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Boolean Network Control with Ideals

I H Dinwoodie

Portland State University

January 2021

Abstract

A method is given for finding controls to transition an initial state
x0 to a target set in deterministic or stochastic Boolean network control
models. The algorithms use multivariate polynomial algebra. Examples
illustrate the application.

1 Introduction

A Boolean network is a dynamical system on d nodes (or coordinates) with
binary node values, and with transition map F : {0, 1}d → {0, 1}d. The
coordinate maps F = (f1, . . . , fd) may use binary parameters u ∈ {0, 1}c

that can be adjusted or controlled at each step, so the image can be writ-
ten F (x,u) and F takes {0, 1}d+c → {0, 1}d, usually written in logical nota-
tion. Then a standard problem is to find ways to make a given initial point
x0 move to a target set A ⊂ {0, 1}d in M steps with a sequence of controls
u0(x0),u1(x1), . . . ,uM−1(xM−1). That is, we seek to achieve:

F (x0,u0) = x1

F (x1,u1) = x2

. . .

F (xM−1,uM−1) = xM ∈ A

which is called an M-step control.
It is of interest to consider stochastic dynamics as well [15], where the map

F is chosen randomly from a collection of transformations Fw : {0, 1}d+c →
{0, 1}d, w = 1, 2, . . . , τ and this extension is treated. The index w, flagging which
transformation, is selected independently at each time step for the methods here.

Methods below for the existence and construction of controls are based on
multivariate polynomials, or commutative algebra. A set of binary states is
described as the roots of a polynomial system called an “ideal.” Polynomial
operations for logic operations go back to [2] and [19] and recent developments
are described in, for example, [9]. The algebra involved is standard, with clear
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expositions in [4] and [14]. Software packages for implementing the algorithms
are [1], [5] (used for calculations in the examples) and [8].

Control problems in discrete dynamics are well-established, going back to [11]
and [17], so there are several approaches. Semi-tensor algebra ([3], [15]) embeds
the process in a high-dimensional linear space. Dynamic programming [16] and
aggregation [18] may help with large problems. The polynomial methods will
also be useful as they are very clear and may handle some large problems as
well.

2 Existence of Controls

First we describe an algorithm for determining if a control sequence of length
M exists for moving starting state x0 into set A. In the next section we give an
algorithm for finding controls to move the starting state forward.

Suppose we have an integer τ of possible Boolean transition maps Fw where
the index w says which map is chosen randomly (and independently at each
step) from an indexing set {1, 2, . . . , τ}. The random selection of a sequence
w1, w2, . . . , wM will assume independent coordinates with each coordinate dis-
tribution giving positive probability to each value. The controls will use the
present state and the current outcome of the transformation index process
(u0 = u0(x0, w1),u1 = u1(x1, w2), . . .), a form of feedback control.

The polynomial algebra is set up with indeterminates for the c controls and
for both forward and backward node values, giving a total of 2d + c variables,
similar to [7]. The algebraic operations find preimages of the transition maps in
alternating sets of indeterminates. We will use finite field coefficients for speed
and memory efficiency, although the complex numbers can also be used and
simplify some of the theory (being algebraically closed).

Define the ring of polynomials

R := K[s1, . . . , sd, v1, ..., vc, t1, . . . , td, ] = K[s,v, t]

with field coefficients K = Z2, just binary numbers.
Intuitively, the s are for starting states, the v are for controls which may use

them, and the t are the image variables under one of the transformations (but
which of s and t is the domain and which is the image alternates). The indeter-
minates are not mathematically the same as arbitrary states x or controls u, so
the variable notation in the polynomial ring is slightly different for correctness.
If I is an ideal in the polynomial ring R, the operation I ∩K[s] is “elimination,”
which takes the subset of I only involving indeterminates s (elimination issues
related to finite field coefficients are settled in [6]). This operation is the hard
or “complex” one in the method.

