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FOOD SCIENCE & TECHNOLOGY | RESEARCH ARTICLE

Carotenoid profile and functional properties of 
flour blends from biofortified maize and 
improved soybean varieties for product 
developments
E. O. Alamu1,2*, G. O. Olatunde3, M. O. Adegunwa4, L. A. Adebanjo4, O.C. Awoyinfa4 and 
J. B. Soyoye3

Abstract:  Biofortified maize has received increased attention from a nutraceutical 
perspective because of its bioactive phytochemical components, including carote-
noids. However, biofortified maize is limiting in some amino acids which are present in 
soybeans; hence both crops are used as blends in food products. Thus, this study 
aimed to evaluate the carotenoids and functional properties of maize-soybean flour 
blends as influenced by biofortified maize variety. Flour blends were prepared from 
each maize flour by substituting with 0–30% soybean flour. The flour samples were 
analysed for the carotenoid profile, proximate composition, colour, functional and 
pasting profile using standard methods. Carotenoids varied between the biofortified 
maize flours with xanthophylls (10.93–12.61 µg/g) being the most abundant, espe-
cially zeaxanthin (6.31–6.75 µg/g). Biofortified maize-soybean flour blends had 
lower carotenoid profiles with lower pro-vitamin A (3.79–6.99 µg/g) and xantho-
phylls (2.94–10.59 µg/g). The blends had higher protein, fat and ash contents 
with lower crude fibre and total carbohydrate than 100% biofortified maize 
flours. The blends also had lower bulk density, dispersibility, swelling power and 
pasting viscosities but increased solubility for both maize varieties. Maize flour 
from Sammaz 39 variety had higher pasting viscosities than Sammaz 40 variety. 
Trough, setback and final viscosities of maize-soybean flour blends made with 
S39 maize variety indicate pasting properties that will produce desirable prop-
erties in food products. The results showed that the blends could provide the raw 
material for the production of food products with improved carotenoid and 
protein contents as well as desirable functional qualities.
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1. Introduction
Carotenoids are natural pigments responsible for the red, orange, and yellow hues of plant parts 
(Mellado-Ortega & Hornero-Méndez, 2015). More than 600 carotenoid compounds have been char-
acterized, with β-carotene being the most prominent (Olson & Krinsky, 1995). They are synthesized by 
only plants, bacteria, fungi, and algae, while animals acquire them from their diet (Mellado-Ortega & 
Hornero-Méndez, 2015). Most of the carotenoids in the diet and the human body is represented by β- 
carotene, α-carotene, lycopene, lutein, and cryptoxanthin (Rao & Rao, 2007). Increased consumption 
of a diet rich in carotenoids leads to diminished risk for several degenerative disorders, including 
various types of cancer, cardiovascular or ophthalmological diseases (Mayne, 1996), hence the 
increased interest in carotenoids. They are part of the antioxidant defense system in the human 
organism and are essential dietary sources of vitamin A (Paiva & Russel, 1999; Sies & Stahl, 1995).

Maize (Zea Mays) is an essential staple cereal crop that naturally accumulates carotenoids in the 
edible seed endosperm, which makes it an obvious target for biofortification projects. Yellow maize 
naturally contains the xanthophylls, lutein and zeaxanthin, as major carotenoids, with much lower 
levels of the provitamin A carotenoids β-carotene and β-cryptoxanthin (Rodriguez-Amaya et al., 
2011). Maize has a great significance as human food, animal feed, and diversified uses in a large 
number of industrial products (Gupta, 2011). Biofortified maize has received increased attention 
from a nutraceutical perspective because it contains several bioactive photochemical such as 
carotenoids, tocopherols, phytic acid and phenolic compounds (Hu & Xu, 2011; Zilić et al., 2012).

