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Abstract

The order picking system in a company’s distribution centre is the biggest contributor to the
operational cost within the DC. Optimisation should thus aim at running this activity as effi-
ciently as possible. The order picking process consists of three main activities, namely walking
to the stock, picking stock in fulfilment of a customer order and handling the picked stock
for further processing. While the total amount of work for the picking and handling activities
remain constant, the minimisation of walking distance becomes the main objective when min-
imising the total picking effort. The minimisation of walking distance can be translated into
a reduced overall picking time which can lead to a decrease in the total cost of operating the
picking system.

The main objective of this dissertation is to optimise the order picking system on a unidirectional
cyclical picking line. Order batching is introduced to the picking system, since it is an effective
methodology that minimises walking distance in operations research literature. Order batching
has been introduced to the standard single block parallel-aisle warehouse layout, but not to the
specific layout of a unidirectional cyclical picking line. Additionally, the unidirectional cyclical
picking line can offer two configuration options that change the physical set up and thereby
influence the way in which pickers walk during the order picking process.

Order batching is introduced to the unidirectional cyclical picking line through picking loca-
tion based order-to-route closeness metrics. These metrics are further extended by taking the
characteristics of the layout into account. The distribution centre of a prominent South African
retailer provides real life test instances. Introducing the layout specific stops non-identical spans
metric in combination with the greedy smallest entry heuristic results in a reduction of 48.3%
in walking distance.

Order batching increases the pick density which may lead to higher levels in picker congestion.
In a discrete event simulation, the reduction of the overall picking time through a decrease in
walking distance is thus confirmed. On tested sample picking waves, the overall picking time
can be reduced by up to 21% per wave. A good number of pickers in the picking system is
dependent on the pick density. The pick density, amongst other explanatory variables, can also
be used to predict the reduction in picking time.

The effects of different structural options of the unidirectional cyclical picking line, namely
the U- and Z-configuration, are investigated. This results in four decision tiers that have to
be addressed while optimising the order picking system. The first decision tier assigns stock to
picking lines, the second arranges stock around a picking line, the third chooses the configuration
and the last sequences the orders to be picked. Order batching is added as an additional layer.
An increase in pick density benefits the reduction of walking distance throughout the decision
tiers and supports the choice of the U-configuration after evaluating different test instances. The
total completion time of a picking wave can thus be reduced by up to 28% when compared to
benchmark instances. The dissertation is concluded by suggesting further research directions.
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Opsomming

Die opmaak van bestellings op ’n uitsoeklyn in ’n onderneming se distribusiesentrum is die
grootste bydraer tot die bedryfskoste van ’n distribusiesentrum. Dit is dus belangrik om hierdie
aktiwiteit so doeltreffend moontlik te maak. Die proses om bestellings op te maak bestaan
uit drie hoofaktiwiteite, naamlik stap na die voorraad, uitsoek (kies en bymekaarsit) van die
voorraad vir ’n bestelling en die pak van die gekose voorraad in kartonne vir verdere verwerking
en verspreiding. Omdat die totale hoeveelheid werk vir die uitsoek- en hanteringsaktiwiteite
konstant bly, word die vermindering van loopafstand die hoofdoelwit om die totale koste van
hierdie proses te minimeer. Die minimering van loopafstand lei tot ’n vermindering in totale tyd
om bestellings op te maak, wat op sy beurt weer lei tot ’n afname in die totale koste van die
stelsel om bestellings op te maak.

Die hoofdoel van hierdie proefskrif is om die stelsel vir die uitsoek van bestellings op ’n eenrigting
sikliese uitsoeklyn te optimeer. Metodes vir die samevoeging of groepering (Eng.: batching) van
bestellings (om gelyktydig opgemaak te word) word ontwikkel vir hierdie uitsoekstelsel aangesien
operasionelenavorsingsliteratuur aantoon dat groepering van bestellings ’n effektiewe metode is
om loopafstand te verminder. Groepering van bestellings is reeds gedoen vir die standaard
blokuitleg van distribusiesentra, maar nie vir hierdie spesifieke uitleg van ’n eenrigting sikliese
uitsoeklyn nie. Daarbenewens het die eenrigting sikliese uitsoeklyn twee konfigurasie-opsies
wat die fisiese opstelling verander en sodoende die manier bëınvloed waarop werkers tydens die
uitsoekproses loop.

Die groepering van bestellings word ontwikkel vir ’n eenrigting sikliese uitsoeklyn deur middel
van ’n plek-gebaseerde maatstaf wat die nabyheid van bestellings se roetes meet. Hierdie maat-
staf word verder uitgebrei deur die eienskappe van die uitleg in ag te neem. Regte voorbeelde
van die probleem uit ’n distribusiesentrum van ’n prominente Suid-Afrikaanse kleinhandelaar
word gebruik vir toetsing. Die ontwikkeling en implementering van ’n uitlegspesifieke stop-nie-
identiese-strek-maatstaf in kombinasie met die gulsige kleinste-invoegingsheuristiek lei tot ’n
vermindering van 48.3% in stapafstand.

Die groepering van bestellings verhoog die digtheid van plekke waar werkers stop vir voorraad,
wat kan lei tot hoër vlakke van kongestie vir werkers. ’n Diskrete-gebeurtenis-simulasie bevestig
dat ’n afname in loopafstand ook ’n vermindering van die totale voltooiingstyd tot gevolg het.
Met behulp van werklike historiese data kon die totale tyd vir die uitsoek van bestellings met
tot 21% per golf verminder word. ’n Goeie aantal werkers in die uitsoekstelsel is afhanklik van
die uitsoekdigtheid. Die uitsoekdigtheid en andere verklarende veranderlikes, kan ook gebruik
word om die vermindering in totale tyd om bestellings op te maak, te voorspel.

Die invloed van verskillende strukturele opsies van die eenrigting sikliese uitsoeklyn, naamlik
die U- en Z-konfigurasie, word ook ondersoek. Dit het tot gevolg dat vier besluitnemingsvlakke
aangespreek moet word om die uitsoekstelsel te optimeer. Die eerste besluitnemingsvlak ken
voorraad aan die uitsoeklyne toe, die tweede rangskik voorraad binne die uitsoeklyn, die derde
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kies die konfigurasie van die lyn en die laaste kies die volgorde waarin die bestellings uitgesoek
word. Groepering van bestellings word bygevoeg as ’n addisionele vlak. ’n Toename in werks-
digtheid bevoordeel die vermindering van loopafstand deur die besluitvlakke en bevoordeel die
U-konfigurasie na evaluering van verskillende toetsdata. Die totale voltooiingstyd van ’n uit-
soekgolf kan dus verminder word met tot 28% in vergelyking met eweknie voorbeelde. Die studie
word afgesluit deur verdere navorsingsmoontlikhede voor te stel.
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Before a product reaches a retailer’s shelf to be bought by an end customer it has to go through
several value adding and non-value adding, but essential processes. Different organisations and
business entities perform these processes. Supply chain management strategically manages the
different processes and relationships between various business entities to maintain competitive-
ness [77].

The concept of supply chain management first entered the business vocabulary during the
1990s [25]. According to Beamon [10] it can be defined as an integrated process in which
different business entities work together to acquire raw materials, turn them into products and
deliver these products to a retailer. While there is a forward flow of materials, it also includes
a backward flow of information. Coyle et al. [25] describes this integrated supply chain concept
in Figure 1.1 as the effective and efficient flow of products, services, information and finances
through different business entities to the end-customer.

1

Stellenbosch University https://scholar.sun.ac.za



2 Chapter 1. Introduction

Vendors Wholesalers Manufacturers Wholesalers Retailers/Customers

Products/Services

Information

Finances

Figure 1.1: A schematic representation of an integrated supply chain representing the products/services,
information and material flow. Source: Coyle et al. [25].

The physical movement of products between business entities is a challenge and carried out by
the logistics network of the integrated supply chain. In Figure 1.2 a logistics channel is depicted.
Raw material is sent to manufacturers and the finished products are then sent to distribution
centres (DCs). 1 In DCs the products are consolidated and distributed to retailers to be put on
their shelves.

Raw materials
supply point

Raw materials
supply point

Raw materials
supply point

Raw materials
supply point

Manufacturer

Manufacturer

Distribution centre

Distribution centre

Retailer

Retailer

Retailer

Retailer

Retailer

Retailer

Figure 1.2: A schematic representation of a logistics network. Source: Coyle et al. [25].

DCs connect manufacturers and retailers in the logistics network of an integrated supply chain.
DCs are unlikely to vanish from the current business landscape as the trend towards a greater
product variety and shorter response times are increasing. The operation of the nodes (for
example DCs) of a logistics network mainly determines the network’s efficiency and effectiveness.
Therefore, optimisation efforts focused on this part of the supply chain might result in an increase
in both efficiency and effectiveness [98].

1.1 Distribution centres

DCs tend to buffer variations between supply and demand since they can hold products in their
inventory. Consequently, DCs have a strong focus on consolidation and accumulation of various
products from suppliers [77]. Normally products from different suppliers arrive in bulk at DCs.
The bulk stock is then reworked or repacked into orders for delivery to customers [113].

Frazelle [35] divides DC activities into eight different functions that are common despite the
type of DC. The areas in which these functions take place are depicted in Figure 1.3. Inbound

1In this dissertation no distinction is made between warehouses and distribution centres.
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processes are receiving, put away and storage. Outbound processes are order picking, packaging
and pricing; sortation and accumulation; and unitising and shipping [7].

Pallet storage
Case

picking
Broken case

picking

Put away
Material
handling

Sortation and accumulation

Receiving Cross docking Shipping

Figure 1.3: A schematic representation of the DC’s functional areas and the stock movement governed
by material handling and indicated through arrows. Source: Frazelle [35].

Receiving begins with the advanced notification that goods are arriving. Therefore, the unload-
ing can be coordinated efficiently to match the other activities within the DC. It includes the
collection of all goods coming into the DC and a quality and quantity check according to the
purchase order. Any exceptions will be noted. Scanning the goods registers their arrival and
dispatches payments accordingly. If no processing is required, goods are pushed through to the
cross-docking area. The goods are distributed to storage or taken to an area for follow up activ-
ities [7]. In a typical DC, the reception of goods accounts for about 10% of the operational cost,
since goods usually arrive in large quantities and the handling is thus less labour-intensive [35].

The activity of pre-packaging is performed if goods are received in bulk, but need to be packaged
in quantities that are mechanisable or put together with other items to form kits and assort-
ments. Depending on the storage requirements, and whether the products are part of kits and
assortments, the processing can either happen over time or immediately. Pre-packaging is an
optional activity of material handling. Therefore, no general percentage of operational cost can
be assigned [35].

An appropriate storage location has to be determined before a product can be put away. How
quickly and how costly the process of retrieval is, depends to a large extent on the storage
location. Information about the storage locations must be available at all times. After handling
the material, the storage location has to be verified by scanning to record the placement of the
good. Pick lists for order picking are generated from this information [7]. Put away comprises
approximately 15% of the DC’s operational cost as goods may have to be moved significant
distances to reach their storage location [35].

The activity of storage is the physical containment of goods while awaiting customer demand.
The size, quantity and the characteristics of the product or its container determine the storage
method. There is no operational cost, only rent expense, since the product is waiting to be
processed further [35].

Once a customer request or order is in the system, the DC checks the inventory for availability.
Then the DC produces pick lists to process order picking. Order picking and shipping have to be
scheduled and shipping documents need to be issued. Most of these activities are performed by
the software coordinating all activities within a DC which is called the warehouse management
system (WMS). Order picking is the basic service of a DC. Order picking is a labour-intensive
process and thus accounts for approximately 55% of the operational cost of a DC [110]. There-
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fore, all processes, as well as the layout of the DC, centre around the activity of order picking.
Additionally, the goods have to be replenished to sustain order picking. The restocker retrieves
goods from bulk storage and prepares pallets, cases or broken cases for picking. In general a
restock is thus more expensive than a pick [7].

Packaging and pricing are optional at this point. Comparable to pre-packaging, individual goods
or kits and assortments are containerised to provide flexibility in the use of on-hand inventory.
Additionally, pre-pricing at the manufacturer leads to repricing as price lists may change while
the goods are stored. Sometimes picking tickets and price stickers are combined to reduce
material handling [35].

Sortation of batch picks to individual orders or accumulation of distributed picks to one order
can be considered for efficiency. In most cases these activities are combined in the order picking
process. Therefore, no separate cost of operation is accounted for [35].

Unitising and shipping involves combining packages, checking order completeness, and loading
shipping containers. Order accuracy is important due to the high cost of returns. This part of
the process can be rather labour-intensive although there is little walking. If shipping documents
have not been processed yet, they have to be prepared. Additionally, during this phase, order
sizing and weighing can be done to determine shipping costs. Products are scanned again to
register the customer order available for shipping. Shipping is less labour-intensive, since larger
units are processed. Partial shipments must be staged to accumulate all orders by outbound
carrier. However, staging results in double-handling as goods have to be loaded on the truck
again afterwards. In some cases the loading of the truck is part of the shipping activity, but in
most cases loading falls under the responsibility of the carrier [7]. The shipping activity accounts
for about 20% of the operational cost [110].

Labour accounts for most of the expenses in a typical DC [35]. The order picking process is
the most labour-intensive and normally accounts for about 60% of the total operational cost. It
is thus the most expensive activity [113]. Therefore, most research on DCs focuses strongly on
this activity. Research should result in fast, simple, intuitive and reliable methods to facilitate
practical applications and thereby increase the cooperation between academia and industry [42].
Analytic models combined with simulation models can analyse the interactions with other DC
activities [43].

1.2 The order picking process

Retrieving products from storage areas to fulfil customer requests describes the main activity of
order picking. Clustering and scheduling orders, assigning stock to order lines, releasing orders
to be picked, the actual picking of products from storage locations, and the distribution of the
products are included in the detailed process steps [29]. Order picking accounts for 50% to 65%
of the total operating expenses in a DC and is often the most expensive activity [7, 35, 110, 113].
According to Frazelle [35] order picking itself can be broken down into 55% of travelling, 15%
of searching, 10% of extracting, and 20% of paperwork and other activities. Travelling is thus
the most resource consuming activity as no value is added to the product. Therefore, in the
design and operation of order picking systems, the reduction of travelling should be the main
focus [77].

DCs differ in regards to the customers they serve, and also with regards to the size and quantity
of products they distribute. Therefore, the order picking operation is unique to each company’s
DC. Customer orders consist of order lines with each line containing a unique item or stock
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keeping unit (SKU). Order lines can be split into case picks and broken case picks based on the
quantity and the product carrier of the SKU [29]. The number of order lines picked per day,
the number of items, and the average size of a customer order, influence the choice of the order
picking system [27].

The level of automation also induces differences in the picking operations. While humans phys-
ically pick items in manual order picking, automated order picking is carried out by machines.
Most DCs rely on manual order picking systems, due to the diversity in the size of the products
and the velocity in the product portfolio that has to be picked [49]. Automated order pick-
ing is mainly used when SKUs are small and uniform, as for example in the pharmaceutical
industry [77].

In manual order picking there are two major systems, namely picker-to-parts and parts-to-picker.
In the picker-to-parts system the picker walks or drives along the aisles to collect items. An
automated storage and retrieval system is used in a parts-to-picker system, sending the items
to the picker. Pickers pick requested items from ground level storage racks travelling along the
aisles in low-level picking or using lifts or cranes to retrieve items from high storage racks in
high-level picking.

Different variants of the picker-to-parts system are batch picking (picking by SKU) or discrete
picking (picking by order). In batch picking, orders for multiple customers can be picked si-
multaneously, and sorting can be done immediately (sort-while-pick) or after picking (pick-and
sort). Zone picking splits storage areas into multiple parts with different pickers. In progres-
sive zoning, orders are passed on successively from one zone to the next, while in synchronised
zoning, zones are picked in parallel [29].

Parts-to-picker systems mainly incorporate storage and retrieval systems in which one or multiple
unit loads are retrieved by a crane and brought to the picking position. The crane can work
under single, dual, and multiple command cycle modes. In other systems, modular vertical lifts
or carousels are used to send unit loads to the pickers [29].

According to De Koster et al. [29], the majority of picking systems worldwide are low-level
picker-to-parts systems employing human pickers, with 80% of that particular type in Western
Europe. Therefore, an investigation in these systems is of practical interest. Van Gils et al. [116]
suggests to combine order picking planning problems as all relations among the various problems
are statistically significant.

1.3 Operations at a prominent South African retailer

In this dissertation, a prominent South African retailer is considered. This retailer (referred to in
this dissertation as “the Retailer”) is the biggest single brand retailer in South Africa with around
2 000 stores [77]. The company is a lifeline, mainly selling essential products (such as clothing,
homeware and airtime vouchers) in rural and remote areas. The Retailer runs the largest clothing
factory in South Africa, but also buys merchandise from local and international suppliers. There
are four types of nodes to the logistics network at the Retailer: suppliers, distribution centres,
transport hubs, and retail outlets. This supply chain is depicted in Figure 1.4. The distribution
system consists of three DCs with the largest situated in Durban and two smaller ones that are
located close to Cape Town and Johannesburg. The DC in Durban additionally sends stock for
picking to the DC in Johannesburg [76]. The supply chain of the Retailer has to run efficiently
to keep prices low, since it serves the low income part of the population.

The customer served by a DC primarily categorises the type of DC. In the case of the Retailer, a
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Figure 1.4: A schematic representation of the Retailer’s supply chain. Three DCs distribute to 13 trans-
port hubs which serve a mutually exclusive set of stores. Stock movement is indicated by an arrows and
the line thickness represents the relative stock movement. Source: Matthews [77].

retail store is a regular customer of the DC, receiving shipments on a scheduled basis. Bartholdi
and Hackman [7] describe the characteristics of a retail DC. High volumes of hundreds or even
thousands of different products comprise a typical order. The changes in season, fashion, cus-
tomer taste and marketing campaigns lead to a continuously changing composition of products.
The Retailer is influenced by the nature of the products, since clothing arrives in a variety of
bulky items which in most cases require large storage areas. Each branch has a different product
profile depending on the market segment and location, resulting in a set of non-uniform orders
that needs to be handled by the DC on a daily basis. The product profile changes constantly
due to fashion trends and the seasonal nature of clothing products [76].

However, the biggest difference to retailers in the clothing industry is the Retailer’s philosophy of
central planning. The required stock for each store is defined by a central planning department,
removing control of stock order from local stores and limiting the number of decisions made by
local management [76]. This process is carried out for a set of SKUs called distributions (DBNs).
DBNs consist of the same product type (for example white T-shirts), but incorporate different
sizes (for example small, medium, or large) and quantities that should go to each store. Each
size is identified by a unique SKU. The planners in the central planning department decide on
the number of SKUs for each store upon their availability and issue DBN instructions to the
DC. The DC then selects a subset of DBNs to be picked in a single picking wave. The SKUs
within the DBNs present in a wave define the orders that must fulfil the store requirements. In
this dissertation, an order is the SKUs that are required for a particular store in a picking wave.
A wave is processed on a picking line in the DC. A single SKU is assigned to a unique location
on a specific picking line for each wave. The activities of populating the line with SKUs, the
actual picking process and removing excess stock from the line comprise a picking wave [77].

The order picking system of the Retailer with its overall processes, layout and physical picking
process is influenced by the central planning approach. The DC continuously supplies a set list of
stores (customers) and thus focuses on all store requirements for an individual item. Therefore,
one operation entails picking and shipping, for all stores, for that item [76].

This dissertation will focus on the Retailer’s DC in Durban, South Africa. The DC in Durban
has the most flexible operations and processes the most products [76]. The DC in Cape Town and
its specifications will also be investigated. Even though the data from the DC in Johannesburg
is not explicitly used in this dissertation, its operations are similar to the other two DCs and
thus the results and findings provide a holistic optimisation approach to all DCs.
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The picking operation at the Retailer starts with the arrival of physical stock at the DC and
the scheduling of DBNs to be sent to stores and the assignment of an out-of-DC date to each
SKU by the central planning department. Even though all of the Retailer’s DCs have a specific
layout, each of them uses the same fundamental order picking framework. The Durban DC is the
largest DC and will thus be described in detail with the main difference to Cape Town pointed
out in the picking line area. A schematic layout is depicted in Figure 1.5. The main functional
areas are receiving, storage, order picking, and distribution. The order picking facilities are
situated left to the storage area. The storage and picking operations account for approximately
62 200 m2 and are adjacent to the shipping operation with approximately 42 776 m2 [76].
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Figure 1.5: A schematic layout of the Retailer’s storage and picking operations in the Durban DC.
Source: De Villiers [30].

