase of RS.3900 and Rs.4463 

for medium and high CSA intensified farmers over the low CSA intensified farmers. Given this 

background, we see a positive impact of CSA intensification on the monetary welfare of the 

farmer households, but perceive that adoption still remains very low among the farmers. 

There are many reasons which can be attributed to non-adoption of modern technologies. 

Adesina and Zinnah (1993) highlight that lack of access to capital and land can act as major 

obstruction in adoption decisions. Further, awareness regarding new methods of farming 

also act as an obstruction in technology adoption (Soni et al. 2000). Moreover, Truong (2008) 

pointed out that mobility of machines to the fields becomes another constraint in 

technology adoption. On organising focussed group discussions with the farmers in the 

sample districts, we discover that unawareness and illiteracy about the technologies is the 

main cause of non-adoption among the farmers. Secondly, small landholding size also 

hinders high intensification of CSA technologies since farmers are not able to achieve 

economies of scale on small farms. Lastly, lack of infrastructure also impedes adoption of 
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CSA technologies because farmers complained about unavailability of machines in the 

custom hiring centres in their respective districts. 

Conclusion 

Climate change has devastating impacts on agriculture both in terms of food security as well 

as farmers’ livelihoods. Technology adoption has been identified to be one of the most 

promising and effective methods to tackle the adverse effects of climate change on 

agriculture. Various climate-smart agriculture technologies have been identified by the 

agronomists across the world to deal with the situations like drought, flood, pests, 

temperature change, and many others. Literature has established that CSA technologies 

have been effective in improving crop productivity and farmers’ income across the globe. 

Nonetheless, new approaches to agriculture are required if we want to move towards 

sustainability along with feeding the population with sufficient quantity and diversity of 

nutritious and safe food. Hence, technological intensification is seen as a viable approach 

towards achieving sustainability in agriculture along with increasing crop yield and welfare of 

the farmers. Intensification of CSA techniques is a more effective and efficient way to 

achieve the desired results for the economy and environment. CSA methods have the 

benefits of increasing food production without further diminishing the soil and water 

resources, restoring soil fertility, increasing farmers’ adaptation capacity to climate change, 

and building resilience to climatic shocks. 

Therefore, this study attempts to assess the main factors affecting farmers’ decisions to 

adopt different levels of climate-smart agricultural technological intensification along with 

its impact on farmers’ livelihoods. The findings of the study clearly establish that 

landholding, education, and asset ownership of the farmers play a significant role in the 

adoption of CSA techniques. This helps us to establish the positive relationship between risk 

bearing ability and the adoption of CSA methods. As farmers’ awareness and access to 

information are directly related to their educational level, it plays a crucial role in 

determining the adoption of CSA technologies. The results further show that there is a 

significant rise in the average income of the medium and highly intensified farmer 

households in comparison to the households that are low intensified. Hence, our null 



 

 

hypothesis fails to get rejected that the higher the technological intervention is, the higher 

the monetary benefit is to the farmers. 

Therefore, vigorous efforts should be made to target medium and large farmer households 

having large asset base for adopting large-scale intensification of climate-smart agriculture 

methods. Small and marginal landholders should be encouraged to adopt only one CSA 

technology initially, which can be further intensified slowly and gradually. Education is 

another important factor affecting the adoption, so minimum level of education should be 

made mandatory for all the people in the rural areas at a subsidized cost by the government 

to make education easily affordable. Skill development should be propagated to the farmers 

to enhance their technical abilities to operate highly methodical machines. Training 

programs can be organised to impart knowledge and training to the farmers to make them 

skilful in implementing CSA technologies. Moreover, availability of machines at the custom 

hiring centres should be increased to encourage adoption of technologies by the farmers. 

Along with increasing availability of machines, new centres should be opened in each village 

to increase farmers’ accessibility to such centres. 

One drawback of our study is that we are not able to factor in the price aspect which acts as 

an important agent in determining the income of the farmers. Price is instrumental in 

influencing the demand and supply forces in a free market economy. Price elasticity and 

income elasticity affects demand for different products. Price is an important determinant in 

protecting the homeland farmers from the competition that they might face from low-priced 

imports. Hence, a uniform price system may help farmers in securing their incomes by selling 

their products in the market. Differences in prices among the farmers can induce changes in 

income pattern in a given geographical space leading to varying results. If we factor in price 

and then capture the effect of intensification, it would give a clearer picture on the income 

of the farmers. 
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Appendix 

 

Figure A1. Common support for low vs improved. 

 

Figure A2. Common support for medium vs improved. 



 

 

 

Figure A3. Common support for high vs improved. 

 

 

Figure A4. Balance plot for land ownership. 
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Figure A5. Balance plots for education levels. 

 

Figure A6. Balance plot for asset ownership (livestock, pumpset and tractor). 

  



 

 

Table A1. T-test quality of means before and after matching for low vs improved. 

