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Abstract 

Worldwide competition forces modern mineral processing plants to operate at high 

productivity. This high productivity is achieved by implementing process monitoring to 

maintain the desired operating conditions. However, a fault originating in one section of a plant 

can propagate throughout the plant and so obscure its root cause. Causality analysis is a method 

that identifies the cause-effect relationships between process variables and presents these in a 

causality map which can be used to track the propagation path of a fault back to its root cause. 

A major obstacle to the wide acceptance of causality analysis as a tool for fault diagnosis in 

industry is the poor interpretability of causality maps. 

This study identified, proposed and assessed ways to improve the interpretability of causality 

maps for fault identification. All approaches were tested on a simulated case study and the 

resulting maps compared to a standard causality map or its transitive reduction. The ideal 

causality map was defined and all comparisons were performed based on its characteristics. 

Causality maps were produced using conditional Granger causality (GC), with a novel heuristic 

approach for selecting sampling period and time window.  

Conditional GC was found to be ill-suited to plant-wide causality analysis, due to large data 

requirements, poor model order selection using AIC, and inaccuracy in the presence of multiple 

different residence times and time delays. Methods to incorporate process knowledge to 

constrain connections and potential root causes were investigated and found to remove all 

spurious connections and decrease the pool of potential root cause variables respectively. Tools 

such as visually displaying node rankings on the causality map and incorporating sliders to 

manipulate connections and variables were also investigated. 

Furthermore, a novel hierarchical approach for plant-wide causality analysis was proposed, 

where causality maps were constructed in two subsequent stages. In the first stage, a less-

detailed plant-wide map was constructed using representatives for groups of variables, and 

used to localise the fault to one of those groups of variables. Variables were grouped according 

to plant sections or modules identified in the data, and the first principal component (PC1) was 

used to represent each group (PS-PC1 and Mod-PC1 respectively). PS-PC1 was found to be 

the most promising approach, as its plant-wide map clearly identified the true root cause 

location, and the stage-wise application of conditional GC significantly reduced the required 

number of samples from 13 562 to 602. 

Lastly, a usability study in the form of a survey was performed to investigate the potential for 

industrial application of the tools and approaches presented in this study. Twenty responses 

were obtained, with participants consisting of Stellenbosch University final-year/postgraduate 

students, employees of an industrial IoT firm, and Anglo American Platinum employees. Main 

findings include that process knowledge is vital; grouping variables improves interpretability 

by decreasing the number of nodes; accuracy must be maintained during causality map 

simplification; and sliders add confusion by causing significant changes in the causality map. 

In addition, survey results found PS-PC1 to be the most user-friendly approach, further 

emphasizing its potential for application in industry.
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Opsomming 

Wêreldwye kompetisie forseer moderne mineraalprosesseringaanlegte om by hoë 

produktiwiteit bedryf te word. Hierdie hoë produktiwiteit word bereik deur prosesmonitering 

te implementeer om die gewenste bedryfskondisies te handhaaf. ’n Fout wat in een deel van ’n 

aanleg ontstaan kan egter regdeur die aanleg voortplant en so die grondoorsaak verberg. 

Oorsaaklikheidanalise is ’n metode wat die oorsaak-en-gevolg-verhouding tussen 

prosesveranderlikes identifiseer en hierdie in ’n oorsaaklikheidskaart  toon wat gebruik kan 

word om die voortplantings roete van ’n fout terug na sy grondoorsaak te volg. ’n Groot 

hindernis vir die wye aanvaarding van oorsaaklikheidanalise as  instrument vir foutdiagnose in 

industrie, is die swak interpreteerbaarheid van oorsaaklikheidskaarte.     

Hierdie studie het maniere om die interpreteerbaarheid van oorsaaklikheidskaarte vir 

foutidentifikasie te verbeter, geïdentifiseer, voorgestel en geassesseer. Alle benaderings is 

getoets op ’n gesimuleerde gevallestudie en die resulterende kaarte is vergelyk met ’n standaard 

oorsaaklikheidskaart of sy transitiewe inkrimping. Die ideale oorsaaklikheidskaart is 

gedefinieer en alle vergelykings is uitgevoer gebaseer op sy karakteristieke. 

Oorsaaklikheidskaarte is geproduseer deur kondisionele Granger-oorsaaklikheid (GC) te 

gebruik, met ’n nuwe heuristiese benadering om steekproefperiode en tydgleuf te selekteer.  

Kondisionele GC is gevind om nie gepas te wees vir aanlegwye oorsaaklikheidanalise nie, as 

gevolg van groot datavereistes, swak seleksie van modelorde as AIC gebruik word, en 

onakkuraatheid in die teenwoordigheid van veelvoudige, verskillende verblyftye en 

tydvertraging. Metodes om proseskennis te inkorporeer om konneksies en potensiële 

grondoorsake te bedwing, is ondersoek en gevind om alle konneksies wat vals is te verwyder 

en die groep van potensiële grondoorsaakveranderlikes te verminder, onderskeidelik. 

Instrumente soos om node-ordes op die oorsaaklikheidskaart visueel te vertoon en skuiwers te 

inkorporeer om konneksies en veranderlikes te manipuleer is ook ondersoek. 

Verder is ’n nuwe hiërargiese benadering vir aanlegwye oorsaaklikheidanalise voorgestel, waar 

oorsaaklikheidskaarte in twee opeenvolgende fases gebou is. In die eerste fase is ’n minder 

gedetaileerde aanlegwye kaart gebou deur verteenwoordigers vir groepe veranderlikes te 

gebruik, en is gebruik om die fout na een van daardie groepe van veranderlikes te lokaliseer. 

Veranderlikes is gegroepeer volgens aanlegdele of modules geïdentifiseer in die data, en die 

eerste hoof komponent (PC1) is gebruik om elke groep te verteenwoordig (PS-PC1 en Mod-

PC1 onderskeidelik). PS-PC1 is gevind om die mees belowende benadering te wees, want sy 

aanlegwye kaart het duidelik die ware grondoorsaakligging geïdentifiseer, en die stap-gewyse 

toepassing van kondisionele GC het die vereisde aantal steekproewe beduidend verminder van 

13 562 tot 602. 

Laastens, ’n bruikbaarheidstudie in die vorm van ’n opname is uitgevoer om die potensiaal vir 

industriële toepassing van die instrumente en benaderinge voorgestel in hierdie studie, te 

ondersoek. Twintig antwoorde is verkry, met deelnemers wat bestaan het uit Universiteit van 

Stellenbosch se finale jaar/nagraadse studente, werknemers van ’n industriële IoT-firma, en 

Anglo American Platinum werknemers. Hoofbevindinge het ingehou dat proseskennis 
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noodsaaklik is; om veranderlikes te groepeer verbeter interpreteerbaarheid deur die aantal 

nodes te verminder; akkuraatheid moet gehandhaaf word gedurende vereenvoudiging van 

oorsaaklikheidskaarte; en skuiwers dra by tot verwarring deur beduidende veranderinge in die 

oorsaaklikheidskaart te maak. Daarmee saam het die opname se resultate gevind dat PS-PC1 

die meer gebruiksvriendelike benadering was, wat sy potensiaal vir toepassing verder 

beklemtoon.
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Glossary 

Adjacency matrix   Matrix representation of a graph, where rows and columns represent nodes 

and binary entries represent edges. 

Causality map   Pictorial representation of a graph with nodes representing process variables 

and edges representing causal relations between variables. 

Causality matrix   Adjacency matrix where the binary entries have been replaced with causal 

strengths. 

Connector hub   Node within a module in a graph/network that is connected to nodes in other 

modules and has a high degree. 

Confounding variable   Variable that influences both the dependent and independent variables 

(𝑥 and 𝑦) causing a spurious causality (𝑥 → 𝑦). 

Degree   Number of edges adjacent to a node in a graph.  

Digraph   (Directed graph) Graph where edges have arrow heads to indicate the direction of 

relation between nodes. 

Edge   Element in a graph that represents a causal relation between variables (nodes) in a 

causality map. 

Fast Fourier transform   An algorithm for computing the discrete Fourier transform of a data 

series at all the Fourier frequencies. 

Fault   Abnormal event in a process that causes measured variables or KPIs to deviate from 

desired values, possibly causing performance or safety degradation. 

Fault detection   Procedure to determine whether a fault has occurred in the process or not. 

Fault diagnosis   Combination of fault detection and fault identification.   

Fault identification   Procedure to determine the type, magnitude and location of a fault. 

Graph   Non-empty set of elements called nodes and a set of elements called edges. 

Indegree   Number of edges entering a node in a directed graph. 

Modular structure   Graph/network property where nodes are grouped into clusters, termed 

modules, so that there are a large number of edges connecting nodes within the module, 

and few edges connecting nodes from different modules. 

Modularity   A measure of the density of edges within a module in a graph/network compared 

to edges between modules. 

Module   A cluster of nodes in a graph/network that exhibits a modular structure. 
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Modular structure  Structure in a graph/network, when the graph/network is divided into 

modules with high intra-connectivity within modules and low inter-connectivity 

between modules. 

Network   See Graph.  

Node   Element in a graph that represents a process variable in a causality map. 

Optimal scaling vector   Vector with entries that represent the contribution of corresponding 

time series (variables) to the spectral envelope at the frequency under consideration. 

Outdegree   Number of edges exiting a node in a directed graph. 

Periodogram  Estimate of the spectral density of a series.. 

Smearing effect   An effect where a fault originating in one part of a process propagates to 

different parts of the process, affecting numerous variables. 

Spectral envelope   The largest portion of power obtainable at each frequency for any linear 

combination of the original time series. 

Standard causality map   A causality map without any tools or visualisation techniques 

presented in this project applied to it. 

Strongly connected component   A subgraph of a graph, where every edge belongs to at least 

one cycle. 
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Nomenclature 

Throughout this thesis, (1) bold capital letters represent matrices; (2) bold lower case letters 

represent vectors; and (3) regular letters represent scalars. 

Symbols 

𝑨  Adjacency matrix  

c AR coefficient  

𝐹  F-statistic  

𝐹𝑌→𝑋   G-causality index  

𝑚  Total number of edges in a graph/network  

𝑁  Sample size  

�̂�  Periodogram  

𝑛  Number of variables  

𝑷  Power spectral density matrix  

𝑝  Model order  

𝑄  Modularity  

𝑽  Covariance matrix  

𝑧  Normalised time series  

Greek symbols 

𝛼  Significance level in statistical test  

𝚩  Modularity matrix  

𝛿  Kronecker delta symbol  

ϵ  Residual error  

𝜆  Spectral envelope  

�̂�2  Estimate of variance of the error  

𝜿  Optimal scaling vector  

𝜔  Frequency  

𝜔𝑐  Common oscillation frequency  

𝜔𝑘  Fourier frequency  

Subscripts and superscripts 

Full Full model   

mod Module  

Res Restricted model  

Abbreviations and acronyms 

AAP Anglo American Platinum 

AIC Akaike Information Criterion 

AR Autoregressive 

CV Controlled variable 

DOF Degrees of freedom 

GC Granger causality 

KPI Key performance indicator 

Mod-PC1 Variables grouped according to modules in the data; PC1s as representatives 

MV Manipulated variable 

OC Oscillation contribution 

OLS Ordinary least squares 

Stellenbosch University https://scholar.sun.ac.za



xiii 

 

Abbreviations and acronyms 

PCA Principle component analysis 

PSD Power spectral density 

PS Plant section 

PS-PC1 Variables grouped according to PSs; PC1s as representatives 

RCA Root cause analysis 

RSS Residual sum of squares 

SP Sampling period 

TE Transfer entropy 

TW Time window 
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CHAPTER 1 

1. Introduction 

Introduction 

This study investigates the interpretability of causality maps for fault identification in chemical 

or mineral processes. 

1.1. Background 

Global competition forces modern chemical and mineral processing plants to operate at a high 

productivity. Rather than introduce costly new initiatives, process monitoring and optimisation 

are used to ensure optimal use of existing processes and infrastructure. Well-functioning 

process monitoring should maintain plants under operating conditions required to achieve the 

desired productivity, with minimal time spent under faulty conditions.  

Advances in informative sensor technology and analytics platforms allow large amounts of data 

to be captured in real-time and processed in useful time throughout industrial plants (Reis and 

Gins, 2017) – so allowing for advanced and large-scale process monitoring. Whenever a fault 

occurs in a plant, the process monitoring system should therefore be able to detect, identify and 

rectify it (Lindner, 2019). However, fault identification in industry can still take up to hours or 

days (Reis and Gins, 2017), because a fault originating somewhere in a plant can propagate 

throughout the plant so that numerous variables show an effect of the fault (Van den Kerkhof 

et al., 2013).  

Fortunately, research from the last decade has shown data-based causality analysis techniques 

to be useful for fault diagnosis (Lindner, Auret and Bauer, 2017). Causality analysis uses the 

cause-effect relationships between variables to construct a causality map, where the 

propagation path of a fault can be traced back to its root cause. However, due to poor causality 

map interpretability, engineers struggle to understand and use causality analysis results for fault 

diagnosis, and it has yet to become widely accepted in industry. 

1.2. Aim and objectives 

The aim of this study is to improve the interpretability of causality maps for fault identification. 

Recent studies indicate that the incorporation of process knowledge in causality analysis aids 

in identification of the root cause of a fault (Landman et al., 2014; Thambirajah et al., 2009). 

Specific emphasis is therefore placed on the incorporation of process knowledge in causality 

maps to improve interpretability. This aim is achieved by addressing the following objectives: 

1. Identify and assess ways to incorporate process knowledge in causality maps. 

2. Identify, propose, and assess tools and visualisation techniques to aid in interpretation 

of plant-wide causality maps. 

3. Perform a usability study to gain insights on whether causality maps with the proposed 

tools and visualisation techniques can be practically applied in industry. 
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1.3. Research scope 

This study is focussed on improving the interpretability of causality maps for fault 

identification. The scope of this study is limited to only the fault identification step of process 

monitoring, therefore excluding the fault detection and process recovery steps that take place 

before and after fault identification. Furthermore, fault identification in this study is limited to 

finding the root cause of oscillations, therefore excluding other types of faults.  

1.4. Thesis organisation 

This thesis is organised as follows: Chapter 2 presents the relevant background information to 

introduce causality analysis as a method for fault identification; and Chapter 3 focusses on 

causality map presentation and interpretability, highlighting the vacancies in literature 

regarding this topic. Chapter 4 provides the methodology for causality analysis applied in this 

study: including a workflow for causality analysis; the procedures for incorporating process 

knowledge in causality maps by constraining connections and potential root cause variables; 

the procedures for applying tools to aid in causality map interpretation, such as displaying node 

rankings and using sliders to manipulate connections and variables; a novel hierarchical 

approach for plant-wide causality analysis; the procedure for evaluating the interpretability of 

causality maps; and finally the usability study. Chapter 5 presents a description of the case study 

used in this work; Chapter 6 presents the results and discussion; and lastly Chapter 7 presents 

the conclusions and recommendations for future work. 
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CHAPTER 2 

2. Causality analysis for fault identification 

Causality analysis for fault 

identification 

2.1. Connectivity and causality in processes 

Chemical or mineral processes consist of elements that are connected to each other via material, 

energy and information paths. Both connectivity and causality refer to links between these 

elements in a process, where change in one variable effects change in another (Yang et al., 2014).   

The difference between connectivity and causality comes in with each respective meaning of 

direction, according to the definitions by Yang et al., (2014). In the context of connectivity, 

direction is that of the flow of material, energy or information; while in the context of causality, 

it is the temporal direction of causation. In its simplest terms, causality is the cause-effect 

relationship between variables.  

Take a tank with feedback control, where tank level is the controlled variable (CV) and the valve 

on the outlet line is the manipulated variable (MV). There is information flow from the  

tank level (CV), via instrumentation, to the valve on the outlet line (MV) – so there is  

connectivity 𝐶𝑉 → 𝑀𝑉. Furthermore, a change in the tank level (CV) results in a change in the 

position of the valve on the outlet line (MV) after some time – so there is also causality  

𝐶𝑉 → 𝑀𝑉. However, a change in the position of the valve on the outlet line (MV) results in a 

change in tank level (CV), but there is no material, energy or information flow from the valve on 

the outlet line (MV) to the tank level (CV) – so there is a causal connection 𝑀𝑉 → 𝐶𝑉, but no 

connectivity 𝑀𝑉 → 𝐶𝑉. 

2.2. Representing connectivity and causality 

The connectivity and causality in a process can be represented using graph theory, allowing for 

both visualisation and analysis. This section therefore presents a brief overview of graph theory 

in relation to causality. 

A graph is defined as a non-empty set of elements called nodes (or vertices), and a set of elements 

called edges (or arcs) (Price, 1971). In terms of causality, the nodes represent process variables 

and the edges represent the causal connections between them. A graph can be either undirected 

or directed, with the difference being that directed graphs have arrow heads on their edges to 

indicate the direction of relation between nodes (Price, 1971). Nodes on either side of an edge in 

a directed graph are termed as either the source node or the sink node, depending on whether the 

edge originates from or ends at the node in question (Price, 1971). Furthermore, the number of 

edges adjacent to a node is defined as the degree of that node, and the number of edges entering 
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and exiting a node in a directed graph are defined as the indegree and outdegree of the node 

respectively (Price, 1971). 

Directed graphs can also be called digraphs (Yang et al., 2014), and they are used to represent 

causality, either in pictorial view or as a matrix. The pictorial view is termed a causality map, with 

a simple example of three variables (X, Y, Z) shown in Figure 1a. The most general matrix form 

is an adjacency matrix, where the rows and columns represent the nodes and binary entries 

represent the edges. An entry of 1 indicates that there is an edge (causal relation) between nodes 

(variables) and an entry of 0 indicates that there is no edge (causal relation) between the nodes 

(variables) (Price, 1971). Figure 1b shows the simple adjacency matrix for the graph in Figure 1a. 

Generally, the rows represent source elements and the columns represent sink elements.  

a  b 

 

 0 1 0 

A = 0 0 1 

 0 0 0 
 

Figure 1: a. Example of causality map with three variables. Nodes represent variables and edges 
represent casual connections. b. Adjacency matrix corresponding to causality map shown in a. 

In addition to an adjacency matrix, the causal structure of a process can also be represented as a 

weighted digraph, termed a causality matrix. This is similar to an adjacency matrix, but the matrix 

entries are quantitative values for the causal strengths (e.g. values of the G-causality index defined 

in Section 2.4) of each causal connection. Furthermore, it is emphasised that both adjacency 

matrices and causality matrices only show direct causal connections. That is why the connection 

from 𝑋 → 𝑍 in Figure 1 has a zero-entry in the top right hand corner of the adjacency matrix, 

although there is an indirect causal connection from 𝑋 → 𝑍 via 𝑌.  

Indirect causal connections can be presented in a reachability matrix, where binary entries 

represent paths between variables (i.e. indirect connections between variables). A reachability 

matrix is obtained from either an adjacency matrix or a causality matrix, according to eqn 1 (Jiang, 

Patwardhan and Shah, 2008): 

 𝑹 = (𝑨 + 𝑨2 + 𝑨3 + ⋯+ 𝑨𝑛)# [1] 

Where n is the number of nodes (variables), A is the adjacency/causality matrix, and # indicates 

that the entries are binary (1 or 0 for true or false respectively).  

Figure 2 shows the reachability matrix for the causality map and adjacency matrix presented in 

Figure 1. Here, the path (indirect connection) from 𝑋 → 𝑍 is indicated with an entry of 1 in the 

top right hand corner.  

 0 0 1 

𝑹 = 𝑨 + 𝑨2 + 𝑨3 = 0 0 0 

 0 0 0 

Figure 2: Reachability matrix corresponding to the causality map and adjacency matrix shown in  
Figure 1. 

Finally, connectivity can also be represented in matrix form, as a connectivity matrix 

(Thambirajah et al., 2009). In this case, binary entries indicate whether variables are directly 
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connected (as opposed to whether there is a direct causal influence as is the case in an adjacency 

matrix), where the connectivity can be via material, energy or information flows.   

2.3. Capturing connectivity from process knowledge 

Process connectivity describes the paths that material, energy and information flows take through 

the process. Since faults spread via these connected paths, knowledge of the connections can allow 

a fault to be traced back to its root cause, as is further discussed in Section 2.6. This connectivity 

information is often available from process knowledge, but it is typically qualitative  

(Yang et al., 2014). The existence of a connection can therefore be inferred from process 

knowledge, but its strength cannot.  

There are various sources of process knowledge, including fundamental or empirical models, the 

understanding and knowledge of a plant expert, and process schematics such as piping and 

instrumentation diagrams (P&IDs). Plant expert knowledge along with models or process 

schematics can be used to manually construct adjacency matrices or graphical models such as 

signed digraph models (SDGs), where SDGs are simply digraphs (see Section 2.2) with a ‘+’ or 

‘-‘ assigned to each edge to represent a positive or negative influence of the source node on the 

sink node (Yang et al., 2014). Unfortunately, these are time-consuming and complicated tasks. 

Furthermore, process models are often not available or accurate enough to capture the causal 

structure of a process (Maurya, Rengaswamy and Venkatasubramanian, 2003). 

Plant schematics such as P&IDs therefore look to be the most promising source of process 

knowledge from which to infer connectivity, especially since the process does not need to be 

manual. Extensive research has been performed to automate this procedure (Arroyo Esquivel, 

2017; Yim et al., 2006; Thambirajah et al., 2009; Yang et al., 2014). Connectivity information is 

extracted from P&IDs by first converting them to eXtensible Markup Language (XML)  

files with either Computer Aided Engineering Exchange (CAEX) or XMPlanet schemas 

(Thambirajah et al., 2009). These XML files are then used to construct connectivity matrices (see 

Section 2.2).   

A major drawback of this method is that plants rarely have updated copies of P&IDs available. 

Furthermore, often only hard copies of process schematics exist. Fortunately, a tool has been 

developed that can scan hard copies of process schematics to capture connectivity (Arroyo 

Esquivel, 2017). 

2.4. Capturing causality from historical process data 

In addition to the extraction of connectivity from process knowledge, causality information can 

be extracted from the process data captured by the numerous sensors present in a plant. The values 

of these continuously or even intermittently measured process variables are stored in the form of 

time series, and the relationships between these time series can be exploited to infer causality 

between variables (Yang et al., 2014). A mathematical definition of causality proposed by Wiener 

states that “X could be termed as to ‘cause’ Y if the predictability of Y is improved by 

incorporating information about X” (Wiener, 1956). 

There are various techniques that infer causality from process data, with examples including 

Granger causality, transfer entropy, cross-correlation, and partial directed coherence (Lindner, 

2019). The two most commonly used techniques are Granger causality (GC) and transfer entropy 

(TE) (Lindner, 2019). However, TE is an information-theoretic technique, whereas GC is based 
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on simple regression statistics. For this reason, engineers can reason more easily about results 

obtained from GC than from TE. This section therefore presents a brief overview of GC to infer 

causal relationships from historical process data.  

GC is a practical adaptation of Wiener’s definition of causality, stating that “𝑥(𝑡) is causing 𝑦(𝑡) 

if we are better able to predict 𝑦(𝑡) using all available information than if the information apart 

from 𝑥(𝑡) had been used” (Granger, 1969). It makes use of linear autoregressive (AR) models of 

stochastic variables to quantify and then compare prediction error. 

Consider two time series of variables 𝑥(𝑡) and 𝑦(𝑡). The time series 𝑦(𝑡) can be predicted using 

a linear AR model that includes past values of only 𝑦 itself, known as the restricted model  

[eqn 2] (Barnett and Seth, 2014). The time series 𝑦(𝑡) can also be predicted using a linear AR 

model that includes past values of both 𝑦 and 𝑥, known as the full model [eqn 3] (Barnett and 

Seth, 2014). If the prediction error of the full model is smaller than that of the restricted model, 𝑥 

is said to Granger-cause 𝑦. This is known as unconditional Granger causality. 

 

𝑦(𝑡) =  ∑ 𝑐𝑦,𝑟𝑒𝑠(𝑘)𝑦(𝑡 − 𝑘) + 𝜖𝑟𝑒𝑠(𝑡)

𝑝

𝑘=1

 [2] 

 

𝑦(𝑡) =  ∑{𝑐𝑦,𝑓𝑢𝑙𝑙(𝑘)𝑦(𝑡 − 𝑘) + 𝑐𝑥(𝑘)𝑥(𝑡 − 𝑘)} + 𝜖𝑓𝑢𝑙𝑙(𝑡)

𝑝

𝑘=1

 [3] 

   

The c’s are regression coefficients, which can be determined using the ordinary least squares 

(OLS) approach (Hill, 2011), and p is the model order, which represents the number of lagged 

historical data points to include. A commonly used approach to select the model order is the 

standard Akaike Information Criterion (AIC) (Akaike, 1974) to ensure the best model fit while 

preventing overfitting due to noise present in the data [eqn 4] (Duan, 2014). However, there is 

typically a limited sample size available for fault identification in the chemical or mineral 

processing industry, which can be addressed by implementing the finite sample bias-corrected 

form of AIC [eqn 5] as proposed by (Hurvich and Tsai, 1989) to counteract bias in small samples:  

 
𝐴𝐼𝐶(𝑝) = ln(det(Σ)) +

2𝑝𝑛2

𝑁
 [4] 

 
𝐴𝐼𝐶𝑐(𝑝) = ln (det (

Σ

𝑁 − 𝑝 − 1
)) +

2𝑝𝑛2𝑁

𝑁 − 𝑝𝑛2 − 1
 [5] 

Where Σ is the residual covariance matrix of the full model, n is the number of variables, and N 

is the number of observations. 

GC was quantified as a log-likelihood ratio statistic by Geweke, (1982), which is now termed the 

G-causality index [eqn 6] . The log-likelihood ratio compares the goodness of fit of two competing 

statistical models, where the one was found by maximisation over the entire parameter space  

(i.e. the full model in eqn 3, where both 𝑥 and 𝑦 were included) and another by imposing some 

constraint that represents the null hypothesis (i.e. the restricted model in eqn 2, where 𝑐𝑥(1) =

𝑐𝑥(2) = ⋯𝑐𝑥(𝑝) = 0). If the null hypothesis is true (i.e. if 𝑐𝑥(1) = 𝑐𝑥(2) = ⋯𝑐𝑥(𝑝) = 0, 

meaning that there is zero causality), then the two likelihoods should not differ significantly – so 

the log-likelihood ratio should not be significantly different from zero. Furthermore, G-causality 

may be meaningfully interpreted as a quantitative measure, as it is asymptotically equivalent to 

information-theoretic TE for a large class of joint processes (Barnett and Bossomaier, 2013), and 

exactly equivalent in the Gaussian case (Barnett, Barret and Seth, 2009).   
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𝐹𝑥→𝑦 = ln(
𝑣𝑎𝑟(𝜖𝑟𝑒𝑠)

𝑣𝑎𝑟(𝜖𝑓𝑢𝑙𝑙)
) [6] 

Unconditional GC can report spurious causalities if there is a set of confounding variables 𝑧, 

which influence both 𝑥 and 𝑦 (Barnett and Seth, 2014). For example (Figure 3), if there is no 

causal influence 𝑥 → 𝑦, but both 𝑥 and 𝑦 are dependent on 𝑧, then a spurious causality 𝑥 → 𝑦 may 

be reported. These spurious causalities may be eliminated by ‘conditioning out’ the confounding 

variables, provided they are measured variables, as initially proposed by Geweke, (1982). The 

restricted and full models are then expanded to include the set of variables 𝑧, as shown in eqns 7 

and 8 (Barnett and Seth, 2014), and the G-causality index is defined as in eqn 9 (Barnett and Seth, 

2014). This is known as conditional Granger causality. 

 

𝑦(𝑡) =  ∑ 𝑐𝑦,𝑟𝑒𝑠(𝑘)𝑦(𝑡 − 𝑘) + 𝑐𝑧,𝑟𝑒𝑠(𝑘)𝑧(𝑡 − 𝑘) + 𝜖𝑟𝑒𝑠(𝑡)

𝑝

𝑘=1

 [7] 

 

𝑦(𝑡) =  ∑{𝑐𝑦,𝑓𝑢𝑙𝑙(𝑘)𝑦(𝑡 − 𝑘) + 𝑐𝑧,𝑓𝑢𝑙𝑙(𝑘)𝑧(𝑡 − 𝑘) + 𝑐𝑥,𝑓𝑢𝑙𝑙(𝑘)𝑥(𝑡 − 𝑘)} + 𝜖𝑓𝑢𝑙𝑙(𝑡)

𝑝

𝑘=1

 [8] 

 
𝐹𝑥→𝑦|𝑧 = ln(

𝑣𝑎𝑟(𝜖𝑡,𝑟𝑒𝑠)

𝑣𝑎𝑟(𝜖𝑡,𝑓𝑢𝑙𝑙)
) [9] 

GC has some clear advantages, such as the simplicity of its calculations which make it 

computationally inexpensive, and its basis in the well-understood concept of regression which 

make the results easy to interpret (Lindner, 2019). A disadvantage of GC is the dependency on 

the accuracy of linear AR models, while linearity may not always be a valid assumption (Yang et 

al., 2014). 

 

Figure 3: Example of spurious causal connection 𝑋 → 𝑌 reported due to confounding variable Z. Solid 
lines represent actual causal connection; dashed line represents spurious causal connection.  

Statistical significance test 

Statistical significance must be established before any causal influence can be reported. This is 

done with a hypothesis test, where the null hypothesis states that the cx’s are zero (i.e. no causal 

influence 𝑥 → 𝑦). Statistical significance for GC is determined by applying the F-statistical test. 

This involves calculating the F-statistic [eqn 10] (Bressler and Seth, 2011) and comparing it to 

the critical F-value (Fcrit). 

 

𝐹 =

𝑅𝑆𝑆𝑟𝑒𝑠 − 𝑅𝑆𝑆𝑓𝑢𝑙𝑙

𝑝
𝑅𝑆𝑆𝑓𝑢𝑙𝑙

𝑁 − 2𝑝 − 1

 [10] 
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In GC analysis, the numerator degrees of freedom (DOF) are p and the denominator DOF are  

(n-2p-1). RSSres and RSSfull are the sum of squares of residuals of the restricted and full model 

respectively, and Fcrit is the F-statistic with a significance level 𝛼. If 𝐹 > 𝐹𝑐𝑟𝑖𝑡 and the p-value is 

smaller than 𝛼, the null hypothesis can be rejected and a causal influence reported. 

Significance levels 𝛼 used in literature are typically 0.01 or 0.05, but this is simply convention. 

The significance level is essentially a threshold for which causal connections are strong enough 

to be displayed on the causality map and which are not. Different processes may require different 

thresholds for connections strength to obtain the causality map closest to the ideal one (see Section 

6.1). The use of this threshold as a lever or hyper-parameter that can be manipulated to obtain a 

more interpretable causality map for a specific system is therefore identified as a gap in literature.  

2.5. Combining process knowledge and data-based causality 

Connectivity and causality can be inferred using both knowledge-based and data-based methods, 

as explained in Sections 2.3 and 2.4 respectively. The two approaches each have their own 

advantages and disadvantages (Table 1) which appear to be complimentary, allowing 

improvement via a hybrid approach. 

Table 1: Comparison of knowledge-based methods and data-based methods. Clear blocks indicate 
advantages and shaded blocks indicate disadvantages. 

Knowledge-based methods Data-based methods 

Reports only true connections May report spurious connections 

Reports only connectivity & known causality May detect non-intuitive 

connections (e.g. connections due to 

energy flow) 

Reports static causal structure: 

o Does not account for changing operating 

conditions/presence of fault  

o Based on potentially outdated information, e.g. 

P&IDs 

 

Reports dynamic causal structure: 

o Can be applied to the latest 

available data to reveal the 

current causal structure of the 

process 

Lower computational burden, when automated 

(Arroyo Esquivel, 2017) 

Higher computational burden 

 

A hybrid approach combining knowledge-based and data-based methods has therefore been 

attempted by some researchers. This has been done in two distinctive ways, both of which 

effectively constrain the paths in the reported causal structure (generally in the form of a causality 

map). The first way is to specify process connectivity and only consider those connections when 

performing data-based methods (i.e. validate knowledge-based connections using data-based 

methods). This reduces the amount of variable pairs to test for causality which reduces the 

computational burden, as well as ensure that indirect and shortcut connections (see Section 3.2.1) 

are ignored. Landman et al., (2014) validated connectivity from XML schematics with GC, and 

Landman and Jämsä-Jounela, (2016) did the same with transfer entropy. Both papers report a 

decrease in spurious connections due to the inclusion of process knowledge. 

The second way is to calculate causality using data-based methods and then use process 

connectivity for validation. Thambirajah et al., (2009) identified possible root causes using 

transfer entropy and then used connectivity from XML descriptions to determine the most likely 
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root cause by investigating which propagation paths were physically possible. (Landman, 2019) 

took this a step further by only validating data-based causal connections in a controller causality 

map when there was at least one direct pathway from the source node to the sink node (see  

Section 2.2 for definitions of source and sink nodes) according the connectivity matrix. For this,  

Landman, (2019) used the definition from Jiang, Patwardhan and Shah, (2008), which states that 

a direct path from node 𝑖 to node 𝑗 exists if the output of controller 𝑖 directly affects controller 𝑗 
without intermediate effect on any other controller.  

Although hybrid approaches combining knowledge-based and data-based methods have been 

investigated, this was done with the aim of improving the accuracy of causality analysis results. 

The approaches were therefore applied to simple case studies with few variables where 

interpretability of the resulting causality map was not an issue. Application of these hybrid 

approaches on plant-wide systems with numerous variables and the effect on causality map 

interpretability is therefore identified as a gap in current literature. This gap is promising, as 

application of these hybrid approaches can decrease the number of connections to decrease graph 

density (see Section 2.7.1), as well as increase the trust that engineers put in causality maps, as 

they are not simply the result of noise-filled data but also include understandable process 

knowledge.  

2.6. Using causality analysis for fault identification 

Causality analysis can be used for various applications, one of which is process monitoring 

(Lindner, 2019). This section presents a brief overview of process monitoring with emphasis on 

fault identification, and how causality analysis can be applied in this context.  

Process monitoring consists of three distinguishable steps, namely fault detection, fault 

identification, and process recovery (Lindner, 2019). Fault detection is the procedure to determine 

whether a fault has occurred in the process or not, and techniques for this have been researched 

and improved to the extent that a fault can be detected within an order of seconds or minutes after 

occurrence (Reis and Gins, 2017). Fault identification is the procedure to determine the type, 

magnitude and location of the fault, and can take up to hours or days (Reis and Gins, 2017). In 

other words, a bottleneck occurs in the fault identification step within process monitoring (Reis 

and Gins, 2017). Improvement in fault identification techniques such as causality analysis would 

therefore benefit industry, as it would decrease the time for which a fault is present in a plant.    

Within the context of fault identification, causality analysis can be used in root cause analysis 

(RCA), which refers to determining the location of a fault. For example, if the process recovery 

(e.g. mineral recovery in a mineral processing plant) decreases, causality analysis can aid 

engineers in finding the root cause of this detrimental change in the process so that it can be 

corrected. This is useful, as the root cause of a fault in modern chemical and mineral processing 

plants is often hidden as a result of something called the “smearing effect”.  