Biofortification refers to micronutrient enrichment of staple crops through plant breeding to 
address the negative economic and health consequences of vitamin and mineral deficiencies in 
humans (Nestel et al., 2006). The goal of biofortification strategies is to increase the natural 
content of pro-vitamin A carotenoids through conventional breeding and transgenic approaches 
in staple crops. Biofortification has made significant progress towards increasing provitamin A 
carotenoid content in maize varieties and other crops (Ortiz et al., 2016). Golden Rice producing 
β—carotene (Paine et al., 2005) and Multivitamin Corn producing β -carotene, zeaxanthin, lutein, 
lycopene, ascorbic acid, and folate (Naqvi et al., 2009) are examples of biofortification of 
cereals. Such crops have the potential to improve human health directly in areas predominantly 
reliant on cereals for nutrition (Farré et al., 2011, 2015), they can also improve animal health 
when used as feed (Nogareda et al., 2016) and could pass those benefits on to humans who 
consume meat and other products from these animals. However, despite the success of maize 
biofortification to improve its carotenoid profile, maize is limiting in lysine and tryptophan but 
rich in methionine (Enwere, 1998). An approach to avoid nutritional problems in populations 
consuming large amounts of maize products is protein enrichment of maize flour used in the 
preparation of such products.

Soybeans have been used in various foods to mitigate the shortage of protein (Ene-Obong & 
Izuchukwu, 1991; Sanni & Akinlua, 1996). Soybeans are rich in lysine, which is deficient in cereals, 
while cereals have sufficient sulphur-containing amino acids, which are limiting in legumes. Hence, 
maize and soybeans complement one another in providing limiting amino-acids; therefore, both 
crops are used as blends or composites in food products.

Composite flours may be blends of wheat and other flours for the production of baked products, 
kinds of pasta, porridges, and snack foods; or non-wheat blends of flours or meals, for the same 
purpose (Chandra et al., 2015). Composite flours have been reported to have improved functional 
properties and, consequently, the quality of food products (Chandra et al., 2015).
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Functional properties are the fundamental physico-chemical properties that reflect the complex 
interaction between the composition, structure, molecular conformation, and physico-chemical 
properties of food components together with the nature of the environment in which these are 
associated and measured (Kinsella & Melachouris, 1976).

Recently, breeders at the International Institute for Tropical Agriculture in Ibadan, Nigeria, 
developed some biofortified maize and improved soybean varieties, such as the improved orange 
maize varieties SAMMAZ 39 and SAMMAZ 40 and improved soybean TGx 1989–19 F. The carotenoid 
and functional characterization of flour blends made from these improved varieties is vital for 
appropriate product development applications. Therefore, the objective of this study was to 
determine the carotenoid profile and functional properties of composite flour produced from 
improved orange-maize and soybean varieties.

2. Materials and methods

2.1. Materials
Two biofortified orange-maize varieties (SAMMAZ 39 and SAMMAZ 40) and improved soybean 
variety (TGx 1989–19 F) were obtained from the International Institute of Tropical Agriculture, 
Ibadan, Nigeria.

2.2. Preparation of biofortified maize flour
Maize flour was produced as described by Okoruwa (Okoruwa, 1995). Orange-maize kernels were 
sorted to remove stones, dirt, and other foreign materials. Water was sprinkled on cleaned maize 
to allow absorption of water by the grains, toughening the pericarp and germ, so they do not 
splinter during milling. The grain was left for about 10 min before dehulling and milling. The flour 
was sieved (250 μm) and sealed in polyethylene for further use.

2.3. Preparation of soybean flour
Soybean flour was produced as described by Oluwamukomi and Oluwalana (Oluwamukomi & 
Oluwalana, 2005). Soybean grains (Glycine max L Merrill) were sorted, washed and boiled in 
water at 100 °C for 30 min. The grains were dehulled manually, oven-dried at 100 °C for 4 h, 
milled to obtain the flour, sieved (300 μm) and packaged until ready for further use.

2.4. Preparation of biofortified maize-soybean flour blends
Flour blends were prepared on a weight percent ratio by substituting maize flour with soybean 
flour at 0, 10, 20, 30 and 100% levels; the samples were labelled M100S0, M90S10, M80S20, M70S30, 
M0S100 respectively.