Let A be a target set of interest, possibly but not necessarily an attractor.
In applications this will be a collection of desirable outcomes of a biological
model, such as health wellness. Realistic current examples are shown in [13],
where the number of states d can exceed 50. Write the initial state x0 =
(x0,1, x0,2, . . . , x0,d).
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Define ideals

I01 = 〈s21 − s1, . . . , s
2
d − sd, v

2
1 − v1, . . . , v

2
c − vc,

t21 − t1, . . . , t
2
d − td〉

Fw
svt = 〈fw

1 (s,v)− t1, f
w
2 (s,v)− t2, . . . , f

w
d (s,v)− td〉

Fw
tvs = 〈fw

1 (t,v)− s1, f
w
2 (t,v)− s2, . . . , f

w
d (t,v)− sd〉

IA = ∩x∈A〈t1 − x1, . . . , td − xd〉

I0,s = 〈s1 − x0,1, . . . , sd − x0,d〉

I0,t = 〈t1 − x0,1, . . . , td − x0,d〉

I0 = I0,s + I0,t.

Above, the polynomial fw
1 (s,v) is a polynomial representation of the first coor-

dinate map in Fw = (fw
1 , fw

2 , . . . , fw
d ).

Define the ideal B0 = IA and subsequent “backward” ideal Bw
1 for each

transformation index w by

Bw
1 = (Fw

svt +B0 + I01) ∩K[s],

then for the preimage of A over all w:

B1 = B1
1 +B2

1 + · · ·+Bτ
1 .

Continue recursively for a sequence of backwards ideals B1, B2, B3, . . . , BM in
alternating sets K[s],K[t] :

Bw
i = (Fw

ts +Bi−1 + I01) ∩ K[t], i even, (1)

Bw
i = (Fw

st +Bi−1 + I01) ∩ K[s], i odd, (2)

Bi =

τ∑

w=1

Bw
i , i = 1, 2, 3, . . . ,M. (3)

Now we state the usefulness of the Bi.

Theorem 1 M-step controls for starting point x0 exist with probability 1 if and
only if BM ⊂ I0.

Remark Containment of the ideals is established simply using division by a
Groebner basis for I0.
Proof The ideal Bw

1 is the set of polynomials with roots equal to the set

{x : ∃ux : Fw(x,ux) ∈ A}

by the Extension Theorem on the elimination operation (the finite field K = F2

is not algebraically closed but adding I01 still makes it valid). Then the ideal
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sum B1 = B1
1 + B2

1 + · · · + Bτ
1 corresponds to the intersection of sets, written

as V (B1):

V (B1) = ∩w{x : ∃ux,w : Fw(x,ux,w) ∈ A}

= {x : ∀w ∃ux,w : Fw(x,ux,w) ∈ A}.

Now a point x can map to A for every possible randomly selected w with some
control u(x, w) if and only if x ∈ V (B1). Thus the set of points with a certain
1-step control is B1. For the corresponding set V (B1) to contain the point x0 it
is necessary and sufficient that B1 ⊂ I0,s, which is equivalent to B1 ⊂ I0. The
argument repeats for B2, B3, . . . , BM , establishing them as controllable sets for
all future transformation indices.

Now we consider trajectories forward from the initial state x0. First, we find
possible values of xi, for a given sequence of transformations w1, w2, . . . , wM .

If M is odd then the backward M-step ideal BM is in s variables like B1.
So for odd M define ideal X0 = I0,s for the starting point and “forward” Xsi
ideals (intentionally plural) for possible states x:

Xs1 = (X0 + Fw1

svt +BM−1 + I01) ∩K[t]

Xs2 = (Xs1 + Fw2

tvs +BM−2 + I01) ∩K[s]

· · ·

XsM = (XsM−1 + FwM

svt +B0 + I01) ∩K[t].

If M is even, define X0 = I0,t

Xs1 = (X0 + Fw1

tvs +BM−1 + I01) ∩K[s]

Xs2 = (Xs1 + Fw2

svt +BM−2 + I01) ∩K[t]

· · ·

XsM = (XsM−1 + FwM

svt +B0 + I01) ∩K[t].

Now the use of the Xsi ideals is that each coordinate xi in a possible tra-
jectory x0,x1, . . . ,xM ∈ A is a root of polynomials in Xsi. Similarly, one can
construct ideals for effective control values at each time step.

This result gives possible values of the coordinates at each time step. The
complete trajectory with controls ui is described next.

3 Construction of Controls

With the ideal containment BM ⊂ I0, it remains to find the controls that move
x0 forward into A. The controls and the path may not be unique but the
procedure below will identify all possibilities for randomly chosen sequences of
Boolean transformations.