The “smearing effect” is where a fault originating in one part of the process propagates to different 

parts of the process (Van den Kerkhof et al., 2013), causing numerous measured variables to show 

the effect of the fault. This is due to the high interconnectivity of process units, equipment, 

material flow, energy flow, and information flow, which is complicated even further by recycle 

streams, complex control strategies and control interaction (Lindner, 2019).   

The purpose of a causality map in fault identification is therefore to identify the fault location by 

allowing the propagation path to be traced back to the root cause. Generally, a variable shown to 
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have a large causal influence is taken as the root cause. However, the smearing effect often allows 

numerous variables to show significant causal influences, creating a challenge in identifying a 

single root cause or even localising the fault to a single process unit.  

Significant input is therefore required from engineers to interpret results to identify or localise a 

root cause, which is largely why fault identification is such a slow process. Causality map 

interpretability was therefore identified as an area that requires improvement by Lindner, (2019). 

2.7. Factors affecting performance of causality analysis 

Causality analysis can be used to identify the root cause of a fault, as discussed in 2.6. However, 

various factors can affect the performance of data-based causality analysis when used for this 

purpose, including: noise in the data, the type of fault present, controller interaction, confounding 

variables, and time frame and parameter selection. 

2.7.1. Noise in the data 
A causal connection exists when variation in one variable (input variable) causes variation in 

another variable (output variable) after some time. However, if there is sensor noise  

(i.e. uncertainty in the measurement of the property) in the input or output variable - meaning that 

there is variation in the output variable that was not caused by variation in the input variable - then 

the causal connection can be obscured and may not be detected by data-based causality techniques. 

Lindner, Auret and Bauer, (2017) investigated the effect of noise on GC. The results indicated 

that GC is not sensitive to sensor noise. This is likely explained by the fact that GC fits linear 

models to the data, assuming that the errors follow a Gaussian distribution – so the models may 

have a large bias, but they should always have low variance.   

2.7.2. Type of fault 
Causality analysis has been used to identify the root cause of different types of faults, but most 

literature applies it to identify the root cause of oscillations. Oscillatory behaviour is often 

exhibited by chemical and mineral process due to poor controller tuning, control valve stiction, 

poor process and control system design, and oscillatory disturbances (Miao and Seborg, 1999; 

Thornhill, 2005). These oscillations tend to persist as they propagate throughout a process, 

resulting in long datasets that can be used for causality analysis, and making causality analysis 

well-suited for the diagnosis of oscillations (Lindner, 2019). All further discussions are therefore 

limited to causality analysis to identify the root cause of oscillations. 

Lindner, Auret and Bauer, (2017) investigated the effect of different oscillations on a known 

causal connection between two variables. A peak in the G-causality index was observed for 

intermediate frequencies, while both high frequencies and low frequencies resulted in lower  

G-causality indices. At high frequencies, the perturbations resembled sensor noise, which 

obscured the causal connection. At low frequencies, propagation of the input perturbation to the 

output variable was so gradual that the effect was dominated by the more rapid dynamics of the 

sensor noise. However, this effect was somewhat compensated for with the model order selection 

via AIC (see Section 2.4), as a larger model order could capture slower dynamics. 

2.7.3. Controller interaction 
Lindner, Auret and Bauer, (2017) report that the presence of a controller in a process decreases 

the G-causality index of a known causal connection, specifically at lower frequencies. This is 

because lower frequency oscillations are more successfully attenuated by the controller, so the 
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impact of these oscillations on the output are less pronounced, which hides the causal connection. 

However, Lindner, Auret and Bauer, (2017) also reports that GC was still able to detect a known 

causal connection in a closed loop, even for a low frequency oscillation. 

2.7.4. Confounding variables 
Data-based causality techniques can report spurious connections if a confounding variable is 

present, as discussed in Section 2.4. Conditional GC can be used to prevent this, except if the fault 

is due to an unmeasured variable. This is a limitation to all data-based causality analysis 

techniques, as they can only use the information provided by measured variables. 

2.7.5. Time frame and parameter selection 
GC is a lag-based causality analysis technique (Yang et al., 2014), meaning that it is based on 

temporal information. The performance of GC analysis is therefore dependent on parameters that 

affect how this temporal information is included in the analysis. 

The time frame of the data included in the analysis should therefore be long enough to incorporate 

the process dynamics, which includes residence times and time delays of the process. The time 

frame is the product of the model order and the sampling period, where the model order is typically 

selected via AIC (see Section 2.4). Most chemical and mineral processes have unit residence times 

of the order of at most a few minutes, and sampling frequencies of around 10 seconds (Lindner, 

2019), which gives typical model orders of around 1 – 30. 

Sampling period (SP) refers to the time between samples when the data is sub-sampled from the 

original time series. A larger SP can be used to cover a larger time frame with fewer samples, but 

it also means that the included data is of a lower resolution, which can negatively affect causality 

analysis results. Barnett and Seth, (2017) reports detectability “black” and “sweet” spots as the 

sampling period interacts with the underlying process dynamics; but an exponential decay in the 

detection ability of causality analysis techniques as the sampling period increases beyond the 

causal delay. 

Bauer et al., (2007) investigated the minimum number of samples required to obtain a significant 

Transfer entropy value. Results indicated that the minimum number of samples should be set to 

2000 samples if possible, but could be as low as 400 samples; and Lindner, (2019) agrees with 

this. To the best of the author’s knowledge, no investigation has been performed to find the 

minimum number of samples required to obtain a significant value for the G-causality index. 

However, the full autoregressive (AR) model in conditional GC predicts all variables as a function 

of all the other variables (see Section 2.4). The minimum number of samples included in causality 

analysis should therefore be sufficient to find a unique solution for the full AR model (Barnett 

and Seth, 2014).  

SP and time window (TW) selection is therefore important to provide a long enough time frame 

and a sufficient number of samples for conditional GC, where TW is the total length of time 

captured in the dataset. However, to the best of the author’s knowledge, there is no guideline or 

heuristic approach for engineers to follow in SP selection for GC, and no mention of TW selection 

for causality analysis in literature. Typically, no decision is made regarding TW, and all available 

data with the fault present is used for causality analysis. However, the amount of available data 

may not be enough to provide a unique OLS solution for the full AR model, especially if the 

number of available samples is decreased by sub-sampling. A usable method or guideline for SP 

and TW selection for GC is therefore identified as a vacancy in current literature. 
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2.8. Summary of causality analysis for fault identification in 

literature 

This section provides an overview of how causality analysis has been applied for fault 

identification in published literature regarding process engineering. In line with the scope of this 

work, Table 2 presents a summary of literature where GC was performed for fault identification 

of an oscillation. For a broader summary, including different causality analysis techniques and 

fault types, the reader is referred to Lindner, (2019).  

Table 2: Summary of literature on Granger causality application for fault identification of an oscillation.  

Source Industry Data type 

Yang, Sirish and Xiao, (2010) Chemical processing Industrial 

Duan et al., (2014) Chemical processing Simulated 

Landman et al., (2014) Chemical processing Industrial 

Yuan and Qin, (2014) Chemical processing Simulated & Industrial 

Yang et al., (2014) Chemical processing Industrial 

Wakefield et al., (2018) Mineral processing Simulated 

Lindner, (2019) Mineral processing Simulated & Industrial 

Suresh, Sivaram and 

Venkatasubramanian, (2019) 

Chemical processing Industrial 

The sources are categorised according to industry in the second column in Table 2, showing that 

the majority of applications are in the chemical processing industry, with few in the mineral 

processing industry. To the best of the author’s knowledge, no other examples of GC application 

in the mineral processing industry have been published, but it should be noted that the publications 

with mineral processing applications are recent, so more publications of causality analysis in this 

industry can be expected. 

In addition, the third column in Table 2 categorises the sources according to data type, showing 

that GC has not only been applied to simulated case studies, but also to industrial case studies. 

However, it should be noted that the focus of this research was on the development and 

improvement of the GC technique, with little or no reference to usability or interpretability – as is 

further discussed in Section 3.5.
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CHAPTER 3 

3. Causality map presentation and interpretability 

Causality map presentation and 

interpretability 

 Difficulties in causality map interpretation 

The output of causality analysis for fault identification is a causality map. This causality map is 

interpreted by engineers to identify the variable(s) at the start of the propagation path as the root 

cause variable(s) to be further investigated. However, this interpretation step can prove difficult. 

Firstly, the true root cause variable(s) may not be included in the causality map, as data-based 

causality maps are limited to measured variables. Furthermore, the causality map may be 

ambiguous if there are multiple propagation paths pointing to different root cause variables, as 

mentioned in Section 2.6. This happened in the study by Landman, (2019), where further analysis 

was then required to identify the root cause variable from the group of potential root cause 

variables identified by the causality map. The variables that could not reach all other variables in 

the causality map were excluded from consideration as root cause variables, allowing one root 

cause variable to be identified. However, this approach may not always narrow the pool down to 

only one root cause variable. 

Alternatively, the fault can be localised if all the potential root cause variables are associated with 

a single unit or control loop in the plant, and that unit or control loop can be further investigated 

(Lindner, 2019). However, the variables may all be associated with different units or even sections 

of the plant, so that there is no clear indication where to further investigate the fault. This could 

be the result of multiple faults occurring at the same time, but Shiozaki et al., (1985) states that 

the probability of independent faults occurring simultaneously is small. It is therefore assumed 

that only one independent fault is present at a time.  

Causality map interpretability also depends on the accuracy of the causality technique (GC, TE, 

etc.) used as well as system intricacy and interactivity, as this has an effect on the number of 

spurious connections present (Lindner, 2019). System intricacy and interactivity play another role, 

as even a large number of true connections will lead to confusion. In addition, causality map 

interpretability is influenced by whether the causality map is cyclic or acyclic. All root causes are 

identifiable in acyclic maps (Pearl, 2009), but cyclic maps show no clear start or end nodes to 

allow tracing back to a root cause.  

Suresh, Sivaram and Venkatasubramanian, (2019) therefore propose an approach to produce an 

acyclic plant-wide causality map from a cyclic causality map. Variables that cause cyclic effects, 

such as variables related to control loops and recycle streams, are simply excluded from the 

causality analysis. However, this approach is time-intensive, as these variables are manually 

identified from a P&ID, which will likely be outdated (see Section 2.3). 
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 Visualization techniques and tools for causality map 

interpretation 

Currently little research has been done on causality map interpretation, in favour of focusing on 

improving the accuracy of the analysis methods such as GC and TE (Lindner, 2019). However, 

Lindner, (2019) does provide a starting point in the form of basic techniques to construct more 

interpretable causality maps; as well as post-construction tools for root cause identification. This 

section therefore provides an overview of these techniques and tools, as well as a workflow for 

causality map interpretation proposed by Lindner, (2019) in Figure 4.  

 

Figure 4: Workflow for causality map interpretation for fault identification, adapted from  
Lindner, (2019). Techniques and tools mentioned are described in this section. 

3.2.1. Pruning 
Pruning algorithms can be used to decrease the total number of connections in causality maps by 

removing certain connections. Commonly removed connections are shortcut connections 

(Lindner, 2019), which are causal connections due to the influence of an intermediate variable 

(Figure 5). This is because these shortcut connections can be true or spurious. In other words, the 

connection from 𝑋 → 𝑌 in Figure 5 may not really exist, but only appear to exist because there 

are connections from 𝑋 → 𝑍 and 𝑍 → 𝑌. Conditional GC (see Section 2.4) could be used to 

determine if these connections are true or spurious, but this increases the computational burden of 

the causality analysis, so pruning algorithms are often preferred.  

 

Figure 5: Example of shortcut connection from 𝑋 → 𝑌. Solid lines represent direct connections; dashed 
line represents shortcut connection. 

The transitive reduction algorithm is a formalized pruning algorithm for the removal of shortcut 

connections. The transitive reduction of graph G is another graph Greduction with the same number 
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of nodes, but with the fewest edges that still allow Greduction to have the same reachability (defined 

in eqn 1 in Section 2.2.) as G (Aho, Garey and Ullman, 1972). Reachability is the ability to get 

from one node to another within the graph.   

The transitive reduction algorithm iterates through the graph using a depth-first search. The depth-

first search algorithm begins at a start node that is specified by the user and discovers other nodes 

sequentially (Tarjan, 1972). This continues until the algorithm encounters a node with no 

undiscovered neighbour. The algorithm then backtracks along the discovered path to the closest 

previously discovered node that still has an undiscovered neighbour (Tarjan, 1972). This is 

implemented recursively until all the nodes that are reachable from the start node have been 

discovered (Tarjan, 1972). For each combination of three nodes X, Y, and Z discovered, if there 

are edges 𝑋 → 𝑍, 𝑍 → 𝑌, and 𝑋 → 𝑌, the edge 𝑋 → 𝑌 is removed. The dashed line in Figure 5 

would therefore be removed (Aho, Garey and Ullman, 1972).  

Cyclic and acyclic graphs respond differently to the transitive reduction algorithm. The transitive 

reduction Greduction of an acyclic graph will always be a unique subgraph of G (Lindner, 2019), 

where a subgraph of G is defined as a graph that contains a subset of nodes of G and all of the 

edges of G that join the nodes of that subset (Price, 1971). 

However, the transitive reduction for a cyclic graph G is not unique and not necessarily a subgraph 

of G (Lindner, 2019). Edges could be constructed that did not exist in the original graph. This is 

because the presence of a cycle in the original graph may have caused a connection between two 

specific nodes. When that cycle is removed, the connection between those two nodes is also 

removed, so a new edge is constructed to directly connect those two nodes in Greduction.  

3.2.2. Layout styles 
Five different node layout styles are identified by Lindner, (2019). Firstly, the nodes can all be 

placed in a straight line, with the source nodes first and the sink nodes last, as done by Bauer et 

al., (2007). This style can allow for quick identification of the root cause variable, but it becomes 

confusing for dense maps. 

Secondly, a grid layout can be used, as by Landman et al., (2014). This style is neat and can easily 

be used to mirror a plant layout or process schematic, but it can be difficult to visualize the 

direction of propagation (Lindner, 2019). The third style is a layered layout, as used by Sugiyama, 

Tagawa and Toda, (1981). This style consists of a hierarchal structure where sets of nodes make 

up layers, and each edge joins two nodes that belong to different layers. If the causality map has 

a clear start and end node, this style effectively reveals the propagation path (Lindner, 2019).  

Fourth is the circle layout, as used by Yuan and Qin, (2014). It was also used by Duan et al., 

(2015) to present results before a layered map was constructed to get a better visualization of the 

propagation paths. In this style, the nodes are placed in a circle around the origin, which allows 

for visualization of the node importance by looking at indegree and outdegree of nodes (Lindner, 

2019). In turn, this allows identification of nodes as source or sink nodes respectively. This is 

especially useful for cyclical graphs where there is no clear start and end node.    

Lastly, there is a force layout. Endpoints of edges are assigned attractive forces, and nodes are 

assigned repulsive forces (Lindner, 2019). This causes nodes that are not connected by an edge to 

be pushed away from each other due to their like forces; and nodes with many edges associated 

with them to attract the nodes they are connected to. The final layout therefore consists of clusters 

of connected nodes, which can reveal a hierarchal structure (Lindner, 2019).  
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Lindner, (2019) also proposes some recommendations of when to use which layout. In essence, 

the suggestion is to use the layered layout for sparse causal maps with minimal cyclic loops; to 

use the circle layout for dense maps with cyclic loops; and to use the force layout to identify 

important causal structures within the process.  

3.2.3. Separating causality maps and assigning node and edge attributes 
Complicated causality maps may be made easier to follow if nodes are grouped and coloured 

according to sensor or variable location. This can be done for various resolutions: namely on a 

plant-wide scale, where nodes are coloured according to different sections of the plant; for a single 

plant section, where nodes are coloured according to different units; or for the smallest resolution, 

where nodes are coloured according to which controller they are associated with (Lindner, 2019). 

Alternatively, or in conjunction with node colouring, separate causality maps can be generated for 

specific groups of nodes. The example that Lindner, (2019) provides is two parallel banks of 

flotation cells that can be separated since they do not influence one another. This approach avoids 

spurious connections between the two banks and decreases the computational burden. It also leads 

itself to dimensionality reduction in causality maps, as further discussed in Section 3.3. 

Furthermore, nodes can also be grouped, and then coloured or separated according to variable 

categories. These categories can be sensor type (flow, density or temperature measurements), or 

control categories (CVs, MVs or SPs) (Lindner, 2019). 

Lastly, edge attributes can be assigned in the form of edge line thickness or edge arrow head size 

to represent connection strength.  

3.2.4. Node importance techniques 
Node importance techniques are aimed at identifying the most likely root cause variable, 

especially if there are multiple options presented by the causality map or if the map itself is dense.  

Lindner, (2019) mentions three main node importance techniques, with the first being maxflow. 

Maxflow of a node is defined as the difference between the node’s outdegree and indegree  

[eqn 11] (Yuan and Qin, 2014), which are defined as the number of edges leaving the node and 

the number of edges entering the node respectively (Price, 1971). The maxflow is calculated for 

each node and the node with the highest maxflow is considered the root cause variable. The 

motivation behind this is that the root cause variable would have the largest influence on the 

subsequent nodes (i.e. the highest maxflow) because it is the driver of the fault. 

 𝑀𝑎𝑥𝑓𝑙𝑜𝑤 = 𝑂𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 − 𝐼𝑛𝑑𝑒𝑔𝑟𝑒𝑒 [11] 

The second technique is to sum the causal influence of one variable on all other variables in the 

system [eqn 12]. Kühnert and Beyerer, (2014) assigned a causal strength scaled between 0 and 1 

to each node and then applied eqn 12, where 𝑞𝑥𝑗→𝑥𝑖
 is the causal strength from 𝑥𝑗 to 𝑥𝑖. This was 

done for each variable (or node), and a root cause priority list generated.  

 

𝑅𝐶𝑗 = ∑𝑞𝑥𝑗→𝑥𝑖

𝑖≠𝑗

𝑖=1

  [12] 

Lastly, the page rank algorithm (Bryan and Leise, 2006) can be used, as done by  Streicher, 

Wilken and Sandrock, (2014). The algorithm assigns scores to each node based on its influence 

on the rest of the causal network. The difference between this and maxflow is that the causal 

influence on all the other variables in the system is taken into account, instead of only on the 

variables (or nodes) directly surrounding the node in question. 
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3.2.5. Complexity metrics 
Complexity metrics can prove useful to make decisions within an automated algorithm for the 

construction of causality maps. For example, different layout styles can be employed based on the 

density of the causality map (see Layout styles subsection earlier in this section). Lindner, (2019) 

proposes using graph density (Gibbons, 1985) for a directed graph as a complexity metric, as 

shown in eqn 13: 

 
𝐷 =

𝐸

𝑉(𝑉 − 1)
 [13] 

Where E represents the number of edges and V represents the number of nodes in the graph. For 

a fully connected graph, where all nodes are connected to all other nodes via edges (Price, 1971), 

𝐸 = 𝑉(𝑉 − 1). The upper boundary of graph density is therefore one. 

3.2.6. Graph traversal 
Graph traversal is aimed at identifying paths between different nodes in the causality map. As 

with pruning, the depth-first search algorithm is typically used to move through the graph (see the 

Pruning subsection of this section) (Yang and Xiao, 2012). Different fault propagation paths can 

then be compared to identify the most likely candidate (Yang and Xiao, 2012). For example, 

causal strengths assigned to edges can be inversed and used to find the shortest path (which would 

represent the strongest causal link) between nodes. Shiozaki et al., (1979) used the depth-first 

search algorithm to find the maximum strongly connected component in a signed directed graph 

(SDG) and took that component as a localized area of the root cause. A strongly connected 

component contains a path between all pair of nodes (Price, 1971). 

 Dimensionality reduction in causality maps 

The number of nodes present in a causality map affects its interpretability. Section 3.2 discusses 

a few techniques and tools to improve causality map interpretability both during and post 

construction, but none of these addresses the difficulty of interpreting a causality map that has 

many nodes. This section therefore discusses how dimensionality reduction can be used to 

improve causality map interpretability, using either variable selection or feature extraction.  

3.3.1. Dimensionality reduction using variable selection 
Dimensionality reduction using variable selection implies that only certain types of variables are 

selected to include in the causality analysis and therefore the causality map. Lindner et al., (2018) 

did this by selecting only CVs and only MVs, and constructing separate causality maps for each 

group of variables, where the CV or MV in each case can be seen to represent an entire control 

loop. 

Furthermore, variable selection using oscillation detection techniques is a known, although 

optional, step that can be performed prior to causality analysis. Typically, variables that oscillate 

at a common frequency are identified in the time series and included in the causality analysis. 

Landman and Jämsä-Jounela, (2016) did this by selecting variables that exhibited a peak in their 

power spectra at a common oscillation frequency. However, Duan et al., (2014) states that simply 

looking at the power spectra of variables raises the question of what is a significant oscillatory 

contribution at a frequency (i.e. what is a large enough peak for a variable to be selected); and 

opted for variable selection via the spectral envelope method  developed by Jiang, Choudhury and 

Shah, (2007) instead. The rest of this section is therefore dedicated to discussing how the spectral 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3: CAUSALITY MAP PRESENTATION AND INTERPRETABILITY 

18 

 

envelope can be used to (1) automatically detect a common oscillation frequency and (2) identify 

variables oscillating significantly at that frequency. 

Concept of the spectral envelope 

First, let 𝒙(𝑡) be a multivariate time series [eqn 14], and 𝒛(𝑡) the normalised, multivariate time 

series [eqn 15] such that: 

 

𝒙(𝑡) = [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

] [14] 

 

𝒛(𝑡) =

[
 
 
 
 
 
 
 
𝑥1(𝑡) − 𝜇𝑥1

𝜎𝑥1

𝑥2(𝑡) − 𝜇𝑥2

𝜎𝑥2

⋮
𝑥𝑛(𝑡) − 𝜇𝑥𝑛

𝜎𝑥𝑛 ]
 
 
 
 
 
 
 

= [

𝑧1(𝑡)
𝑧2(𝑡)

⋮
𝑧𝑛(𝑡)

] [15] 

Furthermore, 𝑽𝒛 is the covariance matrix of 𝒛(𝑡), and 𝑷𝒛(𝜔) is the power spectral density (PSD) 

matrix of 𝒛(𝑡), where the PSD of a signal describes its power distribution over frequency (Jenkins 

and Watts, 1968). 

A scaled series 𝑦(𝑡, 𝛋) can be written as a linear combination of the rows of 𝒛(𝑡) [eqn 16], such 

that: 

 𝑦(𝑡, 𝛋) = 𝛋∗𝒛(𝑡) [16] 

Where 𝜿 is a real or complex vector, and the symbol * refers to the conjugate transpose, meaning 

that the transpose of 𝜿 is taken and then the complex conjugate of each entry is taken. 𝑉𝑦(𝛋)  

[eqn 17] and 𝑃𝑦(𝜔, 𝛋) [eqn 18] are the variance and PSD matrix of 𝑦(𝑡, 𝛋) respectively, which 

can be represented as: 

 𝑉𝑦(𝛋) = 𝛋∗𝑽𝒛𝛋 [17] 

 𝑃𝑦(𝜔, 𝛋) = 𝛋∗𝑷𝒛(ω)𝛋 [18] 

 

The spectral envelope 𝜆(𝜔) is then defined as [eqn 19]: 

 
𝜆(𝜔) =

𝑠𝑢𝑝

𝛋 ≠ 0
{
𝛋∗𝑷𝒛(𝜔)𝛋

𝛋∗𝑽𝜿
} [19] 

Where 𝑽 = 𝑑𝑖𝑎𝑔(𝑽𝒛), and 𝑠𝑢𝑝 stands for supremum, which is the smallest number that is greater 

than or equal to every number in the set 𝜿 ≠ 0. The spectral envelope 𝜆(𝜔) represents the largest 

portion of power (or variance) obtainable at each frequency for any linear combination of the 

original time series. 

A constraint is imposed on 𝜿, so that the scaled series has unit variance [eqn 20]:   

 𝑉𝑦(𝛋) = 𝟏 = 𝛋∗𝑽𝛋 [20] 

Accordingly, the spectral envelope 𝜆(𝜔) then represents the largest portion of power (i.e. 

variance) at each frequency for any linear combination of the original time series that has unit 

variance. Furthermore, the time series data has been normalised, meaning that all non-zero entries 

of 𝑽 (i.e. variances) are ones, and the constraint simplifies to eqn 21: 
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 1 = 𝜿∗𝜿 [21] 

 

With this constraint [eqn 21] in mind, the spectral envelope definition [eqn 19] is rewritten as eqns 

22 & 23: 

 𝜆(𝜔) =
𝑠𝑢𝑝

𝛋 ≠ 0
{𝜿∗𝑷𝒛(𝜔)𝜿} [22] 

 𝜆(𝜔)𝜿 = 𝑷𝒛(𝜔)𝜿 [23] 

Looking at this form of the equation [eqn 23], it follows that 𝜆(𝜔) is the largest eigenvalue of the 

PSD matrix of the normalised data, and 𝜿 is the corresponding eigenvector. 𝜿 is called the optimal 

scaling vector, and its entries represent the contribution of each time series (i.e. variable) to the 

spectral envelope at that frequency. 

Estimation of the spectral envelope 

The crux of the spectral envelope method is to estimate the PSD of the normalised data and 

perform eigenvalue decomposition. The PSD matrix 𝑷𝒛(𝜔𝑘) can be approximated as the 

periodogram �̂�(𝜔𝑘) [eqn 24], which is solved using the discrete Fourier transform. 

 
�̂�(𝜔𝑘) =

1

𝑁
∑{(𝒛(𝑡𝑗)𝑒

−2𝜋𝑖𝑡𝑗𝜔𝑘) × (𝒛(𝑡𝑗)𝑒
−2𝜋𝑖𝑡𝑗𝜔𝑘)

∗
}

𝑁−1

𝑗=0

 [24] 

𝜔𝑘 are the Fourier frequencies, which are normalised frequencies with units of [
𝑐𝑦𝑐𝑙𝑒𝑠

𝑢𝑛𝑖𝑡
]; and are 

determined as 𝜔𝑘 =
𝑘

𝑁
, for 𝑘 = 1, 2, … , [

𝑁

2
], where N is the number of observations available from 

the time series and [
𝑁

2
] is the greatest integer less than or equal to 

𝑁

2
. Again, the symbol * indicates 

the conjugate transpose, since multiplication by the transpose gives the magnitude of how strongly 

the oscillation with frequency 𝜔𝑘 is represented in the data. 

 

The periodogram is not entirely consistent with the PSD matrix, so it is typically smoothed to 

improve the approximation.  This can be done by taking a symmetric moving average of the 

periodogram [eqn 25]: 

 
𝑷𝒙(𝜔𝑘) = ∑ ℎ𝑗 �̂�(𝜔𝑘+𝑗)

𝑟

𝑗=−𝑟

 [25] 

Where ℎ𝑗  are symmetric positive weights satisfying ℎ𝑗 = ℎ−𝑗 and ∑ ℎ𝑗
𝑟
𝑗=−𝑟 = 1. ℎ𝑗  can be chosen 

as ℎ𝑗 =
𝑟−|𝑗|+1

(𝑟+1)2
 for 𝑗 = −𝑟, … , 0, … , 𝑟, where 𝑟 dictates the degree of smoothness.  

 

Take note that the smoothed periodogram (i.e. PSD matrix) is solved for at each Fourier 

frequency, meaning that a range of PSD matrices are produced. Eigenvalue decomposition is 

performed on each PSD matrix, and the spectral envelope therefore identified for each frequency. 

Interpretation of the spectral envelope 

The spectral envelope is plotted against frequency to produce the spectral envelope plot. 

Remember that the spectral envelope represents the largest portion of power (i.e. variance) 

obtainable at each frequency for any linear combination of the original time series. If the original 

time series has a common frequency component (i.e. if there is a common frequency that multiple 

variables are oscillating at), the spectral envelope (i.e. largest portion of power/variance) at that 

frequency will be larger than at other frequencies, and show up as a peak in the plot. A common 

oscillation frequency 𝜔𝑐 can therefore be detected as the frequency corresponding to a peak in the 

spectral envelope plot. 
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The variables that are oscillating at the common oscillation frequency are then identified using 

the Chi-square (𝑋2) statistical test, where the hypothesis 𝜅𝑗(𝜔𝑐) = 0 is tested for each entry of 

the optimal scaling vector. Only variables corresponding to entries where 𝜅𝑗(𝜔𝑐) ≠ 0 are deemed 

to show significant power at the common oscillation frequency, and are therefore included in the 

causality analysis. 

 

Details of the statistical test are outside the scope if this work, but the computational aspects are 

described here. Let 𝜆1 = 𝜆, 𝜆2, … , 𝜆𝑛 be the eigenvalues of the PSD matrix arranged in descending 

order, and 𝜅1 = 𝜅, 𝜅2, … , 𝜅𝑛 the corresponding eigenvectors. The asymptotic covariance matrix 

of the optimal scaling vector 𝜿(𝜔𝑐) can then be calculated as [eqn 26]: 

 
𝑉𝜅(𝜔𝑐) = 𝑣−2𝜆1(𝜔𝑐)∑𝜆𝐿(𝜔𝑐)[𝜆1(𝜔𝑐) − 𝜆𝐿(𝜔𝑐)]

−2𝜿𝐿(𝜔𝑐)𝜿𝐿
∗(𝜔𝑐) 

𝑛

𝐿=2

 [26] 

Where 𝑣 is defined as [eqn 27]: 

  

𝑣 = ( ∑ ℎ𝑗
2

𝑟

𝑗=−𝑟

)

−
1
2

 [27] 

 

The distribution of  
2|�̂�𝑗(𝜔𝑐)−𝜅𝑗(𝜔𝑐)|

2

𝜎𝑗(𝜔𝑐)
 is approximately a Chi-square distribution with two degrees 

of freedom; where �̂�𝑗(𝜔𝑐), 𝑗 = 1, 2, … , 𝑛 is the 𝑗th entry of the estimated optimal scaling vector, 

𝜅𝑗(𝜔𝑐) is the 𝑗th entry of the optimal scaling vector, and 𝜎𝑗(𝜔𝑐) is the 𝑗th diagonal element of the 

asymptotic covariance matrix (i.e. variance) of 𝜿(𝜔𝑐) calculated with eqn 26. If the test statistic, 

2|�̂�𝑗(𝜔𝑐)|
2

𝜎𝑗(𝜔𝑐)
> 𝑋2

2(𝛼), then the hypothesis 𝜅𝑗(𝜔𝑐) = 0 is rejected with (1 − 𝛼) confidence.  

 

The spectral envelope method can therefore be used to detect a common oscillation frequency and 

variables oscillating at that frequency with a relatively simple implementation. Furthermore, it 

has a small computational burden; robustness to parameters and data selection changes; can be 

applied to both linear and nonlinear systems; and has straight-forward interpretation via a single 

plot where all the common oscillation frequencies can be easily identified (Duan et al., 2014). 

3.3.2. Dimensionality reduction using feature extraction 
Dimensionality reduction via the spectral envelope method (discussed in Section 3.3.1) can be 

useful, but this approach falls short in the case where many variables oscillate significantly at a 

common frequency. In such cases, dimensionality reduction using feature extraction may prove 

more useful. 

Lindner and Auret, (2015) grouped variables displayed in a causality map into blocks of strongly 

connected components identified in the causality map; where a strongly connected component is 

defined as a group of nodes that are reachable from each other (i.e. have direct or indirect 

connections between each other) without violating edge direction (see Figure 6 for an example).  

They then performed feature extraction in the form of principal component analysis (PCA) on the 

variables in each block separately, and monitored statistics from these results for fault detection. 

Once a fault was detected, the block showing the largest effect of the fault was identified and a 

causality map produced for the variables in that block, which was then used to trace the 

propagation path back to the root cause. The feature extraction therefore allowed a group of 
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variables to be identified as showing the largest effect of a fault, so allowing a useful causality 

map with fewer nodes to be produced. 

 

Figure 6: Example of a strongly connected component defined according to Tarjan’s algorithm, adapted 
from Lindner, (2014). X, Y, and Z form a strongly connected component, and W is excluded because it 

cannot be reached without violating edge direction. 

Dimensionality reduction followed by causality analysis has also been used to investigate the 

causal relationship between different human brain regions in the neuroscience field. Due to the 

limited literature within the process engineering field that touches on dimensionality reduction in 

the context of causality analysis, this section is expanded to also include literature from this field. 

The data used for this causality analysis is blood-oxygen-level dependent (BOLD) functional 

magnetic resonance imaging (fMRI) signal time courses (i.e. time series produced by extracting 

information from successive images of the brain). These images are three-dimensional, so they 

consist of voxels, which are the 3D versions of pixels that make up 2D images, and each have 

their own energy and information features. Since each brain region in an fMRI image consists of 

a multitude of voxels, it is preferable to equate each brain region to one or a few nodes in the 

causality map, instead of equating each voxel to a node. 

Goebel et al., (2003) performed GC on the average values over the voxels in each brain region. 

Zhou et al., (2009) opted to rather use principal component analysis (PCA) instead of average 

values, which involves identifying the directions of most variance (i.e. principal components) in 

the data. PCA was performed on the voxels from each brain region, and then GC was applied to 

the scores (i.e. the data projected onto the directions identified by PCA) obtained from a few 

principal components (PCs) from each brain region. It was found that this approach preserves 

more energy and information features in the signal when compared to the averaging approach, 

even when only one PC was used for each brain region. However, it was found that GC analysis 

based on only one PC is not enough for the brain connectivity study, and the number of PCs to 

include should be chosen such that 85 % of the variance in the data is retained. This heuristic was 

determined specifically for the investigation of brain connectivity, and should therefore not be 

directly translated if a version of this approach is applied to causality analysis for fault 

identification in the process engineering field. 

Barrett, Barnett and Seth, (2010) mention that using either average values or scores from PCA are 

standard approaches for dimensionality reduction during an investigation of the causal 
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connectivity between brain regions. However, they propose that it may be more appropriate to use 

multivariate Granger causality, where causal interactions between groups of voxels 

compromising each brain region are considered. In this case, interactions between sets of variables 

𝑥 and 𝑦 and (in the conditional multivariate case) 𝑧, are evaluated. The G-causality index (see 

Section 2.4) is then calculated using the determinant of the covariance matrix of the residuals 

instead of simply 𝑣𝑎𝑟(𝜖𝑡), as suggested by Geweke, (1984). 

 Modular structures in networks 

The idea of a causality map can easily be extended to that of a network, as both represent a system 

of interconnected objects. One can then take advantage of this idea, by borrowing established 

techniques that were developed for application to networks – specifically, techniques for 

modularisation optimisation to identify modular structures in a network. This section therefore 

provides an explanation of the modular structure of a network and how this modular structure can 

be identified in a network (or causality map). 

Many networks divide naturally into modules, with high intra-connectivity within modules and 

low inter-connectivity between modules. This is known as a modular structure, and a large 

volume of research has been conducted to develop algorithms to identify this structure in 

networks. Since causality maps are directed graphs with weighted edges (see Section 2.2), this 

section provides an overview of a modularisation optimisation algorithm developed by Blondel 

et al., (2004) and adapted for weighted and directed networks by Newman, (2004) and Leicht and 

Newman, (2008) respectively. 