3. Analysis of flours

3.1. Carotenoid profile
Flour sample (0.6 g) was weighed in a screw cap tube. Ethanol (6 ml) containing 0.1% butylhy-
droxytoluene (BHT) was added, vortexed for 1 min and allowed to stand for 5 min in a water bath 
at 85 °C. The tube was taken out of the water bath, and 0.5 ml of 80% KOH was added. The mixture 
was vortexed for 30 s, allowed to stand for 5 min in a water bath at 85 °C, vortexed for another 30 
s and returned to the water bath (85 °C) for another 5 min. The tube was removed from the water 
bath and placed into ice, cold H20 (3 ml) and hexane (3 ml) were added. The mixture was vortexed 
for 10 s and centrifuged for 10 s at 1000 rpm. The upper phase was pipetted into a 50 ml 
concentrator tube. Another 3 ml of hexane was added, vortexed, centrifuged and pipetted three 
times repeatedly. The extract was concentrated in the evaporator at 40 °C using N2 gas for 25 min. 
Immediately before the injection, the sample was dissolved in 1 ml of 50:50 DCE: MeOH and 
vortexed for 10 sec. It was transferred into HPLC vials, introduced into the HPLC equipment, and 
ran for major carotenoids. The major carotenoids were identified from the chromatogram pro-
duced, and the value of each carotenoid was calculated (Kimura & Rodriguez-Amaya, 2004).
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3.1.1. Calculation of carotenoidsCs ¼
AxXCxXtotalvolumeofextract mlð Þ

AsXsampleweight gð Þ

Where Cx = concentration of carotenoid X (µg/ml)

Ax = peak area of carotenoid X

Cs = concentration of the standard (µg/ml)

As = peak area of the standard

3.1.2. Estimation of provitamin A carotenoids
Total provitamin carotenoids (pVAC) was calculated as described in Awoyale et al. (2018) using the 
formula below:

Total pVAC = βC + (½)(9-cis-βC) + (½)(13-cis-βC) + (½)(βCX)

where βC = β-carotene, 9-cis- βC = 9-cis-β-carotene, 13-cis- βC = 13-cis-β-carotene, βCX = β- 
cryptoxanthin

3.2. Proximate composition
Moisture, protein, crude fat, crude fibre and ash contents were determined according to AOAC 
(2005). Total carbohydrate content was calculated by the difference between 100 and sum of 
moisture, protein, crude fat, crude fibre and ash contents.

3.3. Functional properties

3.3.1. Bulk density
This was determined by the method of Wang & Kinsella (1976). About 10 g of flour blends were 
weighed into a 50 ml graduated measuring cylinder. The flour blends were packed by gently 
tapping the cylinder on the benchtop. The volume of the flour blends was recorded.

Bulkdensity
g

ml

� �
¼

Weightofflour gð Þ
Volumeofflouraftertapping mlð Þ

3.3.2. Water absorption capacity
The method used is as described by Beuchatt (Beuchat, 1977). One gram of flour sample was 
mixed with 10 ml of distilled water in a centrifuge tube and allowed to stand at room temperature 
(30 ± 2 °C) for 1 h. The mixture was centrifuged at 2000 rpm for 30 min, and the volume of water or 
the sediment-water was measured. Water absorption capacity was calculated as volume (ml) of 
water absorbed per gram of flour.

3.3.3. Swelling power and solubility index
The swelling power and solubility index was determined, as described by Oladele and Aina (Oladele 
& Aina, 2007). One gram of the flour was mixed with 10 ml of distilled water in a centrifuge tube 
and heated at 80 °C for 30 min while shaking continuously. The tube was removed from the bath, 
wiped dry, cooled to room temperature and centrifuged for 15 min at 2200 rpm. The supernatant 
was evaporated, and the dried residue weighed to determine the solubility using the formula:

Solubility %ð Þ ¼
Weightofdriedsampleinsupernatant

Weightoforiginalsample
x100 

The swollen sample (paste) obtained from decanting the supernatant was also weighed to 
determine the swelling power. Swelling power was calculated using the formula:
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Swellingpower ¼
Weightofwetmasssediment
Weightofdrymatterinpaste 

3.3.4. Dispersibility
This was determined by the method described by Kulkarni et al. (Kulkarni et al., 1991). Ten grams 
of flour sample was suspended in 100 ml measuring cylinder, and distilled water was added to 
reach a volume of 100 ml. The mixture was stirred vigorously and allowed to settle for 3 h. The 
volume of settled particles was recorded and subtracted from 100. The difference was taken as 
percentage dispersibility.

3.3.5. Colour properties
The colour of the flour was measured using a Konica Minolta CR-210 chromameter. The colori-
meter was calibrated using a standard white plate. Samples were placed in the sample holder for 
measurement. Colour values were recorded as L*(lightness), a* (redness), and b* (yellowness).