In the ideal operations that follow, the ideals in their respective subrings
after elimination are 0-dimensional (for a finite number of roots) and radical,
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and each prime component corresponds to a particular solution. The notation
I[p1] will denote any prime component of the prime decomposition, essentially
one solution in the ideal format.

If M is odd then the backward M-step ideal BM is in s variables like B1. So
for odd M define ideal X0 = I0,s for the starting point and trajectory ideals for
controls u and states x:

UX(0,1) = (X0 + Fw1

svt +BM−1 + I01) ∩K[v, t] (4)

U0 = UX(0,1)[p1] ∩K[v]

X1 = UX(0,1)[p1] ∩K[t]

UX(1,2) = (X1 + Fw2

tvs +BM−2 + I01) ∩K[s,v]

U1 = UX(1,2)[p2] ∩K[v]

X2 = UX(1,2)[p2] ∩K[s]

· · ·

UX(M−1,M) = (XM−1 + FwM

svt +B0 + I01) ∩K[v, t]

UM−1 = UX(M−1,M)[pM ] ∩K[v]

XM = UX(M−1,M)[pM ] ∩K[t].

If M is even, define X0 = I0,t and trajectory ideals

UX(0,1) = (X0 + Fw1

tvs +BM−1 + I01) ∩K[s,v] (5)

U0 = UX(0,1)[p1] ∩K[v]

X1 = UX(0,1)[p1] ∩K[s]

UX(1,2) = (X1 + Fw2

svt +BM−2 + I01) ∩K[t,v]

U1 = UX(1,2)[p2] ∩K[v]

X2 = UX(1,2)[p2] ∩K[t]

· · ·

UX(M−1,M) = (XM−1 + FwM

tsv +B0 + I01) ∩K[t,v]

UM−1 = UX(M−1,M)[pM ] ∩K[v]

XM = UX(M−1,M)[pM ] ∩K[t].

A trajectory solution to the ideals UX(i−1,i) is a sequence
(u0,x1), (u1,x2), . . . , (uM−1,xM ) such that (u0,x1) solves UX(0,1), (u1,x2)
solves UX(1,2), and in general (ui−1,xi) solves UX(i−1,i), i = 1, . . . ,M .

Note that the control ui−1, i = 1, . . . ,M depends only on the transformation
indices w1, . . . , wi and states x0,x1, . . . ,xi−1.

Theorem 2 For any starting state x0 such that BM ⊂ I0, solutions to the
trajectory ideals for choices of prime component indices p1, p2, . . . , pM give sure
trajectories of controls and states (u0,x1), . . . , (uM−1,xM ) with xM ∈ A for
any sequence w1, w2, . . . , wM of randomly selected transformation indices.
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Proof The roots of the set of polynomials UX(0,1) in the relevant indetermi-
nates are the (u0,x1) values (which depend on w1 and x0) that start at x0 and
arrive in the next controllable set BM−1 under Fw1(x0,u0) = x1 by the Ex-
tension Theorem of algebraic geometry ([4]). Then Ui−1 and Xi are the ideals
for the coordinate values of a particular selection indexed by the component p1.
The argument moves forward for i = 1, 2, . . . ,M .
Remark To find just one trajectory without examining the prime decomposition
of an ideal like (5), simply take the first component as there will always be at
least one.

4 Examples

Example 1. The traditional Boolean network with values in {0, 1} at each
node is exemplified by the lac operon network formulated in [11] and used re-
cently in [15]. The basic deterministic dynamics F = (f1, f2, f3) with three
nodes are

f1(x1, x2, x3) =!u1 & (x3 | u2)

f2(x1, x2, x3) = x1

f3(x1, x2, x3) =!u1 & ((x2&u2) | (x3&!x2))

where u1, u2 ∈ {0, 1} are adjustable parameters for control that can be set at 0
or 1, “!” means “not” and “|” means “or.”