The aim of any modularisation optimisation method is to maximise modularity 𝑄 [eqns 28 & 29], 

defined by Newman and Girvan, (2004):  

 𝑄 = {𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠}
− {𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑐ℎ 𝑒𝑑𝑔𝑒𝑠} 

[28] 

 
𝑄 =

1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝛿𝑚𝑜𝑑𝑖𝑚𝑜𝑑𝑗

 

𝑗𝑖

 [29] 

Where the expected fraction of edges is determined from a random graph conditioned on the 

degree sequence of the original graph.  

In the original method for unweighted and undirected networks, 𝐴𝑖𝑗 is an entry of the adjacency 

matrix (i.e. 1 or 0; see Section 2.2); 𝑘𝑖 and 𝑘𝑗 are the degree (see Section 2.2) of nodes 𝑖 and 𝑗 

respectively; and 𝑚 is the total number of edges in the network. To use edge weights (see Section 

2.2) instead of adjacency matrix entries for 𝐴𝑖𝑗, 𝑘𝑖 and 𝑘𝑗 become the sums of the weights of edges 

adjacent to 𝑖 and 𝑗 respectively. To incorporate edge direction, eqn 29 is adapted to become  

eqn 30: 

 
𝑄 =

1

𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
]𝛿𝑚𝑜𝑑𝑖𝑚𝑜𝑑𝑗

 

𝑗𝑖

 [30] 

Where 𝑘𝑖
𝑖𝑛 and 𝑘𝑗

𝑜𝑢𝑡 are the indegree and outdegree (see Section 2.2) of nodes 𝑖 and 𝑗 respectively. 

Note that the division is now only by 𝑚 (instead of 2𝑚), because distinguishing between indegree 

and outdegree means that edges are no longer counted twice (i.e. once for each node they are 

adjacent to). 
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In both eqn 29 and eqn 30, 𝑚𝑜𝑑𝑖 and 𝑚𝑜𝑑𝑗 are the respective labels of the modules that the nodes 

𝑖 and 𝑗 are assigned to, and 𝛿 is the Kronecker delta symbol, which is defined as: 

 𝛿𝑚𝑜𝑑𝑖𝑚𝑜𝑑𝑗
= 1, if the two nodes are in the same module (i.e. 𝑚𝑜𝑑𝑖 = 𝑚𝑜𝑑𝑗); and 

 𝛿𝑚𝑜𝑑𝑖𝑚𝑜𝑑𝑗
= 0, if the two nodes are in different modules (i.e. 𝑚𝑜𝑑𝑖 ≠ 𝑚𝑜𝑑𝑗).  

The optimal modular structure is identified by maximising modularity over all possible divisions, 

where both the number of modules and module sizes can be varied. To avoid the computationally 

hard exhaustive optimisation of modularity, Leicht and Newman, (2008) derived an appropriate 

version of the spectral optimisation method that was established by Newman, (2006) for 

undirected networks. 

First consider the simplified problem of dividing a directed network into two modules, by 

assigning each node to either “Module 1” or “Module 2”. Here, the Kronecker symbol in eqn 30 

is defined as [eqn 31]: 

 
𝛿𝑚𝑜𝑑𝑖𝑚𝑜𝑑𝑗

=
1

2
(𝑠𝑖𝑠𝑗 + 1) [31] 

Where 𝑠𝑖 is defined as: 

 𝑠𝑖 = +1, if node 𝑖 is assigned to “Module 1”; and  

 𝑠𝑖 = −1, if node 𝑖 is assigned to “Module 2”. 

The equation for modularity [eqn 30] is then rewritten as [eqn 31]:   

 
𝑄 =

1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] (𝑠𝑖𝑠𝑗 + 1) 

𝑗𝑖

 [31] 

This can be further simplified [eqn 32] and written in matrix form [eqn 33]. For a step-by-step 

derivation from eqn 31 to eqn 32, refer to Appendix A. 

 
𝑄 =

1

2𝑚
∑∑𝑠𝑖𝛽𝑖𝑗𝑠𝑗 

𝑗𝑖

 [32] 

 
𝑄 =

1

2𝑚
𝒔𝑇𝑩𝒔 [33] 

𝒔 is a column vector with entries 𝑠𝑖 for all the nodes in the network; and 𝑩 is the modularity 

matrix, with entries 𝛽𝑖𝑗 defined as [eqn 34]: 

 
𝛽𝑖𝑗 = 𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
 [34] 

The goal is therefore to find 𝒔 that maximises Q for a given 𝑩. To do this, the spectral optimisation 

method for undirected networks relies on the symmetry of the modularity matrix 𝑩, which is not 

the case for directed networks. This is fixed by adding eqn 32 to its own transpose to give  

[eqn 35]: 

 
𝑄 =

1

2
(𝑄 + 𝑄𝑇)  

 
=

1

2
(

1

2𝑚
𝒔𝑇𝑩𝒔 +

1

2𝑚
(𝒔𝑇𝑩𝒔)𝑻)  

 
=

1

4𝑚
𝒔𝑇(𝑩 + 𝑩𝑇)𝒔 [35] 

Where the matrix 𝑩 + 𝑩𝑇 is symmetric. 
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From here, 𝑄∗ is defined as [eqn 36]:   

 𝑄∗ = 𝒔𝑇(𝑩 + 𝑩𝑇)𝒔 [36] 

Where 𝒔 = argmax
𝑠

𝑄 = argmax
𝑠

𝑄∗ (i.e. 𝒔 is the same for both 𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑎𝑥
∗ ). For simplicity, 

𝑄∗ is used for the optimisation procedure. 

The next step is to write 𝒔 as a linear combination of the eigenvectors 𝒗𝑖 of 𝑩 + 𝑩𝑇 [eqn 37] 

(which are orthogonal due to the symmetry of 𝑩 + 𝑩𝑇):  

 𝒔 = ∑𝑎𝑖𝒗𝑖

𝑖

 [37] 

Which allows eqn 36 to be rewritten in terms of these eigenvectors [eqn 37], and further simplified 

[eqn 38]: 

 𝑄∗ = ∑𝑎𝑖𝒗𝑖
𝑇(𝑩 + 𝑩𝑇)

𝑖

∑𝑎𝑗𝒗𝑗
𝑇

𝑗

 [37] 

 𝑄∗ = ∑𝛾𝑖

𝑖

(𝒗𝑖
𝑇𝒔)2 [38] 

Where 𝛾𝑖 is the eigenvalue of 𝑩 + 𝑩𝑇 that corresponds to the eigenvector 𝒗𝑖. For a step-by-step 

derivation from eqn 37 to eqn 38, refer to Appendix A. 

Assuming that the eigenvalues are labelled in decreasing order (i.e. 𝛾1 ≥ 𝛾2 ≥ ⋯ ≥ 𝛾𝑛), 𝑄𝑚𝑎𝑥
∗  is 

achieved when 𝒔 is parallel to the leading eigenvector 𝒗1. This is because the angle between two 

parallel lines is zero, allowing the dot product to achieve its maximum value: 𝒗𝟏
𝑻𝒔 = 𝒗1 ∙ 𝒔 =

|𝑣1||𝑠|𝑐𝑜𝑠𝜃 = |𝑣1||𝑠| cos(0) = |𝑣1||𝑠|. However, the constraint 𝑠𝑖 = ±1 means that the entries 

𝑠𝑖 cannot be chosen as any values to ensure that 𝒔 lies parallel to 𝒗1. The values of 𝑠𝑖 are therefore 

chosen to make 𝒔 as close as possible to parallel to 𝒗1. Since there are only two available options 

for 𝑠𝑖, their values are chosen (and modules assigned accordingly) to achieve the same sign as the 

entries of 𝒗1, meaning that: 

 𝑠𝑖 = +1, if (𝑣1)𝑖 > 0;  

 𝑠𝑖 = −1, if (𝑣1)𝑖 < 0; and 

 𝑠𝑖 = ±1, if (𝑣1)𝑖 = 0; 

Where (𝑣1)𝑖 refers to the 𝑖𝑡ℎ entry of 𝑣1. 

This bisection (i.e. splitting a module into two smaller modules) is then applied repeatedly until 

further division no longer results in an increase in total modularity of the network Δ𝑄. This change 

in total modularity is evaluated for each bisection as [eqn [39]: 

 Δ𝑄 =
1

2𝑚
{∑∑(𝛽𝑖𝑗 + 𝛽𝑗𝑖)

𝑗∈𝑔

𝑠𝑖𝑠𝑗 + 1

2
 

𝑖∈𝑔

− ∑∑(𝛽𝑖𝑗 + 𝛽𝑗𝑖)

𝑗∈𝑔

 

𝑖

}  

 =
1

4𝑚
{∑∑(𝛽𝑖𝑗 + 𝛽𝑗𝑖)

𝑗∈𝑔

− 𝛿𝑖𝑗 ∑(𝛽𝑖𝑘 + 𝛽𝑘𝑖)

𝑘∈𝑔

 

𝑖∈𝑔

}𝑠𝑖𝑠𝑗  

  =
1

4𝑚
𝒔𝑇(𝑩(𝑔) + 𝑩(𝑔)𝑇)𝒔  [39] 
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Where 𝑔 is the module within the original network that is currently being divided, and 𝑩(𝑔) is a 

matrix with entries defined as [eqn 40]: 

 βij
(𝑔)

= 𝛽𝑖𝑗 − 𝛿𝑖𝑗 ∑ 𝛽𝑖𝑘

𝑘∈𝑔

 [40] 

 

This spectral optimisation method provides a good guide to the optimal modular structure, but it 

is not always accurate when it comes to the placement of individual nodes. A fine-tuning step is 

therefore used between bisections, where nodes are moved back and forth between modules until 

modularity cannot be increased further. The complete algorithm to determine the modular 

structure of a weighted direct network is therefore: 

1. Construct the modularity matrix 𝑩, with entries 𝛽𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖

𝑖𝑛𝑘𝑗
𝑜𝑢𝑡

𝑚
. 

2. Identify the largest positive eigenvalue and corresponding eigenvector of 𝑩 + 𝑩𝑇. 

3. Assign each node to a module (i.e. 𝑠𝑖 = +1 or 𝑠𝑖 = −1) based on the sign of the 

corresponding entry of the eigenvector identified in Step 2. 

4. Further bisect each module, using 𝑩(𝑔), with entries βij
(𝑔)

= 𝛽𝑖𝑗 − 𝛿𝑖𝑗 ∑ 𝛽𝑖𝑘𝑘∈𝑔 . 

5. Fine-tune by moving each node back and forth until modularity cannot be increased 

further. 

6. Repeat Steps 4 and 5 until further division does not give a positive value for Δ𝑄. 

 Summary of causality map interpretability and network 

visualisation in literature 

This section provides a broad overview of how causality map interpretability and network 

visualisation have been addressed in published literature. To the best of the author’s knowledge, 

the sources listed are representative of the range of techniques and tools that have been used to 

improve causality map interpretability and network visualisation up to date.  Table 3 presents a 

summary of literature where causality analysis was performed for fault identification in process 

engineering. The summary includes the process or case study that the causality analysis was 

applied to, the resolution of the causality analysis (i.e. whether a single process unit was 

considered or larger section of a plant), as well as the layout used for the resulting causality map, 

and any techniques and tools used to improve the causality map interpretability.  

The studies are listed in consecutive order to identify any improvements or additions throughout 

the years to aid in causality map interpretability. However, it is clear that within the context of 

fault identification in process engineering, only Lindner, (2019) and Suresh, Sivaram and 

Venkatasubramanian, (2019) have conducted any research where the explicit subject was 

causality map interpretability. Furthermore, within other studies where causality analysis is 

applied, little or no reference is made to the causality map interpretability. For example, different 

layout styles are used, but no motivation given for the choices. This is because causality analysis 

research has been largely focussed on the development and improvement of the causality analysis 

techniques themselves, and these techniques have been tested on case studies with few variables. 

The largest resolution of case studies that have been used are single plant sections. Application of 

causality analysis to intricate and interconnected systems (e.g. multiple plant sections) involving 

numerous variables, with specific reference to interpretability, is therefore identified as a vacancy 
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in current research. This application would be especially useful to allow a fault detected in a 

specific plant section to be traced back to its root cause even if originated in an upstream section, 

which is often the case due to the smearing effect (see Section 2.6). In addition, to the best of the 

author’s knowledge, no attempt has been made to define characteristics of the ideal causality map 

– hence, this is also identified as a gap in literature. 

The lack of research regarding causality map interpretability within the field of process 

engineering can be addressed by following on the idea that causality maps are networks 

(mentioned in Section 3.4). This literature survey is therefore extended to network visualisation 

in fields outside process engineering. The summary presented in Table 4 provides the case study 

that the network visualisation was applied to, the aim of the network visualisation in that case, as 

well as the network layout and any techniques and tools used to improve the network 

interpretability.  

Graph theoretic characteristics and parameters such as connector hubs and clustering coefficient 

are mentioned in some of the descriptions in Table 4, and are therefore defined here. The nodes 

that are connected to nodes in other modules (defined in Section 3.4) and have a high degree (see 

Section 2.2) are known as connector hubs (Newman, 2003). The clustering coefficient is a 

quantification of the number of edges that exist between the nearest neighbours of a node as a 

proportion of the maximum number of possible edges (Reijneveld et al., 2007).
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Table 3: Summary of how causality map interpretability has been addressed in literature, where causality analysis was performed for fault identification in 
process engineering. Blue italic text indicates that the technique/tool is mentioned for the first time. 

Source Process / Case study Resolution of causality analysis Causality map layout Techniques and tools used to improve causality 

map interpretability 

Bauer et al., (2007) Chemical process Fault identification within a single 

process unit. 

Variables arranged in a 

straight line 

None mentioned. 

Bauer and Thornhill, 

(2008) 

Chemical process Fault identification within a single 

process unit. 

Two layouts presented: (1) 

Variables arranged in a 

straight line;  

(2) Layered layout 

None mentioned. 

Thambirajah et al., 

(2009) 

Chemical process Fault identification within a single 

process unit. 

No specific layout; appears 

as if nodes were simply 

placed in a way that 

prevents edges from 

crossing over other 

edges/nodes. 

Spurious connections decreased by using process 

knowledge to validate causality analysis results. 

Shu and Zhao, (2013) Two case studies:  

(1) Water mixing 

process; (2) Tennessee 

Eastman process 

Fault identification within a plant 

section consisting of two/three 

units. 

For the respective case 

studies: (1) Layered 

layout; (2) Variables in a 

row.  

Number of edges decreased by eliminating 

connections that are combinations of other 

connections. 

Duan, (2014) Tennessee Eastman 

process 

Fault identification within a plant 

section consisting of five units. 

Layered layout Unidirectional and bidirectional causality edges 

coloured differently. Source nodes with zero 

indegree placed on left of causality map. 

Kühnert and Beyerer, 

(2014) 

Two case studies:  

(1) Simulated CSTR;  

(2) Experimental 

laboratory-scale 

level control system 

Fault identification within a single 

process unit. 

(1) Layered layout;  

(2) No clear layout 

Arrow head sizes proportional to causal strength of 

connection. 

Lindner and Auret, 

(2014) 

Two-tank simulation 

with temperature and 

level control 

Fault identification within a single 

process unit. 

Layered layout Nodes colour-coded to indicate symptom nodes and 

root nodes. Edges coloured to indicate paths from 

root to symptom nodes. Note: This was done after 

causality map interpretation had yielded the results.  

Landman et al., 

(2014) 

Drying section of an 

industrial paperboard 

machine 

Plant section consisting of 74 

drying cylinders divided into six 

steam groups. 

Layered layout Number of connections decreased by using process 

knowledge in the form of a connectivity matrix to 

remove all indirect connections. 

Yuan and Qin, (2014) Tennessee Eastman 

process 

Plant section consisting of five 

process units. 

Circle layout Unidirectional and bidirectional causality edges 

coloured differently. 

Duan et al., (2015) Tennessee Eastman 

process 

Plant section consisting of five 

process units. 

Circle layout Unidirectional and bidirectional causality edges 

coloured differently. 
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Source Process / Case study Resolution of causality analysis Causality map layout Techniques and tools used to improve causality 

map interpretability 

Lindner and Auret, 

(2015) 

Concentrator process Plant section consisting of nine 

process units. 

Layered layout Number of nodes and edges decreased by blocking 

according to strongly connected components (i.e. a 

single nodes represents multiple strongly connected 

variables). See Section 3.3.2. 

Landman and Jämsä-

Jounela, (2016) 

Drying section of an 

industrial paperboard 

machine 

Plant section consisting of 74 

drying cylinders divided into six 

steam groups. 

Layered layout Bolded and dashed edges represent connections 

above and below causal strength thresholds 

respectively. Edges coloured in red if suspected to 

be indirect/spurious. 

Lindner et al., (2018) Two parallel flotation 

banks 

Plant section consisting of 14 

process units. 

Layered layout Separate causality maps constructed according to 

variable location and variable category. 

Wakefield et al., 

(2018) 

Milling circuit 

simulation 

Plant section consisting of four 

process units. 

Layered layout None mentioned. 

Lindner, (2019) Various mineral process 

case studies 

Plant sections with the number of 

units in the order of ten. 

See Layout subsection in 

Section 2.7.1. 

See Section 3.2. 

Suresh, Sivaram and 

Venkatasubramanian, 

(2019) 

Tennessee Eastman 

process 

Plant section consisting of five 

process units. 

Layered layout Produce an acyclic causality map from a cyclic 

causality map. See Section 3.1. 

Table 4: Summary of how network visualisation has been addressed in literature in fields outside process engineering. Blue italic text indicates that 

the technique/tool is mentioned for the first time. 

Source Data / Case study Aim of network visualisation Network layout Techniques and tools used to improve network 

interpretability 

Newman, (2003) Friendship network of 

children in US school. 

Directed, because person 

A may say person B is 

their friend but not vice 

verca. 

Investigation of whether a 

community structure (i.e. modular 

structure) exists in the data. 

Force layout, but resulted 

in what appears to be a 

circular layout 

Nodes colour-coded according to additional 

information in dense network. 

Newman, (2004) Network of co-occurrence 

of words in Reuters 

newswire stories 

Testing of module optimisation 

algorithm where aim is to identify 

communities (i.e. modules) in the 

network. 

Modular according to 

communities (i.e. modules) 

identified in data (i.e. force 

layout) 

Clusters of nodes separated into modules with nodes 

colour-coded according to communities (i.e. modules). 

Edge widths represent weightings  
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Source Data / Case study Aim of network visualisation Network layout Techniques and tools used to improve network 

interpretability 

Palla et al., (2005) Two case studies:  

(1) Network of word 

associations related to 

cognitive sciences;  

(2) Molecular-biological 

network of protein-protein 

interactions 

Testing of module optimisation 

algorithm where aim is to identify 

communities (i.e. modules) in the 

network AND incorporate the fact 

that some modules overlap. 

Modular according to 

communities (i.e. modules) 

identified in data (i.e. force 

layout) 

Colour-coded nodes and edges according to 

communities (i.e. modules). Overlapping nodes and 

edges between communities emphasised in red. Edge 

and node weightings proportional to total number of 

communities they belong to. Number of edges 

decreased by setting a threshold connection strength. 

Blondel et al., (2008) Communication extracted 

from Belgian mobile 

phone network. 

Testing of module optimisation 

algorithm where aim is to identify 

communities (i.e. modules) in the 

network. 

Modular layout (i.e. force 

layout) 

Nodes represent entire communities and node size is 

proportional to the number of individuals in the 

corresponding community. Nodes colour-coded 

according to additional information in dense network. 

E. A. Leicht and 

Newman, (2008) 

Randomly generated 

network 

Testing of module optimisation 

algorithm where aim is to identify 

communities (i.e. modules) in the 

network. 

Modular according to 

communities (i.e. modules) 

identified in data (i.e. force 

layout) 

Shaded backgrounds for different modules enhance 

their separation.  

Bullmore and 

Sporns, (2009)  
(1) Cellular function 

network; (2) brain 

structure network 

Comparison of cellular function 

and brain structure networks in 

healthy people and people with 

Schizophrenia. 

Two layouts presented: (1) 

Circle layout;  

(2) appears to be grid 

layout mimicking brain 

structure 

In the respective layouts: (1) Dotted lines drawn 

around each modules in modular structure. Nodes and 

edges colour-coding according to module. (2) Nodes 

arranged vertically by degree and separated 

horizontally for clarity. Colour coding according to 

brain region (equivalent to plant section in process 

engineering).  Nodes sized according to clustering 

coefficient. 

Pollonini et al., 

(2010) 

Brain structure 

connectivity 

Comparison of brain structure 

connectivity in people with 

autism and control groups. 

Grid layout mimicking 

brain structure 

None mentioned. 

Zhou et al., (2014)  Neuron network Search for mapping between 

causal connectivity and synaptic 

connectivity in neural networks. 

Circle layout None mentioned. 
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CHAPTER 4 

4.  Causality analysis methodology and proposed approaches 

Causality analysis methodology and 

proposed approaches 

4.1. Workflow for causality analysis 

Causality analysis in this study followed the workflow: (1) variable selection; (2) data selection; 

(3) the causality analysis calculation; (4) incorporation of process knowledge and tools to aid 

in causality map interpretation; (5) causality map construction, and (6) causality map 

interpretation. Steps (1) to (5) were implemented using MATLAB, (2018). 

Variable selection was performed using three different methods throughout this project. In the 

first method, the time series of the variables were observed to identify oscillating variables (see 

Chapter 5). In the second method, optional variable selection was implemented via the 

variables-slider based on the spectral envelope method, as explained in Section 4.3.2. In the 

third method, variable selection was performed once-off using the spectral envelope method 

described in Section 3.3.1.  

The various tools, visualisation techniques and approaches in this study were applied to a 

simulated case study of tanks in a network (described in Chapter 5). Data availability was 

therefore not a limiting factor, as the simulation could simply be run for as long as necessary. 

Due to a lack of guidance on how to select SP and TW in literature (see Section 2.7.5), a novel 

heuristic approach was developed in Section 6.2. Using this approach, the combination of SP 

and TW that results in the largest connection strength of a known connection was selected. 

Pairwise conditional GC was performed to obtain the G-causality indices, using equations 7-9 

in Section 2.4.1; and the G-causality indices were stored in a causality matrix (see Section 2.2). 

The model order was obtained using the finite sample bias-corrected form of AIC in eqn 5, and 

statistical significance was determined with the F-statistical test in eqn 10 using a significance 

level of 0.01 unless stated otherwise. GC code was developed and validated by the author to 

ensure understanding, but the GCCA mode in the MVGC toolbox (Barnett and Seth, 2014) was 

used to generate data-based causality results for this study. The author’s code was validated by 

applying it to the case study described in Chapter 5 and comparing the results of the G-causality 

indices to those obtained when using the MVGC toolbox (Barnett and Seth, 2014) (see 

Appendix B).  

Process knowledge was incorporated to constrain connections and potential root cause variables 

in causality maps, as described in Section 4.2. For the base case, the transitive reduction of a 

causality map (see Section 3.2.1) was obtained using the transreduction() function in 

MATLAB, (2018). The visual display of node rankings, as well as the connections-slider and 

variables-slider, were implemented as explained in Section 4.3.  

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4: CAUSALITY ANALYSIS METHODOLOGY AND PROPOSED APPROACHES 

31 

 

Causality maps were constructed as digraphs from the causality matrices containing the  

G-causality indices. The circle layout (see Section 3.2.2) was used, as the process in the case 

study is cyclic (see Chapter 5). Causality maps were then used to track the propagation path of 

a fault back to its root cause, as discussed in Section 2.6.  

4.2. Procedures for incorporating process knowledge in causality 

maps 

Process knowledge was incorporated in causality maps in two different ways: to (1) constrain 

connections in the causality map, and (2) constrain the group of potential root cause variables.  

4.2.1. Constraining connections 
Process knowledge in the form of a connectivity matrix was used to validate connections in a 

causality map. Data-based causality analysis was performed on all variable pairs, followed by 

a depth-first search (see Section 3.2.1) through the connectivity matrix to corroborate the 

physical possibility of each identified connection (i.e. to validate each connection) and so refine 

the causality map. Code was written in MATLAB (MATLAB, 2018) to achieve this for both a 

standard causality matrix and a causality matrix where nodes represent groups of variables, and 

it is available in Appendix B.  

Two variations of the refined causality map were constructed. In the first variation, only 

connections identified by the data-based causality analysis and validated by the connectivity 

matrix were displayed on the causality map. In the second variation, solid lines were used to 

represent connections validated by the connectivity matrix, and dashed lines were used to 

represent connections that were not validated by the connectivity matrix. 

The connectivity matrix was manually constructed from process knowledge to mimic results 

that XML scraping from a P&ID of the case study (see Chapter 5) would yield. In addition, 

known causal connections between MVs and CVs in feedback control loops as well as known 

causal connections between tank levels and underflows were included in the connectivity 

matrix, to ensure that everything that is known about the process was reflected in the 

connectivity matrix. The connectivity matrix is available in Appendix F. 

4.2.2. Constraining potential root cause variables 
Process knowledge about the smearing effect was used to constrain the group of potential root 

cause variables. The root cause variable should be able to reach all variables that show an effect 

of the fault; and a causality map should consist only of variables that show an effect of the fault. 

As such, a reachability matrix was constructed from the adjacency matrix (see Section 2.2), and 

used to identify nodes that cannot reach all other nodes in the causality map, excluding any 

nodes with a degree of zero. The identified nodes were displayed in a faded colour on the 

causality map to indicate that they should be removed from immediate consideration as the root 

cause. 

4.3. Procedures for applying tools to aid in causality map 

interpretation 

Two different types of tools were applied to the causality maps to aid in their interpretation, 

namely the visual display of node rankings and sliders. The nodes were ranked using the node 

importance techniques in Section 3.2.4; and the sliders are a novel concept for causality maps. 
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4.3.1. Displaying node rankings 
The nodes in the causality map were ranked according to their influence on the rest of the map, 

using the node importance technique based on the page rank algorithm (see Section 3.2.4). The 

rank of each node was visually displayed on the causality map by colouring the nodes according 

to their rank and providing a colour bar as key, where the colour at the top of the colour bar 

represents the largest influence on the map and the colour at the bottom of the colour bar 

represents the smallest influence on the causality map.   

4.3.2. Sliders for connections and variables 
Two sliders were implemented and visually displayed along with the causality maps: a 

connections-slider that determines which connections are displayed on the causality map; and 

a variables-slider that determines which variables are included in the causality analysis and 

subsequently displayed on the causality map. Both sliders can be manipulated until the ‘most 

ideal’ map is obtained for the system under consideration, but also have default values so that 

the user does not necessarily need to interact with them.  

The connections slider was incorporated as the significance level of the F-test applied to the 

GC results, with a minimum value of 1×10-16, a maximum value of 0.05, and a default value of 

0.01. It acts as a threshold for how strong a causal connection must be for it to be displayed on 

the causality map (i.e. a lower value on the connections-slider means only the stronger 

connections are displayed – so fewer connections are displayed). 

Two versions of a variables-slider were proposed and investigated - both based on the spectral 

envelope method (see Section 3.3.1). The PSD matrices for the Fourier frequencies were 

calculated as the smoothed periodogram with r = 1, following Duan et al., (2014). The common 

oscillation frequency was determined as the frequency corresponding to a peak in the spectral 

envelop plot. The oscillation contribution of each variable was then found via the optimal 

scaling vector at the common oscillation frequency (i.e. the eigenvector corresponding to the 

largest eigenvalue of the PSD matrix).   

Both versions of the variables-slider were based specifically on the oscillation contribution of 

variables at the common oscillation frequency, with the slider-value acting as a threshold that 

must be met by a variable for it to be included in the causality analysis. The first version 

compares the oscillation contribution of each variable to the oscillation contribution of an 

identified oscillating variable (IOV): |𝑂𝐶 − 𝑂𝐶𝐼𝑂𝑉| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, where the default threshold 

is one, to include all variables. In the first version, the identified oscillating variable is the 

variable that first alerted operators/engineers to the problem (e.g. an alarm that went off in the 

plant). In this project, the identified oscillating variable was taken as the known root cause 

variable (Chapter 5) to ensure that a variable relevant to the fault was selected for the 

investigation. The second version acts as a threshold for how large the oscillation contribution 

of a variable must be in order to be included in the causality: 𝑂𝐶 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, where the 

default threshold is zero, to once again include all the variables. 

In both versions of the variables-slider, the optimal scalings were each divided by the maximum 

optimal scaling to limit the values between 0 – 1. In the first version, a slider-value of 0 includes 

only the identified oscillating variable itself in the causality analysis, and a value of 1 includes 

all variables. In the second version, a slider-value of 0 includes all the variables in the causality 

analysis, and a value of 1 includes only the variable with the largest oscillation contribution. 

The default values for the first and second versions of the variables-slider were therefore set to 
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1 and 0 respectively, so that all variables are included, as variable selection is an optional step 

in causality analysis. The variables-slider were compared to the existing, once-off, 

implementation of the spectral envelope method, where variables oscillating at the common 

oscillation frequency were identified with a 99.9 % confidence interval (i.e. 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 >

13.82). 

4.4. Proposed hierarchical approach for causality analysis 

This study proposed a hierarchical approach for causality analysis, where causality maps were 

constructed in two subsequent stages. In the first stage, a less-detailed, plant-wide map was 

constructed and used to localise the root cause to a specific group of variables; followed by the 

second stage, where a causality map was constructed for only that group of variables and used 

to identify the root cause. The plant-wide map in stage one was obtained by first grouping the 

variables, finding representatives for each group of variables, and then performing causality 

analysis on these representatives, as depicted in Figure 7. 

4.4.1. Grouping the variables 
The variables were grouped in two different ways: using a knowledge-based method, where the 

variables were grouped according to plant sections (PSs); and using a data-based method, where 

the variables were grouped according to the causal modular structure in the causality map 

consisting of all variables in the plant showing an effect of the fault (a standard causality map). 

The causal modular structure was identified using a repetitive bisection method to optimise 

modularity, taking into account both edge weights and direction, where the tolerance for a small 

enough change in modularity to stop the bisection was set to 1 × 10−6 (see Section 3.5).  

4.4.2. Finding a representative for each group of variables 
Representatives for each group of variables were found using feature extraction in a data-based 

approach. Each group was represented by the first principal component (PC1) obtained from 

performing principal component analysis (PCA) on all its variables. Hereafter, the following 

abbreviations (Table 5) are used to refer to each of these approaches: 

Table 5: Abbreviations used for the different hierarchical approaches. 

Abbreviation Meaning 

PS-PC1 Variables grouped according to PSs; PC1s as representatives 

Mod-PC1 Variables grouped according to modules in the data; PC1s as representatives 

4.5. Procedure for evaluating the interpretability of causality 

maps 

Causality map interpretability was evaluated based on the characteristics assigned to the ideal 

causality map (see Table 8 in Section 6.1) by answering the questions in Table 6. Process 

knowledge of the simulated case study with a known fault (see Chapter 5) was used to answer 

questions 1, 3, 4, and 9.  

In each case, the interpretability of a causality map was evaluated in comparison to that of 

another causality map used as a base case. In Sections 6.3 and 6.4, the base case was the 

standard causality map without the tool or method being demonstrated; in Section 6.5 regarding 

the hierarchical approach, the base case was a transitive reduction of the standard causality map, 

as that was the main prior method used to improve causality map interpretability. 
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Figure 7: Flow diagram of the procedure to obtain the plant-wide causality map in the first stage of the proposed hierarchical approach. See Section 4.4.1 and 
Section 4.4.2 for how the variables were grouped and how representatives for each group were found respectively. 
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Table 6: Questions to evaluate the interpretability of a causality map 

1 Is the true root cause variable present in the causality map? 

2 What fraction of variables present in the causality map are oscillating at the common 

oscillation frequency?  

3 What fraction of connections present in the causality map are spurious (i.e. what is the 

likelihood of a connection in the causality map being spurious)? 

4 Are all the true propagation paths present in the causality map? 

5 What is the graph density of the causality map (see eqn 13 in Section 3.2.5)? 

6 How many nodes are there in the causality map? 

7 Is the causality map acyclic or cyclic? 

8 How many potential root causes are identified by the causality map? 

9 Does the causality map identify the true root cause? 

4.6. Causality maps usability study 

The usability study was performed in the form of an online survey on the SUN Survey server, 

which was structured as a small test to familiarise the participants with the different approaches, 

followed by some closed questions and a form of expert interview (as open-ended questions in 

the survey) based on the participant’s experience of the test. The test asked participants to 

identify the root cause from different causality maps: namely, the base case of transitive 

reduction; the hierarchical approach where grouping was done according to plant sections (PSs) 

and the first principal components (PC1s) were used as representatives (referred to as PS-PC1); 

and the hierarchical approach where grouping was done according to modules identified in the 

standard causality map and PC1s were used as representatives (referred to as Mod-PC1). The 

survey questionnaire and causality maps are available in Appendix H. 

Participants were required to have some form of engineering training, and ideally to have some 

experience with fault identification and causality analysis. In accordance with this, purposeful 

sampling was applied and three specific pools of participants were invited to participate in the 

survey: namely final-year or postgraduate Chemical Engineering students at Stellenbosch 

University (SU); employees of the industrial IoT firm in the mineral processing industry; and 

employees from Anglo American Platinum (AAP). All relevant institutional permissions were 

acquired and ethical clearance was obtained; refer to Appendix H for a copy of the notice of 

ethics approval for this study.  

The survey was not psychometrically developed, as that was not the aim of the usability study. 

It was developed to gain insight into which characteristics or tools are more useful and/or 

understandable in all causality maps, as well as gain insight into whether the base case or 

hierarchical approaches can be practically applied in industry. In accordance with this, 

participants were asked to rank the extent to which characteristic/tools played a role in their 

decision-making while identifying a root cause from a causality map, where the 

characteristics/tools were node degree (i.e. the number of arrows pointing towards and away 

from node(s)), edge type (solid/dashed to indicate validated/non-validated), node colour  

(i.e. node ranking), and edge weight. In addition, participants were asked to indicate whether 

they used the connections-slider and/or variables-slider (first version of the variables-slider; see 

Section 4.3.2), and indicate the user-friendliness of each causality map on a scale from 1 – 4, 

with 1 representing the least user-friendly and 4 representing the most user-friendly. The 

response to these questions were aggregated before analysis, although they were linked to 

background information where differences in trend were observed. Background information 
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includes the participant’s university/company (SU, the industrial IoT firm, or AAP), highest 

level of education (National senior certificate or equivalent, Bachelor’s degree, Master’s 

degree, or PhD), and whether the participant had any prior experience with causality analysis. 