3.3.6. Pasting properties
It was determined using the Rapid Visco Analyzer (RVA Series 4, Newport Scientific P.T.V., 
Warriewood, Australia). About 3.5 g of the flour was weighed to the nearest 0.01 g into a weighing 
vessel. About 2.5 ml of distilled water was dispensed into a test canister. The sample was 
transferred onto the water surface in the canister. A paddle was placed into the canister, and its 
blade was rigorously jogged through the sample up and down 10 times. Jogging was repeated to 
ensure that the sample remaining on the paddle was dissolved. The paddle and canister assembly 
were inserted firmly into the paddle coupling so that the paddle is appropriately centred. The 
measurement cycle was initiated by depressing after initiation and terminated automatically. 
From the recorded viscosity, the following parameters were read: peak viscosity, trough, break-
down, setback, final viscosity, peak time, and pasting temperature (IITA, 2001).

4. Statistical analysis
Data were analyzed with Statistical Package for Social Science (SPSS) v.18, using one-way analysis 
of variance (ANOVA) at p < 0.05. Where there is a significant difference, Duncan’s multiple range 
test was used to separate the means.

5. Results and discussion

5.1. Carotenoid profile of biofortified maize-soybean flour blends
Tables 1 and 2 show the carotenoid profiles of maize-soybean flour blends. Xanthophylls (lutein 
and zeaxanthin) (Table 2) were the most abundant carotenoids in 100% maize flour (10.93– 
12.61 µg/g) and 100% soybean flour (11.23 µg/g). Sammaz 40 (S40) maize variety had higher 
xanthophylls (12.61 µg/g) than Sammaz 39 (S39) (10.93 µg/g). Flours from 100% maize and 100% 
soybean were richer in zeaxanthin (6.08–6.75 µg/g) than in lutein (4.62–5.85 µg/g).

Beta and Hwang (Beta & Hwang, 2017) reported a similar trend of relative abundance of 
xanthophylls in flour from traditional orange maize from Malawi; however, the flour contained 
more lutein than zeaxanthin. S39 maize flour had higher β-cryptoxanthin, α-carotene and 9-cis-β- 
carotene; however, S40 flour was higher in 13-cis-β-carotene, trans-β-carotene, total β-carotene 
and total provitamin A carotenoids (Table 1). The values for carotenoids in this study were higher 
than for yellow maize grain flour (Awoyale et al., 2018); the higher values suggest evidence of 
improved carotenoids content as a result of biofortification. On the other hand, lower carotenoid 
values in this study relative to orange maize flour (Beta & Hwang, 2017) may be due to varietal and 
environmental factors. Meanwhile, the variation in carotenoid profiles between S39 and S40 maize 
flours may be due to variation in the bio-engineering approach and procedures involved during the 
biofortification of this golden crop (Giuliano, 2017). Carotenoids play significant roles in human 
health by preventing several diseases (Fraser & Bramley, 2004). The primary function of dietary 
carotenoids is their provitamin A activity. Since it has been suggested that 21 µg instead of 12 µg 
of β-carotene have the same vitamin A activity as 1 µg (Fraser & Bramley, 2004), consumption of 
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products made with biofortified maize flour in this study may contribute to controlling vitamin A 
deficiency as a food-based approach. Despite the high xanthophyll carotenoids in the soybean 
used in this study, generally, for both varieties of maize, substitution with soybean flour signifi-
cantly (p < 0.05) reduced the carotenoid profiles of the maize-soybean flour blends.

5.2. Proximate composition of biofortified maize-soybean flour blends
The proximate composition of maize-soybean flour blends is presented in Table 3. The range of 
moisture content (MC) for 100% maize flour was 7.33% (S40) to 9.13% (S39), while 100% soybean 

Table 2. Xanthophylls profile (µg/g) of maize-soybean flour blends as influenced by bio-for-
tified maize variety
Flour blend Lutein Zeaxanthin Total xanthophylls

S39 S40 S39 S40 S39 S40

M100S0 4.62b 5.85e 6.31d 6.75e 10.93b 12.61e

M90S10 4.68b 1.51a 5.89b 1.43a 10.58b 2.94a

M80S20 4.57b 3.19 c 6.02 c 3.27 c 10.59b 6.47 c

M70S30 2.47a 2.61b 4.44a 2.60b 6.91a 5.22b

M0S100 5.15 c 5.15d 6.08 c 6.08d 11.23b 11.23d

Mx:Sy Maize:Soybean, S39: Sammaz 39 maize variety, S40: Sammaz 40 maize variety 
Values are means of triplicate analysis 
Mean values followed by different alphabets within a column are significantly (p < 0.05) different 