Stock arrives at one of the 15 loading bays and is loaded into the goods received area. After
all quality checks have been completed, the loaded pallets are either moved to the floor or rack
storage. Pallets stored in the full carton area will be picked in a carton picking operation, while
stock in storage racks is intended for piece picking. Pallets destined for the Johannesburg DC
are directly reloaded onto delivery vehicles and shipped off for further processing.

The storage area has 23 aisles that are serviced by five high lifts. Forklifts and pump trolleys
are used to move stock in the floor storage spaces [77].

The Retailer utilises 12 unidirectional picking lines in the Durban DC as illustrated schematically
in Figure 1.6(a). There are 56 locations for five pallets of an identical SKU per picking line [77].
In the Cape Town DC, the picking system includes one picking line on the floor with up to
144 locations, and a module with three picking lines on top of each other. This layout is
depicted in Figure 1.6(b). Each picking line in the module consist of 64 to 76 locations. While
the picking lines in the Durban DC and on the floor have conveyor belts in the middle, the
picking lines in the module do not [57].

After the picking process, packed cartons are placed on the conveyor belt and arrive at the
distribution area. As the size of the carton and the volume of stock varies, the cartons have to
be resized. A quality control check is carried out on a sample. Closed cartons are then placed
in buffer areas that are designated to specific transport hubs. A delivery vehicle is scheduled
and stock is loaded as soon as a buffer area has reached a sufficient volume of stock. Typically,
a store would receive three deliveries from a transport hub each week [77].

This dissertation focuses on the optimisation of the order picking system in the Retailer’s DC.
Therefore, the picking process in the specific picking line layout of the Retailer, namely the
unidirectional cyclical picking line will be described in detail. The unidirectional carousel – a
similar system discussed in literature – will be compared.
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(a) A schematic representation of a picking system
with 12 picking lines in the Durban DC. Source:
Matthews [77].

(b) A schematic representation of a picking
system with four picking lines in the Cape
Town DC.

Figure 1.6: On the left, a schematic representation of the picking system in Durban is presented. On
the right, a schematic representation of the picking system in Cape Town is presented. In Cape Town,
the picking line on the left is on the ground floor and has a conveyor belt. The three picking lines next
to it are without conveyor belts. They are on top of each other and connected by a tunnel.

1.3.1 Unidirectional cyclical picking lines

The unidirectional cyclical picking line is illustrated in Figure 1.7. At the Retailer’s DC in
Durban a picking line is made up of m locations with a conveyor belt that is placed in the
middle. There are two gates to access the set up.

Locations

Locations

Conveyor belt

m
21

m i m
2

+ 1

Figure 1.7: A schematic representation of a picking line with m locations including a conveyor belt.
Source: De Villiers [30].

From the storage area, SKUs are assigned to each location of the picking line. Therefore, each
SKU has a unique location on the picking line. The number of SKUs to be picked for all stores
are known prior to the start of a picking wave. Each location has the storage capacity of up to
five pallets of a single SKU. If additional stock is needed, it is kept on the floor space between
the picking lines in a staging area to avoid stock outs. The restocking of picking lines can be
eliminated from the considerations, since stock does not have to be replenished during a single
wave of picking.

Pickers move around the conveyor belt in a clockwise direction picking the orders. Voice recogni-
tion software (VRS) guides pickers around the conveyor belt. Before starting an order, an empty
carton is prepared by sticking a unique barcode to it and registering it with the VRS. The pickers
reuse empty cartons from suppliers, stacking them on their trolleys. The picking process is thus
not influenced by the availability of cartons. However, the capacity of an order may require more
than one carton. The VRS directs a picker around the conveyor belt in a clockwise direction to
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1.3. The Retailer’s operations 9

fulfil the requirements of a single store in the shortest distance. The underlying picking strategy
can thus simply be summarised as pick the closest SKU in a clockwise direction. A picker does
not have to walk longer than one cycle around the conveyor belt to complete an order. Each
order is completed by one picker, picking one order at a time. Space conditions allow for pickers
to pass each other during the picking process. After picking, full cartons and finished orders
are placed on the conveyor belt for further processing in the distribution area of the DC. Any
excess stock is removed from the picking line after the picking wave is completed. This picking
system used by the Retailer can be categorised as a discrete picker-to-parts system. [76, 77].

1.3.2 Comparison to carousel picking systems

A picking system from literature that is closely related to a unidirectional cyclical picking line
is the unidirectional carousel system. In Figure 1.8 the two systems are shown. In the uni-
directional cyclical picking line, pickers rotate around a conveyor belt. In the unidirectional
carousel system, on the other hand, a set of shelves in which products are stored is fitted on a
closed-loop rail. Upon request of a product, the carousel rotates on the horizontal axis until the
shelf reaches the picker and thus the product can be retrieved by the picker. One or multiple
pickers have to pick from one or multiple carousels in practice. Carousels are mainly used for
small and medium-sized products, since they can easily fit into shelves [73].

(a) The unidirectional cyclical picking line in the
Cape Town DC.

(b) A unidirectional ver-
tical carousel illustration.
Source: Nicolas et al. [87].

Figure 1.8: Comparison between the unidirectional cyclical picking line and the vertical carousel.

Similar to the picking process in the Retailer’s DC, the picker picks products into a number of
bins according to the number of orders. Therefore, each bin corresponds to only one order. The
picker retrieves all items of the current order from the first shelf of the first carousel. Afterwards,
the picker moves to the second carousel to pick all items of the order from the first shelf of the
second carousel. The picker continues moving from one carousel to the next until all items
from the first shelf of each carousel are collected. During this time, the first carousel rotates
to present the next shelf in the carousel’s opening. The picker then returns to the the first
carousel to pick items from the second shelf. Similar to the initial collection step, the picker
then moves from carousel to carousel to gather items from the second shelf. This process is
repeated until all items of the order are picked. The case in which the items of the order have
to be collected from only one carousel resembles the set up of the unidirectional cyclical picking
line. The total completion time of the picking process can be divided into waiting time and
picking time. The waiting time is dependent on the total number of items per order that have
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to be collected and on the time the carousel needs to rotate from one location to the next. The
shelves that have to be visited determine the rotation time. Minimising the total completion
time is thus equivalent to minimising the total travel distance of the carousel, since the total
time for picking all orders and the time required for the rotation from one shelf to another are
constant. Therefore, the objective is to minimise the total distance travelled by each carousel
for that particular order [87, 88].

The main difference between this system and the unidirectional cyclical picking line is the
presence of wave picking. This implies that all the SKUs on the line are at least picked once and
all the orders are known a priori [78]. New orders may be added in the carousel system during the
picking operation as more information about the orders becomes available. Therefore, carousel
systems work with mixes of orders that are based on historical data. Bidirectional carousels
are more common in practice than unidirectional carousels [73]. Additionally, a carousel system
can only be operated by one picker, whereas multiple pickers pick on a unidirectional cyclical
picking line [46].

1.4 Problem description

The main aim of this dissertation is to optimise order picking on a unidirectional cyclical picking
line. In a picking line the main activities of a picker are walking to the next requested SKU,
perform the picking process and handle the carton in which the SKU is placed. The total amount
of time spent on picking and handling SKUs is constant during a picking wave. This renders
the minimisation of travel time as the main objective when minimising the total picking effort.
Furthermore, the minimisation of the total travel time is equivalent to the minimisation of the
total length of all picker tours [64]. Therefore, minimising the walking distance is the focus of
the optimisation problem, and the question this dissertation attempts to answer becomes:

Do changes in the organisation of the picking system increase the efficiency of a unidirectional
picking line, and if so, to what extend?

According to Van Gils et al. [116] there are several methodologies available in literature that
aim at minimising overall picking time such as routing, batching, storage location assignment,
job assignment and zone picking. In their review of 62 articles, Van Gils et al. [116] observed
that 42 articles focused on the topic of routing, 41 articles on batching, 30 articles on storage
location assignment, 14 articles on job assignment, and 6 articles on zone picking with some
articles combining several order picking planning problems.

In an attempt to optimise order picking on a unidirectional cyclical picking line, the methodology
of routing in the form of sequencing orders in this cyclical set up has been investigated by
Matthews and Visagie [78]. Order batching has not been introduced to a unidirectional cyclical
pickling line system, but seems to be an effective way to minimise walking distance according
to Van Gils et al. [116]. In order batching multiple orders are picked simultaneously by one
picker [50]. Theoretically, this approach can divide the walking distance by the number of
orders that are batched together. The only restriction becomes the capacity of the picking
device that should accommodate all orders in the batch. The decrease in walking distance can
be translated into a reduction in total picking time. Therefore, this methodology is introduced
to a unidirectional cyclical picking line. Different structural configurations of the unidirectional
cyclical picking line are investigated, since they influence the walking distance of pickers directly.

A known methodology (order batching) will be applied to a new picking environment. Addi-
tionally, the effect of order batching on different configurations of this picking system will be
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investigated extensively for the first time.

This research will only focus on the effects of the order batching implementation in the picking
system. Therefore, other functional areas of the DC will not be addressed. The layout of the
DC is fixed and will also not be investigated. Performance measures are productivity related,
meaning the goal is to reduce the total picking time for a wave and seeing what the impact of
this is on the DC’s economic goals.

In the wave picking environment, Matthews [77] addressed sequential decision tiers that have to
be tackled by the DC on a daily basis. Each decision tier will be referred to as a specific Tier.
A picking module in the DC allows to change the configuration of the unidirectional cyclical
picking line from a U-configuration to a Z-configuration since there is no conveyor belt in the
middle of the line. This option will be included as an additional decision tier. Order batching
is added as an extra layer to these decision tiers as depicted in Figure 1.9.

Each Tier defines an NP complete problem. Since they cannot be combined to solve simulta-
neously as it would become too computationally expensive, the four intractable problems are
addressed sequentially. The results of the sequential optimisation approach by Matthews [77]
show an improvement in walking distance.

In Tier 1, DBNs have to be assigned to picking lines in the order picking system. This is
defined as the SKU to picking line allocation problem (SPLAP). After DBNs are allocated to a
picking line, the SKUs have to be arranged such that each SKU is assigned to its own location
on that picking line for that wave of picking. Tier 2 is referred to as the SKU arrangement
problem (SAP) [76]. The configuration in which to operate the picking line, either U- or Z-
configuration, has to be determined in Tier 3. This is the system configuration problem (SCP).
Finally, the VRS needs to establish the sequence of orders that will be assigned to each picker
before the picking operation starts [58]. Tier 4 is thus referred to as the order sequencing
problem (OSP). Each decision tier is defined by the previous tier, as these decisions are made
in sequence.

Even though the decisions are made and solved in this succession, optimisation models have to
be developed in reverse order, since the lower tier is the objective function of the upper tier
in Figure 1.9. For example, the effect of the SKU arrangement (Tier 2) on walking distance
can only be evaluated once the configuration is chosen (Tier 3) and the orders are sequenced
(Tier 4) [77].

Each decision tier will be described in more detail with the aim of minimising picking time by
reducing walking distance. The extra layer of order batching is added to the decision flow and
influences each tier directly or indirectly.

1.4.1 Tier 1: SKU to picking line assignment

The central planning department issues DBNs according to available stock at the DCs and the
needs of the customers (stores). At the beginning of each day, these DBNs will be assigned
to available picking lines. Thereby all SKUs of the same DBN will be assigned to the same
picking line so that all sizes of a product arrive at the store at the same time. DBNs are ranked
according to their out-of-DC dates. After the scheduling of DBNs, they have to be assigned to
picking waves on the available picking lines. The stock is then brought to the respective picking
line. As the store requirements for each DBN is known a priori, sufficient stock for all stores is
brought to the line. Therefore, restocking during the picking wave is not required [77].

This forms Tier 1 or the SPALP. A set of DBNs containing SKUs has to be assigned to a set
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Assign DBNs
to waves

Tier 1:

Arrange
SKUs on the
picking line

Tier 2:

Choose
configuration
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pickers
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The distance
walked for the
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walked in the

best configuration
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for the order sequence

A set of SKUs
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A way in which
pickers should walk

Order batching

Figure 1.9: A schematic representation of the information flow between the four decision tiers of a
picking wave.

of available picking lines to minimise walking distance and thus reduce the overall picking time.
Orders can only be defined after they are assigned to a picking wave. Order batching approaches
can thus not be applied directly, but previous experience concerning store requirements may
support order batching decisions.

1.4.2 Tier 2: SKU arrangement

SKUs are arranged around the picking line during Tier 2. SKUs from the same DBN do not
need to be assigned to locations adjacent to each other. Therefore, any SKU can be assigned to
any location on the picking line. However, if the volume of the SKU is bigger than the capacity
of the location multiple adjacent locations are assigned, but the VRS treats them as a single
location [77].

This process forms Tier 2 or the SAP. A set of SKUs assigned to a picking line has to be allocated
to available locations on the line to minimise walking distance. Orders have been formed at this
stage of the decision process. The location of SKUs and thereby the number of locations that
have to be passed to pick all items of the order are not defined yet. Order batching can not
be introduced directly, since the necessary distance information is not available. Matthews and
Visagie [82] have shown that the influence of the last decision tier outweighs the impact of Tier 2.

Tier 1 and 2 aim to minimise walking distance, but may influence the order batching problem
indirectly. In Figure 1.10 the interactions between Tier 1 and 2 are illustrated.

1.4.3 Tier 3: System configuration

The orders that have been formed in Tier 1 together with the SKUs that have been assigned
to unique locations in Tier 2 have to be picked. Before the start of the picking process, the
configuration of the picking system has to be chosen in Tier 3. The unidirectional cyclical picking
line may be placed in a picking module and without conveyor belt in the middle. Therefore,
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DBNs with SKUs

Picking lines

Figure 1.10: A schematic representation of the Tiers 1 and 2. Tier 1 is shown on the left and Tier 2 is
shown on the right. A DBN is represented by a shape. Each shaded shape represents a SKU. Different
shades are SKUs of the same DBN. For display purposes only, shapes are grouped in Tier 1. Source:
Matthews [77].

pickers can either pick according to the U-configuration as depicted in Figure 1.11(a) or the Z-
configuration as shown in Figure 1.11(b). Both configurations differ in the way in which pickers
walk either along the locations (U) or with crossing the aisle (Z). This influences the walking
distance of the pickers significantly.

10 9 8 7 6

54321

(a) A schematic representation of
the U-configuration in the module.

10 9 8 7 6

54321

(b) A schematic representation of
the Z-configuration in the module.

Figure 1.11: Comparison of picker walking in U- and Z-configurations.

Tier 3 forms the SCP. At this point, SKUs have been assigned to locations. From the order
information, distance approximations (relating to SKU locations) can be determined since they
are not influenced by the picking configuration. However, note that walking distance approxi-
mations are dependent on the configuration. Therefore, the configuration choice may influence
order batching directly.

1.4.4 Tier 4: Order sequencing

In Tier 4 pickers are guided to SKU locations by the VRS. The picking configuration influences
how that movement takes place. Before moving on to the next order, a picker has to finish picking
the current order. Adding the distances from start to end location of each picked order can be
used to measure the total walking distance of pickers. However, there are several complexities
in computing the walking distance. The end position of the last order determines the starting
position of the next order thus influencing the length of the next order. Therefore, the walking
distance to the next order is influenced by all preceding orders that are passed to a picker. It
gives picking a stochastic nature. The presence of multiple pickers, and the dynamic addition
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or removal of pickers from the line, add to the complexities of the picking system. Therefore,
the VRS must be able to dynamically adjust the assignment of orders to pickers while ensuring
that the total walking distance is minimised [77].

Tier 4 forms the OSP. The overall picking time for a given picking wave with fixed SKU positions
has to be minimised by sequencing all orders for the pickers. All the information requirements for
including order batching, such as orders, SKU locations and configuration, are given. Depending
on the number of orders that can be combined to a batch, order batching could directly influence
walking distance.

In an extreme case, batching two orders may reduce the walking distance by up to 50%. For
example, four orders are picked in a U-configuration and, as illustrated in Figure 1.12(a), are
indicated by the colours green, blue, yellow and red. If the orders are sequenced starting with
yellow, then green, then blue and finally red, a picker would walk past 37 locations. If yellow
and red are combined as a purple batch, and blue and green as an orange batch, then a picker
would only have to pass 19 locations as depicted in Figure 1.12(b). Similarly, if yellow and green
are combined to form a purple batch, and red and blue as the orange batch, as illustrated in
Figure 1.12(c), then the purple batch would be collected followed by the orange batch, resulting
in 20 locations. If yellow and blue are batched together as purple, and red and green as the
orange batch, as depicted in Figure 1.12(d), then only 18 locations have to be passed by the
picker. The length of a picking path depends on the composition of batches and their sequencing.
Order batching may thus have a direct influence on the last decision tier. Similar orders should
form batches to minimise walking distance. Therefore, the similarity between orders in terms of
walking distance has to be determined to introduce order batching to the unidirectional cyclical
picking line.

10 9 8 7 6

54321

(a) A schematic representation of single order
picking.

10 9 8 7 6

54321

(b) A schematic representation of batch
picking yellow and red.

10 9 8 7 6

54321

(c) A schematic representation of batch
picking yellow and green.

10 9 8 7 6

54321

(d) A schematic representation of batch
picking yellow and blue.

Figure 1.12: Comparison of single order picking and batch picking for different compositions of batches.

Tiers 3 and 4 may have a direct influence on order batching, since the configuration of the system
and the order sequence influence walking distance significantly. Order batching requirements
such as orders and SKU locations are given at this point in the decision making process.
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1.5 Objectives

This research aims to optimise the order picking system of a unidirectional cyclical picking
line. The methodology of order batching is introduced to the unidirectional cyclical picking
line to further reduce walking distance and thus to minimise overall picking time. Furthermore,
the influence of the configuration choice on the walking distance is investigated. All solution
approaches are tested on data that has been provided by the Retailer and organised in a test
framework. The research question translates into the following six main objectives that are
further supported by subobjectives. Each objective is part of the structure of the dissertation.

Objective I: Investigate the order picking system on a unidirectional picking line:

a Describe the layout and operations of the Retailer’s DCs to comprehend the broader
context of the problem;

b Describe the order picking system in detail to emphasise the characteristics of a unidirec-
tional cyclical picking line;

c Describe the different configurations of the order picking system.

Objective II: Perform a literature study:

a Describe the optimisation approaches on a unidirectional cyclical picking line;

b Describe the standard order batching problem and its solution approaches;

c Identify the differences (in layout) to a unidirectional cyclical picking line.

Objective III: Apply order batching to a unidirectional cyclical picking line:

a Model order batching on a unidirectional cyclical picking line;

b Emphasise the specific layout in the order batching approach.

Objective IV: Build a simulation of the order picking system to measure picking time:

a Build a tool that can measure picking time by simulating the U-configuration of the uni-
directional cyclical picking line;

b Build a tool that can measure picking time by simulating the Z-configuration of the uni-
directional cyclical picking line;

c Identify a predictor for picking time;

c Determine an indicator for the selection of configuration.

Objective V: Apply order batching as an extra layer to all four decision tiers:

a Apply order batching to Tier 1;

b Apply order batching to Tier 2;

c Apply order batching to and define Tier 3;
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d Apply order batching to Tier 4.

Objective VI: Propose directions for future research:

a Summarise the contributions of this dissertation;

b Give recommendations to practitioners;

c Propose further optimisation ideas for a unidirectional cyclical picking line.

1.6 Research methodology

The research question of this dissertation addresses the optimisation of an order picking system
on a unidirectional cyclical picking line. Data from the DCs of a prominent South African
retailer will be processed. Therefore, the order picking system on a unidirectional cyclical
picking line will be evaluated on a quantitative basis to answer the research questions. The
order batching methodology from literature is introduced as the main optimisation approach on
a unidirectional cyclical picking line. It is chosen as it claims to reduce walking distance and
thus decreases picking time significantly [116].

In the secondary phase of this dissertation, material of different resources such as academic
journals, books and case studies dealing with the topic of order batching are collected, analysed,
categorised, and evaluated. Thereby, the current body of scientific knowledge is described, and
the characteristics of the Retailer’s order picking system are described. A simulation model of
the order picking system is built to investigate the order picking system in detail in the primary
research. Historical data provided by the Retailer will be used as input. The best order picking
performance in terms of the shortest overall picking time can be determined by these simulation
experiments.