The open-ended questions were analysed using thematic analysis, as recommended by Braun 

and Clarke, (2006), specifically for expert interviews, but also for researchers with limited 

experience in qualitative research (such as engineers). Coding was therefore performed by 

organising the data according to words or short phrases (codes) that represent recurrent 

features/elements in the data that are relevant to interpretability in causality maps; followed by 

grouping these codes into themes. The data was analysed as a rich description of all themes 

rising from all three open-ended questions (i.e. regarding the base case, PS-PC1, and Mod-PC1) 

in a deductive (theoretical) manner (i.e. top-down approach where themes were driven by the 

aspect of interpretability). In addition, the data was analysed for semantic (i.e. surface level) 

themes, where the “meaning” (epistemology) in the data was analysed as realistic  

(i.e. participants were taken to directly reflect their meanings). 
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CHAPTER 5 

5.  Case study: Tank network simulation 

Case study: Tank network simulation 

The case study used in this project is a dynamic simulation of a tank network developed in 

MATLAB and Simulink (MATLAB, 2018) specifically for this project. The aim of this 

simulation is not to generate time series that are accurately representative of a real-world 

process; rather, this simulation serves as a case study that can be fully understood and allows 

for in-depth understanding of its causality analysis results. This chapter provides a description 

of the process and control structure, as well as how data was generated from the simulation in 

the presence of a fault. 

5.1. Description of overall process and control in tank network 

The tank network consists of multiple tanks with liquid inventory. Figure 8 presents the P&ID 

of the system, and Appendix C contains the model development and Simulink implementation, 

and Appendix F contains the connectivity matrix. The tank network was developed to represent 

a plant with three plant sections (PSs) that have identical configurations and are separated by 

buffer tanks (BT 001 and BT 002). A detailed description of PS1 is therefore provided, followed 

by a description of the interaction between the PSs. 

PS1 consists of two tanks in series (TK 001 and TK 002), with an exogenous input fed to the 

first tank (TK 001). The exogenous input is modelled as a random walk, because disturbances 

in the real world are not entirely time-independent, and a random walk represents a stochastic 

input excitation (where deterministic input excitation would cause problems with the AR 

models in GC). Both tanks have a constant product flow through a throttled centrifugal pump 

that leads to the next tank in series. The second tank (TK 002) also has a level-dependent 

underflow, of which 50 % is recycled back to the first tank (TK 001) and the rest is purged.  

The buffer tanks (BT 001 and BT 002) are used to attenuate disturbances between PSs, and 

both have a level-dependent underflow of which 65 % is fed to the next PS. The rest of the 

underflow from BT 001 is purged, but the rest of the underflow from BT 002 is recycled back 

to TK 001 in PS1 to increase the interconnectivity between PSs. Dead times of 5 min and 10 

min are artificially present in the pipes within and between PSs respectively, to incorporate the 

phenomena of time delay that is typically present in real-world processes.  

Downstream inventory control is implemented on all the tanks within PSs (i.e. excluding buffer 

tanks). The CVs are the levels and the MVs are the throttling valves on the product lines. Loose 

linear averaging level control is implemented to maintain the CVs at their set points (SPs) of 

0.5 (i.e. half full tanks) with an allowable deviation of 0.1 m/m (i.e. 10 %). Refer to Appendix 

E for the derivation of the controller tuning relations. 
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Figure 8: P&ID of tank network consisting of three sections, drawn using MS Visio (Microsoft Corporation, 2015). Yellow, PS1; Green, PS2; Blue, PS3.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5: CASE STUDY: TANK NETWORK SIMULATION 

39 

 

5.2. Data from tank network simulation 

The tank network simulation was used to generate time series data in the presence of a fault for 

fault identification using causality analysis. This section presents the measured variables that 

provide the time series data, and an explanation of how valve stiction was inserted as a fault in 

the simulation. 

5.2.1. Measured variables 
The process contains 15 measured variables, consisting of total inlet flowrates, product 

flowrates, and levels. Table 7 summarises the tag numbers, along with descriptions and units 

of each measured variable. In addition, sensors associated with measured variables are indicated 

in colour on the P&ID (Figure 8), where the different colours represent different PSs.  

Table 7: List of measured variables in simulated tank network case study 

Variable no. Tag number Description Units 

1 FI 001 Total volumetric inlet flowrate to TK 001 L/min 

2 LI 001 Level of TK 001 m/m 

3 FI 002 Volumetric product flowrate of TK 001 / Total 

volumetric inlet flowrate of TK 002 

L/min 

4 LI 002 Level of TK 002 m/m 

5 FI 003 Volumetric product flowrate of TK 002 L/min 

6 FI-004 Total volumetric inlet flowrate to TK 004 L/min 

7 LI 003 Level of TK 004 m/m 

8 FI 005 Volumetric product flowrate of TK 004 / Total 

volumetric inlet flowrate of TK 005 

L/min 

9 LI 004 Level of TK 005 m/m 

10 FI 006 Volumetric product flowrate of TK 005 L/min 

11 FI 007 Total volumetric inlet flowrate to TK 007 L/min 

12 LI 005 Level of TK 007 m/m 

13 FI 008 Volumetric product flowrate of TK 007 / Total 

volumetric inlet flowrate of TK 008 

L/min 

14 LI 006 Level of TK 007 m/m 

15 FI 009 Volumetric product flowrate of TK 008 L/min 

5.2.2. Fault: Valve stiction in plant section 2 
Valve stiction was incorporated as the fault in the tank network simulation. It is a commonly 

occurring fault known to cause plant-wide oscillations, so it successfully demonstrates the 

smearing effect (see Section 2.6) in the simulation. For this project, the dynamics of valve 

stiction were simulated using the empirical model described in Choudhury, Thornhill and Shah, 

(2005). Refer to Appendix D for a full explanation of how this was modelled in Simulink 

(MATLAB, 2018). 

The valve stiction model parameters were selected to achieve a low frequency oscillation with 

aggressive overshoot (see Figure 37 in Appendix D), as this maximises the chance of 

successfully constructing an accurate plant-wide causality map. The low frequency fault allows 

the slow dynamic response of the entire plant to be captured in the AR models in GC (see 

Section 2.4) via sub-sampling (see Section 2.7.5), without obscuring the oscillation itself 

between sampling points. The overshoot causes a large fault amplitude, which results in higher 

G-causality index values (see Section 2.7.2). 
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The fault was simulated on the second control valve in PS2 (V-004 in Figure 8), so that the 

oscillation needs to propagate both downstream and upstream to reach all variables in the plant. 

This incorporates the recycle stream from PS2 to PS1 in the fault propagation path, which 

represents the interconnectivity and often cyclic interaction present in real chemical and mineral 

processing plants.  

The time series for all 15 measured variables (see Section 5.1.1) are presented in Figure 9, 

divided into their separate plant sections by colours corresponding to those in the P&ID  

(Figure 8). The valve stiction begins at 200 min, as indicated by the dashed line in Figure 9. 

The first effect of the fault is seen as a small dip in the flowrate being adjusted by the sticky 

valve (FI 006), which almost immediately affects its CV (LI 004), after which the oscillation 

propagates to all the other measured variables.  

 

Figure 9: Time series data generated using tank network simulation with and without valve stiction. 
The vertical dashed line indicates the beginning of the valve stiction. Yellow, PS1; Green, PS2; Blue, 

PS3. 

Propagation of the oscillation due to valve stiction is further confirmed by the spectral envelope 

plot (see Section 3.3.1) provided in Figure 10. The peak indicates that 0.0091
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚𝑖𝑛
 is a 

common oscillation frequency, which corresponds to a period of around 110 𝑚𝑖𝑛. This matches 

the period of oscillation observed in the time series where the valve stiction occurs (FI 006 in 

Figure 9). An oscillation begins and ends at around 630 𝑚𝑖𝑛 and 730 𝑚𝑖𝑛 respectively - again, 

giving a period of around 110 𝑚𝑖𝑛. 
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Figure 10: Spectral envelope plot. 
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CHAPTER 6 

6.  Results and Discussion 

Results and Discussion 

This chapter presents the causality maps produced using all the approaches described in Chapter 

4. In all the results, edge weights represent causal strengths, as explained in Section 3.2.3. 

6.1. Definition of the ideal causality map 

The definition for an ideal causality map was developed using a top-down approach that 

consists of the three levels presented in Table 8. The desired characteristics detailed in Level 3 

in Table 8 should be strived for, although they cannot always be fully achieved.  

Table 8: Definition of the ideal causality map developed according to a three-level top-down approach 

Level 1: 

The ideal causality map is easily interpretable to successfully trace the propagation path of a 

fault back to its root cause. 

Level 2: 

The ideal causality map: 

o Is relevant to the current fault. 

o Provides confidence in its connections. 

o Is visually interpretable. 

Level 3: 

Relevance to current fault: 

o The true root cause variable is included in the causality map. 

o All variables included in the causality map show an effect of the fault. 

Confidence in connections: 

o No spurious connections are displayed in the causality map. 

o All true fault propagation paths are displayed in the causality map.  

Visual interpretability: 

o The causality map is not too dense (i.e. does not have too many edges). 

o The causality map does not have too many nodes. 

o The causality map clearly points to the root cause, preferably by being acyclic. 

The true root cause may not always be individually represented by a node in the causality map, 

but then it should be included in a group of variables that is represented by a node in the map. 

An unmeasured true root cause variable cannot be displayed in a data-based causality map, but 

variables in the same control loop or associated with the same process unit may be measured 

and should then be included in the causality map.  

As mentioned in Section 2.5, data-based causality has the possibility of identifying spurious 

causal connections, while knowledge-based causality may be outdated or incomplete. Take note 

that the ideal causality map does not require all true causal connections to be displayed, but 

merely for all true fault propagation paths to be displayed, as this will still allow the paths to be 

back-tracked to the root cause. However, it is still not always possible to prevent any spurious 
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connections on a causality map, whilst also ensuring that all true fault propagation paths are 

displayed. In response to this dilemma, uncertain connections should be identified as such on 

the map.  

An acyclic causality map is preferable, because the root cause is easily identifiable if the 

propagation path ends at that specific variable. As mentioned in Section 3.1, cyclic causality 

maps introduce ambiguity in deciding which variable is the root cause. If an acyclic causality 

map cannot be achieved, tools such as edge weights and node colours discussed in Section 3.2 

can be used to point to the root cause variable.  

6.2. Heuristic approach for selecting sampling period and time 

window 

Sampling period (SP) and time window (TW) selection is an important step to ensure a long 

enough time frame and a sufficient number of samples for conditional GC, but a guideline to 

perform this selection was identified as a vacancy in current literature (see Section 2.7.5). This 

section therefore presents a usable heuristic approach for the selection of SP and TW for 

causality analysis for plant-wide fault identification, for both a standard causality map and the 

proposed hierarchical approach (see Section 4.5). 

6.2.1. Selecting sampling period and time window for a standard causality 

map 
The proposed heuristic approach follows the following steps: 

1. Using process knowledge, identify and select a known causal connection between two 

variables showing an effect of the fault (in this work, variables found to oscillate at the 

common oscillation frequency; see Sections 3.3.1 and 4.1). 

2. Select a range of SPs to investigate (discussed in subsection below). 

3. Select a range of TWs to investigate (discussed in subsection below). 

4. Calculate the causal strength (in this work, the G-causality index; see Section 2.4) for 

the known causal connection using each combination of the SPs and TWs selected to 

investigate. 

5. Identify and select the combination of SP and TW that results in the largest connection 

strength of the known connection. 

For the case study in this project (see Chapter 5), the known connection 𝐹𝐼 006 → 𝐿𝐼 004 was 

selected, as 𝐹𝐼 006 is the flowrate where the fault is introduced, and it is an obvious connection, 

since they form a control loop, where 𝐹𝐼 006 is the MV and 𝐿𝐼 004 the CV. 

Range of sampling periods to investigate 

The smallest SP to investigate was selected as the SP provided by the sensor (1 min in this 

project), and the largest SP was selected as the largest SP where an acceptable resolution of the 

time series data is maintained (see Section 2.7.5). In this project, a strict condition for acceptable 

resolution of the data was applied, where a SP was deemed too large if it results in a significant 

change in the waveform observed in the time series. This condition could potentially be relaxed, 

but not past the point where a false longer period wave appears in the sampled time series data 

due to an occurrence called the aliasing effect. The resolution of the time series data for different 

SPs was determined by visually inspecting the time series plots of 𝐹𝐼 006 (i.e. any one of the 
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variables found to oscillate at the common oscillation frequency) provided in Figure 11. The 

full set of plots is available in Appendix G.  

The largest SP to be investigated was therefore selected as SP27 min, based on the fact that the 

time series with SP27 min does not show any sharp peaks like the one observed just after 200 min 

with SP28 min. The high SP of 27 min is possible without a significant change in the waveform, 

because the valve stiction (fault) oscillation has long period (around 110 min; see Chapter 5) in 

this case. If the fault oscillation had a shorter period, an increase in SP would result in a 

significant change in waveform and the aliasing effect more quickly.  

A short fault oscillation period would be problematic if the system being analysed has slow 

dynamics, as the AR time frame (i.e. model order x SP) in the causality analysis needs to be 

long enough to capture the process dynamics (see Section 2.7.5). This is specifically applicable 

if plant-wide causality analysis is performed, because variables spread throughout an entire 

plant take longer to affect each other than variables in only one area of a plant. Plant-wide 

causality analysis incorporates a multitude of residence times, likely added up in series, as well 

as recycle streams, which further increase the overall time characteristic (i.e. slow down overall 

plant dynamics).  

 

                                                                      ⋮ 

 

 

Figure 11: FI 006 time series with various sampling periods. 

It seems intuitive to achieve the long AR time frame required for plant-wide causality analysis 

by simply allowing a high model order in GC, but that leads to overfitting due to the large 

number of parameters in the AR models, and subsequently to poor GC results. Alternatively, a 

long AR time frame can be achieved with a smaller model order by using a larger SP; but if the 

fault oscillation has a short period, this can lead to the aliasing effect. Plant-wide GC therefore 

only works if the ratio between the fault oscillation period and the process dynamics is large 

enough to allow the process dynamics to be captured in the time frame by using large enough 

SP without occurrence of the aliasing effect.  

Range of time windows to investigate 

In industry, the TW is limited by the size of the available dataset where the fault is present. 

However, it should be kept in mind that conditional GC relies on fitting the time series data to 
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AR models, which requires numerous parameters. In this project, the range of TWs to 

investigate was therefore selected according to the number of samples required to produce a 

unique OLS solution for the full model in conditional GC (see Section 2.4) for each SP, which 

was determined to be 13 562 samples. This is the number of samples required to ensure that 

there are more samples available than the number of parameters required for the largest 

allowable model, which was limited to 60 to prevent overfitting. This calculation was 

performed and a TW selected accordingly for each SP, with the results summarized in Table 9. 

Since the larger TWs become increasingly unrealistic, the largest TW selected to investigate 

was limited to 75 days. 

From Table 9, it is clear that large amounts of data with the fault present are required to 

implement conditional GC, falling in the order of weeks and even months. This amount of data 

with a fault present is not likely to be available in industry, and it is unacceptable for the fault 

to be present for weeks or months before conditional GC can identify its root cause so it can be 

addressed. Furthermore, this discourages the idea of automating the standard version of 

conditional GC in real-time, which is the ultimate desire for a fault identification technique in 

process monitoring. However, the counter-argument that these constraints are imposed by the 

arbitrarily set maximum model order (of 60 in this case) should be noted, because it allows for 

a potential solution where the maximum allowable model order is determined by the available 

data, and not vice versa.  

Table 9: Time windows required to produce 13 562 samples for the selected range of sampling periods 

SP (min) 1 2 3 4 5 6 7 8 9 

TW (min) 13562 27124 40686 54248 67810 81372 94934 108496 122058 

TW (days) 9 19 28 38 47 57 66 75 85 

SP (min) 10 11 12 13 14 15 16 17 18 

TW (min) 135620 149182 162744 176306 189868 203430 216992 230554 244116 

TW (days) 94 104 113 122 132 141 151 160 170 

SP (min) 19 20 21 22 23 24 25 26 27 

TW (min) 257678 271240 284802 298364 311926 325488 339050 352612 366174 

TW (days) 179 188 198 207 217 226 235 245 254 

Effect of time window and sampling period on the known connection strength 

The effects of TW and SP on the strength of the known causal connection 𝐹𝐼 006 → 𝐿𝐼 004, 

the model order selected by AIC, and the resulting AR time frame (model order x SP) are shown 

in Figure 12. The largest connection strength is at TW38 days and SP27 min, which corresponds to 

an AR time frame of 135 min. This combination of TW and SP was selected to perform all 

further causality analysis to produce a standard causality map in this project. It can be observed 

that the connection strength does not exhibit a singular trend as a function of either TW or SP, 

which could correspond to the “black” and “sweet” spots as the sampling period interacts with 

the underlying process dynamics, reported by Barnett and Seth, (2017) (see Section 2.7.5). 

The selected model order is observed to increase with increasing TW, and decrease with 

increasing SP. This is because the model order is selected using AIC, which rewards goodness 

of fit versus the ratio of number of parameters to number of samples. As the TW increases, the 

number of samples increases, so AIC allows a larger model order to be selected; and as the SP 

increases, the number of samples decreases, so AIC allows a smaller model order to be selected. 

Since the largest TW started with the most samples, it can work with the larger model order for 

longer. 
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Figure 12: The effects of time window and sampling period on the strength of a: the known causal connection FI 006→LI 004, b: the model order selected by AIC, 
and c: the resulting autoregressive (AR) time frame. Darker lines indicate larger TWs. The shaded background lines up with the largest connections strength(s) and 

the corresponding AR time frame. 
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However, the model order does not always decrease with increasing SP. At some points, model 

order is observed to increase with increasing SP, such as at SP5 min and TW57 days, and SP7 min 

and TW47 days. This is because the selected model order falls within the range where variation 

in AIC with an increase in model order becomes negligibly small and prone to be affected by 

noise, as illustrated for the mentioned cases in Figure 13. The difference in AIC for the model 

orders within this range is negligibly small, so the choice of model order within that range is 

almost arbitrary, which is why the selected model order is sometimes observed to increase 

where it is expected to decrease. In addition, AR time frame is the product of SP and model 

order, so these unexpected increases that are observed in model order are also seen in the 

corresponding AR time frames. 

a 

 
b 

 

Figure 13: AIC plots for the range of allowable mode orders, with vertical dashed lines indicating the 
selected model order. a. AIC plot for SP5 min and TW57 days. b. AIC plot for SP7 min and TW47 days. For this 
plot, AIC is only calculated for a model order up to 45, because too few samples are available for a 

unique OLS solution for the full model at higher model orders for this TW.  

The AR time frame is also observed to increase along with increasing TW, without flattening 

off as a function of TW at any point, which is contrary to expectation. The AR time frame 

represents the length of time captured by the AR model in GC, so it is expected to correspond 

to the time it takes to capture the dynamic response of 𝐿𝐼 004 to a change in 𝐹𝐼 006, as that is 

the connection being investigated. This deviation from the expected behaviour can likely be 

attributed to the heuristic nature of the AIC. 

The dynamic response of 𝐿𝐼 004 to a step change in 𝐹𝐼 006 was therefore investigated, with 

the results presented in Figure 14. The full response of 𝐿𝐼 004 takes around 400 min, but the 

majority of the response is captured in just under 200 min – which lines up with the AR time 

frame corresponding to the peak connection strength observed in Figure 12. The AR time frame 

is therefore expected to increase with increasing TW until the AR time frame reaches around 
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200 min, and then remain constant for any further increase in TW. However, Figure 12 shows 

that the AR time frame keeps increasing with TW at a fixed SP, and does not flatten off as a 

function of TW. This is likely because AIC does not penalize the number of parameters heavily, 

and therefore leads to incorrectly large model orders (and hence incorrectly large AR time 

frames) when large TWs (i.e. large amounts of samples) are available. 

 

Figure 14: Dynamic response of LI 004 to a step change in FI 006 at 10 min. 

6.2.2. Selecting sampling period and time window for the plant-wide 

causality map in the proposed hierarchical approach 
The heuristic approach for selecting SP and TW (explained in Section 6.2.1) was adapted for 

the plant-wide causality map in the proposed hierarchical approach where PCA is applied for 

dimensionality reduction (see Section 4.5). The strength of a known causal connection is still 

investigated as a function of both SP and TW, but the connection is now between the 

representatives (i.e. the first principal components) of two groups of variables. In this project, 

the connection 𝑃𝑆2 → 𝑃𝑆1 was used for the PS-PC1 approach, where variables are grouped 

according to PSs and the first principal components (PC1s) are used as the representatives for 

each PS (see Section 4.5). 

Range of sampling periods to investigate 

The range of SPs to investigate again range from the SP provided by the sensor (1 min in this 

project) to the largest SP that still captures the fault oscillation, where the scores of PC1 of 𝑃𝑆2 

with different SPs are provided in Figure 15. SP7 min was selected as the largest SP to be 

investigated, as the oscillation loses its round shape at the second peak at the next SP  

(i.e. SP8 min). Since SP27 min was selected for the standard causality map, 𝑃𝑆2’s scores with  

SP27 min is also provided in Figure 15, but the shape of the fault oscillation is clearly lost at this 

high SP. The full set of plots at all the SPs is available in Appendix G.
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Figure 15: Plant section 2 time series scores with various sampling periods. 

Range of time windows to investigate 

The plant-wide map for the proposed hierarchical approach has undergone dimensionality 

reduction, which means that there are fewer variables involved in the conditional GC 

calculation and therefore fewer parameters are required. A unique OLS solution can be achieved 

for the full model with only 602 samples, which is significantly fewer than the 13 562 samples 

required for the standard causality map (see Section 6.2.1) and is more likely to be available in 

industry. However, here a distinction should be made between PS-PC1 and Mod-PC1 (see 

Section 4.4), as Mod-PC1 relies on grouping variables according to modules identified in the 

standard causality map – so this approach still requires the full 13 562 samples necessary to 

produce the standard causality map (see Section 6.2.1), while PS-PC1 does not. Table 10 

summarises the TWs required to provide 602 samples for each SP, and Table 11 summarises 

the TWs required to provide 2000 samples for each SP, as that is the minimum number of 

samples suggested by Bauer et al., (2007) (albeit for transfer entropy and not specifically GC).  

Table 10: Time windows required to produce 602 samples for the selected range of sampling periods 

SF 1 2 3 4 5 6 7 8 9 

TW (min) 602 1204 1806 2408 3010 3612 4214 4816 5418 

TW (days) 0.4 0.8 1.3 1.7 2.1 2.5 2.9 3.3 3.8 

SF 10 11 12 13 14 15 16 17 18 

TW (min) 6020 6622 7224 7826 8428 9030 9632 10234 10836 

TW (days) 4.2 4.6 5.0 5.4 5.9 6.3 6.7 7.1 7.5 

SF 19 20 21 22 23 24 25 26 27 

TW (min) 11438 12040 12642 13244 13846 14448 15050 15652 16254 

TW (days) 7.9 8.4 8.8 9.2 9.6 10.0 10.5 10.9 11.3 
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Table 11: Time windows required to produce 2000 samples for the selected range of sampling periods 

SF 1 2 3 4 5 6 7 8 9 

TW (min) 2000 4000 6000 8000 10000 12000 14000 16000 18000 

TW (days) 1.4 2.8 4.2 5.6 6.9 8.3 9.7 11.1 12.5 

SF 10 11 12 13 14 15 16 17 18 

TW (min) 20000 22000 24000 26000 28000 30000 32000 34000 36000 

TW (days) 13.9 15.3 16.7 18.1 19.4 20.8 22.2 23.6 25.0 

SF 19 20 21 22 23 24 25 26 27 

TW (min) 38000 40000 42000 44000 46000 48000 50000 52000 54000 

TW (days) 26.4 27.8 29.2 30.6 31.9 33.3 34.7 36.1 37.5 

Effect of time window and sampling period on the known connection strength 

The effects of TW and SP on the strength of the known causal connection 𝑃𝑆2 → 𝑃𝑆1, the 

model order selected by AIC, and the resulting AR time frame (model order x SP) are shown 

in Figure 16. The AR time frame is once again observed to increase with increasing TW for all 

TWs investigated, indicating that AIC does not perform well for model order selection when 

provided with an unnecessarily large number of samples - and a minimum of 2000 samples 

should not be enforced for conditional GC using AIC for model order selection. To improve 

clarity on the plot, only the data for the shorter TWs are provided in Figure 16 but the rest of 

the data is plotted in Figure 45 and Figure 46 in Appendix G.  

Model order is again observed to increase at some points where it is expected to decrease, as a 

result of the flattening out of the AIC curve as a function of model order (see Section 6.1.1). To 

illustrate this once again, AIC plots for the points at SP3 min and TW1.3 days, and SP6 min and  

TW2.9 days are available in Appendix G.  

Large connection strengths are observed at SP2 min for TW0.8 days, as well as SP5 min for both 

TW2.1 days and TW2.5 days. The decision of which combination of SP and TW to select was 

therefore based on both process knowledge and convenience. Firstly, a SP2 min for TW0.8 days 

was disregarded, as it provides an AR time frame of 44 min, which only captures the downwards 

slope of the dynamic response of 𝐿𝐼 004 to a step change in 𝐹𝐼 006 and so misses  distinctive 

part of the response (see the step test results in Figure 14). A step test may not be available in 

industry, but the plant operator/engineer may have process knowledge that can indicate a lower 

cut-off point for the AR time frame that should be captured in the known causal connection.  

A SP5 min for both TW2.1 days and TW2.5 days provide an AR time frame of 130 min which is close 

to the AR time frame of 135 min at the largest connection strength for the original map (see 

Figure 12 in Section 6.2.1). This again indicates that an AR time frame of around 130-135 min 

is a ‘sweet spot’ where the sampling period interacts with the underlying process dynamics. 

TW2.1 days was selected over TW2.5 days at SP5 min for the plant-wide causality map where variables 

are grouped according to PSs and PC1s are used as the representatives, simply because a smaller 

TW equates to a smaller data requirement, which is more likely to be available in industry and 

decreases the computational load of the causality analysis calculation.
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Figure 16: The effects of time window and sampling period on a: the strength of the known causal connection PS2→PS1, b: the model order selected by AIC, and  
c: the resulting autoregressive (AR) time frame. Darker lines indicate larger TWs. The shaded background lines up with the largest connections strength(s) and the 

corresponding AR time frame. 
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The proposed hierarchical approach where variables are grouped according to modules 

identified in the standard causality map (Mod-PC1; see Section 4.5) incorporates less process 

knowledge than the PS-PC1 approach where grouping is done according to PSs. In Mod-PC1, 

there is no clear direction on which known connection strength to test against SP and TW, as 

variables from different PSs can be grouped in the same module. A possible solution is to use 

the SP and TW selected for the standard causality map, but this is likely not the best option. As 

discussed previously, AIC selects incorrectly large model orders (and hence AR time frames) 

when the ratio of samples to parameters is large. Since the plant-wide map for this hierarchical 

approach has undergone dimensionality reduction (i.e. has fewer variables than the standard 

causality map), the combination of SP and TW selected for the standard map will likely result 

in an incorrectly large AR time frame and therefore poor GC results. The best option available 

is therefore to use the SP and TW selected for the proposed hierarchical approach where the 

variables are grouped according to PSs, as a similar number of variables are likely to be present 

in the causality analysis for the plant-wide map.  

6.2.3. Evaluation of heuristic approach for selecting sampling period and 

time window 
There does not seem to be a general SP and TW that will produce the most accurate causality 

map for a range of scenarios; rather, selecting the SP and TW should be done on a case-by-case 

basis, potentially with some form of the heuristic approach presented in this section. However, 

Figure 17 indicates that the heuristic approach as presented in this section, applied in 

conjunction with conditional GC, does not provide the ideal causality map for the case study 

used in this project (see Chapter 5). The standard causality map is used for evaluation of the 

heuristic approach presented in this section, as the causality maps for proposed hierarchical 

approaches are discussed separately in Section 6.5.  

 

Figure 17: Standard causality map constructed using the SP and TW selected via the heuristic 
approach presented in this section. The root cause is a faulty valve on line FI 006. 

Although the causality map (Figure 17) is dense and difficult to interpret, the thicker lines 

(indicating stronger causal connections; see Section 3.2.3) are not in close proximity to 𝐹𝐼 006 
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and 𝐿𝐼 004, which are the variables in the control loop where the true root cause is (see Chapter 

5). In fact, based on the causality map in Figure 17, the root cause variable appears to be 

somewhere in PS1, while the true root cause is in PS2. This is despite the fact that a connection 

(𝐹𝐼 006 → 𝐿𝐼 004) focal to the true root cause was tested against SP and TW in the heuristic 

approach. In industry, there may be ambiguity in the decision of which known connection 

strength to investigate. Although a causal connection may be true, it may not be focal during 

the present fault and should therefore not be highlighted in the causality map for fault 

identification – but this will not be known prior to identification of the fault. This highlights the 

importance of incorporating process knowledge in causality analysis for fault identification, 

which is further discussed in Section 6.3.  

The heuristic approach presented in this section attempted to improve the use of conditional 

GC for fault identification so that the true root cause can be accurately identified. However, this 

goal has not been achieved, likely because plant-wide causality analysis involves a variety of 

different residence times and time delays. It is therefore not recommended to use standard 

conditional GC for plant-wide fault identification.  

6.3. Causality maps incorporating process knowledge 

Data-based and knowledge-based causality analysis methods can be combined in a hybrid 

approach, to exploit the advantages of both methods (see Section 2.5). This section provides 

the results of incorporating process knowledge in data-based causality maps in two different 

ways: namely, by using connectivity information from the P&ID to constrain connections to 

improve accuracy and trust in the causality map; and by incorporating process knowledge to 

provide additional insights to constrain potential root causes.   

6.3.1. Constrained connections 
The causal connections identified by conditional GC were validated using the connectivity 

matrix (see Appendix F) obtained from the P&ID of the process (see Chapter 5). The data-based 

connections were validated using the connectivity matrix (see Section 4.2.1), as opposed to vice 

versa (i.e. validating knowledge-based connections using data-based causality analysis), to 

avoid restricting connections in the causality map to those present in the P&ID (see Section 

2.5), as P&IDs in industry are often outdated (see Section 2.3). The causality map in Figure 18 

contains only the connections that were validated by the connectivity matrix; while the causality 

map in Figure 19 contains all the connections identified by data-based conditional GC, but 

displays the validated connections as solid lines (to indicate certain connections) and the non-

validated connections as dashed lines (to indicate uncertain connections).  

These two causality maps (Figure 18 and Figure 19) are compared to the standard causality map 

where no process knowledge is incorporated (see Figure 17 in Section 6.1.3). No true 

propagation paths are excluded from any of the three causality maps, and the true root cause 

(𝐹𝐼 006) is present in all three causality maps, but none of them successfully identify it as the 

root cause. This again indicates that standard conditional GC does not work well for fault 

identification on a plant-wide basis, as already mentioned in Section 6.1.3.   
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Figure 18: Plant-wide causality map showing only connections validated by the connectivity matrix. 
The root cause is a faulty valve on line FI 006. 

 

Figure 19: Plant-wide causality map. Solid lines represent connections validated by the connectivity 
matrix, and dashed lines represent connections that were not validated by the connectivity matrix. 

The root cause is a faulty valve on line FI 006. 

The two causality maps incorporating process knowledge (Figure 18 and Figure 19) appear to 

identify three potential root cause variables (𝐹𝐼 001, 𝐹𝐼 002, 𝐹𝐼 004), based on the fact that 

they each have thick edges pointing from them to other nodes. This is fewer than the five 

potential root cause variables (𝐿𝐼 005, 𝐹𝐼 007, 𝐹𝐼 001, 𝐹𝐼 002, 𝐹𝐼 004) identified from the 

standard causality map (Figure 17 in Section 6.1.3), based on the fact that they each have thick 

edges pointing from them to other nodes, and 𝐿𝐼 005 has a large outdegree and small 

indegree. Fewer potential root cause variables are identified from the causality maps 

incorporating process knowledge, because the connections leaving 𝐿𝐼 005 and the strong 
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connection leaving 𝐹𝐼 007 are identified as spurious or at least uncertain. However, it should 

be noted that there is no clear root cause variable in any of these three causality maps, so the 

process of identifying potential root cause variables from them is subjective and may differ 

from person to person. 

All three maps have 15 variables, as these methods of incorporating process knowledge do not 

affect the number of variables that are included in the causality maps. Since all the variables in 

the case study oscillate at the common oscillation frequency (see Chapter 5), all the variables 

present in all three causality maps fulfil that condition. In addition, all three the maps are cyclic, 

as the process contains control loops and recycle streams (see Chapter 5) – so even removing 

all spurious connections still leaves a cyclic causality map. 

The major differences between the causality maps are the fraction of connections that are 

spurious and the graph density. Spurious connections were identified as connections from 

variables in PS3 to variables in PS1 or PS2, as the variables in PS1 and PS2 can all affect each 

other and the variables in PS3 due to control loops and recycle streams, but there is no recycle 

stream or control loop from PS3 to any upstream PSs (see Chapter 5). The standard causality 

map and the map that shows non-validated connections as dashed lines have 28 spurious 

connections out of a total of 139 connections, meaning that 20 % of the connections present in 

these maps are spurious; while the map that displays only validated connections has no spurious 

connections out of its 111 connections. Since the P&ID used for this case study (and therefore 

also the connectivity matrix) accurately represents the process, it is noted that all 28 spurious 

connections, and no true connections (since known causal connections that are not captured via 

connectivity were added to the connectivity matrix; see Section 4.2.1) were removed via 

validation with the connectivity matrix.  However, it should be noted that the map with dashed 

lines does identify all the spurious connections as uncertain connections (i.e. displays them all 

as dashed lines).  

The graph density of the standard map and the map that shows non-validated connections as 

dashed lines is 0.66, while the graph density of the map showing only validated connections is 

only 0.3. The number of nodes in each map stays the same, so the difference in density is purely 

due to a decrease in the number of edges when non-validated edges are removed. 

In summary, both causality maps with connections constrained according to process knowledge 

(Figure 18 and Figure 19) are an improvement over the standard causality map with no process 

knowledge (Figure 17 in Section 6.1.3). They both increase trust in causality maps as a tool for 

fault identification by users, as all spurious connections are either removed or identified as 

uncertain respectively – so a user will not notice a spurious connection due to their own process 

knowledge and lose confidence in the causality map. The causality map that shows only 

validated lines (Figure 18) is less dense, which aids in interpretability, but it runs the risk of 

excluding true connections due to an outdated P&ID or the presence of process mechanisms 

such as heat or mass transfer lacking in a P&ID (see Section 2.5); while the causality map that 

shows non-validated connections as dashed lines (Figure 19) does not lose any information, but 

is more dense and hence more difficult to interpret. 

6.3.2. Constrained potential root causes 
The potential root causes in the causality map were constrained according to which nodes can 

reach all other nodes in the causality map – based on the assumption that all nodes present in 

the causality map show an effect of the fault and must therefore be reachable by the root cause 

via the smearing effect (see Section 2.6). It is therefore advisable to perform variable selection 

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6: RESULTS AND DISCUSSION 

56 

 

(see Section 3.3.1) prior to causality analysis if this approach will be implemented. Only PS2 

was used to demonstrate this method of incorporating process knowledge, because the data-

based plant-wide causality map consists entirely of a strongly connected component (i.e. all the 

nodes are reachable from each other without violating edge direction; see Section 3.3.2), so no 

variables would be excluded from the pool of potential root causes. 