A problem is to find values of u1, u2 that lead to state xM = (1, 1, 1) (which
means the operon is “on”) so the target set A = {(1, 1, 1)}. The deterministic
model sets τ = 1 in the computation of Bi at (3). Calculation in [5] gives
B1 = {s1−1, (s2−1)(s3−1), s22− s2, s

2
3− s3} (with roots (1,0,1),(1,1,0),(1,1,1))

then B2 = {t21 − t1, t
2
2 − t2, t

2
3 − t3, (t1 − 1)(t2 − 1)(t3 − 1)} (with seven roots

not including (0,0,0)). Finally B3 = {s21 − s1, s
2
2 − s2, s

2
3 − s3} whose roots in s

are all binary triples, including the starting state (0,0,0). The steady controls
u0 = u1 = u2 = (0, 1) are one possibility to reach the target state (1,1,1) with
M = 3.
Example 2. Extending the deterministic method (τ = 1) to stochastic (τ > 1)
as described in (1)-(3) can be illustrated with a randomized version of the above.
We take τ = 2 for two transformations at each step chosen randomly from the
map F of Example 1 and the map G defined below (where the | is switched to
& in f1):

g1(x1, x2, x3) =!u1 & (x3 & u2)

g2(x1, x2, x3) = x1

g3(x1, x2, x3) =!u1 & ((x2&u2) | (x3&!x2)) .

Backward ideals stabilize at B4 = 〈t21−t1, t
2
2−t2, t

2
3−t3, (t1−1)(t2−1)(t3−1)〉.

This means that every initial state x0 except the point (0, 0, 0) can be controlled
to hit (1, 1, 1) in 4 steps, as (0, 0, 0) is the only state that is not a root of the
polynomial system.
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We will start at x0 = (1, 0, 0) with ideal X0 = I0,t = 〈t1 − 1, t2, t3〉 to
illustrate the stochastic method. We find the M-step trajectories to (1, 1, 1)
with M=4, trying for x4 = (1, 1, 1). Suppose the transition maps are F,G, F,G

from a hypothetical random process of transformation indices w1 = 1, w2 =
2, w3 = 1, w4 = 2.

The prime decomposition of UX(0,1) shows four components (below is Sin-
gular output that uses the primdec.lib library) corresponding to values of u0

and x1, each of which starts a path to (1, 1, 1) in terms of x and u values.

> minAssGTZ(UX01);

[1]:

_[1]=v(2)+1

_[2]=v(1)+1

_[3]=s(3)

_[4]=s(2)+1

_[5]=s(1)+v(1)*v(2)+v(2)

[2]:

_[1]=v(2)+1

_[2]=v(1)

_[3]=s(3)

_[4]=s(2)+1

_[5]=s(1)+v(1)*v(2)+v(2)

[3]:

_[1]=v(2)

_[2]=v(1)+1

_[3]=s(3)

_[4]=s(2)+1

_[5]=s(1)+v(1)*v(2)+v(2)

[4]:

_[1]=v(2)

_[2]=v(1)

_[3]=s(3)

_[4]=s(2)+1

_[5]=s(1)+v(1)*v(2)+v(2)

There are four trajectories in (ui−1,xi), and two trajectories in x values:

x0 = (1, 0, 0),x1 = (0, 1, 0),x2 = (0, 0, 1),x3 = (1, 0, 1),x4 = (1, 1, 1)

has three control sequences and

x0 = (1, 0, 0),x1 = (1, 1, 0),x2 = (0, 1, 1),x3 = (1, 0, 1),x4 = (1, 1, 1)

has one control sequence.

Example 3. We consider a larger example with 15 nodes and three controls
from [16] modeling Drosophila melanogaster. The dynamics in simplified nota-
tion are in Table 1. The initial state is x0 = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)
and the desired target is x5 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0) in M=5 steps.

The polynomial method finds trajectories with controls from x0 to x5, such
as:
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node logical rule for update
SLP SLP
wg ((CIA & SLP & !CIR) | (wg & (CIA | SLP) & !CLR)) & U2
WG wg
en !SLP
EN en
hh EN& !CIR & U3
HH hh
ptc CIA & !EN & !CIR & U1
PTC ptc & PTC
PH PTC
SMO !PTC
ci !EN
CI ci
CIA CI&SMO
CIR CI &! SMO

Table 1: Boolean model of Drosophila melanogaster dynamics from [16]

x1 = (0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1),
x2 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0),
x3 = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0),
x4 = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0),
x5 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0),
with controls u0 = u1 = u2 = u3 = (1, 1, 1) and u4 = (1, 1, 0).

