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SUMMARY 

Spatially-explicit crop type information is useful for estimating agricultural production areas. Such 

information is used for various monitoring and decision-making applications, including crop 

insurance, food supply-demand logistics, commodity market forecasting and environmental 

modelling. Traditional methods, such as ground surveys and agricultural censuses, involve high 

production costs and are often labour intensive, which limit their use for timely and accurate crop 

type data production. Remote sensing, however, offers a dependable, cost-effective and timely 

way of mapping crop types. Although remote sensing approaches – particularly using multi-

temporal techniques – have been successfully employed for producing crop type information, this 

information is mostly available post-harvest. Thus, researchers and decision-makers have to wait 

several months after harvest to have such information, which is usually too late for many 

applications.  

The availability and accessibility of imagery collected with optical sensors make such data 

preferable for mapping crop types. However, these sensors are subject to cloud-interference, which 

has been recognised as a source of error in the retrieval of surface parameters. It is therefore 

important to assess the strengths and weaknesses of using multi-temporal optical imagery for 

differentiating crop types. This study utilises Sentinel-2A and 2B imagery to perform several 

experiments in selected parts of the Western Cape, South Africa, to undertake this assessment. 

The first three experiments assessed the significance of image selection on the accuracies of crop 

type classification. A recommended number of Sentinel-2 images was selected, using two different 

methods. The first of the three experiments was conducted with uni-temporal images. Based on 

the performance rankings of the uni-temporal images, five images with the highest ranks were 

used to set up Experiment 2. The third experiment was undertaken with a handpicked set of five 

images, based on crop developmental stages. The two image selection methods were compared to 

each other and subsequently to the entire time-series, to determine the significance of selecting 

images for crop type mapping. These classifications were undertaken with several supervised 

machine learning classifiers and one parametric classifier. Results showed no significant 

difference in classification accuracies between the two image selection methods and the entire 

time-series. Overall, the support vector machine (SVM) and random forest (RF) algorithms 

outperformed all the other classifiers. 

The fourth experiment was undertaken by chronologically adding images to the classifiers. The 

progression of classification accuracies against time and the increase in the number of images were 

analysed to determine the earliest period (pre-harvest) when crops can be classified with sufficient 

Stellenbosch University https://scholar.sun.ac.za



 iv 

accuracies. The highest pre-harvest accuracy achieved was then compared to that obtained at the 

end of the season, including images acquired post-harvest, to assess the effectiveness of machine 

learning classifiers for classifying crop types when only pre-harvest images are used. The results 

of this experiment showed that machine learning classifiers can classify crops when only pre-

harvest images are used, with accuracies similar to those obtained when the entire time-series is 

used. Satisfactory classification accuracies were attainable as early as Aug/Sept (eight weeks 

before harvest). 

The fifth to tenth experiments were undertaken to assess the impact of cloud cover and image 

compositing on crop type classification accuracies. The fifth and sixth experiments were 

performed with non-composited images. Experiment Five (5) was undertaken with cloud-free 

images only, while the sixth experiment involved using all available images, including cloud-

contaminated observations. The seventh to tenth experiments were undertaken with monthly image 

composites computed using four different image compositing approaches. All these experiments 

were undertaken using several machine learning classifiers. The results showed that machine 

learning classifiers performed best when all images – including cloud-contaminated images – are 

used as input to the classifiers. Image compositing had a detrimental effect on classification 

accuracies. 

Generally, multi-temporal Sentinel-2 data hold great potential for operational crop type map 

production early in the season. However, more work is needed to develop simple workflows for 

eliminating cloud cover, particularly for crop type mapping in areas characterised by frequent 

overcast conditions.  

 

KEYWORDS 

Crop type classification, remote sensing, machine learning, pre-harvest, image selection, image 

compositing, operational, Sentinel-2. 

Stellenbosch University https://scholar.sun.ac.za



 v 

OPSOMMING 

 

Ruimtelik-eksplisiete gewastipe-inligting is nuttig vir die beraming van areas vir 

landbouproduksie. Hierdie inligting word gebruik vir verskeie moniterings- en 

besluitnemingstoepassings, insluitend gewasversekering, logistieke aangaande voedsel-vraag-en-

aanbod, die voorspelling van kommoditeitsmarkte en omgewingsmodellering. Tradisionele 

metodes soos grondopnames en landbousensusse betrek hoë produksiekostes en is dikwels 

arbeidsintensief, wat hul gebruik vir tydige en akkurate dataproduksie per gewastipe beperk. 

Afstandswaarneming, daarteenoor, bied ’n betroubare, koste-effektiewe en tydige manier om 

gewastipes te karteer. Hoewel afstandswaarnemingsbenaderings – veral deur middel van 

multitemporale tegnieke – al suksesvol ingespan is om gewastipe-inligting te produseer, is hierdie 

inligting meestal na die oes eers beskikbaar. Navorsers en besluitnemers moet dus tot etlike 

maande ná die oes wag om hierdie inligting te ontvang, wat gewoonlik te laat is vir baie 

toepassings. 

Die beskikbaarheid en toeganklikheid van beeldmateriaal wat deur middel van optiese sensors 

ingesamel is, maak hierdie data verkieslik vir die kartering van gewastipes. Hierdie sensors is egter 

onderhewig aan wolkinterferensie, wat erken is as ’n foutbron by die verkryging van 

oppervlakparameters. Dit is daarom belangrik om te assesseer wat die kragte en remminge is van 

die gebruik van multitemporale optiese beelde vir die differensiëring van gewastipes. Hierdie 

studie gebruik Sentinel-2A- en 2B-beelde om verskeie eksperimente uit te voer in gekose dele van 

die Wes-Kaap, Suid-Afrika, om hierdie assessering te onderneem.  

Die eerste drie eksperimente het die belangrikheid van beeldseleksie vir die akkuraathede van 

gewastipe-klassifikasie geassesseer. ’n Aanbevole aantal Sentinel-2-beelde is gekies deur twee 

verskillende metodes te gebruik. Die eerste van die drie eksperimente is uitgevoer met 

unitemporale beelde. Op grond van die prestasiegraderings van die unitemporale beelde is vyf 

beelde met die hoogste graderings gebruik om Eksperiment 2 op te stel. Die derde eksperiment is 

gedoen met ’n uitgesoekte stel van vyf beelde, gebaseer op stadiums van gewasontwikkeling. Die 

twee beeldseleksiemetodes is met mekaar vergelyk en gevolglik met die hele tydreeks, om te 

bepaal wat die betekenis daarvan is om beelde te kies vir gewastipe-kartering. Hierdie 

klassifikasies is onderneem met verskeie masjienlerende klassifiseerders en een parametriese 

klassifiseerder, onder toesig. Resultate het geen beduidende verskil in klassifikasie-akkuraathede 

gewys tussen die twee beeldseleksiemetodes en die algehele tydreeks nie. In die geheel het die 

steunvektormasjien- (SVM) en lukrake-woud- (“random forest”, RF) -algoritmes beter presteer as 

al die ander klassifiseerders. 
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Die vierde eksperiment is onderneem deur beelde chronologies by die klassifiseerders te voeg. Die 

progressie van klassifikasie-akkuraathede teenoor tyd en die toename in die aantal beelde is 

geanaliseer om die vroegste periode (voor-oes) te bepaal wanneer gewasse met voldoende 

akkuraathede geklassifiseer kan word. Die hoogste voor-oes-akkuraatheid is toe vergelyk met dit 

wat teen die end van die seisoen behaal is, insluitend beelde wat na-oes ingesamel is, om die 

doeltreffendheid van masjienlerende klassifiseerders te bepaal by die klassifisering van gewastipes 

wanneer slegs voor-oes-beelde gebruik is. Die resultate van hierdie eksperiment het gewys dat 

masjienlerende klassifiseerders gewasse kan klassifiseer wanneer slegs voor-oes-beelde gebruik 

is, met akkuraathede wat soortgelyk is aan dit wat behaal is wanneer die hele tydreeks gebruik is. 

Bevredigende klassifikasie-akkuraathede is so vroeg as Aug/Sep behaal (agt weke voor oes). 

Die vyfde tot tiende eksperimente is onderneem om die impak van wolkbedekking en 

beeldsamestelling op klassifikasie-akkuraathede van gewastipes te bepaal. Die vyfde en sesde 

eksperimente is met nie-saamgestelde beelde uitgevoer. Eksperiment Vyf (5) is slegs met 

wolkvrye beelde gedoen, terwyl die sesde eksperiment die gebruik van alle beskikbare beelde, 

insluitend wolkgekontamineerde observasies, betrek het. Die sewende tot tiende eksperimente is 

onderneem met maandelikse beeldsamestellings wat bereken is deur middel van die gebruik van 

vier verskillende benaderings tot beeldsamestelling. Al hierdie eksperimente is met behulp van 

verskeie masjienlerende klassifiseerders uitgevoer. Die resultate het gewys dat masjienlerende 

klassifiseerders die beste presteer het wanneer alle beelde – insluitend wolkgekontamineerde 

beelde – as invoer aan die klassifiseerders gebruik word. Beeldsamestelling het ’n nadelige 

uitwerking op klassifikasie-akkuraathede gehad. 

Oor die algemeen het multitemporale Sentinel-2-data vroeg in die seisoen goeie potensiaal vir 

operasionele gewastipe-kaartproduksie. Meer werk is nietemin nodig om eenvoudige werkvloei te 

ontwikkel om wolkbedekking te elimineer, veral vir gewastipe-kartering in areas wat gereeld 

gekenmerk word deur oortrokke toestande. 

 

TREFWOORDE 

Gewastipe-klassifikasie, afstandswaarneming, masjienlerende, voor-oes, beeldseleksie, 

beeldsamestelling, operasionele, Sentinel-2. 
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CHAPTER 1:  MULTI-TEMPORAL REMOTE SENSING OF CROP 

TYPES 

1.1 INTRODUCTION 

The agricultural industry plays a dominant role in the economies of many developing countries. 

According to the Department of Agriculture, Forestry and Fisheries (DAFF 2018), the South 

African agricultural industry provides more jobs per Rand than any other productive industry in 

the country. It accounts for about 3% of the gross domestic product and is responsible for ensuring 

food security. The role of agriculture in the South African economy and the need for sustainable 

management of natural resources call for the development of operational mapping and monitoring 

of agricultural areas (Matton et al. 2015). Crop type maps in particular provide baseline 

information for the effective management and monitoring of agricultural production and resources. 

These crop type maps are also used for agro-environmental measurements, as well as for 

monitoring crop water use (Peña-Barragán et al. 2011). The accurate and timely classification of 

crop types is, therefore, of axiomatic importance for agricultural management and monitoring 

(Branca et al. 2011).  

Traditional methods for updating crop type maps include qualitative interviews with farmers or in 

situ visits to selected fields (Peña-Barragán et al. 2008). These traditional methods are laborious, 

time-consuming and often limited to a few accessible fields (Gilbertson, Kemp & Van Niekerk 

2017). Remote sensing techniques have been used for mapping crop types, but as yet there is no 

publicly available method for producing spatially-explicit, within-season crop type maps at 

regional scales (Castillejo-González et al. 2009; Hao et al. 2015; Sun et al. 2016). Researchers and 

decision-makers often have to wait for four to six months after harvest to gain access to crop type 

data of a particular season. Crop type classification techniques have, however, advanced from the 

conventional remote sensing methods, which relied only on spectral features and low spatial and 

high temporal resolution imagery, to a combination of spectral, spatial and textural information 

derived from high spatial and temporal resolution multi-temporal imagery (Peña-Barragán et al. 

2011).  

1.1.1 Multispectral imagery for crop type mapping 

Several studies have been undertaken for mapping crop types using different types of remotely 

sensed imagery. This data includes hyperspectral, multispectral and synthetic aperture radar (Sun 

et al. 2016). Each of the aforementioned data types has distinguishing characteristics and specific 

limitations and advantages. For most multi-temporal crop type mapping applications, the choice 

of image data is governed by the availability of imagery for the chosen site, the environmental 
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conditions at the site, the temporal characteristics of crops and the cost of imagery 

(Balasubramanian 2017). Multispectral imagery has been found to be affordable and readily 

available and as such, have frequently been used for crop type mapping (Castillejo-González et al. 

2009; Löw & Duveiller 2014; Hao et al. 2015). Commonly used multispectral instruments in 

agricultural applications include the moderate-resolution imaging spectroradiometer (MODIS), 

the advanced very high-resolution radiometer (AVHRR) and Landsat 1-8 (Flood 2013; Kussul et 

al. 2017; Shelestov et al. 2017).  

The European Space Agency (ESA) recently embarked on the Sentinel-2 mission through which 

high spatial and temporal resolution imagery is easily accessible and freely available. Sentinel-2 

is a European earth polar satellite constellation based on the concurrent operation of two identical 

satellites orbiting in a single plane (Pahlevan et al. 2017). Each of the twin satellites hosts a 

multispectral instrument (MSI), covering a spectral range from visible to near- and shortwave 

infrared. The MSI measures reflected radiance in thirteen (13) spectral bands, including: blue, 

green, red and near-infrared (measured at 10 m spatial resolution); four (4) 20 m resolution 

vegetation red-edge bands for vegetation characterisation; two (2) wider shortwave infrared 

(SWIR) for vegetation moisture stress assessment and 60 m resolution coastal aerosol, shortwave 

infrared (cirrus) and water vapour bands, mainly for cloud screening and atmospheric corrections 

(Galoppo, Castellani & Carriero 2018). The 13 bands, their respective wavelengths and spatial 

resolutions are illustrated in Figure 1.1 

 
 

Figure 1.1  Sentinel-2 bands grouped according to their intended use, respective spatial resolutions 

and wavelength regions 

  

 

  Adapted from Gatti et al. (2018) 
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Several studies have shown the importance of phenological features, derived from optical sensors, 

for crop type identification (Nigam et al. 2015; Zhang et al. 2017). The red-edge and SWIR bands 

provided by satellites such as RapidEye (Eitel et al. 2007) have proven to be particularly useful 

(Sonobe et al. 2017). The four vegetation red-edge bands (Band 5 – vegetation red-edge, Band 6 

– vegetation red-edge, Band 7 – vegetation red-edge and Band 8a – narrow near-infrared) and two 

SWIR bands (Band 11 – SWIR and Band 12 – SWIR) with which Sentinel-2 imagery is collected, 

were specifically designed for the differentiation of vegetation (including crops) types and 

conditions and have been shown to be beneficial in applications such as urban green species 

mapping (Rosina & Kopecká 2016), for separating burned and unburned areas (Roteta et al. 2019) 

and for cropland mapping (Belgiu & Csillik 2018). These authors attributed the success of 

Sentinel-2 imagery to the sensitivity of the infrared, shortwave infrared, and red-edge bands to 

vegetation and soil moisture changes. The unprecedented combination of high spatial and temporal 

resolution and spectral range in a single satellite programme is considered a major step forward, 

compared to previous multispectral missions (Drusch et al. 2012).  

1.1.2 Image classification 

Since the emergence of remote sensing, different approaches involving supervised and 

unsupervised image classification methods have been developed (Nitze, Schulthess & Asche 

2012). Literature indicates that supervised classification methods are most commonly used for 

crop type mapping (Kussul et al. 2017; Ma et al. 2017; Massey et al. 2017; Sonobe et al. 2017 

Palchowdhuri et al. 2018). While many supervised classification methods have been developed 

and applied, Gilbertson, Kemp & Van Niekerk (2017) found non-parametric machine learning 

algorithms’ ability to use known data for classifying large sets of imagery – while incorporating 

ancillary spatial data – to be advantageous for crop type classification. Widely used machine 

learning algorithms include support vector machine (SVM), decision trees (DTs), k-nearest 

neighbour (k-NN) and random forest (RF).  

Recent studies (Zheng et al. 2015; Gilbertson, Kemp & Van Niekerk 2017; Cai et al. 2018; 

Teluguntla et al. 2018) highlighted the superiority of non-parametric machine learning algorithms 

over parametric classifiers such as maximum likelihood (ML). SVM’s ability to handle high input 

variable dimensionality and to generalise well, even with few training samples, affords it an 

advantage for crop type identification over many other classifiers (Myburgh & Van Niekerk 2013; 

Peña et al. 2014; Ozdarici-Ok, Ok & Schindler 2015). RF’s ability to perform well even with 

highly homogeneous, high-dimensional and redundant data, has led to its use in many agricultural 

mapping applications (Long et al. 2013). DTs, k-NN and ML have also been used successfully for 

land cover classification and vegetation studies (Myint et al. 2011). 
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Several studies have compared supervised classifiers for crop type mapping. For example, Peña et 

al. (2014) made a comparison between C4.5 decision tree, logistic regression, multilayer 

perception and SVM to classify nine crops with advanced spaceborne thermal emission and 

reflection radiometer (ASTER) imagery and reported SVM to outperform the other classifiers. 

Ozdarici-Ok, Ok & Schindler (2015) compared SVM, RF, ML and the Gaussian mixture model to 

classify six crops, using single-date multispectral imagery collected with three different sensors, 

and found SVM to be superior.  

1.1.3 Image selection 

Since multispectral imagery is affected by cloud cover, crop type mapping can be negatively 

affected by cloud-contamination even at a five-day revisit frequency (Inglada et al. 2016). One 

way of dealing with this limitation of multispectral imagery is to identify cloud-free images 

covering key periods in the crop growing cycle (Hao et al. 2015). Several authors found key 

periods, such as the initial green-up and late senescence phases, to be important for accurate crop 

classification (Brown et al. 2013; Hao et al. 2015). Hao et al. (2015) compared eight time-series 

lengths, ranging from one month to eight months, to determine the impact of time-series length on 

crop classification accuracies. They found that adding features beyond five months had no 

significant impact on classification accuracies. Peña-Barragán et al. (2011) selected three dates 

based on the pre-study of crop calendars to identify key growth stages (mid-spring, early-summer 

and late-summer), which were used to classify 13 summer crops. An overall accuracy of 79% was 

reported. Gilbertson, Kemp & Van Niekerk (2017) selected five images based on a crop calendar 

to classify seven crops and reported accuracies as high as 95%. 

1.1.4 Image compositing 

Despite the successes of image selection, Inglada et al. (2015) highlighted the need for using all 

available images for operational crop type mapping. They argued that, although the success of 

hand-selecting images is undeniable, it is not always feasible, especially in fully-automated 

workflows. Image compositing has been proposed as an alternative to image selection. The 

objective of compositing remotely sensed images is primarily to minimise contamination of the 

pure top-of-canopy signal (such as clouds and cloud shadow), as well as to reduce data volumes 

(White et al. 2014; Roberts, Mueller & Mcintyre 2017). Image compositing is achieved by 

aggregating image observations and replacing poor and cloud-contaminated data with good 

observations from imagery acquired within the stipulated compositing period (Lück & Van 

Niekerk 2016).  
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From the vast range of image compositing approaches developed, Vancutsem et al. (2007) 

compared the mean compositing (MC) approach with the maximum value normalised difference 

vegetation index (MaxNDVI) image compositing technique. They found the MC technique to 

retain more spatial consistency than the contending technique. The MC technique, initially 

proposed by Meyer, Verstraete & Pinty (1995), averages all reflectance values acquired during the 

compositing period. Conversely, Flood (2013) compared multidimensional median (MEDOID) 

and MaxNDVI’s abilities to produce seasonal composites and found the resulting composites of 

MEDOID to be more representative of the time-series than those produced with the MaxNDVI. 

The MEDOID approach was reported to be advantageous for cloud reduction because of its 

robustness against extreme values. Consequently, the resulting composites are more representative 

of the time-series (Flood 2013). Another widely employed compositing approach is the minimum 

red value (MinRed), proposed by D'Iorio (1991) and used by De Wasseige, Vancutsem & 

Defourny (2000) and Cabral et al. (2003). Luo, Trishchenko & Khlopenkov (2008) compared this 

approach to the MaxNDVI and MaxRatio approaches and reported that, although the MinRed was 

successful in eliminating clouds, it tends to retain shadow-contaminated pixels in the final 

composite. With the growing interest in operational crop type data production, it is necessary to 

identify simple image compositing approaches that are fully automatic and effective for crop type 

classification. 

1.2 PROBLEM STATEMENT 

Timely and accurate crop type maps are critical for crop production forecasts, which informs 

decisions about food security (e.g. commodity trading and imports planning). The value of crop 

type maps depends on how early in the growing season they can be produced. For its value to be 

enhanced, crop type data needs to be available as early as possible, ideally before harvest. Most 

crop type mapping procedures have, however, been focussing on producing crop type maps post-

harvest and users often have to wait four to six months after harvests for access to such data. With 

the shortening of crop rotations, multiple cropping and phenological patterns related to different 

crops, multi-temporal remote sensing offers a feasible and effective approach for producing pre-

harvest crop type maps (Atzberger 2013).  

The recent launches of two Sentinel-2 satellites provide a great opportunity for multi-temporal 

crop type mapping. But even with the improvements in spatial and temporal resolutions offered 

by this constellation, the presence of clouds remains a recognised challenge for crop type mapping 

(Ogunbadewa 2012). Image selection based on critical crop developmental stages and image 

compositing have been proposed as the two approaches for addressing cloud-contaminated images. 

However, even though image selection has proven effective for crop type mapping, it is not always 
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viable, especially when the objective is to develop an operational crop type data production system. 

In such systems, the use of all available images is often more feasible. This is because the selection 

of appropriate images requires a pre-study of crop calendars, and crop calendars vary from region 

to region. Seasonal variations caused by unusual weather conditions can also reduce their 

usefulness for image selection. Image compositing is an attractive alternative as it can be used to 

filter out poor-quality data (by combining images from different dates) but most compositing 

techniques involve elaborate pre-processing steps. The establishment of simple and easily-

automated image selection or compositing techniques suitable for crop type mapping is thus a 

priority. 

From the preceding discussion, it should be clear that Sentinel-2 imagery offers many 

opportunities for automated crop type mapping, but several knowledge gaps exist. The following 

research questions about the use of Sentinel-2 imagery for crop type mapping were specifically 

selected for consideration in this study: 

1) What is the influence of image (date) selection on crop classification accuracies? 

2) What levels of accuracy can machine learning classifiers achieve when only pre-harvest 

images are used as input for crop type classification? 

3) To what extent does image compositing affect crop classification accuracies? 

1.3 RESEARCH AIM AND OBJECTIVES 

The aim of the study was to determine the value of machine learning classifiers based on multi-

temporal Sentinel-2 data for discriminating crops grown in a Mediterranean climate in the Western 

Cape Province of South Africa. The significance of image selection and the value of multi-

temporal pre-harvest imagery based on machine learning classifiers will be determined and the 

impact of cloud cover and image compositing for crop type differentiation will be evaluated.  

To achieve the research aim, the following objectives have been set: 

1) conduct a review of literature on crop type mapping based on remote sensing techniques; 

2) determine the significance of image (date) selection for crop type classification; 

3) assess classifier performance when only pre-harvest images are used as input; and 

4) overview the impact of cloud cover and image compositing on crop type classification.  

1.4 STUDY AREAS 

This study was conducted in two areas covered by Sentinel-2 tiles T34HJB and T34HEH in the 

Western Cape Province of South Africa. For the purpose of this study, T34HJB and T34HEH will 
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be referred to as Study Sites A and B respectively (Figure 1.2). Site A is located about 50 km north 

of Cape Town, while Site B is located east of the Langeberg Mountain range and south of the 

Swartberg Mountain range. Both sites have a Mediterranean climate and are as such characterised 

by warm, dry summers and cool, wet winters (Malan 2016). Site A has an average annual rainfall 

of 550 mm, with an average minimum temperature of 11°C and an average maximum temperature 

of 22⁰ C (Tererai et al. 2015). Site B has an average rainfall of 800 mm, with an average minimum 

temperature of 7ºC and an average maximum temperature of 22ºC (Malan 2016). These sites were 

chosen owing to the diversity of crops cultivated and the availability of crop census data.  

 

Figure 1.2 Location of the study sites in the Western Cape, South Africa 

 

1.5 METHODOLGY AND RESEARCH AGENDA 

This study is quantitative in nature. Ten experiments were undertaken, using empirically derived 

datasets with non-parametric classifiers to investigate the value of various techniques and methods 

for discriminating crops within a Mediterranean climatic region. In some cases, qualitative 

methods were used to aid data editing, manipulation and interpretation. The outputs of the 

experiments were assessed using empirical in situ data, or the visual interpretation of satellite 

imagery. Statistical methods were used to assess the accuracy of classifications and to determine 

the significance of observed differences.  
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The dissertation is structured into five (5) chapters. Figure 1.3 shows the research design and 

structure of the thesis. This chapter (Chapter 1) lays the foundation for the rest of the thesis by 

outlining the research problem which led to the development of the aforementioned aim and 

objectives. The next chapter (Chapter 2) presents the literature review and provides an overview 

of remote sensing approaches used for crop type classification, with specific focus on the 

application of multispectral (optical) remote sensing approaches. This is followed by a description 

of image pre-processing and interpretation approaches, which precedes an overview of multi-

temporal remote sensing for crop type mapping. Chapter 3 and 4 respond to the objectives of the 

study and are presented as independent investigations to be submitted for publications in peer-

reviewed journals. Chapter 3 investigates the significance of image selection and the value of 

multi-temporal pre-harvest imagery based on machine learning classifiers for crop type mapping. 

Objectives 2 and 3 are addressed in Chapter 3 based on Experiments 1 – 4. 

The first experiment focused on uni-temporal (single image) classifications, which contributed 

towards answering Research Question 1. The main aim of Experiment 1 was to identify the five 

images (dates) within a particular growing season that produces the highest classification 

accuracies. The findings of this experiment were subsequently used to set up Experiment 2.  

Experiments 2 and 3 focused on classifying crops, using selected images. While Experiment 2 

used five images selected on the basis of the performance rankings determined in Experiment 1, 

the execution of Experiment 3 was based on the selection of five images representing significant 

developmental stages of crops (using crop calendars). Along with Experiment 1, both Experiments 

2 and 3 aimed to address research Question 1. The aim of these experiments was to compare the 

two approaches and assess their efficacy in differentiating crops. 

The fourth experiment was carried out with all available images collected during the growing 

season and thus addresses Research Question 2 (Objective 3). The experiment was set up by 

chronologically adding images collected from the beginning to the end of the season as input to 

the classifiers. The aim of the experiment was to assess the performance of machine learning 

classifiers when only images collected pre-harvest are used as input for crop differentiation, while 

monitoring the variations in classification accuracies as a function of time and the number of 

images. The design and results of these four experiments are given in Chapter 3. 

Chapter 4 responds to Objective 4, which assesses the influence of image compositing and cloud 

cover on crop type classification accuracies by carrying out Experiments 5, 6, 7, 8, 9 and 10. The 

fifth experiment was undertaken with cloud-free images only, while the sixth experiment was 

undertaken with all available images, whether they are contaminated by clouds or not. The seventh, 

eighth, ninth and tenth experiments were undertaken with composited images. In combination, 
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these six experiments addressed Research Question 3. In both Chapter 3 and 4, a brief overview 

of the pertinent concepts, as well as a description of the sites within which this study was 

conducted, are provided. Due to the intention to submit these two chapters as articles to respective 

scientific journals, some figures, tables and text are duplicated. The overall findings of the study 

are summarised in Chapter 5. The chapter also critically reflects on the study’s strengths and 

weaknesses and concludes with suggestions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Research design for evaluating the performances of machine learning and multi-

temporal Sentinel-2 imagery for crop type mapping. 

 

Chapter 1 
 Introduction  

• Multi-temporal crop type mapping 
 Problem formulation 

• Pre-harvest crop classification: Late release of 
crop data 

• Image selection: Not viable for operational crop 
type mapping 

• Image compositing: Cloud interference 
 Aim and Objectives 

•  Evaluate the performance of machine learning 
with pre-harvest images only 

•  Assess the significance of image selection for 
crop type classification 

•  Evaluate the effects of cloud cover and image 
compositing on crop classification OAS 

Chapter 2 
Literature review 

• Overview of remote sensing 
• Optical remote sensing for crop type mapping 

with specific focus on multitemporal approaches 

Data collection and processing 

• Collect and edit crop type reference data  
• Collect Sentinel-2 satellite imagery 
• Prepare satellite imagery 

Chapter 3 

 Image selection 
 Pre-Harvest crop type differentiation 

 
All classifications undertaken with SVM, RF, k-

NN, DT & ML classifiers. 

Chapter 4 

 Cloud cover impact (No compositing) 
 Image compositing impact on 

classification accuracies 
All classifications undertaken with SVM, RF, k-

NN, DT & ML classifiers. 

Accuracy assessment and significance testing 

Chapter 5: Synthesis  

• Reflect on the aim and objectives of the study 
• Summarize the main findings of the study 
• Opportunities for future research 

Accuracy assessment and significance testing 
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CHAPTER 2:  LITERATURE REVIEW 

Understanding remote sensing concepts related to crop type identification is vital for achieving the 

set aim and objectives of this study. This chapter presents a review of literature on the remote 

sensing of crop types, with an overview, followed by a brief outline of optical vs microwave 

remote sensing. The optical remote sensing of crop types is investigated, with specific focus on 

multi-temporal remote sensing. The chapter concludes by providing a synthesis of the most 

pertinent findings of the literature review. 