The resulting causality map is provided in Figure 20, where the only difference from the 

standard causality map (Figure 17 in Section 6.1.3) is that  𝐿𝐼 003 is faded to draw attention 

away from it as it should be excluded from consideration as a potential root cause variable. The 

faded variable is not completely removed from the causality map, because only measured 

variables are displayed on a causality map and it is possible that the root cause variable is not 

measured. In such a case, a causality map is still useful, as it can be used to localise the fault, 

but the variable(s) that the fault is localised to may not necessarily be able to reach all the 

variables affected by the smearing effect. It should also be noted that this tool will be more 

useful in larger systems, as 𝐿𝐼 003 has an outdegree of zero and would therefore already be 

excluded from the pool of potential root cause variables in this case. 

 

Figure 20: Causality map of PS2, where nodes that cannot reach all other nodes in the map are faded 
and should be excluded from consideration as root cause variables. The root cause is a faulty valve 

on line FI 006. 

6.4. Causality maps incorporating tools to aid interpretation 

The interpretability of causality maps can be improved by using various tools. This section 

therefore presents the results where novel tools are incorporated: namely visually displaying 

node rankings and incorporating sliders for connections and variables. 

6.4.1. Visually displaying node rankings 
Nodes in causality maps have been ranked using the page rank algorithm before (see Section 

3.2.4), but here those rankings are displayed visually on the causality map using a colour bar 

(Figure 21). Only PS2 was used to demonstrate this tool, because this smaller map is more 
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accurate than the plant-wide map, and ranking the nodes only adds value to an accurate causality 

map.  

The only difference from the standard causality map is the colouring of the nodes, so the other 

characteristics are not discussed. Visually displaying the node rankings is especially useful in 

this case, as the causality map is cyclic, so there is no clear root cause. In the standard causality 

map, three potential root causes would likely be identified (𝐹𝐼 004,  𝐿𝐼 004, 𝐹𝐼 006); while the 

node rankings help narrow it down to two potential root causes (𝐹𝐼 004, 𝐹𝐼 006), based on the 

fact that they each have red nodes, which indicates that they have a large effect on the causal 

structure. It should be noted that the true root cause (FI 006) is included in the pool of potential 

root causes in both cases, but some users may identify only 𝐹𝐼 004 as the root cause variable 

(which would be incorrect) in the causality map with coloured nodes, as it is a darker red, 

meaning that it is ranked as having the largest influence on the causal structure.  

This emphasises that ranking the nodes alone is not sufficient to clearly point to the true root 

cause. The user should still have sufficient process knowledge to identify the correct root cause 

variable from the causality map. For example, the control loop consisting of 𝐹𝐼 006 and 𝐿𝐼 004 

is shown with thick lines (i.e. strong causal connections), while the control loop consisting of 

𝐹𝐼 005 and 𝐿𝐼 003 (which is more upstream) is shown with thin lines (i.e. weak causal 

connections); and the only other thick lines in the causality map originate at 𝐹𝐼 004 and point 

downstream. 𝐹𝐼 004 therefore only has a large effect on the causal structure because it is 

upstream from all the other variables. 𝐹𝐼 006 and 𝐿𝐼 004 stand out because they are 

downstream from the other variables, but are still shown with thick lines (i.e. strong causal 

connections in the presence of the current fault), which indicates that they are likely where the 

root cause is located (which is true). 

 
 

Figure 21: Causality map of PS2, where nodes are coloured to indicate their rank according to the 
page rank algorithm. The root cause is a faulty valve on line FI 006. 
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6.4.2. Connections-slider 

The connections displayed in a causality map are dependent on the significance value (𝛼) in the 

statistical test (see Section 2.4), but there is no indication of what significance value provides 

the causality map closest to the ideal causality map, or even whether one specific significance 

value can provide the most ideal causality map in all scenarios. The idea is to provide a slider 

for the significance level that the user can manipulate to obtain the causality map closest to the 

ideal map, as this may be at a different significance level for different scenarios. This idea is 

communicated in this document by presenting the plant-wide causality map for the case study 

described in Chapter 5 for three different significant values, where the default value provides 

the standard causality map (Figure 22). 

However, a lower significance value is observed to lead to more potential root cause variables, 

which is contrary to expectation. The number of potential root causes increases from five 

(𝐿𝐼 005, 𝐹𝐼 007, 𝐹𝐼 001, 𝐹𝐼 002, 𝐹𝐼 004)  - identified based on thick edges pointing from 

them to other nodes and 𝐿𝐼 005 having a large outdegree and small indegree - in the map with  

𝛼 = 0.05 or 𝛼 = 0.01, to seven (𝐿𝐼 005, 𝐿𝐼 006, 𝐹𝐼 007, 𝐹𝐼 008, 𝐹𝐼 001, 𝐹𝐼 002, 𝐹𝐼 004) in 

the map with 𝛼 = 1 × 10−16 – again, based on line thickness and outdegree.  This is likely 

because the decrease in the number of edges allows the user to see more clearly what the 

indegree and outdegree of each node is. Again, it should be noted that there is no clear root 

cause variable in any of these three causality maps, so the process of identifying potential root 

cause variables from them is subjective and may differ from person to person. In addition, none 

of the causality maps identify the true root cause variable – again, indicating that standard 

conditional GC does not work well for fault identification on a plant-wide basis, as already 

mentioned in Section 6.1.3. 

6.4.3. Variables-slider 
Variable selection prior to causality analysis has been done before (see Section 3.3.1), but again, 

the ideal causality map could potentially be more closely achieved if the user is able to 

manipulate the causality map. This section therefore presents the results for two versions of a 

slider for variable selection, both based on the idea of combining the ability of the spectral 

envelope method to aid in root cause identification (see Section 3.3.1) with a causality map. 

The sliders are demonstrated on the plant-wide causality map for the case study described in 

Chapter 5, but with the low significance level 𝛼 = 1 × 10−16, so that the different variables 

included in the causality maps can be more easily identified in the less dense map. 

The ideas of both variables-sliders are communicated by presenting the plant-wide causality 

map for three different threshold values, where the default value provides the standard causality 

map. The first version of the variables-slider is based on how close a variable’s oscillation 

contribution must be to the oscillation contribution (OC) of FI-006 (the true root cause variable) 

in order to be included in the causality analysis (Figure 23); while the second version is based 

purely on how large the OC of each variable is (Figure 24) (see Section 4.3.2). 
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𝛼 = 0.05 

 

𝛼 = 0.01 
(default) 

 

𝛼 = 1 × 10−16 

 

Figure 22: Plant-wide causality map for three different significant values to represent the 
connections-slider. The root cause is a faulty valve on line FI 006. 
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|𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| < 𝟏 

(default) 

 

|𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| < 𝟎. 𝟐 

 

|𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| < 𝟎. 𝟎𝟓 

 

Figure 23: Plant-wide causality map for the first version of the variables-slider, with the threshold 
|𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| set to three different values. The root cause is a faulty valve on line FI 006. 
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𝑂𝐶 > 𝟎  
(default) 

 

𝑂𝐶 > 𝟎. 𝟔 

 

𝑂𝐶 > 𝟎. 𝟗 

 

Figure 24: Plant-wide causality map for the second version of the variables-slider, with the threshold 
𝑂𝐶 set to three different values. The root cause is a faulty valve on line FI 006. 
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All the causality maps with both versions of the variables-slider are cyclic, since the process 

itself is cyclic; and all the variables in all the maps are oscillating at the common oscillation 

frequency (see Chapter 5). The number of variables for each version of the variables-slider 

decreases as the threshold becomes stricter. However, for the first version of the variables-

slider, the graph density increases (from 0.66 to 0.81 to 1) with decreasing number of variables, 

despite appearing less complicated to the eye; and for the second version of the variables-slider 

there is no clear trend in graph density (which changes from 0.66 to 0.65 to 1) with decreasing 

number of variables.  

 This is because the variables-sliders affect both the number of edges and the number of nodes 

in the causality map, as the conditional GC calculation is performed again for each subset of 

variables, and the results depend on the variables included in the analysis. In addition, fewer 

nodes improve interpretability, but increase graph density. A complexity metric based on graph 

density, that includes a term that penalises a graph for a large number of nodes should therefore 

be considered to evaluate causality maps. 

There is no trend in the fraction of spurious connections for either version of the variables-

slider. For the first version of the slider, the fraction changes from 0.20 to 0.26 to 0; and for the 

second version of the slider, the fraction changes from 0.20 to 0.29 to 0.33. In each case, the 

first map is the default setting (which equates to the standard map), which is why they have the 

same fraction of spurious connections. The lack of trend is because the variables-sliders can 

affect both the number of spurious connections identified by conditional GC and the total 

number of connections. If a variables-slider threshold is made stricter, fewer variables are 

included in the causality analysis, which means that there are more potentially confounding 

variables, so more spurious connections are expected to be identified. However, fewer variables 

being included in the causality analysis also means that the complete graph (where all possible 

connections are present) has fewer connections, so fewer total connections are expected.  

For the first version of the variables-slider (Figure 23), the true root cause variable (𝐹𝐼 006) is 

included in each causality map, as the threshold is based on its oscillation contribution – so if 

only one variable was included, it would be the true root cause in this case (Figure 25a). 

However, this will not be the case if the threshold was based on a different variable. This 

approach therefore cannot be applied in industry, since the root cause is not known a priori. 

In the first two maps (i.e. |𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| < 1 or |𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| < 0.2) for the first version 

of the variables-slider (Figure 23), the true root cause (FI 006) has an outdegree of zero, so the 

true propagation path from it to the rest of the variables is not shown. Furthermore, the first two 

maps identify six (𝐿𝐼 005, 𝐹𝐼 007, 𝐹𝐼 001, 𝐹𝐼 008, 𝐹𝐼 002, 𝐹𝐼 004) and four (𝐿𝐼 005, 𝐹𝐼 007, 

𝐹𝐼 008, 𝐹𝐼 001) potential root cause variables respectively – again based on thick edges 

pointing away from these nodes and/or large outdegrees and small/no indegrees, but bearing in 

mind that the identification is subjective and may differ from person to person. The last map 

(|𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| < 0.05) correctly identifies the correct control loop consisting of 𝐹𝐼 006 and 

𝐿𝐼 004 as the root cause location. However, this is likely because the true root cause variable 

was chosen as the comparison variable in this case. In industry it would be unclear which 

variable to compare the oscillation contributions to. In addition, the fact that two out of the three 

maps do not identify the correct root cause location, make it unlikely that the user would 

correctly identify the root cause location. In fact, the inconsistency in the potential root causes 

identified using the different maps may serve to confuse the user. 
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a b 

 

Figure 25: a. |𝑂𝐶 − 𝑂𝐶𝐹𝐼 006| for each variable. b. 𝑂𝐶 for each variable. The dashed line indicates the 
𝑂𝐶 of the true root cause variable (𝐹𝐼 006). The bars are coloured according to PSs (see Chapter 5). 

For the second version of the variables-slider (Figure 24), the true root cause is not included in 

all the maps. This is contrary to expectation, because literature indicates that the spectral 

envelope method can be used to narrow down the pool of potential root cause variables based 

on their OCs. It is therefore expected that the true root cause variable would have the largest 

OC, but this is clearly not the case, as shown in Figure 25b, where the dashed line indicates the 

OC of the true root cause (𝐹𝐼 006). 

In summary, neither of the two versions of the variables-slider work effectively to aid in 

interpretation of the causality map(s). However, the existing way of using the spectral envelope 

method for variable selection is still useful. A statistical test is performed once-off to determine 

which of the variables are oscillating significantly at the common oscillation frequency, and 

only those variables are included in the causality analysis (see Section 3.3.1).  

In this case, the p-value associated with the test statistic for each variable is larger than 0.999, 

indicating that all the variables are oscillating significantly at the common oscillation 

frequency. This is likely because the valve stiction parameters were selected in order to produce 

an exaggerated oscillation in the case study for this project (see Chapter 5). This may not always 

be the case, and this method for variable selection prior to the causality analysis calculation can 

therefore be valuable, because it decreases the number of variables included in the causality 

analysis. It is especially helpful if conditional GC is being used. As explained in Section 6.2, 

conditional GC involves a large number of parameters that need to be estimated, which requires 

large datasets, which may not always be available in industry. Furthermore, this method has 

only one hyperparameter (the significance value in the statistical test), so it can be applied with 

confidence, potentially even in an automated variable selection step in industry. This is 

especially helpful, as conditional GC suffers from hyperparameter selection (especially model 

order; see Section 6.2). 
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6.5. Hierarchical approach for causality analysis 

The interpretability of causality maps can be improved by decreasing their number of nodes, as 

mentioned in Section 3.3.  This section therefore presents the results for a hierarchical approach, 

where the variables are grouped according to either PSs or modules in the data, and 

dimensionality reduction is applied to each group of variables using PCA (see Section 4.5). 

Only the plant-wide causality maps produced in the first stage of the hierarchical approach 

(hereafter referred to as representative causality maps) are discussed, as the detailed maps in 

the second stage are simply standard causality maps consisting of the relevant groups of 

variables.  

The representative causality maps are compared to the transitive reduction (see Section 3.2.1) 

of the standard causality map, provided in Figure 26. Node ranking has been applied to the 

transitive reduction and the representative maps, to aid in interpretation of the cyclic maps; but 

only the representative maps use dashed edges to indicate uncertain connections (see Section 

6.3.1), as it does not make sense to validate the edges in a transitive reduction with a 

connectivity matrix (because if non-validated edges are removed, propagation paths that would 

have been validated may also be removed). In addition, the connections-slider and potential 

root cause constraint explained in Sections 4.3.2 and 4.2.2 respectively are incorporated in each 

causality map where their incorporation results in changes in the causality map.  

 
 

Figure 26: Transitive reduction of the plant-wide causality map. The root cause is a faulty valve on 
line FI 006. 

6.5.1. Plant-wide causality maps with nodes representing plant sections  
The representative maps, where grouping was done according to PSs and the first principal 

components (PC1s) were used as representatives of each PS (PS-PC1 causality maps), are 

shown in Figure 27. The true root cause variable (𝐹𝐼 006) is present in all the PS-PC1 maps, as 

well as the transitive reduction – since 𝐹𝐼 006 is a measured variable, and neither of these 

approaches excludes any variables.  
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𝛼 = 0.05 

 
 

𝛼 = 0.01 

  

𝛼 = 1 × 10−16 

 
 

Figure 27: The representative map, where grouping is done according to PSs and PC1s used as 
representatives (PS-PC1 causality maps) for three significance levels. The root cause is a faulty valve 

located in G2. 
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The PS-PC1 map identifies the true root cause location (PS2, named G2-pc1 on the causality 

maps) at each significance level, except the lowest one, where the map has no edges. This map 

is even acyclic at a significance level of 0.01, which is the default level; and both other nodes 

(G1 and G3) are faded to exclude them as potential root causes. This is an improvement to the 

transitive reduction map, which is completely cyclic, making it difficult to identify any root 

cause. If any root cause had to be identified from the transitive reduction, it would likely be 

𝐿𝐼 003 (which is incorrect), as that is the only node coloured in red, indicating that it has the 

largest influence on the causal structure. 

Furthermore, the PS-PC1 map only has two spurious connections at a significance level of 0.05. 

The transitive reduction may only have one spurious connection, but both spurious connections 

in the PS-PC1 are identified as uncertain via the connectivity matrix (see Section 6.3.1). In 

addition, the PS-PC1 map has only three nodes, while the transitive reduction has 15 nodes.   

The PS-PC1 maps with significance levels of 0.05 and 0.01 have graph densities of 0.83 and 

0.33 respectively, while the transitive reduction has a graph density of 0.067. Again, this is not 

an indication that the transitive reduction is more interpretable than the PS-PC1 map; but rather 

that graph density is not a good complexity metric, as it does not penalise the number of nodes 

(see Section 6.4.3).  

6.5.2. Plant-wide causality maps with nodes representing modules in the data  
The representative maps, where grouping was done according to modules identified in the data 

and PC1s were used as representatives of each module (Mod-PC1 causality maps), are shown 

in Figure 28. The true root cause variable (𝐹𝐼 006) is present in all the Mod-PC1 maps, because 

𝐹𝐼 006 is a measured variable, and this approach does not exclude any variables. However, the 

Mod-PC1 maps do not identify the true root cause location. At significance levels of 0.05 or 

0.01, the Mod-PC1 map does not identify any location for the root cause, as there is  

little difference in line thickness between the two edges, and the nodes are both coloured green.   

At a significance level of 1×10-16, two variables, namely G1 or G3 could be identified as 

potential root causes, based on node colouring and line thickness respectively – which are both 

incorrect, as the true root cause is in G2 (see Table 13).  

None of the Mod-PC1 maps have any spurious connections (while the transitive reduction has 

one spurious connection), but this is not necessarily a positive attribute of this approach. Since 

each group of variables contains at least one variable from PS1 or PS2 (which have causal 

connections to all other variables), it is impossible for any connection in any of these causality 

maps to be spurious. For this same reason, it is difficult to incorporate process knowledge in 

this causality map, because the variables from PS3 (which do not have a causal effect on any 

variables in PS1 or PS2) are spread throughout G1, G2, and G3; so none of the connections 

between representative nodes can be eliminated based on known connectivity. In summary, 

none of the Mod-PC1 maps are necessarily wrong; they are just not useful. This further 

reinforces the importance of incorporating as much process knowledge as possible in causality 

analysis. 
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𝛼 = 0.05 
or 

𝛼 = 0.01 
 

  

𝛼 = 1 × 10−16 

  

Figure 28: The representative map, where grouping is done according to modules identified in the 
standard causality map and PC1s used as representatives (Mod-PC1 causality map) for three 

significance levels. Note that the significance levels are not applied to the Mod-PC1 causality map 
itself; but to the standard causality map, from which the modules are identified. The root cause is a 

faulty valve located in G1 and G3 respectively. 

Table 12: Variables assigned to each group identified in the standard causality map with a significance 
level of 0.05 or 0.01. The root cause variable is indicated in bold. 

G1 G2 

LI 003 LI 005 LI 001 

LI 004 LI 006 LI 002 

FI 004 FI 007 FI 001 

FI 005 FI 008 FI 002 

FI 006 FI 009 FI 003 
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Table 13: Variables assigned to each group identified in the standard causality map with a significance 
level of 1×10-16. The root cause variable is indicated in bold. 

G1 G2 G3 

LI 001 LI 005 LI 004 LI 003 

LI 002 FI 008 LI 006 FI 004 

FI 001  FI 007 FI 005 

FI 002   FI 006 

FI 003   FI 009 

6.6. Survey results 

This section presents the aggregated results from the 20 survey responses, of which ten were 

obtained from SU final-year/postgraduate students, six were obtained from employees of an 

industrial IoT firm, and four were obtained from Anglo American Platinum (AAP) employees. 

The results consist of two main parts: first, the results from closed questions, regarding the role 

of tools/characteristics and sliders in decision-making for fault identification map user-

friendliness ratings; second, the thematic analysis of the open-ended questions regarding 

practical application of the proposed tools and approaches for causality analysis in industry.  

It should be noted that the survey was created before the heuristic approach for selecting SP 

and TW was developed (see Sections 4.1.2 and 6.2), so the causality maps in the survey look 

slightly different from the causality maps presented in the body of this report. However, this 

does not detract from the survey results – since no analysis was performed on which variable(s) 

the participants identified as the root cause, but rather on the results regarding the process of 

interpreting the causality maps.  

6.6.1. Closed questions results 

Characteristics/tools used to decide on the root cause 

Participants were asked to rank the the extent to which characteristic/tools played a role in their 

decision-making while identifying a root cause from a causality map from 1 (largest role) to 4 

(smallest role), and the results for the base case of transitive reduction (TR), the PS-PC1 

approach, and the Mod-PC1 (see Section 4.5) are presented in Figure 29. Node degree 

incorporates the number of arrows pointing towards and away from node(s) (see Section 2.2); 

edges type refers to whether edges are solid or dashed to indicate validated or non-validated 

connections (see Section 6.3.1); node colour refers to node ranking (see Section 6.4.1); and 

edge weight refers to the strength of connection (see Section 3.2.3). 

The ranking for node degree is observed to be evenly spread in all three approaches, so no 

comment can be made on it. Node colour is ranked first by a large portion of participants in all 

three approaches (PS-PC1 and Mod-PC1, and TR). This is likely because many of the maps are 

cyclic, and then node colour is the most noticeable difference between potential root causes.  

Edge type (solid/dashed) is not ranked first by many respondents for any of the approaches. 

This is contrary to expectation for PS-PC1 and Mod-PC1, as it is the characteristic that 

distinguishes between certain (trustworthy) and uncertain (untrustworthy) connections. Since 

TR has only solid edges, it is not unexpected that edge type is ranked last for this approach. 
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a b 

  
c  

 

 

Figure 29: Rankings of the extent to which each characteristic/tools played a role in decision-making 
while identifying a root cause from a causality map. 1 represents the largest role in decision-making, 

and 4 represents the smallest role in decision-making. a. PS-PC1. b. Mod-PC1. c. TR 

However, when only the responses from participants with prior experience with causality 

analysis are considered (Figure 30), more emphasis is placed on edge type and edge weight 

than when all responses are included. This again touches on the importance of incorporating 

process knowledge in causality analysis – in this case to make the maps trustworthy by 

communicating whether a connection is validated by process knowledge. It should be noted 

that only six of the responses are from participants who had prior experience with causality 

analysis, which emphasizes the topic specialty of causality analysis.  

a b 

  
c  

 

 

Figure 30: Rankings of the extent to which each characteristic/tools played a role in decision-making 
while identifying a root cause from a causality map for participants with prior experience with 

causality analysis. 1 represents the largest role in decision-making, and 4 represents the smallest role 
in decision-making. a. PS-PC1. b. Mod-PC1. c. TR 

The aim is to use these results to inform an importance-ranking for which characteristics/tools 

to look at when a causality map is used for fault identification. Since, there is no distinct trend 

for the role that these characteristics/tools play in the decision-making process that holds for all 

three approaches (PS-PC1, Mod-PC1, and TR in Figure 29 and/or Figure 30), the most value is 

placed on the results pertaining to PS-PC1, as this produced the most useful map (see Section 

6.5). For this analysis, rankings of 1 and 2 are grouped together, and rankings of 3 and 4 are 

grouped together, to identify whether the characteristic/tool is used in the beginning of the 
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interpretation process or at the end of the interpretation process. Based on the aggregated result 

from all 20 responses for PS-PC1 (Figure 29a), the importance-ranking of the 

characteristics/tools is: (1) node colour, (2) edge weight, (3) edge type, (4) node degree. Based 

on the aggregated results from only the six responses from participants with prior experience 

with causality analysis for PS-PC1 (Figure 30a), the importance-ranking is: (1) edge weight, 

(2) edge type, (3) node colour, (4) node degree.  

In both cases, node colour and edge weight are more important than node degree. This 

reinforces the idea that tools specifically aimed at aiding in causality map interpretation are 

useful. When no such tools are incorporated, node degree plays a large role in the interpretation 

process; but here it is clearly shown that when the tools to aid in interpretation are available, 

they are more important to the user than node degree. In addition, it is shown that participants 

with prior experience in causality analysis place value on process knowledge incorporated in 

causality maps. Plots that distinguish between university/company, level of education, and prior 

experience with causality analysis are available in Appendix H. 

Sliders 

Participants were also asked to indicate whether they used the sliders and which map (i.e. for 

which value of the slider(s)) they used to make their final decision w.r.t. the root cause. The 

results are presented in Figure 31, and they show that a significant majority of participants used 

the sliders. However, often-times, they end up on the default value(s) of the slider(s) again. This 

may indicate that the participants merely used the sliders because they were available, but that 

they were not user-friendly or particularly helpful. This is discussed further in the thematic 

analysis of the open-ended questions. Again, plots that distinguish between 

university/company, level of education, and prior experience with causality analysis are 

available in Appendix H. 

a b c  

  
 

 

Figure 31: Comparison of the number of participants who did and did not use the sliders, and which 
map they used to make their final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the 

default. For variables, ‘most variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR. 

User-friendliness 

Participants were asked to indicate the user-friendliness of the causality map in each approach 

(PS-PC1, Mod-PC1, TR), where 1 represents the least user-friendly and 4 represents the most 

user-friendly (Figure 32). The majority of participants indicated that all three approaches are 

user-friendly, as over half of the responses for each approach are a user-friendliness value on 

the top half of the scale (i.e.  3 or 4). This indicates that all three approaches show promise for 

use in industry, when looking from a purely interpretability point of view (i.e. with no 

consideration of accuracy). Furthermore, these results allow the approaches to be ranked from 

best to worst in terms of user-friendliness: (1) PS-PC1, (2) Mod-PC1, (3) TR; where it should 

also be noted that PS-PC1 is never given a 1 (i.e. least user-friendly).  
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Figure 32: Comparison of the user-friendliness rankings assigned to the PS-PC1, Mod-PC1, and TR 
approaches, with 1 representing least user-friendly and 4 representing most user-friendly. 

6.6.2. Thematic analysis of open-ended questions 
The open-ended questions asked the participants to indicate and motivate whether the TR, PS-

PC1, and Mod-PC1 could be practically applied in industry to provide actionable insights. In 

these open-ended questions, 13 (65 %) of the participants directly stated that TR could be 

applied in industry; 15 (75 %) stated that PS-PC1 could be applied, and 10 (50 %) stated that 

Mod-PC1 could be applied. Further insights were gathered from the participants’ motivations, 

by grouping the data according to four themes: (1) Process knowledge and causality analysis 

experience; (2) grouping variables; (3) accuracy during simplification; and (4) sliders. This 

section presents the major findings in each of these themes, and Table 16 in Appendix H 

contains a summary of lines from participant responses grouped according to codes and 

subsequently the four themes. 

Process knowledge and causality analysis experience 

Process knowledge was once again highlighted as an important aspect of causality analysis, and 

specifically mentioned by 8 (40 %) of the participants. It was mentioned that it is important for 

process knowledge to be incorporated in the causality analysis procedure itself, with one 

participant stating that they would be “reserved to do this [Mod-PC1] as I believe a pure data 

driven causality map without any intrinsic process knowledge will lead to causal mistakes.” In 

addition, the user(s) should also have their own process knowledge in addition to the causality 

map(s), with participants stating that, “having a background of the mineral processing plant 

further makes it easier to understand why a certain stage would be influenced by the previous 

stage as compared to just looking at the causality map alone,” and that the user’s process 

knowledge can serve as a “reality check”. However, it should be noted that two (10 %) of the 

respondents mentioned a contrasting view, where a purely data-based approach (e.g. Mod-PC1) 

is preferable, because then “knowledge about the process will not bias the investigator's view.” 

Furthermore, causality analysis is a specialized technique and it was highlighted that users 

should be taught how to apply and interpret it effectively. Five (25 %) of the participants 

mentioned that, “some form of training / experience is needed on my part”.  

Grouping variables 

In all responses regarding grouping variables, it is mentioned in a positive light, with four  

(25 %) of the respondents stating a variation of, “fewer variables allows for easier 

interpretation.” Furthermore, the positive view of process knowledge is carried over to this 

theme by three (15 %) of the participants; stating that, “when grouping according to plant 

sections, a certain degree of plant knowledge is introduced,” and, “grouping by plant layout just 

seemed more intuitive.” This is complemented by the idea that grouping according to modules 

(Mod-PC1) adds confusion. One participant mentioned that, “the groupings did not quite make 

sense” in response to the Mod-PC1 approach. In addition, the data-based modules can end up 
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with numerous variables, with another participant mentioning that, “the sheer number of 

variables in certain modules can make identifying problem sections challenging.”  

Accuracy during simplification 

Accuracy was highlighted as important for causality maps by three (15 %) of the participants. 

As a participant mentioned, “anything that simplifies the causality graphs is good (assuming it 

stays correct).” Concerns were raised regarding the use of only the first principal component to 

represent a group of variables, as, “the first PC captures bulk of variation - some important 

information contributing to a variation may be lost in subsequent PCs.” However, using more 

than one PC per group of variables would introduce confusion by increasing the number of 

nodes in the causality map, as well as making it difficult to trace the root cause to a single group 

of variables when a single group of variables is represented by multiple nodes.  In addition, a 

participant recommended that the uncertainty in the connection strengths should be quantified 

and communicated to aid in clarity of interpretation. 

Sliders 

Half of the participants directly mentioned that the sliders are confusing. The main reason is 

that the causality maps completely change according to the sliders, as a participant mentioned: 

“Interpretation of the maps changes with your sliders - seems clear on one and less on another.” 

The confusion is amplified when there are two sliders (i.e. connections-slider and variables-

slider), as, “there are too many things to consider as the two slider options create multiple 

permutations of possible setting. Further confusion was added in the Mod-PC1 approach, where 

a change in the variables-slider produces a different standard map with a different modular 

structure – so, “the changing of groups of variables, depending on the value selected in the 

slider, made this even more complex.”   

6.6.3. Summary of survey findings 

The survey results are analysed to gain insight into which characteristics/tools are more useful 

in causality maps, and whether PS-PC1, Mod-PC1, or TR can be practically applied in industry. 

Regarding characteristics/tools to aid in causality analysis, node colour is found to be useful for 

cyclic maps in all three approaches (PS-PC1, Mod-PC1, TR), and node colour and edge weight 

are deemed as more important than node degree – emphasising the fact that tools specifically 

aimed at aiding in causality map interpretation are valued by users. Sliders are found to be 

confusing, as causality maps completely change according to the sliders. Regarding the three 

approaches for plant-wide causality maps (PS-PC1, Mod-PC1, TR), the majority of participants 

indicate that all three approaches are user-friendly, but PS-PC1 is found to be the most user-

friendly, followed by Mod-PC1, and then TR.  

Another main finding is that experienced causality analysis users place value on process 

knowledge incorporated in causality maps. This is further highlighted in the results from the 

open-ended questions, where it is mentioned that process knowledge should be incorporated in 

the causality map itself, and that the user should have their own process knowledge while 

interpreting a causality map. Furthermore, PS-PC1 is intuitive, as it incorporates process 

knowledge by grouping variables according to PSs.  

In addition, it is important to maintain accuracy when simplifying a causality map, and using 

only the first PC to represent a group of variables may result in some important information to 

be lost. However, using more than one PC would increase the number of nodes in the causality 

map, and PS-PC1 did result in a useful and accurate plant-wide causality map in this study. 
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CHAPTER 7 

7.  Conclusions and recommendations 

Conclusions and recommendations 

7.1. Conditional Granger causality for plant-wide fault 

identification 

Recall that the first objective of this work, listed in Section 1.2, is concerned with the 

incorporation of process knowledge in causality maps. This was partially addressed by the 

development of a novel heuristic approach in Section 6.2, to select the sampling period (SP) 

and time window (TW) that provide the strongest connection strength for a known connection 

in conditional GC. However, it was found that the use of this heuristic approach does not 

sufficiently improve the use of conditional GC for plant-wide causality analysis, as the plant-

wide causality map produced using this heuristic approach did not identify the true root cause. 

The main reason for this was postulated to be the variety of different residence times and time 

delays involved in plant-wide analysis. 

In future studies, the heuristic approach developed in this work can be improved by removing 

emphasis from simply trying to capture true connections, and rather trying to capture true 

connections while also preventing spurious connections. Instead of comparing connection 

strength of a known connection in different scenarios, the connection strength ratio of a known 

spurious connection and a known true connection could be compared in the scenarios, where a 

smaller ratio is desired. The ratio should have the true connection as the denominator to prevent 

division by zero when the spurious connection is not identified by the causality analysis.  

Three additional limitations to the application of standard conditional GC for plant-wide 

analysis were identified. Firstly, it was found that conditional GC requires large amounts of 

data where the fault is present, in the order of weeks and even months, for analysis with 15 

variables – which are unlikely to be available in industry, and means that the fault needs to be 

present for weeks or months before it can be identified by standard conditional GC. This 

motivates the need to perform sequential conditional GC, as discussed further in Section 7.3. 

Secondly, it was noted that conditional GC can only be applied if the ratio between the fault 

oscillation period and the process dynamics is large enough to allow the process dynamics to 

be captured in the time frame by using a large enough SP without occurrence of the aliasing 

effect. Thirdly, it was found that AIC is not suitable for model order selection, as it does not 

penalise the number of parameters enough – but keeps selecting a larger model order if a larger 

TW is available, despite the time frame increasing past the true process dynamics. 

GC could potentially be improved beyond its performance in this work by implementing 

alternatives to AIC for model order selection, such as Bayesian information criterion (BIC), 

cross-validation, or checking known connection strength at different model orders. However, 

GC remains an unsupervised approach with low interpretability in terms of the underlying 
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regression, where local optimal values are obtained for hyperparameters such as model order. 

This is typical of an engineering application, with the reason behind it being ease of automation. 

However, a more robust approach may be necessary, and a recommendation for future studies 

is to treat hyperparameter selection in GC or causality analysis in general as an optimisation 

problem. The question then becomes what the overall performance function would be, and 

since causality analysis is an explanatory method, there is no clear answer to this - yet.  

7.2. Process knowledge, tools, and visualisation techniques for 

causality map interpretability 

Recall that the first, second, and third objectives of this work, as listed in Section 1.2, are 

concerned with incorporating process knowledge in causality analysis; incorporating tools and 

visualisation techniques to aid in interpretation of plant-wide causality maps; and performing 

a usability study to gain insights on whether causality maps with the proposed tools and 

visualisation techniques can be applied in industry, respectively. The first objective was largely 

addressed by validating data-based connections in a causality map with process knowledge 

from a P&ID. The resulting causality map was displayed in two different ways: namely, 

excluding the non-validated connections completely, or indicating non-validated connection as 

uncertain by displaying them with dashed lines as opposed to the solid lines used for validated 

connections. Excluding non-validated connections decreased the graph density from 0.66 to 

0.3, but simply identifying uncertain connections prevents any loss of information if the P&ID 

is outdated. Both versions were found to be an improvement over the standard causality map 

with no process knowledge, as all spurious connections were removed or identified as uncertain 

respectively. In addition, the survey in the usability study found that experienced causality 

analysis users place value on process knowledge in causality maps. 

Process knowledge was also incorporated in Section 6.3.2 to decrease the pool of potential root 

cause variables, by displaying nodes that cannot reach all other nodes in the causality map in a 

faded grey. This was found to successfully exclude a node that was not the true root cause. 

Variable selection prior to causality analysis was advised, since this approach is only effective 

if all nodes in the map show an effect of the same fault. 

The second objective was addressed by implementing tools such as node ranking and sliders 

that can be applied to a standard causality map. Firstly, node rankings determined according to 

the page rank algorithm were displayed visually on the causality map by colouring the nodes 

alongside a colour bar in Section 6.4.1. This was found to be especially helpful for cyclic maps, 

as node colour is then the main distinguishing factor between nodes. Furthermore, the survey 

in the usability study found that node colour and edge weight are important tools for causality 

map interpretation, more so than node degree. This provides substantial motivation for the use 

of tools specifically aimed at aiding in causality map interpretability, above simply looking at 

node degree for root cause identification.  