The research design divides the introduction of order batching to a unidirectional cyclical picking
line into three subproblems. In the first subproblem, order batching approaches are introduced
to the new layout. The characteristics of the unidirectional cyclical picking line are used to define
distance approximations for this specific set up. Mathematical modelling is used to determine
good batches thereby reducing walking distance. In the second subproblem, a simulation model
of the unidirectional cyclical picking line is used to investigate the interactions between the main
entities in the system. The simulation model helps to confirm the assumption that a reduction in
walking distance decreases picking time. It can be used as a tool for both configuration options,
since the reduction is measured in time and not in distance which is configuration dependent.
The third subproblem models each decision tier and investigates the inclusion of order batching.
The first subproblem results in two articles, the second subproblem generates two articles and
the third subproblem concludes the topic in one article. Each article reviews the literature on the
particular problem, models the problem, and discusses the results of the model. Optimisation
strategies will include changes in the organisation of the picking system. Finally, a comparison
to a benchmark scenario on the effectiveness of these changes answers the research question.
The Retailer’s input data for each model is described in the following section.

1.7 Data and test framework

Different test instances are needed to evaluate the introduction of order batching to the unidi-
rectional cyclical picking line. The decision tiers have different time horizons in which decisions
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for each tier have to be made. For example, the SPALP is solved daily, while the SAP, SCP and
OSP have to be solved for each picking wave. Therefore, the dataset for each problem will be
described separately.

All algorithms of this dissertation are provided in pseudocode. The Python code for each
algorithm can be found in the GitHub repository [54].

1.7.1 Test instances for order batching

Order batching is resolved in the last decision tier and aims to develop order proximity mea-
surements that include the specific picking line layout to minimise walking distance. Therefore,
the information needed are the store requirements (orders) and the locations of the SKUs on
the picking line. A variety of numbers of orders and SKUs has to be provided by several picking
waves to test the developed order proximities for average and extreme cases.

The DC in Durban is the biggest and most flexible of the Retailer’s DCs. Sample picking
wave data for this DC is available online [79]. All problem instances are derived from this
historical dataset. Therefore, 50 sample picking waves are extracted from the online dataset and
categorised according to the number of orders and SKUs.

The large dataset includes picking waves with more than 1 000 orders and is split into a category
of a large number of SKUs (54− 56), a medium number of SKUs (49− 52) and a small number
of SKUs (43− 47). The medium dataset consists of 101− 1 000 orders and has between 55− 56
SKUs. The smallest dataset only consists of 100 orders or less and is split into a large number
of SKUs (50− 52), a medium number of SKUs (41− 42) and a small number of SKUs (36− 37).
Table 1.1 shows the number of sample waves per test instance with the bulk of test instances in
the large dataset representing average cases and more extreme cases in the medium and small
dataset.

Dataset Number of orders Number of SKUs Number of sample waves

Large dataset 1 001− 1 500 54− 56 14
Large dataset 1 001− 1 500 49− 52 12
Large dataset 1 001− 1 500 43− 47 12
Medium dataset 101− 1 000 55− 56 6
Small dataset 6− 100 50− 52 2
Small dataset 6− 100 41− 42 2
Small dataset 6− 100 36− 37 2

Table 1.1: The composition of test instances from historical data of the Durban DC available online.

1.7.2 Test instances for picking time simulation

The Cape Town DC does not only have a unidirectional cyclical picking line on the floor, but
also an order picking module. While the picking line on the floor corresponds to the one in
Durban (even though the picking line in Cape Town can accommodate with up to 144 SKUs
more SKUs than Durban), the picking lines in the module do not have a conveyor belt in
the middle. Without the conveyor belt, a different option to the U-configuration, namely the Z-
configuration in which pickers can move across aisles to get to the next locations, can be applied.
Therefore, 30 sample picking waves including 10 waves for each configuration (U-configuration
with conveyor belt, U-configuration without conveyor belt, Z-configuration without conveyor
belt) have been recorded as test instances.
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As depicted in Table 1.2 the three configurations, namely unidirectional cyclical picking line
on the floor (U floor), unidirectional cyclical picking line in the module (U module) and Z-
configuration in the module (Z module) mainly have test instances including a large number
of orders (average cases) and some smaller numbers of orders to test the influence on extreme
cases.

Configuration Dataset Number of orders Number of sample waves

U floor Large dataset 1 701− 2 000 5
U floor Medium dataset 1 101− 1 700 2
U floor Small dataset 101− 1 100 3
U module Large dataset 1 581− 2 000 5
U module Medium dataset 1 551− 1 580 3
U module Small dataset 101− 1 550 2
Z module Large dataset 1 581− 2 000 5
Z module Medium dataset 1 551− 1 580 3
Z module Small dataset 101− 1 550 2

Table 1.2: The composition of different configurations from historical data of the Cape Town DC.

1.7.3 Test instances for all decision tiers

Data concerning DBN information (that can be assigned to two or more picking lines) needs to
be available to test solutions that introduce order batching. Multiple days of picking waves are
used to test the effect of DBN assignment on Tier 1. The store requirements are used to define
orders and assign SKUs to locations on the available picking lines in Tier 2. The test instances
should be comparable to historical assignment methods.

The Cape Town DC allows for different configurations of the picking lines and can thus address
Tier 3. Therefore, all picking waves of one month are used to test the influence of the holistic
optimisation approach including order batching and Tier 4. This results in 66 picking waves
that are tested in different scenarios.

The DC in Cape Town has between two to four picking lines available to run in parallel. There-
fore, three scenarios according to the number of available picking lines have been generated and
are depicted in Table 1.3. The number of orders is not displayed, since it is dependent on the
solution of the SPALP. These scenarios will be used to test a holistic optimisation approach
addressing all four decision tiers and including the additional layer of order batching (directly
or indirectly).

Scenario Number of lines Number of days Total DBNs Total SKUs Number of sample waves

1 2 27 767 2 887 30
2 3 21 708 2 510 24
3 4 9 330 1 283 12

Table 1.3: The composition of three test scenarios from historical data of the Cape Town DC.

1.8 Dissertation organisation

The chapter outline will correspond to the research objectives of the dissertation. The core of
this dissertation comprises of 5 papers which are in various stages of the publication process –
from submitted for review to published. Due the the main chapters (Chapters 3 to 7) being
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standalone papers as well, necessary overlap in the introduction and background sections of
these chapters exist.

Besides this introductory chapter, Chapter 2 provides an in-depth literature review on the topic
of order batching. The standard order batching problem is discussed and solution approaches
from literature are presented. The difference in layout between a single-block parallel aisle
warehouse environment and the unidirectional cyclical picking line are pointed out. The related
unidirectional carousel system and its order batching approaches are described in detail.

In Chapter 3 order batching is introduced to the unidirectional cyclical picking line for the
first time. Therefore, distance approximation measures are adapted. Three picking location
based metrics are suggested and several heuristic and metaheuristic combination approaches are
tested on historical data from the Retailer’s DC in Durban. This chapter is published in the
Operations Research Society of South Africa’s journal ORION [55].

The specific layout of the unidirectional cyclical picking line is taken into account in Chapter 4.
Similar to the picking location metrics, three route overlap based addition metrics are developed.
The route overlap includes the information about the span of an order which includes all the
locations stopped at or passed while collecting items for the order. The picking location and
route overlap addition metrics are compared on test instances of the Retailer’s Durban DC. This
chapter has been submitted to a peer reviewed scholarly journal.

In Chapter 5 the unidirectional cyclical picking line is modelled as a discrete event simulation.
With the help of the simulation it can be determined if order batching can also decrease picking
time in addition to reducing walking distance. A time study was carried out in the Retailer’s
DC in Cape Town. The historical data of the Cape Town DC is used to verify and validate
the simulation model. Additionally, a good number of pickers for the picking system is deter-
mined. Different pick density measures are also introduced and tested to predict picking time.
This chapter is accepted for publication in the International Journal of Logistics Systems and
Management [59].

The two different configurations U and Z are introduced to the unidirectional cyclical picking
line in Chapter 6. The Cape Town DC’s picking module does not have a conveyor belt in the
middle of the system and thereby allows for a configuration change. Therefore, the discrete event
simulation is extended to incorporate the option to simulate the Z-configuration. The configu-
rations can easily be compared, since both measure picking time. Additionally, an indicator to
help decide which configuration to choose is suggested. This chapter has been submitted and is
under review at a peer reviewed scholarly journal.

In Chapter 7 all four decision tiers are addressed with the extra layer of order batching on a uni-
directional cyclical picking line. A recommendation for the holistic picking system optimisation
is provided. This includes when and how to introduce order batching. All solution approaches
are tested and compared against a benchmark scenario using the data provided by the Retailer’s
DC in Cape Town. The chapter will also be submitted for publication.

Chapter 8 summarises the dissertation and draws conclusions from the results of the experiments.
This leads to recommendations for practitioners working with a unidirectional cyclical picking
line. This chapter also makes recommendations for future research in this area.

Order batching reduces walking distance and has the potential to decrease picking time. It has
been applied in the standard layout of a single-block warehouse with parallel aisles. The current
body of scientific knowledge on solution approaches in the standard environment is presented
and an outlook on the introduction of order batching to a unidirectional cyclical picking line is
provided in the next chapter.
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A review of 62 order picking optimisation articles by Van Gils et al. [116] showed that arti-
cles aiming at minimising the overall order picking time focus on the methodologies of routing
(42 articles), order batching (41 articles) followed by storage location assignment (30 articles)
or a combination of multiple solution approaches.

Optimisation approaches on a unidirectional cyclical picking line have first been developed by
Matthews and Visagie [78, 80, 81, 82] and focus on order sequencing (routing in the cyclical
set up) and storage location assignment. In this dissertation, order batching is introduced as it
efficiently minimises picking time according to Van Gils et al. [116].

Combining customer orders into picking orders describes the process of order batching. The
number of orders that can be batched is restricted by the capacity of the picking device. Splitting
orders is usually prohibited, since it would require additional sorting [50].

According to Wäscher [120] order batching answers the question of how customer orders should
be grouped into picking orders to minimise the total length of all picking tours necessary to
collect all items while no customer order is split, given a set of customer orders consisting of a
number of items, an assignment of items to storage locations in the order picking system of a
DC, and the capacity of a picking device.

21
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In the following chapter optimisation approaches on a unidirectional cyclical picking line are
described in Section 2.1. This is followed by an in depth discussion of different solution ap-
proaches to the order batching problem (OBP). The challenges of introducing order batching
to a unidirectional cyclical picking system are pointed out. An exact solution is provided in
Section 2.2, heuristics in Section 2.3, and metaheuristics in Section 2.4. Section 2.5 concludes
this chapter and points out potentials for order batching on a unidirectional cyclical picking line.

2.1 Optimisation approaches on a unidirectional picking line

Matthews and Visagie [78] introduced the optimisation idea of routing to a unidirectional cyclical
picking line. Since pickers walk in one direction pushing their picking devices around the con-
veyor belt, the route is predetermined in this set up. Therefore, they investigated the problem of
sequencing orders for pickers for a single picking wave, given a fixed arrangement of SKUs. They
assumed that the time required to pick stock and to handle cartons is fixed rendering walking
distance the minimisation objective. They proposed a maximal cut approach which yields in the
shortest walking distance in the test instances of their data set. Furthermore, they suggested a
nearest ending heuristic as an easily implementable alternative.

The arrangement of SKUs on a picking line for a wave of picking addresses the methodology of
storage location assignment. Matthews and Visagie [82] tested two heuristics which are optimal
in a carousel system environment and two heuristics which incorporate SKU correlations. Their
experimental results showed that addressing the order sequencing problem outweighs the gain
in walking distance from addressing the SKU arrangement problem on a unidirectional cyclical
picking line.

Matthews and Visagie [80] also introduced the optimisation idea of storage location assignment
to the level of assigning DBNs to picking lines. They applied the maximal SKU measure as an
approximation of the actual cycles traversed. Minimising the sum of the sizes of the maximal
SKUs for each picking line, they suggested a phased greedy insertion approached that resulted
in the shortest walking distance.

To mitigate negative effects on volume distribution and the number of small cartons, Matthews
and Visagie [81] incorporated four correlation measures in the phased greedy insertion approach
to assign DBNs to picking lines. Based on the experimental results, they recommended the
desirability score that considers the number of stores required by the candidate DBN and that
requires at least one DBN that has already been assigned to the picking line.

2.2 Exact solution approaches to order batching

The formulation of the standard OBP was introduced by Gademann and Velde [36] for the layout
of a single-block warehouse with parallel aisles. Assigning orders to batches simultaneously and
calculating a picking tour for each batch to optimise an objective function describes the OBP.
The objective function can either reduce the total travel time (proximity batching) or increase
due-date performance (time-window batching). The OBP to minimise total travel time in a
parallel aisle warehouse layout thus addresses the fundamental proximity batching problem.

The picking system considered by Gademann and Velde [36] is presented in Figure 2.1. The
rectangular single-block DC contains parallel aisles of equal length and width. Aisles are con-
nected via cross-aisles at the front and back of each vertical aisle. Therefore, every picking tour
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starts and ends at an input or output station that is located at the horizontal aisle in front.
There are storage locations on both sides of the vertical picking aisles.

Figure 2.1: A schematic layout of a single-block warehouse with parallel aisles. Source: Gademann and
Velde [36].

Pickers pick items manually into separate bins on their picking devices according to order lists.
Each bin belongs to a single order in this case. It is assumed that a complete order fits into
a bin. Hence the strategy of sorted-while-picked is applied. The number of orders in a batch
are limited by the number of bins that can fit onto a picking device. Picking time includes
travel time from one picking location to the next, and an extraction time for administering the
order. The underlying routing strategy has to be taken into consideration while calculating
the travel distance in a single-block warehouse with parallel aisles environment. The extraction
time is assumed to be independent of the batch composition, forming a constant that can thus
be omitted from solving the optimisation problem. The velocity of a picker is assumed to be
constant resulting in a linearity between travel time and distance. Therefore, a tour of minimum
length is the optimal tour for a given batch [36].

Gademann and Velde [36] proved that the OBP is NP-hard in the strong sense. However, if no
batch contains more than two orders the problem can be solved in polynomial time. If the OBP
is formulated as a set partitioning problem, as proposed by Gademann and Velde [36], let

J be the set of orders with elements j = 1, 2, . . . , j, . . . , J ,
B be the set of feasible batches with elements 1, 2, . . . , b, . . . , B,
yb be the J dimensional vector representing a feasible batch, with yb =

(yb1, . . . , ybj , . . . , ybJ), where ybj = 1, if, and only if, order j is included in batch b,
λb be the total distance to pick all items of orders in batch b,

and define the set of variables as

xb =

{
1 if a batch b is chosen,

0 otherwise.

The objective is then to

minimise
∑
b∈B

λb xb (2.1)
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subject to ∑
b∈B

ybj xb = 1 j ∈ J , (2.2)

xb ∈ {0, 1} b ∈ B. (2.3)

The total travel distance is minimised by the objective function (2.1). Constraint (2.2) and the
integrality condition of constraint (2.3) ensure that each order is allocated to only one batch.

The branch-and-prize algorithm developed by Gademann and Velde [36] solved test instances
of up to 32 orders to optimality in 2005. The objective of their algorithm is to minimise the
total distance to be travelled to pick all items of the orders in one batch. Therefore, distance
measurements, depending on the probabilities of a location being visited (determined by the
storage policy) were employed. Additionally, Henn and Wäscher [51] solved instances of up to
40 orders. The routing strategies S-shape and largest-gap are considered in their study. Their
solution approach required a time-consuming preprocessing of all feasible batches. Muter and
Öncan [86] applied traversal, return, and midpoint as routing strategies in the parallel aisles
warehouse layout. Their objective is defined by minimising the total travel cost per picker so
that each order forms part of exactly one batch. Instances of up to 100 orders were solved
to optimality with their tailored column-generation based algorithm. In practice the number
of customer orders is likely to exceed the test instances, but the exact algorithms proposed so
far are not able to consistently solve larger instances. Additionally, the order batching should
allow for batch sizes bigger than two orders. Thereby, the development of heuristics to solve
practice-oriented problems is justified.

The layout of a single-block warehouse to which the standard OBP has been applied is signif-
icantly different from the Retailer’s DC with unidirectional cyclical picking lines. The vertical
carousel system applied in Nicolas et al. [87] shows similarities in terms of cyclical movement to
the picking line set up investigated in their study. Additionally, the location of SKUs resemble
the shelves of a carousel. Therefore, the introduction of the OBP to a vertical carousel system
by Nicolas et al. [87] is described.

The OBP can be formulated as a mixed integer linear program (MILP), as proposed by Nicolas
et al. [87]. Therefore, to retrieve all orders of a batch from one bidirectional carousel, let

B be the set of all batches with elements 1, 2, . . . , b, . . . , B,
Bmax be the maximum batch size,
J be the set of all orders with elements j = 1, 2, . . . , j, . . . , J ,
Q be the set of all shelves with elements q = 1, 2, . . . , q, . . . , Q,
Qb be the number of shelves to be visited for batch b,
Qb(h) be the number of the h-th shelf that the carousel has to visit with h =

1, . . . , Qb,
zb be the vector of size Qb including the numbers of the shelves visited during

batch b in increasing order such as zb(1) < zb(2) < . . . < zb(Q
b),

λb be the minimum distance travelled by the carousel in order to collect items
from all shelves that have to be visited for batch b,

λbq be the distance between shelf q and the closest shelf with a lower number
than q,

λbh be the distance between the h-th shelf and the shelf of h− 1,
Iqj be an input parameter of 1, if, and only if, order j visits shelf q,
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and define the set of variables as

xbj =

{
1, if an order j is included in batch b

0, otherwise,

and

V b
q =

{
1, if shelf q is visited by batch b

0, otherwise.

The objective is then to

minimise
∑
b∈B

λb (2.4)

subject to ∑
b∈B

xbj = 1 j ∈ J , (2.5)∑
j∈J

xbj ≤ Bmax b ∈ B, (2.6)

V b
q =

∑
j∈J

xbj · Iqj b ∈ B, q ∈ Q, (2.7)

λb = Q−max
q
λbq b ∈ B, (2.8)

if Qb =
∑
q∈Q

V b
q = 1 → λb = 0 b ∈ B, (2.9)

if Qb =
∑
q∈Q

V b
q > 1 → λbh = zb(h)− zb(h− 1) b ∈ B, q ∈ Q, h = 2, · · · , Qb, (2.10)

λb1 = Q− zb(Qb) + zb(1), (2.11)

xbj ∈ {0, 1} b ∈ B, j ∈ J , (2.12)

V b
q ∈ {0, 1} b ∈ B, q ∈ Q. (2.13)

The objective function (2.4) minimises the total distance travelled by the carousel. Each order
is assigned to only one batch through constraint (2.5). The maximum batch size is set by
constraint (2.6). Equation (2.7) computes V b

q if at least one order of batch b has to visit shelf q.
The minimal travel distance is calculated by equations (2.8) – (2.11) for each shelf. In the
case of all orders being located on one shelf, no distance needs to be travelled by the carousel.
This is expressed in constraint (2.9). However, if the number of shelves to be visited is bigger
than one, all the shelves containing requested products have to be visited and returned as in
constraints (2.10) and (2.11) accounting for the total travel distance. The binary conditions of
the two sets of variables are described in (2.12) and (2.13).

The exact solution approach of Nicolas et al. [87] shows considerable savings in completion time.
Nevertheless, the batching of only 50 orders has to be stopped after 30 minutes, since it would
take too much time to solve otherwise. Heuristics could help to reduce the computational time
and thus make an industry application feasible.
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The number of possible batches and thus the binary decision variables increase exponentially
with the number of customer orders. Therefore, an exact solution approach involving the appli-
cation of a commercial linear programming (LP) solver to an explicitly formulated optimisation
problem as in (2.1) or (2.4) only covers a limited range of problem instances with regards to
the number of customer orders. Heuristics and metaheuristics, that will be discussed in the
following sections, are applied to the OBP to solve real world problem instances [50].

2.3 Heuristics

Larger problem instances can only be solved using heuristics. Therefore, heuristics like priority
rule-based, seed algorithms, savings algorithms, and data mining approaches have been intro-
duced to solve the OBP. The different algorithms are described in the following section, while
specifications of the set up of the applications are pointed out.