2.1 OVERVIEW OF REMOTE SENSING FOR CROP TYPE MAPPING 

Remote sensing is the acquisition of information about objects on the earth’s surface without direct 

contact, using aircraft and satellite sensors to record electromagnetic radiation (light) through one 

or more regions of the electromagnetic spectrum (ES) emitted and reflected from the earth’s 

surface (Campbell 2007; Muller 2017). Electromagnetic (EM) energy consists of two oscillating 

components, which are electric and magnetic fields, and is measured by its wavelength or 

frequency unit (Tempfli et al. 2009). While this energy is generated by all matter with a 

temperature above absolute zero (Tempfli et al. 2009), the sun is the primary source of energy and 

produces a full spectrum of electromagnetic radiation, known as the ES. The behaviour of EM 

energy changes as it passes through the atmosphere to interact with objects on the earth’s surface 

(Muller 2017). As each object on the earth’s surface uniquely interacts with EM energy, the levels 

of reflection and absorption of each object on the earth’s surface vary. Using remotely sensed data, 

changes in the behaviour of surface objects under different EM energy spectra can be recorded to 

provide an opportunity to extract knowledge on the varying characteristics of surface objects 

(Campbell 2007). The most relevant regions of the ES for remote sensing applications are 

described by Chuvieco & Huete (2010) as the visible (VIS), near-infrared (NIR), shortwave 

infrared (SWIR) and thermal infrared (TIR) regions, depending on the specifications of each task.  

The VIS region includes the blue, green and red regions of the spectrum with wavelengths ranging 

from 0.4 to 0.7 micrometres (μm), and is named after the energy that can be sensed by the human 

eye (Neinavaz et al. 2016). The NIR region is commonly known for its sensitivity to green 

vegetation and includes wavelengths between 0.7 and 1.2 μm (Tempfli et al. 2009). The SWIR 

region is delimited by 1.2 and 3 μm wavelengths and is known for its sensitivity to vegetation and 

soil moisture (Neinavaz et al. 2016). Wavelengths longer than 3 μm, such as TIR, are mostly 

associated with emissive electromagnetic radiation from the earth’s surface (Tempfli et al. 2009; 

Neinavaz et al. 2016). The microwave region (shortest wavelength) has properties similar to the 

thermal region. The longest wavelengths merge into radio wavelengths and are commonly used 
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for commercial broadcasts (Campbell 2007). The practicality of remote sensing depends on the 

ability of sensors to record energy in any of the wavelength regions of the electromagnetic 

spectrum where detectable differences in reflected and emitted radiation for specific objects are 

large enough to permit individual identification (Barrett 2013). Generally, remote sensors are 

classified as passive (optical) and active (microwave) sensors (De Jong & Van der Meer 2007). 

Common examples of optical sensors include MODIS, AVHRR LANDSAT and SPOT, while 

widely used microwave sensors include radio detection and ranging (RADAR) and light detection 

and ranging (LIDAR). The following section provides a brief overview of these two types of 

sensors.  

2.1.1 Optical (passive) vs. microwave (active) remotely sensed data 

Crop type mapping studies have been conducted using different types of remote sensors such as 

optical, microwave and, in some cases, a combination of optical and microwave remote sensors 

(Lohmann et al. 2009; Keifer 2014; Sonobe et al. 2014; Beyer, Jarmer & Siegmann 2015; Inglada 

et al. 2016). Optical sensors do not have their own source of radiation; they depend on radiation 

from natural sources such as the sun or energy emitted by earthly objects (De Jong & Van der 

Meer 2007). Therefore, optical sensors measure radiation that reaches a detector without the sensor 

first transmitting any energy (Turner et al. 2003). This dependence of optical sensors on natural 

energy limits their operation to daytime when there is a natural supply of energy (sun) (Gilbertson, 

Kemp & Van Niekerk 2017). Although data from optical sensors is affected by weather conditions, 

it is often cheaper and more readily available (Ozdarici-Ok, Ok & Schindler 2015; Inglada et al. 

2016). Examples of optical sensors include multispectral scanners and thermal scanners. 

Microwave sensors, on the other hand, have a built-in source of radiation (De Jong & Van der 

Meer 2007). Thus, microwave sensors emit their own energy and later measure the energy returned 

or bounced back to a detector (Muller 2017). The independence of microwave sensors from natural 

energy sources enable them to operate both during the day and at night. Although these sensors 

are able to acquire data at any time and are less affected by weather conditions, large amounts of 

energy are necessary to illuminate targets and they are susceptible to speckle noise (LaDue, 

Heinselman & Newman 2010; Grandoni 2018; Forkuor et al. 2014; Jiao et al. 2014; Joshi et al. 

2016; You, Jianjuan & Xin 2016). Consequently, optical sensors are often preferred for crop type 

mapping. The following section describes the different characteristics of optical remote sensing.  

2.1.2 Characteristics of optical imagery 

Each optical sensor is defined by a unique set of characteristics relative to its satellite system, 

which influences its value for specific remote sensing problems. These characteristics include 
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radiometric, spectral, spatial, and temporal resolution. Radiometric resolution relates to the 

satellite sensor's sensitivity and its ability to differentiate the variations recorded in the spectrum 

(Chuvieco & Huete 2010). Radiometric resolution directly relates to the number of grey levels 

within one band and is limited by the images’ bit number (Gibson 2000). Therefore, an increase 

in radiometric resolution will result in a higher number of grey levels within a band (Muller 2017). 

Spectral resolution relates to the number (and width) of sensor bands provided. This resolution 

directly relates to the sensor’s coverage of the electromagnetic spectrum. A larger spectral 

resolution results in a greater coverage of the electromagnetic spectrum, which enables a better 

recording of surface objects’ spectral characteristics. Spatial resolution refers to detail visibility in 

an image. For satellites, it is primarily determined by its instantaneous field of view (IFOV) and 

measured by metres on the ground (Chuvieco & Huete 2010; Gibson 2000). The spatial resolution 

of satellite images can range from a few centimetres to kilometres, depending on the satellite 

system. Temporal resolution measures the frequency at which a satellite system revisits a specific 

area. This resolution is determined by the satellite system’s orbital characteristics and its swath 

overlap (Chuvieco & Huete 2010).  

The different resolutions described above are usually interconnected, thus an increase in one may 

lead to a decrease in another (Chuvieco & Huete 2010). For example, satellite sensors that capture 

imagery at a high spatial resolution generally have low temporal and spectral resolutions. This is 

due to the combined effect of factors, inclusive of the IFOV, the satellite’s scan speed, the optics 

of the satellite, the sensor itself and download link speeds. The choice of a remote sensing data 

type depends on the requirements of a specific application and the budget available for the project. 

Both multispectral and hyperspectral sensors have been applied for crop type mapping (Bauer & 

Cipra 1973; Sabour, Lohmann & Soergel 2008; Liu, Ozdogan & Zhu 2013; Hao et al. 2015). While 

multispectral images only have a couple of spectral bands, hyperspectral images have hundreds of 

narrow bands in the visible, through the near-infrared to the shortwave infrared portions of the ES 

(Adam, Mutanga & Rugege 2010). Although hyperspectral data have been successfully applied 

for mapping crop types (Bannari et al. 2006; Govender, Chetty & Bulcock 2007; Pacheco & 

McNairn 2010), the data are not as readily available as multispectral imagery. Consequently, 

multispectral imagery has been extensively used for mapping crop types. A brief overview of the 

application of multispectral remote sensing for crop type mapping is provided in the following 

section. 

2.1.3 Multispectral imagery 

The ability to identify crop types makes it possible to estimate the area used for crop production 

which is necessary for computing crop statistics in turn needed to provide essential information 
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relevant for various applications (Shewalkar, Khobragade & Jajulwar 2014). Timely and accurate 

information about the spatial distribution of crops plays an important role in assessing the 

environmental impacts associated with the emergence of cropping practices (Shao et al. 2010). 

Changes in crop types, shortening of crop rotations, increased multiple cropping and strong 

seasonal patterns related to different crops make remote sensing a feasible and effective technology 

for mapping crop types (Heller et al. 2012; Atzberger 2013). Since the earliest stages of crop 

classification with remote sensing, various approaches based on supervised and unsupervised 

classification techniques have been used to map the spatial distribution of crops using data 

collected with optical remote sensors (Nellis, Price & Rundquist 2009).  

Multispectral remote sensing data can be acquired using two main platforms, namely airplanes and 

satellite-based sensors (Muller 2017). Multispectral sensors have a long history of application in 

crop monitoring (Hoffer, Johannsen & Baumgardner 1966; Bauer & Cipra 1973; Wardlow, Egbert 

& Kastens 2007; Zheng et al. 2015). Images acquired with multispectral remote sensing systems 

have the capability to represent various crop properties – the retrieval of these surface properties 

are used for crop classification. Multispectral remote sensing data, particularly those covering the 

VIS and NIR bandwidths have been used in vegetation studies, mainly because the energy reflected 

in these regions directly relates to plant structure, plant pigmentation, as well as leaf and canopy 

moisture (McNairn et al. 2009).  

Different band ratios, image transformations and texture information derived from various remote 

sensing datasets have been applied to crop type mapping with different image classification 

approaches, depending on the cropping patterns, geographical regions and field sizes (Nellis, Price 

& Rundquist 2009; Yang et al. 2015; Sun et al. 2016). For example, Peña-Barragán et al. (2011) 

used a set of vegetation indices and textural features derived from ASTER-imagery in combination 

with crop calendars to differentiate crop types, and found that vegetation indices contributed 90% 

to their models, while texture features were mainly useful for differentiating non-perennial crops 

when the optical data in question was used. Gilbertson & Van Niekerk (2017) compared the 

performance of several machine learning classifiers for classifying crop types using different 

datasets such as spectral bands, vegetation indices, image transformations (principal component 

analysis), textural features and a combination of all the features derived from Landsat-8 imagery. 

They found that, although principal component analysis outperformed all the scenarios, the 

difference in OA was only marginal when compared to what was achieved with combining all the 

features.  

It is clear from the abovementioned studies that multispectral sensors provide the most cost-

effective way of classifying crop types from a wide range of freely available sources (Wardlow, 
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Egbert & Kastens 2007; Sonobe et al. 2017; Sonobe et al. 2018). Common multispectral 

instruments used in agricultural applications include MODIS, Satellite Pour l'Observation de la 

Terre (SPOT), and Landsat. ESA recently embarked on a high spatial and temporal resolution 

Sentinel-2 mission, which is easily accessible and freely available. Sentinel-2 satellites provide 

improved spatial, spectral, radiometric, and temporal resolution imagery in comparison to the 

conventionally used satellite sensors (Galoppo, Castellani & Carriero 2018). With the undeniable 

significance of phenological features extracted from multispectral remote sensing imagery for crop 

type mapping, the high temporal resolution (5-day revisit frequency) offered by Sentinel-2 data 

provides a great opportunity for multi-temporal crop classification approaches, particularly given 

the sensor’s high spatial resolution (10 m). Sentinel-2 sensors record data in 13 spectral bands, 

which includes two shortwave infrared bands and four red-edge bands, increasing the potential of 

these sensors for crop type mapping (Sonobe et al. 2017). 

2.2 IMAGE PROCESSING 

Sensor characteristics (e.g. spatial, spectral, temporal and radiometric resolutions) affect a 

system’s ability to provide useful information about the subject of interest. In addition, satellite 

images are often negatively affected by radiometric, geometric and atmospheric distortions and 

consequently have to undergo a thorough pre-processing phase before it can be used for 

interpretation and analysis. To improve classification accuracies, the spectral information captured 

in an image can be modified to emphasize specific features through a procedure called image 

transformation (Campbell & Wynne 2011; Gilbertson 2017). Image transformations applied to 

pre-processed imagery have shown to improve the accuracy of remote sensing classifications (Lu 

& Weng 2007). Therefore, in addition to spectral bands, several image transformations such as 

spectral indices, image texture, principal component analysis (PCA) and tasselled cap 

transformation (TCT) are often used to classify remotely sensed imagery.    

2.2.1 Pre-processing 

Pre-processing refers to operations/processes undertaken to correct distorted or degraded data 

(Campbell 2007). Geometric correction is undertaken to correct errors caused by factors such as 

oblique viewing, relief displacement and displacement effects resulting from the rotation of the 

earth, as well as the satellite’s scanning speed (Chuvieco & Huete 2010; Muller 2017). These 

errors can be corrected through the manipulation of digital numbers to adjust the image’s 

projection until it matches a specific surface projection or shape (Barrett 2013). Due to variations 

in scene illumination and viewing geometry, atmospheric conditions and sensor noise and 

response, radiometric corrections may be necessary (De Jong & Van der Meer 2006). Radiometric 
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effects can be compensated for by sensor-specific calibration coefficient values, which are applied 

in a mathematical model for rectification (Muller 2017). In cases where images from different 

seasons are compared, the seasonal earth-sun elevation differences need to be accounted for. This 

rectification process normalises the pixel brightness values, assuming the sun was at the zenith on 

each date of image sensing (Lillesand, Kiefer & Chipman 2004). 

When EM energy moves through the atmosphere, it interacts with particles and molecules, which 

may degrade the quality of the signal measured by the sensor and reduce the contrast of the image 

(Tempfli et al. 2009). For quantitative analyses, it is important to reduce these atmospheric effects 

and convert the digital numbers in the raw image to units such as absolute radiance or percentage 

surface reflectance. This conversion is essential when image data needs to be compared to ground 

measurements, or when imagery of different sensors acquired at different times needs to be 

compared to one another (Muller 2017). Each of these corrections varies, depending on the specific 

sensor and platform used to acquire the data, as well as the conditions under which the data are 

acquired (De Jong & Van der Meer 2006). In some cases, image providers apply some pre-

processing operations and provide the data in a ready-to-use format (De Jong & Van der Meer 

2006). 

2.2.2 Transformations 

Image transformation is the process where spectral information in an image is transformed or 

modified to emphasize specific features (Campbell & Wynne 2011). This is usually done with 

local or neighbourhood raster operators with the intention to visually enhance images and improve 

image classification (Campbell 2007). Image transformations improve image classification by 

reducing data dimensionality, emphasizing the variation between features, and reducing noise. 

Popular image transformations include indices, principal component analysis and texture measures 

(Heinl et al. 2009). These image transformations are used in addition to spectral bands to improve 

classification results (Myburgh 2012). The following section outlines some of the image 

transformations reported in the literature as being useful for crop type mapping. 

2.2.2.1 Textural features 

Texture is one of the most important features used in crop type mapping (Balasubramanian 2017). 

Texture features provide information about the spatial distribution of the intensity values within 

an image, the contrast, uniformity, rugosity, as well as regularity (Ruiz et al. 2011). A variety of 

quantitative texture measures have been developed and evaluated for crop type classification (Akar 

& Güngör 2015; Aguilar et al. 2015). Customarily, texture features are computed based on a pixel 

neighbourhood within an image. The most commonly used set of texture features was proposed 
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by Haralick & Shanmugam (1973). This includes 14 Gray-Level Co-Occurrence Matrix (GLCM) 

features (angular second moment, contrast, correlation, variance, inverse difference moment, sum 

average, sum variance, sum entropy, entropy, difference variance, difference entropy, information 

measures of correlation, maximal correlation coefficient dissimilarity). While Akar & Güngör 

(2015) used all 14 GLCM features to classify tea and hazelnut plantations, only a few of the GLCM 

texture features are commonly used for vegetation studies (Balaguer et al. 2010; Peña-Barragán et 

al. 2011; Schmedtmann & Campagnolo 2015).  

Schmedtmann & Campagnolo (2015) used eight GLCM features for crop type classification 

(homogeneity, contrast, dissimilarity, entropy, angular 2nd moment, matrix mean, matrix SD and 

correlation), while Balaguer et al. (2010) used seven GLCM features, excluding the matrix mean. 

Peña-Barragán et al. (2011) also assessed the eight GLCM features for crop type classification and 

reported that only three (homogeneity, dissimilarity and entropy) are useful. The three texture 

features identified as optimal for crop type classification was later used by Peña et al. (2014) and 

Aguilar et al. (2015) for the classification of horticultural crops using multi-temporal Landsat-8 

and Worldview-2 data, and they were found to be effective for crop type classification. 

2.2.2.2 Vegetation indices 

Solar irradiance varies with time and atmospheric conditions. This makes the simple measuring of 

light reflected from a surface insufficient for characterising that surface in a repeatable manner. 

One way of dealing with this limitation is combining data from several spectral bands to form what 

is widely known as a vegetation index (VI) (Jackson & Huete 1991). A vegetation index is defined 

as an algebraic construction based on the relationship between spectral bands (Crippen 1990). The 

most commonly used VIs are derivatives of data from discrete green, red and NIR bands recorded 

by most earth observation satellite sensors (Elvidge & Chen 1995). They can be calculated by 

ratioing, differencing, ratioing differences and sums, as well as through the formation of linear 

combinations of spectral band data. For example, red EM energy is strongly absorbed and the near-

infrared EM energy strongly reflected by growing vegetation. The ratio of the red and near-infrared 

bands is thus expected to provide a useful indication of the growth vigour of a vegetation scene.  

Generally, vegetation indices are generated to minimise solar irradiance and soil background 

effects while enhancing the vegetation signal (Jackson & Huete 1991; Basso, Cammarano & De 

Vita 2004); they are designed in a way that enables them to find a functional relationship between 

crop characteristics and remote sensing observations (Balasubramanian 2017). Their sensitivity to 

vegetation parameters makes them critical for vegetation studies (Basso, Cammarano & De Vita 

2004). While a host of VIs have been developed and applied in vegetation studies, the most popular 

VIs include the aerosol free vegetation index (AFRI), atmospherically resistant vegetation index 
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(ARVI), enhanced vegetation index (EVI), green normalised difference vegetation index 

(GNDVI), infrared percentage vegetation index (IPVI), normalised difference vegetation index 

(NDVI), normalised difference moisture index (NDMI), ratio vegetation index (RVI) and soil-

adjusted vegetation index (SAVI).  

Most of the abovementioned VIs have been tested for crop type classification. Wardlow, Egbert 

& Kastens (2007) investigated the applicability of EVI and NDVI time-series data for crop-related 

land use and land cover classification. They found both indices to demonstrate similar seasonal 

responses to the crops considered, with the ability to separate most of the crop types. Satir & 

Berberoglu (2016) used NDVI, SAVI, perpendicular vegetation index (PVI), normalised 

difference water index (NDWI) and green vegetation index (GVI) for crop growth dynamics. 

NDVI was selected for its sensitivity to chlorophyll content, SAVI for its sensitivity to plant green 

cover and chlorophyll content, PVI for plant chlorophyll content, NDWI for water content and 

GVI for plant green structure. Although most VIs focus on the red and NIR regions of the spectrum 

where there is a strong increase in the reflectance of most plants, a few sensors, such as RapidEye 

and Sentinel-2, have additional red-edge bands between the red and near-infrared parts of the 

spectrum. Several studies demonstrated the potential of information extracted from these bands 

for vegetation studies (Ramoelo et al. 2012; Schuster, Förster & Kleinschmit 2012; Eitel et al. 

2011). The next section gives an overview of the various VIs commonly applied to crop type 

mapping. 

NDVI 

It is clear that green plants absorb and reflect energy differentially in the visible and near-infrared 

regions of the spectrum. Rouse (1974) used the difference in the near-infrared and red reflectance 

values normalised over the sum of these values to develop the NDVI. The NDVI is expressed as: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Equation 2.1 

 

Where NDVI is the normalised difference vegetation index; 

 NIR is the near-infrared image band; and  

 RED is the red image band. 

The correlation of the NDVI with vegetation parameters such as biomass, green leaf area, 

photosynthetic activity, amongst others, makes it popular in vegetation studies (Peña-Barragán et 

al. 2011; Zheng et al. 2015; Massey et al. 2017). Although NDVI has been successfully used 

(Singh et al. 2017; Skakun et al. 2017), its sensitivity to light reflected from the soil background 
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exposed in-between crops and the loss of sensitivity in densely vegetated areas limit its 

applicability (Wardlow & Egbert 2008). 

SAVI 

SAVI was developed in an attempt to account for the limitations encountered with NDVI (Huete 

1988). This includes minimising soil brightness influences, which are mostly prevalent in partially 

vegetated canopies (Huete, Liu & Van Leeuwen 1997). In plants that are photosynthetically active, 

the red extinction through the canopy will be higher than that of the NIR, resulting in more energy 

being reflected off the canopy background relative to the red. This secondary signal cannot be 

resolved with simple ratioing, necessitating a background correction L (Huete, Liu & Van 

Leeuwen 1997). Huete (1988) developed SAVI by adjusting the NIR-red wavelength space origin 

to various isoline convergence points, which is equivalent to adding a constant L to the NIR-red 

reflectance data. To maintain the bounded conditions of the NDVI which must remain between -1 

and 1, a multiplication factor (1+L) is needed. This is expressed in the formula presented in 

Equation 2.2. 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
× (1 + 𝐿) 

Equation 2.2 

 

Where SAVI is soil-adjusted vegetation index; 

 NIR is the near-infrared image band;  

 RED is the red image band; and 

 L is the relative soil constant. 

According to Huete, Justice & Liu (1994), an L factor of 0 is sufficient for use when the soil 

brightness is minimal in the area of interest, thus in areas with less exposed soil backgrounds. With 

an L factor of 0.5, able to reduce soil brightness variation while eliminating the need for further 

calibrations, SAVI has been used in conjunction with other vegetation indices for crop type 

classification (Foerster et al. 2012). 

ARVI 

Following the limitation of NDVI under atmospheric influences, Kaufman & Tanre (1992) 

developed the ARVI to minimise atmospheric-induced variations. This index is based on the fact 

that red radiance is more affected by atmospheric influences than NIR radiance and thus utilises 

the difference in radiance between the blue and red bands to modify the radiation value of the red 

band. ARVI is expressed as:  
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𝐴𝑅𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
−

𝑦(𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸)

𝑦(𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸)
 

Equation 2.3 

 

 

Where 

 

ARVI 

 

is the atmospherically resistant vegetation index; 

 NIR is the near-infrared image band;  

 RED is the maximum score; 

 BLUE is the blue image band; and 

 Y is the weighting function. 

The y is a weighting function for the difference in reflectance between the two bands, serving as 

an indicator of the atmospheric conditions. While different values can be chosen for γ, depending 

on the type and size of the aerosol, Kaufman & Tanre (1992) suggested 1 as the most appropriate 

value, especially when the type of aerosol is unknown. 

EVI 

Another widely used vegetation index is EVI, which is an optimised index for the enhancement of 

the vegetation signal. EVI provides improved sensitivity especially in high biomass regions, while 

reducing soil and atmospheric influences (Jiang et al. 2008). EVI also improves the linearity with 

vegetation biophysical parameters (Houborg, Soegaard & Boegh 2007). Furthermore, it has strong 

linear relations and synchronizes well with seasonal photosynthesis measurements in terms of 

phase and amplitude, without any saturation even in densely vegetated regions (Xiao et al. 2005). 

Wardlow, Egbert & Kastens (2007) noted that while NDVI saturates at the peak of the growing 

season over cropland, EVI exhibited more sensitivity during this development stage. EVI is given 

by the formula below: 

𝐸𝑉𝐼 = 𝐺
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1𝑅𝐸𝐷 − 𝐶2𝐵𝐿𝑈𝐸 + 𝐿
 

Equation 2.4 

 

Where EVI is the enhanced vegetation index; 

 G is the gain factor;  

 NIR  is the near-infrared image band; 

 RED is the red image band; 

 BLUE is the blue image band;  

 C1 is the first aerosol resistant coefficient; 

 C2 is the second aerosol resistant coefficient; and 

 L is a canopy background adjustment factor. 

Both C1 and C2 coefficients use the blue band to correct for aerosol influences in the red band. L 

serves as the soil-adjustment factor as in SAVI (Equation 2.2), but its value varies from the L in 
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SAVI. This is attributed to the interaction and feedback between the soil-adjustment factor and the 

aerosol resistance term (Liu & Huete 1995). Jiang et al. (2008) suggested L=1, C1=6, C2=7.5, and 

G=2.5 to be the most appropriate for the MODIS EVI algorithm. EVI has been used in many 

different applications, including land use/land cover change detection, vegetation biophysical 

parameter estimation and crop type identification (Wardlow, Egbert & Kastens 2007; Houborg, 

Soegaard & Boegh 2007; Sims et al. 2008; Zhong et al. 2016; Gilbertson, Kemp & Van Niekerk 

2017). 

AFRI 

The resilience of the shortwave infrared wavelength to aerosol effects and atmospheric gasses, 

coupled with its sensitivity to vegetation, is the basis upon which the AFRI was developed. This 

is due to the wavelength of shortwave infrared being much larger than the radius of most aerosols, 

giving it the ability to bypass suspended particles in the atmosphere. Consequently, AFRI is able 

to produce a realistic vegetation condition image (Karnieli et al. 2001). AFRI is given by: 

𝐴𝐹𝑅𝐼 = 𝑁𝐼𝑅 − 0.66
𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 0.66(𝑆𝑊𝐼𝑅)
 

Equation 2.5 

 

Where AFRI is the aerosol free vegetation index; 

 NIR is the near-infrared image band;  

 0.66 is the empirical linear relationship factor; and 

 SWIR is the shortwave infrared image band. 

The 0.66 value is based on the empirical linear relationship between the red and shortwave infrared 

bands. Thus, AFRI uses the shortwave infrared band to replace the red band based on the empirical 

linear relationship (0.66), taking full advantage of the shortwave infrared band’s ability to 

penetrate atmospheric aerosol influences, while remaining sensitive to vegetation (Zhong et al. 

2016). 

GNDVI 

The NDVI is sensitive to low chlorophyll concentrations, thus the absorbed photosynthetically 

active solar radiation (Yoder & Waring 1994) is not sensitive to higher chlorophyll concentrations 

or large vegetation coverage photosynthesis rates (Gitelson, Kaufman & Merzlyak 1996). The 

GNDVI was developed to account for this limitation. Because the green band has a near-linear 

relationship with chlorophyll content, this band was used instead of the red band of the NDVI in 

the development of the GNDVI. GNDVI is given by: 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 Equation 2.6 
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Where GNDVI is the green normalised difference vegetation index; 

 NIR is the near-infrared image band; and 

 GREEN is the green image band. 

This index has been reported to be more sensitive to the concentration of chlorophyll than NDVI 

and has been used in several vegetation studies (Hunt et al. 2011; Ghosh & Behera 2018; Muhd-

Ekhzarizal et al. 2018; Ranjan et al. 2019). 

IPVI 

The IPVI measures the percentage of near-infrared radiance in relation to the combined radiance 

of both the near-infrared and red bands. IPVI differs from NDVI in that it eliminates the subtraction 

of the red radiance and, as such, it ranges between 0 and 1 (Crippen 1990). IPVI is expressed as: 

𝐼𝑃𝑉𝐼 =
𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Equation 2.7 

 

Where IPVI is the infrared percentage vegetation index; 

 NIR is the near-infrared image band; and 

 RED is the red image band. 

Although IPVI is similar to NDVI, it is less complex. Considering the strengths and limitations of 

the various indices explained above, most researchers use multiple VIs together for improved 

results (Palchowdhuri et al. 2018; Sonobe et al. 2018; Sun et al. 2019). Many other VIs have been 

developed and used for crop type mapping – for an incisive description of more VIs, the reader is 

referred to Gilbertson (2017). 

2.2.2.3 Statistical manipulations 

With the increasing dimensionality (e.g. number of bands and transformations) in remote sensing 

datasets, there is a need to devise methods for dimensionality reduction in an interpretable manner, 

while preserving the quality of the dataset as much as possible (Jolliffe & Cadima 2016). While 

various methods have been developed for this purpose, principal component analysis (PCA) 

decorrelates redundant information by concentrating the information of interest into specific 

principal components. PCA is a multivariate statistical method that selects uncorrelated linear 

combinations of variables in an n-dimensional space. This is done in a way that each successively 

extracted linear combination (principal component) has a smaller variance (Almeida & Filho 

2004). This makes PCA one of the most commonly used data reduction and feature extraction 

methods (Cruz-Cárdenas et al. 2014). The approximate contribution of each variable to each 
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principal component calculated can be roughly estimated by examining the eigenvectors of the 

original variables (Loughlin 1991).  

Cruz-Cárdenas et al. (2014) used PCA for agricultural crop classification and found that it handles 

sparse data well, while generating fewer and improved association rules. By deriving the 

uncorrelated linearly transformed components from the original data, the first principal component 

has been found to account for most of the variance of the original data set. The subsequent 

components account for the maximum proportion of the unexplained residual variance. Stellacci 

et al. (2012) applied PCA to hyperspectral data for investigating plant responses and status. They 

found that the first principal component of the visible region explained over 95% of the total 

variance, while in the red-edge and infrared regions, the first two principal components together 

explained about 81% of the total variance. It is clear from these findings that the first few principal 

components are the most useful for vegetation studies. Based on a scree test, Gilbertson, Kemp & 

Van Niekerk (2017) found that the first four principal components computed from ten Landsat-8 

image bands explained most of the total variance and were the most useful for crop type mapping. 

This corresponds to findings by Stellacci et al. (2012). 

Similar to PCA, tassel cap transformation (TCT) is a method used to compress spectral data from 

an optical sensor into a few bands related to a scene’s physical characteristics with minimal 

information loss (Huang et al. 2002). TCT was originally developed by Kauth & Thomas (1976) 

for Landsat MSS but has been adapted to other sensors, such as MODIS (Lobser & Cohen 2007), 

owing to its value for discovering vegetation patterns using different combinations of bands. 

Therefore, since TCT was originally developed for Landsat MSS, the coefficients used need to be 

adjusted to befit the later sensors, such as Sentinel-2. 