Variable 
Unmatched/ 
Matched 

Mean 
% 
bias 

% 
reduction 
in bias 

t-test 

Treatment Control T 
p> 
|t| 

Land class (Base: Marginal) 

Small 
U 0.4 0.436 -7.2 

-94.1 

-
0.61 

0.544 

M 0.437 0.368 14.0 0.98 0.329 

Medium 
U 0.257 0.092 44.5 

95.8 
4.04 0.001 

M 0.187 0.181 1.9 0.12 0.902 

Large 

U 0.133 0.064 23.2 

90.0 

2.08 0.039 

M 0.146 0.153 -2.3 
-
0.13 

0.893 

Education (Base: Illiterate) 

Primary 
U 0.276 0.266 2.3 

-276.8 
0.19 0.848 

M 0.271 0.232 8.6 0.61 0.545 

Secondary 

U 0.219 0.243 -5.7 

-145.2 

-
0.48 

0.634 

M 0.239 0.298 
-
14.0 

-
0.92 

0.359 

Higher-
secondary 
and above 

U 0.209 0.197 3.0 
-324.3 

0.26 0.797 

M 0.219 0.167 12.9 0.91 0.363 

Asset ownership (Yes = 1, No = 0) 

Livestock 
U 0.677 0.541 27.8 

71.7 
2.32 0.021 

M 0.646 0.607 7.9 0.54 0.587 

Pumpset 

U 0.562 0.537 5.0 

-698.9 

0.42 0.671 

M 0.542 0.743 
-
40.3 

-
2.96 

0.003 

Tractor 

U 0.171 0.050 39.1 

100.0 

3.62 0.001 

M 0.156 0.156 0.01 
-
0.01 

1.000 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19. 
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Table A2. T-test quality of means before and after matching for medium vs improved. 

Variable 
Unmatched/ 
Matched 

Mean 
% 
bias 

% 
reduction 
in bias 

t-test 

Treatment Control t 
p> 
|t| 

Land class (Base: Marginal) 

Small 

U 0.5 0.435 12.9 

92.4 

1.35 0.178 

M 0.515 0.519 -1.0 
-
0.10 

0.921 

Medium 

U 0.158 0.091 20.0 

80.2 

2.10 0.037 

M 0.117 0.131 -4.0 
-
0.40 

0.690 

Large 
U 0.081 0.064 6.5 

41.9 
0.68 0.497 

M 0.083 0.074 3.8 0.37 0.713 

Education (Base: Illiterate) 

Primary 
U 0.279 0.266 3.0 

50.6 
0.31 0.756 

M 0.279 0.273 1.5 0.15 0.883 

Secondary 
U 0.256 0.243 3.1 

28.1 
0.33 0.742 

M 0.25 0.240 2.3 0.23 0.818 

Higher-
secondary 
and above 

U 0.212 0.197 3.6 
20.9 

0.38 0.708 

M 0.201 0.189 2.8 0.29 0.771 

Asset ownership (Yes = 1, No = 0) 

Livestock 

U 0.657 0.541 23.9 

97.2 

2.50 0.013 

M 0.642 0.645 -0.7 
-
0.07 

0.945 

Pumpset 

U 0.698 0.536 33.6 

77.7 

3.53 0.001 

M 0.672 0.707 -7.5 
-
0.78 

0.434 

Tractor 
U 0.126 0.050 26.8 

89.2 
2.81 0.005 

M 0.078 0.070 2.9 0.31 0.754 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19. 

  



 

 

Table A3. T-test quality of means before and after matching for high vs improved. 

Variable 
Unmatched/ 
Matched 

Mean 
% 
bias 

% 
reduction 
in bias 

t-test 

Treatment Control t 
p> 
|t| 

Land class (Base: Marginal) 

Small 

U 0.468 0.435 6.6 

23.6 

0.74 0.462 

M 0.467 0.492 -5.1 
-
0.59 

0.553 

Medium 
U 0.170 0.092 23.4 

61.8 
2.56 0.011 

M 0.176 0.146 8.9 0.96 0.337 

Large 

U 0.125 0.064 20.8 

-16.4 

2.28 0.023 

M 0.115 0.185 
-
24.3 

-
2.34 

0.020 

Education (Base: Illiterate) 

Primary 

U 0.246 0.266 -4.5 

-108.8 

-
0.50 

0.619 

M 0.255 0.296 -9.3 
-
1.07 

0.283 

Secondary 

U 0.305 0.243 14.0 

88.5 

1.55 0.121 

M 0.298 0.306 -1.6 
-
0.18 

0.854 

Higher-
secondary 
and above 

U 0.239 0.197 10.2 
-84.1 

1.14 0.257 

M 0.234 0.156 18.9 2.33 0.020 

Asset ownership (Yes = 1, No = 0) 

Livestock 
U 0.736 0.541 41.3 

90.2 
4.64 0.001 

M 0.730 0.711 4.1 0.50 0.615 

Pumpset 
U 0.885 0.537 83.2 

98.3 
9.55 0.001 

M 0.884 0.878 1.4 0.22 0.827 

Tractor 

U 0.167 0.050 38.0 

62.9 

4.09 0.001 

M 0.141 0.183 
-
14.1 

-
1.38 

0.168 

Source: Authors’ calculations based on IFPRI-GoK survey, 2018-19. 

 


	Working Paper No. 321
	Abstract
	Keywords

	Acknowledgements
	Contents
	Introduction
	Literature review
	Data and methods
	Data
	Econometric modelling
	Multinomial logistic regression
	Propensity score matching (PSM)
	Inverse probability weighted with regression adjustment (IPWRA)


	Results and discussion
	Descriptive statistics
	Factors affecting technology intensification – multinomial logit regression
	Impact of technology adoption on farmers’ net income—PSM and IPWARA
	Estimates from propensity score
	Estimates from IPWRA


	Discussion
	Conclusion
	References
	Appendix