2.3.1 Priority rule-based algorithms

In priority rule-based algorithms priorities are assigned to customer orders which are allocated
to batches, while ensuring that the capacity constraint is met. The rules can include availability,
distance metrics, and sequential or simultaneous assignment of orders to batches.

A straight-forward heuristic is the first-in-first-out method that groups together the first entries
of the list of orders as close as possible to the predetermined maximum batch size. Then the
next orders are grouped using a similar logic until all orders form part of a batch [28, 37].

Gibson and Sharp [37] consider different distance measurements such as the two-dimensional
space filling curve, where a point on a unit circle is continuously mapped onto a unit square.
Therefore, items which are close to each other can generate values which are close in magnitude,
making relative proximity assessments of groups of possible items. The sorted list of orders is
then used as an input to generate batches close to the desired batch size. The four-dimensional
space filling curve is applied to define the smallest rectangle that encloses all items of an order.
Except for the inverse mapping that takes points in four-dimensional space in one step onto
the unit circle, the idea of the four-dimensional is similar to the two-dimensional space filling
curve [9]. The sequential minimum distance batching heuristic is applied to measure the dis-
tances between the item locations of one order to the item locations of another order. Factors
that influence the evaluation of batching are: the Euclidean, rectilinear, Chebyshev, and aisle
travel metrics and their respective tour sequencing; the continuous and discrete storage region
representation; the uniform and skewed assignment of item locations; the fixed and variable
number of items per order; and the number of problem instances. Gibson and Sharp [37] found
that in a typical DC layout with aisle metric the sequential minimal distance heuristic is the
most effective in terms of tour length and execution time.

Ruben and Jacobs [99] investigated several batch heuristics that assign orders according to the
best- or first-fit rule. The first-fit-decreasing algorithm begins with sorting the list of orders
in a non-increasing order according to the number of items per order. Initially a first batch is
created and the first order is assigned to this batch. The list of previously created batches is then
scanned by every other order until a batch with sufficient capacity is found to accommodate the
order. This process terminates when all orders are allocated to batches. The first-fit envelope
based batching heuristic incorporates order location and order size information. The term
order envelope describes the minimum and maximum number of aisles in which an item of
an order is located. The distinct order envelopes, whose numbers depend on the number of
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aisles in the DC, are indexed and considered sequentially according to the first-fit mechanism.
Additionally, the first-fit based batching works similar to the first-fit envelope based algorithm
with the exception that the orders are partitioned into classes. The classes correspond to different
areas in the DC emphasising the capacity utilisation aspect of the optimisation problem. The
experimental results of Ruben and Jacobs [99] showed that the first-fit envelope based batching
heuristic performs best especially with regards to cost effective order picking and full utilisation
of picking device capacity. On the other hand, the next-fit rule assigns orders sequentially to
batches. Therefore, orders are added to the batch until the capacity of the picking device is
reached and a new batch is started [50].

2.3.2 Seed algorithms

Seed algorithms start by initiating batches, then allocating orders to batches and terminate
through a stopping rule when a batch has been completed. The objective is to minimise the
total travel distance for collecting all orders.

De Koster et al. [28] evaluated seed algorithms in a parallel aisle warehouse layout proposing
the seed selection rules of the farthest storage location with respect to the drop-off location, the
largest number of aisles a picker has to enter to collect the order, the longest travel time, and
the largest aisles range, which is determined by the absolute difference between the number of
the aisles entered from the left and the number of aisles entered from the right. Time saving
for which the reduction in travel time is maximal when added to the batch is combined with
the possible order addition rules. De Koster et al. [28] found that their experimental setup
generated the best batches when there was a large number of aisles, or a large number of orders,
or conversely, a small number of aisles that could facilitate the addition of new orders. In general,
seed algorithms performed best with a S-shape travel metric and a large picking device capacity.

Ho and Tseng [53] investigated several location or aisles-based seed algorithms in the standard
OBP environment of a single-block parallel aisle warehouse. They proposed the following ad-
ditional seed selection rules. A seed can be selected by the smallest or greatest location-aisles
ratio, which is deducted by the number of locations to be visited over the number of aisles to be
entered, or the aisle-weight sum. The aisles-weight is equal to the aisles-index and thus increases
with distance from the drop-off location. The minimum number of additional picking locations
or aisles, the maximum number of identical picking locations or aisles, the greatest picking loca-
tion or aisle similarity ratio, and the greatest identical location to additional aisle ratio can be
applied to add another order to the batch. The cumulative seeding rule updates the seed at each
step. Additionally, the route planning methods of largest-gap and largest-gap with simulated
annealing are considered and two different sets of problem instances are generated to test the
influence of the aisle-picking frequency. Ho and Tseng [53] concluded that the combination of
the smallest number of picking aisles seed rule and the smallest number of additional picking
aisles addition rule generate the best results in their experimental set up. In an extension, Ho
et al. [52] proposed further distance- and area-based selection rules. Therefore, seed selection
rules include the smallest or greatest rectangular-covering area by which all storage locations of
an order are covered, and the shortest average rectangular, Euclidean or aisle distance to the
drop-off location. The smallest or greatest overlapping covering area, the smallest or greatest
additional covering area, the ratio between overlapping area to total cover, the ratio between
identical pick-up locations to additional covering area, and the shortest average mutual-nearest-
rectangular, -Euclidean or -aisles distance, and the smallest weighted aisle-index difference are
taken into consideration for adding an order to a batch. Ho et al. [52] showed that the com-
bination of the smallest rectangular covering area rule with the distance based rule for order
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addition performs best in their experiments.

In their comparative study Pan and Liu [92] evaluated four initial seed selection and four order
addition rules, since most seed algorithms are composed of the major steps of selecting seeds and
adding orders to a batch until the capacity limit is reached. In this case, the OBP is investigated
in an automated storage and retrieval system consisting of a single storage rack with equally
sized storage locations, serviced by a single storage and retrieval machine.

Elsayed and Stern [33] started with no orders in a batch initially and then introduced the
cumulative and the single seeding rule. While the single seeding rule stays with the initial seed
until the batch is completed, all the orders in the batch are part of the new seed that is thus
updated by the cumulative seeding rule. Their results showed that the cumulative seeding rule
shows better results in minimising travel distance.

One of the following selection rules chooses a seed and defines the seed as the first order of the
batch in the study of Pan and Liu [92]. An order with the largest number of items, an order
with the greatest total weight of items, an order with the largest economic convex hull among all
orders, or an order with a six-dimensional space filling curve value that has the smallest deviation
from zero can be selected as the seed. Hwang and Lee [62] defined the region in which a storage
and retrieval machine moves (without increasing undesirable travelling time) as the economic
convex hull. For each order the boundary points of the associated convex hull are defined
by a different similarity coefficient. This coefficient is either the maximum order cardinality
or the maximum order quantity rule. In the six-dimensional space filling curve method the
concentration degree of item locations was taken into consideration as an extension to the two-
and four-dimensional space filling curve methods. After the seed order has been selected, the
remaining orders are assigned to the batch according to one of the following addition rules: the
order with the highest number of locations in the common seed; the order with the minimum
total distance (determined by a comparison of the total distance between its item location
and the closest item location of the seed order); the order with the largest similarity coefficient
(defined by the proportion of the area of intersection to the area of union of the economic convex
hull); or the order with the smallest deviation from the six-dimensional space filling curve. Any
of the above mentioned rules can be applied to the seed order. After adding the chosen order
to the batch, the seed is updated to include the new order in compliance with the cumulative
seeding rule.

Pan and Liu [92] recommended the economic convex hull algorithm of Hwang and Lee [62] to
generate the most efficient batches in terms of travel time for small and large capacity picking
devices. Their study focused on an automated storage and retrieval system single aisles layout
applying the travelling salesman algorithm with the Chebyshev metric to determine the travel
time for this specific set up.

2.3.3 Savings algorithms

The idea of savings algorithms is based on the Clarke and Wright-algorithm (CW) for the
vehicle routing problem that has been adapted for the OBP. Clarke and Wright [24] developed
an iterative procedure that enables the rapid selection of optimal or near-optimal routes from
a large number of options of a fleet of trucks with varying capacities from a central depot to a
number of delivery points. Savings algorithms in the OBP are based on time saving that can be
obtained by comparing the collection of orders in one route to individual picking [28].

The minimum additional aisles heuristic proposed by Rosenwein [97] starts with calculating
a score for each pair of orders in terms of additional aisles to pick for cases that orders are
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picked simultaneously or separately. Therefore, their algorithm is capable of generating fewer
but shorter picking tours when compared to Gibson and Sharp [37]. The smallest centre of
gravity describes the average number of aisles and is an additional distance metric that pairs
orders according to their absolute difference between the centre of gravity of an order and a
batch.

The first OBP version of the algorithm (CW I) described by De Koster et al. [28] computes
savings for each combination of orders. The saving can be determined through tour length
reduction by collecting the items of both orders simultaneously. The pair of orders providing
the highest saving opens a new batch if none of the orders has been assigned to a batch yet. In
the case where one order is already allocated, the other order is added if the capacity constraints
allow it, otherwise the next pair of orders is considered [50].

In the second version of the algorithm (CW II), each time a new combination of orders to batches
has been determined, the savings are recalculated according to De Koster et al. [28]. The formed
clusters are considered as new orders and excluded from these calculations. Therefore, the
clusters become larger and the savings matrix shrinks with every order addition [50]. Bozer and
Kile [15] improved this version of the algorithm by introducing a normalised time saving value
for each pair of orders. Therefore, the travel time saved by picking two orders simultaneously is
divided by the time needed to pick the orders separately.

Each time an order has been assigned the initial savings matrix is modified, resulting in a
third version (CW III) proposed by De Koster et al. [28]. This was implemented because the
initial versions of the algorithms may result in solutions where there are too many batches.
Where orders have not been allocated to a batch, the modification reduces the savings of pairs
by a constant value. Therefore, the algorithm prefers the selection of orders when one order
has already been allocated to a batch and thus new batches will not be formed too fast [50].
De Koster et al. [28] found that savings algorithms perform best in combination with largest
gap strategies in parallel aisle warehouse layouts and for cases where the picking device capacity
is small.

Elsayed and Unal [34] proposed a small and large algorithm. Before orders are assigned to
batches, they are either classified as small or large according to a predefined value. The value
is deducted as a certain percentage of the picking device capacity. According to Elsayed and
Unal [34] near-optimal results are obtained if the value for small batches ranges between 10%
and 35% of the picking device capacity. Large orders are separated and assigned to batches
applying the EQUAL algorithm. Their EQUAL algorithm calculates and compares the travel
time and saving of every possible order combination using a seed algorithm principle. The pair
of orders with the highest saving in travel time functions as the seed. The remaining orders
which increase the savings of the combination by the largest amount in travel time is added
to the tour until the capacity limit of the picking device is reached. Orders that would exceed
the capacity constraints if combined with another order are processed individually. Afterwards,
small orders with the largest number of items are assigned to one of the batches. The batch
which gains the biggest increase in travel time savings by the combination is chosen to be added
to the small order. If an order cannot be added to any batch it will form an isolated tour. The
process is repeated until all orders are allocated.

2.3.4 Data mining approaches

An order batching approach that is based on data mining and integer programming was presented
by Chen and Wu [21] and further extended by Chen et al. [20]. Similarities between orders are
detected with the help of association rules as introduced by Agrawal et al. [3]. A support value,
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that acts as a correlation measure between two orders, is determined for each order pair. Orders
are then clustered into batches by an integer programming approach to maximise the sum of all
support values. The batching approach was tested in a DC with a parallel aisle layout. However,
the determination of the association rules is independent of the layout.

A data mining approach to generate similarity measures between SKUs was provided by Chiang
et al. [22]. Each available storage location and new SKU thus gets an association index. A
general assignment model is then used to minimise the number of aisles based on their index
resulting in order batches.

Priority-based algorithms will serve as a benchmark to measure the performance of the order
batching approach for the unidirectional cyclical picking line presented in this dissertation. In
general, seed algorithms save more central processing unit (CPU) time than more complex
algorithms. Therefore, the focus will be on seed algorithms to develop a solution approach that
is applicable to real world problem instances. Additionally, clustering of orders with a data
mining approach could be successfully applied to bigger sized batches without prior information
about the layout.

2.4 Metaheuristics

Metaheuristics are algorithms that are designed to solve a wide range of hard optimisation
problems. The Greek prefix meta indicates that these algorithms are higher level heuristics.
Therefore, they do not have to adapt deeply to each problem. Hard optimisation problems are
problems that cannot be solved to optimality with an exact solution approach in a reasonable
amount of time [14].

In a real world application the OBP can be considered a hard optimisation problem. The focus
of this dissertation is on batching two orders together (due to the picking device capacity), thus
the OBP can be formulated as an assignment problem. Single-solution based metaheuristics can
be applied to this type of problem. A single initial solution forms the starting point that the
metaheuristics move away from describing a trajectory in the search space [14]. In this section
the following algorithms are discussed: iterated local search, variable neighbourhood search,
tabu search, simulated annealing, great deluge, and hybrid approaches. In the case of batching
more than two orders population-based metaheuristics like ant colony optimisation or a genetic
algorithm could be applied, but are not considered here.

2.4.1 Iterated local search

In an iterated local search (ILS) the embedded heuristic builds a sequence of solutions iteratively.
Thereby, better solutions are generated than using random trials of the heuristic. According
to Lourenço et al. [74] an iterated local search is characterised by following a single chain
and also by the output of a black-box heuristic that defines a reduced solution space. The
components of the algorithm are a cost function that has to be minimised for the combinatorial
optimisation problem at hand and a local search routine that moves from an initial solution to the
bottom of the corresponding basin of attraction. Perturbations are applied to escape a current
local minimum. Additionally, a random restart to repeat the searching procedure from another
starting solution is the easiest way to improve on the cost found by the local search. However, it
has to be taken into consideration that as the instance size increases, the probability of finding
a significantly lower cost by random sampling decreases. This can be achieved by including
a cost history into the acceptance criterion of a new solution. The difference in cost between
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the newly generated solution and the current best solution defines the most basic acceptance
criteria that can be applied in an iterated local search. The four components that influence the
computational time are the generation of the initial solution, the local search, the perturbation
of the solution, and the acceptance criterion [74].

Stützle [108] introduced ILS in his dissertation as an unifying framework of algorithms that rely
on the same basic idea. These algorithms are addressed as large step Markov chains, chained
local optimisation or iterated descent that introduce the ILS principle. The biggest differences
between these algorithms are in the main components, namely the local search procedure, the
perturbation, and the acceptance criterion of the specific algorithm [14].

Henn et al. [49] applied the ILS to manual order picking systems in the standard OBP. The
initial solution is generated using a FIFO approach. In the local search procedure two sets of
batches are referred to as neighbours if one solution can be generated from the other solution
only by swapping two orders from the two different batches or by shifting an order to another
batch. In the swapping move, the order changes to the same position in the sequence of orders.
In the shifting move, the order is assigned to the end of the sequence. Depending on the success
of a swap move, another swap move is carried out until unsuccessful in terms of improvement
and thus changes to a shift move. In the perturbation procedure two batches are randomly
selected and the first two orders are exchanged. The acceptance criterion allows a new solution
as the best solution if the value of the objective function is lower. Experiments carried out by
Henn et al. [49] showed that the solution quality of the ILS is superior to the FIFO benchmark
in the environment of a parallel aisles warehouse.

2.4.2 Variable neighbourhood search

The variable neighbourhood algorithm successively explores a set of predefined neighbourhood
structures to improve a solution. The exploration of the neighbourhoods can either be systematic
or random, depending on the type of algorithm. The variable neighbourhood descent (VND)
and the variable neighbourhood search (VNS) can be applied as a solution approach to the
OBP [109].

The VND constitutes the basis for the variable neighbourhood search, since it is a deterministic
version of the algorithm. As the name suggests, successive neighbourhoods in descent are used
to determine a local optimum. In the beginning, a set of neighbourhood structures Hh with
h = 1, . . . , hmax is defined and a solution initiated. After a local search in the neighbourhood
structure, the search is restarted in the first neighbourhood H1. If no improvement can be made
on the solution, the neighbourhood is changed from Hh to Hh+1 [109]. The neighbourhoods
have to be designed to be complementary in terms of a local optima in one neighbourhood
while not being a local optima in another neighbourhood to successfully implement the VND.
Different characteristics and properties of the search space should be exploited by the chosen
neighbourhoods. Therefore, the design of the algorithm is mainly influenced by the neighbour-
hood structures. Larger neighbourhoods increase the runtime of the algorithm [13].

The VNS consists of the three steps shaking, local search, and move. Adding the shaking step to
the VND, where at each iteration an initial solution b

′
is randomly generated from the current

neighbourhood, makes the algorithm stochastic. Afterwards a local search is applied to find
b
′∗. The algorithms remains in the neighbourhood if the current solution b

′∗ is better than the
best solution b. If there is no improvement, the algorithm moves to the next neighbourhood
comparable to the procedures in the VND. The work in the local search and the shaking phase
are adjusted to balance intensification and diversification of the algorithm [109]. The selection
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of the neighbourhoods in the shaking phase mainly influences the performance of the VNS.
Providing a good starting point for the local search is the objective of the shaking phase [13].

Mladenović and Hansen [85] first proposed the VNS metaheuristic by examining the change
of neighbourhood within a local search algorithm. A basic scheme of the algorithm was pre-
sented which can implement any local search subroutine. Its effectiveness was tested through
an application in the travelling salesman problem.

Albareda-Sambola et al. [4] applied a VNS to the OBP in a parallel aisles warehouse layout. A
variable neighbourhood descent was implemented and three neighbourhoods were defined. The
first neighbourhood transfers an order from one batch to another, the second neighbourhood
transfers at most two orders from one batch to others, and the third neighbourhood transfers
at most three orders. Therefore, the neighbourhoods are from a nested set of neighbourhood
structures. The VNS is a competitive alternative solution approach in the OBP.

2.4.3 Tabu search

Tabu search (TS) incorporates the history of the search not only to escape local optima, but
also to further explore the search space. A basic version of tabu search uses a best improvement
local search and a short term memory to avoid cycling. This short-term memory is represented
by a tabu list that keeps track of the most recently visited solutions and forbids moving towards
them. Therefore, the neighbourhood of a solution H is restricted to solutions outside the tabu
list creating an allowed set. The current solution is the best solution chosen from the allowed
set at each iteration. This current solution is added to the tabu list while another solution
from the tabu list is removed. This dynamic restriction of allowed solutions classifies the TS
as a dynamic neighbourhood search technique. The algorithm either stops when a termination
criterion is met or when the allowed set is empty [13]. The tabu list is the main feature of the
tabu search. The memory of the search process is thus controlled by the length of the tabu list.
A long tabu list forces to explore larger regions, while a shorter list concentrates the search in a
smaller area. Storing solution attributes such as components of solutions or differences between
solutions is more efficient, but can also result in an information loss [14].

Glover [38] first introduced the basic ideas of the TS. Further explanations on concepts and
the method of TS were followed by Glover and Laguna [39]. The main characteristic of this
algorithm is inspired by the human memory mechanism.

Henn and Wäscher [51] applied TS in a manual parallel aisles warehouse layout. A classic
TS with a tabu list that records moves from previous iterations to forbid them in the current
iteration was introduced to the OBP. In a numerical experiment the TS showed superior results
compared to existing solution approaches.

2.4.4 Simulated annealing

Solving a large combinatorial optimisation problem can be compared to simulating the evolution
of a solid in a heat bath to thermal equilibrium. Within this process called annealing, the
metropolis algorithm generates a sequence of states for the solid. If a current state i of the
solid with energy Ei is given, a perturbation mechanism, that transforms the current state into
the next state j (by for example the replacement of a particle). Therefore, the energy of the
next state is denoted as Ej . State j is accepted with a certain probability as the new current
state, if the energy difference, namely Ej−Ei, is greater than zero. This acceptance or so-called
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Metropolis criterion is given by

exp

(
Ei − Ej
kB · F

)
, (2.14)

where the temperature of the heat bath is denoted by F and κB is a physical constant known
as the Boltzmann constant. The solid can reach thermal equilibrium at each temperature if the
temperature is lowered sufficiently slow. In simulated annealing the metropolis algorithm can
be iterated to generate a sequence of solutions for a combinatorial optimisation problem [1].