2.2.3 Classification 

Image classification is defined as the process of assigning and grouping image pixels or objects 

with specific characteristics into specified informational classes (Campbell 2007). There are three 

commonly used image classification approaches, namely: unsupervised, supervised and 

knowledge-based (Gilbertson, Kemp & Van Niekerk 2017).  

2.2.3.1 Unsupervised image classification 

Unsupervised image classification is the identification of natural groupings of pixels within 

multidimensional feature space (Campbell 2007). The natural groupings are commonly known as 

spectral classes (Campbell 2007). Once these spectral classes have been determined, the user 

assigns each class to a more meaningful or appropriate informational class (Mather 2004). 

Although unsupervised classifiers require no prior knowledge of the objects to be classified, the 
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interpreter is responsible for specifying the number of expected spectral classes and assigning 

informational classes to each spectral cluster (Oyekola & Adewuyi 2018). Examples of 

unsupervised classifiers include Euclidean and Mahalanobis distance (Mather & Magaly 2011), 

with the most common being the iterative self-organizing data algorithm (ISODATA) classifier 

(Muller 2017). Thanks to its limited user involvement requirements, unsupervised image 

classification is quick and relatively easy to implement (Gao 2009) and is consequently frequently 

employed for land cover classifications (Nolin & Payne 2007; Lang et al. 2008; Rozenstein & 

Karnieli 2011; Oyekola & Adewuyi 2018). 

2.2.3.2 Supervised image classification 

Supervised classification involves the labelling of pixels/objects with unknown identity using 

pixels/objects with known identity, called training data (Campbell 2007). The success of 

supervised classification depends on the user’s prior knowledge of the study area. This 

classification approach grants the user more control over the informational classes, compared to 

unsupervised classification. Supervised classifiers can be categorized into two groups, namely: 

parametric (statistical) and non-parametric (machine learning) algorithms. Parametric classifiers 

require training data to be normally distributed, as they depend on statistical measures such as 

mean, standard deviation, and probability to perform properly (Mather 2004). Non-parametric 

classifiers often incorporate artificial intelligence into the learning process, and iteratively learn 

how to classify images (Campbell & Wynne 2011). Consequently, non-parametric classifiers are 

considered to be more robust and tend to perform better than traditional classifiers (Myburgh 2012; 

Gilbertson, Kemp & Van Niekerk 2017). This section thus focuses on the latter type of classifiers. 

Non-parametric machine learning algorithms use known data to classify large sets of unknown 

data, while incorporating ancillary and spatial data (Breiman 2001). In contrast to statistical 

approaches such as minimum distance (MD), ML and parallel-piped, the ability of these algorithms 

to handle input variables that are not normally distributed (Al-Doski, Mansorl & Shafri 2013), 

makes them effective for combining nominal, ordinal, ratio, and interval data into classification 

tasks (Gilbertson, Kemp & Van Niekerk 2017). They have also been reported to be robust under 

conditions of high dimensionality (Zheng et al. 2015). The most common machine learning image 

classification algorithms are RF, decision trees (DTs), SVM, and k-NN.  

DTs recursively split training data into homogeneous subdivisions based on a statistical test 

(Chuvieco & Huete 2010). With every split, logical rules with the capacity to mimic the statistical 

divisions are inferred, resulting in a hierarchical ruleset capable of classifying an image. The 

developed set of rules allows for easy interpretation and flexibility (De Colstoun et al. 2003; 

Myburgh & Van Niekerk 2013). Pal & Mather (2003) reported DT to be computationally fast and 
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able to handle datasets represented on different measurement scales. The pruning of DTs makes 

them smaller and easier to interpret. However, this classifier has been reported to perform poorly 

under conditions of high dimensionality (Pal & Mather 2003). According to Prasad, Iverson & 

Liaw (2006), DTs are also sensitive to minor changes in training data and have been reported to 

be unstable, which could lead to overfitting. Duro, Franklin & Dubé (2012) compared DT, RF and 

SVM for agricultural landscape classification using SPOT-5 imagery with both pixel- and object-

based approaches and found that DT produced satisfactory results, although its performance was 

inferior to SVM and RF with both approaches. When compared with ML and artificial neural 

networks (ANN), Pal & Mather (2003) reported DT to be superior when high-dimensional data 

was used.   

RF is an ensemble DT classification method (Rodriguez-Galiano et al. 2012). It uses bootstrapping 

with replacement to enhance the diversity of DTs, which allocates each pixel to a class, based on 

the maximum number of votes from the collection of trees (Rodriguez-Galiano et al. 2012). RF 

can be viewed as an advanced version of the bagging algorithm (Breiman 2001), although the 

former differs from RF in that it splits each tree node using the best split among all variables. In 

contrast, RF splits each tree node using the best among a subset of predictors randomly chosen at 

that tree node, thereby creating a new dataset from the original dataset. A tree is then grown using 

random feature selection without pruning the grown trees (Breiman 2001; Archer & Kimes, 2008). 

RF has some advantages over other classifiers in that it is faster compared to statistical classifiers, 

robust against overfitting compared to classifiers such as DT, and permits the formation of as many 

trees as the user wants (Breiman et al. 1984). Watts & Lawrence (2008) applied RF to Landsat 

imagery within the object-based image analysis paradigm to map agricultural areas and found it to 

be very effective, with OAs exceeding 82%.  Jay et al. (2009) used RF to classify complex and 

homogeneous plant groups, with overall accuracies exceeding 85%. Akar & Güngör (2012) 

compared RF with ML to classify six different crop types with SPOT-5 images and found RF to 

be superior, with an overall accuracy difference of 8%.  

Another popular non-parametric classifier is SVM (Vapnik 1995), which is based on statistical 

learning theory and risk reduction (Zheng et al. 2015). This classifier relies on the identification 

of the optimal separating hyperplane, which ensures a maximum margin between the hyperplane 

and the nearest training samples (support vectors) for each class in feature space (Myburg & Van 

Niekerk 2013). SVM uses a kernel function to resolve optimisation problems in high-dimensional 

spaces and accounts for data that cannot be linearly separated (Mountrakis, Im & Ogole 2011). 

The selection of an appropriate kernel function and kernel parameters is, however, application-

specific and may have a significant impact on classification results. Some of the advantages of 
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SVM include performing well with limited training data (Shao & Lunetta 2012), robustness to 

high dimensionality, and overall superior classification accuracies compared to other non-

parametric classifiers (Gilbertson, Kemp & Van Niekerk 2017). Nitze, Schulthess & Asche (2012) 

compared SVM, RF, ANN and ML for crop type classification and found SVM to be superior in 

terms of overall classification accuracies and robustness. Mathur & Foody (2008) applied SVM to 

SPOT HVR data to classify agricultural crops. They used data with mixed spectral responses to 

assess the difference in the performance of SVM and found that it was able to perform equally 

well with the unconventional data (92%) as it did with the conventional data (90.7%).  

K-NN uses the k-NN rule to assign an unknown sample to the class that occurs most frequently 

among its k-nearest neighbours in feature space (Myburgh & Van Niekerk 2013). Nearest 

neighbour (NN) is an implementation of k-NN, with the variable k being set to 1. Both k-NN and 

NN classifiers offer simplicity over other more complex classifiers (Campbell 2007). One of the 

shortcomings of k-NN is its dependence on the selection of k; which has been reported to be 

difficult to set (Prasad, Iverson & Liaw 2006). Furthermore, pooling nearest neighbours from 

training data that might contain overlapping classes may in some cases be unsuitable. K-NN is 

also susceptible to the curse of dimensionality as the distance metric plays a major role in the 

performance of the classifier (Samaniego & Schulz 2009). Thanh Noi & Kappas (2018) compared 

k-NN, SVM and RF, using Sentinel-2 for land use/cover classification and reported overall 

accuracies between 90–95% across all classification results. Gilbertson, Kemp & Van Niekerk 

(2017) compared k-NN, DT, SVM and RF with Landsat imagery for crop type identification and 

recorded overall accuracies between 77–94%. 

Although non-parametric classifiers have proven to perform better than statistical classifiers, ML 

remains one of the most employed statistical classifiers in remote sensing (Waske et al. 2010; 

Stephenson 2010). The ML classifier has been the algorithm of choice for many applications (Pal 

& Mather 2003; Chen et al. 2018; Esetlili et al. 2018; Nigam et al. 2019). ML is dependent on 

estimates of the mean vector and the variance-covariance matrix, which are used to determine class 

probabilities for unknown samples and for assigning samples to classes with the highest probability 

(Myburgh & Van Niekerk 2013). ML is often used as a benchmark when evaluating classifiers 

(Stephenson 2010; Szuster, Chen & Borger 2011). Some of the recorded shortcomings of ML 

include its sensitivity to the quality of training data (Campbell 2007) and the assumption that the 

data is normally distributed. 

2.2.3.3 Knowledge-based image classification 

Knowledge-based image classification uses the expert systems approach to classify data. Expert 

systems are in essence computer systems that emulate human decision-making by taking a 
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predefined set of rules into consideration (Campbell & Wynne 2011). This approach is becoming 

increasingly attractive due to its ability to accommodate multiple sources of data. For example, 

ancillary data such as elevation, slope, and aspect can be used to develop rules in relation to 

vegetation distribution in mountainous regions (Hodgson et al. 2003). Thus, expert systems use 

relationships between variables in a classification procedure to improve classification accuracies. 

Nangendo, Skidmore & Van Oosten (2007) illustrated how incorporating expert rules significantly 

increased classification accuracy for mapping East African tropical forests in Uganda. Cohen & 

Shoshany (2002) compared a knowledge-based approach to unsupervised classification for crop 

recognition in central Israel and found that the former approach returned superior results. Although 

knowledge-based approaches have been found effective for vegetation mapping, Gumbricht, 

McCarthy & Mahlander (1996) demonstrated that creating a usable ruleset is time-consuming 

(Liu, Skidmore & Van Oosten 2002).  

2.2.4 Accuracy assessment 

Although accuracy assessment was important even with traditional remote sensing techniques, the 

complexity of digital classification increases the need to assess the reliability of the results 

(Congalton 1991). An error matrix, which is a square array of numbers set out in columns and 

rows, expressing the number of sample units assigned to a specific class relative to the actual class 

as corroborated on the ground, has been the most common method of assessing the accuracy of 

remote sensing results (Janssen & Vanderwel 1994; Congalton & Green 2002; Gilbertson 2017). 

In the error matrix, the rows represent the classification generated from remote sensing data, while 

the columns represent the reference data (Story & Congalton 1986).  

The error matrix is used as a starting point for a series of descriptive and analytical statistical 

techniques. The two most commonly used statistics are overall accuracy (OA) and Kappa 

coefficient (K). OA is generated by dividing the total correct instances (pixels or objects) by the 

total number of instances. OA is easy to interpret because the percentage of classified 

pixels/objects corresponds to errors of commission and omission (Congalton & Green 2008). K, 

on the other hand, measures how well a classifier performed compared to how well a random 

classification would have performed and is therefore used to assess the statistical difference 

between classifications (Foody 2002). 

Accuracies of individual classes can be generated in a similar manner by computing the producer’s 

accuracy (PA) and user’s accuracy (UA). PA is achieved by dividing the number of correct 

pixels/objects in that class by either the total number of pixels/objects in the corresponding row or 

the corresponding column. This measure indicates the probability of a reference pixel being 

correctly classified and is also called the error of omission. On the other hand, if the total number 
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of correct pixels/objects in a class is divided by the total number of pixels/objects that were 

classified in that class, the result is known as the UA, or error of commission. UA indicates the 

probability of a pixel/object classified on the map/image actually representing that class on the 

ground (Story & Congalton 1986). 

2.3 MULTI-TEMPORAL IMAGERY FOR CROP TYPE MAPPING 

The success of optical imagery for crop type mapping has been coupled with multi-temporal 

techniques (Salehi, Daneshfar & Davidson 2017). As early as the 1970’s, Bauer & Cipra (1973) 

used single-date Earth resources technology satellite (ERTS MSS) data to identify major crop 

types and suggested that the use of multi-temporal data can improve classification performance as 

the spectral characteristics of vegetation change over time, depending on phenology, atmospheric 

conditions and illumination conditions (De Carvalho et al. 2004). The ability to acquire images 

throughout the growing season enables the recording of subtle differences and changes in 

absorption and reflectance spectra, making the temporal dimension of remotely sensed data the 

most useful for identifying crop types (Liu, Ozdogan & Zhu 2013). The varying surface properties 

and growth process (phenology) of crops directly influence the reflected signal and it is on this 

basis that the multi-temporal classification techniques are used to identify crop types (Del Frate, 

Ferrazzoli & Schiavon 2003; Karjalainen, Kaartinen & Hyyppä 2008; Sabour, Lohmann & Soergel 

2008).  

Multi-temporal approaches for crop type classification include creating a time-series profile of 

vegetation indices, texture measures, image transformations, etc. (Murakami et al. 2001; Ippoliti‐

Ramilo, Epiphanio & Shimabukuro 2003; Hao et al. 2015; Gilbertson, Kemp & Van Niekerk 2017) 

or analysing imagery as a multi-date stack (Oetter et al. 2001; Murthy, Raju & Badrinath 2003; 

Xiao et al. 2005; Biggs et al. 2006; Xavier et al. 2006). The success of multi-temporal approaches 

for crop type classification has been reported to be greatly dependent on the availability of multi-

temporal imagery (cloud-free) with high spatial resolution (Broge & Mortensen 2002; 

Doraiswamy et al. 2005). However, with most existing satellite sensors, high spatial resolution 

comes at the expense of reduced temporal resolution. For example, readily available satellite 

sensors such as MODIS collect data at a coarse spatial resolution of 250 m to 1 km with a daily 

revisit time (Maccherone & Frazier, 2010). Liu, Ozdogan & Zhu (2013) used images with varying 

resolutions to assess the contribution of both temporal and spatial resolutions to crop type 

classification accuracies and reported that the incorporation of high temporal frequency and low 

spatial resolution images into the classification process improved accuracies by up to 20%, even 

if few or no high-resolution images are available. They further found this boost in accuracy to be 

comparable to what can be achieved when an additional high spatial resolution image is added to 
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a low spatial resolution temporal stack. To investigate the significance of both temporal and spatial 

resolutions, Keifer (2014) used multi-temporal MODIS imagery to classify agricultural crops and 

found that, while the use of high temporal frequency and coarse spatial resolution data was 

successful in separating croplands from non-croplands, it was not as successful in identifying 

individual crops. According to Ozdogan & Woodcock (2006), the limited success of high temporal 

and coarse spatial resolution data for crop type identification is because medium to high spatial 

resolutions are required to resolve individual fields (Inglada et al. 2015).  

The launch of satellite constellations such as Sentinel-2 bridged the gap between temporal and 

spatial resolution by providing data with relatively high spatial and temporal resolution when 

compared to traditional sources of imagery (e.g. Landsat). But even with the unprecedented 

improvement in both the spatial and temporal resolution of Sentinel-2, data availability is still 

negatively affected by cloud cover (Kussul et al. 2015). While it may sometimes be possible to 

acquire cloud-free images covering critical crop development stages in a growing cycle (Hao et al. 

2015; Gilbertson, Kemp & Van Niekerk 2017), it is not always a viable option, particularly when 

the intention is to develop an automated crop type mapping system (Inglada et al. 2016). Image 

compositing is one of the most prominent and common approaches to dealing with cloud-

contamination. The next section provides an overview of image compositing and commonly used 

techniques, as well as image selection approaches for reducing the effects of clouds, with specific 

focus on crop type mapping.  

2.3.1 Image compositing 

The presence of clouds in imagery has been recognised as a source of error in the retrieval of many 

surface parameters using multispectral data (Kussul et al. 2015; Sun et al. 2017). One solution is 

to filter out cloud-contamination by combining images from different dates, using image 

compositing (Athick & Naqvi 2016). Image compositing is basically the aggregation of image 

observations within a stipulated time-frame and the replacement of poor quality observations with 

good-quality observations (Lück & Van Niekerk 2016). The objective of compositing is to 

minimise all factors (clouds and cloud shadow, atmospheric variations, view angle effects, and 

soil background variations) disturbing the pure top-of-canopy (TOC) signal at a certain 

observation geometry (Sun et al. 2016). It is further applied to reduce the size of large datasets of 

satellite imagery, with often redundant or contaminated observations, into single datasets of 

uncontaminated and valid data (Hagolle et al. 2004). Such techniques have traditionally been used 

with low spatial and high temporal resolution images such as those captured by MODIS and 

AVHRR (Qi 1993), but it has recently gained popularity with higher spatial resolution imagery, 

mainly due to the rich archive of historical imagery that has been made available by space agencies. 
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For example, Roy, Kucukural & Zhang (2010) applied image compositing on Landsat imagery to 

produce cloud-free images. Lück & Van Niekerk (2016) noted that, due to spectral differences 

among the different compositing periods, the consideration of phenological characteristics 

between different compositing periods in the time-series is crucial for the accurate classification 

of vegetation. Although there is no consensus on the best image compositing techniques for crop 

type mapping, a number of compositing techniques have been developed with the aim of retaining 

as much information as possible (Dennison, Roberts & Peterson 2007). The following section 

evaluates some of the common compositing techniques. 

Based on the literature, the maximum value composite (MVC) – also known as the MaxNDVI – 

seems to be the most popular multi-temporal image compositing method. MaxNDVI is computed 

by selecting the observations in an image with the maximum NDVI value in the time-series 

(Holben 1986). This approach is based on the assumption that a higher NDVI value indicates a 

lower cloud fraction (Fraser, Massom & Michael 2009). Although MaxNDVI has been reported 

successful for vegetation monitoring (Kasischke et al. 1993; Diwakar et al. 1989; Potter & Brooks 

2000; Du et al. 2001; Peters et al. 2002), there are some defects associated with this technique. 

Holben (1986) reported that MaxNDVI does not completely solve the problem of cloud-

contamination and can be unstable in areas with medium- to low-density vegetation cover. Qi 

(1993) found that the dependence of MaxNDVI on NDVI may result in discrepancies in the final 

composite, due to the vulnerability of the NDVI to soil background variations and atmospheric 

effects (Roy, Kucukural & Zhang 2010). Attempts to resolve these issues included, amongst 

others, using SAVI (Huete 1988) and ARVI (Kaufman & Tanre 1992), instead of the NDVI. 

However, both modifications failed due to the coupled effects of soil background and atmospheric 

effects. Thus, while MaxNDVI may be useful for applications such as forestry (Kross et al. 2011; 

Maxwell & Sylvester 2012), it is not always a viable option in areas with low vegetation cover. 

An alternative to MaxNDVI is the MinRed compositing procedure, proposed by D'Iorio (1991) 

and used by De Wasseige et al. (2000) and Cabral et al. (2003). MinRed was compared with 

MaxNDVI and maximum ratio (MaxRatio) by Luo, Trishchenko & Khlopenkov (2008), who 

found that, although the MinRed was successful in eliminating clouds, it is biased towards cloud 

shadows and retained the shadow-contaminated pixels in the final composite. Their findings 

agreed with those of Holben (1986) and Qi (1993), who observed that MaxNDVI was able to 

eliminate both clouds and shadows when the targeted areas are completely vegetated, but suffered 

from soil interferences when surfaces are partially vegetated. Cihlar, Manak & Voisin (1994) 

evaluated five image compositing approaches, including MaxNDVI, maximum apparent 

temperature (MAT), maximum difference of different channels (MDC), maximum temperature 
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(MaxT) and minimum scan angle (MSA) for producing image composites from AVHRR imagery, 

with the intention to obtain image composites that approximated a single-date image with a 

constant, near-nadir geometry. The authors concluded that none of the five methods yielded 

composites that consistently resembled the nadir image, even for reasonably long compositing 

periods. They attributed the failure of these methods to insufficient correction for bidirectional 

effects. Lück & Van Niekerk (2016) compared several compositing techniques on high-resolution 

Landsat-5 thematic mapper (TM) and Landsat-7 enhanced thematic mapper plus (ETM+) imagery. 

They found that MaxRatio performed better than the MinRed and MaxNDVI, while the MinRed 

produced the least accurate results. 

According to Vancutsem et al. (2007), although the aforementioned approaches minimise the 

artefacts encountered with the MaxNDVI method, selecting a single extreme value, such as a 

minimum or maximum, often favours specific atmospheric and geometric conditions, which may 

cause spatial inconsistencies in the composites. Moreover, single value selection criteria use a 

small part of the available information, even when several observations are cloud-free. To account 

for some of these shortcomings, Vancutsem et al. (2007) proposed the MC approach, which was 

later used by Hüttich et al. (2011). This approach was proposed as an alternative to the single 

extreme value approaches, such as the minimum or maximum values. The MC approach averages 

all the reflectance values acquired within a stipulated compositing period to create a new image.  

Another alternative to the extreme value compositing is the use of a median value. Brems, Lissens 

& Veroustraete (2000) developed and used the median composite of fuzzy multispectral estimate 

(MC-FUME) method to create ten-day composites of SPOT vegetation imagery. MC-FUME 

involves two steps (Brems, Lissens & Veroustraete 2000). The first step involves an approximate 

bidirectional reflectance distribution function correction, while the median of the estimated TOC 

reflectance values is calculated in the second step. This approach was reported by Brems, Lissens 

& Veroustraete (2000) and Lissens, Veroustraete & Van Rensbergen (2000) to be superior to the 

classic MaxNDVI approach. The success of using the median value of several spectral reflectance 

values was validated by Flood (2013), who employed a multidimensional analogue of the median 

(MEDOID) method for selecting representative observations. They defined the MEDOID as a 

“measure of centre” of a multivariate set of points, similar in nature to the median of a univariate 

dataset. This method requires the images to be corrected for atmospheric and bidirectional 

reflectance distribution function (BRDF) effects. They reported the insensitivity of this approach 

to outliers to be an advantage, especially when the purpose of the compositing is to reduce the 

impact of clouds, given that outliers still occur even after atmospheric and BRDF corrections and 
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cloud/shadow masking. The authors argued that using the mean of all observations is more 

sensitive to outliers and is thus less effective for image compositing. 

In addition to the image compositing approach employed, the compositing period plays an 

important role in the outcome of the final composite (Loveland et al. 2000). According to Pouliot 

et al. (2011), the appropriate compositing period for imagery with a 24-hours temporal resolution 

is 6–8 days. The compositing period, however, depends on the intended application. For detecting 

plant developmental stages, 10–14 day averaged composites are more suitable. Loveland et al. 

(2000) consolidated 10–day image composites into monthly composites to reduce data volume and 

improve data quality. They showed that data quality can be increased by using longer compositing 

periods (monthly) because this increases both the likelihood of cloud-free coverage and overall 

data completeness. This is particularly important when using data with longer revisit frequencies 

in areas affected by frequent cloud cover. Hüttich et al. (2011) used MODIS time-series data to 

assess the effects of temporal compositing lengths by testing varying compositing lengths for land 

cover mapping. They found that monthly composites created by re-compositing 10-day composites 

produced the most accurate results. Most compositing periods range between 16 days and three 

months, but Friedl et al. (2010) reported that monthly composites are generally more effective. 

This observation corresponds with those of Townshend & Justice (1986) and Tucker et al. (1985). 

The next section looks into image selection as an alternative approach to image compositing for 

reducing the effects of clouds on remotely sensed data. 

2.3.2 Image selection 

Another way of dealing with cloud-contaminated observations is to select cloud-free images 

covering key periods in the growing cycles of crops (Hao et al. 2015). Several authors found 

selecting images at key periods, such as the initial green-up and late senescence phases of crop 

types, to be sufficient for accurate crop type classification (Brown et al. 2013; Hao et al. 2015). 

Sabour, Lohmann & Soergel (2008) suggested that image selection based on a crop calendar is 

beneficial and generally gives more accurate results than using all images covering a growing 

season. This is because some fields are covered by different types of crops during the year 

(Lohmann et al. 2009). Simonneaux et al. (2008) found that eight selected Landsat TM images 

representative of crop developmental stages were effective in identifying four main crop types 

using a decision tree classifier. Peña-Barragán et al. (2011) selected three images corresponding 

to major phases in the growing season to differentiate crop types and achieved classification 

accuracies exceeding 75%.  

Hao et al. (2015) assessed the impact of time-series length on crop type classification accuracies. 

They compared eight time-series lengths, ranging from one month to eight months, and found that 
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adding features past five months had no significant impact on classification accuracies. They 

suggested that five months of images are most effective for classifying crop types. This agrees 

with Gilbertson, Kemp & Van Niekerk (2017), who used five images representing different key 

periods in the growing season and reported high accuracies (> 90%) in mapping selected crop 

types. Schmedtmann & Campagnolo (2015) also selected five images and reported accuracies 

exceeding 80%. 

Although most studies agree on the benefits of selecting optimal dates for crop type classification, 

it is not always possible or practical to do so. For example, Inglada et al. (2016) proposed an 

automated crop type map production system and used all available images to circumvent 

cumbersome manual image selection procedures. 

2.4 SUMMARY 

The literature review revealed that, although remote sensing has been successfully employed for 

crop type classification, more research is necessary to transition from experimental work to 

operational crop type classification systems. The selection and use of images representing optimal 

stages in the growing circle was identified as an effective way of utilising multi-temporal data for 

crop type classification, while minimising the impact of clouds. While this approach has been 

successful in classifying crops, it is not viable for operational crop type production, since it requires 

a thorough analysis of relevant crop calendars, which can vary considerably from one region to 

another. For operational crop type mapping production systems it would, therefore, be beneficial 

to determine the value of selecting optimal dates against using all available images. The latter 

approach would be much easier to automate. An alternative to image selection is image 

compositing, which can minimise the effect of clouds. Although several compositing approaches 

have been developed, it is not clear to what extent their use will improve classification accuracies.  

Early crop type detection is critical for yield forecasting, food security predictions and commodity 

trading. However, crop acreage estimations are usually carried out very late in the season – in 

many cases during or after harvesting has been completed. The recent improvements in the spatio-

temporal resolutions offered by imagery such as Sentinel-2 provide new opportunities for 

generating crop type maps earlier in the season. There is thus a need for the development of 

accurate and cost-effective methods for operational crop type map production. 

The next chapter (Chapter 3) focuses on the pre-harvest classification of crop types; while the 

following chapter (Chapter 4) investigates the value of image compositing. In both cases, machine 

learning and Sentinel-2 imagery are employed. Chapter 3 was submitted as a scientific article to 
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Computers and Electronics in Agriculture and is currently in review, while Chapter 4 is in 

preparation for submission.  
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CHAPTER 3:  PRE-HARVEST CLASSIFICATION OF CROP TYPES 

USING A SENTINEL-2 TIME-SERIES AND MACHINE LEARNING 

3.1 ABSTRACT 

Timely crop type information (preferably before harvest) is useful for predicting food surpluses or 

shortages. This study assesses the performance of several machine learning classifiers, namely: 

support vector machine (SVM), decision tree (DT), k-nearest neighbour (k-NN), random forest 

(RF) and maximum likelihood (ML) for crop type mapping based on a series of Sentinel-2 images. 

Four experiments with different combinations of image sets were carried out. The first three 

experiments were undertaken with 1) single-date (uni-temporal) images; 2) combinations of five 

images selected from the best-performing single-date images and 3) five images manually selected, 

based on crop developmental stages. The fourth experiment involved the chronologic addition of 

images to assess the performance of the classifiers when only pre-harvest images are used, with 

the purpose of investigating how early in the season reasonable accuracies can be achieved. The 

experiments were carried out in two different sites in the Western Cape Province of South Africa 

to provide a good representation of the grain-producing areas in the region, which has a 

Mediterranean climate. The significance of image selection on classification accuracies was 

evaluated, as well as the performance of machine learning classifiers when only pre-harvest images 

are used. The classification results were analysed by comparing overall accuracies and kappa 

coefficients, while McNemar’s test and analysis of variance (ANOVA) were used to assess the 

statistical significance of the differences in accuracies among experiments. The results show that 

by selecting images based on individual performance, a viable alternative to selecting images 

based on crop developmental stages is offered, and that the classification of crops with an entire 

time-series can be just as accurate as when they are classified with a subset of hand-selected 

images. We also found that good classification accuracies (77.2%) can be obtained with the use of 

SVM and RF as early as eight weeks before harvest. This result shows that pre-harvest images 

have the potential to identify crops accurately, which holds much potential for operational within-

season crop type mapping. 

3.2 INTRODUCTION 

The need to produce more food for the growing global population, as well as increasing biofuel 

production put continuing pressure on limited agricultural resources (Inglada et al. 2016). 

Consequently, most agricultural systems around the world are being intensified, which makes 

agricultural practices highly dynamic as new technologies are implemented to ensure that food 

supply meets demand. Intensive and dynamic agricultural systems require innovative, timely, 
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objective and cost-effective methods for effective monitoring and management. Crop type 

information is particularly useful for monitoring and managing the sustainability of agricultural 

resources. Such information is also useful for generating crop statistics, which aid decision-making 

regarding subsidy payments and the calibration of crop models (Peña-Barragán et al. 2011). Crop 

type information further provides a basis from which to make economic forecasts, such as the 

estimated contribution (and impact) of agricultural activities to the gross domestic product (GDP) 

(McNairn et al. 2014; Siachalou, Mallinis & Tsakiri-Strati 2015; Immitzer, Vuolo & Atzberger 

2016). Also, major food security programmes such as food aid, strategic food reserves, import and 

export licensing for private firms and distribution through social security programmes depend on 

crop production forecasts derived from crop type information (Jayne & Rashid 2010; Foley et al. 

2011). 

