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Abstract—Optical motion tracking systems are effective tools for
measuring head motion during MRI and PET scans in order to correct
for motion. Most systems rely on the attachment of fiducial markers
which can slip or become decoupled from the head, causing erroneous
motion estimates which can introduce further image artifacts. In this
work, we investigated two methods of detecting non-rigid motion
which can be easily incorporated into a feature-based motion tracking
system using optical stereo. The tracking system tracks detected
features on small patches of the forehead, which remain completely
coupled to the skin surface. By monitoring these features, surface
deformations on parts of the face that deform non-rigidly with
respect to the rest of the head can be detected and potentially
characterised. We investigated two methods of detecting non-rigid
deformations: one involved measuring distances between detected
landmarks and comparing these distances to previous frames; the
other used a neural network to classify a group of landmarks as either
‘rigid’ or ‘non-rigid’. A simulation tool was also developed to aid in
the characterization of non-rigid motion and its effects. Landmark
distance discrepancies were found to be closely correlated to errors
in the feature based motion tracking system, suggesting it is a useful
metric for detecting non-rigid motion. The trained neural network
was able to classify a collection of landmarks as ‘rigid’ with 99.8 %
accuracy and classified the ‘non-rigid’ case with 93.3% accuracy.

I. INTRODUCTION

OPTICAL motion tracking systems are effective tools for
measuring head-motion during medical imaging procedures

to correct for patient motion, a well-known source of image artifacts
in MRI and PET [1], [2]. However, most of these systems rely on
attaching fiducial markers to the head which can slip or become
decoupled. This decoupling is harmful as it cannot be easily
detected or characterized, and can introduce further image artifacts,
as measured motion does not reflect the motion of the brain.

We have recently proposed a motion tracking approach which
tracks detected features on a small patches on the forehead using
optical stereo [3]. Detected features could include native skin
features, or artificial features added to the skin with a temporary
tattoo or an ink stamp. Tracked targets therefore remain completely
coupled to the skin surface, and do not affect patient comfort. By
monitoring targets coupled to the skin surface, surface deformations
on parts of the face that are non-rigid with respect to the rest of
the head can be detected and potentially characterised. This would
allow the identification of corrupted rigid-motion estimates, which
could then be discarded, or used to reacquire data in the case of
prospective MRI motion correction.

Previously, the feature-based algorithm has been validated on
human volunteers undergoing continuous, 6-dof (degrees of free-
dom) rigid-body head motion [4] and on volunteers with their head
in discrete positions inside an MRI scanner [3]. In this work, we
investigate two methods of detecting non-rigid deformations which
can be easily incorporated into the feature based motion tracking
algorithm: one involving monitoring the distances between detected
landmarks on the forehead, and the other using a neural network to
classify a collection of landmarks as either ‘rigid’ or ‘non-rigid’.

We have also developed a simulation tool which will aid in the
characterization of non-rigid motion and its effects.

II. METHODS

A. Simulation

The principles of the feature-based algorithm are described in
detail in [5]. For each frame, distinctive image points are detected
using a feature detector algorithm. Image points are matched
across the views of a stereo camera system and their 3D positions
triangulated. Over time, a database of these 3D landmarks is formed
which forms a sparse point cloud representation of the object being
tracked - in our case the forehead. For subsequent frames, 2D image
keypoints are matched with 3D landmarks in the database, and a
2D-3D registration is used to calculate the 6-dof pose of the head
in the current frame.

For simulation, a single, known rigid-body transformation was
applied to a sparse 3D point cloud at each simulated frame. The
transformed point cloud was then projected into two different 2D
pixel spaces representing the two views of a virtual stereo camera
system using two known projection matrices defining the stereo
camera geometry, and camera parameters such as the focal length.
Once projected into pixel space, Gaussian noise was added and
the feature-based algorithm was used to derive an estimate of the
current pose of the point cloud.

Non-rigid motion was modelled by applying small (approx.
2mm) movements to half the points in the point cloud. The sim-
ulation was run for 1000 frames, with the non-rigid deformations
being applied in frames 100-150. Simulated data was compared to
instances of known non-rigid motion.

B. Distances between landmarks

Motion data from a previous study was used [4]. Fourteen
volunteers wore a tightly fitted fabric cap with 5 IR (infrared)
reflective markers tracked by the OptiTrack motion tracking system
(NaturalPoint, Inc). A temporary tattoo was applied to their fore-
heads, which was viewed by a stereo camera system (HobbitVew,
Inc.). OptiTrack motions traces were used as the ground truth.
Volunteers were instructed to perform slow, low amplitude motion
for 2 minutes, with brief non-rigid forehead movements at 30s, 60s
and 90s.