In simulated annealing (SA) the process of annealing is transposed to the solution of an opti-
misation problem. Similar to the energy of the material, the objective function is minimised
by controlling a fictitious temperature that is represented by a parameter in the algorithm [31].
Different approaches on determining an adequate cooling schedule are available. Van Laarhoven
and Aarts [117] divided them into empirical and theoretically based cooling schedules. The pro-
gramme of annealing mainly influences the convergence speed of the SA algorithm. According
to Dréo et al. [31] it must thus specify the values of the parameters including the initial temper-
ature, the change criterion, the law of decreasing the temperature and the program termination
criterion.

Kirkpatrick et al. [66] and independently Černỳ [19] first introduced the SA algorithm. Low
energy configurations of disordered magnetic material posed optimisation problems with several
valleys of unequal depth that were approached by using the technique of annealing.

The great deluge (GD) is a variant of the SA. The main difference is the way in which the
solution is accepted. Additionally, the algorithm is easier to execute, since the GD only requires
one parameter that has to be calibrated. The algorithm is inspired by the idea of a hiker who
wants to keep her feet dry and thus visits the peaks in the search space while the water level
rises [31].

Dueck [32] introduced the GD and tested it on instances of the travelling salesman problem. The
tours generated by the algorithm are sparse, dense and regular. He also included a comparison
to the simulated annealing approach.

Matusiak et al. [83] applied SA to batch more than two customer orders together. The results
show only a small deviation from an optimal approach on batching and a good alternative to
other heuristic approaches. Their study was performed in a standard DC layout.

Nicolas et al. [88] extended their optimal solution approach for vertical lift modules (carousels)
that are closely related to the unidirectional cyclical picking line, since order numbers exceeding
60 require a significant amount of computational time. Therefore, they tested a SA approach, a
TS and a genetic algorithm with the SA approach obtaining the best results. The implementation
of the metaheuristics outperformed the optimal solution approach in their study.

2.4.5 Hybrid algorithms

Hybrids benefit from synergies. Therefore, different algorithms are combined to exploit the
complementary characteristics between various optimisation strategies. However, certain hybrids
might work well on some problems, but not on others making generalisation a difficult task [12].

Öncan [90] suggested an ILS with a tabu threshold for the OBP in a parallel aisles warehouse
layout. They reported that the hybrid preforming diversification and intensification steps si-
multaneously achieved outstanding results in accuracy and efficiency on a standard and on a
randomly generated test set.
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Žulj et al. [122] developed a hybrid of an adaptive large neighbourhood search and a TS and
applied it to the OBP in a rectangular single-block warehouse layout with a low-level picker-
to-parts order picking system. Thereby, they combined the diversification capabilities of the
adaptive large neighbourhood search with the intensification capabilities of the tabu search.
Their hybrid outperformed previously published algorithms in terms of average solution quality
and runtime, especially for large number of orders.

2.5 Order batching on a unidirectional cyclical picking line

Typically, batching heuristics choose a seed order and then expand the batch by adding orders
with proximity until the capacity of the picking device is reached. Therefore, the primary issue
of batching heuristics is to define a measure of proximity between orders [20]. The OBP for
picker-to-parts order picking systems is generally applied in single-block parallel aisles ware-
house layouts. In defining proximity measures between orders, travel distance is affected by the
DC layout [52]. Therefore, Valle and Beasley [112] introduced distance approximations incor-
porating aisles and cross-aisles distances. However, the layout used in the standard OBP differs
significantly from the unidirectional cyclical picking line.

The vertical lift module (carousel) investigated by Nicolas et al. [87, 88] shows similarity to
the unidirectional cyclical picking line. However, their system is an automated parts-to-picker
system. They defined the number of trays visited for different batches as a measure of proximity
between orders [88]. This is not possible on the unidirectional cyclical picking line.

No proximity measures between orders for a picker-to-parts order picking system incorporating
a unidirectional cyclical picking line have been developed in literature. Therefore, the batching
rules that have been introduced need to be adapted and extended for the specific layout and
characteristics of the unidirectional cyclical picking line. Additionally, each picking wave in the
Retailer’s order picking system processes around 1 800 orders. The solution approach for the
OBP thus has to be fast to meet the requirements of the picking system.

According to Van Gils et al. [116] multiple order picking planning problems should be com-
bined to efficiently manage order picking systems. Planning problems that are combined should
be within a similar time frame, because the OBP has to be solved by a DC on a daily basis.
Analytical and simulation models can serve as decision support tools for DC managers taking
interactions in the picking system into account. These models can be used to address practical
problems such as the dynamics between multiple pickers resulting in picker blocking and con-
gestion. The planning problems should also be solved with fast solution approaches to make the
application practical [17]. The importance of the product properties, may lead to data mining
approaches in the order batching operation [18].

Order batching is introduced to a unidirectional cyclical picking line in the next chapter. Dif-
ferent distance approximations are developed and combined with greedy heuristics and meta-
heuristics to determine the combination that minimises walking distance most effectively.
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In existing operations research literature the order batching problem (OBP) has not been in-
troduced to a unidirectional cyclical picking line. In most cases order batching takes place in
a single-block warehouse with parallel aisles environment. Therefore, proximity measures are
adapted and extended to meet the requirements of the specific set up of this dissertation, since
they are dependent on the underlying layout. The idea that the introduced proximity measures
can be used to approximate walking distance is supported by a regression analysis. Combination
algorithms that generate batches, reducing the walking distance of pickers in a short amount of
time, are identified.
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3.1 Introduction

The need for greater product variety and shorter response times emphasises a company’s ability
to establish efficient logistical operations. This efficiency is, amongst others, determined by the
operation of its warehouses or distribution centres (DCs) that define the nodes in the distribution
network [98]. In a supply chain, connecting production plants with end customers warehousing
cannot be eliminated. The role of warehouse operations is constantly changing and thus has to
remain flexible. A DC focuses on the consolidation and accumulation of numerous products from
various suppliers and delivering those to customers. Products from different suppliers arrive in
bulk at the DC. The stock is then turned into customer or store orders for delivery to the DC’s
customers [35].

Van den Berg and Zijm [113] subdivide DC activities into four categories, namely receiving,
storage, order picking and shipping. From the total logistics cost of a company, approximately
25% can be attributed to the cost of operating a warehouse [49]. Therein, the basic service
of a DC is order picking that makes up for 50% to 65% of the operational cost, accounting
for labour, capital and supporting activities [113]. De Koster et al. [29] define the process of
order picking as retrieving products from storage or buffer areas and turning them into specific
orders in response to a customer request. The design of the order picking system is crucial to
its performance. The number of orders, together with the items per order that are picked in a
day, the average size of an order, and the layout of the storage racks are key parameters to set
up an efficient order picking system [27].

The order picking system of a prominent South African retailer (referred to as the Retailer)
with around 2 000 outlets or stores is considered here. A set of non-uniform orders is the result
of a large number of stores with different sizes and various customer profiles that needs to
be handled by the DC on a daily basis. A key characteristic of the Retailer’s operations is
the central planning of the inventory kept at store level. Instead of stock requested by store
managers, planners at a central planning department assign stock that is available at the DC
to stores. Thereby, the central planning department allocates store keeping units (SKUs) to
stores. Planners in the central planning department decide on the number of SKUs destined for
each store after the arrival of the SKUs at the DC. Planners issue instructions to the DC about
the SKUs and the stores where they should go. The DC then selects a subset of SKUs to be
picked in a single picking wave to satisfy all store requirements for that set of SKUs. In this
dissertation, the term order will thus refer to the set of store requirements for a single store for
all SKUs selected to be processed in a wave. A wave is processed on a picking line in the DC. A
single SKU is assigned to a single location on a specific picking line for each wave. The activities
of populating the line with SKUs, the actual picking process and removing excess stock from
the line comprise a picking wave [78].

Locations

Locations

Conveyor belt

m
21

m i m
2

+ 1

Figure 3.1: A schematic representation of a picking line with m locations. Source: De Villiers [30].

A schematic representation of a picking line with m locations is depicted in Figure 3.1. At the
Retailer’s DC in Durban a picking line consists of 56 locations with a conveyor belt placed in
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the middle that has two access gates. From the storage area, a single SKU is assigned to a single
location on the picking line. The number of items of each SKU to be picked for all stores are
known prior to the start of a picking wave. Each location has the storage capacity of five pallets
of an identical SKU. Additional stock is kept on the floor space between different picking lines
for easy refill, avoiding stock-outs. Therefore, stock does not have to be replenished from storage
racks during a picking wave. Pickers move around the conveyor belt in a clockwise direction
picking all orders. A voice recognition system (VRS) guides the pickers through the picking
process by sending a picker to the closest required SKU. Therefore, the underlying picking
strategy can be summarised as pick the closest SKU in a clockwise direction. The picking
system is categorised as a picker-to-parts system. Before the picking of an order is started, an
empty carton is placed on the trolley and registered through a barcode with the VRS. Each order
is connected to a unique carton (or set of cartons depending on the size of the order). After
picking, full cartons and finished orders are placed on the conveyor belt for further processing
in the dispatch area of the DC [76, 77].

The set up of the picking system at the DC shows many similarities to unidirectional carousel
systems, if the SKUs are viewed as moving relative to a static picker. A carousel is an automated
warehouse system that can be used for picking small and medium products. It is designed as a
rotatable circuit of shelving holding multiple SKUs. A picker, who remains at a fixed location
during the picking process, operates the system. In literature this picking system is referred
to as a parts-to-picker system, since the storage location travels to the picker instead of the
picker travelling to the storage location. A bidirectional carousel can rotate in both directions
to bring the required SKU in front of the picker, whereas a unidirectional carousel can only
move in one direction [7]. The cyclical set up of the picking line, the assumptions that one
picker processes one order, and the automation of pick sequencing by the VRS resembles a
unidirectional carousel. However, the presence of wave picking is the main difference in the
Retailer’s system to the carousel systems studied in literature. Not all SKUs may be picked and
new orders may be added to the set during the picking operation in typical carousel systems.
Therefore, optimisation approaches make use of expected SKU mixes in orders that are derived
from historical data [73]. The deterministic nature of the orders (because all orders are known
and fixed when a wave of picking starts) is unique to the Retailer’s picking system in operations
research literature [78].

Planning for order picking includes the order batching problem. Orders that are requested are
subsequently released for fulfilment. This set of orders needs to be picked and accumulated for
packing and shipping in a picking wave [42]. The combination of customer orders into picking
orders describes the process of order batching [50]. According to Wäscher [120] order batching
answers the question of how customer orders should be grouped into picking orders to minimise
the total length of all picking tours necessary to collect all items while no customer order is
split, given (1) a set of customer orders consisting of a number of items, (2) an assignment of
items to storage locations in the order picking system of a warehouse, and (3) the capacity of
a picking device. Tours that efficiently shorten the picking time can be generated, since several
orders are picked simultaneously leading to a reduction in labour cost [28].

While there has been intensive research on the order batching problem in single-block warehouses
with parallel aisles, according to Nicolas et al. [87] little research has been published on carousel
systems. The literature on carousels can be categorised into either determining the pick sequence
on a carousel or finding the best storage location for a product in a carousel. No study on order
batching applied to a manual unidirectional carousel systems as implemented by the Retailer
could be found in literature.

This chapter aims at answering the question if the OBP can be applied to the specific layout of
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a unidirectional cyclical picking line. The orders will be batched before the pickers are routed.
However, walking distance can not be determined a priori and thus a realistic approximation
for distance has to be provided. Different location-based metrics are developed to estimate
walking distance, since calculating walking distance is too time consuming. Different algorithms
that correlate with these metrics to solve the order batching problem are tested. A suggested
combination of metric and algorithm to minimise the total distance travelled by a picker to
collect all orders during a picking wave concludes this chapter.

A brief overview on the literature of order-batching in single-block and automated storage and
retrieval warehouse set ups is given in Section 3.2. The model will be described in Section 3.3
including assumptions, measurements and an integer programming formulation of the problem.
The location-based order-to-route closeness metrics will be proposed in Section 3.4. In Sec-
tion 3.5 different heuristic approaches which include greedy heuristics and metaheuristics are
introduced to solve the OBP in reasonable time. A case study with real life data from the Retailer
is used to test the performance of the combinations of metrics and algorithms in Section 3.6. In
Section 3.7 a summary and an outlook on future research opportunities is provided.

3.2 Literature review

The formulation of the standard OBP was introduced and proved to be NP-hard in the strong
sense by Gademann and Velde [36] for a single-block warehouse with parallel aisles environment.
However, if no batch contains more than two orders the problem can be solved in polynomial
time. The branch-and-prize algorithm developed by Gademann and Velde [36] solved test in-
stances of up to 32 orders to optimality. Additionally, Henn and Wäscher [51] solved instances
of up to 40 orders. Nevertheless, their solution approach required a time-consuming prepro-
cessing of all feasible batches. Muter and Öncan [86] solved instances of up to 100 orders with
their specially tailored column-generation based algorithm. In practice the number of customer
orders is likely to exceed these test instances, but the exact algorithms proposed so far are not
able to consistently solve larger instances. Nicolas et al. [87] introduced the OBP to a vertical
carousel system that is closely related to the layout of the unidirectional cyclical picking line.
The OBP is formulated as a mixed integer linear program (MILP). Nevertheless, the MILP has
to be stopped after 30 minutes due to time constraints for test instances over 50 orders. In
the Retailer’s DC a picking line can service up to 1 500 orders. Larger problem instances must
be solved using heuristics. Therefore, construction heuristics like seed algorithms and saving
algorithms have been introduced to solve the OBP.

A straight-forward heuristic is the first-in-first-out method that groups together the first entries
of the list of orders as close as possible to the predetermined maximum batch size. Then the
next orders are grouped using a similar logic until all orders form part of a batch [37].

Seed algorithms start by initiating batches, then allocating orders to batches and terminate
through a stopping rule when a batch has been completed. The objective is to minimise the
total travel distance for collecting all orders. De Koster et al. [28] evaluated seed algorithms
in a parallel aisle warehouse layout proposing the seed selection rules of the farthest storage
location. Ho and Tseng [53] investigated several location- and aisles-based seed algorithms in
the standard OBP environment of a single-block parallel aisle warehouse. Ho et al. [52] extended
this study with further distance- and area-based selection rules in this environment. In their
comparative study Pan and Liu [92] evaluated four initial seed selection and four order addition
rules investigating the OBP in an automated storage and retrieval system that consists of a
single storage rack with equally sized storage locations serviced by a single storage and retrieval
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machine.

Saving algorithms in the OBP are based on the Clarke and Wright-algorithm (CW) [24] and
thus the time saving that can be obtained by comparing the collection of orders in one route
to individual picking [28]. The minimum additional aisles heuristic proposed by Rosenwein [97]
starts with calculating a score for each pair of orders in terms of additional aisles to pick from
in the cases that orders are picked simultaneously or separately. Therefore, their algorithm is
capable of generating fewer but shorter picking tours when compared to Gibson and Sharp [37].
The first OBP version of the algorithm (CW I) described by De Koster et al. [28] computes
savings for each combination of orders. Each time a new combination of orders to batches has
been determined the savings are recalculated in the second version of the algorithm (CW II).
Bozer and Kile [15] improved this version of the algorithm by introducing a normalised time
saving value for each pair of orders. Each time an order has been assigned the initial savings
matrix is modified resulting in a third version (CW III) proposed by De Koster et al. [28].
Additionally, Elsayed and Unal [34] proposed a small and large algorithm. Therefore, orders
are either classified as small or large according to a predefined value before they are assigned to
batches. In general seed algorithms are more central processing unit (CPU) time saving than
saving algorithms. The order-to-route closeness metric is central to all types of heuristics [42].

Metaheuristics are designed to solve a wide range of hard optimisation problems and can thus
also be applied to the OBP. An iterated local search that explores a neighbourhood to identify a
new solution with a smaller objective function value was applied to the OBP by Henn et al. [49].
Albareda-Sambola et al. [4] defined three neighbourhoods to introduce the OBP to a variable
neighbourhood search. A tabu search that simulates the human memory processes including a
tabu list was applied to the OBP by Henn and Wäscher [51]. Matusiak et al. [83] introduced a
simulated annealing approach that simulates the cooling process of metal to the OBP. Öncan [90]
introduced a combination of an iterated local search with a tabu threshold to the OBP. A hybrid
of a large adaptive neighbourhood search and a tabu search was developed by Žulj et al. [122]
based on the findings of Henn and Wäscher [51] and Öncan [90].

3.3 Model formulation

The problem environment of this study is a DC of the Retailer. The DC is made up of several
unidirectional cyclical picking lines functioning in parallel. Thus one such picking line will be at
the centre of attention. This layout differs significantly from the parallel-aisle or the single-aisle
automated storage and retrieval warehouses that are frequently studied in academic literature.

The following assumptions are made while modelling the Retailer’s order picking system.

1. The orders that need to be picked during a wave and the SKUs and their location in the
picking line will be fixed a priori.

2. For movability the picking devices are small. However, SKUs are generally bulky. There-
fore, the capacity of the picking devices is currently restricted to accommodate two orders
at a time restricting the batch size to two.

3. A picker must complete the entire order before starting the next, packing stock directly
onto the picking device. When an order is completed or the carton is full, it is placed on
the conveyor belt for further processing.

4. It is assumed that a picker walks at a constant speed and that the time taken to pick and
pack a SKU or switch between orders is constant.
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The error potential of adding the wrong item to an order through the introduction of order
batching was mitigated by the design of the picking devices with two shelves accommodating
two orders. Furthermore, the orders are colour-coded corresponding to the colour-coded cartons
(Order A is blue and picked into the blue carton, while Order B is red and picked into the red
carton).

3.3.1 Measurements

The cycles traversed measurement, that was introduced by Matthews and Visagie [78], counts
the number of cycles that have to be traversed to pick all items requested during a picking wave
as a measure of distance travelled to pick all orders. This measurement counts the total number
of cycles required to pick and link all orders.

In the system currently in use by the Retailer each order is processed by one picker completing
one order at a time. Orders are sequentially assigned to the next available picker based on a
fixed list of orders. In effect each order is assigned randomly, since the assignment does not
take the previous order or the current position of the picker into consideration. Therefore, each
picker picks a random sequence of orders. Matthews and Visagie [78] proposed a nearest end
heuristic as an easily implementable option to determine a sequence of orders that minimises
the distance that pickers have to travel during a wave. The nearest end heuristic sequentially
selects the order with the nearest ending position from the current picking position. Therefore,
it simultaneously considers the order sequence and the item sequence within the order. An
example of a unidirectional cyclical picking line with 10 locations and 10 SKUs is depicted in
Figure 3.2. Four different orders are indicated by the colours green, blue, red and yellow. The
different shapes represent the SKUs and locations respectively. If the nearest end heuristic is
applied to this example, Order 4 (yellow) would be picked first, starting at the first location
and ending at location seven. This would be followed by the picking of Order 1 (green), then
Order 3 (red) and finally Order 2 (blue). In total a picker has to traverse four cycles to collect
all orders of the picking wave. The nearest end heuristic is easily reproducible. Therefore, it is
used in determining an order sequence to test the effectiveness of the various batching logics in
terms of number of cycles traversed.

10 9 8 7 6

54321

Figure 3.2: Schematic representation of single order picking in a picking line with 10 SKUs and 10 lo-
cations.

This chapter focuses on location-based order-to-route-closeness metrics. Each picking location
defines where a picker has to stop at a location to pick items for an order. Different picking
location or so-called stop metrics will be developed to identify compatible orders in terms of
number of stops in common. The assumption is that a good overlap in stops may lead to a
reduction in total walking distance.
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3.3.2 Exact formulation

Minimising the completion time is equivalent to minimising the travel distance to collect all
orders in a picking wave. Therefore, the objective is to minimise the incompatibility in terms of
distance between orders that are described by a picking location metric to obtain the smallest
number of cycles that have to be traversed. Orders must be combined in batches of size two.
This can be formulated as an integer programming model. Let

n be the number of orders,
cij be the cost in terms of incompatible stops to batch order i and order j,

and define the set of variables as

xij =

{
1, if order i and order j are in the same batch,

0, otherwise.

The objective is to

minimise
n∑
i=1

n∑
j=i+1

cij xij (3.1)

subject to

i−1∑
k=1

xki +
n∑

j=i+1

xij = 1 i = 1, . . . , n (3.2)

xij ∈ {0, 1}

{
i = 1, . . . , n

j = i+ 1, . . . , n.
(3.3)

The incompatibility between orders in terms of stops expressed by a picking location metric is
minimised by objective function (3.1). The set of triangular inequality constraints (3.2) and the
binary condition (3.3) assign each order to only one other order in the case of a symmetric cost
matrix.