According to Peña et al. (2014), traditional methods for producing crop type maps require multiple 

sources of information, for example, ground and aerial surveys. These methods are tedious, 

laborious and costly and are reported to produce inconsistent results (Gilbertson, Kemp & Van 

Niekerk 2017). In addition, they can be biased as they may often rely on a small number of 

observations made at easily accessible sampling sites (Peña-Barragán et al. 2008). The use of 

remote sensing and freely available satellite imagery is a viable alternative as it enables cost-

effective mapping and continuous monitoring of crop fields across large areas (Peña et al. 2014). 

During the past two decades, remote sensing methods have been developed for discriminating crop 

types using different types of remotely sensed data (Mingwei et al. 2008). This includes radio 

detection and ranging (RADAR) data, which is beneficial because of its ability to penetrate clouds, 

thus eliminating the problem of cloud-contamination (Forkuor et al. 2014; Jiao et al. 2014; Joshi 

et al. 2016). However, RADAR data has been shown to have issues with low-resolutions and high 

levels of noise and is expensive (LaDue, Heinselman & Newman 2010; Grandoni 2018; You, 

Jianjuan & Xin 2016). Hyperspectral imagery has also been used for crop discrimination but is 

often unavailable or prohibitively expensive to acquire (Delegido et al. 2010; Thenkabail et al. 

2013). Limitations associated with RADAR and hyperspectral data led to the adoption of low 

spatial but high temporal resolution multispectral data, with MODIS and AVHRR being the most 

exploited datasets for crop type classifications (Mingwei et al. 2008; Liu, Ozdogan & Zhu 2013; 

Hao et al. 2015; Zheng et al. 2015). 

Liu, Ozdogan & Zhu (2013) argued that the ability of remote sensors to acquire multiple images 

during a growing season is the main reason data provided by optical sensors has become the most 

popular data for crop type differentiation (Conrad et al. 2010; Foerster et al. 2012; Long et al. 

2013; Siachalou, Mallinis & Tsakiri-Strati 2015). For many years, multi-temporal methods for 
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crop type mapping relied on satellite sensors with high temporal but low spatial resolutions 

(Mingwei et al. 2008; Lunetta et al. 2010; Gumma et al. 2011; Bolton & Friedl 2013). For example, 

Wu et al. (2014) used multisensory data with medium to low spatial resolutions to monitor crop 

production globally (known as the CropWatch system) and reported such data to be effective for 

monitoring global crop production. Using MODIS-NDVI data, Mingwei et al. (2008) used the 

Fourier analysis method to discriminate between crops on a regional scale and reported the multi-

temporal approach useful for this application. However, low-resolution satellite sensors such as 

MODIS have limited ability to provide detailed (i.e. field-level) crop type information. According 

to Gilbertson, Kemp & Van Niekerk (2017), imagery with medium to high spatial resolutions is 

needed for the successful discrimination of different crops grown on neighbouring fields, and 

recent studies have shown that high spatial and temporal resolution data is critical for producing 

timely and accurate crop type maps (Inglada et al. 2016). 

The recent launch of the Sentinel-2 satellite, which offers 10 m resolution imagery at five-day 

intervals, represents a substantial technological advancement and provides many opportunities for 

generating more accurate, up-to-date and detailed crop type maps. Immitzer, Vuolo & Atzberger 

(2016) investigated the appropriateness of pre-operational single-date Sentinel-2 data for mapping 

crop types and tree species. They recorded cross-validated accuracies ranging between 65% and 

76% for tree species and crop types respectively but concluded that the full potential of Sentinel-

2 data could not be assessed with a single-date acquisition. They postulated that multi-temporal 

Sentinel-2 data would likely significantly improve classification accuracies. The combination of 

high spatial resolution, novel spectral capabilities (including three bands in the red-edge and two 

bands in the shortwave infrared regions) and high temporal resolution provides a dataset of 

unprecedented richness from which crop type differentiations can be made. 

Using simulated Sentinel-2 data, Inglada et al. (2016) reviewed a range of methods for crop type 

mapping and concluded that the imagery closes the gap between the availability of timely and 

accurate crop type maps and users’ needs. Lebourgeois et al. (2017) used the same data for 

mapping smallholder agriculture in a tropical region characterised by high intra- and inter-field 

spatial variability. They found that it is effective for mapping crops on smallholder farms and 

attributed its success to the imagery’s relatively high spatial resolution. In addition, Sentinel-2 

imagery’s novel spectral bands, as well as its temporal, textural and contextual features for 

capturing the variations in crop growth stages, crop patterns and field sizes, make it an ideal 

resource for crop type classifications (Peña et al. 2014). 

There is general agreement that multi-temporal data is important for crop type classification. 

Sabour, Lohmann & Soergel (2008) argued that the selection of the most useful images from a 
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time-series is beneficial and generally gives more accurate results than when using all available 

images. This is supported by several studies which demonstrated that images acquired during peak 

growth stages are more useful than those acquired during low growth periods (Sabour, Lohmann 

& Soergel 2008; Long et al. 2013; Peña et al. 2014). This was attributed to the observation that 

some crops might be spectrally similar or constitute high levels of soil interference due to a lack 

of growth during certain stages in the growing season (Sabour, Lohmann & Soergel 2008; Veloso 

et al. 2017). According to Inglada et al. (2015), the selection of optimal dates for mapping crop 

types is axiomatically important but not always possible, especially in operational crop type data 

production workflows in which the hand-selection of images is not feasible. Hao et al. (2015) 

found that five images selected from a crop calendar are sufficient for effective crop classification. 

However, the selection of images based on crop calendars is greatly dependent on the availability 

of images and is prone to fail when images are not available during the key developmental stages 

of the target crops. According to Blaes, Vanhalle & Defourny (2005), temporal gaps in the growing 

season result in significant drops in classification accuracies when even a single image is missing 

at a key period. 

Classification algorithms can also influence the success of crop type mapping (Myburgh & Van 

Niekerk 2013). Gilbertson, Kemp & Van Niekerk (2017) found the ability of non-parametric 

machine learning algorithms to use known data for classifying large sets of imagery, while 

incorporating ancillary spatial data, to be ideal for crop type classifications. Popular machine 

learning algorithms include SVM, DT, k-NN and RF. SVM is a good choice for vegetation 

classification applications, since it can handle high-dimensional data and perform well, even with 

few training samples (Myburgh & Van Niekerk 2013; Peña et al. 2014; Ozdarici-Ok, Ok & 

Schindler 2015; Gilbertson, Kemp & Van Niekerk 2017). One of the advantages of RF is its ability 

to perform well even with incomplete (noisy) data or when data with high levels of redundancy is 

used as input. DTs, k-NN and ML have been highly successful in a range of remote sensing 

applications, including land cover mapping and crop type mapping (Myint et al. 2011; Myburgh 

& Van Niekerk 2013). 

The availability of crop type information early in the growing season (before harvest) is critical 

for many applications, but in most cases such data only becomes available post-harvest. This study 

assesses the performance of several machine learning classifiers when applied to pre-harvest 

images. Sentinel-2 imagery was used to generate a large set of features (predictor variables) – 

inclusive of spectral bands, vegetation indices, principal components and texture measures – which 

was used as input for five different classifiers. The classifiers were trained and validated using in 

situ data. The experiments were carried out in two sites, located approximately 310 km from each 
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other, to assess the consistency of the results. The results were interpreted in the context of finding 

an operational solution for classifying crop types at regional scales.  

3.3 MATERIALS AND METHODS 

3.3.1 Study sites 

This study was conducted in two sites (covered by Sentinel-2 tiles T34HJB and T34HEH) in the 

Western Cape Province of South Africa. For the purpose of this study, T34HJB and T34HEH will 

be referred to as Study Sites A and B respectively (Figure 3.1). Site A is located about 50 km north 

of Cape Town, while Site B is located east of the Langeberg mountain range and south of the 

Swartberg mountain range. Both sites have a Mediterranean climate and are as such characterised 

by warm, dry summers and cool, wet winters (Malan 2016). Site A has an average annual rainfall 

of 550 mm, with an average minimum temperature of 11°C and an average maximum temperature 

of 22⁰ C (Tererai et al. 2015). Site B has an average rainfall of 800 mm, with an average minimum 

temperature of 7ºC and an average maximum temperature of 22ºC (Malan 2016). These sites were 

chosen owing to the diversity of annual winter crops cultivated and the availability of crop census 

data. The most common crops cultivated in both sites are wheat, lucerne, planted pasture and 

canola. Canola, wheat and planted pastures are grown during winter, while lucerne is harvested 

throughout the year. 

3.3.2 Satellite imagery acquisition and preparation 

A selection of cloud-free Sentinel-2 images, pre-processed at Level 1C and captured between April 

2016 and January 2017, was sourced from the Sentinel Hub (https://www.sentinel-hub.com/). The 

temporal period was chosen to represent a typical winter growing season. Data preparation 

involved resampling and stacking the 20 m spectral bands to 10 m (Immitzer, Vuolo & Atzberger 

2016). Table 3.1 and Table 3.2 presents the images used in both sites, the respective crop stages, 

and the number of weeks before harvest that each image represents. 
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Figure 3.1 Location of the study sites in the Western Cape, South Africa 

Table 3.1 Images collected, crop calendars and the approximate number of days before harvest in 

Study Site A 

 

# 

 

Acquisition 
date 

Canola Lucerne Pasture  Wheat 

Calendar 

 

Weeks 
before 
harvest 

Calendar Days 
before 
harvest 

Calendar Days 
before 
harvest 

Calendar Weeks 
before 
harvest 

1 6 Apr 2016 Sowing 25 
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Sowing   14 

2 26 Apr 2016 Sowing 22 Sowing  Sowing 11 

3 16 May 2016 Sowing 19 Sowing  Sowing 8 

4 6 June 2016 Sowing 16 

  

P
o
s
s
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u
m

m
e
r 

 s
e
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e
s
c
e
n
c
e
 

  

 5 

5 4 Aug 2016  8 Harvest 0 

6 3 Sept 2016  3 Harvest 0 

7 3 Oct 2016 Harvest 0 Harvest 0 

8 13 Oct 2016 Harvest 0 Harvest 0 

9 23 Oct 2016 Harvest 0 Harvest 0 

10 31 Jan 2017 Post-harvest Post-harvest Post-harvest Post-harvest 

Stellenbosch University https://scholar.sun.ac.za



 40 

Table 3.2 Images collected, crop calendars and the approximate number of days before harvest in 

Study Site B 

 

# 

 

Acquisition 
Date 

Canola Lucerne Pasture  Wheat 

Calendar 

 

Weeks 
before 
harvest 

Calendar Days 
before 
harvest 

Calendar Days 
before 
harvest 

Calendar Weeks 
before 
harvest 

1 3 Apr 2016 Sowing 25 
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 c

u
tt
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p
ti
o

n
s
 

S
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s
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a
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Sowing  Sowing 19 

2 22 June 2016 Sowing 14 Sowing   12 

3 2 July 2016  12 Sowing   11 

4 1 Aug 2016  8 

  

P
o
s
s
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 s

u
m

m
e
r 

s
e
n
e
s
c
e
n
c
e
 

 

 7 

5 11 Aug 2016  7  5 

6 21 Aug 2016  5  4 

7 20 Oct 2016 Harvest 0 Harvest 0 

8 29 Dec 2016 Post-harvest Post-harvest Post-
harvest 

Post-
harvest 

9 8 Jan 2017 Post-harvest Post-harvest Post-
harvest 

Post-
harvest 

10 18 Jan 2017 Post-harvest Post-harvest Post-
harvest 

Post-
harvest 

 

3.3.3 In situ data collection and field delimitation 

A crop type and field boundary dataset containing polygons of agricultural fields was obtained 

from the Western Cape Department of Agriculture. These field boundaries were used as basic units 

for classification. Due to an insufficient number of samples for some classes, additional samples 

were collected by the visual interpretation of Sentinel-2 and high-resolution satellite imagery. The 

total number of samples for Site A and B was 640 and 418, respectively. The crop types and 

number of samples per class for the two study sites are given in Table 3.3. 

Table 3.3 The number of samples per class in Study Sites A and B 

 

 

 

 

 

 

Crop type Number of samples 

Study Site A Study Site B 

Canola  66 93 

Lucerne 98 98 

Pasture 167 87 

Wheat 96 97 

Fallow 213 43 

Total 640 418 
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3.3.4 Feature set development 

41 features (per image date) were generated from the Sentinel-2 bands (Table 3.4). For this study, 

only the blue (Band 2), green (Band 3), red (Band 4), vegetation red-edge (Band 5), vegetation 

red-edge (Band 6), vegetation red-edge (Band 7), NIR (Band 8), narrow NIR (Band 8A), SWIR 

(Band 11) and SWIR (Band 12) were used. The coastal aerosol (Band 1), water vapour (Band 9) 

and SWIR cirrus (Band 10) bands were deliberately excluded, as they were deemed unsuitable for 

crop type classification, as reported by Immitzer, Vuolo & Atzberger (2016) and Inglada et al. 

(2016). The generated features included 24 variations (Table A-1) of vegetation indices (VIs) 

derived from the equations in Table 3.4 (Immitzer, Vuolo & Atzberger 2016). Mean values for all 

spectral features were calculated for each agricultural field.  Homogeneity, dissimilarity and 

entropy texture features, measuring pixel uniformity and disorder, were also calculated and 

included in the classifications (Peña-Barragán et al. 2011; Schmedtmann & Campagnolo 2015). A 

principal component analysis (PCA) was performed on all spectral bands per image date, and the 

first four principal components (PCs) were retained, as recommended by Gilbertson, Kemp & Van 

Niekerk (2017). 

Table 3.4 Features used as input for classifications (refer to Table A-1 for the full names, formulae 

and bands used to compute each feature) 

Variable source Features 

Spectral bands 
blue, green, red, vegetation red-edge1, vegetation red-edge2, vegetation red-edge3, NIR, 
Narrow NIR, SWIR1, SWIR2 

Vegetation indices AFRI, EVI2, NDMI, NDVI, NDVI red-edge, AFRI red-edge, EVI2 red-edge 

Textural features dissimilarity, entropy, homogeneity 

Image transformations PC1, PC2, PC3, PC4 

 

3.3.5 Experimental design 

Four experiments were undertaken (Figure 3.2). The first experiment (Experiment 1) involved 

classification using available cloud-free images collected throughout the winter growing season, 

i.e. each classification was based on a single image (henceforth called uni-temporal). In the second 

experiment (Experiment 2), four different combinations of five uni-temporal images were used as 

input to the classifiers. The images were selected based on the overall accuracy (OA) rankings 

obtained from Experiment 1 (i.e. the five individual images that provided the highest uni-temporal 

OAs).  
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Figure 3.2 Experimental design 

For Experiment 3, the following five image dates were handpicked and used for classification: 26 

April, 6 June, 4 August, 3 September and 23 October for Site A; and 3 April, 22 June, 2 July, 11 

August and 20 October for Site B. Figure 3.3 and Figure 3.4 show how these dates relate to the 

crop calendars for each site. The number of images chosen was based on findings by Hao et al. 

(2015) and Gilbertson, Kemp & Van Niekerk (2017). 

The fourth experiment involved classification using all the available cloud-free images captured 

throughout the growing season. This experiment was executed by the chronological addition of 

images to the classifiers to assess how early in the season reasonable accuracies can be achieved. 

 

Figure 3.3 Phenological stages of targeted crops in Study Site A (the dotted lines represent the 

selected images) 

 

  

Reference data 

Sentinel-2 Imagery 

Image classification 

Experiment 1 
Uni-temporal 
based image 
classification 

Experiment 4 

Chronologic 
Image 

classification 

Experiment 3  
Crop calendar 
based image 

selection 

Experiment 2 
Performance 
based image 

selection 

Accuracy assessment 

Significance testing 
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Figure 3.4 Phenological stages of targeted crops in Study Site B (the dotted lines represent selected 

images) 

3.3.6 Classification and accuracy assessment 

The supervised learning and image classification environment (SLICE) software, developed by 

the Centre for Geographical Analysis (CGA) at Stellenbosch University, was used for 

classification and accuracy assessment (Myburgh & Van Niekerk 2013). SLICE includes several 

classification algorithms, namely: SVM, k-NN, DT, RF and ML. The ML and k-NN classifiers 

were implemented using the Open CV 2.2 libraries (Bradski 2000), with k = 1. Libsvm 3.0 was 

used to implement the SVM classifier (Chang 2011). The parameters for DT and RF were based 

on the guidelines provided in the Open CV library documentation. The geospatial data abstraction 

library (GDAL) was used to manipulate the raster files and shapefiles. (See Myburgh & Van 

Niekerk (2013) for an incisive description of how the various classifiers were configured.) 

A 3:2 sample split ratio was employed for accuracy assessment. Forty percent of the samples was 

randomly selected and reserved for independent validation of the classifications. The same set of 

training and validation samples were maintained for all the experiments. SLICE automatically 

generates confusion matrices and calculates OAs and Kappa coefficients (Ks) for every 

classification (Gilbertson, Kemp & Van Niekerk 2017). OA is interpreted as the percentage of 

fields corresponding to the errors of omission and commission (Campbell & Wynne 2011), while 

K assesses the statistical differences between classifications (Foody & Atkinson 2002). 

McNemar’s test, ANOVA and t-tests (as implemented in Microsoft Excel) were used for assessing 

the statistical significance of the accuracies obtained from the experiments, as recommended by 

Foody & Mathur (2004) and applied by Duro, Franklin & Dubé (2012) and Gilbertson, Kemp & 

Van Niekerk (2017). The alpha values for ANOVA and t-tests were set to 0.05, while the alpha 

value for McNemar’s test was set to 1.96. 
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3.4 RESULTS 

3.4.1 Experiment 1: Uni-temporal, individual images 

Experiment 1 was undertaken with uni-temporal images collected between April 2016 and January 

2017, thus covering a full winter growing season. Results for Experiment 1 are listed in Table 3.5. 

At Site A, the highest individual OA (80%) was achieved using SVM with an image acquired early 

in September (Image 6, approximately four weeks before harvest). This OA is only marginally 

higher than the second-highest OA (79.6%), also achieved with SVM (p = -0.40) using an image 

acquired in early August (Image 5, about eight weeks before harvest). The highest OAs achieved 

with SVM and RF (77.2%) are significantly different (p > 3.10) from those achieved with k-NN 

and DT. It is important to note that the number of weeks before harvest greatly depends on 

individual crop planting and harvest dates. For the sake of simplicity, the first harvest date is 

henceforth used as reference. 

At Site A, the five images with the highest mean OAs were collected between June and October, 

with the image collected early in August (4 Aug) recording the highest mean OA (73.9%), 

followed by early September (3 Sept = 70.3%), mid-October (13 Oct = 60.7%), early October (3 

Oct = 56.6%) and early June (6 Jun = 51.5%). The 4th of August image also returned a relatively 

low OA standard deviation (SD = 5.41%), indicating that it consistently produced good results 

across all classifiers. The differences in mean OAs between the images collected in August and 

those collected in September (maturation/harvesting stage, depending on the crop and the 

respective planting and harvest dates) are not statistically significant (two-tailed t-test p = 0.387). 

However, the difference in OAs between the August image and those collected at the beginning 

of the growing season (June) and after harvest (January) is statistically significant (two-tailed t-

test p < 0.0009). 

The highest individual OA (79.6%) for Site B (Table 3.5) was achieved in August using SVM 

(79.6%) (approximately eleven weeks before harvest). The second-highest OA (77.8%) was 

achieved in the second week of August with DT (roughly ten weeks before harvest). The difference 

in OA between these classifications was, however, statistically insignificant (p < 1.09). In contrast, 

the outputs of k-NN (67.6%) and ML (47.9%) were significantly (p > 3) lower than those achieved 

by SVM and RF. For Site B, the highest mean OA was recorded with images collected between 

July and October. Similar to Site A, the highest mean OA was recorded with an image collected 

early in August (1 Aug = 65.4%), followed by images collected mid-August (11 & 21 Aug = 

63.5%), the beginning of July (2 Jul = 51.6%) and mid-October (20 Oct = 50.9%). The 21 Aug 

image returned a relatively low OA standard deviation (SD = 9.83%), indicating that it consistently 

produced good results across all classifiers. Comparable to Site A, there is a statistically significant 
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difference (two-tailed t-test p < 0.0488) in OAs achieved with the images collected in August 

(complete maturity), compared to those collected in June and January. 

Table 3.5 Uni-temporal image classification overall accuracies (OAs %) and Kappa coefficients 

(Ks), as well as the average (AVG) and standard deviation (SD) of OAs and Ks, for all 

classifiers and image dates in Study Sites A & B 

 

With regards to the overall performance of the classifiers, SVM yielded the highest mean OA 

(64%), followed by RF (62.1%), DT (51.2%), k-NN (51.1%) and ML (50.6%) in Site A. Both 

Site Image Date SVM K-NN DT RF ML AVG SD 

   OA      K OA      K OA       K OA       K OA       K OA       K OA        K 

 

 

 

 

 

 

A 

1 6 Apr 46.6   0.29 42.7   0.24 40.7   0.22 50.9   0.34 42.7   0.24 44.7    0.26 4.06  0.04     

2 26 Apr 48.2   0.30 35.6   0.15 41.1   0.23 45.8   0.27 42.3   0.25 42.6    0.24 4.88  0.05 

3 16 May 52.1   0.36 42.3   0.25 40.7   0.22 53.7   0.39 47.0   0.31 47.1    0.30 5.75  0.07 

4 6 Jun 60.3   0.48 42.3   0.24 48.6   0.32 58.4   0.44 48.2   0.29 51.5    0.35 7.56  0.10 

5 4 Aug 79.6   0.73 70.1   0.61 66.6   0.56 77.2   0.70 76.4   0.69 73.9    0.65 5.41  0.07 

6 3 Sep 80.0   0.73 62.3   0.51 65.0   0.54 74.5   0.66 69.8   0.59 70.3    0.60 7.14  0.08 

7 3 Oct 74.9   0.67 55.6   0.55 51.7   0.37 67.4   0.57 33.7   0.23 56.6    0.47 15.8  0.17     

8 13 Oct 74.5   0.66 53.3   0.38 56.0   0.42 67.0   0.56 52.9   0.37 60.7    0.47 9.58  0.12 

9 23 Oct 70.1   0.60 54.9   0.40 51.7   0.37 68.6   0.58 48.2   0.31 58.7    0.45 10.0  0.13 

10 31 Jan 54.1   0.39 47.8   0.32 50.5   0.35 57.6   0.44 50.1   0.35 52.0    0.37 3.84  0.04 

 AVG 64.0   0.52 50.6   0.36 51.2   0.36 62.1   0.49 51.1   0.36   

  SD 13.2   0.17 10.5   0.15 9.31   0.12 10.3   0.14 12.8   0.15   

 

 

 

 

 

 

     B               

 

 

 

1 3 Apr 45.5   0.30           34.1   0.16           41.9   0.26           50.2   0.36           20.3   0.00 38.4    0.21 11.7  0.14 

2 22 Jun 66.4   0.57 42.9   0.34 52.6   0.39 67.6   0.58 22.7   0.00 50.4    0.37 18.5  0.23 

3 2 Jul 70.0   0.61 50.2   0.37 54.4   0.42 63.4   0.53 20.3   0.00 51.6    0.38 19.1  0.23 

4 1 Aug 79.6   0.74 65.2   0.56 66.4   0.57 75.4   0.68 40.7   0.23 65.4    0.55 15.1  0.19 

5 11 Aug 73.6   0.66 67.6   0.58 77.8   0.71 76.6   0.70 20.3   0.00 63.5    0.53 24.2  0.30 

6 21 Aug 72.4   0.64 64.6   0.54 61.6   0.50 71.2   0.63 47.9   0.32 63.5    0.52 9.83  0.12 

7 20 Oct 63.4   0.53 55.1   0.42 51.4   0.38 61.6   0.50 23.3   0.04 50.9    0.37 16.2  0.19 

8 29 Dec 63.4   0.53 42.5   0.27 44.9   0.30 57.4   0.45 32.3   0.14 48.1    0.33 12.3  0.15 

9 8 Jan 58.6   0.46 44.3   0.28 48.5   0.35 58.6   0.46 43.7   0.28 50.7    0.36 7.40  0.09 

10 18 Jan 59.2   0.47 53.2   0.40 43.7   0.28 59.2   0.47 42.5   0.27 51.5    0.37 8.11  0.09 

 AVG 65.2   0.55 51.9   0.39 54.3   0.41 64.1   0.53 20.3   0.00   

  SD 9.59   0.12 11.2   0.13 11.3   0.14 8.47   0.10 11.2   0.13   
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SVM and RF performed significantly better than k-NN, DT and ML (two-tailed: t-test p < 0.039). 

Similarly, SVM yielded the highest mean OA (65.2%) in Site B, followed by RF (64.1%), DT 

(54.1%), k-NN (51.9%) and ML (20.3%). Again, SVM and RF performed significantly better than 

k-NN, DT and ML (two-tailed: t-test p < 0.032). In Site A, SVM was the least stable classifier 

(OA SD = 13.2%), while it generated accuracies that were the second most stable (OA SD = 

9.59%) in Site B. RF produced consistently good results (OA SDs of 10.3% and 8.47% in sites A 

and B respectively). Overall, for Experiment 1 (uni-temporal images), OAs increased from the 

beginning of the growing season and peaked around August and/or September. The OAs then 

dropped at the start of harvest.  

3.4.2 Experiment 2: Multi-temporal, rank-based image set 

This experiment was conducted using combinations of five images, selected based on the 

performance of individual images (from Experiment 1). Four different combinations of these 

images were tested and the results are presented in Table 3.6. The highest individual OA (82.4%) 

in Site A was achieved using SVM on a combination of the two images with the highest ranking 

(4 Aug & 3 Sept). However, this was only marginally (2.2%) and insignificantly (p = -1.34) higher 

than when SVM was applied to a combination of three images (4 Aug, 3 Sept & 13 Oct). When 

the mean OAs of all classifiers are considered, the combination of the 4 Aug & 3 Sept images 

yielded a mean OA of 70.4%, which was slightly lower than when only the 4 Aug image was used 

as input (OA of 73.9%). 

The highest individual OA (79.6%) for Site B was achieved using the single image with the highest 

rank (1 Aug) as input to SVM (Table 3.6). However, this is only marginally (0.6%) and 

insignificantly (p-value of 0.25) higher than when SVM was applied to a combination of three 

images (1, 11 & 21 August). The combination of the two highest-ranked individual images (1 

August & 11 August) yielded the highest mean OA (72.1%), but this was not significantly higher 

(two-tailed t-test p = 0.757) than the second-highest mean OA (70.8%) achieved when all five 

images were used as input. Overall, the mean OA declines with an increase in the number of 

images in Site A, while the opposite is observed in Site B. These results confirm those of 

Experiment 1 in that the highest OAs are achievable with combinations of images collected 

between August and September. This finding applies to both sites. 

Overall, SVM achieved superior results across all image combinations, with a mean OA of 80% 

in Site A. Although there is no statistically significant difference between SVM, RF, k-NN and 

DT (two-tailed t-test p < 0.174), the difference between SVM and ML is statistically significant 

(two-tailed t-test p = 0.003). A similar pattern is seen in the results of Site B – there is no 

statistically significant difference in the performance of SVM, RF, k-NN and DT, but SVM 
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performed significantly better than ML (two-tailed t-test p = 0.0003). From the standard 

deviations, it is evident that SVM, RF, k-NN and DT were more stable (SD < 2.5) in both sites, 

while ML displayed some instability (see Table 3.6). 

Table 3.6 OAs and Kappa coefficients for rank-based image combinations, OAs obtained with all 

the images available for the season (All) and the average (AVG) for classifiers and 

image combinations in Study Sites A & B 

 

3.4.3 Experiment 3: Multi-temporal, hand-selected image set 

Experiment 3 was undertaken using five images which were hand-selected on the basis of the 

critical developmental stages in the growing cycle of crops, as demonstrated in Gilbertson, Kemp 

& Van Niekerk (2017). Results are presented in Table 3.7. The highest individual OA (81.5%) in 

Site A was achieved with RF, which is marginally higher than the second-highest OA achieved 

with SVM (79.6%). Overall, DT and ML achieved the lowest OA, with ML being the worst 

Site  # Dates SVM K-NN DT RF ML AVG SD 

 image  OA        K                                                                OA        K                                                               OA        K                                                                               OA       K OA       K OA      K OA      K 

 

 

 

 

    A 

Best 4 Aug 79.6   0.73 70.1   0.61 66.6   0.56 77.2   0.70 76.4   0.69                        73.9 0.65 5.41  0.07       

2 Best 4 Aug & 3 Sep 82.4   0.76 70.6   0.62 72.0   0.63 77.8   0.71 49.2   0.36 70.4 0.62 12.7  0.15 

3 Best 4 Aug, 3 Sep,  
13 Oct 

80.2   0.74 69.6   0.58 69.6   0.59 79.0   0.73 49.2   0.36 69.5 0.60 12.4  0.15 

4 Best 4 Aug, 3 Sep, 3 
& 13 Oct 

79.3   0.73 72.5   0.65 67.5   0.58 80.2   0.74 38.6   0.26 67.6 0.59 17.0  0.19 

5 Best 4 Aug, 3 Sep, 3, 
13 & 23 Oct 

78.4   0.72 74.3   0.68 70.4   0.60 79.3   0.73 35.8   0.18 67.6 0.58 18.1  0.23 

All  81.1   0.75        69.8   0.60 67.4   0.57   80.3   0.74 32.5   0.03 66.2 0.53 19.8  0.29 

AVG  80.0   0.74 71.2   0.62 69.2   0.59 78.7   0.72     49.8   0.37   

 SD  1.50   0.01 1.94   0.03 2.18   0.02 1.20   0.01    16.0   0.19   

 

 

 

    B 

Best 1 Aug 79.6   0.74 65.2   0.56 66.4   0.57 75.4   0.68 40.7   0.23 65.4 0.55 15.1  0.19 

2 Best 1 & 11 Aug   78.4   0.72 68.2   0.59 71.2   0.63 77.2   0.70 65.8   0.55 72.1 0.64 5.50  0.07 

3 Best 1, 11 & 21Aug 79.0   0.73 67.6   0.58 69.4   0.61 78.4   0.72 58.6   0.46 70.6 0.62 8.45  0.11 

4 Best 1, 11 & 21 Aug 
& 2 Jul 

79.0   0.73 69.4   0.61 68.8   0.60 79.0   0.73 54.4   0.41 70.9 0.61 10.0  0.13 

5 Best 1, 11, 21 Aug, 2 
Jul & 20 Oct 

78.4   0.72     65.8   0.56 71.8   0.64 77.2   0.71 61.0   0.49 70.8 0.62 7.42  0.09 

All  80.8   0.75 66.4   0.57 71.8   0.64 76.0   0.69 62.8   0.52 71.5 0.63 7.21  0.09 

AVG  78.9   0.73 67.2   0.58 69.5   0.61 77.4   0.70 56.1   0.42   

 SD  0.50   0.00 1.72   0.02 2.13   0.02 1.38   0.01 9.54   0.12   
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performing classifier (28.2%), which was found to be significantly lower (p = 11.1) than the OA 

achieved with RF (81.5%). Overall, this experiment achieved a mean OA of 67.0%, which is not 

significantly different (two-tailed t-test; p = 0.515) from the mean OA achieved with the highest 

mean OA (73.9%) obtained with Experiment 2 (Table 3.6) in Site A (although a 5% difference 

would be regarded as significant by many analysts). 