The feature based algorithm was applied to images from the
stereo camera system, estimating volunteer motions from detected
features in each of the stereo views. For each frame, as well
as performing motion tracking, the distance between triangulated
landmarks were calculated. In the case of rigid-body motion only,
it is expected that the mutual distances between observed land-
marks will remain constant, whereas under non-rigid motion, they
would change. To detect non-rigid motion at each frame, mutual
landmark distances in the current frame were compared with their
corresponding distances in the landmark database. The difference
between these corresponding distances in mm was calculated, and
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the median of these differences was calculated for each frame.
Motion estimates from the feature-based algorithm and motion
measurements for the OptiTrack were applied separately to a
test point in each frame. The Euclidean distance between these
transformed points was therefore proportional to the discrepancy
between our feature-based motion estimates and the ground-truth
OptiTrack motions. The median landmark distance difference was
then compared with the Euclidean error at each frame.

C. PointNet

A single volunteer was instructed to perform low amplitude rigid-
body only head motion for 200s, followed by 200s of head motion
while continuously deforming the forehead. This was captured by
the stereo camera system (100 fps), with detected features being
triangulated in each frame, forming 40000 point clouds (1 for each
frame). These point clouds were labelled as ‘non-rigid’ if they had
been acquired when forehead deformations were being performed,
or ‘rigid’ if they had been acquired with rigid-body only head
motion. For uniformity, each point cloud was then reduced to 50
randomly sampled points. Of these point clouds, 30000 (50-50 split
between ‘rigid’ and ‘non-rigid’ clouds) were fed into PointNet [6], a
neural network architecture specifically designed to classify sparse
point clouds. The rest of the data was used for evaluation.

III. RESULTS AND DISCUSSION

Results for the simulation in which non-rigid deformations were
applied to the 3D point cloud at frames 100-150 are shown in Fig.
1. The z-component of the controlled, rigid-body input point cloud
transformations is plotted in black. The feature-based algorithm
pose estimates are plotted in green. Deviation of the simulated
estimates from the ground truth can be clearly seen in frames 100-
150, where non-rigid deformations were applied to the point cloud.

Fig. 2 shows the z-translational motion of one of the volunteers
undergoing intermittent non-rigid motion at 30, 60 and 90s. The
ground truth OptiTrack motions are in black and the feautre-based
algorithm estimates are in green. The deviation from ground truth
is seen at three points in Fig. 2 corresponding to when non-
rigid motion occurred. Our simulated results from Fig. 1 showed
similar behaviour when non-rigid motion was modelled. The large
deviations between ground truth and feature-based motions are
therefore very likely due to non-rigid motions.

Median landmark distance differences between un-deformed 3D
landmark database and triangulated landmarks in each frame are
shown in Fig. 3 in red for a single volunteer take. This is overlaid
the Euclidean distance error (green). The initial rise in distance
difference close to frame 3000 (when the volunteer performed non-
rigid motion) corresponds almost exactly to increase in Euclidean
distance error. This suggests the first derivative of median distance
difference calculated at each frame could be a useful metric
to detect non-rigid motion. Also of interest is that the distance
difference does not return to its baseline level after the non-rigid
motion has ceased, suggesting that the feature based tattoo used
on the volunteers slightly deforms in an irreversible way after non-
rigid motion.

Training of PointNet on our training data (30000 point clouds)
took approximately 1.5 hours on a single NVIDIA V100 GPU.
Classification accuracy of ‘rigid’ point clouds was 99.8%, and
classification accuracy of ‘non-rigid’ point clouds was 93.3%. It
is important to note that the only input to the network is raw point
cloud data; no temporal information was included. In reality, we
expect ‘non-rigid’ point clouds to be observed frame after frame,

Fig. 1. z translation comparing applied transformations (black) on point cloud,
with motion estimates from our algorithm simulation (green). Non-rigid deforma-
tions were applied in frames 100-150, resulting in discrepancies between motions
estimates and ground truth.

Fig. 2. z (depth) translation for a single volunteer who was instructed to perform
non-rigid motions at 30s, 60s and 90s. Ground truth OptiTrack motions are plotted
in black, feature based motions estimates are in green. The sharp discrepancies
between the two plots are similar the discrepancies we saw in our non-rigid motion
simulation.

Fig. 3. Median landmark distance difference (red) plotted over Euclidean distance
error (green) for a single volunteer. The first occurrence of non-rigid motion occurs
close to frame 3000, where both the median distance measure and Euclidean error
sharply increase.

so modifying the network architecture to include some form of
recurrence could see improved results.
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IV. CONCLUSIONS AND FUTURE WORK

We have developed a simulation tool that will help us to model
and potentially detect and correct for non-rigid deformations during
head motion tracking. Two methods for detecting non-rigid motion
were investigated: one involved calculating mutual triangulated
landmark distances each frame and comparing them to the database;
the other used a neural network architecture specially designed for
point cloud classification. The trained network approach appears
the more promising of the two, as incorporating it into the current
feature-based algorithm would be simpler as it requires less calcula-
tion than the mutual landmark distance approach. Future work will
aim to incorporate temporal information into the neural network
architecture, and a direct comparison between the two non-rigid
motion detection methods on simulated and real data.
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