The problem formulated in (3.1) – (3.3) is in essence an assignment problem. Another option
to solve the assignment problem is the quick match algorithm that was introduced by Orlin
and Lee [91]. It is based on the successive shortest path algorithm and combines a forward
Dijkstra with a reverse Dijkstra algorithm. Heuristics are included to speed up its performance.
Therefore, this algorithm will also be included for testing purposes.

3.4 Picking location metrics

The simplest way of introducing order batching to a unidirectional cyclical picking line would be
to implement a first-in-first-out (FIFO) approach. According to the FIFO rule the first entries of
a list of orders are grouped together until the predetermined maximum batch size is reached [37].
FIFO is often used in literature as a benchmark to compare different batching methods. It will
also be used here to compare the metrics that measure the incompatibility of orders in terms of
stops. An example of the picking locations of four orders is illustrated in Table 3.1. Employing
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the nearest end heuristic as a routing strategy (Section 3.3.1), a picker has to traverse four cycles
to collect all four orders. If FIFO is applied as the random batching strategy and a batch is only
allowed to contain two orders as illustrated in Figure 3.3, then the first two orders would form
Batch 1 (in orange) and Batch 2 would be composed of Order 3 and Order 4 (in purple). The
circles represent the movement of a picker showing that only two cycles have to be traversed.
The number of cycles traversed will indicate the walking distance to compare different metrics.

Locations: 1 2 3 4 5 6 7 8 9 10

Order 1
Order 2
Order 3
Order 4

Table 3.1: The picking locations of the four orders in the example.

10 9 8 7 6

54321

Figure 3.3: Schematic representation of order batching in a picking line with 10 SKUs and 10 locations.

In the remainder of this section, the stops metric, the non-identical stops metric and the stops
ratio that approximate the compatibility between orders are introduced. Additionally, a small
example on the basis of Table 3.1 will be provided to explain each metric.

The stops metric in matrix T with general element tij is a location-based batching rule. It
results in the orders with the smallest total number of picking locations forming a batch. The
logic of this metric combines the seed selection rule of choosing the smallest number of non-
overlapping picking locations introduced by Elsayed and Stern [33] with the smallest number
of additional picking locations rule proposed by Ho and Tseng [53]. The number of picking
locations of each order when combined with every other order is calculated first. This results in
the total number of picking locations that a picker has to visit if those two orders are batched.
The orders with the smallest number of combined picking locations are then selected to form
a batch. Therefore, each location at which a picker has to stop to pick for one of the orders is
counted. On the contrary, counting all locations a picker passes not stopping to collect items for
any order may result in the combination of orders which only have a small number of picking
locations in common. This option is thus not further investigated.

The stops metric tij , with the sets Si and Sj , containing all stops for orders i and j may be
calculated as

tij = |Si|+ |Sj | − |Si ∩ Sj |. (3.4)

Batching Order 1 with S1 = {2, 3, 7, 8, 9} and Order 2 with S2 = {4, 5, 7} results in the stops
entry t12 = 5 + 3− 1 = 7. Calculating the stops metric for all orders in the example results in a
symmetric matrix as illustrated in Table 3.2(a). Combining the orders with the exact solution
approach, as described in Section 3.3.2, batches the orders with the smallest number of picking
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locations. Therefore, the first batch could contain Order 1 and 3 and the second batch could be
composed of Order 2 and 4 in this example.

T =


1 2 3 4

1 − 7 8 7
2 7 − 7 6
3 8 7 − 8
4 7 6 8 −


(a) The T matrix.

N =


1 2 3 4

1 − 6 5 5
2 6 − 5 5
3 5 5 − 6
4 5 5 6 −


(b) The N matrix.

R =


1 2 3 4

1 − 0.86 0.63 0.71
2 0.86 − 0.71 0.83
3 0.63 0.71 − 0.75
4 0.71 0.83 0.75 −


(c) The R matrix.

Table 3.2: The T, N and R matrices for the picking line example.

An additional location-based rule is the non-identical stops metric in matrix N with general
element nij . Batches are formed by combining orders with the smallest number of non-identical
picking locations as a result of the application of this metric. Ho and Tseng [53] proposed the
greatest number of identical picking locations rule. The logic of nij is contrary to their rule.
The picking locations for combining each order with every other order are obtained in the first
step. However, the order with the smallest number of non-identical picking locations between
orders becomes the accompanying order in this case. Therefore, each location where a picker
stops to collect for only one of the orders is counted to identify non-identical picking locations.

The non-identical stops matrix N, with element nij , can be calculated as

nij = |Si|+ |Sj | − 2 |Si ∩ Sj |. (3.5)

In the example Order 1 with stops S1 = {2, 3, 7, 8, 9} and Order 3 with S3 = {3, 5, 6, 7, 8, 10}
result in the non-identical stops entry n13 = 5 + 6− 6 = 5. Table 3.2(b) results from calculating
the non-identical stops metric for all orders in the example. Using the exact solution approach
the combinations of orders with the smallest number of non-identical picking locations could
result in the combination of Order 1 and 4, and also Order 2 and 3.

The stops ratio metric in matrix R with general element rij combines the non-identical stops
with the combined picking locations of the orders. This metric is also based on the location of
items in an order. The non-identical stops metric is divided by the stops metric and thus results
in the stops ratio metric. The closer the stops ratio is to zero, the lower the incompatibility of
orders in terms of walking distance.

Formulating the stops ratio metric can be achieved by dividing nij by tij . Therefore, the stops
ratio is calculated as

rij =
nij
tij
. (3.6)

For batching Orders 1 and 4 with stops S1 = {2, 3, 7, 8, 9} and S4 = {1, 2, 6, 7}, the stops ratio
metric r14 = 5/7 would result in 0.71. In Table 3.2(c) all stops ratios for all orders from the
example are illustrated. Order 1 and 4 (and thus Order 2 and 3) could be combined when
applying the exact solution formulation.

Even in this small example as described in Table 3.1 the picking location metrics measure
the incompatibility of orders in terms of distance differently and thus suggest different batch
combinations (1, 2 and 3, 4 in FIFO, 1, 3 and 2, 4 in T, 1, 4 and 2, 3 in N and R). With bigger
data sets the differences in using different metrics become more evident. Furthermore, picking
waves with a size of up to 2 000 orders have over a million different possible combinations in
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determining the best match between two. Applying an exact solution approach would make
checking all possible combinations very time consuming. Therefore, heuristic and metaheuristic
solution approaches that reduce computational time are described in the following section.

3.5 Heuristic solution approaches

After the orders have been measured using one of the proposed picking location metrics, different
algorithms to combine the orders in batches of size two for a unidirectional cyclical picking line
in the Retailer’s DC are described in this section. Four greedy heuristics and six metaheuristics
are introduced.

3.5.1 Greedy heuristics

The four different variations of greedy heuristics include a greedy top-down, a greedy bottom-up,
a greedy random and a greedy smallest entry approach. All four variations search through the
symmetric matrices generated by applying the stop metrics for minimum entries.

The greedy top-down (GTD) starts searching the matrix from the first row until it reaches the
last row in a top-down fashion. Thereby, the tuple corresponding to the minimum entry mkq of
row k is recorded in a set B to indicate that orders k and q are batched. Then both rows and
columns k and q are removed. This process continues until all rows and columns of the matrix
are eliminated. At this time set B has the cardinality n, where n is the size of the problem. The
greedy bottom-up (GBU) and the greedy random (GR) progress in a similar way. The GBU
starts at the last row and searches until it reaches the first row. The GR searches the rows in
a random sequence. This is displayed in Algorithm 1. Furthermore, a greedy algorithm that
globally searches for the smallest entry (GS) in the matrices was developed. This algorithm
then eliminates rows and columns in the same way as the other greedy heuristics. There is
no difference between searching rows or columns, since the picking location metrics generate
symmetric matrices [30].

Algorithm 1: Greedy random heuristic (GR)

Input: A picking location metric consisting of a n× n matrix M with entries mij , an empty solution set B
Output: The solution set B as a list of batched orders

1: B ← ∅
2: while | B | < n/2 do
3: k ← random row from M
4: mkq = min

j
[mkj ]

5: B ← B ∪ (k, q)
6: Remove both rows and columns k and q from M
7: end while
8: Return B

3.5.2 Metaheuristics

Only single-solution based methods have been chosen for the six metaheuristics, since the ob-
jective is to generate batches of size two. These methods start with a single initial solution,
then moving away from it to describe a trajectory in the search space [13]. The algorithms
are described in this section, while the parameters for each metaheuristic controlling the trade-
off between intensification and diversification have been calibrated specifically for the problem
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statement of the unidirectional cyclical picking line in the Retailer’s DC. For each metaheuristic
starting from parameter values found in literature the number of configurations used to cali-
brate differ between algorithms, due to their ability to find a solution within a limited number
of iterations that allows for an overall optimisation of the picking process. Including a range in
number of orders and SKUs 12 sample picking waves are used to determine the configuration
for each metaheuristic that provides the lowest number of total cycles traversed.

The iterated local search (ILS) generates a new starting solution for the following iteration by
perturbing the local optimum found at the current iteration. Therefore, the local search proce-
dure is not repeatedly applied to a randomly generated starting solution, but to the best solution
found in the previous iteration. The underlying assumption is that the perturbation mechanism,
which is the key feature of the ILS, is able to provide a solution that lies in the basin of attraction
of a better local optimum [14]. The ILS and its framework was first defined by Stützle [108].
In Algorithm 2 the pseudocode of the ILS for the OBP is displayed. The acceptance criterion
incorporates a restart of the search after a predefined non-acceptance counter thus incorporating
a simple form of history. By means of parameter calibration 12 configurations with different
termination criteria and non-acceptance counters under limited time have been tested on the
sample picking waves. The lowest numbers of total cycles traversed were found incorporating
the configuration with a termination criterion tI of 5 and a non-acceptance counter aI of 3.

Algorithm 2: Iterated local search (ILS)

Input: An initial solution ba, a cost function c(·) as well as a non-acceptance counter aI and a termination
criterion tI
Output: The best solution b as a list of batched orders

1: aI , tI ← 0
2: ba ← initiate a starting solution
3: b← ba
4: b∗ ← perform a local search on b
5: while the termination criterion tI is not met do
6: b

′
← perturb b∗

7: b∗
′
← perform a local search b

′

8: if c(b∗
′
) ≤ c(b∗) then

9: b∗ ← b∗
′

10: aI = 0
11: else
12: aI = aI + 1
13: if non-acceptance counter aI is not met then
14: tI = tI + 1
15: else
16: b∗ ← restart search
17: tI = 0
18: end if
19: end if
20: b← b∗

21: end while
22: Return b

The variable neighbourhood search (VNS) explores the solution space by dynamically changing
neighbourhoods around a given solution. After an initial solution is introduced, the main cycle
of the VNS consists of the steps shaking, local search, and move. In the shaking step a solu-
tion b

′
is randomly selected in the hth neighbourhood of the current solution. If the local search

produces a better solution b∗
′

than b, the solution is updated and the algorithm stays in the first
neighbourhood. Otherwise, the algorithm moves to explore the next neighbourhood [14]. Mlade-
nović and Hansen [85] introduced the structure of this algorithm. The pseudocode displayed
in Algorithm 3, applies the VNS to the OBP. In this study three neighbourhoods are defined
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after testing different configurations in numerical experiments. In the first neighbourhood the
order with the highest cost according to the picking location metric is swapped with the lowest,
then the second highest and lowest are swapped, and finally, the third highest and lowest are
interchanged respectively. The termination criterion tV has been set to 5 through parameter
calibration that included six different configurations of termination criteria, and were tested on
the sample picking waves under time restriction.

Algorithm 3: Variable neighbourhood search (VNS)

Input: An initial solution ba, a set of neighbourhood structures H with h = 1, 2, 3, a cost function c(·) as well
as a termination criterion tV
Output: The best solution b as a list of batched orders

1: tV ← 0
2: H ← generate a set of neighbourhood structures with h = 1, 2, 3
3: ba ← initiate a starting solution
4: b← ba
5: while the termination criterion tV is not met do
6: h← 1
7: while in one of the defined neighbourhood structures do
8: b

′
← select a random solution in the hth neighbourhood Hh(b) of b

9: b∗
′
← perform a local search on b

′

10: if c(b∗
′
) ≤ c(b) then

11: b← b∗
′

12: h = 1
13: else
14: h = h+ 1
15: end if
16: end while
17: tV = tV + 1
18: end while
19: Return b

The variable neighbourhood descent (VND) is a variation of the variable neighbourhood search.
The VND is a deterministic version of the VNS excluding the shaking step [109]. The search
steps of the VND are illustrated in Algorithm 4. The neighbourhood structure stays the same
as in the VNS apart from the termination criterion tD that is set to 50 through parameter
calibration by testing 10 configurations with varying termination criteria on the sample picking
waves under limited time. The VND is able to find a feasible solution faster than the VNS in
this study, thus more configurations can be tested.

In a tabu search (TS) the history of the search is used to escape from local optima. The search
history is also used to implement an exploitative strategy. A defined number of previously
encountered solutions is recorded in a tabu list and thus forbidden to be revisited. The list
can be described as a short term memory that prevents the algorithm from endless cycling and
forces the search to explore different solution spaces. The length of the tabu list thus controls
the memory of the search process. Glover [38] first introduced the tabu search algorithm.
The mechanisms of the human memory inspired the main characteristic of this algorithm. Its
application to the OBP is illustrated in Algorithm 5. The configuration with its tabu list length ϕ
set to 0.8 relative to the size of the problem and its termination criterion tT set to 3 provides
the lowest number of total cycles traversed when testing 32 configurations with different length
of tabu lists and termination criteria on the sample picking waves under time restriction.

Inspiration for the simulated annealing (SA) algorithm comes from the annealing technique
used by metallurgists. Material is heated up to a high temperature and then lowered down
slowly to obtain a well ordered state of minimum energy. Applying this technique, the objective
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Algorithm 4: Variable neighbourhood descent (VND)

Input: An initial solution ba, a set of neighbourhood structures H with h = 1, 2, 3, a cost function c(·) as well
as a termination criterion tD
Output: The best solution b as a list of batched orders

1: tD ← 0
2: H ← generate a set of neighbourhood structures with h = 1, 2, 3
3: h← 1
4: ba ← initiate a starting solution
5: b← ba
6: while in one of the neighbourhood structures and the termination criterion tD is not met do
7: b

′
← perform a local search on b in the hth neighbourhood Hh(b)

8: if c(b
′
) ≤ c(b) then

9: b← b
′

10: h = 1
11: else
12: h = h+ 1
13: end if
14: tD = tD + 1
15: end while
16: Return b

Algorithm 5: Tabu search (TS)

Input: An initial solution sb, a neighbourhood H(b), a tabu list length ϕ, a cost function c(·) as well as a
termination criterion tT
Output: The best solution b as a list of batched orders

1: tT ← 0
2: TabuList← ∅
3: ba ← initiate a starting solution
4: b← ba
5: while the termination criterion tT is not met do
6: b

′
← select the best solution in H(b) \ TabuList

7: if c(b
′
) ≤ c(b) then

8: b← b
′

9: Update TabuList

10: tT = 0
11: else
12: tT = tT + 1
13: end if
14: end while
15: Return b

function of the optimisation problem is minimised similar to the energy of the material [14]. The
starting solution and the annealing scheme for the temperature decrease are initiated. At each
iteration, a new solution is accepted with a certain probability determined by the Metropolis
criterion [1]. The SA algorithm was introduced by Kirkpatrick et al. [66] and by Černỳ [19]
independently. In Algorithm 6 the structure of the SA is illustrated. The annealing scheme
is crucial to the performance of the algorithm [31]. Therefore, three different approaches in
determining the annealing scheme have been analysed for this application. A constant lowering
of the temperature, dynamically changing the temperature according to the acceptance of a
number of perturbations, and restarting to the initial solution after a number of non-acceptances
of the new solution have been tested. Thereby, reheating is incorporated in two variations in
the second and third configuration of the algorithm. Numerical experiments showed that using
the acceptance of a perturbation performs best in the application of this study. Additionally,
the initial temperature τa was set to 1.0, the alpha value α to 0.9, the acceptance counter aS
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to 12, and the termination criterion tS to 3. This was done by fine-tuning these parameters for
120 different configurations under limited time.

Algorithm 6: Simulated annealing (SA)

Input: An initial solution ba, a neighbourhood H(b), an initial temperature τa, a alpha value α, a cost
function c(·) as well as an acceptance counter aS and a termination criterion tS
Output: The best solution b as a list of batched orders

1: aS , tS ← 0
2: τ ← τa
3: ba ← initiate a starting solution
4: b← ba
5: while the termination criterion tS is not met do
6: b

′
← randomly select a solution in H(b)

7: if c(b
′
) ≤ c(b) or accept b

′
with probability exp(− c(b

′
)−c(b)
τ

) then

8: b← b
′

9: aS = aS + 1
10: tS = 0
11: else
12: aS = 0
13: tS = tS + 1
14: end if
15: if the thermodynamic equilibrium is reached through acceptance counter aS then
16: τ = τ · α
17: aS = 0
18: end if
19: end while
20: Return b

The great deluge (GD) algorithm is a variation of the SA algorithm. It differs in the acceptance
of solutions and is easier to apply, since it only has one parameter that needs to be determined.
The metaphor this algorithm uses is that of a hiker that tries to keep her feet dry while visiting
the peaks of an unexplored area under a slowly rising water level ω [31]. Dueck [32] proposed
this algorithm and it is applied to the OBP as illustrated in the pseudocode of Algorithm 7.
The parameters have been calibrated to a rain speed ρ of 0.5 and a termination criterion tG that
is set to 5 with 40 different configurations for rain speed and termination criteria tested on the
sample picking waves under time restriction.

3.6 Experimental results

The proposed picking location metrics that approximate the distances to pick orders before
picker routing are tested on 50 sample picking waves. Also tested on the 50 sample waves
are the algorithms that combine the orders into batches. Thereby, the best combinations of
metric and algorithm are determined and the best combination to introduce order batching to a
unidirectional cyclical picking line is identified. Information about the dataset, the experiment
and the statistical analysis of the results are provided in the following sections.

All algorithms were implemented in Python 3.6 [94] utilising the C-based libraries Numpy [89]
and Pandas [93]. These implementations were run on a Dell Optiplex 5050 with a Intel Core i7-
7700 CPU at 3.6 GHz, 1x8GB 2400MHz DDR4 RAM, a 2.5” 256GB SSD class 20 drive, and the
Microsoft Windows 10 Enterprise 2016 LTSB operating system [84]. The integer programmes
were solved by means of Lingo 11.0.1.3. [72]. Additionally, IBM SPSS Statistics 25 [63] was used
for the statistical analysis of the generated results.
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Algorithm 7: Great deluge (GD)

Input: An initial solution ba, a neighbourhood H(b), a rain speed ρ, a cost function c(·) as well as a
termination criterion tG
Output: The best solution b as a list of batched orders

1: tG ← 0
2: ba ← initiate a starting solution
3: b← ba
4: ω ← c(b)
5: while the termination criterion tG is not met do
6: b

′
← randomly select a solution in H(b)

7: if c(b) ≤ c(b
′
) then

8: tG = tG + 1
9: end if

10: if c(b
′
) < ω then

11: s← s
′

12: ω ← recalculate with ω − (ω−c(b
′
))

ρ

13: tG = 0
14: end if
15: end while
16: Return b

3.6.1 Data

A set of real life historical data were obtained from the Retailer. These data were made publicly
available by Matthews and Visagie and can be accessed online [79]. For reporting purposes,
50 sample picking waves were randomly selected and divided into large data sets with more
than 1 000 orders, medium data sets with 400 – 600 orders and small data sets with less than
100 orders. Within these data sets the picking waves are subdivided with respect to the number
of SKUs into picking waves with a large, medium or small number of SKUs. The variety in size
and location of the different retail stores together with the seasonality of the product portfolio
lead to a set of non-uniform orders that is processed by the DC on a daily basis.