Table 3.7 OA and Kappa coefficients and the average (AVG) for the five images selected based 

on the crop development stages for Study Sites A & B (refer to Figure 2.2 for respective 

crop development stages corresponding to the selected images) 

 

With regard to Site B, the highest OA was achieved with SVM (80.2%), followed by RF (77.2%) 

(Table 3.7). The difference between the classifiers with the highest and second-highest OAs was 

found to be statistically insignificant (p = 1.14). K-NN and ML achieved the lowest OA. Overall, 

this experiment achieved a mean OA of 72.1%, which is identical to the highest mean OA obtained 

with Experiment 2 (Table 3.6) in Site B. Similar to Experiment 1 & 2, the highest OAs for both 

sites were based on both SVM and RF.  

3.4.4 Experiment 4: Chronologic image addition 

Experiment 4 was conducted by chronologically adding images from the beginning to the end of 

the growing season. At Site A (Table 3.8), SVM and RF were able to achieve accuracies of more 

than 75% (SVM = 79.6%; RF = 78%) by the first week of August (about eight weeks before 

harvest). The highest individual OA for this site (83.1%) was achieved when all images up to 13 

October (approximately one week after harvest started) were used as input to RF. A slightly lower 

OA (81.1%) was achieved when all images up to January were used with SVM. Overall, the 

highest mean OA (66.6%) for Site A was obtained when the image collected in the first week of 

September (Image 6) was added to the classification. This mean OA is slightly higher than what 

was obtained with the entire time-series (66.2%) but is not significant (two-tailed: t-test p = 0.97). 

For Experiment 4, RF generally outperformed the other classifiers, with a mean OA of 70.5% for 

all scenarios, followed by SVM (69.2%), k-NN (60.3%), DT (58.7%) and ML (30.6%).  

Site # 

image  

Image dates SVM K-NN DT RF ML AVG SD 

OA       K                                                                OA       K                                                               OA       K                                                                               OA       K                                                                OA       K                          OA       K OA   K 

    

A 

 

Five  

26 Apr, 6 Jun, 4 
Aug, 3 Sept & 
23 Oct 

 

79.6   0.73 

 

76.8   0.69 

 

69.0   0.59 

 

81.5   0.75 

 

28.2   0.13 

 

67.0   0.57 

 

22.2   0.25 

    

B 

 

Five 

3 Apr, 22 Jun, 
11 & 21 Aug & 
20 Oct 

 

80.2   0.74 

 

65.2   0.55 

 

73.6   0.66 

 

77.2   0.70 

 

64.6   0.54 

 

72.1   0.63 

 

7.03   0.08 
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The results for the entire time-series were slightly better than when the pre-harvest images were 

used, but the differences in OAs are statistically insignificant across all classifiers (two-tailed: t-

test p > 0.321). Generally, RF and SVM outperformed the other classifiers and there is no statistical 

significance between the SVM and RF results (two-tailed: t-test p > 0.864). There is, however, a 

statistically significant difference in the OAs of both RF and SVM in comparison to k-NN, DT 

and ML (two-tailed: t-test p < 0.04). All classifiers displayed some instability across the different 

growth stages (SD > 11), except for ML which consistently produced low OAs. 

Similar to Site A, SVM and RF achieved OAs of more than 75% (SVM = 77.2%; RF = 77.8%) in 

Site B (Table 3.8), when images up to the beginning of August (approximately eleven weeks before 

harvest) were used as input. The difference between these results was statistically insignificant (p 

= 0.22). The highest individual classification result (82%) was achieved when all images up to the 

image collected in the second week of August (11 August) was used as input to RF. This is only 

marginally higher than the highest individual OA (80.5%) obtained when the entire time-series 

was used with SVM. Although there is no statistically significant difference between the highest 

individual OAs obtained when using images collected pre-harvest only and when the entire time-

series is used in both Sites A & B (p < 0.5), there is a notable difference, with pre-harvest images 

achieving a slightly higher (1.5%) OA. In Site B, the highest mean OA (73.2%) was achieved with 

all images up to the image collected in the third week of August (21 August: Image 6), which is 

approximately four weeks before harvest. This is slightly higher than the mean OA achieved when 

using the entire time-series (71.5%). Similar to Site A, the difference in these OAs is not 

statistically significant (two-tailed: t-test p = 0.793). 

Concerning classifiers, RF recorded the highest mean OA (73.4%), followed by SVM (72%), when 

only pre-harvest images were used. The two classifiers performed on par when the entire time-

series was used as input (72.7%). Although there is no significant difference between the 

performance of SVM and RF, they both achieved significantly higher OAs than those of k-NN and 

ML (two-tailed: t-test p > 0.1) in both sites. Overall, all classifiers achieved slightly higher results 

in Site A when the entire time-series was used, compared to when only pre-harvest images were 

used. No clear trend could be established regarding the difference in OA between pre-harvest and 

the entire time-series for the various classifiers in Site B  
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Table 3.8 OAs and Kappa coefficients, as well as the average (AVG) and standard deviation (SD) 

of OAs and Ks, for all classifiers and image dates in Study Sites A & B for the 

incremental classifications in Sites A and B 

 

In comparison to Experiment 2, Experiment 4 achieved significantly lower results (two-tailed t-

test p = 0.014) in Site A, while Experiment 4 achieved a slightly higher OA in Site B (although 

the difference is statistically insignificant; p = 0.587). Table 3.9 summarises the overall results per 

experiment (using only the best results in each experiment). Compared to Experiment 3, 

Experiment 4 achieved slightly lower OAs in Site A, while achieving slightly higher OAs in Site 

B. When both sites are considered in combination, Experiment 4 (pre-harvest images) 

Site Image Dates SVM K-NN DT RF ML Mean SD 

OA        K OA        K OA        K OA        K OA        K OA        K OA   K 

 

 

 

 

 

    A 

1 – 2 6 Apr – 26 Apr 51.7   0.35 44.3   0.27 41.5   0.24 54.5   0.39 26.6   0.12 43.7   0.30 10.9  0.10 

1 – 3 6 Apr – 16 May 56.0   0.42 50.5   0.36 46.2   0.30 57.6   0.44 22.7   0.10 46.6   0.32 14.1  0.13 

1 – 4 6 Apr – 6 Jun 61.5   0.49 57.2   0.44 49.0   0.33 63.1   0.51 27.4   0.10 51.6   0.35 14.6  0.16 

1 – 5 6 Apr – 4 Aug 79.6   0.73 63.1   0.51 70.1   0.61 78.0   0.71 21.5   0.06 62.6   0.52 23.8  0.27 

1 – 6 6 Apr – 3 Sept 80.3   0.74 68.2   0.58 70.1   0.61 79.6   0.73 34.9   0.05 66.6   0.54 18.5  0.28 

1 – 7 6 Apr – 3 Oct 79.2   0.72 69.0   0.59 69.4   0.60 79.6   0.73 33.3   0.02 66.1   0.53 19.0  0.29 

1 – 8 6 Apr – 13 Oct 78.0   0.71 69.4   0.60 66.6   0.56 83.1   0.78 32.5   0.13 65.9   0.55 19.8  0.25 

1 – 9 6 Apr – 23 Oct 78.8   0.72 69.0   0.59 66.6   0.56 78.8   0.72 32.5   0.13 65.4   0.54 19.0  0.24 

All 6 Apr – 31 Jan 81.1   0.75 69.8   0.60         67.4   0.57         80.3   0.74          32.5   0.03 66.2   0.53 19.8  0.29 

 AVG 69.2   0.59 60.3   0.47 58.7   0.46 70.5   0.60 30.6   0.08   

  SD 11.8   0.15 9.49   0.12 11.6   0.15  11.0   0.14 4.91   0.04   

 

 

 

 

 

 B 

1 – 2 3 Apr – 22 Jun 56.8   0.45    52.0   0.39 54.4   0.42 62.2   0.52 55.0   0.41 56.0   0.43 3.82  0.05 

1 – 3 3 Apr – 2 Jul 68.8   0.60 55.6   0.44 50.2   0.36 67.6   0.58 47.9   0.32 58.0   0.46 9.71  0.12 

1 – 4 3 Apr – 1 Aug 77.2   0.70 65.2   0.56 74.2   0.67   77.8   0.71    55.0   0.41 69.8   0.61 9.72  0.12 

1 – 5 3 Apr – 11 Aug 79.0   0.73 67.6   0.59 74.2   0.67 82.0   0.77 59.8   0.48 72.5   0.64 8.95  0.11 

1 – 6 3 Apr – 21 Aug 78.4   0.72 70.6   0.62 71.8   0.64 77.8   0.71 67.6   0.58 73.2   0.65 4.69  0.05 

1 – 7 3 Apr – 20 Oct 80.2   0.74 68.8   0.60 72.4   0.64 78.4   0.72 64.0   0.53 72.7   0.64 6.70  0.08 

1 – 8 3 Apr – 29 Dec 80.2   0.74 71.2   0.63 72.4   0.65 76.6   0.70 65.2   0.55      73.2   0.65 5.68  0.07 

1 – 9 3 Apr – 8 Jan 80.8    0.75 68.2   0.59 71.8   0.64 78.4   0.72 64.0   0.53 72.6   0.64 6.97  0.09 

All 3 Apr – 18 Jan 80.5   0.75 66.4   0.57 71.8   0.64 76.0   0.69 62.8   0.52 71.5   0.63      7.12  0.09 

 AVG 72.7   0.64 61.9   0.51 65.5   0.55 72.7   0.64 72.1   0.43   

  SD 8.02   0.10 6.71   0.08 9.08  0.11 6.22   0.07 6.33   0.08   

Stellenbosch University https://scholar.sun.ac.za



 51 

outperformed the other experiments (average OA of 81.1%), but this is only marginally higher 

than the 81% OA achieved in Experiment 2 and 80.9% and 80.8% attained in Experiment 4 (all) 

and Experiment 3 respectively.  

Table 3.9 Summary of the highest OAs achieved across all experiments in Sites A & B 

Experiment Site A Best OAs Site B Best OAs AVG Best OAs 

1 80.0 79.6 79.8 

2 82.4 79.6 81.0 

3 81.5 80.2 80.8 

4 (pre-harvest) 80.3 82.0 81.1 

4 (all) 81.1 80.8 80.9 

AVG Best OAs 81.4 80.4 80.7 

 

With regard to the best period for identifying crop types, it is evident that crops can be classified 

with good OAs at the beginning of August, which marks the complete maturation stage for most 

crops. Based on the confusion matrices of the best classification results obtained within the 

August/September period across all experiments, SVM and RF were able to classify canola and 

fallow fields with producer’s accuracies (PAs) exceeding 90% in both sites. The only exception 

was in Experiment 1 (87% for canola). Planted pasture was the most confused class in Site A (PA 

of below 60%), while lucerne was the most confused in Site B (PA of below 55%). Wheat returned 

OAs of above 70% with SVM and RF across all experiments during the August/September period. 

3.5 DISCUSSION 

From the results, it is noticeable that rank-based selection (Experiment 2) and pre-harvest images 

(Experiment 4, pre-harvest) outperformed the other experiments (Table 3.9). However, based on 

the marginal differences in accuracies among the experiments, it is questionable whether selecting 

images based on individual performance is worth the effort (and expense) of carrying out multiple 

uni-temporal classifications, especially given that handpicking images based on critical crop 

developmental stages (Experiment 3) produced similar results. This finding is in agreement with 

Peña et al. (2014); Asgarian, Soffianian & Pourmanafi (2016) and Gilbertson, Kemp & Van 

Niekerk (2017) who reported that the selection of images at important crop developmental stages 

is an effective strategy to improve crop type classification accuracies. The results of Experiments 

3 and 4 are in agreement with Lussem, Hüttish & Waldhoff (2016) who found that the addition of 

“good” images (images that produced high OAs) to “bad” images (images that produced low OAs) 

does not compensate for errors caused by the latter. The statistical insignificance in the differences 
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in OAs achieved across all experiments is in agreement with Hao et al. (2015), who assessed the 

influence of time-series length on classification accuracies and found that the addition of more 

than five images did not have any significant impact on classification accuracies. 

Although it was not possible to clearly establish trends in Experiments 2 and 3 (image selection), 

it is clear from Experiment 1 and 4 that the OAs of images acquired at the beginning of the season 

are low (mean OA < 55%), peak around Aug/Sept (mean OA > 65%) and then decline towards the 

end of the season (mean OA < 55%). Thus, images collected during the maturation period 

(August/September) yielded significantly higher classification accuracies when compared to those 

acquired during the early stages of development (April/June) and after harvest (post-October). 

Low OAs are expected at the beginning of the season (January–April) due to a lack of growth in 

most fields, making the soil background the main scattering contributor to the reflected signal and 

maximising soil interference with the spectral reflectance of the crops in focus. This is supported 

by the low classification accuracies obtained in Experiment 1, when images collected between 

April and early June (pre-maturation) and after December (post-harvest) were used. Furthermore, 

similarities in spectral responses of crops in their early stages of development have also been 

reported to have a negative effect on classification accuracies (Azar et al. 2016; Hao et al. 2018). 

For example, the separation of crops such as lucerne and planted pastures are expected to be the 

most challenging because of their spectral similarities, especially at the beginning of the growing 

season. This is confirmed by the confusion matrices, which show that most confusion occurred 

between these two classes. 

As the crops reach maturation (late July–late September), they develop more distinguishing 

properties, providing classifiers with more information for differentiation. For example, crops such 

as canola turn bright yellow during maturation (flowering), making the crop easy to distinguish 

from other crops. Wheat was also well differentiated, likely due to the absence of other cereals 

such as barley and oats in the study sites (the classes most commonly confused with wheat) 

(Veloso et al. 2017). The confusion between planted pastures and lucerne persisted throughout the 

maturation stage, suggesting that these two classes do not have sufficient differentiating attributes. 

Fallow fields were best differentiated when the cultivated crops reached maturation (Aug/Sept), 

which was expected, given that the biomass difference between cultivated and uncultivated fields 

(bare soil interspersed with weed growth) is most dramatic at this stage.  

Although OAs peaked throughout the maturation stage (until the end of September), a decline in 

OA is observed at the beginning of harvest (start of October) (Table 3.5). This decline in OA at 

the start of harvest is likely caused by the sudden removal of biomass and variation in harvest 

dates. This is supported by the increase in confusion among cultivated and fallow fields (see Table 
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A-1 − Table A-9). This finding is in agreement with Veloso et al. (2017), who found that crops are 

mostly misclassified in their early stages of development, with accuracies peaking as the 

vegetation cover increases and crops mature, then declining again at the beginning of harvest. 

Also, temporal gaps (missing images at important developmental stages) have been cited as one 

of the primary causes of reduced classification accuracies in multi-temporal crop type mapping 

studies (Inglada et al. 2015). Blaes, Vanhalle & Defourny (2005) reported significant drops in 

classification accuracies when even a single optical image was unavailable at a key period within 

the growing season.  

Additionally, the value of including images collected post-harvest was measured in Experiments 

1 and 4. The accuracies were generally low (< 65%) when the post-harvest (January) images were 

used as input to the uni-temporal classifications (Experiment 1). Fields are generally left fallow 

after harvest and are thus spectrally similar. Images collected after harvest are unlikely to have any 

positive effect on crop classification accuracies. This is supported by slightly higher accuracies 

achieved in Experiment 2, which did not include images from this period. 

With regard to classifier performance, SVM and RF achieved significantly higher OAs compared 

to the other classifiers and were able to achieve relatively good results by August/September 

(approximately eight weeks before harvest when the image captured early in August is used; the 

period will vary depending on planting and harvesting dates of different crops). The highest 

individual accuracy (83.1%) was achieved with RF when all images up to mid-October were used. 

The strength of RF over the other classifiers, especially with the addition of the eighth image 

(Experiment 4) can be attributed to the classifier’s ability to handle highly dimensional data 

without deletion. This is supported by the classifier’s ability to perform well (mean OA = 80.3%) 

when all images were used as input (410 variables). This is comparable to the findings of 

Gilbertson, Kemp & Van Niekerk (2017), who compared feature sets with different sizes to assess 

the impact of dimensionality reduction on crop type classification accuracies and found both SVM 

and RF to produce high accuracies (> 85%) when all features (205) were used as input. This is 

also in agreement with Rodriguez-Galiano et al. (2012) who used RF to classify Mediterranean 

land cover with multi-temporal imagery and multi-seasonal texture measures – 972 input variables 

in total – and found RF to be able to handle the high-dimensional data well. 

The strong performance of SVM corresponds to the findings of Myburgh & Van Niekerk (2013). 

While differences within crop fields (e.g. crop conditions), differences in developmental stages, 

etc. have been shown to have a negative impact on classification accuracies when remotely sensed 

imagery is used (Peña-Barragán et al. 2011), SVM has been shown to be less sensitive to intra-

class variations compared to other classifiers (Zheng et al. 2015). This characteristic is believed to 
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have been a major contributing factor to its above-average performance in this study. Furthermore, 

SVM’s use of an optimised sample for calculating support vectors and defining the hyperplane by 

prioritising samples that lie on the edge of the class distribution in feature space (Zheng et al. 2015) 

make it suitable for use with high-dimensional datasets. This explains the classifier’s relatively 

good performance when all images were included in the classification (Experiment 4). The 

insignificance in the different OAs achieved among the various experiments in this study suggests 

that image selection does not have any significant impact on crop type mapping. This is an 

important finding for operational crop type mapping, as the use of all available cloud-free images 

reduces the complexity of automated workflows. However, images during the August/September 

period (a few weeks before harvest) are critical as it seems to have contributed the most to the OAs 

achieved in this study.  

In this study, cloud-contaminated images were manually identified (through visual interpretation) 

and excluded from the analyses. Given that manual selection of cloud-free images is not viable for 

many operational implementations (e.g. over very large areas and involving multiple images), 

alternative approaches are needed. One option is to make use of cloud-masking algorithms (Sedano 

et al. 2011; Bai et al. 2016; Han, Bovolo & Lee 2017) to automatically select suitable images. 

Another option is to perform image compositing (Vancutsem 2007; Flood 2013; Lück & Van 

Niekerk 2016) to reduce the effect of cloud-contamination. These approaches warrant more 

research, particularly within the context of crop type classification.   

This study made use of Sentinel-2A imagery only. It would be of interest to perform a similar set 

of experiments using the improved temporal resolution provided by the Sentinel-2B satellite 

(which became operational after the in situ survey of this study was carried out). The denser time-

series provided by the combination of imagery from both satellites is expected to increase 

classification accuracies, but more research is needed to test this hypothesis. 

3.6 CONCLUSION 

This study investigated the use of five machine learning classifiers for crop type classification in 

two sites located in the Western Cape Province of South Africa. A set of cloud-free Sentinel-2 

images was used as input to the classifiers. Considering the effort involved in developing crop 

calendars, as well as the impact of seasonal weather variations on the accuracy of such calendars, 

alternative approaches for selecting images were evaluated. Specifically, the efficacy of selecting 

images based on their uni-temporal performance (i.e. using a single image as input to the 

classifiers) was assessed. The performance of the machine learning classifiers when only pre-

harvest images are used as input was also tested. The results showed that the selection of images 

based on individual performance offers a viable alternative to selecting images based on crop 
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developmental stages, but the effort and cost of implementing such an approach may not warrant 

the marginal (and insignificant) accuracy improvements observed. The findings of this study 

suggest that the classification of crops using an entire time-series can be as accurate as when a 

subset of hand-selected images are used. This suggests that image selection is not necessary for 

operational crop type mapping, which simplifies automated image processing workflows.  

The principal finding of this study is that the crops (and fallow fields) considered herein can 

effectively be classified with images acquired from the beginning of June to before harvest (up to 

Sept). SVM and RF are recommended, as these classifiers performed consistently well in all the 

experiments.  
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CHAPTER 4:  VALUE OF IMAGE COMPOSITING FOR 

DIFFERENTIATING PERENNIAL CROPS WITH MACHINE 

LEARNING AND MULTI-TEMPORAL SENTINEL-2 IMAGERY 

4.1 ABSTRACT 

Accurate and up-to-date crop type maps are needed for many applications. Spatially-explicit crop 

type information is used to estimate planted areas, which is invaluable for crop insurance 

assessments, supply-chain logistics, commodity trading and market forecasting. This study 

evaluated the efficacy of four simple image compositing techniques and the effects of cloud cover 

on perennial crop type classification in an agricultural region located in the Western Cape Province 

of South Africa. Four machine learning classifiers, namely: support vector machine (SVM), 

decision tree (DT), k-nearest neighbour (k-NN) and random forest (RF) were considered. Six 

experiments with different image sets were carried out. Cloud-free images were hand-selected for 

the first experiment while all images, including cloud-contaminated images, were used as input to 

the machine learning algorithms in the second experiment. These two experiments were 

undertaken to quantify the effect of cloud-contamination on crop classification accuracies. The 

remaining four experiments were carried out with different sets of monthly image composites. The 

four compositing techniques implemented were: mean compositing (MC), multidimensional 

analogue of the median (MEDOID), maximum normalised difference vegetation index 

(MaxNDVI) and minimum red (MinRed). The results show that when using all images – including 

cloud-contaminated images – overall accuracies of more than 75% were achieved. This is 

comparable to when different compositing approaches were implemented to reduce cloud-

contamination. This finding is important for operational implementations as the use of all images 

eliminates the need to manually identify and exclude cloud-contaminated images from 

classifications. We conclude that using all available Sentinel-2 images is effective and that 

generating monthly Sentinel-2 composites is not beneficial for perennial crop type mapping. 

4.2 INTRODUCTION 

Ensuring food security for a continually growing population is a global priority. The expansion of 

areas under cultivation is a common response to the increasing demand for food. However, 

expanding croplands compromises the sustainability of other natural resources and ecosystems 

(Siachalou, Mallinis & Tsakiri-Strati 2015). An alternative to agricultural expansion is 

intensification, which is often associated with changes in agricultural products and practices. 

Dependable, up-to-date and accurate cropland mapping is needed to monitor these dynamics and 
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to ensure sufficient crop production while maintaining sustainable land use practices (Löw & 

Duveiller 2014).  

Crop type information has traditionally been obtained through farmer communications, which in 

some instances is verified through field visits (Peña-Barragán et al. 2008). This approach is costly, 

time-consuming, and often produces inconsistent results (Peña et al. 2014). Consequently, 

agricultural censuses are not routinely carried out, particularly not in developing countries. For 

instance, in South Africa, the most recent national agricultural census was carried out in 2007 

(StatsSA 2007). Although invaluable, this census provided an incomplete profile of agricultural 

activities in South Africa as many crop types were excluded. To address this gap, the Western 

Cape Department of Agriculture (WCDoA) embarked on an initiative to routinely map all 

agricultural areas in the Western Cape Province. The census was first carried out in 2012/2013 and 

was recently updated (WCDoA 2018). This was performed by means of a combination of expert 

(visual) interpretations during aerial surveys (“flyovers”), stakeholder meetings, field 

questionnaires, and telephonic surveys – a very costly exercise. In addition, each census took 

several years to complete, which means that the information is outdated by the time it is released.  

Methods involving automated analyses of multi-temporal satellite imagery offer an objective, less 

tedious and more cost-effective alternative to agricultural censuses. The increasing availability of 

satellite sensors that provide imagery with high spatial, spectral and temporal resolution (for 

example Sentinel-2 satellite) offers new opportunities for the operational monitoring of 

agricultural activities at regional scales. Both single-date and multi-temporal techniques have been 

employed for mapping crop types with satellite imagery (Zheng et al. 2015; Inglada et al. 2016; 

Gilbertson & Van Niekerk 2017; Cai et al. 2018). In single-date approaches the spatial, spectral 

and temporal features of crop types are extracted from a single scene acquired during the growing 

season (Boryan et al. 2011; Yang, Everitt & Murden 2011), while multi-temporal approaches use 

a combination of imagery acquired throughout the growing season (Hao et al. 2015). While both 

approaches work relatively well for annual (field) crops, differentiating perennial crops (e.g. fruit 

orchards, vineyards, olive groves) is challenging due to their spectral similarity during long periods 

in the production cycle. For example, fruit trees such as apple, pear, peach and apricot trees may 

have very similar spectral characteristics during leave-on phenological stages. However, crop 

species are unlikely to have similar spectral characteristics throughout the entire production cycle, 

which makes multi-temporal classification suitable for fruit crop identification (Hochschild, Weise 

& Selsam 2005; Karjalainen, Kaartinen & Hyyppä 2008; Sabour, Lohmann & Soergel 2008).  

Although multi-temporal approaches have been successfully used to identify crop types (Hao et 

al. 2015; Gilbertson, Kemp & Van Niekerk 2017), the vulnerability of optical imagery to cloud 
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cover compromises the performance of classifiers (Inglada et al. 2016). Innovative methods are 

needed to reduce the effect of cloud cover (and shadow) for crop type mapping. As such, image 

compositing has been used in various remote sensing applications to minimise the effects of cloud 

cover (Hüttich et al. 2011; White et al. 2014; Kussul et al. 2015; Lück & Van Niekerk 2016; 

Higginbottom et al. 2018). In essence, image compositing is achieved by aggregating image 

observations and replacing contaminated observations with good observations from imagery 

acquired within a stipulated compositing period (Liu, Ozdogan & Zhu 2013; Lück & Van Niekerk 

2016).  

Various image compositing approaches have been used, with the maximum value composite 

(MVC) – also known as the maximum value normalised difference vegetation index (MaxNDVI) 

composite – being the most commonly used multi-temporal compositing method (Holben 1986; 

Yan & Roy 2014; Lück & Van Niekerk 2016).  MaxNDVI is computed by selecting the 

observation with the highest NDVI (Holben 1986) because it is assumed to represent a lower cloud 

fraction (Fraser, Massom & Michael 2009). MaxNDVI has been successfully used for vegetation 

monitoring (Kasischke et al. 1993; Diwakar et al. 1989; Potter & Brooks 2000; Du et al. 2001; 

Peters et al. 2002) but is unstable in areas with medium to low-density vegetation cover (Holben 

1986). Discrepancies due to the vulnerability of the NDVI to soil background variations and 

atmospheric effects have also been reported (Roy, Kucukural & Zhang 2010). Replacing NDVI 

by the soil-adjusted vegetation index (SAVI) (Huete 1988) and atmospheric resistant vegetation 

index (ARVI) to account for these limitations (Kaufman & Tanre 1992) was not completely 

effective. An alternative to vegetation index-based approaches is the minimum red value (MinRed) 

(D'Iorio 1991) image compositing technique. MinRed selects the minimum red band reflectance, 

as the reflectance of clouds in the red band is significantly higher than that of vegetation. MinRed 

thus minimises the probability of selecting cloud-contaminated pixel values (Qi & Kerr 1997). 

Luo, Trishchenko & Khlopenkov (2008) evaluated MinRed and found that, although it was 

successful in eliminating clouds, it retained shadow-contaminated pixels in the final composite.  

According to Vancutsem et al. (2007), selecting a single extreme value (e.g. minimum or 

maximum) may favour specific atmospheric and geometric conditions, which can result in spatial 

inconsistencies in the composites. An alternative is to make use of multiple values to identify 

uncontaminated observations. For instance, Lück & Van Niekerk (2016) combined different image 

compositing approaches, including MaxNDVI and MinRed, to develop a rule-based image 

compositing technique. The disadvantage of this approach is that a pre-classification is required to 

identify cloud-contaminated pixels and land cover classes to inform the selection of the appropriate 

values, which is a difficult and error-prone undertaking. As an alternative, the mean compositing 
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(MC) approach, averages all reflectance values per pixel and per spectral band within the specified 

compositing period (Vancutsem et al. 2007). Hüttich et al. (2011) found that MC was consistent 

and easy to apply when compared to other algorithms. Brems, Lissens & Veroustraete (2000) used 

the median composite of fuzzy multispectral estimate (MC-FUME) method to create 10-day 

composites of NOAA-AVHRR imagery. Unlike MC, MC-FUME uses the median value of the 

estimated top-of-canopy reflectance values to generate image composites. Yan & Roy (2014) also 

used median values in the web-enabled Landsat data (WELD) approach to generate annual 

composites of Landsat ETM+ imagery. Similarly, Flood (2013) employed a multidimensional 

analogue of the median (MEDOID) algorithm to select uncontaminated observations. From these 

results, it seems that the use of the centre (median) of a multivariate set of values to generate a 

composite is advantageous as it is less sensitive to outliers. However, the use of the median value 

is only effective when the number of uncontaminated observations exceeds those that are 

contaminated.  