Secondly, a connections-slider was implemented to vary the connection strength required for 

the connection to be displayed on the causality map in Section 6.4.2. A stricter threshold for 

connection strength decreased graph density, but also removed vital connections on the fault 

propagation path. However, that should not be the case in an accurate causality map. Two 

versions of a variables-slider based on the spectral envelope method were implemented in 

Section 6.4.3 to vary the variables included in the causality analysis. The first version was 
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based on how close the oscillation contribution (OC) of the variable is to the OC of an identified 

oscillating variable, and the second was based purely on the size of OC of the variable. Neither 

version of the variables-slider was found to be useful, as the first version depends heavily on 

which variable ends up as the identified oscillating variable, and it was found that the true root 

cause does not have the largest OC, so a stricter threshold removed it from the causality map. 

Furthermore, 50 % of the survey participants in the usability study directly stated that the 

sliders added confusion. Variable selection should therefore be performed using the spectral 

envelope method on a once-off basis prior to causality analysis. In this work, all the variables 

were found to oscillate significantly, but that is likely because exaggerated valve stiction was 

modelled in the case study, which will not be the case in industry. Variable selection using the 

spectral envelope method is useful, as it only involves one hyperparameter so it can be applied 

with confidence, and fewer variables requires a smaller dataset for conditional GC. 

7.3. Hierarchical approach for plant-wide causality analysis 

This work proposed a novel hierarchical approach for plant-wide causality analysis in Section 

6.5, which further addresses the second objective listed in Section 1.2. This hierarchical 

approach consists of two stages: where a less-detailed, plant-wide map was constructed and 

used to localise the root cause to a specific group of variables in the first stage; and a causality 

map was constructed for only that group of variables and used to identify the root cause in the 

second stage. The plant-wide map was constructed in two different ways: (1) with variables 

grouped according to plant sections (PSs), and first principal components (PC1s) used to 

represent each group (PS-PC1); (2) with variables grouped according to modules identified in 

the standard causality map and PC1s used to represent each group (Mod-PC1).  

Mod-PC1 is not recommended for plant-wide causality analysis, as it did not clearly identify 

the true root cause location in this study, and it requires the same amount of data as standard 

conditional GC – which means that the fault needs to be present for weeks or months before 

Mod-PC1 can identify it. However, PS-PC1 showed promising results, as its plant-wide 

causality map consisted of only three nodes and still clearly identified the true root cause 

location. This is an improvement above both the standard causality map and its transitive 

reduction, which both consisted of 15 variables and did not identify the true root cause. 

Furthermore, the PS-PC1 approach requires significantly fewer samples than both a standard 

plant-wide causality map and Mod-PC1, which motivates its application in industry where the 

root cause of a fault should be identified before a large amount of data with the fault present 

becomes available. A unique OLS solution for the full model in conditional GC was shown to 

require only 602 samples for the plant-wide map in PS-PC1, compared to the 13 562 samples 

required for the standard causality map. In addition, 75 % of the participants in the usability 

study survey directly stated that they believe the PS-PC1 approach can be practically applied 

in industry to provide actionable insights. 

The application of PS-PC1 to an industrial dataset can therefore be investigated in future work. 

The main challenge is the large number of variables in industry, since one PC may not capture 

sufficient variance if a PS contains variables in the order of 100 instead of only the five 

variables per PS in this work. This can potentially be addressed by decreasing the number of 

variables represented by a single PC, by (1) using more than two stages in the hierarchical 

approach, or (2) including only specific types of variables (e.g. CVs, MVs, flowrates, levels) 

in the PCA in the first stage of the hierarchical approach. 

Stellenbosch University https://scholar.sun.ac.za



 

76 

 

References 

Aho, A. V., Garey, M. R. and Ullman, J. D. (1972) ‘The Transitive Reduction of a Directed Graph’, 

SIAM Journal on Computing, 1(2), pp. 131–137. doi: 10.1137/0201008. 

Akaike, H. (1974) ‘A New Look at the Statistical Model Identification’, IEEE Transactions on 

Automatic Control, 19(6), pp. 716–723. doi: 10.1093/ietfec/e90-a.12.2762. 

Arroyo Esquivel, E. (2017) Capturing and Exploiting Plant Topology and Process Information as 

a Basis to Support Engineering and Operational Activities in Process Plants, http://edoc.sub.uni-

hamburg.de/hsu/volltexte/2017/3162/pdf/PhDDissertation_Arroyo_Final.pdf. Helmut Schmidt 
University, Hamburg. 

Barnett, L., Barret, A. B. and Seth, A. K. (2009) ‘Granger causality and transfer entropy are 
equivalent for Gaussian variables’, Physical Review Letters, 103(23), p. 238701. 

Barnett, L. and Bossomaier, T. (2013) ‘Transfer entropy as a log-likelihood ratio’, Physical Review 
Letters, 109(13), p. 138105. 

Barnett, L. and Seth, A. K. (2014) ‘The MVGC multivariate Granger causality toolbox: A new 

approach to Granger-causal inference’, Journal of Neuroscience Methods. Elsevier B.V., 223, pp. 

50–68. doi: 10.1016/j.jneumeth.2013.10.018. 

Barnett, L. and Seth, A. K. (2017) ‘Detectability of Granger causality for subsampled continuous-

time neurophysiological processes’, Journal of Neuroscience Methods. Elsevier B.V., 275, pp. 93–
121. doi: 10.1016/j.jneumeth.2016.10.016. 

Barrett, A. B., Barnett, L. and Seth, A. K. (2010) ‘Multivariate Granger causality and generalized 

variance’, Physical Review E, 81. doi: 10.1103/PhysRevE.81.041907. 

Bauer, M., Cox, J. W., Caveness, M. H., Downs, J. J. and Thornhill, N. F. (2007) ‘Finding the 

Direction of Disturbance Propagation in a Chemical Process Using Transfer Entropy’, IEEE 
Transactions on Control Systems Technology, 15(1), pp. 12–21. doi: 10.1109/TCST.2006.883234. 

Bauer, M. and Thornhill, N. F. (2008) ‘A practical method for identifying the propagation path of 

plant-wide disturbances’, Journal of Process Control, 18, pp. 707–719. doi: 
10.1016/j.jprocont.2007.11.007. 

Blondel, V. D., Guillaume, J. L., Lambiotte, R. and Lefebvre, E. (2008) ‘Fast unfolding of 

communities in large networks’, Journal of Statistical Mechanics: Theory and Experiment, 

2008(10), p. P10008. doi: 10.1088/1742-5468/2008/10/P10008. 

Blondel, V. D., Guillaume, J., Lambiotte, R. and Lefebvre, E. (2004) ‘Fast unfolding of 

communities in large networks’, Journal of Statistical Mechanics: Theory and Experiment. 

Braun, V. and Clarke, V. (2006) ‘Using thematic analysis in psychology’, Qualitative Research in 
Psychology, 3, pp. 77–101. doi: 10.1191/1478088706qp063oa. 

Bressler, S. L. and Seth, A. K. (2011) ‘Wiener-Granger Causality: A well established 

methodology’, NeuroImage. Elsevier Inc., 58(2), pp. 323–329. doi: 
10.1016/j.neuroimage.2010.02.059. 

Bryan, K. and Leise, T. (2006) ‘The $25,000,000,000 Eigenvector: The Linear Algebra behind 
Google’, SIAM Review, 48(3), pp. 569–581. doi: 10.1137/050623280. 

Stellenbosch University https://scholar.sun.ac.za



REFERENCES 

77 

 

Bullmore, E. and Sporns, O. (2009) ‘Complex brain networks: graph theoretical analysis of 

structural and functional systems.’, Nature reviews. Neuroscience, 10, pp. 186–198. doi: 
10.1038/nrn2575. 

Choudhury, M. A. A. S., Thornhill, N. F. and Shah, S. L. (2005) ‘Modelling valve stiction’, Control 
Engineering Practice, 13, pp. 641–658. doi: 10.1016/j.conengprac.2004.05.005. 

Duan, P. (2014) Information Theory-based Approaches for Causality Analysis with Industrial 

Applications, Diss. University of Alberta. University of Alberta. 

Duan, P., Chen, T., Shah, S. L. and Yang, F. (2014) ‘Methods for Root Cause Diagnosis of Plant-

Wide Oscillations’, AIChE Journal, 60(6), pp. 2019–2034. doi: 10.1002/aic. 

Duan, P., Yang, F., Shah, S. L. and Chen, T. (2015) ‘Transfer Zero-Entropy and Its Application for 

Capturing Cause and Effect Relationship Between Variables’, IEEE Transactions on Control 
Systems Technology, 23(3), pp. 855–867. doi: 10.1109/TCST.2014.2345095. 

Geweke, J. (1982) ‘Measurement of linear dependence and feedback between multiple time series’, 

Journal of the American Statistical Association, 77(378), pp. 304–313. doi: 
10.1080/01621459.1982.10477803. 

Geweke, J. F. (1984) ‘Measures of Conditional Linear Dependence and Feedback Between Time 
Series’, Journal of the American Statistical Association, 79(388), pp. 907–915. 

Gibbons, A. A. M. (1985) Algorithmic graph theory. Cambridge, England: Cambridge, England : 
Cambridge University Press,. 

Goebel, R., Roebroeck, A., Kim, D. S. and Formisano, E. (2003) ‘Investigating directed cortical 

interactions in time-resolved fMRI data using vector autoregressive modeling and Granger 

causality mapping’, Magnetic Resonance Imaging, 21, pp. 1251–1261. doi: 
10.1016/j.mri.2003.08.026. 

Granger, C. W. J. (1969) ‘Investigating Causal Relations by Econometric Models and Cross-

spectral Methods’, Econometrica, 37(3), pp. 424–438. 

Hill, R. (2011) Principles of econometrics. 4th edn. NJ: NJ: Wiley, Hoboken. 

Hurvich, C. M. and Tsai, C. L. (1989) ‘Regression and time series model selection in small 
samples’, Biometrika, 76(2), pp. 297–307. doi: 10.1093/biomet/76.2.297. 

Jenkins, G. M. and Watts, D. G. (1968) Spectral Analysis and Its Applications. Holden Day. 

Jiang, H., Choudhury, M. A. A. S. and Shah, S. L. (2007) ‘Detection and Diagnosis of Plant-wide 

Oscillations From Industrial Data using the Spectral Envelope Method’, Journal of Process 
Control, 17(2), pp. 143–155. 

Jiang, H., Patwardhan, R. and Shah, S. L. (2008) ‘Root Cause Diagnosis of Plant-wide Oscillations 

using the Adjacency Matrix’, in The 17th World Conference, The International Federation of 
Automatic Control. Seol, Korea, pp. 13893–13900. 

Van den Kerkhof, P., Vanlaer, J., Gins, G. and Van Impe, J. F. M. (2013) ‘Analysis of smearing-

out in contribution plot based fault isolation for Statistical Process Control’, Chemical Engineering 
Science, 104, pp. 285–293. 

Kühnert, C. and Beyerer, J. (2014) ‘Data-Driven Methods for the Detection of Causal Structures in 
Process Technology’, Machines, 2(4), pp. 255–274. doi: 10.3390/machines2040255. 

Landman, R. (2019) Data-based causality analysis by exploiting process connectivity information. 
Aalto University. 

Stellenbosch University https://scholar.sun.ac.za



REFERENCES 

78 

 

Landman, R. and Jämsä-Jounela, S. L. (2016) ‘Hybrid approach to casual analysis on a complex 

industrial system based on transfer entropy in conjunction with process connectivity information’, 
Control Engineering Practice, 53, pp. 14–23. doi: 10.1016/j.conengprac.2016.04.010. 

Landman, R., Kortela, J., Sun, Q. and Jämsä-Jounela, S. L. (2014) ‘Fault propagation analysis of 

oscillations in control loops using data-driven causality and plant connectivity’, Computers and 

Chemical Engineering, 71, pp. 446–456. doi: 10.1016/j.compchemeng.2014.09.017. 

Leicht, E. A. and Newman, M. E. J. (2008) ‘Community structure in directed networks’, Physical 
Review Letters, 100(11). 

Leicht, E. A. and Newman, M. E. J. (2008) ‘Community structure in directed networks’, Physical 
Review Letters, 100(11), p. 118703. doi: 10.1103/PhysRevLett.100.118703. 

Lidner, B. S. (2014) Exploiting Process Topology for Optimal Process Monitoring. Stellenbosch 
University. 

Lindner, B. and Auret, L. (2015) ‘Application of data-based process topology and feature extraction 

for fault diagnosis of an industrial platinum group metals concentrator plant’, IFAC-PapersOnLine, 
28(17), pp. 102–107. doi: 10.1016/j.ifacol.2015.10.086. 

Lindner, B., Auret, L. and Bauer, M. (2017) ‘Investigating the Impact of Perturbations in Chemical 

Processes on Data-Based Causality Analysis. Part 1: Defining Desired Performance of Causality 

Analysis Techniques’, IFAC-PapersOnLine. Elsevier B.V., 50(1), pp. 3269–3274. doi: 

10.1016/j.ifacol.2017.08.463. 

Lindner, B., Chioua, M., Groenewald, J. W. D., Auret, L. and Bauer, M. (2018) ‘Diagnosis of 

Oscillations in an Industrial Mineral Process Using Transfer Entropy and Nonlinearity Index’, 
IFAC-PapersOnLine. Elsevier B.V., 51(24), pp. 1409–1416. doi: 10.1016/j.ifacol.2018.09.539. 

Lindner, B. S. (2019) Improving the performance of causality analysis techniques for automated 
fault diagnosis in mineral processing plants. 

Lindner, B. S. and Auret, L. (2014) Data-driven fault detection with process topology for fault 
identification, IFAC Proceedings Volumes. IFAC. doi: 10.3182/20140824-6-ZA-1003.02139. 

Marlin, T. E. (1995) ‘Level and inventory control’, in Clark, B. J. and Morriss, J. M. (eds) Process 

Control: Designing Processes and Control Systems for Dynamic Performance. McGraw-Hill Inc., 
pp. 581–603. 

MATLAB (2018) 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc. 

Maurya, M. R., Rengaswamy, R. and Venkatasubramanian, V. (2003) ‘A systematic framework 

for the development and analysis of signed digraphs for chemical processes. 1. Algorithms and 

analysis’, Industrial and Engineering Chemistry Research, 42(20), pp. 4789–4810. doi: 

10.1021/ie020644a. 

Miao, T. and Seborg, D. E. (1999) ‘Automatic detection of excessively oscillatory feedback control 

loops’, in Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala 

Coast-Island of Hawai’i, Hawai’i, USA, pp. 359–364. doi: 10.1109/cca.1999.806659. 

Miskin, J. J. (2016) Control performance assessment for a high pressure leaching process by means 

of fault database creation and simulation, Stellenbosch University, South Africa. Stellenbosch 
University. 

Newman, M. E. J. (2003) ‘The Structure and Function of Complex Networks’, SIAM Review, 45(2), 
pp. 167–256. doi: 10.1137/s003614450342480. 

Newman, M. E. J. (2004) ‘Analysis of weighted networks’, Physical Review E - Statistical, 

Stellenbosch University https://scholar.sun.ac.za



REFERENCES 

79 

 

nonlinear, and soft matter physics, 70(5), p. 056131. doi: 10.1103/PhysRevE.70.056131. 

Newman, M. E. J. (2006) ‘Modularity and community structure in networks’, Proc. Natl. Acad. 
Sci. USA, 103, pp. 8577–8582. 

Newman, M. E. J. and Girvan, M. (2004) ‘Finding and evaluating community structure in 
networks’, Physical Review E, 69. 

Palla, G., Derényi, I., Farkas, I. and Vicsek, T. (2005) ‘Uncovering the overlapping community 

structure of complex networks in nature and society’, Nature, 435(9), pp. 814–818. doi: 
10.1038/nature03607. 

Pearl, J. (2009) ‘Causal inference in statistics: An overview’, Statistics Surveys, 3, pp. 96–146. doi: 
10.1214/09-SS057. 

Pollonini, L., Patidar, U., Situ, N., Rezaie, R., Papanicolaou, A. C. and Zouridakis, G. (2010) 

‘Functional connectivity networks in the autistic and healthy brain assessed using Granger 

causality’, 32nd Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society. IEEE, pp. 1730–1733. doi: 10.1109/IEMBS.2010.5626702. 

Price, W. L. (1971) Graphs and Networks: An Introduction. Edited by K. B. Haley. London 
Butterworths. 

Reijneveld, J. C., Ponten, S. C., Berendse, H. W. and Stam, C. J. (2007) ‘The application of graph 

theoretical analysis to complex networks in the brain’, Clinical Neurophysiology, 118, pp. 2317–
2331. doi: 10.1016/j.clinph.2007.08.010. 

Reis, M. S. and Gins, G. (2017) ‘Industrial Process Monitoring in the Big Data/Industry 4.0 Era: 
From Detection, to Diagnosis, to Prognosis’, Processes, 5(4), p. 35. doi: 10.3390/pr5030035. 

Shiozaki, J., Matsuyama, H., O’Shima, E. and Iri, M. (1979) ‘An algorithm for diagnosis of system 

failures in the chemical process’, Computers and Chemical Engineering, 3(14), pp. 489–493. doi: 

10.1016/0098-1354(85)80006-5. 

Shiozaki, J., Matsuyama, H., O’Shima, E. and Iri, M. (1985) ‘An Improved Algorithm for 

Diagnosis of System Failures in the Chemical Process’, Compuers and Chemical Engineering, 
9(3), pp. 285–293. 

Shu, Y. and Zhao, J. (2013) ‘Data-driven causal inference based on a modified transfer entropy’, 

Computers and Chemical Engineering. Elsevier Ltd, 57, pp. 173–180. doi: 
10.1016/j.compchemeng.2013.05.011. 

Streicher, S. J., Wilken, S. E. and Sandrock, C. (2014) ‘Eigenvector Analysis for the Ranking of 
Control Loop Importance’, Computer Aided Chemical Engineering. Elsevier, 33, pp. 835–840. 

Sugiyama, K., Tagawa, S. and Toda, M. (1981) ‘Methods for Visual Understanding of Hierarchical 

System Structures’, IEEE Transactions on Systems, Man and Cybernetics, 11(2), pp. 109–125. doi: 
10.1109/TSMC.1981.4308636. 

Suresh, R., Sivaram, A. and Venkatasubramanian, V. (2019) ‘A hierarchical approach for causal 

modeling of process systems’, Computers and Chemical Engineering. Elsevier Ltd, 123, pp. 170–

183. doi: 10.1016/j.compchemeng.2018.12.017. 

Tarjan, R. (1972) ‘Depth-First Search and Linear Graph Algorithms’, IAM Journal on Computing, 
1(2), p. 15. 

Thambirajah, J., Benabbas, L., Bauer, M. and Thornhill, N. F. (2009) ‘Cause-and-effect analysis in 

chemical processes utilizing XML, plant connectivity and quantitative process history’, Computers 
and Chemical Engineering, 33, pp. 503–512. doi: 10.1016/j.compchemeng.2008.10.002. 

Stellenbosch University https://scholar.sun.ac.za



REFERENCES 

80 

 

Thornhill, N. F. (2005) ‘Finding the Source of Nonlinearity in a Process With Plant-Wide 

Oscillation’, IEEE Transactions on Control Systems Technology, 13(3), pp. 434–443. 

Wakefield, B. J., Lindner, B. S., McCoy, J. T. and Auret, L. (2018) ‘Monitoring of a simulated 

milling circuit: Fault diagnosis and economic impact’, Minerals Engineering, 120, pp. 132–151. 
doi: 10.1016/j.mineng.2018.02.007. 

Wiener, N. (1956) ‘The theory of prediction’, Modern Mathematics for Engineers, 1, pp. 125–139. 

Yang, F., Duan, P., Shah, S. L. and Chen, T. (2014) Capturing connectivity and causality in 

complex industrial processes. 1st edn. Springer Internationl Publishing. doi: 10.1007/978-3-319-

05380-6. 

Yang, F., Sirish, L. S. and Xiao, D. (2010) ‘Signed Directed Graph modeling of industrial processes 

and their validation by data-based methods’, in 2010 Conference on Control and Fault-Tolerant 
Systems (SysTol), pp. 387–392. 

Yang, F. and Xiao, D. (2012) ‘Progress in Root Cause and Fault Propagation Analysis of Large-

Scale Industrial Processes’, Journal of Control Science and Engineering, 2012, pp. 1–10. doi: 
10.1155/2012/478373. 

Yim, S. Y., Ananthakumar, H. G., Benabbas, L., Horch, A., Drath, R. and Thornhill, N. F. (2006) 

‘Using process topology in plant-wide control loop performance assessment’, Computers & 
Chemical Engineering, 31(2), pp. 86–99. 

Yuan, T. and Qin, S. J. (2014) ‘Root cause diagnosis of plant-wide oscillations using Granger 

causality’, Journal of Process Control. Elsevier Ltd, 24(2), pp. 450–459. doi: 

10.1016/j.jprocont.2013.11.009. 

Zhou, D., Xiao, Y., Zhang, Y., Xu, Z. and Cai, D. (2014) ‘Granger causality network reconstruction 

of conductance-based integrate-and-fire neuronal systems’, PLOS ONE, 9(2). doi: 
10.1371/journal.pone.0087636. 

Zhou, Z., Ding, M., Chen, Y., Wright, P., Lu, Z. and Liu, Y. (2009) ‘Detecting directional influence 

in fMRI connectivity analysis using PCA based Granger causality’, Brain Research. Elsevier B.V., 
1289, pp. 22–29. doi: 10.1016/j.brainres.2009.06.096. 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

81 

 

APPENDIX A 

A. Partial derivation of the spectral optimisation method 

Partial derivation of the spectral 

optimisation method 

A.1. Partial derivation of spectral optimisation method – Part 1 

This section provides a step-by-step derivation from eqn 31 to eqn 32 in Section 3.4: 

 𝑄 =
1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] (𝑠𝑖𝑠𝑗 + 1) 

𝑗𝑖

 [31] 

 𝑄 =
1

2𝑚
∑∑{[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] 𝑠𝑖𝑠𝑗 + [𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
]} 

𝑗𝑖

 [A1] 

 𝑄 =
1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] 𝑠𝑖𝑠𝑗 +

1

2𝑚
∑∑𝐴𝑖𝑗

𝑗𝑖𝑗𝑖

−
1

2𝑚
∑∑

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
𝑗𝑖

 [A2] 

 𝑄 =
1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] 𝑠𝑖𝑠𝑗 +

1

2𝑚
∑∑𝐴𝑖𝑗

𝑗𝑖𝑗𝑖

−
1

2𝑚
∑

𝑘𝑖
𝑖𝑛

𝑚
∑𝑘𝑗

𝑜𝑢𝑡

𝑗𝑖

 [A3] 

Using the fact that:  

 ∑∑𝐴𝑖𝑗

𝑗𝑖

= ∑𝑘𝑖
𝑖𝑛

𝑖

= ∑𝑘𝑗
𝑜𝑢𝑡

𝑗

= 𝑚 [A4] 

Eqn A3 is rewritten as: 

 𝑄 =
1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] 𝑠𝑖𝑠𝑗 +

1

2𝑚
∑∑𝐴𝑖𝑗

𝑗𝑖𝑗𝑖

−
1

2𝑚
∑𝑘𝑗

𝑜𝑢𝑡

𝑗

 [A5] 

 𝑄 =
1

2𝑚
∑∑[𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝑚
] 𝑠𝑖𝑠𝑗

𝑗𝑖

 [A6] 

Remember that the modularity matrix 𝑩 is defined to have entries: 

 𝛽𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖

𝑖𝑛𝑘𝑗
𝑜𝑢𝑡

𝑚
 [A7] 

Then eqn A6 is rewritten as:  

 𝑄 =
1

2𝑚
∑∑𝑠𝑖𝛽𝑖𝑗𝑠𝑗

𝑗𝑖

 [32] 
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A.2. Partial derivation of spectral optimisation method – Part 2 

This section provides a step-by-step derivation from eqn [37] to eqn [38] in Section 3.4: 

 𝑄∗ = ∑𝑎𝑖𝒗𝑖
𝑇(𝑩 + 𝑩𝑇)

𝑖

∑𝑎𝑗𝒗𝑗
𝑇

𝑗

 [37] 

 

Let 𝑪 = 𝑩 + 𝑩𝑇, so that eqn [37] is rewritten as: 

 𝑄∗ = ∑𝑎𝑖𝒗𝑖
𝑇𝑪

𝑖

∑𝑎𝑗𝒗𝑗
𝑇

𝑗

 [A8] 

Using the fact that 𝑪 is symmetric (i.e. 𝑪 = 𝑪𝑇), and remembering that 𝒔 = ∑ 𝑎𝑖𝒗𝑖𝑖 , eqn A8 

can be rewritten as: 

 𝑄∗ = ∑𝑎𝑖(𝑪𝒗𝑖)
𝑇

𝑖

𝒔 [A9] 

 

Using eigenvalue decomposition, 𝑪𝒗𝑖 = 𝛾𝑖𝒗𝑖, where 𝛾𝑖 is the eigenvalue that corresponds to 

the eigenvector 𝒗𝑖. Eqn [A9] is then rewritten as: 

 𝑄∗ = ∑𝑎𝑖(𝛾𝑖𝒗𝑖)
𝑇

𝑖

𝒔 [A10] 

 

Since 𝒔 = ∑𝑎𝑖𝒗𝒊 (see eqn 37 in Section 3.5), and all the eigenvectors of a symmetric matrix 

are orthogonal (i.e. 𝒗𝑖
𝑇𝒗𝑗 = 𝒗𝑖 ∙ 𝒗𝑗 = 0), it follows that: 

 𝒗𝒋
𝑻𝒔 = ∑𝑎𝑖𝒗𝒋

𝑻𝒗𝒊 = 𝑎𝑗 [A11] 

 

Substituting eqn A11 into eqn A10: 

 𝑄∗ = ∑𝒗𝒊
𝑇𝒔(𝛾𝑖𝒗𝑖)

𝑇

𝑖

𝒔 [A12] 

 𝑄∗ = ∑𝛾𝒊(𝒗𝒊
𝑇𝒔)𝟐

𝑖

 [38] 
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APPENDIX B 

B. Author’s code 

Author’s code 

This appendix presents the author’s code for conditional GC (which is validated against the 

GCCA mode in the MVGC toolbox), as well as the author’s code for validating data-based 

causal connections with a connectivity matrix, for both a standard causality matrix and a 

causality matrix where nodes represent groups of variables. 

B.1. Conditional Granger causality 

The author’s conditional GC code is presented below, and the raw results for the causality 

matrices (containing the G-causality indices) produced by the author’s code and the GCCA 

mode in the MVGC toolbox (Barnett and Seth, 2014) are presented in Table 14 and Table 15 

respectively. The causality matrix produced by the author’s code is identical to the one 

produced by the toolbox, and both the author’s code and the toolbox selected a model order of 

5 using AIC; thus the author’s code is validated. 

%% Conditional Granger causality 

  
%% PURPOSE 
% Performs conditional GC on a dataset X, where the rows are variables and 
% the columns are observations. 
% Selects model order using AICc, and checks that there are more 
% observations than parameters for the VAR. 

  
%% INPUTS 
% X - data to perform GC on, where the rows are variables and the columns  
% are observations 
% pmax - maximum model order to calculate AIC for in model order selection 

  
%% OUTPUTS 
% cm - matrix containing magnitudes of G-causality between variables, 
% where the columns are source variables and rows are sink variables 
% p - model order used for regression  

  
%% 
function [cm, p] = Conditional_GC_updated(X, pmax) 
X = X'; 
X = zscore(X); 
X = X'; 
[n, m] = size(X); % n = no. variables; m = total no. observations  
% Pre-allocate space for output: 
cm = NaN(n); 
% Determine model order using AICc: 
AIC = NaN(pmax, 1); 
% C_per_model_order = cell(n, pmax); 
for q = 1:pmax 
    % Full regression: 
    X0 = X(:, q+1:end);  
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    XL = NaN(q*n, m-q); 
    for i_XL = 0:(q-1) 
        XL(i_XL*n+1:(i_XL+1)*n, :) = X(:, (q-i_XL):(m-1-i_XL)); % Lagged  
                                                            % observations 
    end 
    A = X0/XL; % Solve system of equations with OLS 
    E = X0 - A*XL; 
    SIG = E*E'/(m-q-1); % Covariance matrix (denominator is to correct for  
                                                                    % bias) 
    DSIG = det(SIG); % Determinant of covariance matrix (generalised  
                                                                % variance) 
    % AIC: 
    L = -(m/2)*log(DSIG); 
    k = q*n*n; 
    if m-k-1 <= 0 % Are there sufficient observations for a unique solution 
                                                       % to the regression? 
        AIC(q) = NaN; 
    else 
        AIC(q) = -2*L + 2*k*(m/(m-k-1)); % Note AIC without correction =  
                                                              % -2*L + 2*k 
    end      
end  
p = find( AIC==min(AIC) ); % Choose model order with smallest value for AIC 
% Full regression: 
X0 = X(:, p+1:end);  
XL = NaN(p*n, m-p); 
for i_XL = 0:(p-1) 
    XL(i_XL*n+1:(i_XL+1)*n, :) = X(:, (p-i_XL):(m-1-i_XL)); % Lagged  
                                                            % observations 
end 
A = X0/XL; % Solve system of epuations with OLS 
E = X0 - A*XL; 
SIG = E*E'/(m-p-1); % Covariance matrix (denominator is to corrected for  
                                                                    % bias) 
VAR = diag(SIG); % Vector of variances (because variances are on diagonal  
                                                    % of covariance matrix) 
% Reduced regression & G-causality index: 
for i = 1:n 
    Xr = X; 
    Xr(i, :) = []; % Remove potential source variable 

     
    X0r = Xr(:, p+1:end);  
    XLr = NaN(p*(n-1), m-p); 
    for i_XL = 0:(p-1) 
        XLr(i_XL*(n-1)+1:(i_XL+1)*(n-1), :) = Xr(:, (p-i_XL):(m-1-i_XL));  
                                                     % Lagged observations 
    end   
    Ar = X0r/XLr; 
    Er = X0r-Ar*XLr; 
    SIGr = Er*Er'/(m-p-1);  
    VARr = diag(SIGr); 
    iii = 1; 
    for ii = 1:n 
        if ii == i 
            cm(ii, i) = 0; 
        else 
            cm(ii, i) = log(VARr(iii)/VAR(ii)); 
            iii = iii +1; 
        end 
    end  
end  
end 
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Table 14: Raw results for the causality matrix produced using the author’s conditional GC. Columns are source variables and rows are sink variables. 

0 0.07474 0.145231 0.081042 0.074155 0.008497 0.008675 0.016913 0.018496 0.004254 0.092569 0.07528 0.140678 0.091651 0.07209 

0.05200565 0 0.101657 0.051835 0.063769 0.012408 0.009339 0.01696 0.022674 0.002082 0.070479 0.045097 0.093793 0.0645 0.049023 

0.05087999 0.060952 0 0.049902 0.057648 0.004996 0.051719 0.003486 0.006337 0.016119 0.053268 0.071549 0.081884 0.054408 0.077813 

0.08951239 0.079529 0.164366 0 0.077384 0.009968 0.009484 0.022875 0.02254 0.003575 0.099358 0.081524 0.159715 0.095833 0.077187 

0.1145506 0.103883 0.240022 0.116469 0 0.026022 0.017611 0.047952 0.049588 0.002154 0.140501 0.09968 0.226192 0.121791 0.098719 

0.00371087 0.003469 0.002058 0.004012 0.003869 0 0.011964 0.097606 0.02911 0.010102 0.001541 0.002741 0.002154 0.001615 0.004276 

0.00996687 0.011817 0.012896 0.010109 0.011771 0.032017 0 0.027135 0.034623 0.00239 0.009274 0.012254 0.008229 0.008003 0.012406 

0.00311163 0.002027 0.001661 0.004557 0.001475 0.019352 0.011194 0 0.019861 0.012392 0.00214 0.002148 0.001696 0.003236 0.001616 

0.00319376 0.003794 0.003478 0.005468 0.003029 0.023016 0.016468 0.152793 0 0.018891 0.003809 0.006 0.003487 0.004653 0.005506 

0.00057672 0.001001 0.001146 0.000362 0.000586 0.024761 0.012033 0.069402 0.020624 0 0.000479 0.000794 0.001292 0.000448 0.000551 

0.00486078 0.006388 0.006288 0.004718 0.008828 0.014151 0.013464 0.019563 0.023577 0.001012 0 0.007132 0.006935 0.013935 0.003851 

0.00317511 0.018906 0.004122 0.003656 0.036671 0.019541 0.0129 0.029993 0.035442 0.000511 0.030465 0 0.004543 0.015624 0.020721 

0.00156135 0.015278 0.000991 0.005609 0.016879 0.0215 0.099895 0.010575 0.022242 0.020362 0.021791 0.060404 0 0.027339 0.099419 

0.00882078 0.009426 0.011347 0.008513 0.010902 0.01657 0.014301 0.027554 0.029587 0.001706 0.021547 0.011206 0.012196 0 0.006717 

0.01452752 0.023947 0.018654 0.015064 0.035664 0.031521 0.018071 0.056915 0.05764 0.002353 0.041275 0.015602 0.02048 0.015509 0 

Table 15: Raw results for the causality matrix produced using the GCCA mode in the MVGC toolbox (Barnett and Seth, 2014). Columns are source variables and rows 
are sink variables. 

NaN 0.07474 0.145231 0.081042 0.074155 0.008497 0.008675 0.016913 0.018496 0.004254 0.092569 0.07528 0.140678 0.091651 0.07209 

0.052006 NaN 0.101657 0.051835 0.063769 0.012408 0.009339 0.01696 0.022674 0.002082 0.070479 0.045097 0.093793 0.0645 0.049023 

0.05088 0.060952 NaN 0.049902 0.057648 0.004996 0.051719 0.003486 0.006337 0.016119 0.053268 0.071549 0.081884 0.054408 0.077813 

0.089512 0.079529 0.164366 NaN 0.077384 0.009968 0.009484 0.022875 0.02254 0.003575 0.099358 0.081524 0.159715 0.095833 0.077187 

0.114551 0.103883 0.240022 0.116469 NaN 0.026022 0.017611 0.047952 0.049588 0.002154 0.140501 0.09968 0.226192 0.121791 0.098719 

0.003711 0.003469 0.002058 0.004012 0.003869 NaN 0.011964 0.097606 0.02911 0.010102 0.001541 0.002741 0.002154 0.001615 0.004276 

0.009967 0.011817 0.012896 0.010109 0.011771 0.032017 NaN 0.027135 0.034623 0.00239 0.009274 0.012254 0.008229 0.008003 0.012406 

0.003112 0.002027 0.001661 0.004557 0.001475 0.019352 0.011194 NaN 0.019861 0.012392 0.00214 0.002148 0.001696 0.003236 0.001616 

0.003194 0.003794 0.003478 0.005468 0.003029 0.023016 0.016468 0.152793 NaN 0.018891 0.003809 0.006 0.003487 0.004653 0.005506 

0.000577 0.001001 0.001146 0.000362 0.000586 0.024761 0.012033 0.069402 0.020624 NaN 0.000479 0.000794 0.001292 0.000448 0.000551 

0.004861 0.006388 0.006288 0.004718 0.008828 0.014151 0.013464 0.019563 0.023577 0.001012 NaN 0.007132 0.006935 0.013935 0.003851 

0.003175 0.018906 0.004122 0.003656 0.036671 0.019541 0.0129 0.029993 0.035442 0.000511 0.030465 NaN 0.004543 0.015624 0.020721 

0.001561 0.015278 0.000991 0.005609 0.016879 0.0215 0.099895 0.010575 0.022242 0.020362 0.021791 0.060404 NaN 0.027339 0.099419 

0.008821 0.009426 0.011347 0.008513 0.010902 0.01657 0.014301 0.027554 0.029587 0.001706 0.021547 0.011206 0.012196 NaN 0.006717 

0.014528 0.023947 0.018654 0.015064 0.035664 0.031521 0.018071 0.056915 0.05764 0.002353 0.041275 0.015602 0.02048 0.015509 NaN 
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B.2. Validating data-based causality with a connectivity matrix 

B.2.1. Standard causality map 
The author’s code for validating data-based causal connections with a connectivity matrix for 

a standard causality matrix is presented below:  

 
%% Validate causal connections with connectivity matrix – for a STANDARD  
% CAUSALITY MATRIX 

  
%% PURPOSE 
% Checks whether the causal connections in the causality matrix are 
% validated by the connectivity matrix, and returns a refined causality 
% matrix, containing only the validated connections. 