3.6.2 Computational results

The integer programming formulation (IP) in (3.1) – (3.3) was employed to combine orders
based on the picking location metrics. The symmetric matrix resulting from applying one of the
metrics was turned into an upper triangular matrix already containing all information needed
to solve the problem more efficiently. Nevertheless, most test cases had to be stopped after
the time limit proposed by Nicolas et al. [87] of 30 minutes. An average computational time of
over 11 minutes per sample picking wave without a guaranteed solution within 30 minutes is
not feasible in a real life application as planning of the lines need to be completed in seconds.
The picking waves that can be solved to optimality do not justify the reduction in walking
distance, since only the picking location metric is solved optimally. Solving to optimality is
computationally expensive, thus implementing the IP on a stronger solver to get a guaranteed
solution does not yield a return on time investment.

Applying the quick match algorithm (QM), seems to increase performance since the total number
of cycles traversed is lower for QM than for IP as illustrated in Figure 3.4(a). Nevertheless, QM
is also not able to guarantee a solution within the set time frame and has to be terminated
before exceeding the time limit.

If an exhaustive optimisation of the picking system is the aim, two additional decision tiers have
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to be solved for each picking wave to determine where a SKU should be placed on the picking
line and on which picking line a SKU should be picked. Additionally, the configuration in which
the picking line is run needs to be determined. In consultation with the management of the
Retailer a time frame of about 30 seconds per picking wave for combining all orders to batches
would be feasible. Thereby, line managers do not have to wait longer than a minute to solve all
decision tiers for a picking wave.

Besides the time constraint, an upper and a lower bound help to evaluate the performance of
metric and algorithm combination in terms of solution quality. The worst case would be to not
introduce order batching. The upper bound would thus be at 46 711 total cycles traversed.
The best case would be to reduce the walking distance by 50%, thus resulting in an absolute
lower bound of 23 356 total cycles traversed. Therefore, if no batching was introduced the cycles
traversed could be halved and put next to each other. However, this would not result in a feasible
solution as orders that overlap do not have the same starting and end location. Linking up the
starting and end locations would result in a longer walking distance than the application of one
of the picking location metrics. Additionally, the benchmark incorporating a FIFO approach as
discussed in Section 3.4 will give a guideline of 25 451 cycles to evaluate the performance of the
combinations compared against a random batching approach. The lower bound and the FIFO
benchmark will be indicated by a red dashed line in Figure 3.4(a).
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(b) Computational time per greedy heuristic.

Figure 3.4: Total number of cycles traversed and computational time per greedy heuristic per metric.

Greedy heuristics choose the next best combination of orders in a greedy fashion and thus speed
up performance. All four greedy heuristics, namely the GTD, GBU, GR and GS, are tested per
metric on the 50 sample picking waves. For five test runs, the GR performs best in terms of
minimum number of cycles traversed on all 50 sample picking waves. It also performs slightly
better than the QM. This is depicted in Figure 3.4(a). For 5 configurations, the standard
deviation in total number of cycles traversed for the stops metric is 28.96, for the non-identical
stops is 33.07 and for the stops ratio is 18.62. Calculating the coefficient of variation by division
of the mean shows that all metrics have a low variation in relation to their means with stops at
0.12%, non-identical stops at 0.14% and stops ratio at 0.08%. As illustrated in Figure 3.4(b),
all greedy heuristics have a comparable total computational time of approximately 180 seconds,
because of the similar mechanism of the algorithms.

Metaheuristics are higher level heuristics that do not have to be adapted deeply to a specific
problem, but that are able to escape local optima. Therefore, metaheuristics might get even
closer to the optimal solution of the minimum number of cycles traversed within the prede-
termined time frame. All six metaheuristics ILS, VNS, VND, TS, SA and GD are combined
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with the three picking location metrics. Test runs showed that using GR to generate an initial
solution performs better than initialising a random solution. Therefore, a hybrid of GR with
each metaheuristic is analysed. Each algorithm was run five times with the same greedy starting
solution for each run. However, the computational time restrictions resulted in the metaheuris-
tics only being able to improve on the number of cycles traversed in combination with the stops
metric. This is depicted in Figure 3.5. For the stops metric, the GD followed by the SA shows
slightly better results in terms of minimum number of total cycles traversed and computational
time than the other four metaheuristics.
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Figure 3.5: Box and whisker plots of the total cycles traversed per metaheuristic per metric.

All computational times per algorithm per metric for all 50 sample picking waves are illustrated
in Figure 3.6. For all metrics the GR is the fastest, since all other metaheuristics are hybrids
including the time of the GR algorithm. Nevertheless, the GR is followed by the GD- and
SA-hybrid, while the VNS followed by the ILS and TS take the longest to get to a solution.
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Figure 3.6: Box and whisker plots of the computational time per metaheuristic per metric.

The hybridisation between metaheuristics may also lead to a better solution quality and an
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improvement in computational time. Therefore, the combination of metaheuristics has been
tested on the sample waves, but has shown no constant improvement under the time restriction.

Metaheuristics could not improve the solution quality under the time restriction for two out of
three picking location metrics. This raises the question whether the solution found by GR is
close to optimal (and thus few improvements exist) or the metaheuristics are incapable of finding
improvements on a poor solution found by the GR. To evaluate this question a sample picking
wave in which the IP was able to find the optimal solution within the time frame is analysed.
For the stops metric, possible combinations on a sample picking wave with 1 336 orders and
55 SKUs are investigated. The IP is able to generate the best solution of 620 cycles that have
to be traversed to pick all orders in 137.73 seconds. While the GR algorithm is able to get to
631 cycles in approximately 5 seconds, the GD- and the SA-hybrid are able to reach 629 cycles
in almost the same time. The solutions are within 98.55%, and very close to the best solution.
These results indicate that the more computational time a metaheuristics is allowed to use, the
closer it can get to the best solution. However, if the walking distance could be reduced by
50% the lowest bound would be at 594 cycles. A sample picking wave with 1 356 orders and
51 SKUs is analysed for the non-identical stops metric. It takes 169.72 seconds for the IP to
generate the best solution of 599 cycles that have to be traversed to collect all orders. None
of the metaheuristics is able to improve on the GR solution within the given time restrictions.
Nevertheless, the GR solution is within 99.50% the best solution for this metric, while the lower
bound for this example would be at 573 cycles. For the stops ratio metric a sample picking
wave with 1 354 orders and 56 SKUs is investigated. The IP generates the optimal solution
of 583 cycles in 118.91 seconds that have to be traversed. No metaheuristic is able to improve
on the GR solution within the predetermined time restriction. However, the solution is within
99.49% also very close to the best solution and the lower bound for this example is at 555 cycles.

Figure 3.5 suggests the combination of the stops metric with GR-GD-hybrid, the non-identical
stops metric with GR, and the stops ratio metric with GR, because of the minimum number of
total cycles traversed generated by these combinations. This is supported by the lowest total
computational times for these algorithms as illustrated in Figure 3.6.

3.6.3 Statistical analysis

A regression analysis per location metric supports the application of location-based metrics as
approximations for walking distance before picker routing. The correlation between the objective
value per metric and the number of cycles traversed is evaluated. This results in R2 = 0.783 for
stops, R2 = 0.784 for non-identical stops and R2 = 0.776 for stops ratio. This shows a strong
correlation between all metrics and the final walking distance. While the approximation purpose
of each metric is validated, the regression analysis does not provide a basis for the comparison
of metrics, since the objective values of all metrics are expressed in different units.

Further inferential statistics are necessary to investigate the influence of metrics and algorithms
on the solution. Chiarandini et al. [23] propose either a univariate model for analysing solution
quality and computational time, or a bivariate model combining both measurements. This
analysis will focus on the solution quality in terms of total number of cycles traversed for all
50 picking waves, since the computational time has shown to be suitable for an application in
the operations of the Retailer’s DC. Therefore, A Welch-ANOVA with a Games Howell post-hoc
test, that is robust to the equality of means, is used to analyse if there is a statistical difference
by applying the three picking location metrics. A two-way ANOVA investigates the additional
influence of the algorithm [101].

In Table 3.3, the Welch-ANOVA is statistically significant (F (2, 102) = 3 419.293, p = 3.3682E-
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94) emphasising the influence of each metric on the number of cycles traversed. The post-hoc
Games Howell test shows that the difference in cycles traversed is significantly lower when us-
ing N (24 240 ± 29.993, p = 5.1011E-9) and R (24 230 ± 16.90, p = 5.1012E-9) compared to
T (24 693 ± 30.937) [68, 102]. Nevertheless, the two-way ANOVA reveals no significant influ-
ence on the number of cycles traversed through the interaction between metrics and algorithms
(F (12, 84) = 0.047, p = 1.00) [69, 104].

Sum of squares df Mean square F p

Welch-ANOVA
Between metrics 4 883 348.648 2 2 441 674.324 3 419.293 3.3682E − 94**
Within metrics 72 836.914 102 714.087

Two-way ANOVA
Metrics 4 883 348.648 2 2 441 674.324 2 844.117 6.9709E − 78**
Algorithms 241.962 6 40.327 0.047 1.00
Metrics × algorithms 480.952 12 40.079 0.047 1.00
Error 72 114.00 84 858.50

Note: Two asterisks indicate significance at the 5% level or below.

Table 3.3: Welch-ANOVA on metrics and two-way ANOVA on metrics and algorithms.

Descriptive statistics are used to compare the best combinations of picking location metrics
and their corresponding algorithms based on the homogeneous unit of total number of cycles
traversed for all 50 sample picking waves. These combinations are depicted in Figure 3.4(a). In
general, N and GR, and also R and GR combined perform better in terms of minimum number
of cycles traversed when compared to the T and GR-GD hybrid combination.
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(a) Box-whisker plot for each combination.

T+GR-GD N+GR R+GR

Mean 24 693 24 240 24 230
Median 24 687 24 243 24 229
Range 76 77 52
Std. Dev. 30.937 29.993 16.900
Variance 957.104 899.558 285.600

(b) Descriptive statistics.

Table 3.4: Comparison between best combinations of metric and algorithm.

The stops ratio shows lower measures of central tendency than non-identical stops with a mean
of 24 230 compared to 24 240 as illustrated in Table 3.4(b). Comparing the measurements of
variability between R and N, the range between maximum and minimum total number of cycles
traversed is 32.5% smaller for R. The standard deviation of R is almost half the size of N resulting
in smaller variance and thus providing a metric-algorithm combination that seems more stable
than N. Therefore, this comparison suggests choosing the combination of stops ratio metric and
greedy random heuristic to introduce order batching to a unidirectional cyclical picking line.
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3.7 Conclusion

These best combinations were then compared in terms of minimum number of cycles traversed
for all 50 picking waves. The stops ratio and greedy random combination showed the lowest
average of 24 230 cycles within the five test runs. Therefore, this combination is recommended
to be applied if order batching is introduced to a unidirectional cyclical picking line. Compared
to the FIFO benchmark of 25 451 cycles through applying random batching, this is 4.80%
less walking distance. If batching is not introduced to the unidirectional cyclical picking line
using this combination, pickers have to walk approximately 48.13% further. Additionally, this
combination is only 3.74% higher than the absolute lower bound of reducing 50% of the walking
distance. The reduction in walking distance through the combination of stops ratio and greedy
random heuristic can be translated into time savings leading to a direct decrease of picking cost.

The analysis of the generated results indicate two findings. Firstly, the metric applied plays a
more important role than the algorithm used to group the orders into batches. Secondly, the
more information about the location of the items of an order is available, the better the results
in terms of minimum number of cycles traversed.

3.8 Chapter summary

In this chapter order batching was introduced to a unidirectional cyclical picking line as deployed
in the layout of a South African retailer’s DC. Three location-based order-to-route closeness
metrics were proposed to approximate the walking distance before picker routing and thus
identify compatible orders. The picking location metrics include stops counting all locations a
picker has to stop, non-identical stops counting the locations a picker has to stop to pick only
one order, and stops ratio describing the ratio between non-identical and combined stops. The
assignment problem of grouping orders in batches of two was solved with exact, greedy and
metaheuristic solution approaches. The exact solution approaches take too much computational
time to allow for an integrated optimisation approach. Therefore, four greedy heuristics including
a top-down, bottom-up, random and smallest entry search approach, and also six metaheuristics,
namely an iterated local search, a variable neighbourhood search, a variable neighbourhood
descent, a tabu search, a simulated annealing and a great deluge algorithm were applied to
50 sample picking waves. The picking waves were recorded from real life data and vary in size
by number of orders and SKUs. The algorithms terminated after a reasonable computational
time restriction to allow for a real life application. All metrics and algorithms were tested in
different combinations to identify the best combinations reducing the total number of cycles
traversed. This results in the best combinations of stops and greedy random-great deluge, non-
identical stops and greedy random, and also stops ratio and greedy random. The recommended
combination is the stops ratio and greedy random that generated the lowest average of cycles
traversed.

The stop based distance approximation metrics derived in this chapter showed promising savings
in the total walking distance of pickers. In an attempt to improve on these savings, route or span
based measures that incorporate more information about the specific layout of a unidirectional
cyclical picking line are considered in the next chapter.
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The proximity measures incorporated in the batching of orders seem to influence the reduction
of walking distance significantly. So far, the batching metrics that have been suggested to
introduce order batching to the unidirectional cyclical picking line are based on the picking
location. Route overlap distance approximations are developed to add information about route
similarity before picker routing. These route overlap metrics include information about the span
of each order, meaning the section of the picking line that has to be traversed to pick an order.
The best combinations of metric and algorithm are identified in a numerical experiment using
real life data from the Retailer’s DC. The results confirm the usability of route overlap metrics
as approximations for walking distance before picker routing.
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4.1 Introduction

A distribution centre (DC) forms a link to better match changing demand with reacting supply.
Various factors influence the supply and demand of a product. Some of these factors include:
product seasonality, product life span, transport networks, and delivery efficiency [98]. Even
though a DC requires resources such as space, labour, equipment and information it is unlikely
to vanish from the present economic environment. A DC and other logistical services are in-
terdependent. Their aim is to improve customer service by delivering products efficiently while
keeping transport costs to a minimum [35]. A DC collects products from various suppliers then
delivers those products to different end customers. Bulk supplies arrive at the DC and are then
turned into specific customer orders [113].

Rouwenhorst et al. [98] divide DC activities into three different functions, namely receiving,
storage, order picking, and shipping. Warehousing is expensive and accounts for 2% to 5% of
a company’s cost of sales. Therefore minimising the cost of operation of a DC has become a
focus point. However, the emphasis on customer services limits the extend to which cost can be
minimised [35]. The basic service of a DC is order picking that makes up for 50% to 65% of the
operational cost [113]. Most DCs rely on manual order picking systems because of the diversity
in product size and the velocity of product portfolio that need to be picked. This results in
high labour cost [49]. According to De Koster et al. [29] order picking describes the process of
retrieving items from storage or buffer areas in response to a specific customer request. The key
parameters that are of importance in a picking system is the size of the orders and the number
of orders that are picked on a daily basis [27].

The order picking system of a prominent South African retailer (referred to as the Retailer)
is considered in this study. Its DC needs to handle a variety of orders for a large number of
stores with different sizes and various customer profiles on a daily basis. The central planning
of the inventory at store level is a key characteristic of the Retailer’s operations. Planners at a
central planning department assign available stock from the DC to the stores instead of store
managers requesting stock directly. This means that the central planning department allocates
all available stock keeping units (SKUs) to the stores. At the central planning department the
planners decide on the number of SKUs destined for each store upon the arrival of the SKUs at
the DC. Planners issue instructions to the DC about SKUs and the stores where they should
go. A subset of SKUs to be picked in a single picking cycle, called a wave, is then selected by
the DC to satisfy store requirements for that set of SKUs. Therefore, the term order will refer
to the store requirements for a single store for all the SKUs present in a wave. A picking line
processes a picking wave in the DC. For each wave, a single SKU is assigned to a single location
on a specific picking line. A picking wave involves populating the line with SKUs, the actual
picking process, and removing excess stock from the line [78].

A representation of a picking line with m locations is depicted in Figure 4.1(a), while a photo of
an actual picking line without SKUs is shown in Figure 4.1(b). The picking line at the Retailer’s
DC in Durban comprises of 56 locations with a conveyor belt that is placed in the middle and
that has two gates for access. A single SKU from the storage area is assigned to a single location,
thereby having a specific location on the picking line. Prior to the start of the picking wave, the
orders for all stores are known, which means that the number of SKUs to be picked for each store
is known. Each location can store up to five pallets (depicted on the rollers of Figure 4.1(b))
containing a particular SKU. Additional stock is kept on the floor (between the picking lines)
for easy access. Therefore no stock has to be replenished from storage racks during a picking
wave. Pickers move in a clockwise direction around the conveyor belt to pick all orders. They
are guided through the picking processes by a voice recognition system (VRS) that sends the
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(a) Schematic representation of a picking line
with m locations. Source: De Villiers [30].

(b) Empty picking line at the DC.

Figure 4.1: Representation of a unidirectional cyclical picking line.

picker to the closest required SKU. The underlying picking strategy can thus be summarised as
pick the closest SKU in a clockwise direction. This picking system falls under the category of a
picker-to-parts system. An empty carton is placed on a trolley and registered by a barcode with
the VRS before an order is started. Full cartons and finished orders are placed on the conveyor
belt after picking. Cartons are then moved to the dispatch area for further processing [76, 77].

For the unidirectional cyclical picking line, Matthews and Visagie [78] introduced the number of
cycles that have to be traversed to pick all items requested during a picking wave as a measure
of distance travelled to pick all orders. This measure adds up the number of cycles required by
each individual order and the number of cycles required to link all orders and can be used to
compare the effectiveness of different methodologies introduced to this specific picking system.

The distance that has to be covered to collect all items of an order, given a starting location, is
called a span as defined by Matthews and Visagie [78]. For order i a span may be represented
by P ai = 〈a, eai 〉, with eai the closest ending location of order i starting at position a. For every
order, the shortest span, called the minimum span, is calculated. This is done by searching for
the biggest gap, which refers to the number of locations that a picker passes without stopping
to pick items. The end of this gap will be the start of the minimum span, while the beginning
of the gap is the end of the minimum span. Consider the example in Figure 4.2. This picking
line consists of 10 locations. Order 1 needs SKUs from Locations 2, 3, 7, 8 and 9. Figure 4.2(a)
illustrates all spans of Order 1 starting at each location that accommodates a SKU. The first gap
includes Location 4, 5 and 6, while the second gap covers Location 1 and 10. The first gap can
be identified as the biggest gap in this example, since it includes three locations. The minimum
span to collect all SKUs for Order 1 starts at Location 7 and ends at Location 3 when the biggest
gap is taken into consideration. The minimum span is depicted by the red arrow in Figure 4.2(b).
The length of the minimum span of this order is denoted by |Pmin

1 | = 〈7, 3〉 = 7 locations.

If the SKUs are viewed as moving relative to a static picker, this layout shows similarities
to unidirectional carousel systems. Small- and medium-products are usually picked with the
help of automated carousel warehouse systems. A carousel consists of a rotatable circuit of
shelving holding multiple SKUs. A picker, who operates the system, remains at a fixed location
throughout the picking process. This picking system is referred to as a parts-to-picker system
in literature, since the storage location moves to the picker instead of the picker moving to
the storage location. A carousel that can rotate in both directions to turn the required SKU
towards the picker is called a bidirectional carousel, while a unidirectional carousel only turns
in one direction [7]. The cyclical set up of the picking line is similar to a unidirectional carousel.
One order is processed by one picker at a time. Also, picker movement is directed by a VRS
which resembles the automated sequencing of orders in a carousel. However, the main difference
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(a) All possible spans of Order 1.

10 9 8 7 6
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(b) The minimum span of Or-
der 1, denoted as Pmin

1 = 〈7, 3〉.

Figure 4.2: Schematic representation of spans for an order in a picking line. The shape indicates a
specific SKU, while the colour indicates which order requires that SKU to be picked.

in the Retailer’s picking system is the presence of wave picking. In literature on carousel systems,
optimisation approaches make use of expected SKU mixes derived from historical data, since
not all SKUs may be picked and (new orders may be added to the set during the picking
operation). Research and industry implement bidirectional carousel systems more frequently,
because they are generally more efficient [73]. However, in this case, bidirectional movement of
pickers (corresponding to a bidirectional carousel) cannot be used because it would cause picker
congestion. The deterministic nature of the orders in the Retailer’s picking system is unique in
operations research literature [78].