According to Inglada et al. (2015), imagery with high spatial and temporal resolution is needed for 

the accurate differentiation of crop types. The simultaneous operation of Sentinel-2A and -2B 

provides 10 m (spatial) resolution imagery at a revisit frequency of five days. Depending on the 

region of interest, up to four images can be collected within 10 days (Vuolo et al. 2018). In 

addition, the imagery has a relatively high spectral resolution, with 13 bands including three red-

edge and two shortwave infrared (SWIR) bands (Delegido et al. 2010). These sensor and orbit 

characteristics provide an unprecedented combination of high spectral, temporal and spatial 

resolution imagery, at no cost to end-users, which makes it ideal for operational crop type mapping 

at field-level (Chapter 3).  

Although many studies have evaluated different compositing techniques on MODIS, AVHRR and 

Landsat imagery, not much is known about how effective they will be for compositing Sentinel-2 

imagery. To the best of our knowledge, the impact of cloud cover and using different compositing 

techniques on crop type differentiation with machine learning has not been evaluated before. This 

study thus investigates the value of four popular image compositing techniques for perennial crop 

type classification in a Mediterranean region within the Western Cape Province of South Africa. 

Crop type classification results when six different multi-temporal Sentinel-2 datasets are used as 

input to four machine learning classifiers (SVM, DT, RT, and k-NN) are compared. The first 

dataset (Dataset 1) consists of cloud-free images selected based on a crop calendar, while the 

second (Dataset 2) consists of all available images (including cloud-contaminated images). The 

rest of the datasets consist of monthly composites generated using the MC (Dataset 3), MEDOID 

(Dataset 4), MaxNDVI (Dataset 5), MinRed (Dataset 6) approaches. The results are interpreted in 
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the interest of developing an operational (automated) solution for crop type mapping in the 

Western Cape.  

4.3 MATERIALS AND METHODS 

4.3.1 Study site 

This study was conducted in the lower west coast region of South Africa (Figure 4.1). The area, 

which is located about 50 km north of Cape Town, was chosen owing to the diversity of perennial 

crops cultivated in the region. The site has a Mediterranean climate, which is characterised by 

warm and dry summers, and a cool and wet winter season (Malan 2016). The area receives an 

average annual rainfall of 550 mm, with a minimum temperature of 11°C and a maximum 

temperature of 22⁰ C (Tererai et al. 2015). A variety of crops are grown in the area, with the most 

common perennial crops being pome fruits (apple and pear), citrus fruits (orange, lime, lemon and 

tangerine), stone fruits (apricot, olive, peach and plum), grapes (table and wine grapes), tree fruits 

(pomegranate, persimmon and guava) and planted pastures (WCDoA 2018). The study was 

undertaken during the 2017/2018 growing season. 

 

Figure 4.1 Location of the study site in the Western Cape, South Africa 
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4.3.2 Satellite imagery acquisition and preparation 

All available Sentinel-2A and -2B images captured between June 2017 and March 2018 were 

sourced from the Sentinel Hub (https://www.sentinel-hub.com/). The period was chosen to 

coincide with a typical growth cycle of perennial crops in the study area. Data preparation involved 

resampling the 20 m spectral bands to 10 m (Immitzer, Vuolo & Atzberger 2016). All images were 

pre-processed at Level 1C, which includes radiometric and geometric corrections 

(orthorectification and spatial registration on a global reference system with sub-pixel accuracy). 

Figure 4.2 presents the number cloud-free images versus cloud-contaminated images per month.  

 

Figure 4.2 Number of cloud-free images versus the number of cloud-contaminated images 

collected for each month 

4.3.3 In situ data collection and field delimitation 

A geographical information system (GIS) vector-based crop type boundary dataset containing 

polygons of agricultural fields was obtained from the Western Cape Department of Agriculture. 

These field boundaries were used as objects (basic units for classification). A stratified random 

sampling technique was used to select 945 perennial crop fields, which were subsequently used 

for training and validating the classifiers. The crop types and number of samples per class are 

given in Table 4.1. 
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Table 4.1 The number of samples per class 

Crop type  Sub-class  Number of samples/crop type  

Citrus fruit  Orange, Lime, Lemon, Naartjie  114 

Pome fruit  Apple & Pear  94 

Stone fruit   Apricot, Olive, Peach, Plum, Nectarine  100 

Exotic fruit  Pomegranate, Persimmon, Guava  60 

Planted pastures    326 

Grapes  Table grapes, Wine grapes  251 

 

4.3.4 Image feature set development 

23 features (per image date) were generated from the Sentinel-2 bands (Table 4.2). The coastal 

aerosol (Band 1), water vapour (Band 9) and SWIR cirrus (Band 10) bands were not included in 

the classifications, as they were reported by Immitzer, Vuolo & Atzberger (2016) and Inglada et 

al. (2016) to be unsuitable for crop type classification. Six vegetation indices (VIs) (Table 4.2) 

commonly used in vegetation studies were derived using the equations in Table 4.3. Homogeneity, 

dissimilarity and entropy texture features measuring pixel uniformity and disorder were also 

calculated and included in the classifications (Schmedtmann & Campagnolo 2015). A principal 

component analysis (PCA) was performed on all spectral bands per image date, and the first four 

principal components (PCs) were retained as recommended by Gilbertson, Kemp & Van Niekerk 

(2017). Mean values for all spectral features were calculated for each agricultural field. 

Table 4.2 Features used as input for classifications (refer to Table 4.3 for the full names, formulae 

and bands used to compute each feature) 

Variable source Features 

 

Spectral bands 

 Blue, Green, Red, Vegetation red-edge1, Vegetation red-edge2, 

 Vegetation red-edge3, NIR, Narrow NIR, SWIR1, SWIR2 

Spectral indices  ARVI, GNDVI, IPVI, NDVI, RVI, SAVI 

Textural features  Dissimilarity, Entropy, Homogeneity 

Image transforms  PC1, PC2, PC3, PC4 
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Table 4.3 Equations used to calculate the vegetation indices considered in the classifications 

Name  Index  Formulation  Source 

Atmospherically resistant vegetation 
index 

 

 

ARVI  𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
−

𝑦 (𝑅𝐸𝐷 − 𝐵𝐿𝑈𝐸)

𝑦(𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸)
 

 Kaufman & Tanre 
(1992) 

Green normalised vegetation 
difference index 

 

 

GNDVI  𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

 Gitelson & Merzlyak 
(1998) 

 
Normalised difference vegetation 
index 

 
 

 
NDVI 

  

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

  
Rouse (1974) 

Infrared percentage vegetation index  
 

IPVI  1

2
𝑁𝐷𝑉𝐼 + 1 

 Crippen (1990) 

Ratio vegetation index   RVI  𝑁𝐼𝑅

𝑅𝐸𝐷
 

 Jordan (1969) 

Soil-adjusted vegetation index  SAVI  

 
(1 + 𝐿) =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
 

 Huete (1988) 

 

4.3.5 Experimental design 

The experimental design is shown in Figure 4.3. The first two experiments involved undertaking 

the classifications using non-composited images, with Experiment 1 using selected cloud-free 

images only, while Experiment 2 involved using all available images (including those 

contaminated by clouds). For the last four experiments, monthly composites were generated using 

the following approaches: 

 Mean compositing (Vancutsem et al. 2007); 

 Median compositing (Flood 2013); 

 MaxNDVI (Roy, Kucukural & Zhang 2010); 

 MinRed (Liang, Li & Wang 2012). 

The supervised learning and image classification environment (SLICE) software, developed by 

the Centre for Geographical Analysis (CGA) at Stellenbosch University, was used for 

classification and accuracy assessment (Myburgh & Van Niekerk 2013). SLICE includes several 

classification algorithms, namely: SVM, k-NN, DT, RF and maximum likelihood (maxlike). The 

ML and k-NN classifiers were implemented using the Open CV 2.2 libraries (Bradski 2000), while 

Libsvm 3.0 was used to implement the SVM classifier (Chang 2011). The parameters for DT and 

RF were based on the guidelines provided in the Open CV library documentation. The Geospatial 

data abstraction library (GDAL) was used to manipulate the raster files and shapefiles. (See 
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Myburgh & Van Niekerk (2013) for an incisive description of how the various classifiers were 

configured). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Experimental design for assessing the value of image compositing for crop type 

mapping 

A 3:2 sample split ratio was employed for accuracy assessment, i.e. 40% of the samples were 

randomly selected and excluded from classifier training. These samples were then used to validate 

the classifications. The same set of training and validation samples were used for all the 

experiments. Overall accuracy (OA) and the kappa coefficient (K) was calculated for every 

classification. McNemar’s test, ANOVA and t-tests (as implemented in Microsoft Excel) were 

used for assessing the statistical significance of the accuracies obtained from the experiments, as 

recommended by Foody & Mathur (2004). The alpha values for ANOVA and t-tests were set to 

0.05, while the alpha value for McNemar’s test was set to 1.96. 

4.4 RESULTS 

The results of the six experiments are summarised in Table 4.4. Using all images as input to the 

classifiers, including those contaminated by clouds (Experiment 2), recorded the highest OA 

among all of the classifiers (mean OA = 72.6%), followed by using selected cloud-free images 

Experiment 
1 

Classification 
based on 
cloud-free 

images 

Image 
resampling 

Feature 
extraction 

Experiment 
5 

Classification 
based on 
MaxNDVI 

composites 

Experiment 
4  

Classification 
based on 
MEDOID 

composites 

Experiment 
3 

Classification 
based on MC 

image 
composites 

Accuracy assessment and significance 
testing 

Sentinel-2 
imagery 

MaxNDVI 
compositing 

MinRed 
compositing 

Mean 
compositing 

MEDOID 
Compositing 

Image 
classification 

Experiment 
2 

Classification 
based on all 

available 
images 

Experiment 
6 

Classification 
based on 
MinRed 

composites 
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(Experiment 1) (mean OA = 72.4%). The use of median composites (Experiment 4) yielded the 

lowest accuracies (mean OA = 70.3%). According to a two-tailed t-test, the differences in mean 

OAs obtained with the different experiments are statistically insignificant (p > 0.683). However, 

the 2.3% range in mean OAs suggests that different approaches can have an impact on accuracies. 

Table 4.4 Overall accuracies (OA), mean OAs and standard deviations (SD) for all experiments 

Experiment SVM RF k-NN DT AVG SD 

 OA         K OA         K OA         K OA          K OA          K OA          K 

1 77.5       0.70 77.2       0.70 73.7       0.70 61.2       0.49 72.4       0.64 6.66       0.09 

2 81.0       0.75 77.2       0.70 69.2       0.60 63.3       0.52 72.6       0.64 6.88       0.08 

3 78.5       0.72 75.8       0.68 72.1       0.63 62.7       0.52 72.2       0.63 5.97       0.07 

4 77.2       0.70 75.8       0.68 61.1       0.57 67.2       0.49 70.3       0.61 6.55       0.08 

5 76.7       0.69 78.0       0.71 67.1       0.57 63.1       0.52 71.2       0.62 6.30       0.07 

6 77.8       0.71 73.2       0.64 67.6       0.58 65.7       0.55 71.0       0.62 4.76       0.06 

AVG 78.1       0.71 76.2       0.68 68.4       0.60 63.8       0.51   

SD 1.53       0.02 1.70       0.02 4.42       0.02 0.01   

 

Of the compositing methods, MC (Experiment 3) yielded the highest accuracy (mean OA = 

72.2%), while MEDOID produced the least accurate classification (mean OA = 70.3%). Figure 

4.4 and Figure 4.5 presents the results achieved when the different compositing approaches are 

used under different conditions (i.e. densely vegetated vs. sparsely vegetated). A visual inspection 

of Figure 4.5 shows the ability of MC to eliminate clouds. According to what is shown in Figure 

4.4, the MC approach retained some clouds. From visually inspecting both Figure 4.4 and Figure 

4.5, the MC approach seems to perform poorly over areas with a high frequency of cloud cover. 

The MEDOID approach, on the other hand, was more successful with removing clouds/shadows 

over sparsely vegetated areas (Figure 4.5) but was inconsistent over densely vegetated areas 

(Figure 4.4). On the contrary, the MaxNDVI performed relatively well over vegetated areas 

(Figure 4.4) but performed poorly over sparsely vegetated areas (Figure 4.5). While the MinRed 

was able to eliminate clouds in all instances, Figure 4.4 & Figure 4.5 show that this approach 

retains cloud shadows. It is clear from both Figure 4.4 & Figure 4.5 that the efficacy of the different 

compositing approaches for eliminating clouds varies with the surface type and cloud cover 

characteristics and intensity. 
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Figure 4.4 Individual images of a densely vegetated area acquired on (a) 3rd, (b), 5th and (c) 10th 

July 2017 – with (a) containing cloud-contaminated pixels – compared to image composites 

generated with (d) MEDOID, (e) MC, (f) MaxNDVI and (g) MinRed. 

 
Figure 4.5 Individual images of a sparsely vegetated area acquired on (a) 12th, (b) 17th and 27th 

December 2017 – with (b) containing cloud-contaminated pixels – compared to image composites 

generated with (d) MEDOID, (e) MC, (f) MaxNDVI and (g) MinRed. 
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Overall, the most accurate classification was achieved in Experiment 2, using SVM (OA = 81%), 

while the least accurate classification was achieved in Experiment 4, using the k-NN classifier. 

The superiority of SVM was observed across all experiments, with the exception of Experiment 5, 

in which RF achieved a slightly (1.3%) higher OA. Generally, SVM (mean = 78.1%) and RF 

(mean = 76.2%) outperformed the other classifiers in all experiments (Table 4.4) with only 

marginal (2%) differences between the two classifiers. K-NN and DT obtained the lowest OAs, 

recording average OAs of 69.6% and 63.3% respectively. The difference in the classification 

accuracy of SVM and RF in comparison to that of k-NN and DT is statistically significant (two-

tailed t-test p-values < 0.004).  

Based on the confusion matrices of SVM and RF, grapes and stone fruits were the most frequently 

misclassified crop types (mean PA < 70% for both classes) (Table 4.5). The confusion of grapes 

and stone fruits were noted in all experiments, with the exception of Experiment 5 (MaxNDVI) in 

which stone fruits (PA=53.1%) were misclassified much more frequently than grapes (PA=72%) 

when SVM was used as the classification algorithm. At closer inspection, it was observed that the 

low PA of grapes was due to the misclassification of some vineyards as planted pastures, while 

several stone fruit orchards were misclassified as pome fruit orchards. Planted pastures were the 

least confused (mean PA > 90%), followed by pome fruits (mean PA > 80%). A slight increase in 

the confusion of citrus and exotic fruits was observed when RF was used as the classification 

algorithm, resulting in lower PAs compared to those achieved with SVM (Table 4.5). 

Table 4.5 Crop specific producer’s accuracies of the two best-performing classifiers (SVM and 

RF) 

 SVM RF 

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp1 Exp2  Exp3 Exp4 Exp5 Exp6 AVG 

Citrus fruit 84.7 82.6 82.6 84.7 80.4 80.4 78.2 76 73.9 73.9 73.9 76 75.5 

Grapes 66 68 65 65 72 69 69 71 71 68 73 69 69.7 

Pasture 91.1 99.1 95.1 91.1 91.1 91.9 94.3 94.3 92.7 96.7 93.5 91.1 94.7 

Pome fruit 89.4 81.5 78.3 78.3 65.7 71 89.4 89.4 81 75.6 86.8 76.3 83.8 

Stone fruit 51 59.5 59.5 61.7 53.1 61.7 44.6 38.2 42.5 42.5 48.9 34 41.9 

Exotic fruit 68.4 78.9 78.9 68.4 78.9 78.9 63.1 73.6 68.4 68.4 68.4 63.1 68.3 

 

4.5 DISCUSSION 

None of the experiments stood out as being superior for identifying perennial crops. However, 

using all available images, inclusive of cloud-contaminated images, (Experiment 2) produced 

slightly better results (72.6%) compared to the other scenarios. Although the differences in the 
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mean OAs of the experiments were within a narrow margin (2.3%) and insignificant, this finding 

is encouraging as it suggests that the considered algorithms (particularly SVM and RF) were 

insensitive to the noise caused by cloud-contamination and that – within our study area – complex 

pre-classification procedures may not be required for operational crop type mapping. This is in 

agreement with Rodriguez-Galiano et al. (2012), who noted the ability of machine learning 

classifiers to handle noisy data. For instance, RF uses a subset of labelled samples and variables 

to identify features that contribute most to an accurate classification. It is likely that cloud-

contaminated variables are excluded from (or are considered less important in) the classification 

outputs. Conversely, SVM uses an optimised subsample of labelled instances to define a 

hyperplane (Zheng et al. 2015). Because these support vectors are located at the edges of class 

separation in feature space (Brown, Lewis & Gunn 2000), it is unlikely that they would include 

cloud-contaminated samples (because cloud-contaminated samples would have similar spectral 

vectors) (Zheng et al. 2015). Also, both SVM and RF are robust against high feature 

dimensionality; as a result, these classifiers performed well using more than 880 features as input 

(Experiment 2). This corresponds with Gilbertson & Van Niekerk (2017) who also reported SVM 

and RF to be superior to other classifiers under high feature dimensionality.  

Generally, image compositing did not have any positive impact on accuracies (mean OAs of 

Experiments 3–6 were 2.1% lower than the mean OAs of Experiments 1 and 2). The poor 

performance of the compositing techniques is partially attributed to the use of a monthly 

compositing interval, as it may have been inadequate to capture the phenological characteristics 

of the targeted crops. The five-day temporal resolution provided by the Sentinel-2 constellation 

mission limits the total number of available images to four per month (depending on the location 

of the area of interest), which makes the implementation of shorter compositing periods unviable 

(i.e. the risk that all observations are cloud-contaminated becomes too high). This was confirmed 

by a qualitative assessment of the resulting image composites, which revealed evidence of cloud-

contamination in several cases. Cloud shadows were also not removed in all cases. For example, 

when the image composites of July 2017 (a period of high vegetation cover due to relatively high 

rainfall) and December 2017 (dry period with reduced vegetation cover) are compared, it is clear 

that MaxNDVI performed well over vegetated areas, but failed in sparsely vegetated areas. Our 

results show that MinRed does not remove cloud shadows, which is in agreement with Liang, Li 

& Wang (2012). MC performed poorly in areas where the frequency of cloud cover was high. This 

is not unexpected, given that the technique simply averages all reflectance values over the 

compositing period. It is also well known that averaging is sensitive to outliers (very high and low 

values due to clouds and shadows respectively). This finding concurs with Flood (2013), who 

reported that MC was unable to successfully reduce the effects of clouds.  
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Grapes and stone fruits were frequently misclassified (Table 4.5). According to Lundy (2017), 

cover crops such as rye, oats, lupins and peas are planted in-between vine rows to add organic 

matter, supplement nitrogen and other nutrients, and to aerate soils. Cover crops also help to 

suppress weed growth, which reduces the need for herbicides. Cover crops have very different 

spectral and phenological characteristics to those of vines and may have negatively influenced 

classifier performance. The misclassification of stone fruits is attributed to within-class variations 

in some of the classes. For example, apricots and olives are grouped in the stone fruit class, but 

olives flower between March and May while apricots flower between July and September (more 

or less the same time as pome fruits). These intra-class phenological differences may have 

negatively influenced the classification results. In addition, different farming practices and crop 

conditions likely also negatively influenced classification accuracies. Citrus and pasture were 

relatively well differentiated. PAs of more than 80% were achieved across all experiments using 

SVM. This is attributed to the distinct spectral and phenological characteristics of these classes 

(e.g. evergreen trees vs. grasses).   

Overall, the insignificant difference in mean OAs achieved by the different experiments 

undertaken in this study suggests that identifying cloud-free images prior to image classification 

does not improve classification accuracies. This finding is encouraging because manually 

identifying cloudy observations is not feasible in operational implementations. The ability of the 

machine learning algorithms, particularly SVM and RF, to identify crops using all available images 

(including those contaminated by clouds) is of great value for designing operational crop type 

mapping workflows. It also suggests that extensive pre-processing (e.g. image compositing) is not 

needed, which would reduce the computational expense and complexity of operational workflows, 

particularly when multi-temporal approaches are used over large areas. 

4.6 CONCLUSION 

This study evaluated the efficacy of four image compositing techniques for perennial crop type 

classification in an agricultural region located in the Western Cape Province of South Africa. The 

effect of cloud cover on crop classification accuracies was also evaluated. The results showed that 

the highest accuracies were obtained when the SVM and RF classifiers were applied to all available 

images, including those contaminated by clouds. This finding suggests that pre-assessing images 

prior to classification – to identify cloud-free images – is not necessary in our study area. In 

addition, it seems that there is no benefit in performing image compositing prior to classification. 

In fact, image compositing reduced the ability of the machine learning classifiers to differentiate 

between the targeted crop types. The most likely explanation for this finding is that compositing 

reduces the fidelity of the multi-temporal Sentinel-2 imagery, thereby reducing the ability of the 
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machine learning algorithms to detect subtle phenological changes. Visual inspections also 

revealed artefacts (noise) in the image composites. Although SVM and RF were able to effectively 

ignore cloud and cloud shadow observations when all the images were used as input (Experiment 

2), the spectral artefacts introduced by image compositing are more subtle (less distinct) and were 

likely regarded as uncontaminated observations by the classifiers. This would have had a negative 

effect on accuracies.  

Although the findings of this study provided new insights into the effect of cloud cover on crop 

type mapping using machine learning, the results should be interpreted within the context of 

Mediterranean climates where cloud cover is relatively infrequent, compared to other regions. The 

value of image compositing might be different in areas with higher cloud cover frequencies (e.g. 

the tropics). In such areas it may be of value to incorporate imagery from other satellites, such as 

Landsat, to increase temporal resolution. Another approach to improve classification accuracies 

would be to increase the number of labelled instances used for classifier training, but more work 

is needed to investigate the cost-benefits of increasing training set sizes for operational crop type 

mapping.  
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CHAPTER 5:  SYNTHESIS – TOWARDS OPERATIONAL CROP TYPE 

MAPPING WITH REMOTE SENSING  

This study is relevant because of the significant contribution of the agricultural sector to the 

economies of developing countries such as South Africa. Up-to-date crop type data is required for 

accurate crop production monitoring. Crop type information is necessary for estimating planted 

areas and crop yields, which are crucial for decisions relating to food security and the forecasting 

of commodity markets. Although various studies have successfully applied remote sensing 

techniques for mapping crop types, they often involve workflows that are not viable for use in 

operational map production systems through which crop type maps can be systematically and 

automatically generated. This chapter synthesizes and reflects on the findings of this study. The 

first section revisits the aim, objectives and research questions. The main findings of the study are 

then summarised and evaluated, after which limitations, recommendations and directions for 

further research are outlined. The chapter ends by presenting the conclusions drawn from the study. 

5.1.1 Revisiting aim and objectives 

The study aimed to evaluate the value of machine learning classifiers and multi-temporal Sentinel-

2 data for discriminating crop types grown in a Mediterranean climate in the Western Cape 

Province of South Africa. To realize this aim, the objectives were: review literature on remote 

sensing for crop type mapping (Objective 1); investigate the significance of image selection for 

crop type classification (Objective 2); assess classifier performance when only pre-harvest images 

are used as input (Objective 3); investigate the impact of cloud cover and image compositing on 

crop type classifications (Objective 4). 

The literature review (Chapter 2) focused on the application of optical remote sensing for 

classifying crop types, with specific emphasis on pre-processing and interpretation methods 

applied to remotely sensed imagery. Multi-temporal approaches for crop type mapping, image 

classification approaches, and measures used for assessing the accuracy of image classification 

results were also overviewed. It was concluded that multi-temporal approaches are most effective 

for crop type identification (Hao et al. 2015; Zheng et al. 2015; Gilbertson, Kemp & Van Niekerk 

2017), with several studies suggesting the use of Sentinel-2 imagery (Immitzer et al. 2016; Kussul 

et al. 2017; Veloso et al. 2017). However, the literature review revealed that very little is known 

about the efficacy of Sentinel-2 imagery for mapping both perennial and non-perennial crop types.  

Following the literature review, the value of image selection for crop type mapping (Objective 2) 

was investigated. This was achieved by comparing two different approaches based on 1) crop 

developmental stages and 2) the performance rank of individual images. Applying the two 
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approaches also enabled us to evaluate the efficacy of selecting images based on the performance 

of individual images as a possible alternative to the conventional way of image selection based on 

crop developmental stages (Hao et al. 2015). Objective 2 was accomplished by setting up 

Experiments 1–3, where Experiment 1 determined the five best-performing uni-temporal images 

within a specific growing season, which were used for crop classification in Experiment 2. In 

Experiment 3, five images based on crop developmental stages were selected, as recommended by 

Gilbertson, Kemp & Van Niekerk (2017). The two image selection approaches of Experiments 2 

and 3 were then compared with Experiment 4 (using the entire time-series) to assess the 

significance of image selection on crop type classification accuracies.  

The performance of machine learning classifiers when only pre-harvest images are used as input 

(Objective 3) was evaluated in Experiment 4, which was set up by incrementally adding images to 

the classification. This made it possible to assess the progression in classification accuracy as a 

function of time and the number of images. Objective 2 and 3 were both addressed in Chapter 3. 

While the second and third objectives focused on non-perennial crops, the fourth objective focused 

on perennial crops. This was addressed by Experiments 5 to 10 (Chapter 4), through which the 

effect of clouds and image compositing on crop classification accuracies was investigated. Four 

different image compositing techniques, namely: MC, MEDOID, MaxNDVI and MinRed were 

considered. 

5.1.2 Main findings of the study 

The results of Experiments 5 to 10 show that using all available images – including those 

contaminated by clouds – produced more accurate maps than when the image composites and 

hand-selected images were used as input. Image compositing was not beneficial for crop type 

classification accuracies. Image selection – based on a crop calendar or based on pre-assessments 

– did not have a significant influence on crop classification accuracies when compared to using 

either pre-harvest images only or the entire time-series. Although much research has been 

conducted on the feasibility of image selection for identifying crop types, no work has been done 

on the significance of image selection for mapping crop types. This is an important finding for 

operational crop type classifications as it warrants the use of all available images. However, it is 

important to note that these results are interpreted within the context of Mediterranean climates 

where cloud cover is relatively infrequent compared to other regions. The results might differ in 

areas with higher cloud cover frequencies (e.g. the tropics).  

While the use of multi-temporal imagery for classifying crop types is a common application in 

remote sensing, pre-harvest classification of crop types using high spatial and temporal resolution 
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imagery such as Sentinel-2 had not been explored prior to this study. The availability of crop type 

data before harvest is beneficial for commodity market forecasting, risk assessments, and food 

security monitoring. From the five classifiers evaluated, SVM and RF were the most effective in 

identifying non-perennial crop types pre-harvest (approximately eight weeks before harvest) in 

both study sites. 

Identifying and hand-selecting images unaffected by cloud cover is tedious and time-consuming. 

Experiments 5 and 6 evaluated the sensitivity of machine learning classifiers to noise introduced 

by clouds within the context of crop type mapping. The results show that machine learning 

classifiers – especially SVM and RF – were able to handle the noise introduced by cloudy 

observations; in fact, they performed better when cloud-affected images were included in the 

classifications. This agrees with the findings of others that both SVM and RF are robust against 

outliers (Myburg & Van Niekerk 2014; Zheng et al. 2015). It also has practical value for 

operational implementations as it suggests that in areas with cloud cover frequencies similar to the 

study area, the selection and assessment (crop calendar/performance ranking-based) of imagery 

pre-classification are not necessary. 

Much research has been done on the efficacy of machine learning for crop type mapping, but most 

of it focused on non-perennial crops (Gilbertson, Kemp & Van Niekerk 2017). This study found 

that, although perennial crop type differentiation is a complex task – given that many of the crops 

are spectrally and structurally similar – SVM and RF, coupled with Sentinel-2 imagery, is a viable 

solution for differentiating and mapping perennial crops.  

The main findings of this research are summarised as follows: 

 Image selection based on the performance ranking of uni-temporal images provides a 

viable alternative to the conventional approach of selecting images based on crop 

developmental stages. 

 There was no statistical difference between selecting specific images, using pre-harvest 

images only or using the entire time-series as input to the classifiers.  

 Images collected between August and September contributed the most to crop 

classification accuracies and produced the highest OAs, even as single images (> 79%). 

 The best pre-harvest crop type classifications were obtained using the SVM and RF 

algorithms. SVM and RF also yielded the most accurate crop type classifications when 

cloudy images were included, thus demonstrating their capability to handle noise. 
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 Machine learning classifiers based on Sentinel-2 imagery yielded reliable perennial crop 

type maps, despite the challenges introduced by the structural variations, different 

agronomic practices and spectral similarities among the targeted classes. 