Table 3. Proximate composition of maize-soybean flour blends as influenced by bio-fortified 
maize variety
Flour 
blend

Moisture 
content 

(%)

Crude 
protein 

(%)

Crude fat 
(%)

Crude ash 
(%)

Crude fibre 
(%)

Total 
carbohydrate 

(%)

S 39 S40 S 39 S40 S 39 S40 S 39 S40 S 39 S40 S 39 S40
M100S0 9.13d 7.33 c 5.62a 3.21a

4.87a 9.61a 1.36a 1.45a 1.68e

1.18 c 77.34e 77.22e

M90S10 8.75 c 4.35b 18.12b 10.00b

8.36b 13.58 c 1.72b 1.58b 1.13d

1.13 c 61.92d 69.25d

M80S20 8.10a 4.01ab 20.00 c 12.16 c

10.00 c 14.05d 1.99d 1.62bc 0.98 c

1.09bc 58.39 c 66.02 c

M70S30 8.00a 3.70a 20.40d 14.34d

10.55 c 14.15d 2.00d 1.65 c 0.85b

1.02b 41.80a 55.14b

M0S100 8.47b 8.47d 34.28e 34.28e

12.18d 12.18b 1.92 c 1.92d 0.45a

0.45a 42.70b 42.70a

Mx:Sy Maize:Soybean, S39: Sammaz 39 maize variety, S40: Sammaz 40 maize variety 
Values are means of triplicate analysis 
Mean values followed by different alphabets within a column are significantly (p < 0.05) different 
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flour had 8.47% moisture. There was a significant (p < 0.05) decrease in MC with an increase in 
substitution of maize flour with soybean flour. The lowest (3.70%) and highest (9.13%) MC were 
found in M(S40)70S30 and M(S39)100S0, respectively. The MC of the flour samples were within the 
FAO recommended limit for the preservation of powdery foods. The values were also within the 
range reported by Akubor and Onimawo (Akubor & Onimawo, 2003). The low MC of foods will 
enhance their storage stability by avoiding mould growth and other unfavourable biochemical 
reactions (Singh et al., 2005).

Generally, there was a significant (p < 0.05) increase in protein, fat and ash contents while 
crude fibre and total carbohydrate decreased as the level of soybean substitution increased in 
the blends. Consequently, maize flour substituted with 30% soybean flour had the highest 
protein, fat and ash contents, while blends containing 10% soybean flour had the highest fibre 
and total carbohydrate. However, the protein content (PC) in S40 blends were higher than in 
the 100% soybean flour. Expectedly, the highest PC (34.28%) was found in 100% soybean flour, 
while the lowest was found in 100% maize flour [3.21% (S40)-5.62% (S39)]. The protein content 
of the blends indicated that incorporation of biofortified maize with soybean flour improved the 
protein content of the flour samples; therefore, it is expected that products made with these 
blends may be used in the management of protein-energy malnutrition which is prevalent in 
developing countries of the world (Akinola et al., 2015). Akubor and Onimawo (Akubor & 
Onimawo, 2003) also reported an increase in fat content as soybean flour was included. 
Although raw soybeans contain about 20% fat, the fatty acid composition is considered to 
be healthy (Wang et al., 2003).

The ash contents of the blends indicate an improvement in mineral contents and hence nutrient 
due to substitution with soybean flour. Edema et al. (Edema et al., 2005) reported a similar trend 
for maize-soybean flour blends. The crude fibre content of maize-soybean flour blends in this study 
was lower than reported by Edema et al. (Edema et al., 2005). The presence of fibre in food 
contributes bulk to food, facilitates bowel movement and prevention of many gastrointestinal 
diseases in humans (Satinder et al., 2011).