Example 4. Stochastic transformations are controlled in [15]. We look at their
Example 2 assuming independence in the selection of τ = 3 transformations
(their process is Markovian). The target set A is defined by M=0, with ideal
IA = 〈t1〉 and the three transformations are in Table 2.

node name logical rule for update
M !Ge & (L | Lm)
L 0
Lm 0
M !Ge & (L | Lm)
L 0
Lm M & !Ge

M !Ge & (L | Lm)
L M & !Ge

Lm !Ge

Table 2: Three Boolean models for stochastic dynamics from [15]

One finds that B1 contains all states, and the control Ge (as u0) with Ge =
1 will send x0 = (1, 1, 1) to x1 = (0, 0, 0) in one step, for any of the three
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transformations.

Example 5. We consider a model built with statistical learning methods
on longitudinal data from in-home motion sensor recordings first given in [7].
The data was generated by the Intelligent Systems for Assessing Aging Changes
(ISAAC) study [12], an aging study conducted by ORCATECH at OHSU. The
target set A is where mci=0, a condition of no cognitive impairment. Possible
controls are labeled as u1, u2 in Table 3, mean walking speed and number of
walks, which may be possible to adjust with a training program.

numtrans number of transitions between rooms, normalized to mean 1.0 in home
numfir number of sensor firings in the home, normalized to mean 1.0 in home
oohhours estimate of the number of hours the participant spent out of home
timeasleep total time asleep (minutes)
ttib total time in bed (minutes)
waso time awake after sleep onset (minutes)
sleeplatency total sleep latency (minutes)
sleeplivroom time asleep in living room (minutes)
compuse total computer use (minutes)
numwalks number of walks (count)
meanws mean walking speed (cm/s)
wsq3 upper quartile of walking speed (cm/s)
wscv coefficient of variation of walking speed
wssigma standard deviation of walking speed (cm/s)
mci mild cognitive impairment diagnosis with the Jak criteria (binary indicator)

Table 3: ISAAC Study Variable Definitions

One finds that the controllable set for ideal B2 is all configurations. An
initial point with wsq3=0, compuse=0, and waso = 1 will move to mci=1 in
the next step, regardless of the controls or the starting value of mci. In two
steps however we can move the initial state (1,0,0,0,0, 0,0,0,0,1, 1,0,0) (with
initial conditions mci=1, sleeplivroom=1, waso=1 showing sleep disorder) to
the target set with controls u0 = (1, 1),u1 = (1, 1), a rigorous walking regimen.
The model is built with observational data so any regimen is only a possibility.
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targets, functions
1 mci, !wsq3 & !compuse & (!waso & sleeplivroom | waso)
2 numtrans, numfir
3 numfir, !numtrans & (!sleeplivroom & !wsq3 | sleeplivroom) | numtrans
4 oohhours, !ttib & (!sleeplivroom & (numfir & numwalks | !numfir) | sleeplivroom)
5 wsq3, !meanws & !numwalks & !mci | meanws
u1 meanws, wsq3 & (wscv & wssigma | !wscv)
u2 numwalks, wssigma & !wscv
6 wscv, wssigma & (!meanws | meanws & mci )
7 ttib, timeasleep
8 wssigma, wscv & meanws
9 timeasleep, ttib
10 sleeplivroom, timeasleep & !ttib
11 waso, sleeplatency & ttib
12 compuse, !mci & wssigma
13 sleeplatency, waso & ttib

Table 4: Life Kinetics Dynamics in Logical Notation

5 Discussion

The method of control with polynomial algebra presented in Sections 2 and 3
is practical on standard examples of Boolean network control. An advantage
is the clarity and completeness of the algorithm. A question is whether it can
handle larger networks, which challenge existing methods. In fact commutative
algebra may be able to handle some large problems because it is not hindered
by the 2d cardinality of the state space as some methods are. For example, the
polynomials needed to code the binary space {0, 1}d number just the logarithm
d, and relevant sets in Boolean network control study are sometimes only slightly
more complicated. The hard operation in the method is variable elimination
(as in I ∩K[s], eliminating other variables like t and v), which uses Groebner
basis foundations. The complexity bounds as in [10] are not promising but
most problems are much easier than the worst-case bound suggests. On all the
examples considered here, the calculations were completed almost instantly on
an ordinary computer. Also, the polynomial methods generalize easily to more
general state spaces.

Acknowledgment. This research was partially supported by NIH grants
P30AG066518 and P30AG008017.
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