5.1.3 Limitations, recommendations and suggestions for future research 

This research was undertaken in study sites representative of a Mediterranean climatic region 

characterised by winter rainfall and dry summers. The results of this study should be interpreted 

within this context and different results may emerge in other climatic regions. This is because the 

seasonal characterisation of a region has a direct impact on image availability due to factors such 

as cloud cover. It is consequently recommended that different climatic regions be considered in 

future studies. 

Several studies have proven the efficacy of image selection for crop type mapping (Peña-Barragán 

et al. 2011; Brown et al. 2013; Hao et al. 2015). However, these studies selected images based on 

crop calendars. Considering the effort involved in developing crop calendars for each targeted 

region, as well as the impact of seasonal weather variations on the accuracy of such calendars, 

alternative approaches for selecting images were evaluated. While both approaches proved to be 

sufficient for crop type classifications, the classification undertaken with the entire time-series (by 

incrementally adding images) revealed that images collected during the August/September 

(maturation) period have the greatest influence on classification accuracies. It was also noted that 

images collected between the end of harvest and the beginning of a new growing season do not 

contribute much to classification accuracies. It is therefore recommended that future studies 

independently assess the importance of images acquired during August/September. 

Although a monthly compositing period has been reported to be effective (Loveland et al. 2000; 

Friedl et al. 2010; Hüttich et al. 2011) to reduce cloud-contamination, the five-day revisit 

frequency of the Sentinel-2 imagery used in this research may be too low in areas or seasons with 

high frequencies of cloudy conditions. For instance, in this research, there were compositing 

periods with more cloudy observations than cloud-free images (e.g. November 2017 only had one 

cloud-free observation). This had a detrimental effect on the compositing techniques, especially 

MaxNDVI, which averages the reflectance values of all observations. More research is needed on 

combining Sentinel-2 imagery with other sources of imagery to increase the number of 

observations in compositing periods – as demonstrated by Xiong et al. (2017) and Skakun et al. 

(2017) using Landsat-8 imagery. 

During the period in which this study was undertaken, Sentinel-2 imagery was only available at 

1C processing level (top-of-atmosphere reflectance). In the interest of producing image composites 
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with minimal pre-processing (to simplify the image classification workflows), no further pre-

processing was undertaken prior to classifications. Future research should make use of the 

Sentinel-2 imagery at processing level 2A (top-of-canopy reflectance), which has recently been 

released. The use of this imagery would be beneficial for most of the image compositing 

techniques. Ideally, BRDF corrections should also be carried out prior to compositing. 

Advanced compositing techniques, such as rule-based image compositing implemented by Lück 

& Van Niekerk (2016), hold much potential for overcoming the limitations encountered with the 

image compositing techniques evaluated in this research. However, rule-based compositing adds 

a level of complexity to mapping workflows and more work is needed to make such techniques 

easy and implementable.  

5.1.4 Conclusion  

This study investigated the use of machine learning classifiers for crop type classification in two 

sites located in the Western Cape Province of South Africa. Four research objectives (1.3) were 

set to address the aim. The conclusions drawn from the study are that image selection based on the 

individual performance (ranking) of images offers a viable alternative to selecting images based 

on crop developmental stages. However, the additional computational cost of implementing such 

an approach may not warrant the marginal (and insignificant) accuracy improvements observed in 

this study. The findings of this study also suggest that the accuracy achieved when using an entire 

time-series can be as high as when a subset of hand-selected images is used. This suggests that 

image selection is not necessary for operational crop type mapping in the study area, which 

simplifies automated image processing workflows.  

The research also revealed that the non-perennial crops (and fallow fields) considered in this study 

can be effectively classified with images acquired from the beginning of June to before harvest 

(up to Sept). SVM and RF are recommended, as these classifiers performed consistently well in 

all the experiments.  

The study demonstrated that perennial crops (fruits and fallow fields) can be classified using all 

images, including those contaminated by clouds. This finding suggests that there is no need to 

exclude cloud-contaminated images, which would simplify the automation of image processing 

workflows.  

Crop type data and statistics are essential for continuous monitoring of agricultural activities and 

crop production (yields). This information is of particular importance in developing countries such 

as South Africa, where a large proportion of the population (often the poor) are dependent on 

agriculture for providing food and employment. The experiments undertaken in this study provide 
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a good foundation for operational implementations of crop type map production and will hopefully 

contribute to economic growth through the realization of more sustainable and cost-effective 

agricultural production.   
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APPENDIX A 
 

Supplementary material for Chapter 3 (Confusion matrices for the best-performing classification) 

Table A-1 Formulae used for calculating VIs, the respective names, used abbreviations as well as 

the bands for computation 

Name Index Formulation Bands Used 

Aerosol Free Vegetation 

Index (NIR, SWIR1) 

AFRI1 

 
𝑁𝐼𝑅 − 0.66

SWIR1

NIR + 0.66(SWIR1)
 

Band 8, Band 
11 

Aerosol Free Vegetation 

Index (NIR, SWIR2) 

AFRI2 

 
𝑁𝐼𝑅 − 0.66

SWIR2

NIR + 0.66(SWIR2)
 

Band 8, Band 
12 

Aerosol Free Vegetation 

Index (Narrow NIR, SWIR1) 

AFRI3 

 
𝑁𝑎𝑟𝑟𝑜𝑤𝑁𝐼𝑅 − 0.66

SWIR1

NIR8A + 0.66(SWIR1)
 

Band 8A, Band 
11 

Aerosol free vegetation                                   

Index (Narrow NIR, SWIR2) 

AFRI4 
𝑁𝑎𝑟𝑟𝑜𝑤𝑁𝐼𝑅 − 0.66

SWIR2

NIR8A + 0.66(SWIR2)
 

Band 8A,  Band 
12 

Enhanced Vegetation Index 

(NIR, Vegetation Red-
Edge1)                                                                                                                 

EVI1 

 
2.5

NIR−Red Edge1

(NIR+6Red−7.5Blue)+1
 

Band 8, Band5, 
Band2 

Enhanced Vegetation Index 

(NIR, Vegetation Red-
Edge2)                                                                                                                 

EVI2 

 
2.5

NIR − Red Edge2

(NIR + 6Red − 7.5Blue) + 1
 

Band 8, Band6, 
Band 2 

Enhanced Vegetation Index 

(NIR, Vegetation Red-
Edge3)                                                                                                                 

EVI3 

 
2.5

NIR − Red Edge3

(NIR + 6Red − 7.5Blue) + 1
 

Band8, Band7, 
Band2  

Enhanced Vegetation Index 

(Narrow NIR, Vegetation 
Red-Edge1)                                                                                                   

EVI4 

 
2.5

Narrow NIR − Red Edge1

(Narrow NIR + 6Red − 7.5Blue) + 1
 

Band8A, 
Band5, 

Band2 

Enhanced Vegetation Index 

(Narrow NIR, Vegetation 
Red-Edge2)                                                                                                   

EVI5 

 
2.5

Narrow NIR − Red Edge2

(Narrow NIR + 6Red − 7.5Blue) + 1
 

Band8A, 
Band6, Band2 

 

Enhanced Vegetation Index 

(Narrow NIR, Vegetation 
Red-Edge3)                                                                                                    

EVI6 

 
2.5

Narrow NIR − Red Edge3

(Narrow NIR + 6Red − 7.5Blue) + 1
 

Band8A, 
Band7, 

Band2 

Enhanced Vegetation Index 

(Narrow NIR, Red)                                                                                                                                  

EVI7 

 
2.5

Narrow NIR − Red 

(Narrow NIR + 6Red − 7.5Blue) + 1
 

Band8A, 
Band4, Band2 

 

Enhanced Vegetation Index 

(Narrow NIR, Vegetation 
Red-Edge3)                                                                                                    

EVI8 

 
2.5

Narrow NIR − Red Edge3 

(Narrow NIR + 6Red − 7.5Blue) + 1
 

Band8A, 
Band7, Band2 
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Normalised Difference 

Moisture Index (NIR, 
SWIR1)                                                                                                   

NDMI1 

 

 NIR − SWIR1 

 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 

Band8, Band11 

Normalised Difference 

Moisture Index (NIR, 
SWIR2)                                                                                                   

NDMI2 

 

NIR − SWIR2 

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
 

Band8, Band12 

 

Normalised Difference 

Moisture Index (Narrow NIR, 
SWIR1)                                                                                                   

NDMI3 

 

Narrow NIR − SWIR1

𝑁𝑎𝑟𝑟𝑜𝑤 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 

Band8, Band11 

 

Normalised Difference 

Moisture Index (Narrow NIR, 
SWIR2)                                               

NDMI4 

 

Narrow NIR − SWIR2

𝑁𝑎𝑟𝑟𝑜𝑤 𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
 

Band8, Band12 

 

Normalised Difference 
Vegetation Index (NIR, Red)                                               

NDVI1 

 

 NIR−RED

𝑁𝐼𝑅+𝑅𝐸𝐷
 Band8, Band4 

 

Normalised Difference 
Vegetation Index (NIR, Red)                                               

NDVI2 

 

 Narrow NIR−RED

𝑁𝑎𝑟𝑟𝑜𝑤 𝑁𝐼𝑅+𝑅𝐸𝐷
 Band8A, Band4 

Normalised Difference 
Vegetation Index (NIR, Red) 

NDVI3 

 

 NIR−Red Edge1

𝑁𝐼𝑅+𝑅𝑒𝑑 𝐸𝑑𝑔𝑒1
 Band8, Band5 

Normalised Difference 
Vegetation Index (NIR, 
Vegetation Red-Edge2) 

NDVI4 

 

 NIR−Red Edge2

NIR+Red Edge2
 Band8, Band6 

 

Normalised Difference 
Vegetation Index (NIR, 
Vegetation Red-Edge3) 

NDVI5 

 

 NIR−Red Edge3

NIR+Red Edge3
 Band8, Band7 

 

Normalised Difference 
Vegetation Index (NIR, 
Vegetation Red-Edge1) 

NDVI6 

 

 Narrow NIR − Red Edge1

Narrow NIR + Red Edge1
 

Band8A, Band5 

Normalised Difference 
Vegetation Index (NIR, 
Vegetation Red-Edge2) 

NDVI7 

 

 Narrow NIR−Red Edge2

Narrow NIR+Red Edge2
 Band8A, Band6 

Normalised Difference 
Vegetation Index (NIR, 
Vegetation Red-Edge3) 

NDVI8 

 

Narrow NIR−Red Edge3

Narrow NIR+Red Edge3
 Band8A, Band7 
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Figure A-1 Single-date Overall accuracies (OAs) and mean OAs (AVG) for all classifiers in Site 

A. 

 

 

Figure A-2 Single-date Overall accuracies (OAs) and mean OAs (AVG) for all classifiers in Site 

B. 
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Figure A-3 Multi-temporal rank-based image set Overall accuracies (OAs) and mean OAs (AVG) 

for all classifiers in Site A. 
 

 

Figure A-4 Multi-temporal rank-based image set Overall accuracies (OAs) and mean OAs (AVG) 

for all classifiers in Site B. 

Stellenbosch University https://scholar.sun.ac.za



 104 

 

Figure A-5   Multi-temporal hand-selected image set Overall accuracies (OAs) and mean OAs 

(AVG) for all classifiers in Site A. 

 

 

Figure A-6 Multi-temporal hand-selected image set Overall accuracies (OAs) and mean OAs 

(AVG) for all classifiers in Site B. 
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Figure A-7 Chronologic image addition Overall accuracies (OAs) and mean OAs (AVG) for all 

classifiers in Site A. 

 

 

Figure A-8 Chronologic image addition Overall accuracies (OAs) and mean OAs (AVG) for all 

classifiers in Site B. 
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Figure A-9 Classifier performance comparison between pre-harvest and the entire time-series in 

Site A. 

 

 

Figure A-10 Classifier performance comparison between pre-harvest and the entire time-series in 

Site A. 
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Table A-2 Confusion matrix for the best-performing classification results for Experiment 1 in Site 

A (4 August)  

SVM                 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 27 0 3 0 1 31 87.0968 12.9032 

Fallow 0 39 0 1 1 41 95.122 4.87805 

Lucerne medics 0 0 58 7 3 68 85.2941 14.7059 

Planted pastures 1 3 9 17 4 34 50 50 

Wheat 1 0 15 3 62 81 76.5432 23.4568 

TOTALS 29 42 85 28 71 255 
 

  

CA% 93.1034 92.8571 68.2353 60.7143 87.3239 
  

  

EC% 6.89655 7.14286 31.7647 39.2857 12.6761 
  

  

Overall Accuracy: 79.6078 
      

  

Overall Kappa: 0.73438 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 27 0 3 0 1 31 87.0968 12.9032 

Fallow 0 39 0 1 1 41 95.122 4.87805 

Lucerne medics 1 0 45 11 11 68 66.1765 33.8235 

Planted pastures 1 1 14 13 5 34 38.2353 61.7647 

Wheat 1 0 17 8 55 81 67.9012 32.0988 

TOTALS 30 40 79 33 73 255 
 

  

CA% 90 97.5 56.962 39.3939 75.3425 
  

  

EC% 10 2.5 43.038 60.6061 24.6575 
  

  

Overall Accuracy: 70.1961 
      

  

Overall Kappa: 0.612772 
      

  

  
       

  

DT 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 24 0 3 0 4 31 77.4194 22.5806 

Fallow 0 37 1 2 1 41 90.2439 9.7561 
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Lucerne medics 1 3 41 12 11 68 60.2941 39.7059 

Planted pastures 1 4 8 14 7 34 41.1765 58.8235 

Wheat 3 0 16 8 54 81 66.6667 33.3333 

TOTALS 29 44 69 36 77 255 
 

  

CA% 82.7586 84.0909 59.4203 38.8889 70.1299 
  

  

EC% 17.2414 15.9091 40.5797 61.1111 29.8701 
  

  

Overall Accuracy: 66.6667 
      

  

Overall Kappa: 0.56796 
      

  

  
       

  

RF 
 

ERROR MATRIX 
    

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 29 0 1 0 1 31 93.5484 6.45161 

Fallow 0 38 0 2 1 41 92.6829 7.31707 

Lucerne medics 0 0 55 8 5 68 80.8824 19.1176 

Planted pastures 1 4 8 15 6 34 44.1176 55.8824 

Wheat 1 0 15 5 60 81 74.0741 25.9259 

TOTALS 31 42 79 30 73 255 
 

  

CA% 93.5484 90.4762 69.6203 50 82.1918 
  

  

EC% 6.45161 9.52381 30.3797 50 17.8082 
  

  

Overall Accuracy: 77.2549 
      

  

Overall Kappa: 0.704419 
      

  

  
       

  

ML 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 26 0 5 0 0 31 83.871 16.129 

Fallow 0 38 1 2 0 41 92.6829 7.31707 

Lucerne medics 0 1 53 6 8 68 77.9412 22.0588 

Planted pastures 0 2 10 16 6 34 47.0588 52.9412 

Wheat 1 0 15 3 62 81 76.5432 23.4568 

TOTALS 27 41 84 27 76 255 
 

  

CA% 96.2963 92.6829 63.0952 59.2593 81.5789 
  

  

EC% 3.7037 7.31707 36.9048 40.7407 18.4211 
  

  

Stellenbosch University https://scholar.sun.ac.za



 109 

Overall Accuracy: 76.4706 
      

  

Overall Kappa: 0.692283               

 

Table A-3 Confusion matrix for the best-performing classification results for Experiment 2 in Site 

A (4 August – single best)  

SVM                 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 27 0 3 0 1 31 87.0968 12.9032 

Fallow 0 39 0 1 1 41 95.122 4.87805 

Lucerne medics 0 0 58 7 3 68 85.2941 14.7059 

Planted pastures 1 3 9 17 4 34 50 50 

Wheat 1 0 15 3 62 81 76.5432 23.4568 

TOTALS 29 42 85 28 71 255 
 

  

CA% 93.1034 92.8571 68.2353 60.7143 87.3239 
  

  

EC% 6.89655 7.14286 31.7647 39.2857 12.6761 
  

  

Overall Accuracy: 79.6078 
      

  

Overall Kappa: 0.73438 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 27 0 3 0 1 31 87.0968 12.9032 

Fallow 0 39 0 1 1 41 95.122 4.87805 

Lucerne medics 1 0 45 11 11 68 66.1765 33.8235 

Planted pastures 1 1 14 13 5 34 38.2353 61.7647 

Wheat 1 0 17 8 55 81 67.9012 32.0988 

TOTALS 30 40 79 33 73 255 
 

  

CA% 90 97.5 56.962 39.3939 75.3425 
  

  

EC% 10 2.5 43.038 60.6061 24.6575 
  

  

Overall Accuracy: 70.1961 
      

  

Overall Kappa: 0.612772 
      

  

  
       

  

DT 
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Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 24 0 3 0 4 31 77.4194 22.5806 

Fallow 0 37 1 2 1 41 90.2439 9.7561 

Lucerne medics 1 3 41 12 11 68 60.2941 39.7059 

Planted pastures 1 4 8 14 7 34 41.1765 58.8235 

Wheat 3 0 16 8 54 81 66.6667 33.3333 

TOTALS 29 44 69 36 77 255 
 

  

CA% 82.7586 84.0909 59.4203 38.8889 70.1299 
  

  

EC% 17.2414 15.9091 40.5797 61.1111 29.8701 
  

  

Overall Accuracy: 66.6667 
      

  

Overall Kappa: 0.56796 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 29 0 1 0 1 31 93.5484 6.45161 

Fallow 0 38 0 2 1 41 92.6829 7.31707 

Lucerne medics 0 0 55 8 5 68 80.8824 19.1176 

Planted pastures 1 4 8 15 6 34 44.1176 55.8824 

Wheat 1 0 15 5 60 81 74.0741 25.9259 

TOTALS 31 42 79 30 73 255 
 

  

CA% 93.5484 90.4762 69.6203 50 82.1918 
  

  

EC% 6.45161 9.52381 30.3797 50 17.8082 
  

  

Overall Accuracy: 77.2549 
      

  

Overall Kappa: 0.704419 
      

  

  
       

  

ML 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 26 0 5 0 0 31 83.871 16.129 

Fallow 0 38 1 2 0 41 92.6829 7.31707 

Lucerne medics 0 1 53 6 8 68 77.9412 22.0588 

Planted pastures 0 2 10 16 6 34 47.0588 52.9412 

Wheat 1 0 15 3 62 81 76.5432 23.4568 
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TOTALS 27 41 84 27 76 255 
 

  

CA% 96.2963 92.6829 63.0952 59.2593 81.5789 
  

  

EC% 3.7037 7.31707 36.9048 40.7407 18.4211 
  

  

Overall Accuracy: 76.4706 

            

  

  Overall Kappa: 0.692283 

 

Table A-4  Confusion matrix for the best-performing classification results for Experiment 3 in Site 

A (hand-selected five)  

SVM                 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 29 0 1 0 1 31 93.5484 6.45161 

Fallow 0 39 0 1 1 41 95.122 4.87805 

Lucerne medics 0 2 54 4 8 68 79.4118 20.5882 

Planted pastures 0 1 10 16 7 34 47.0588 52.9412 

Wheat 1 0 12 3 65 81 80.2469 19.7531 

TOTALS 30 42 77 24 82 255 
 

  

CA% 96.6667 92.8571 70.1299 66.6667 79.2683 
  

  

EC% 3.33333 7.14286 29.8701 33.3333 20.7317 
  

  

Overall Accuracy: 79.6078 
      

  

Overall Kappa: 0.733086 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 28 0 2 0 1 31 90.3226 9.67742 

Fallow 0 33 2 1 5 41 80.4878 19.5122 

Lucerne medics 0 1 58 4 5 68 85.2941 14.7059 

Planted pastures 1 4 10 15 4 34 44.1176 55.8824 

Wheat 1 0 10 8 62 81 76.5432 23.4568 

TOTALS 30 38 82 28 77 255 
 

  

CA% 93.3333 86.8421 70.7317 53.5714 80.5195 
  

  

EC% 6.66667 13.1579 29.2683 46.4286 19.4805 
  

  

Overall Accuracy: 76.8627 
      

  

Overall Kappa: 0.697722 
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DT 
       

  

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS 

PA% 

EO% 

Canola 29 0 2 0 0 31 93.5484 6.45161 

Fallow 0 35 1 1 4 41 85.3659 14.6341 

Lucerne medics 1 2 48 8 9 68 70.5882 29.4118 

Planted pastures 0 3 8 11 12 34 32.3529 67.6471 

Wheat 4 1 15 8 53 81 65.4321 34.5679 

TOTALS 34 41 74 28 78 255 
 

  

CA% 85.2941 85.3659 64.8649 39.2857 67.9487 
  

  

EC% 14.7059 14.6341 35.1351 60.7143 32.0513 
  

  

Overall Accuracy: 69.0196 
      

  

Overall Kappa: 0.597003 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 30 0 1 0 0 31 96.7742 3.22581 

Fallow 0 38 1 1 1 41 92.6829 7.31707 

Lucerne medics 0 2 56 4 6 68 82.3529 17.6471 

Planted pastures 0 3 8 18 5 34 52.9412 47.0588 

Wheat 1 0 11 3 66 81 81.4815 18.5185 

TOTALS 31 43 77 26 78 255 
 

  

CA% 96.7742 88.3721 72.7273 69.2308 84.6154 
  

  

EC% 3.22581 11.6279 27.2727 30.7692 15.3846 
  

  

Overall Accuracy: 81.5686 
      

  

Overall Kappa: 0.759641 
      

  

  
       

  

ML 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 20 5 5 0 1 31 64.5161 35.4839 

Fallow 0 36 0 0 5 41 87.8049 12.1951 

Lucerne medics 0 58 6 1 3 68 8.82353 91.1765 
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Planted pastures 0 31 1 1 1 34 2.94118 97.0588 

Wheat 0 68 1 3 9 81 11.1111 88.8889 

TOTALS 20 198 13 5 19 255 
 

  

CA% 100 18.1818 46.1538 20 47.3684 
  

  

EC% 0 81.8182 53.8462 80 52.6316 
  

  

Overall Accuracy: 28.2353 
      

  

Overall Kappa: 0.130908               

 

Table A-5 Confusion matrix for the best-performing classification results for Experiment 3 in Site 

A (6 April –3 Sept)  

SVM                 

Class Canola Fallow 
Lucern 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 28 0 1 0 2 31 90.3226 9.67742 

Fallow 0 39 0 1 1 41 95.122 4.87805 

Lucern medics 0 2 53 6 7 68 77.9412 22.0588 

Planted pastures 0 3 5 20 6 34 58.8235 41.1765 

Wheat 1 0 9 6 65 81 80.2469 19.7531 

TOTALS 29 44 68 33 81 255 
 

  

CA% 96.5517 88.6364 77.9412 60.6061 80.2469 
  

  

EC% 3.44828 11.3636 22.0588 39.3939 19.7531 
  

  

Overall Accuracy: 80.3922 
      

  

Overall Kappa: 0.745076 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucern 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 26 0 4 0 1 31 83.871 16.129 

Fallow 0 29 2 5 5 41 70.7317 29.2683 

Lucern medics 0 4 48 9 7 68 70.5882 29.4118 

Planted pastures 1 3 11 14 5 34 41.1765 58.8235 

Wheat 3 0 12 9 57 81 70.3704 29.6296 

TOTALS 30 36 77 37 75 255 
 

  

CA% 86.6667 80.5556 62.3377 37.8378 76 
  

  

EC% 13.3333 19.4444 37.6623 62.1622 24 
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Overall Accuracy: 68.2353 
      

  

Overall Kappa: 0.587313 
      

  

DT 
       

  

Class Canola Fallow 
Lucern 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 29 0 1 0 1 31 93.5484 6.45161 

Fallow 1 39 1 0 0 41 95.122 4.87805 

Lucern medics 2 1 45 9 11 68 66.1765 33.8235 

Planted pastures 1 2 6 17 8 34 50 50 

Wheat 3 1 17 11 49 81 60.4938 39.5062 

TOTALS 36 43 70 37 69 255 
 

  

CA% 80.5556 90.6977 64.2857 45.9459 71.0145 
  

  

EC% 19.4444 9.30233 35.7143 54.0541 28.9855 
  

  

Overall Accuracy: 70.1961 
      

  

Overall Kappa: 0.616534 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucern 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 30 0 1 0 0 31 96.7742 3.22581 

Fallow 0 38 1 1 1 41 92.6829 7.31707 

Lucern medics 0 2 52 8 6 68 76.4706 23.5294 

Planted pastures 1 3 6 18 6 34 52.9412 47.0588 

Wheat 1 0 12 3 65 81 80.2469 19.7531 

TOTALS 32 43 72 30 78 255 
 

  

CA% 93.75 88.3721 72.2222 60 83.3333 
  

  

EC% 6.25 11.6279 27.7778 40 16.6667 
  

  

Overall Accuracy: 79.6078 
      

  

Overall Kappa: 0.734991 
      

  

  
       

  

ML 
       

  

Class Canola Fallow 
Lucern 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 2 0 0 0 29 31 6.45161 93.5484 

Fallow 0 0 22 0 19 41 0 100 
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Lucern medics 0 0 6 0 62 68 8.82353 91.1765 

Planted pastures 0 0 4 0 30 34 0 100 

Wheat 0 0 0 0 81 81 100 0 

TOTALS 2 0 32 0 221 255 
 

  

CA% 100 -1.#IND 18.75 -1.#IND 36.6516 
  

  

EC% 0 -1.#IND 81.25 -1.#IND 63.3484 
  

  

Overall Accuracy: 34.902 
      

  

Overall Kappa: 0.056944               

 

Table A-6 Confusion matrix for the best-performing classification results for Experiment 1 in Site 

B (1 August)  

SVM 

                

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 34 0 1 0 0 35 97.1429 2.85714 

Fallow 0 43 0 0 0 43 100 0 

Lucerne medics 0 3 19 12 0 34 55.8824 44.1176 

Planted pastures 0 1 11 24 2 38 63.1579 36.8421 

Wheat 0 0 1 3 13 17 76.4706 23.5294 

TOTALS 34 47 32 39 15 167 
 

  

CA% 100 91.4894 59.375 61.5385 86.6667 
  

  

EC% 0 8.51064 40.625 38.4615 13.3333 
  

  

Overall Accuracy: 79.6407 
      

  

Overall Kappa: 0.740173 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 0 2 0 0 35 94.2857 5.71429 

Fallow 0 32 2 6 3 43 74.4186 25.5814 

Lucerne medics 1 1 18 11 3 34 52.9412 47.0588 

Planted pastures 0 4 12 16 6 38 42.1053 57.8947 

Wheat 0 1 3 3 10 17 58.8235 41.1765 

TOTALS 34 38 37 36 22 167 
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CA% 97.0588 84.2105 48.6486 44.4444 45.4545 
  

  

EC% 2.94118 15.7895 51.3514 55.5556 54.5455 
  

  

Overall Accuracy: 65.2695 
      

  

Overall Kappa: 0.561024 
      

  

  
       

  

DT 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 31 0 2 2 0 35 88.5714 11.4286 

Fallow 0 34 5 1 3 43 79.0698 20.9302 

Lucerne medics 0 2 17 14 1 34 50 50 

Planted pastures 1 2 14 19 2 38 50 50 

Wheat 2 1 1 3 10 17 58.8235 41.1765 

TOTALS 34 39 39 39 16 167 
 

  

CA% 91.1765 87.1795 43.5897 48.7179 62.5 
  

  

EC% 8.82353 12.8205 56.4103 51.2821 37.5 
  

  

Overall Accuracy: 66.4671 
      

  

Overall Kappa: 0.573785 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 32 0 3 0 0 35 91.4286 8.57143 

Fallow 0 43 0 0 0 43 100 0 

Lucerne medics 1 2 17 14 0 34 50 50 

Planted pastures 1 1 12 22 2 38 57.8947 42.1053 

Wheat 0 0 3 2 12 17 70.5882 29.4118 

TOTALS 34 46 35 38 14 167 
 

  

CA% 94.1176 93.4783 48.5714 57.8947 85.7143 
  

  

EC% 5.88235 6.52174 51.4286 42.1053 14.2857 
  

  

Overall Accuracy: 75.4491 
      

  

Overall Kappa: 0.686622 
      

  

  
       

  

ML 
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Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 28 1 0 0 6 35 80 20 

Fallow 0 29 2 12 0 43 67.4419 32.5581 

Lucerne medics 1 16 8 8 1 34 23.5294 76.4706 

Planted pastures 1 15 16 2 4 38 5.26316 94.7368 

Wheat 3 9 0 4 1 17 5.88235 94.1176 

TOTALS 33 70 26 26 12 167 
 

  

CA% 84.8485 41.4286 30.7692 7.69231 8.33333 
  

  

EC% 15.1515 58.5714 69.2308 92.3077 91.6667 
  

  

Overall Accuracy: 40.7186 
      

  

Overall Kappa: 0.23628               

 

Table A-7 Confusion matrix for the best-performing classification results for Experiment 2 in Site 

B (2 best – 1 & 11 August)  

SVM                 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 35 0 0 0 0 35 100 0 

Fallow 0 41 0 0 2 43 95.3488 4.65116 

Lucerne medics 2 3 21 7 1 34 61.7647 38.2353 

Planted pastures 0 1 12 22 3 38 57.8947 42.1053 

Wheat 1 0 2 2 12 17 70.5882 29.4118 

TOTALS 38 45 35 31 18 167 
 

  

CA% 92.1053 91.1111 60 70.9677 66.6667 
  

  

EC% 7.89474 8.88889 40 29.0323 33.3333 
  

  

