Climate impacts on livestock production in a southern Africa region: model projections to 2050

Dolapo Enahoro, Jason Sircely, Randall Boone, Stephen Oloo, Sirak Bahta, Adam Komarek, Karl Rich

> PIL Program (Online) Meeting 01 October 2020

Climate Southern Africa

- Context & questions
- IMPACT & G-Range models
- Data
- Model simulations
- Relevance
- Next steps

Context

Economic growth in countries in the selected region was 0.2% (South Africa) to 4.5% (Malawi) over 2013 – 2018.

> (Malawi, Mozambique, South Africa, Zambia)

- Livestock demand is projected to grow 70% (South Africa) to 600% (Malawi) by 2050.
- 19.4 million poor in the region derive livelihoods from livestock (Robinson et al. 2011).
- Cropland, rangelands face climate change threats.
- Increased regional focus on development, employment, inequality, climate, policy (SA-TIED program).

Questions

Quantify plausible scenarios of climate effects on the livestock sectors of the selected region to help inform focus of regional development.

Using a global modelling framework:

- What are anticipated demand-induced adjustments to livestock production in the long-term?
 - ➢Pasture, other feed demand
 - Interactions with climate effects
- > What implications for supply of animal source foods?
- Possible trade-offs in regional objectives?

The IMPACT model

A system of linked models of global agriculture simulating multi-country multi-commodity markets, water and crop models

Crops, Livestock, Feeds

Excludes pasture use/availability!

- Inputs
 - •Population, income
 - •Climate
- •Outputs
 - Product demand,production, tradeFood security

Figure 1: Projections of baseline LDF demand (Tarawali et al. 2018 based on Robinson et al. 2015)

The G-Range model

A moderate complexity spatial ecosystem model quantifying global changes expected in rangelands under future climates

Forage production

Anpp

(not used)

Other forage
indicators
Livestock
distributions
Food security

Figure 2: Regional percent changes in selected attributes from ensemble simulation results in 2050 (Boone et al., 2017)

Model simulations linking

- IMPACT
 - Beef, Milk demand, supply, trade
 - Livestock numbers
 - Feed demand, supply
 - 2010 values disaggregated using Herrero et al (2013)

Figure 3: Illustration of simulations linking. Source: Authors

Model simulations linking

• IMPACT

- Beef, Milk demand, supply, trade
- Livestock numbers
- Feed demand, supply
- 2010 values disaggregated using Herrero et al (2013)
- G-Range
 - Forage production
- Joint scenarios in 2050

Figure 3: Illustration of simulations linking. Source: Authors

Model simulations linking

CGIAR

Linked Scenarios

- Economic growth
 - Base
 - Slow
 - Fast
- IPCC climate scenarios
 - RCP 4.5 intermediate
 - RCP 8.5 extreme
 - Using (4) climate models
 - HADGEM (Hadley center, UK)
 - IPSL (Institut IPSL, France)
 - MIROC (Japan COP)
 - GFDL (GFDL-Princeton, USA)

Figure 4: (11) Scenarios of 2050 included in the analyses of climate effects (solid boxes)

Baseline conditions in 2010

- South Africa holds 49% of population and 91% of GDP in region
- 40% of regional cattle stocks and 30% of beef production is in rangelands
- Forages make up bulk of feed demand in rangelands (60 to 99%)
- Rangeland stocks are 2/3 cattle pop in ZAM; imports are 1/3 beef demand in MOZ

	GDP per capita, USD	Population, millions	Beef and Dairy Cattle Stocks, 1000 heads	Cattle Stocks, % in Rangelands	Beef production from rangelands	Beef net imports % demand (exports % production)
Malawi	795.53	14.90	1,070	11%	12%	12%
Mozambique	822.72	23.39	1,277	33%	12%	27%
South Africa	9,470.06	50.13	13,731	41%	37%	1%
Zambia	1,383.80	13.10	3,100	65%	40%	9%
4Cty Region	5,161.62	101.51	19,178	42%	30%	2%