  
%% INPUTS 
% causalM_original - causality matrix, where rows are source variables and 
% columns are sink variables 
% connectM - connectivity matrix, where rows are source variables and 
% columns are sink variables 
% IDs_causal - Sensor tags that correspond to the measured variables in the 
% causality matrix 
% IDs_connect - Tag names corresponding to the connectivity matrix entries 

  
%% OUTPUTS: 
% causalM_refined - refined causality matrix, containing only connections 
% validated by the connectivity matrix 

  
%% 
function causalM_refined = validate_propPath(causalM_original, connectM,... 
    IDs_causal, IDs_connect) 
    [causal_rows, causal_cols] = size(causalM_original); 
    causalM_refined = zeros(causal_rows, causal_cols); 
    % Step through causal matrix to check each connection: 
    for i_causal_row = 1:causal_rows 
        for i_causal_col = 1:causal_cols 
            if i_causal_row == i_causal_col % exclude diagnoal to omit self 
                    % loops (self loops are terrible for interpretability) 
              causalM_refined(i_causal_row, i_causal_col) = 0; 
            else  
                % *** 
                % Find indices of entries where there are causal  
                % connections: 
                if causalM_original(i_causal_row, i_causal_col) ~= 0 
                    % *** 
                    ID_sn = IDs_causal(i_causal_row); % sn = start node for 
                    % DFS (depth-first search); sn gets overwritten for  
                    % each causal connection that is checked 
                    idx = find(strcmp(IDs_connect, ID_sn)); 
                    % *** 

  
                    % What is the instrument connected to? (Check row & col 
                    % corresponding to this instrument for 1's): 
                    idx_row = find(connectM(idx, :)==1); % Row containing  
                                               % indices where there is a 1 
                    idx_col = find(connectM(:, idx)==1); % Col containing  
                                              % indicies where there is a 1 

  
                    % Save indices as start nodes (doesn't matter if they  
                    % were row or col indices, because variables are in the 
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                    % same order in the rows & cols, so can use the  
                    % obtained idices directly as row indices for the start 
                    % nodes): 
                    snVect = zeros(size(idx_row, 2)+size(idx_col, 1), 1);  
                                                   % snVect is a col vector 
                    snVect(1:size(idx_row, 2)) = idx_row; 
                    snVect(size(idx_row, 2)+1:size(idx_row, 2)+... 
                        size(idx_col, 1)) = idx_col; 

  
                    % DFS: 
                    % Create digraph out of connectivity matrix 
                    connectM(isnan(connectM))=0; % Replace all NaN values  
                    % with zero (because the DFS sees NaN values as entries 
                    % & therefore connections in the conectivity matrix  
                    % (which would be wrong) 
                    connectM_dg = digraph(connectM, IDs_connect);  
                                                            % dg = digraph 

  
                    % Pre-allocate space to store the paths 
                    connectM_paths = cell(1, size(snVect, 1)); 

  
                    % DFS to get all nodes that can be reached from the  
                    % specified start nodes 
                    for i_DFS = 1:size(snVect, 1) 
                       connectM_paths{1, i_DFS} = dfsearch(connectM_dg,... 
                           IDs_connect{1, snVect(i_DFS)}); % 1st entry  
                       % contains nodes reachable from 1st specified start  
                       % node, and so on.. 
                    end 

  
                    % Is the target node in the list of nodes that can be 
                    % reached from the start nodes? If yes, causal  
                    % connection is validated. If no, causal connection is  
                    % deemed spurious and removed. 
                    for i_targetReachable = 1:size(connectM_paths, 2) 
                        a = strcmp(IDs_causal(i_causal_col), ... 
                            connectM_paths{1, i_targetReachable}); 
                        if sum(a) > 0 
                            causalM_refined(i_causal_row, i_causal_col)... 
                                = causalM_original(i_causal_row,... 
                                i_causal_col); 
                            break; 
                        else 
                            causalM_refined(i_causal_row, i_causal_col)... 
                                = 0; 
                        end 
                    end 
                end 
            end 
        end  
    end 
end 

B.2.2. Causality map with nodes representing groups of variables 
The author’s code for validating data-based causal connections with a connectivity matrix for 

a causality matrix where nodes represent groups of variables is presented below. 
 
%% Validate causal connections with connectivity matrix – for a CAUSALITY  
% MATRIX WHERE NODES REPRESENT GROUPS OF VARIABLES 

  
%% PURPOSE 
% Checks whether the causal connections in the causality matrix are 
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% validated by the connectivity matrix, and returns a refined causality 
% matrix, containing only the validated connections. 

  
%% INPUTS 
% causalM_original - causality matrix, where rows are source variables and 
% columns are sink variables 
% connectM - connectivity matrix, where rows are source variables and 
% columns are sink variables 
% IDs_causal - Sensor tags that correspond to the measured variables in the 
% causality matrix 
% IDs_connect - Tag names corresponding to the connectivity matrix entries 

  
%% OUTPUTS: 
% causalM_refined - refined causality matrix, containing only connections 
% validated by the connectivity matrix 

  
%% 
function causalM_refined = validate_propPath(causalM_original, connectM,... 
    all_IDs_causal, IDs_connect) 
    [numGroups, ~] = size(causalM_original); 
    numVars = NaN(1, numGroups); % Row vector that contains the no. of vars 
                                                            % in each group 
    for i = 1:numGroups 
        [~, numVars(i)] = size(all_IDs_causal{1, i}); % Okay for now,  
        % because there are an equal number of variables in each section 
    end 
    causalM_refined = zeros(numGroups); 
    % Step through causal matrix to check each connection: 
    for i_sourceSection = 1:numGroups 
        for i_sinkSection = 1:numGroups 
            if i_sourceSection == i_sinkSection % exclude diagnoal to omit  
                % self loops (self loops are terrible for interpretability) 
              causalM_refined(i_sourceSection, i_sinkSection) = 0; 
            else  
                % *** 
                % Find indices of entries where there are causal  
                % connections: 
                if causalM_original(i_sourceSection, i_sinkSection) ~= 0 

                     
                    % *** 
                    % Instead of stepping through all the variables in the 
                    % source section, just include all those variables in 
                    % the list of start nodes. sn has to be a scalar, so 
                    % will need to step throuhg all the variables after 
                    % all: 
                    for i_sourceSectionVars = 1:numVars(i_sourceSection) 
                    ID_sn = all_IDs_causal{1, i_sourceSection}... 
                        {i_sourceSectionVars}; % numVars must equal the  
                    % number of variables in the current source section;  
                    % generic for now, because all the sections have an  
                    % equal number of variables 
                    idx = find(strcmp(IDs_connect, ID_sn)); 
                    % *** 

  
                    % What is the instrument connected to? (Check row & col 
                    % corresponding to this instrument for 1's): 
                    idx_row = find(connectM(idx, :)==1); % Row containing  
                                               % indices where there is a 1 
                    idx_col = find(connectM(:, idx)==1); % Col containing  
                                              % indicies where there is a 1 

  
                    % Save indices as start nodes (doesn't matter if they  
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                    % were row or col indices, because variables are in the 
                    % same order in the rows & cols, so can use the  
                    % obtained idices directly as row indices for the start 
                    % nodes): 
                    snVect = zeros(size(idx_row, 2)+size(idx_col, 1), 1);  
                                                   % snVect is a col vector 
                    snVect(1:size(idx_row, 2)) = idx_row; 
                    snVect(size(idx_row, 2)+1:size(idx_row, 2)+... 
                        size(idx_col, 1)) = idx_col; 

  
                    % DFS: 
                    % Create digraph out of connectivity matrix 
                    connectM_dg = digraph(connectM, IDs_connect);  
                                                            % dg = digraph 

  
                    % Pre-allocate space to store the paths 
                    connectM_paths = cell(1, size(snVect, 1)); 

  
                    % DFS to get all nodes that can be reached from the  
                    % specified start nodes 
                    for i_DFS = 1:size(snVect, 1) 
                       connectM_paths{1, i_DFS} = dfsearch(connectM_dg,... 
                           IDs_connect{1, snVect(i_DFS)}); % 1st entry  
                       % contains nodes reachable from 1st specified start  
                       % node, and so on.. 
                    end 

  
                    % Is the target node in the list of nodes that can be 
                    % reached from the start nodes? If yes, causal  
                    % connection is validated. If no, causal connection is  
                    % deemed spurious and removed. 

                     
                    % IDs_causal(i_causal_col) is the target node - 
                    % Make it all nodes in the sink section 

                         
                    % The for loop for the variables in the sink section 
                    % must be here: 
                    b = 0; 
                    for i_sinkSectionVars = 1:numVars(i_sinkSection) 
                        for i_targetReachable = 1:size(connectM_paths, 2) 
                            a = strcmp(all_IDs_causal{1, i_sinkSection}... 
                                (i_sinkSectionVars), connectM_paths{1,... 
                                i_targetReachable}); 
                            b = b+sum(a); 
                            if b > 0 
                              causalM_refined(i_sourceSection,... 
                                  i_sinkSection) = causalM_original... 
                                  (i_sourceSection, i_sinkSection); 
                              break; 
                            end   
                        end  
                    end  
                    end  
                end 
            end 
        end  
    end 
end 
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APPENDIX C 

C. Tank network model development and implementation 

Tank network model development and 

implementation 

The tank network model was developed by performing a mass balance around a tank, and 

extending that to all the tanks in the network. The symbols used in the model development 

correspond to those in Figure 33. 

 

Figure 33: Diagram with symbols corresponding to one-tank model development 

 𝑑𝑚

𝑑𝑡
= 𝜌(𝐹1 − 𝐹2 − 𝐹3) [C1] 

Assume the fluid is incompressible, so the density is constant. 

 𝑑𝑉

𝑑𝑡
= 𝐹1 − 𝐹2 − 𝐹3 [C2] 

 𝑑(𝐴ℎ)

𝑑𝑡
= 𝐹1 − 𝐹2 − 𝐹3 [C3] 

Since the cross-sectional area A remains constant: 

 𝑑ℎ

𝑑𝑡
=

𝐹1 − 𝐹2 − 𝐹3

𝐴
 

[C4] 

Divide by the maximum height possible in the tank 𝐻𝑚𝑎𝑥 to obtain the tank height as a fraction 

of its total: 

 
𝑑 (

ℎ
𝐻𝑚𝑎𝑥

)

𝑑𝑡
=

𝐹1 − 𝐹2 − 𝐹3

𝐴𝐻𝑚𝑎𝑥
 

[C5] 

 𝑑ℎ𝑓𝑟𝑎𝑐

𝑑𝑡
=

𝐹1 − 𝐹2 − 𝐹3

𝑉𝑚𝑎𝑥
 [C6] 
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Since 𝐹2 is the MV, it is calculated using the PI controller equation in the Laplace domain, 

where 𝐾𝑐 and 𝜏𝐼 are determined from the controller tuning relations derived in Appendix E. 

 
𝐹2 = 𝐾𝑐 [1 +

1

𝑠𝜏𝐼
] [C7] 

𝐹3 is the underflow, which is proportional to the squareroot of the tank level: 

 
𝐹3 = 𝑘√ℎ𝑓𝑟𝑎𝑐 [C8] 

Eqns C6, C7, and C8 were implemented in Simulink, as shown in Figure 34. 

 

Figure 34: Simulink implementation of the one-tank model 

The exogenous disturbances fed to each plant section were modelled as random walks by 

integrating a series of random numbers multiplied by a gain, as shown in Figure 35.  

 

Figure 35: Random walk implementation in Simulink 
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APPENDIX D 

D. Modelling valve stiction 

Modelling valve stiction 

Valve stiction can be described as the resistance exhibited by a valve to start moving as a result 

of large static friction (Miskin, 2016). It consists of four components, namely: deadband, 

stickband, slipjump and the moving phase, as shown in Figure 36. The deadband and stickband 

represent the behaviour of the valve when the controller wants it to move, but it is not moving. 

The slipjump represents the abrupt jump in valve position that occurs when the valve overcomes 

the static friction that had been keeping it stuck.  

For this project, valve stiction was modelled using the empirical model described in Choudhury, 

Thornhill and Shah, (2005). The two parameters that govern this model are J and S, which 

represent the slipjump and deadband + stickband respectively. S was set as 60 %, so that the 

valve takes long to respond to the controller output and so causes a low frequency oscillation. 

J was set as 65 %, so that J > S, resulting in overshoot stiction to provide a larger fault amplitude. 

 

Figure 36: Typical input-output behaviour of a sticky valve, redrawn from Choudhury, Thornhill and 
Shah, (2005) 

The model was implemented in Simulink (MATLAB, 2018), as shown in Figure 38, where x(k) 

is the controller output for the valve position and y(k) is the actual valve position. The “switch” 

block on the RHS of Figure 38 outputs either the moving valve position or the stuck valve 

position, depending on its input. If the input is one, the valve is stuck; if the input is zero, the 

valve is moving. The switch block input is initiated at zero, so that the valve starts off moving. 

The valve becomes stuck every time it attempts to change direction (i.e. the sign of the 

controller output slope changes) or there is no change in the controller output for valve position. 

Either of these conditions activate the “sample and hold” block, which outputs the current stuck 
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valve position until it is activated again. The valve remains stuck while eqn D1 and eqn D2 

remain true, where 𝑥𝑆𝑆 is the current stuck valve position. If the valve is currently stuck, eqn 

D1 is used to determine if it overcomes the slipjump; if the valve is currently moving, eqn D2 

is used to determine if it moves further than the deadband + stickband.   

 |𝑥(𝑘) − 𝑥𝑆𝑆| ≤ 𝐽 [D1] 

 |𝑥(𝑘) − 𝑥𝑆𝑆| ≤ 𝑆 [D2] 

 

The behaviour of the valve stiction fault is displayed by feeding an artificial sinusoidal input to 

the valve stiction model, as shown in Figure 37. Figure 37a shows the difference between the 

controller output (i.e. what the control valve would do if valve stiction was not present) and the 

actual valve output against time; and Figure 37b shows the input-output behaviour of the sticky 

valve, which corresponds partially to the behaviour explained in Figure 33. 

The valve was initialised to start off in the moving phase, so the valve output trend in Figure 

37a follows the controller output trend in the beginning of the first oscillation. However, once 

the valve becomes stuck for the first time, it exhibits the slipjump for the first time, which takes 

it directly to another stuck position, and this behaviour continues for the rest of the time 

window. This is because the slipjump J is a large value, so the valve never overcomes it (i.e. 

eqn D1 remains true the entire time after the initial movement phase). This initial movement 

phase followed by a continuous jumping from one stuck position to another is also seen in 

Figure 37b, where the slanted line represents the initial movement phase, and the rectangle 

represents the jumping from one stuck position to another. 

The overshoot due to J > S is visible in both Figure 37a and Figure 37b. In Figure 37a, the valve 

output peaks and troughs above and below the controller output respectively; and in Figure 37b, 

a valve output larger than 90 % corresponds to a controller output of only 90 %.  

a b 

 

Figure 37: Valve stiction fault behaviour: a. The difference between controller output and valve 
output as a function of time. b. Input-output behaviour of the sticky valve modelled for this project. 

This valve stiction model adjusts the controller output value to the actual valve output in terms 

of valve position. Linear installed valve characteristics were assumed to convert the controller 

output in flowrate units to valve position for the valve stiction model and back again afterwards. 
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Figure 38: Simulink implementation of valve stiction model described in Choudhury, Thornhill and Shah, (2005)
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APPENDIX E 

E. Derivation of controller tuning relations 

Derivation of controller tuning 

relations 

The linear averaging controller relation was derived for the system described in Chapter 5 and 

Appendix C, following the description provided in Marlin, (1995). 

Writing eqn E1 in deviation variables, and ignoring the underflow (since it is negligibly small 

compared to the product flow, and is not involved in controlling the system): 

 𝑑ℎ𝑓𝑟𝑎𝑐
′

𝑑𝑡
=

𝐹𝑖𝑛
′ − 𝐹𝑝𝑟𝑜𝑑

′

𝑉𝑚𝑎𝑥
 [E1] 

Taking the PI controller equation in deviation variables: 

 

𝐹𝑝𝑟𝑜𝑑
′ = −𝐾𝑐 [ℎ𝑓𝑟𝑎𝑐

′ +
1

𝜏𝐼
∫ℎ𝑓𝑟𝑎𝑐

′

𝑡

0

] 𝑑𝑡 [E2] 

Substituting eqn E2 into eqn E1: 

 
𝑉𝑚𝑎𝑥

′ 𝑑ℎ𝑓𝑟𝑎𝑐
′

𝑑𝑡
= 𝐹𝑖𝑛

′ + 𝐾𝑐 [ℎ𝑓𝑟𝑎𝑐
′ +

1

𝜏𝐼
∫ℎ𝑓𝑟𝑎𝑐

′

𝑡

0

] 𝑑𝑡 [E3] 

Converting to the Laplace domain: 

 
𝑉𝑚𝑎𝑥𝑠ℎ𝑓𝑟𝑎𝑐

′ (𝑠) = 𝐹𝑖𝑛
′ (𝑠) + 𝐾𝑐 [ℎ𝑓𝑟𝑎𝑐

′ (𝑠) +
1

𝜏𝐼

ℎ𝑓𝑟𝑎𝑐
′ (𝑠)

𝑠
] [E4] 

 
𝑉𝑚𝑎𝑥𝑠ℎ𝑓𝑟𝑎𝑐

′ (𝑠) − 𝐾𝑐ℎ𝑓𝑟𝑎𝑐
′ (𝑠) −

𝐾𝑐

𝜏𝐼

ℎ𝑓𝑟𝑎𝑐
′ (𝑠)

𝑠
= 𝐹𝑖𝑛

′ (𝑠) [E5] 

Multiplying by s: 

 
𝑉𝑚𝑎𝑥𝑠

2ℎ𝑓𝑟𝑎𝑐
′ (𝑠) − 𝑠𝐾𝑐ℎ𝑓𝑟𝑎𝑐

′ (𝑠) −
𝐾𝑐

𝜏𝐼
ℎ𝑓𝑟𝑎𝑐

′ (𝑠) = 𝑠𝐹𝑖𝑛
′ (𝑠) [E6] 

Factorising ℎ𝑓𝑟𝑎𝑐
′ (𝑠) out of the LHS: 

 
[𝑉𝑚𝑎𝑥𝑠

2 − 𝑠𝐾𝑐 −
𝐾𝑐

𝜏𝐼
] ℎ𝑓𝑟𝑎𝑐

′ (𝑠) = 𝑠𝐹𝑖𝑛
′ (𝑠) [E7] 

Multiplying by(−
𝜏𝐼

𝐾𝑐
): 

 
[
−𝑉𝑚𝑎𝑥𝜏𝐼𝑠

2

𝐾𝑐
+ 𝜏𝐼𝑠 + 1] ℎ𝑓𝑟𝑎𝑐

′ (𝑠) = (−
𝜏𝐼

𝐾𝑐
) 𝑠𝐹𝑖𝑛

′ (𝑠) [E8] 
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ℎ𝑓𝑟𝑎𝑐

′ (𝑠)

𝐹𝑖𝑛
′ (𝑠)

=
(−

𝜏𝐼

𝐾𝑐
) 𝑠

−𝑉𝑚𝑎𝑥𝜏𝐼𝑠2

𝐾𝑐
+ 𝜏𝐼𝑠 + 1

 [E9] 

To write eqn E9 in the form: 

 
ℎ𝑓𝑟𝑎𝑐

′ (𝑠)

𝐹𝑖𝑛
′ (𝑠)

=
(−

𝜏𝐼

𝐾𝑐
) 𝑠

𝜏2𝑠2 + 2ϵτ𝑠 + 1
 [E10] 

Let: 

 
𝜏2 = −

𝑉𝑚𝑎𝑥𝜏𝐼

𝐾𝑐
 [E11] 

 

𝜏 = √−
𝑉𝑚𝑎𝑥𝜏𝐼

𝐾𝑐
 [E12] 

So that: 

 

𝜖 =
1

2
√

−𝜏𝐼𝐾𝑐

𝑉𝑚𝑎𝑥
 [E13] 

 

Taking a step change in the inlet flowrate (i.e. the disturbance variable) in the time domain 

[eqn E14] and in the Laplace domain [eqn E15]; and letting the system be critically damped 

(i.e. 𝜖 = 1). 

 
Δ𝐹𝑖𝑛 =

𝑑𝐹𝑖𝑛
′

𝑑𝑡
 [E14] 

 
𝐹𝑖𝑛

′ =
Δ𝐹

𝑠
 [E15] 

Then substituting that information in eqn E10: 

 

ℎ𝑓𝑟𝑎𝑐
′ (𝑠) =

(−
𝜏𝐼

𝐾𝑐
) 𝑠

𝜏2𝑠2 + 2τ𝑠 + 1

Δ𝐹

𝑠
 

[E16] 

 

ℎ𝑓𝑟𝑎𝑐
′ (𝑠) =

(−
𝜏𝐼

𝐾𝑐
) Δ𝐹

𝜏2𝑠 + 2τ + 1
 

[E17] 

 

ℎ𝑓𝑟𝑎𝑐
′ (𝑠) =

(−
𝜏𝐼

𝐾𝑐
) Δ𝐹

(𝜏𝑠 + 1)2
 [E18] 

Converting back to the time domain: 

 
ℎ𝑓𝑟𝑎𝑐

′ (𝑡) = (−
𝜏𝐼

𝐾𝑐
) Δ𝐹

1

𝜏2
𝑡𝑒−

𝑡
𝜏 [E19] 

Substituting eqn E11 in eqn E19: 

 
ℎ𝑓𝑟𝑎𝑐

′ (𝑡) = (−
𝜏𝐼

𝐾𝑐
) Δ𝐹(−

𝐾𝑐

𝑉𝑚𝑎𝑥𝜏𝐼
)𝑡𝑒−

𝑡
𝜏 [E20] 

 
ℎ𝑓𝑟𝑎𝑐

′ (𝑡) =
Δ𝐹

𝑉𝑚𝑎𝑥
𝑡𝑒−

𝑡
𝜏 [E21] 

Taking advantage of the fact that 𝜖 = 1 with eqn E13: 
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𝜖 = 1 =
1

2
√

−𝜏𝐼𝐾𝑐

𝑉𝑚𝑎𝑥
= 2√

𝑉𝑚𝑎𝑥

−𝜏𝐼𝐾𝑐
 [E22] 

Then multiplying eqn E12 by eqn E13 (i.e. multiplying by 1): 

 

𝜏 = √−
𝑉𝑚𝑎𝑥𝜏𝐼

𝐾𝑐
× 2√

𝑉𝑚𝑎𝑥

−𝜏𝐼𝐾𝑐
 [E23] 

 
𝜏 =

2𝑉𝑚𝑎𝑥

−𝐾𝑐
 [E24] 

Substituting eqn E24 into eqn E21: 

 
ℎ𝑓𝑟𝑎𝑐

′ (𝑡) =
Δ𝐹

𝑉𝑚𝑎𝑥
𝑡𝑒

−𝑡(−
𝐾𝑐

2𝑉𝑚𝑎𝑥
)
 [E25] 

Taking the derivative of eqn E25 using the chain rule, and setting it to zero to find its maximum: 

 𝑑ℎ𝑓𝑟𝑎𝑐
′ (𝑡)

𝑑𝑡
=

Δ𝐹

𝑉𝑚𝑎𝑥
[𝑡

−𝐾𝑐

2𝑉𝑚𝑎𝑥
𝑒

−𝑡(−
𝐾𝑐

2𝑉𝑚𝑎𝑥
)
+ 𝑒

−𝑡(−
𝐾𝑐

2𝑉𝑚𝑎𝑥
)
] = 0 [E26] 

The solution to eqn E26 is: 

 
𝑡𝑚𝑎𝑥 =

2𝑉𝑚𝑎𝑥

−𝐾𝑐
 [E27] 

Substituting the solution into eqn E25: 

 
Δℎ𝑓𝑟𝑎𝑐𝑚𝑎𝑥

=
Δ𝐹𝑚𝑎𝑥

𝑉𝑚𝑎𝑥

2𝑉𝑚𝑎𝑥

−𝐾𝑐
𝑒

−(
2𝑉𝑚𝑎𝑥
−𝐾𝑐

)(−
𝐾𝑐

2𝑉𝑚𝑎𝑥
)
 [E28] 

 
Δℎ𝑓𝑟𝑎𝑐𝑚𝑎𝑥

=
2Δ𝐹𝑚𝑎𝑥

−𝐾𝑐
𝑒−1 [E29] 

Simplifying to give the controller tuning relation provided in Marlin, (1995): 

 
Δℎ𝑓𝑟𝑎𝑐𝑚𝑎𝑥

= 0.736
Δ𝐹𝑚𝑎𝑥

−𝐾𝑐
 [E30] 

 
𝐾𝑐 = −

0.736Δ𝐹𝑚𝑎𝑥

Δℎ𝑓𝑟𝑎𝑐𝑚𝑎𝑥

 [E31] 

𝐾𝑐 was therefore determined using eqn E31, and 𝜏𝐼 by rearranging eqn E13 . 
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APPENDIX F 

F. Tank network connectivity matrix 

Tank network connectivity matrix 
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APPENDIX G 

G. Sampling period and time window plots 

Sampling period and time window 

plots 

G.1. Plots for a standard causality map 

 

 

 

 

Figure 39: FI 006 time series with sampling periods 1 – 8 min. 

Stellenbosch University https://scholar.sun.ac.za



APPENDIX G  

108 

 

 

 

 

Figure 40: FI 006 time series with sampling periods 9 – 18 min. 
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Figure 41: FI 006 time series with sampling periods 19 – 28 min. 
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G.2. Plots for the proposed hierarchical approach 

 

 

 

 

Figure 42: Plant section 2 time series scores with sampling periods 1 – 8 min. 
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Figure 43: Plant section 2 time series scores with sampling periods 9 – 18 min. 
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Figure 44: Plant section 2 time series scores with sampling periods 19 – 28 min. 
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Figure 45: The effects of time window and sampling period on a: the strength of the known causal connection PS2→PS1, b: the model order selected by AIC, 
and c: the resulting autoregressive (AR) time frame for time windows required for at least 602 samples at each SP. Darker lines indicate larger TWs. 

 

Stellenbosch University https://scholar.sun.ac.za



APPENDIX G  

114 

 

a 

 
b 
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Figure 46: The effects of time window and sampling period on a: the strength of the known causal connection PS2→PS1, b: the model order selected by AIC, 
and c: the resulting autoregressive (AR) time frame for the time windows required for at least 2000 samples at each SP. Darker lines indicate larger TWs.  
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Figure 47: AIC plots for the range of allowable mode orders, with vertical dashed lines indicating the 
selected model order. a. AIC plot for SP3 min and TW1.3 days. b. AIC plot for SP6 min and TW2.9 
days. For this plot, AIC is only calculated for a model order up to 22, because too few samples are 

available for a unique OLS solution for the full model at higher model orders for this TW.  
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APPENDIX H 

H. Survey 

Survey 

H.1. Survey questionnaire 

Improving the interpretability of causality maps for fault identification 

survey1 

INFORMED CONSENT 

 

TITLE OF RESEARCH 

PROJECT: 

Improving the interpretability of causality maps for fault 

identification 

REFERENCE NUMBER: 14385 

PRINCIPAL 

INVESTIGATOR: 
Natali van Zijl  

ADDRESS: 
Department of Process Engineering, Stellenbosch University, 
Banghoek Road, Stellenbosch Central, 7600, South Africa 

CONTACT NUMBER: 082 824 3670 

E-MAIL: 19010370@sun.ac.za 

Dear prospective participant 

Kindly note that I am a MEng student at the Department of Process Engineering at Stellenbosch 

University, and I would like to invite you to participate in a research project entitled “Improving the 

interpretability of causality maps for fault identification”. 

Please take some time to read the information presented here, which will explain the details of this 

project and contact me if you require further explanation or clarification of any aspect of the study.  

This study has been approved by the Research Ethics Committee (REC) at Stellenbosch University and 

will be conducted according to accepted and applicable national and international ethical guidelines and 

principles.  

1. INTRODUCTION:  Modern chemical and mineral processing plants continuously aim to 

increase their productivity to address stiff global competition. Rather than introduce costly new 

initiatives, process monitoring and optimisation are used to ensure optimal use of existing 
processes and infrastructure. A current bottleneck in process monitoring is the identification of 

the root cause of a fault. Fortunately, research from the last decade has shown data-based 
causality analysis techniques to be useful for fault diagnosis. Causality analysis uses the cause-

effect relationships between variables to construct a causality map, where the propagation path 

of a fault can be traced back to its root cause. However, due to poor causality map 
interpretability, engineers struggle to understand and use causality analysis results for fault 

diagnosis, and it has yet to become widely accepted in industry. 

2. PURPOSE: The purpose of this project is to improve the interpretability of causality maps for 

fault identification, and so to make this technique usable in industry. A hierarchical approach 

                                                 
1 This questionnaire was reformatted for use within SUN Surveys format. 
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has been proposed to construct causality maps for fault identification, and the purpose of this 

survey is to investigate whether this approach can be used to successfully identify a fault in an 
engineering process, and subsequently advise on whether the interpretability of causality maps 

can be improved to the extent where they can be used for fault identification in industry. 

3. PROCEDURES:  If you voluntarily choose to participate in this study, you will be asked to 

complete a once-off online survey. 

4. TIME: The once-off online survey will take approximately 30-40 minutes to complete. 

5. RISKS:  No potential risk or discomfort is foreseen as a result of participating in this study, 

other than the time and effort invested in completing the online survey.  
6. BENEFITS: If you volunteer to participate in this study, you may choose to enter into a lucky 

draw, where you stand the chance to win a Woolworths voucher valued at R500. Furthermore, 
your participation will give us insight into whether the proposed approach to improve the 

interpretability of causality maps is a usable tool for fault identification by users who can 

reasonably be expected to understand the concept of a causality map. This will help us to make 
a recommendation as to whether causality maps should be widely used in industry. 

7. PARTICIPATION & WITHDRAWAL: You may choose whether you want to participate in 
this study or not. There are no consequences for you if you withdraw from this study or your 

data is withdrawn. If you want to withdraw, all data gathered from you will be deleted from all 

platforms where it was stored as soon as the primary investigator is informed of your desire to 
withdraw. 

8. CONFIDENTIALITY: All information obtained in this study will remain confidential and 
disclosed only with your permission or as required by law. At no point in this survey will you be 

asked for identifiable information, beyond background information regarding the institution you 
are affiliated with, your highest level of qualification, and whether you have any prior 

experience with causality analysis. All participants will complete the survey anonymously and 

the results will be processed in such a manner that individual respondents cannot be identified. 
All data will be stored confidentially at the password-protected Stellenbosch University SUN 

Survey server, the primary investigator’s password-protected personal computer, and an 
access-restricted SharePoint, where access is restricted to the primary investigator, Natali van 

Zijl, her Stellenbosch University-affiliated supervisors, Dr TM Louw, Prof SM Bradshaw, and Dr 

L Auret, and their collaborator, Dr De Villiers Groenewald, the lead control engineer at Anglo 
American Platinum. The primary investigator, Natali van Zijl, is responsible for data collection 

and analysis, and she is committed to governing the data securely and confidentially. 
Aggregated results will be published in the form of a thesis for a master’s degree in Extractive 

Metallurgical Engineering. Please note that aggregated results may be linked to the 
aforementioned background information and published as such. Results could also be 

presented in conference presentations and journal articles. 

9. RECORDINGS: This study does not involve any interviews. Therefore, no voice or video 
recordings will be made use of.  

10. DATA STORAGE: The data from this survey will be anonymous and stored on the primary 
investigator, Natali van Zijl’s, password protected personal computer, as well as on an access-

restricted SharePoint, where access is restricted to the primary investigator, Natali van Zijl, her 

SU-affiliated supervisors, Dr TM Louw, Prof SM Bradshaw, and Dr L Auret, and their 
collaborator, Dr De Villiers Groenewald, the lead control engineer at Anglo American Platinum. 

This data could be used in further investigations into the interpretability of causality maps by 
any of the primary investigator's SU-affiliated supervisors or the collaborator, as listed above. 

All email addresses obtained from participants who choose to participate in the lucky draw will 

be temporarily stored on the primary investigator’s password protected Outlook account and 
password protected personal computer until the winner has been determined and contacted. 

Thereafter, the email addresses will be immediately deleted from the primary investigator’s 
Outlook account and personal computer, and permanently deleted from the deleted folder and 

the recycling bin respectively.  
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If you have any questions or concerns about this research project, please feel free to contact me, Natali 

van Zijl, at 19010370@sun.ac.za or 082 824 3670, or my supervisor, Tobi Louw, at tmlouw@sun.ac.za. 

 

RIGHTS OF RESEARCH PARTICPANTS:  You may withdraw your consent at any time and 

discontinue participation without penalty.  You are not waiving any legal claims, rights or remedies 

because of your participation in this research study.  If you have questions regarding your rights as a 

research subject, contact Ms Maléne Fouché (mfouche@sun.ac.za / 021 808 4622) at the Division for 

Research Development.  You have the right to receive a copy of this Consent form. 

 

If you click the "yes" button below, you as the participant confirm that: 

 I have read the above information and it is written in a language with which I am fluent and 

comfortable. 

 I have had a chance to ask questions and all my questions have been adequately answered. 

 I understand that taking part in this study is voluntary and I have not been pressurised to take 

part. 

 I may choose to leave the study at any time and will not be penalised or prejudiced in any way. 

 If the principal investigator feels that it is in my best interest, or if I do not follow the study 

plan as agreed to, then I may be asked to leave the study before it has finished. 

 All issues related to privacy, and the confidentiality and use of the information I provide, have 

been explained to my satiSPaction. 

 

Thank you for your time and effort. Your input is highlight valued. 

 

Yours sincerely 

Natali van Zijl 

 

*Informed consent  

I hereby consent to participate in the study.  

Yes  

No  

 

--- PAGE BREAK --- 

ORIENTATION TO SURVEY 

What is fault identification? 