5.3. Functional properties of biofortified maize-soybean flour blends
Table 4 shows the functional properties of biofortified maize-soybean flours. For both varieties of 
biofortified maize, 100% maize flour had the highest bulk density (0.82–1.13 g/ml), dispersibility 
(31.62–32.04%), and swelling powers (12.69–23.39 °C) while 100% soybean flour had the lowest 
values. The highest solubility (3.16%) was observed in 100% soybean flour. The increase in 
substitution of biofortified maize flour with soybean flour significantly (p < 0.05) reduced the 
bulk density, dispersibility, and swelling power but increased the solubility for both maize varieties. 
The functionality of foods is the characteristics of food ingredients other than nutritional quality, 
which influences its utilization (Mahajan & Dua, 2002). The result in this study was similar to that of 
Akubor and Onimawo (Akubor & Onimawo, 2003), who recorded a decrease in bulk density as 
soybean flour was added. Bulk density is influenced by particle size and starch polymers structure 
(Plaami, 1997). Lower bulk density of maize-soybean blends relative to each of maize and soybean 
flour is desirable; this is expected to contribute to lower dietary bulk, ease of packaging and 
transportation (Aluge et al., 2016). Dispersibility measures how individual molecules of flours, 
disperse and homogenize within a medium of dispersion (Olapade et al., 2014). The reduced 
dispersibility of the blends suggests lower reconstitution in water (Oladele & Aina, 2007).

The trend in water absorption capacity (WAC) of the flours differed between the maize varieties; 
the values reduced with soybean substitution in S39 variety while the values increased for S40 
variety. Water absorption capacity is the ability of a product to associate with water under a water 
limiting condition (Ajatta et al., 2016). Akubor and Onimawo (Akubor & Onimawo, 2003) observed 
an increase in WAC, while Edema et al. (Edema et al., 2005) reported a decrease in WAC with 
increased proportions of soybean flour. The variations in trend suggest that the influence of 
soybean flour on the WAC depended on the variety of maize used in each of the studies. The 
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observed variations between the maize varieties in the present study may be due to different 
protein concentrations (Table 3), their degree of interaction with water and conformational 
characteristics (Butt & Batool, 2010). The relatively high WAC of all the flours (169.46–193.31%), 
particularly the blends (183.72–191.73%), suggests that they can be used in the formulation of 
dough-based and baked food products.

Generally, the solubility of the flours except for 100% soybean flour (3.16%) was low (1.06– 
1.90%). Water solubility measures the number of free molecules leached out from the starch 
granules on the addition of excess water and thus reflects the extent of starch degradation 
(Onwuka, 2005). Lower values of solubility imply the existence of strong bonding forces within 
the flour granules arising from coagulated protein or fat that form complexes with amylose 
preventing it from leaching the granules (Sung & Stone, 2003). Factors capable of influencing 
the solubility of flours include flour composition and particle size, density and pH, processing 
conditions, and storage conditions (Mirhosseini & Amid, 2013).

The swelling power of the maize and soybean flours (single and blends) increased with an 
increase in temperature for both maize varieties. However, there was a decrease in swelling 
power with an increased proportion of soybean flour. The results compared favourably with 
that of maize-soybean flour blends reported by Edema et al. (Edema et al., 2005). The 
swelling power of flour granules is an indication of the extent of associative forces within 
the granules (Moorthy & Ramanujam, 1986). The swelling power of flours depends on the size 
of particles, variety, and processing methods, or unit operations (Chandra et al., 2015). It also 
depends on the temperature, availability of water, species of starch, and other carbohydrates 
and proteins (Sui et al., 2006).

5.3.1. Colour properties
Maize flours have lower lightness (L*) (84.53–85.39) but higher yellowness (b*) (21.61–24.77) than 
soybean flour (L*:86.39, b*:14.72) (Table 5). Maize flours substituted with 10% soybean flour had 
the highest L* and b* values. There was a significant (p < 0.05) decrease in L* and b* with an 
increase in soybean flour of the blends. Hwang et al. (Hwang et al., 2016) reported lower L* (79.66– 
82.17) but higher b* (35.51–43.05) values for orange maize kernels from different locations in 
Malawi. In addition to differences in the varietal composition of orange maize used in both studies, 
the differences in colour values may be due to the differences in the orange maize form used. For 
instance, orange maize flour used in the present study has a lower moisture content (7.33–9.13%) 
(Table 3), compared to fresh maize kernels with higher moisture content (12.06–17.77%) studied 
by Hwang et al. (Hwang et al., 2016).