Table 1: Some socio-economics and livestock statistics

Projections of animal source food (ASF) demand

Beef demand in sub-region in 2010 (baseline) and 2050

Figure 5: Beef demand in 2050 under baseline and economic growth conditions

Livestock production & forage supplies

a) Projections of cattle numbers in 2050 (1,000 heads)

Figure 5a: Projections of cattle numbers in 2050 * South Africa estimates * 0.25

Figure 5b: Projections of forage supply in 2050 *Base values * 0.1

a) Intermediate climate change in 2050

Figure 2a: Projections of forage supply (MT/cattle head) under intermediate climate change in 2050, *Base values * 0.1

b) Extreme climate change in 2050

Figure 2a: Projections of forage supply (MT/cattle head) under extreme climate change in 2050, 2010 values scaled * 0.01

Trade-offs under climate change

Table 2: Changes in feed supply, ASF trade and food security indicators in 2050 under climate change (compare to baseline)

	Pasture 'sufficiency'	Stover 'sufficiency'	Feed grains 'sufficiency'	Imports as % beef demand (exports as % beef prod)	Food security (ASF supply per capita)
Malawi	down	down	down	+	down
Mozambique	+	+	+	+	down
South Africa	down	+	down	(down)	+
Zambia	down	+	+	+	No change
4Cty Region	down	+	down	+	down

Early Results

- Under climate change, regional forage supply is more constrained in 2050 (grains as well)
 - up to 100X in some countries/systems compared to 2010
 - feed accessibility, usability could further widen gaps
- Forage constraints could limit expansion of livestock production
 - Imports likely even higher than standard projections
 - Limited capacities to realize opportunities from ASF demand
- Market adjustments lead to higher imports
 - negative effects on food security persist in 2/4 countries
 - non-ag sector (exogenous) growth could mitigate effects but potentially constrains livestock sector further.

Next steps

• This paper

➢ Refine the calculations of feed sufficiency, food security

Better quantify the trade-offs

• Follow-up research

Model feed substitution possibilities*

Disaggregate livestock + forage modeling by production system

Analyze scenarios of investments in forage/feed technology

Investigate agriculture/livestock versus non-agriculture tradeoffs

Contributors

- Jason Sircely (ILRI)
- Randall Boone (Colorado State U.)
- Stephen Oloo (ILRI)
- Sirak Bahta (ILRI)
- Adam Komarek (IFPRI)
- Karl Rich (ILRI)

Acknowledgements

Our work on livestock sector foresight analysis has received financial support from

CGIAR Research Programs:

- Policies, Institutions and Markets
- Livestock
- Climate Change, Agriculture and Food Security

Bi-lateral donors:

- The Bill & Melinda Gates Foundation
- US Agency for International Development

better lives through livestock

ilri.org

ILRI thanks all donors and organizations which globally support its work through their contributions to the CGIAR Trust Fund

Patron: Professor Peter C Doherty AC, FAA, FRS Animal scientist, Nobel Prize Laureate for Physiology or Medicine–1996

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 422 3001 Email ilri-kenya@cgiar.org

ilri.org better lives through livestock

ILRI is a CGIAR research centre

Box 5689, Addis Ababa, Ethiopia Phone +251 11 617 2000 Fax +251 11 667 6923 Email ilri-ethiopia@cgiar.org

ILRI has offices in East Africa • South Asia • Southeast and East Asia • Southern Africa • West Africa

Key References

- Robinson, S., Mason-D'Croz, D., Islam, S., Sulser, T. B., Robertson, R. D., Zhu, T., ... Rosegrant, M. W. (2015). *The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3. IFPRI Discussion Paper 01483* (IFPRI Discussion Paper No. 1483). Washington, DC.
- Boone, R. B., Conant, R. T., Sircely, J., Thornton, P. K., & Herrero, M. (2018). Climate change impacts on selected global rangeland ecosystem services. *Global Change Biology*, 24(3), 1382–1393. <u>https://doi.org/10.1111/gcb.13995</u>