Modern chemical and mineral processing plants are highly interconnected via process units, 

equipment, material flow, energy flow, and information flow; and this is complicated even 

further by recycle streams, complex control strategies and control interaction. This 

interconnectivity creates the opportunity for something called the smearing effect, which is 

when a fault originates somewhere in a plant, and then propagates throughout the plant, so that 
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numerous variables end up showing an effect of the fault. Since so many variables show an 

effect of the fault, it is difficult to identify where the fault originated, or in other words, to find 

its root cause – and that is exactly what fault identification entails. 

What is a causality map? 

Causality refers to the cause-effect relationships between variables, where change in one 

variable causes change in another. The causal structure of a process (i.e. cause-effect 

relationship between all the variables in the process) can be determined using data-driven 

techniques, or from process knowledge in the form of piping and instrumentation diagrams 

(P&IDs), where each approach has its own advantages and disadvantages. In short, the data-

driven techniques can give quantitative causal connections in the form of causal strengths, but 

could give some spurious (incorrect) results; while causal structures obtained from process 

knowledge can only be qualitative, but can be trusted to be correct.  

Once the causal structure of a process has been determined, it can be presented in a causality 

map, with a simple example of three variables (X, Y, Z) provided in Figure . The nodes are the 

variables, and the edges are the causal connections between them (so X causes Y, which causes 

Z). 

 

Figure 1: Example of causality map with three variables. Nodes represent variables and edges 
represent casual connections. 

How can you use causality analysis for fault identification? 

Causality maps can be used for fault identification by tracing the fault propagation path back 

to its root cause. This is easy if the causality map resembles the one in Figure , where there are 

no cycles, and no variables cause X, so it is identified as the root cause. However, it would be 

difficult to identify the root cause if there was also a causal connection from Z to X in Figure , 

especially if the causal connections were determined using a data-driven technique, so we 

cannot be completely sure if we can trust every connection. To address these issues, some tools 

to aid in the interpretation of causality maps have been included in the causality maps presented 

in this study: 

(1) Data-driven techniques are used to determine the causal structures presented in the 

causality maps in this study, but these connections are validated using process 

knowledge. Solid lines are used to represent causal connections where the data-driven 

technique and the process knowledge agree, and dashed lines are used to represent 

causal connections identified by the data-driven technique but are not validated by 

process knowledge. 

(2) Causal strength is indicated with line thickness. 

(3) The root cause of a fault is assumed to have a large influence on the causal network, so 

nodes (variables) are ranked according to their influence on the causal network. This is 

represented by colouring the nodes according to their rank with a colour bar, where 

the colour at the top of the colour bar indicates the largest influence on the causal 
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network, and the colour at the bottom of the colour bar indicates the smallest influence 

on the causal network. 

(4) In this study, the type of fault addressed is one that causes oscillations to occur. Only 

variables that show an effect of the fault are included in the causality map, and this is 

determined as variables that exhibit oscillations at the same frequency. In order for a 

variable to be the root cause of the fault, it therefore needs to be connected (directly or 

indirectly) to all the other variables in the causality map, because otherwise the fault 

could not have propagated from it to all the other variables. Nodes (variables) that are 

not connected to all the other variables in the causality map are therefore faded in 

this study, as they should likely not be considered as potential root causes. However, if 

all the nodes should be faded, then none of them are – to prevent information from 

being lost. 

(5) There are two sliders for each causality map presented in this study, namely a 

connections-slider and a variables-slider (Figure 2). The connections-slider acts as a 

threshold for how strong a causal connection must be for it to be shown on the causality 

map (i.e. a lower value on the connections-slider means only the stronger connections 

will be displayed – so fewer connections will be displayed); and the variables-slider 

acts as a threshold for how much a variable must oscillate at the common frequency for 

it to be included in the causality analysis and shown on the causality map (i.e. a lower 

value on the variables-slider means only the variables that oscillate more will be 

included – so fewer variables will be displayed). 

 

Figure 2: Diagram of the connections-slider and variables-slider 

In this study, a hierarchical approach has been proposed to identify the root cause of a fault in 

a process. Two causality maps are constructed, where the first causality map consists of nodes 

that represent groups of variables, and should be used to trace the fault to one of those groups 

of variables; and the second causality map consists of nodes that represent each of the variables 

in the group identified in the first causality map, and should be used to trace the root cause to 

specific variable(s).  

In this survey, you will be asked to determine the root cause of a fault from a base case, which 

is a causality map where transitive reduction has been applied. Thereafter, two variations of 

the proposed hierarchical approach will be presented, which you will also use to determine the 

root cause of a fault. The base case and two variations will be further explained in their relevant 

sections.  

--- PAGE BREAK --- 

BASE CASE: PLANT-WIDE CAUSALITY MAP WITH TRANSITIVE REDUCTION 
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The causality maps presented in this survey are constructed for the process shown below. The 

plant consists of three plant sections (PS1, PS2, PS3), which each have: 

 Two tanks in series, where each tank has feedback level control. 

 An exogenous input to the first tank. 

 A recycle stream from the second tank’s underflow to the first tank. 

The plant sections are separated by buffer tanks, with a portion of each buffer tank’s underflow 

fed to the following plant section. In addition, there is a recycle stream from the buffer tank 

following PS2 back to PS1. 

 

3.1.*Click on the following link to open a presentation of the causality map(s)2. There are 

hyperlinks to represent the sliders – you may interact with them if you wish to do so.  

This causality map is the transitive reduction of the causality map that consists of all 

the variables of in the process that show an effect of the fault. A transitive reduction is 

a map where all shortcut connections have been removed. For example, in Figure 3, X 

is shown to cause Z, and Z to cause Y, but X is also shown to cause Y directly. In the 

transitive reduction, the 𝑋 → 𝑌 connection would be removed, as that causal connection 

is already captured in the 𝑋 → 𝑍 → 𝑌 connections (making it a shortcut connection).  

                                                 
2 Refer to Section H.2 of this appendix for the causality maps. 
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Figure 3: Example of shortcut connection from 𝑋 → 𝑌 

https://docs.google.com/presentation/d/e/2PACX-1vQTfr-

3a3vdQC82o44nuBTzmlgDR04JNp6t_cFIqhPP2jnp75xGAk8Hlw_aO1tgXb1vg1uMscsd

KNYR/pub?start=false&loop=false&delayms=3000&slide=id.p1 

3.2.*Which variable is the root cause?  

LI-001  

LI-002  

FI-001  

FI-002  

FI-003  

LI-003  

LI-004  

FI-004  

FI-005  

FI-006  

LI-005  

LI-006  

FI-007  

FI-008  

FI-009  

I can’t decide between multiple variables.  

Routed question: If participant indicates I can’t decide between multiple variables. 

3.3.Which variables can you not decide between? 

LI-001  

LI-002  

FI-001  

FI-002  

FI-003  

LI-003  
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LI-004  

FI-004  

FI-005  

FI-006  

LI-005  

LI-006  

FI-007  

FI-008  

FI-009  

3.4.*Rank the extent to which the following features played a role in your decision-making 

while identifying the root cause, with 1 indicating the largest role and 4 indicating the 

smallest role.  

Node colour  

Edge weight  

Edge lines (solid/dashed)  

Number of arrows pointing towards/away from node(s)  

3.5.*Did you use the connections-slider for this causality map? 

Yes No 

Routed question: If participant indicates Yes 

3.6.*What value on the connections-slider did you end on? 

1e-16  

0.01 (default)  

0.05  

3.7.*Did you use the variables-slider for this causality map? 

Yes No 

Routed question: If participant indicates Yes 

3.8.*What value on the variables-slider did you end on? 

0.015  

0.9  

1 (default)  

3.9.*Indicate the user-friendliness of this causality map, with 1 representing least user-

friendly and 4 representing most user-friendly. 
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1 2 3 4 

--- PAGE BREAK --- 

HIERARCHICAL APPROACH 1: Variables grouped according to plant sections, with 

principal components as representatives 

The causality maps presented in this survey are constructed for the process shown below. The 

plant consists of three plant sections (PS1, PS2, PS3), which each have: 

 Two tanks in series, where each tank has feedback level control. 

 An exogenous input to the first tank. 

 A recycle stream from the second tank’s underflow to the first tank. 

The plant sections are separated by buffer tanks, with a portion of each buffer tank’s underflow 

fed to the following plant section. In addition, there is a recycle stream from the buffer tank 

following PS2 back to PS1. 

 

2.1.*Click on the following link to open a presentation of the causality map(s)3. There are 

hyperlinks to represent the sliders – you may interact with them if you wish to do so.  

This causality map consists of nodes that each represent groups of variables, and it 

should be used to trace the fault to one of those groups of variables. In this case, the 

groups of variables correspond to variables belonging to the same plant sections, and 

the representative for each group of variables is the first principal component, as 

                                                 
3 Refer to Section H.2 of this appendix for the causality maps. 
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determined by applying principal component analysis (PCA) to the time series data of 

those variables. 

https://docs.google.com/presentation/d/e/2PACX-

1vT7uhJaJ9VzO6A1ylif7lyrJaaguz5NQeTWCdvgd0sAdDsS6T6mnCxlh5Wt77fyXEJacK

BXJaJtq0wq/pub?start=false&loop=false&delayms=3000  

2.2.*In which group of variables is the root cause located? 

G1 (PS1)  

G2 (PS2)  

G3 (PS3)  

2.3.*Rank the extent to which the following features played a role in your decision-making 

while identifying the root cause, with 1 indicating the largest role and 4 indicating the 

smallest role.  

Node colour  

Edge weight  

Edge lines (solid/dashed)  

Number of arrows pointing towards/away from node(s)  

2.4.*Did you use the variables-slider for this causality map? 

Yes No 

Routed question: If participant indicates Yes 

2.5.*What value on the variables-slider did you end on? 

1 (default)  

0.9  

0.015  

2.6.*Indicate the user-friendliness of this causality map, with 1 representing least user-

friendly and 4 representing most user-friendly. 

1 2 3 4 

Routed question: If participant indicates G2 (PS2) in 2.2 and 1 (default) in 2.5  

2.7.*Click on the following link to open a presentation of the causality map(s)4. There are 

hyperlinks to represent the sliders – you may interact with them if you wish to do so.  

                                                 
4 Refer to Section H.2 of this appendix for the causality maps. 
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This causality map consists of nodes that represent each of the variables in the group 

you identified in the previous causality map, and it should be used to trace the root 

cause to a specific variable. 

https://docs.google.com/presentation/d/e/2PACX-

1vTEWfTuCXgalXvYC5uFe8oEFKm3VZMslGQ4o9HsRg-lY5IXDMIm3M_p4GDLNw-

qHKfVMlxw5AyUMLmu/pub?start=false&loop=false&delayms=3000  

Routed question: If participant indicates G2 (PS2) in 2.2 and 1 (default) in 2.5 

2.8.*Which variable is the root cause? 

LI-003  

LI-004  

FI-004  

FI-005  

FI-006  

I can’t decide between multiple variables.  

Routed question: If participant indicates G2 (PS2) in 2.2 and 1 (default) in 2.5 

Routed question: If participant indicates I can’t decide between multiple variables. 

2.9.Which variables can you not decide between? 

LI-003  

LI-004  

FI-004  

FI-005  

FI-006  

Routed question: If participant indicates G2 (PS2) in 2.2 and 1 (default) in 2.5 

2.10. *Rank the extent to which the following features played a role in your decision-

making while identifying the root cause, with 1 indicating the largest role and 3 

indicating the smallest role.  

Node colour  

Edge weight  

Number of arrows pointing towards/away from node(s)  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.9  in 2.5 

2.11. *Click on the following link to open a presentation of the causality map(s)5. 

There are hyperlinks to represent the sliders – you may interact with them if you wish 

to do so.  

                                                 
5 Refer to Section H.2 of this appendix for the causality maps. 
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This causality map consists of nodes that represent each of the variables in the group 

you identified in the previous causality map, and it should be used to trace the root 

cause to a specific variable. 

https://docs.google.com/presentation/d/e/2PACX-1vQit5O2sr-Xt8xXWWChSBdhjyJ0bd-

zbUnI1P_hMnqZTYj6fCOgTrbOK0OxSUh7ec7DbmnamFtS5LQ3/pub?start=false&loop=

false&delayms=3000  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.9  in 2.5 

2.12. *Which variable is the root cause? 

LI-003  

LI-004  

FI-006  

I can’t decide between multiple variables.  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.9  in 2.5 

Routed question: If participant indicates I can’t decide between multiple variables. 

2.13. Which variables can you not decide between? 

LI-003  

LI-004  

FI-006  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.9  in 2.5 

2.14. *Rank the extent to which the following features played a role in your decision-

making while identifying the root cause, with 1 indicating the largest role and 3 

indicating the smallest role.  

Node colour  

Edge weight  

Number/weight of arrows pointing towards/away from node(s)  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.015  in 2.5 

2.15. *Click on the following link to open a presentation of the causality map(s)6. 

There are hyperlinks to represent the sliders – you may interact with them if you wish 

to do so.  

This causality map consists of nodes that represent each of the variables in the group 

you identified in the previous causality map, and it should be used to trace the root 

cause to a specific variable. 

                                                 
6 Refer to Section H.2 of this appendix for the causality maps. 
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https://docs.google.com/presentation/d/e/2PACX-1vQit5O2sr-Xt8xXWWChSBdhjyJ0bd-

zbUnI1P_hMnqZTYj6fCOgTrbOK0OxSUh7ec7DbmnamFtS5LQ3/pub?start=false&loop=

false&delayms=3000  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.015  in 2.5 

2.16. *Which variable is the root cause? 

LI-003  

LI-004  

FI-006  

I can’t decide between multiple variables.  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.015  in 2.5 

Routed question: If participant indicates I can’t decide between multiple variables. 

2.17. Which variables can you not decide between? 

LI-003  

LI-004  

FI-006  

Routed question: If participant indicates G2 (PS2) in 2.2 and 0.015  in 2.5 

2.18. *Rank the extent to which the following features played a role in your decision-

making while identifying the root cause, with 1 indicating the largest role and 3 

indicating the smallest role.  

Node colour  

Edge weight  

Number/weight of arrows pointing towards/away from node(s)  

--- PAGE BREAK --- 

HIERARCHICAL APPROACH 2: Variables grouped according to modules in the data, 

with principal components as representatives 

The causality maps presented in this survey are constructed for the process shown below. The 

plant consists of three plant sections (PS1, PS2, PS3), which each have: 

 Two tanks in series, where each tank has feedback level control. 

 An exogenous input to the first tank. 

 A recycle stream from the second tank’s underflow to the first tank. 

The plant sections are separated by buffer tanks, with a portion of each buffer tank’s underflow 

fed to the following plant section. In addition, there is a recycle stream from the buffer tank 

following PS2 back to PS1. 

Stellenbosch University https://scholar.sun.ac.za

https://docs.google.com/presentation/d/e/2PACX-1vQit5O2sr-Xt8xXWWChSBdhjyJ0bd-zbUnI1P_hMnqZTYj6fCOgTrbOK0OxSUh7ec7DbmnamFtS5LQ3/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vQit5O2sr-Xt8xXWWChSBdhjyJ0bd-zbUnI1P_hMnqZTYj6fCOgTrbOK0OxSUh7ec7DbmnamFtS5LQ3/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vQit5O2sr-Xt8xXWWChSBdhjyJ0bd-zbUnI1P_hMnqZTYj6fCOgTrbOK0OxSUh7ec7DbmnamFtS5LQ3/pub?start=false&loop=false&delayms=3000


APPENDIX H  

129 

 

 

3.1.*Click on the following link to open a presentation of the causality map(s)7. There are 

hyperlinks to represent the sliders – you may interact with them if you wish to do so.  

 

This causality map consists of nodes that each represent groups of variables, and it 

should be used to trace the fault to one of those groups of variables. In this case, the 

groups of variables correspond to variables belonging to a module identified in the data 

by applying a modularisation optimisation technique to the causality map obtained from 

all the variables; and the representative for each group of variables is the first principal 

component, as determined by applying principal component analysis (PCA) to the time 

series data of those variables.  

 

Take note: If you use the variables-slider, the variables belonging to each group change.  

https://docs.google.com/presentation/d/e/2PACX-

1vQUEgiRE2MzzO3wl81Vm2AzSEHx2QYmk0VTIhXV8P_vgkineOzzywBFckynXwrjIs

B-mM58Wl4Yrqay/pub?start=false&loop=false&delayms=3000  

3.2.*In which group of variables is the root cause located?  

 

Take note: The group you select corresponds to a specific value for the variables-slider. 

G1   

G2   

                                                 
7 Refer to Section H.2 of this appendix for the causality maps. 
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G3   

3.3.*Rank the extent to which the following features played a role in your decision-making 

while identifying the root cause, with 1 indicating the largest role and 4 indicating the 

smallest role.  

Node colour  

Edge weight  

Edge lines (solid/dashed)  

Number of arrows pointing towards/away from node(s)  

3.4.*Did you use the variables-slider for this causality map? 

Yes No 

Routed question: If participant indicates Yes 

3.5.*What value did you end on? 

1 (default)  

0.9  

0.015  

3.6.*Indicate the user-friendliness of this causality map, with 1 representing least user-

friendly and 4 representing most user-friendly. 

1 2 3 4 

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.7.*Click on the following link to open a presentation of the causality map(s)8. There are 

hyperlinks to represent the sliders – you may interact with them if you wish to do so.  

 

This causality map consists of nodes that represent each of the variables in the group 

you identified in the previous causality map, and it should be used to trace the root 

cause to a specific variable. 

https://docs.google.com/presentation/d/e/2PACX-1vRhkodco-

sp8SgXqXwV2d5_LrfAKdvyf7Wxlp3QEQvW0gwOcPlLhwcBhIEf0C3J5Ygr0ed_FPDwz

5Qr/pub?start=false&loop=false&delayms=3000  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.8.*Which variable is the root cause? 

LI-001  

FI-001  

FI-002  

                                                 
8 Refer to Section H.2 of this appendix for the causality maps. 
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FI-003  

LI-004  

FI-006  

LI-005  

FI-007  

FI-008  

I can’t decide between multiple variables.  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

Routed question: If participant indicates I can’t decide between multiple variables. 

3.9.*Which variables can you not decide between? 

LI-001  

FI-001  

FI-002  

FI-003  

LI-004  

FI-006  

LI-005  

FI-007  

FI-008  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.10. *Rank the extent to which the following features played a role in your decision-

making while identifying the root cause, with 1 indicating the largest role and 3 

indicating the smallest role.  

Node colour  

Edge weight  

Number of arrows pointing towards/away from node(s)  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.11. *Did you use the connections-slider for this causality map? 

Yes No 

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

Routed question: If participant indicates Yes 

3.12. *What value did you end on? 
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1e-16  

0.01 (default)  

0.05  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.13. *Click on the following link to open a presentation of the causality map(s)9. 

There are hyperlinks to represent the sliders – you may interact with them if you wish 

to do so.  

This causality map consists of nodes that represent each of the variables in the group 

you identified in the previous causality map, and it should be used to trace the root 

cause to a specific variable. 

https://docs.google.com/presentation/d/e/2PACX-

1vSkgW4sk18hE5TIylMUTEjDP1R9kltd3DKXTyHihjGmXhktAurJfiC10p990jHMv4YL

1KXd50w7bjcj/pub?start=false&loop=false&delayms=3000  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.14. *Which variable is the root cause? 

LI-002  

FI-003  

LI-003  

LI-004  

FI-006  

I can’t decide between multiple variables.  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

Routed question: If participant indicates I can’t decide between multiple variables. 

3.15. Which variables can you not decide between? 

LI-002  

FI-003  

LI-003  

LI-004  

FI-006  

I can’t decide between multiple variables.  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

                                                 
9 Refer to Section H.2 of this appendix for the causality maps. 
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3.16. *Rank the extent to which the following features played a role in your decision-

making while identifying the root cause, with 1 indicating the largest role and 3 

indicating the smallest role.  

Node colour  

Edge weight  

Number of arrows pointing towards/away from node(s)  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.17. *Did you use the connections-slider for this causality map? 

Yes No 

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

Routed question: If participant indicates Yes 

3.18. *What value did you end on? 

1e-16  

0.01 (default)  

0.05  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.19. *Click on the following link to open a presentation of the causality map(s)10. 

There are hyperlinks to represent the sliders – you may interact with them if you wish 

to do so.  

 

This causality map consists of nodes that represent each of the variables in the group 

you identified in the previous causality map, and it should be used to trace the root 

cause to a specific variable. 

https://docs.google.com/presentation/d/e/2PACX-1vRrEm-kYKJOQQ-

M9BRnQj793NWitWNcXMdHVGjcjo-

M96R6HAZ030qVKWp6mx8w54W22DAYQMtocABB/pub?start=false&loop=false&del

ayms=3000  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.20. *Which variable is the root cause? 

LI-001  

LI-002  

LI-003  

LI-004  

FI-006  

                                                 
10 Refer to Section H.2 of this appendix for the causality maps. 
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I can’t decide between multiple variables.  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

Routed question: If participant indicates I can’t decide between multiple variables. 

3.21. Which variables can you not decide between? 

LI-001  

LI-002  

LI-003  

LI-004  

FI-006  

Routed question: If participant indicates G2 in 3.2 and 1 (default) in 3.5 

3.22. *Rank the extent to which the following features played a role in your decision-

making while identifying the root cause, with 1 indicating the largest role and 4 

indicating the smallest role.  

Node colour  

Edge weight  

Number of arrows pointing towards/away from node(s)  

--- PAGE BREAK --- 

BACKGROUND INFORMATION 

4.1.*Indicate which of the following is most applicable to you. 

Final-year/Postgraduate Chemical Engineering student at Stellenbosch 

University 
 

Employee of Anglo American Platinum 
 

Employee of an IoT company in the mineral processing industry in the Western 

Cape 

 

4.2.*Indicate your highest level of education 

National Senior Certificate (Matric) or equivalent 
 

Bachelor’s degree 
 

Master’s degree 
 

PhD 
 

4.3.*Have you had any experience with causality analysis prior to taking this survey? 

Yes, extensive 
 

Yes, limited 
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No  

4.4.*Do you think the base case approach (plant-wide causality map with transitive 

reduction) can be practically applied in industry to provide actionable insights? 

Motivate your answer. 

 

4.5.*Do you think the first hierarchical approach (variables grouped according to plant 

sections, with principal components as representatives) can be practically applied in 

industry to provide actionable insights? Motivate your answer. 

 

4.6.*Do you think the second hierarchical approach (Variables grouped according to 

modules in the data, with principal components as representatives) can be practically 

applied in industry to provide actionable insights? Motivate your answer. 

 

--- PAGE BREAK --- 

LUCKY DRAW 

5.1.If you wish to participate in a lucky draw to win a Woolworths voucher valued at R 

500, provide your email address below. Note that your email address will only be used 

to determine and contact the winner. 

 

H.2. Survey causality maps 

In the survey sent out to participants, the participants were directed to a PowerPoint 

presentation, where hyperlinks were used to represent the connections-slider and variables-

slider. This section provides all versions of the causality maps according to the sliders, 

corresponding to the question numbers in the questionnaire (see Section H.1 of this appendix). 

If the connections-slider or variables-slider does not have an effect on the causality map, the 

respective slider was not included for that specific causality map. 

H.2.1.  Causality maps in Question 1.1 
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Figure 49: Causality maps for question 1.1 in the questionnaire. Top row, Connections-slider. Bottom row, Variables-slider.
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H.2.2.  Causality maps in Question 2.1 

 

 

 

Figure 50: Causality maps for question 2.1 in the questionnaire.

Stellenbosch University https://scholar.sun.ac.za



APPENDIX H  

138 

 

H.2.3.  Causality map in Question 2.7 

 

Figure 51: Causality map for question 2.7 in the questionnaire 

H.2.4.  Causality map in Questions 2.11 and 2.15 

 

Figure 52: Causality map for questions 2.11 and 2.15 in the questionnaire
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H.2.5.  Causality maps in Question 31. 

 

 
 

 

Figure 53: Causality maps for question 3.1 in the questionnaire.
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H.2.6.  Causality maps in Questions 3.7 and 3.13 

   

Figure 54: Causality maps for question 3.7 in the questionnaire 

   

Figure 55: Causality maps for question 3.13 in the questionnaire 
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H.2.7.  Causality maps in Question 3.19 

 

Figure 56: Causality map for question 3.19 in the questionnaire 

H.3. Additional survey results 

H.3.1. Sliders results 
a b c  

  
 

 

Figure 57: Comparison of the number of AAP employees (4 participants) who did and did not use the 
sliders, and which map they used to make their final decision w.r.t. the root cause. For connections, 
‘mid-slider’ is the default. For variables, ‘most variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR. 

a b c  

  
 

 

Figure 58: Comparison of the number of employees of an IoT company in the mineral processing 
industry in the Western Cape (6 participants) who did and did not use the sliders, and which map 

they used to make their final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the 
default. For variables, ‘most variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR. 
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a b c  

  
 

 

Figure 59: Comparison of the number of final-year/postgraduate Chemical Engineering students at 
Stellenbosch University (10 participants) who did and did not use the sliders, and which map they 

used to make their final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the default. For 
variables, ‘most variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR.  

a b c  

  
 

 

Figure 60: Comparison of the number of participants with extensive prior experience with causality 
analysis (4 participants) who did and did not use the sliders, and which map they used to make their 

final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the default. For variables, ‘most 
variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR. 

a b c  

  
 

 

Figure 61: Comparison of the number of participants with limited prior experience with causality 
analysis (2 participants) who did and did not use the sliders, and which map they used to make their 

final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the default. For variables, ‘most 
variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR.
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a b c  

  
 

 

Figure 62: Comparison of the number of participants with no prior experience with causality 
analysis (14 participants) who did and did not use the sliders, and which map they used to make 
their final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the default. For variables, 

‘most variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR. 

a b c  

  
 

 

Figure 63: Comparison of the number of participants with a National Senior Certificate (Matric) or 
equivalent (2 participants) who did and did not use the sliders, and which map they used to make 
their final decision w.r.t. the root cause. For connections, ‘mid-slider’ is the default. For variables, 

‘most variables’ is the default. a. PS-PC1. b. Mod-PC1. c. TR. 

a b c  

  
 

 

Figure 64: Comparison of the number of participants with a Bachelor's degree (11 participants) who 
did and did not use the sliders, and which map they used to make their final decision w.r.t. the root 
cause. For connections, ‘mid-slider’ is the default. For variables, ‘most variables’ is the default. a. PS-

PC1. b. Mod-PC1. c. TR.
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a b c  

  
 

 

Figure 65: Comparison of the number of participants with a Master's degree (4 participants)  who 
did and did not use the sliders, and which map they used to make their final decision w.r.t. the root 
cause. For connections, ‘mid-slider’ is the default. For variables, ‘most variables’ is the default. a. PS-

PC1. b. Mod-PC1. c. TR. 

a b c  

  
 

 

Figure 66: Comparison of the number of participants with a PhD (3 participants) who did and did not 
use the sliders, and which map they used to make their final decision w.r.t. the root cause. For 

connections, ‘mid-slider’ is the default. For variables, ‘most variables’ is the default. a. PS-PC1. b. 
Mod-PC1. c. TR. 

H.3.2. Characteristics / tools ranking results  
a b 

 
c  

 

Figure 67: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of AAP employees (4 participants) while identifying a root cause from a causality map. 1 represents 
the largest role in decision-making, and 4 represents the smallest role in decision-making. a. PS-PC1. 

b. Mod-PC1. c. TR.
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a b 

 
c  

 

Figure 68: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of employees of an IoT company in the mineral processing industry in the Western Cape (6 

participants). 1 represents the largest role in decision-making, and 4 represents the smallest role in 
decision-making. a. PS-PC1. b. Mod-PC1. c. TR. 

a b 

 
c  

 

Figure 69: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of final-year/postgraduate Chemical Engineering students at Stellenbosch University (10 

participants). 1 represents the largest role in decision-making, and 4 represents the smallest role in 
decision-making. a. PS-PC1. b. Mod-PC1. c. TR.
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a b 

 
c  

 

Figure 70: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with extensive prior experience with causality analysis (4 participants). 1 represents 
the largest role in decision-making, and 4 represents the smallest role in decision-making. a. PS-PC1. 

b. Mod-PC1. c. TR. 

a b 

 
c  

 

Figure 71: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with limited prior experience with causality analysis (2 participants). 1 represents 

the largest role in decision-making, and 4 represents the smallest role in decision-making. a. PS-PC1. 
b. Mod-PC1. c. TR.
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a b 

 
c  

 

Figure 72: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with no prior experience with causality analysis (14 participants). 1 represents the 
largest role in decision-making, and 4 represents the smallest role in decision-making. a. PS-PC1. b. 

Mod-PC1. c. TR 

a b 

 
c  

 

Figure 73: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with a National Senior Certificate (Matric) or equivalent (2 participants). 1 

represents the largest role in decision-making, and 4 represents the smallest role in decision-making. 
a. PS-PC1. b. Mod-PC1. c. TR.
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a b 

 
c  

 

Figure 74: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with a  Bachelor's degree (11 participants). 1 represents the largest role in decision-

making, and 4 represents the smallest role in decision-making. a. PS-PC1. b. Mod-PC1. c. TR. 

a b 

 
c  

 

Figure 75: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with a Master's degree (4 participants). 1 represents the largest role in decision-

making, and 4 represents the smallest role in decision-making. a. PS-PC1. b. Mod-PC1. c. TR.
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a b 

 
c  

 

Figure 76: Rankings of the extent to which each characteristic/tools played a role in decision-making 
of participants with a PhD (3 participants). 1 represents the largest role in decision-making, and 4 

represents the smallest role in decision-making. a. PS-PC1. b. Mod-PC1. c. TR.
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H.3.3. Summary of thematic analysis results 

Table 16: Summary of the lines from participant responses grouped according to codes and subsequently the four themes. For each code, the participant 
lines are also separated according to whether they were in response to the question regarding TR, PS-PC1, or Mod-PC1. 

THEME 1: Process knowledge & CA experience 
Code Lines from participant responses 
Need process knowledge 
 

TR: 

 It would help if one was looking at the values for a process that you know well. 

The user would ideally need process knowledge. 

Having a background of the mineral processing plant further makes it easier to understand why a certain stage would be influenced by 
the previous stage as to compared to just looking at the causality map alone. 

If one knows the plant well it could be beneficial. 

The grouping by plant section is most understandable if you are an engineer on site and understand the processes. 

PS-PC1: 

If one knows the plant well it could be beneficial 

The grouping by plant section is most understandable if you are an engineer on site and understand the processes.  

Mod-PC1: 

If one knows the plant well it could be beneficial. 

If applied with plant and experience knowledge. Actual plant process knowledge to bring in a reality check. 

I will be reserved to do this as I believe a pure data driven causality map without any intrinsic process knowledge will lead to causal 
mistakes. 

Interpreting causality maps 
effectively requires prior 
experience/training 

TR: 

I don't think it would be practical unless the person has some prior experience with causality graphs. 

The user would ideally need process knowledge AND an understanding of causality maps in order to effectively use causality maps. 

With some extra experience or training the base case approach can be applied easily for a small plant set up 

PS-PC1: 

With some more experience, fault finding can go fairly quickly and provide good insights. 

Mod-PC1: 

I feel like some form of training / experience is needed on my part as it doesn't come as intuitively as the prior examples. 

Purely data-based approach 
avoids process knowledge 
subjectivity 

Mod-PC1: 

As the more data-based approach, it is less susceptible to subjective interpretation.  

I feel this method would be most applicable due to the objectivity that data modules would provide into the root cause interpretation as 
knowledge about the process will not bias the investigator's view. 
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THEME 2: Grouping variables 
Code Lines from participant responses 
Fewer nodes improve 
interpretability 

TR: 

Although some form of condensing the variable pool may be required for excessively large plants where more complex system 
interactions occur. For smaller plants the base case approach can be adequate, but once the variables start to become too high, it 
may become difficult to interpret. 

PS-PC1: 

 Fewer variables allows for easier interpretation. 

 The reduced causal map for a few variables is more manageable and understandable. 

Mod-PC1: 

The lesser number of dots also makes the interpretation simpler.  

Grouping according to plant 
sections makes sense 

PS-PC1: 

Grouping according to plant section made sense and remained stable. 

 Grouping by plant layout just seemed more intuitive. 

When group according to plant sections, a certain degree of plant knowledge is introduced. 

Grouping variables simplified 
root cause analysis 

PS-PC1: 

The idea of grouping variables will likely improve/simplify the root cause analysis workflow. 

Data-based modules can 
contain many variables 

Mod-PC1: 

The sheer number of variables in certain modules can make identifying problem sections challenging. 

Data-based grouping adds 
confusion to user 

Mod-PC1: 

Unable to comment. Not familiar with modularisation 

No, the groupings did not quite make sense 

Transitive reduction could be 
applied to plant-wide maps in 
the hierarchical approaches 

PS-PC1: 

This seems the most promising, but hopefully transitive reduction could make it even easier to use? 
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THEME 3: Accuracy during simplification 
Code Lines from participant responses 
Accuracy must be maintained during 
map simplification 

PS-PC1: 

Anything that simplifies the causality graphs is good (assuming it stays correct). 

PCA may lose necessary info PS-PC1: 

The PCA reduces the overall information content of a system, potentially suppressing propogation of certain variables' effects. 

 The first PC captures bulk of variation - some important information contributing to a variation may be lost in subsequent PCs. 

Uncertainty must be quantified TR, PS-PC1:, Mod-PC1: 

you need to quantify your uncertainty with regards to the edge weights, connection strengths, etc. This is going to allow you to 
make more informed decisions about where the root cause is comping from. You are using noise-corrupted data to infer 
connections and this can dilute the 'information' you are trying to deduce. Noise is a real problem and you need to find a 
principled way or addressing it. Your results might be more conclusive if you have use noise-free data, but this isn't a realistic 
assumption in practice. 

THEME 4: Sliders 
Code Lines from participant responses 
Maps changing with sliders causes 
confusion 

TR: 

Interpretation of the maps changes with your sliders - seems clear on one and less on another.  

The effect of changing the connection and variables could just add more confusion unless one has had a more experiance with 
the causality map. 

The fact that there were so many contradicting results dependent on the connections and variable sliders does raise cause for 
concern. 

There was already some confusion on my part on the connection sliders vs variable sliders. Depending on the value of the slider 
the apparent fault changes. 

There are too many things to consider as the two slider options create multiple permutations of possible settings. This makes it 
difficult to know which setting is the most representative of what is to be determined. 

PS-PC1: 

The single slider makes it easier to identify and interpret the consequences of changing slider values. This makes the 
interpretation of certain settings easier and more logical as there is not interaction between the sliders. 

Mod-PC1: 

The changing of groups of variables, depending on the value selected in the slider, made this even more complex. 

Having the groupings change with the slider just added more permutaions and the answer again felt like guess work. 

The connections and variables slider are counter-intuitive. 

 Rather than showing single plot with interactive selections; it is easier to show a matrix of plots - the user would not need to 
remember what happened in the previous selection in order to draw a conclusion. 

This approach was more confusing than the rest as variables changed according to how they are grouped.  
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