Table 5. Colour properties of maize-soybean flour blends as influenced by bio-fortified maize 
variety
Flour blend L* a* b*

S39 S40 S39 S40 S39 S40
M100S0 85.39b 84.53b 0.83d −0.56a 24.77e 21.61d

M90S10 86.41 c 85.69 c 0.56 c −0.51a 22.26d 20.90 c

M80S20 86.77d 83.65b 0.39b −0.24b 20.73 c 17.95b

M70S30 84.08a 82.43a 0.52 c 0.13 c 20.54b 17.84b

M0S100 86.39 c 86.39 c 0.23a 0.23d 14.72a 14.72a

Mx:Sy Maize:Soybean, S39: Sammaz 39 maize variety, S40: Sammaz 40 maize variety 
Values are means of triplicate analysis 
Mean values followed by different alphabets within a column are significantly (p < 0.05) different 
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5.3.2. Pasting properties
Maize flour from S39 variety had higher pasting viscosities (120–745 RVU) than S40 variety (7.41– 
143 RVU) (Table 6). Maize flour from each biofortified variety had higher pasting viscosities than 
soybean flour (9.00–27.00 RVU). The lower pasting viscosities of soybean flour, a richer source of 
protein than maize, is expected because the presence of protein restricts starch swelling and 
pasting. The addition of soybean flour to maize flour significantly (p < 0.05) reduced the pasting 
viscosities of the flour blends.

Lower peak viscosities (PV) of maize-soybean flour blends indicate lower strength of pastes 
formed during gelatinization (Maziya-Dixon et al., 2004; Sanni et al., 2004). The difference in PV 
of the flours from the two maize varieties indicates that there were differences in the rate of 
water absorption and starch granule swelling during heating (Ragaee & Abdel-Aal, 2006). 
Higher trough viscosity (TV) of maize-soybean flour blends made with S39 maize variety 
suggests a higher ability of their paste to withstand breakdown during cooling (Tharise et al., 
2014). S39 maize-soybean flour blends may be less resistant to heat and shearing during 
cooking due to their high breakdown viscosity values (Adebowale et al., 2005). High final 
viscosity (FV) of flours from S39 maize and its soybean blends indicates their ability to form 
a viscous paste upon cooling.

In contrast, lower FV of flours and soybean blends from S40 maize indicates the lower resistance 
of their paste to shear stress during stirring (Liu, 1997). Formulations made with S39 maize flour 
and its soybean blends have higher setback viscosities. Consequently, they may produce meals 
with less retrogradation; this is desirable because of the adverse effects of retrogradation on the 
sensory properties of food products (Asaam et al., 2018)).

The range of peak time and pasting temperature for maize flours was 7.00–7.03 min and 83.65– 
86.95 °C, respectively, while the values for soybean flour were 2.47 min and 0.00 °C respectively.

There was no significant (p > 0.05) difference in the peak time of maize flours and their 
soybean blends, while the peak time of soybean flour was significantly (p < 0.05) lower. Maize- 
soybean flour blends with significantly (p < 0.05) lower pasting temperatures may require lower 
energy costs and also ensure the stability of food components in their products (Kaur & Singh, 
2005; Shamelis et al., 2006). The pasting properties of biofortified maize-soybean flour blends 
were generally higher than the values reported for maize-soybean flour blends by Edema et al. 
(Edema et al., 2005).

6. Conclusions
Carotenoid profiles varied between the flours from Sammaz 39 and Sammaz 40 biofortified 
maize. Xanthophylls were the most abundant carotenoids in 100% maize flour, with zeaxanthin 
more abundant than lutein. Despite the high xanthophyll carotenoids in the soybean, substitu-
tion with soybean flour significantly reduced the carotenoid profiles of the maize-soybean flour 
blends. Nevertheless, the consumption of products made with biofortified maize flours and 
their soybean blends in this study may contribute to controlling vitamin A deficiency as a food- 
based approach.

Biofortified maize-soybean blends had higher protein, fat and ash contents with lower crude 
fibre and total carbohydrate than 100% biofortified maize flours. The biofortified maize-soybean 
flours may be used in the management of protein-energy malnutrition due to their improved 
protein contents relative to the 100% maize flours.

Substitution of biofortified maize flour with soybean flour significantly reduced the bulk 
density, dispersibility, and swelling power but increased the solubility for both maize varieties. 
Maize flour from Sammaz 39 variety had higher pasting viscosities than Sammaz 40 variety. 
The pasting viscosities of biofortified maize-soybean flour blends were lower than for the 
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maize flours. Trough, setback and final viscosities of maize-soybean flour blends made with 
S39 maize variety indicate pasting properties that will produce desirable properties in food 
products.
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