Overall Accuracy: 78.4431 
      

  

Overall Kappa: 0.726105 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 1 1 0 0 35 94.2857 5.71429 

Fallow 0 32 1 7 3 43 74.4186 25.5814 

Lucerne medics 0 1 20 13 0 34 58.8235 41.1765 
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Planted pastures 1 3 14 17 3 38 44.7368 55.2632 

Wheat 0 0 2 3 12 17 70.5882 29.4118 

TOTALS 34 37 38 40 18 167 
 

  

CA% 97.0588 86.4865 52.6316 42.5 66.6667 
  

  

EC% 2.94118 13.5135 47.3684 57.5 33.3333 
  

  

Overall Accuracy: 68.2635 
      

  

Overall Kappa: 0.597499 
      

  

  
       

  

DT 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 0 0 2 0 35 94.2857 5.71429 

Fallow 0 39 1 2 1 43 90.6977 9.30233 

Lucerne medics 1 3 17 12 1 34 50 50 

Planted pastures 1 1 14 18 4 38 47.3684 52.6316 

Wheat 0 2 2 1 12 17 70.5882 29.4118 

TOTALS 35 45 34 35 18 167 
 

  

CA% 94.2857 86.6667 50 51.4286 66.6667 
  

  

EC% 5.71429 13.3333 50 48.5714 33.3333 
  

  

Overall Accuracy: 71.2575 
      

  

Overall Kappa: 0.63459 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 0 2 0 0 35 94.2857 5.71429 

Fallow 0 43 0 0 0 43 100 0 

Lucerne medics 1 2 18 13 0 34 52.9412 47.0588 

Planted pastures 1 0 11 24 2 38 63.1579 36.8421 

Wheat 1 0 3 2 11 17 64.7059 35.2941 

TOTALS 36 45 34 39 13 167 
 

  

CA% 91.6667 95.5556 52.9412 61.5385 84.6154 
  

  

EC% 8.33333 4.44444 47.0588 38.4615 15.3846 
  

  

Overall Accuracy: 77.2455 
      

  

Stellenbosch University https://scholar.sun.ac.za



 119 

Overall Kappa: 0.709366 
      

  

ML 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 31 0 3 1 0 35 88.5714 11.4286 

Fallow 0 36 0 7 0 43 83.7209 16.2791 

Lucerne medics 0 0 11 23 0 34 32.3529 67.6471 

Planted pastures 0 0 6 32 0 38 84.2105 15.7895 

Wheat 3 0 2 12 0 17 0 100 

TOTALS 34 36 22 75 0 167 
 

  

CA% 91.1765 100 50 42.6667 -1.#IND 
  

  

EC% 8.82353 0 50 57.3333 -1.#IND 
  

  

Overall Accuracy: 65.8683 
      

  

Overall Kappa: 0.558345               

 

Table A-8 Confusion matrix for the best-performing classification results for Experiment 3 in Site 

B (hand-selected five)  

SVM                 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 35 0 0 0 0 35 100 0 

Fallow 0 40 0 3 0 43 93.0233 6.97674 

Lucerne medics 0 2 17 13 2 34 50 50 

Planted pastures 1 1 6 28 2 38 73.6842 26.3158 

Wheat 0 0 1 2 14 17 82.3529 17.6471 

TOTALS 36 43 24 46 18 167 
 

  

CA% 97.2222 93.0233 70.8333 60.8696 77.7778 
  

  

EC% 2.77778 6.97674 29.1667 39.1304 22.2222 
  

  

Overall Accuracy: 80.2395 
      

  

Overall Kappa: 0.748471 
      

  

  
       

  

K-NN 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 31 0 2 0 2 35 88.5714 11.4286 
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Fallow 0 33 3 6 1 43 76.7442 23.2558 

Lucerne medics 1 2 15 14 2 34 44.1176 55.8824 

Planted pastures 0 6 9 18 5 38 47.3684 52.6316 

Wheat 1 2 0 2 12 17 70.5882 29.4118 

TOTALS 33 43 29 40 22 167 
 

  

CA% 93.9394 76.7442 51.7241 45 54.5455 
  

  

EC% 6.06061 23.2558 48.2759 55 45.4545 
  

  

Overall Accuracy: 65.2695 
      

  

Overall Kappa: 0.559827 
      

  

  
       

  

DT 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 0 1 0 1 35 94.2857 5.71429 

Fallow 0 40 1 1 1 43 93.0233 6.97674 

Lucerne medics 0 0 19 12 3 34 55.8824 44.1176 

Planted pastures 0 2 13 21 2 38 55.2632 44.7368 

Wheat 0 1 2 4 10 17 58.8235 41.1765 

TOTALS 33 43 36 38 17 167 
 

  

CA% 100 93.0233 52.7778 55.2632 58.8235 
  

  

EC% 0 6.97674 47.2222 44.7368 41.1765 
  

  

Overall Accuracy: 73.6527 
      

  

Overall Kappa: 0.664903 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 0 1 0 1 35 94.2857 5.71429 

Fallow 0 41 0 2 0 43 95.3488 4.65116 

Lucerne medics 1 3 18 12 0 34 52.9412 47.0588 

Planted pastures 1 1 10 24 2 38 63.1579 36.8421 

Wheat 0 0 1 3 13 17 76.4706 23.5294 

TOTALS 35 45 30 41 16 167 
 

  

CA% 94.2857 91.1111 60 58.5366 81.25 
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EC% 5.71429 8.88889 40 41.4634 18.75 
  

  

Overall Accuracy: 77.2455 
      

  

Overall Kappa: 0.70995 
      

  

  
       

  

ML 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 35 0 0 0 0 35 100 0 

Fallow 0 38 0 5 0 43 88.3721 11.6279 

Lucerne medics 7 2 10 15 0 34 29.4118 70.5882 

Planted pastures 7 2 4 25 0 38 65.7895 34.2105 

Wheat 11 1 0 5 0 17 0 100 

TOTALS 60 43 14 50 0 167 
 

  

CA% 58.3333 88.3721 71.4286 50 -1.#IND 
  

  

EC% 41.6667 11.6279 28.5714 50 -1.#IND 
  

  

Overall Accuracy: 64.6707 
      

  

Overall Kappa: 0.543081               

 

Table A-9  Confusion matrix for the best-performing classification results for Experiment 4 in Site 

B (3 April – 21 August)  

SVM                 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 35 0 0 0 0 35 100 0 

Fallow 0 41 1 0 1 43 95.3488 4.65116 

Lucerne medics 1 1 17 14 1 34 50 50 

Planted pastures 0 1 11 24 2 38 63.1579 36.8421 

Wheat 0 0 0 3 14 17 82.3529 17.6471 

TOTALS 36 43 29 41 18 167 
 

  

CA% 97.2222 95.3488 58.6207 58.5366 77.7778 
  

  

EC% 2.77778 4.65116 41.3793 41.4634 22.2222 
  

  

Overall Accuracy: 78.4431 
      

  

Overall Kappa: 0.725855 
      

  

  

K-NN 
       

  

  

Stellenbosch University https://scholar.sun.ac.za



 122 

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 33 0 0 0 2 35 94.2857 5.71429 

Fallow 0 36 3 3 1 43 83.7209 16.2791 

Lucerne medics 1 0 17 14 2 34 50 50 

Planted pastures 1 5 8 20 4 38 52.6316 47.3684 

Wheat 1 1 2 1 12 17 70.5882 29.4118 

TOTALS 36 42 30 38 21 167 
 

  

CA% 91.6667 85.7143 56.6667 52.6316 57.1429 
  

  

EC% 8.33333 14.2857 43.3333 47.3684 42.8571 
  

  

Overall Accuracy: 70.6587 
      

  

Overall Kappa: 0.628079 
      

  

  
       

  

DT 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 34 0 1 0 0 35 97.1429 2.85714 

Fallow 0 39 1 2 1 43 90.6977 9.30233 

Lucerne medics 0 1 14 16 3 34 41.1765 58.8235 

Planted pastures 1 0 12 23 2 38 60.5263 39.4737 

Wheat 0 1 3 3 10 17 58.8235 41.1765 

TOTALS 35 41 31 44 16 167 
 

  

CA% 97.1429 95.122 45.1613 52.2727 62.5 
  

  

EC% 2.85714 4.87805 54.8387 47.7273 37.5 
  

  

Overall Accuracy: 71.8563 
      

  

Overall Kappa: 0.641647 
      

  

  
       

  

RF 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 34 0 1 0 0 35 97.1429 2.85714 

Fallow 0 40 0 3 0 43 93.0233 6.97674 

Lucerne medics 0 3 19 12 0 34 55.8824 44.1176 

Planted pastures 1 0 9 26 2 38 68.4211 31.5789 

Wheat 1 0 2 3 11 17 64.7059 35.2941 
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TOTALS 36 43 31 44 13 167 
 

  

CA% 94.4444 93.0233 61.2903 59.0909 84.6154 
  

  

EC% 5.55556 6.97674 38.7097 40.9091 15.3846 
  

  

Overall Accuracy: 77.8443 
      

  

Overall Kappa: 0.716988 
      

  

  
       

  

ML 
       

  

Class Canola Fallow 
Lucerne 
medics 

Planted 
pastures Wheat TOTALS PA% EO% 

Canola 34 0 0 1 0 35 97.1429 2.85714 

Fallow 0 40 0 3 0 43 93.0233 6.97674 

Lucerne medics 2 5 13 14 0 34 38.2353 61.7647 

Planted pastures 4 3 5 26 0 38 68.4211 31.5789 

Wheat 8 1 0 8 0 17 0 100 

TOTALS 48 49 18 52 0 167 
 

  

CA% 70.8333 81.6327 72.2222 50 -1.#IND 
  

  

EC% 29.1667 18.3673 27.7778 50 -1.#IND 
  

  

Overall Accuracy: 67.6647 
      

  

Overall Kappa: 0.580831               

Stellenbosch University https://scholar.sun.ac.za



 124 

APPENDIX B 

 

Supplementary material for Chapter 4 (Classifications confusion matrices) 

Table B-1 Confusion matrix for classification results obtained with cloud-free images only 

(experiment 1). 

SVM                   

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 39 1 4 1 1 0 46 84.7826 15.2174 

Grapes 2 66 26 0 3 3 100 66 34 

Planted pastures 1 7 114 0 2 0 124 91.9355 8.06452 

Pome fruit 2 1 0 34 1 0 38 89.4737 10.5263 

Stone fruit 1 3 5 12 24 2 47 51.0638 48.9362 

Exotic fruit 0 1 0 1 4 13 19 68.4211 31.5789 

TOTALS 45 79 149 48 35 18 374 
 

  

CA% 86.6667 83.5443 76.5101 70.8333 68.5714 72.2222 
  

  

EC% 13.3333 16.4557 23.4899 29.1667 31.4286 27.7778 
  

  

Overall 
Accuracy: 77.5401 

       
  

Overall Kappa: 0.708081 
       

  

  
        

  

K-NN 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 37 0 5 0 4 0 46 80.4348 19.5652 

Grapes 4 64 26 1 4 1 100 64 36 

Planted pastures 0 15 106 1 1 1 124 85.4839 14.5161 

Pome fruit 2 0 0 26 5 5 38 68.4211 31.5789 

Stone fruit 1 3 6 8 29 0 47 61.7021 38.2979 

Exotic fruit 1 2 1 1 0 14 19 73.6842 26.3158 

TOTALS 45 84 144 37 43 21 374 
 

  

CA% 82.2222 76.1905 73.6111 70.2703 67.4419 66.6667 
  

  

EC% 17.7778 23.8095 26.3889 29.7297 32.5581 33.3333 
  

  

Overall 
Accuracy: 73.7968 

       
  

Overall Kappa: 0.65976 
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DT 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 30 1 3 3 5 4 46 65.2174 34.7826 

Grapes 2 56 26 3 12 1 100 56 44 

Planted pastures 1 15 101 3 2 2 124 81.4516 18.5484 

Pome fruit 5 3 2 18 7 3 38 47.3684 52.6316 

Stone fruit 3 9 2 14 16 3 47 34.0426 65.9574 

Exotic fruit 2 3 0 2 4 8 19 42.1053 57.8947 

TOTALS 43 87 134 43 46 21 374 
 

  

CA% 69.7674 64.3678 75.3731 41.8605 34.7826 38.0952 
  

  

EC% 30.2326 35.6322 24.6269 58.1395 65.2174 61.9048 
  

  

Overall 
Accuracy: 61.2299 

       
  

Overall Kappa: 0.499663 
       

  

  
        

  

RF 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 36 2 4 3 1 0 46 78.2609 21.7391 

Grapes 2 69 25 0 1 3 100 69 31 

Planted pastures 0 7 117 0 0 0 124 94.3548 5.64516 

Pome fruit 2 0 0 34 2 0 38 89.4737 10.5263 

Stone fruit 3 9 2 11 21 1 47 44.6809 55.3191 

Exotic fruit 0 3 1 1 2 12 19 63.1579 36.8421 

TOTALS 43 90 149 49 27 16 374 
 

  

CA% 83.7209 76.6667 78.5235 69.3878 77.7778 75 
  

  

EC% 16.2791 23.3333 21.4765 30.6122 22.2222 25 
  

  

Overall 
Accuracy: 77.2727 

       
  

Overall Kappa: 0.702861                 
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Table B-2 Confusion matrix for classification results obtained with all images including cloud-

contaminated images (Experiment 2). 

SVM                   

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 38 3 3 0 2 0 46 82.6087 17.3913 

Grapes 2 68 26 0 0 4 100 68 32 

Planted pastures 0 0 123 0 1 0 124 99.1935 0.806452 

Pome fruit 2 2 0 31 2 1 38 81.5789 18.4211 

Stone fruit 0 4 4 11 28 0 47 59.5745 40.4255 

Exotic fruit 0 2 0 1 1 15 19 78.9474 21.0526 

TOTALS 42 79 156 43 34 20 374 
 

  

CA% 90.4762 86.0759 78.8462 72.093 82.3529 75 
  

  

EC% 9.52381 13.9241 21.1538 27.907 17.6471 25 
  

  

Overall Accuracy: 81.016 
       

  

Overall Kappa: 0.752036 
       

  

  
        

  

K-NN 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 37 3 3 1 1 1 46 80.4348 19.5652 

Grapes 5 56 27 4 2 6 100 56 44 

Planted pastures 3 15 101 1 4 0 124 81.4516 18.5484 

Pome fruit 0 1 3 25 9 0 38 65.7895 34.2105 

Stone fruit 0 3 8 11 25 0 47 53.1915 46.8085 

Exotic fruit 0 2 0 1 1 15 19 78.9474 21.0526 

TOTALS 45 80 142 43 42 22 374 
 

  

CA% 82.2222 70 71.1268 58.1395 59.5238 68.1818 
  

  

EC% 17.7778 30 28.8732 41.8605 40.4762 31.8182 
  

  

Overall Accuracy: 69.2513 
       

  

Overall Kappa: 0.602392 
       

  

  
        

  

DT 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 
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Citrus fruit 34 1 4 4 2 1 46 73.913 26.087 

Grapes 1 61 23 3 6 6 100 61 39 

Planted pastures 2 20 100 1 1 0 124 80.6452 19.3548 

Pome fruit 6 4 1 16 9 2 38 42.1053 57.8947 

Stone fruit 0 13 2 13 16 3 47 34.0426 65.9574 

Exotic fruit 3 2 0 1 3 10 19 52.6316 47.3684 

TOTALS 46 101 130 38 37 22 374 
 

  

CA% 73.913 60.396 76.9231 42.1053 43.2432 45.4545 
  

  

EC% 26.087 39.604 23.0769 57.8947 56.7568 54.5455 
  

  

Overall Accuracy: 63.369 
       

  

Overall Kappa: 0.525306 
       

  

  
        

  

RF 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 35 3 4 2 2 0 46 76.087 23.913 

Grapes 1 71 23 0 2 3 100 71 29 

Planted pastures 0 7 117 0 0 0 124 94.3548 5.64516 

Pome fruit 2 0 0 34 2 0 38 89.4737 10.5263 

Stone fruit 1 11 2 15 18 0 47 38.2979 61.7021 

Exotic fruit 0 2 1 2 0 14 19 73.6842 26.3158 

TOTALS 39 94 147 53 24 17 374 
 

  

CA% 89.7436 75.5319 79.5918 64.1509 75 82.3529 
  

  

EC% 10.2564 24.4681 20.4082 35.8491 25 17.6471 
  

  

Overall Accuracy: 77.2727 
       

  

Overall Kappa: 0.702867                 

 

Table B-3 Confusion matrix for classification results obtained with the MC image compositing 

approach (Experiment 3). 

SVM                   

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 38 1 4 1 2 0 46 82.6087 17.3913 

Grapes 2 65 26 2 2 3 100 65 35 

Planted fastures 1 3 118 1 0 1 124 95.1613 4.83871 
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Pome fruit 1 2 1 29 2 2 37 78.3784 21.6216 

Stone fruit 1 3 5 9 28 1 47 59.5745 40.4255 

Exotic fruit 0 2 0 1 1 15 19 78.9474 21.0526 

TOTALS 43 76 154 43 35 22 373 
 

  

CA% 88.3721 85.5263 76.6234 67.4419 80 68.1818 
  

  

EC% 11.6279 14.4737 23.3766 32.5581 20 31.8182 
  

  

Overall Accuracy: 78.5523 
       

  

Overall Kappa: 0.720602 
       

  

  
        

  

K-NN 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 35 1 3 3 2 2 46 76.087 23.913 

Grapes 6 59 25 1 5 4 100 59 41 

Planted pastures 2 13 108 0 0 1 124 87.0968 12.9032 

Pome fruit 1 3 1 25 7 0 37 67.5676 32.4324 

Stone fruit 0 6 5 7 27 2 47 57.4468 42.5532 

Exotic fruit 0 2 1 0 1 15 19 78.9474 21.0526 

TOTALS 44 84 143 36 42 24 373 
 

  

CA% 79.5455 70.2381 75.5245 69.4444 64.2857 62.5 
  

  

EC% 20.4545 29.7619 24.4755 30.5556 35.7143 37.5 
  

  

Overall Accuracy: 72.118 
       

  

Overall Kappa: 0.638171 
       

  

  
        

  

DT 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 35 2 3 2 3 1 46 76.087 23.913 

Grapes 7 55 21 8 9 0 100 55 45 

Planted pastures 3 18 98 2 2 1 124 79.0323 20.9677 

Pome fruit 6 2 0 22 5 2 37 59.4595 40.5405 

Stone fruit 5 12 3 10 15 2 47 31.9149 68.0851 

Exotic fruit 4 1 1 1 3 9 19 47.3684 52.6316 

TOTALS 60 90 126 45 37 15 373 
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CA% 58.3333 61.1111 77.7778 48.8889 40.5405 60 
  

  

EC% 41.6667 38.8889 22.2222 51.1111 59.4595 40 
  

  

Overall Accuracy: 62.7346 
       

  

Overall Kappa: 0.520184 
       

  

  
        

  

RF 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 34 3 4 1 3 1 46 73.913 26.087 

Grapes 1 71 24 0 2 2 100 71 29 

Planted pastures 0 9 115 0 0 0 124 92.7419 7.25806 

Pome fruit 2 1 0 30 2 2 37 81.0811 18.9189 

Stone fruit 1 11 3 12 20 0 47 42.5532 57.4468 

Exotic fruit 1 2 1 2 0 13 19 68.4211 31.5789 

TOTALS 39 97 147 45 27 18 373 
 

  

CA% 87.1795 73.1959 78.2313 66.6667 74.0741 72.2222 
  

  

EC% 12.8205 26.8041 21.7687 33.3333 25.9259 27.7778 
  

  

Overall Accuracy: 75.8713 
       

  

Overall Kappa: 0.683693                 

 

Table B-4 Confusion matrix for classification results obtained with the MEDOID image 

compositing approach (Experiment 4). 

SVM                   

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 39 1 2 0 2 2 46 84.7826 15.2174 

Grapes 1 65 22 3 4 5 100 65 35 

Planted pastures 2 9 113 0 0 0 124 91.129 8.87097 

Pome fruit 2 1 0 29 4 1 37 78.3784 21.6216 

Stone fruit 0 7 5 5 29 1 47 61.7021 38.2979 

Exotic fruit 0 3 0 1 2 13 19 68.4211 31.5789 

TOTALS 44 86 142 38 41 22 373 
 

  

CA% 88.6364 75.5814 79.5775 76.3158 70.7317 59.0909 
  

  

EC% 11.3636 24.4186 20.4225 23.6842 29.2683 40.9091 
  

  

Overall Accuracy: 77.2118 
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Overall Kappa: 0.704095 
       

  

K-NN 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 35 1 5 1 2 2 46 76.087 23.913 

Grapes 2 56 32 2 4 4 100 56 44 

Planted pastures 2 19 100 0 3 0 124 80.6452 19.3548 

Pome fruit 2 4 0 23 8 0 37 62.1622 37.8378 

Stone fruit 0 7 5 8 23 4 47 48.9362 51.0638 

Exotic fruit 1 1 1 1 1 14 19 73.6842 26.3158 

TOTALS 42 88 143 35 41 24 373 
 

  

CA% 83.3333 63.6364 69.9301 65.7143 56.0976 58.3333 
  

  

EC% 16.6667 36.3636 30.0699 34.2857 43.9024 41.6667 
  

  

Overall Accuracy: 67.2922 
       

  

Overall Kappa: 0.574659 
       

  

  
        

  

DT 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 30 1 5 4 2 4 46 65.2174 34.7826 

Grapes 4 53 27 4 9 3 100 53 47 

Planted pastures 3 23 97 0 1 0 124 78.2258 21.7742 

Pome fruit 5 1 0 22 8 1 37 59.4595 40.5405 

Stone fruit 9 7 4 11 16 0 47 34.0426 65.9574 

Exotic fruit 0 3 1 1 4 10 19 52.6316 47.3684 

TOTALS 51 88 134 42 40 18 373 
 

  

CA% 58.8235 60.2273 72.3881 52.381 40 55.5556 
  

  

EC% 41.1765 39.7727 27.6119 47.619 60 44.4444 
  

  

Overall Accuracy: 61.126 
       

  

Overall Kappa: 0.497309 
       

  

  
        

  

RF 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 34 0 6 3 2 1 46 73.913 26.087 
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Grapes 1 68 27 0 3 1 100 68 32 

Planted pastures 0 4 120 0 0 0 124 96.7742 3.22581 

Pome fruit 2 1 0 28 5 1 37 75.6757 24.3243 

Stone fruit 5 10 3 9 20 0 47 42.5532 57.4468 

Exotic fruit 0 3 1 1 1 13 19 68.4211 31.5789 

TOTALS 42 86 157 41 31 16 373 
 

  

CA% 80.9524 79.0698 76.4331 68.2927 64.5161 81.25 
  

  

EC% 19.0476 20.9302 23.5669 31.7073 35.4839 18.75 
  

  

Overall Accuracy: 75.8713 
       

  

Overall Kappa: 0.682856                 

 

Table B-5 Confusion matrix for classification results obtained with the MaxNDVI image 

compositing approach (Experiment 5). 

SVM                   

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 37 1 5 0 1 2 46 80.4348 19.5652 

Grapes 1 72 21 2 1 3 100 72 28 

Planted pastures 2 9 113 0 0 0 124 91.129 8.87097 

Pome fruit 2 0 0 25 7 4 38 65.7895 34.2105 

Stone fruit 1 9 6 6 25 0 47 53.1915 46.8085 

Exotic fruit 0 2 0 1 1 15 19 78.9474 21.0526 

TOTALS 43 93 145 34 35 24 374 
 

  

CA% 86.0465 77.4194 77.931 73.5294 71.4286 62.5 
  

  

EC% 13.9535 22.5806 22.069 26.4706 28.5714 37.5 
  

  

Overall Accuracy: 76.738 
       

  

Overall Kappa: 0.696545 
       

  

  
        

  

K-NN 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 37 1 4 2 2 0 46 80.4348 19.5652 

Grapes 2 57 33 1 7 0 100 57 43 

Planted pastures 1 19 102 2 0 0 124 82.2581 17.7419 

Pome fruit 3 2 1 23 6 3 38 60.5263 39.4737 
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Stone fruit 3 8 5 12 17 2 47 36.1702 63.8298 

Exotic fruit 0 1 1 2 0 15 19 78.9474 21.0526 

TOTALS 46 88 146 42 32 20 374 
 

  

CA% 80.4348 64.7727 69.863 54.7619 53.125 75 
  

  

EC% 19.5652 35.2273 30.137 45.2381 46.875 25 
  

  

Overall Accuracy: 67.1123 
       

  

Overall Kappa: 0.57158 
       

  

  
        

  

DT 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 35 2 4 3 1 1 46 76.087 23.913 

Grapes 4 58 20 6 9 3 100 58 42 

Planted pastures 2 18 97 4 3 0 124 78.2258 21.7742 

Pome fruit 5 1 0 18 8 6 38 47.3684 52.6316 

Stone fruit 4 9 4 11 16 3 47 34.0426 65.9574 

Exotic fruit 0 0 1 3 3 12 19 63.1579 36.8421 

TOTALS 50 88 126 45 40 25 374 
 

  

CA% 70 65.9091 76.9841 40 40 48 
  

  

EC% 30 34.0909 23.0159 60 60 52 
  

  

Overall Accuracy: 63.1016 
       

  

Overall Kappa: 0.526873 
       

  

  
        

  

RF 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 34 2 4 1 4 1 46 73.913 26.087 

Grapes 2 73 21 0 2 2 100 73 27 

Planted pastures 0 8 116 0 0 0 124 93.5484 6.45161 

Pome fruit 2 2 0 33 1 0 38 86.8421 13.1579 

Stone fruit 0 12 1 11 23 0 47 48.9362 51.0638 

Exotic fruit 0 2 1 1 2 13 19 68.4211 31.5789 

TOTALS 38 99 143 46 32 16 374 
 

  

CA% 89.4737 73.7374 81.1189 71.7391 71.875 81.25 
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EC% 10.5263 26.2626 18.8811 28.2609 28.125 18.75 
  

  

Overall Accuracy: 78.0749 
       

  

Overall Kappa: 0.713222                 

 

Table B-6 Confusion matrix for classification results obtained with the MinRed image compositing 

approach (Experiment 6). 

SVM                   

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 37 1 5 0 3 0 46 80.4348 19.5652 

Grapes 2 69 22 1 1 5 100 69 31 

Planted pastures 3 5 114 0 2 0 124 91.9355 8.06452 

Pome fruit 1 1 0 27 9 0 38 71.0526 28.9474 

Stone fruit 1 5 5 7 29 0 47 61.7021 38.2979 

Exotic fruit 0 2 0 1 1 15 19 78.9474 21.0526 

TOTALS 44 83 146 36 45 20 374 
 

  

CA% 84.0909 83.1325 78.0822 75 64.4444 75 
  

  

EC% 15.9091 16.8675 21.9178 25 35.5556 25 
  

  

Overall Accuracy: 77.8075 
       

  

Overall Kappa: 0.711465 
       

  

K-NN 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 38 1 4 2 1 0 46 82.6087 17.3913 

Grapes 1 54 27 6 9 3 100 54 46 

Planted pastures 0 21 99 1 2 1 124 79.8387 20.1613 

Pome fruit 3 0 0 26 6 3 38 68.4211 31.5789 

Stone fruit 2 3 11 9 21 1 47 44.6809 55.3191 

Exotic fruit 0 0 3 1 0 15 19 78.9474 21.0526 

TOTALS 44 79 144 45 39 23 374 
 

  

CA% 86.3636 68.3544 68.75 57.7778 53.8462 65.2174 
  

  

EC% 13.6364 31.6456 31.25 42.2222 46.1538 34.7826 
  

  

Overall Accuracy: 67.6471 
       

  

Overall Kappa: 0.581431 
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DT 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 29 5 4 3 3 2 46 63.0435 36.9565 

Grapes 5 59 22 3 6 5 100 59 41 

Planted pastures 2 16 101 1 2 2 124 81.4516 18.5484 

Pome fruit 2 2 0 27 6 1 38 71.0526 28.9474 

Stone fruit 5 6 5 12 19 0 47 40.4255 59.5745 

Exotic fruit 0 4 2 1 1 11 19 57.8947 42.1053 

TOTALS 43 92 134 47 37 21 374 
 

  

CA% 67.4419 64.1304 75.3731 57.4468 51.3514 52.381 
  

  

EC% 32.5581 35.8696 24.6269 42.5532 48.6486 47.619 
  

  

Overall Accuracy: 65.7754 
       

  

Overall Kappa: 0.557388 
       

  

  
        

  

RF 
        

  

Class Citrus fruit Grapes 
Planted 
pastures Pome fruit Stone fruit 

Exotic 
fruit TOTALS PA% EO% 

Citrus fruit 35 1 5 1 3 1 46 76.087 23.913 

Grapes 1 69 28 0 1 1 100 69 31 

Planted pastures 0 10 113 0 1 0 124 91.129 8.87097 

Pome fruit 2 2 0 29 5 0 38 76.3158 23.6842 

Stone fruit 2 10 5 14 16 0 47 34.0426 65.9574 

Exotic fruit 1 1 2 1 2 12 19 63.1579 36.8421 

TOTALS 41 93 153 45 28 14 374 
 

  

CA% 85.3659 74.1935 73.8562 64.4444 57.1429 85.7143 
  

  

EC% 14.6341 25.8065 26.1438 35.5556 42.8571 14.2857 
  

  

Overall Accuracy: 73.262 
       

  

Overall Kappa: 0.648582                 
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