The order batching problem (OBP) forms part of the planning for a wave of order picking. Orders
are determined by the set of SKUs included in a picking wave. All the orders (that are unique
to a wave) have to be picked during that picking wave [42]. The two fundamental approaches
in manual order picking are single order or batch picking. While one picker is only responsible
to pick one order at a time in single order picking, in batch picking multiple orders are picked
simultaneously by the same picker. Orders can either be sorted-while-picked or picked-and-sorted
after the batch picking process to release individual orders. Efficient tours that shorten the total
picking time can be generated in this way, since several orders are picked simultaneously. The
decrease in picking time can be translated into a reduction of labour cost [28]. The number of
orders that can be batched is restricted by the capacity of the picking device [120]. Splitting of
orders is usually prohibited, since it would result in an additional sorting effort [50].

While there has been intensive research in single-block warehouses with parallel aisles, according
to Nicolas et al. [87] little research has been published on the OBP in automated carousel systems.
Hofmann and Visagie [55] introduced order batching to the specific layout of the unidirectional
cyclical picking line. They developed picking location metrics to approximate walking distance
between orders, since calculating walking distance before picker routing would be very time
consuming. However, basing the metrics on the picking locations where a picker stops to collect
stock, excludes the locations the picker simply passes to get to the next required SKU. The idea
to add spans to the metrics aims at overcoming this limitation by including more information
about each order. This chapter searches for the best combination of span-based metrics in terms
of total distance travelled by pickers to collect all orders during a picking wave.

The literature on the OBP in warehouses with a single-block parallel aisles or automated storage
and retrieval layout is reviewed in Section 4.2. In Section 4.3, the route overlap metrics are
developed comparing different approaches while using greedy heuristics to combine orders into
batches. In Section 4.4, a case study with real life data from the Retailer is used to test
the performance of the route overlap metrics against the picking location metrics proposed by
Hofmann and Visagie [55]. Thereby the option generating the shortest overall walking distance
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to pick all orders in a wave is identified. In Section 4.5 a summary of this chapter and an outlook
on future research opportunities is provided.

4.2 Literature review

Gademann and Velde [36] introduced the formulation of the standard OBP for a single-block
warehouse with parallel aisles environment and proved that it is NP-hard in the strong sense.
Nevertheless, the problem can be solved in polynomial time if no batch contains more than two
orders. Test instances of up to 32 orders were solved to optimality with the branch-and-prize
algorithm developed by them. Additionally, test instances of up to 40 orders were solved by Henn
and Wäscher [51]. However, a time-consuming preprocessing to determine all feasible batches is
required in their solution approach. Test instances of up to 100 orders were solved by Muter and
Öncan [86] with their tailored column-generation based algorithm. Nicolas et al. [87] introduced
the OBP to a vertical carousel system that is closely related to the layout of a unidirectional
cyclical picking line. They formulated the OBP as a mixed integer linear program (MILP).
However, due to time constraints, the MILP has to be stopped after 30 minutes and could thus
not solve test instances over 50 orders.

In a practical application considered in this paper the number of orders is likely to exceed
the number of these test instances as a picking line at the Retailer’s DC can service in excess
of 1 500 orders in a single wave of picking. Construction heuristics such as seed and saving
algorithms have been introduced to solve larger problem instances of the OBP.

Seed algorithms first initiate batches, then allocate orders to batches and terminate by fulfilling
a stopping criterion when the batches are completed. The objective is to minimise the total
travel distance that is needed to collect all orders. Different seed algorithms were evaluated
by De Koster et al. [28] in the standard single-block parallel aisles warehouse layout. They
proposed the farthest storage location as a seed selection rule. Several location- and aisle-based
seed algorithms have been investigated by Ho and Tseng [53]. Ho et al. [52] extended this study
with additional distance- and area-based selection rules. They suggested the smallest number of
picking locations, the smallest number of picking aisles, and the smallest rectangular covering
area selection rules. A comparative study conducted by Pan and Liu [92] evaluated four initial
seed selection and four order addition rules recommending the economic convex hull method
selection rule. They investigated the OBP in an automated storage and retrieval system that
consists of a single storage rack with equally sized storage locations serviced by a single storage
and retrieval machine. All investigated layouts differ from the unidirectional cyclical picking
line implemented by the Retailer.

In the OBP, saving algorithms are based on the Clarke and Wright-algorithm (CW) [24]. There-
fore time saving is obtained by comparing the collection of orders in one route to the collection
of individual orders [28]. Rosenwein [97] proposed the minimum additional aisles heuristic that
begins with calculating a score for each pair of orders with regards to additional aisles to pick.
Their algorithm in comparison to Gibson and Sharp [37] is thus capable of generating fewer but
shorter picking tours. De Koster et al. [28] describes the first OBP version of the Clarke and
Wright-algorithm (CW I) that computes savings for each combination of orders. Each time a
new combination of order batches are determined the second version of the algorithm (CW II)
recalculates the savings. This version of the algorithm was improved by Bozer and Kile [15]
who introduced a normalised time saving value for each pair of orders. The initial savings ma-
trix is modified each time an order has been assigned. This resulted in the third version of
the algorithm (CW III) introduced by De Koster et al. [28]. Additionally, a small and large

Stellenbosch University https://scholar.sun.ac.za



60 Chapter 4. Route overlap metrics for order batching

algorithm was proposed by Elsayed and Unal [34]. According to a predefined value orders are
either classified as small or large before they are assigned to batches. Because of the dynamic
batch comparison, saving algorithms are in general more complex and thus demands more CPU
time than seed algorithms.

Central to all types of heuristics is the order-to-route closeness metric [42]. Hofmann and Vis-
agie [55] introduced the order batching problem to the layout of a unidirectional cyclical picking
line. The objective to minimise the walking distance of pickers was achieved by developing
three picking location-based (also called stop-based, meaning the locations where pickers must
stop to pick an order) order-to-route closeness metrics to approximate walking distance between
orders before picker routing. The stops, non-identical stops, and stops ratio metrics are used
to combine similar orders to batches through exact solution approaches, greedy heuristics, and
metaheuristics. In terms of minimum number of total cycles traversed and computational time,
the combination of stops ratio metric and greedy random heuristic generates the lowest number
of cycles traversed. Nevertheless, a limitation of these metrics is that the information about the
locations that are passed on the picking line are not included when calculating the metrics.

4.3 Batching metrics

This paper considers the same picking set up as in Matthews and Visagie [78] and Hofmann
and Visagie [55]. For completeness, the main characteristics are summarised here. The batching
metrics are developed, and include information about the order spans in the spans metric, the
combination metrics, and the addition metrics.

The DC of the Retailer is made up of several unidirectional cyclical picking lines. All picking
lines function in the same manner. A single picking line is thus considered for the remainder of
this chapter.

While modelling the Retailer’s order picking system the following assumptions are made.

1. The SKUs and locations of an order that will be picked during a wave are fixed a priori.

2. The trolleys are small to increase moveability of pickers, even though SKUs are generally
bulky. Therefore, the capacity of a trolley and thus the batch size is restricted to two
orders per batch.

3. A picker must complete the entire batch that is currently processed before a next batch
can commence.

4. A picker is assumed to walk at a constant speed, since the aisles are wide enough for
pickers to pass.

5. Each batch currently has to start and end at the same location as the orders it incorporates.

Currently, each order is picked by one picker that completes one order at a time. The nearest
end heuristic, as proposed by Matthews and Visagie [78], is an easily implementable option to
determine a sequence of orders that minimises the distance pickers have to travel during a wave.
The order with the nearest ending position from the picker’s current position is sequentially
selected in the nearest end heuristic. It considers the order sequence and the item sequence
within the order simultaneously.

An example of a unidirectional cyclical picking line with 10 locations and 10 SKUs is considered.
The locations of the orders in this small picking line are presented in Table 4.1.
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Locations: 1 2 3 4 5 6 7 8 9 10

Order 1
Order 2
Order 3
Order 4

Table 4.1: The locations of the orders in the small picking line.

In Figure 4.3 the colours green, blue, red and yellow represent four different orders, while the
shapes indicate SKUs in various locations. Applying the nearest end heuristic to this example,
Order 4 (yellow) would be picked first starting at Location 1 and ending at Location 7. This
would be followed by Order 1 (green), Order 2 (blue) and Order 3 (red). Thereby a picker picking
all orders of the picking wave would have to traverse four cycles. The nearest end heuristic can
be used to compare the effectiveness of other batching techniques in terms of cycles traversed,
since it is proven to produce good solutions and is easily reproducible [78].

10 9 8 7 6

54321

Figure 4.3: Schematic representation of order picking in the small picking line with 10 SKUs and
10 locations. The shape indicates a specific SKU, while the colour indicates which order requires that
SKU to be picked.

Implementing a first-in-first-out approach (FIFO) would be the easiest way to introduce order
batching to a unidirectional cyclical picking line. The first entries of a list of orders are grouped
together until a predetermined maximum batch size is reached by the FIFO rule [37]. This rule
is used as a benchmark to evaluate different batching methods. Applying the FIFO rule as the
random batching strategy with a maximum batch size of two, the first two orders would make
up Batch 1 and Orders 3 and 4 would form Batch 2. The two batches are depicted in Figure 4.4
in orange and purple respectively. Illustrated by the circles representing the picker movement,
only two cycles have to be traversed now. Hence, the different batching metrics are compared
with regards to the number of cycles traversed that indicates the total walking distance.

10 9 8 7 6

54321

Figure 4.4: Schematic representation of order batching with FIFO applied to the small picking line.

For this chapter, the focus is to include information about the minimum spans in metrics that
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approximate distance before routing, so that the total walking distance can be minimised. Simi-
larities between orders can be evaluated by comparing their minimum spans, since the minimum
span of an order is order specific, and provides the shortest route in which all items of an or-
der can be collected. For example, the minimum span of Order 4 in Figure 4.3 is P 1

4 = 〈1, 7〉
with a length of |Pmin

4 | = 7 locations is the same as the span in which it is collected using the
nearest end heuristic. However, Order 1 has to start from Location 8 thus resulting in a span of
P 8
4 = 〈8, 7〉 with a length of |P 8

4 | = 10 locations, whereas the minimum span would have been
P 7
1 = 〈7, 3〉 with a length of |Pmin

1 | = 7 locations. Orders can be collected in different spans
depending on their starting location, but their length can never exceed one cycle. However, the
information on the most favourable span in which items of an order should be picked is only
available after routing. Therefore, the following order-to-route closeness metrics (which include
information about the locations passed) are based on the definition of the minimum span specific
to the layout of a unidirectional cyclical picking line.

The same solution approaches to combine orders into batches a priori picker routing that have
been described by Hofmann and Visagie [55] are applied to the route overlap metrics developed
here. Metaheuristics did not improve the solution quality of the order batching problem. Also,
solving the picking location metrics to optimality did not show improvements in walking distance
in their study. Greedy heuristics provided the best results in terms of solution quality and
computational time [55]. Therefore the greedy random heuristic (GR) and the greedy smallest
entry heuristic (GS) will be used in this chapter and are described next.

The GR and GS heuristic only differ in their search mechanism, while the elimination process
stays the same. This is displayed in Algorithm 8. The GR heuristic searches matrix M with
entries mij (resulting from the batching metric) according to a random permutation. The GS
heuristic, on the other hand, starts by searching for the row with the smallest entry. The global
smallest entry in matrix M is the entry that has the biggest difference between smallest and
second smallest entry. Therefore this entry must be batched next. Indicating that orders k
and q are batched, the tuple that corresponds to the minimum entry mkq of row k is recorded
in set B. Both rows and columns k and q are then removed from M. These steps are repeated
for both algorithms until set B has the cardinality of n/2, with the problem size n.

Algorithm 8: Greedy heuristic (GR or GS)

Input: A batching metric comprising a n× n matrix M with entries mij , an empty solution set B
Output: The solution set B as a list of batched orders

1: B ← ∅
2: while | B | < n/2 do
3: k ← search mechanism of GR or GS
4: mkq = min

j
[mkj ]

5: B ← B ∪ (k, q)
6: Remove both rows and columns k and q from M
7: end while
8: Return B

The batching metrics aim at minimising the incompatibility between orders in terms of distance
travelled between orders to minimise walking distance before picker routing. The combination
of metrics and algorithms are thus tested on a representative set of real life historical data to
determine the total number of cycles traversed for different order combinations. This data was
obtained from the Retailer and made publicly available by Matthews and Visagie [79]. For
reporting purposes 50 sample picking waves have been recorded and divided into large data sets
with more than 1 000 orders, medium data sets with 100 – 1 000 orders and small data sets with
less than 100 orders. The picking waves are subdivided with respect to the number of SKUs
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into picking waves with a large, small or medium number of SKUs within these datasets. A
set of non-uniform orders that has to be processed by the DC on a daily basis is the result of
the variety in size and location of the different retail stores together with the seasonal product
portfolio. In the experimental set up of this chapter, the total number of cycles traversed for
the 50 sample picking waves is added up to determine the effectiveness of each batching metric
in reducing walking distance.

All algorithms are implemented in Python 3.6 [94] utilising the C-based libraries Numpy [89]
and Pandas [93]. These implementations were run on a Dell Optiplex 5050 with a Intel Core i7-
7700 CPU at 3.6 GHz, 1x8GB 2400MHz DDR4 RAM, a 2.5” 256GB SSD class 20 drive, and the
Microsoft Windows 10 Enterprise 2016 LTSB operating system [84]. IBM SPSS Statistics 25 [63]
was used for the statistical analysis of the results.

In the next sections, the batching metrics based on the definition of the minimum span are
introduced and compared to the picking location metrics proposed by Hofmann and Visagie [55].
The best performing picking location metrics from Hofmann and Visagie [55] are the stops and
great deluge (T-GR-GD), the non-identical stops and greedy random (N-GR), and the stops ratio
and greedy random (R-GR) combination. These three metrics will be compared to the route
overlap metrics introduced here. The logical extension from the stop metrics is the development
of span metrics. The spans lead to combination metrics which finally result in route overlap
addition metrics.

The small example described in Table 4.1 and illustrated in Figure 4.3 is used to provide a
matrix of the values for each of the batching metrics as an illustration of that metric. Only
the upper triangular matrices are given as each metric produces a symmetric matrix with no
entries on the diagonal (as an order cannot be batched with itself). The integer programming
formulation (IP) described by Hofmann and Visagie [55] may be used to batch orders of this
small example and thus provide optimal (in terms of that metric) batches. The batches obtained
by the IP formulation are emphasised by frames around the matrix entry for that metric. The
frame indicates which pair of orders should be batched together before routing the pickers.

4.3.1 Stop metrics

For completeness, the picking locations metrics from Hofmann and Visagie [55] are summarised
here. If the sets Si and Sj contain all stops for orders i and j respectively, the stops metric (T)
can be calculated as

tij = |Si|+ |Sj | − |Si ∩ Sj |, with i 6= j. (4.1)

Similarly the smallest number of non-identical stops (N) can be calculated as

nij = |Si|+ |Sj | − 2 |Si ∩ Sj |, with i 6= j. (4.2)

Finally, the stops ratio (R) can be calculated as

rij =
nij
tij
, with i 6= j. (4.3)

Applying each picking location metric to the small picking line example results in Table 4.2 with
the batched orders emphasised accordingly.

4.3.2 Span metrics

In the first step, three different span-based metrics are developed along a similar logic to the
picking location metrics introduced by Hofmann and Visagie [55]. However, the basis of the
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T =


2 3 4

1 7 8 7

2 − 7 6
3 − − 8


(a) The T matrix.

N =


2 3 4

1 6 5 5

2 − 5 5
3 − − 6


(b) The N matrix.

R =


2 3 4

1 0.86 0.63 0.71

2 − 0.71 0.83
3 − − 0.75


(c) The R matrix.

Table 4.2: The T, N and R matrices for the small picking line. The best batching of orders for each
metric is indicated by the framed numbers in that matrix.

span metrics is not the number of stops, but the order specific minimum span described by Pmin
i

and Pmin
j for order i and j respectively. The notation |Pmin

i e Pmin
j | indicates the length of the

overlap in number of locations between Pmin
i and Pmin

j . The complement of Pmin
i , denoted as

P̃min
i represents the biggest gap of order i. Adding Pmin

i and P̃min
i would thus result in one

complete cycle.

The minimum spans metric sij is similar to the stops metric containing all picking locations
and passed locations that make up the minimum span of order i and order j. Therefore the
minimum spans matrix S with element sij can be calculated as

sij = (|Pmin
i |+ |Pmin

j | − |Pmin
i e Pmin

j |), with i 6= j. (4.4)

The non-identical spans metric has two options. On the one hand, non-identical minimum span
can only take the part of a minimum span that is not the same between two orders. This is
comparable to the number of non-identical stops metric. The matrix D with element dij can be
calculated by

dij = (|Pmin
i |+ |Pmin

j | − 2|Pmin
i e Pmin

j |), with i 6= j. (4.5)

On the other hand, non-identical span can also consist of the overlap in biggest gap between
two orders as in the eij metric. The logic is thus similar to the spans metric. The matrix E
with element eij can thus be calculated by

eij = (|P̃min
i |+ |P̃min

j | − |P̃min
i e P̃min

j |), with i 6= j. (4.6)

The spans ratio aij is similar to the stops ratio metric, where the ratio between the non-identical
part of the minimum span and the combined minimum span for two orders is calculated. The
matrix A with element aij can be calculated as

aij =
dij
sij
, with i 6= j. (4.7)

Applying the spans metric to the small picking line example would result in matrix S as depicted
in Table 4.3(a). Batching Order 1 with P 3

1 = 〈7, 3〉 with |Pmin
1 | = 7 locations and Order 2

P 8
2 = 〈4, 8〉 with |Pmin

2 | = 5 locations results in the spans metric s12 = (7 + 5 − 2) = 10.
Therefore Order 1 and 3 (and thus Order 2 and 4) would form a batch. The non-identical
minimum span metric results in matrix D described in Table 4.3(b) with Order 1 and Order 4
(and thus Order 2 and 3) batched. Order 1 and 3 (and thus Order 2 and 4) are batched
according to matrix E in Table 4.3(c) resulting from an application of the non-identical span
metric. Applying the spans ratio metric results in matrix A as depicted in Table 4.3(d). Order 1
and 4 (and thus Order 2 and 3) would form a batch.

The combination of the S-GR produced the lowest number of cycles traversed for the 50 sample
picking waves for the spans metric. Combining D-GS as well as E-GR generates the lowest
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S =


2 3 4

1 10 10 10

2 − 8 8
3 − − 10


(a) The S matrix.

D =


2 3 4

1 8 5 6

2 − 3 4
3 − − 5


(b) The D matrix.

E =


2 3 4

1 8 5 6

2 − 5 6
3 − − 5


(c) The E matrix.

A =


2 3 4

1 0.8 0.5 0.6

2 − 0.4 0.5
3 − − 0.5


(d) The A matrix.

Table 4.3: The matrices S, D, E and A for the small picking line, with the best batching of orders for
each metric shown by the framed numbers in that matrix.

number of total cycles traversed for the non-identical spans metrics. The lowest number of
cycles traversed for the spans ratio metric in the 50 sample picking waves is generated by A-GS.
Nevertheless, none of the span-based metrics show lower numbers of total cycles traversed than
the picking location metrics as depicted in Figure 4.5. Exclusively using the minimum span of
each order does not generate better results, since longer individual spans can sometimes be used
to combine two orders resulting in a shorter combined span. Only counting the picking locations
where a picker stops allows for different spans and thus leads to a lower number of total cycles
traversed. This result confirms the findings of Matthews and Visagie [78] on picker routing in a
unidirectional cyclical picking line. Their travelling salesman approach outperforms the shortest
spanning interval linking in number of cycles traversed, since it allows for different (longer) span
options rather than just the minimum spans. Therefore, another approach to combine stops and
spans in a batching metric is investigated.

4.3.3 Combination metrics

In this section stops and spans are combined in a single metric. Orders are sorted in a list φ.
They are batched with an accompanying order according to matrix M produced by one of the
batching metrics. All combination configurations are identified in the first column of Table 4.4.

Metric List φ Matrix M

F-CO φs S
P-CO φs D
Q-CO φs E
H-CO φs A

(a) Stops-spans combina-
tions.

Metric List φ Matrix M

K-CO φp S
L-CO φp D
O-CO φp E
G-CO φp A

(b) Spans-spans combi-
nations.

Metric List φ Matrix M

U-CO φp T
V-CO φp N
W-CO φp R

(c) Spans-stops combina-
tions.

Table 4.4: Route overlap combination metric configurations. The name of the combination metric is
in the first column, the second column describes the logic of the list according to which the orders are
sorted, and the distance approximation metric is in the third column of each table.

The combination heuristic (CO) displayed in Algorithm 9 is used to merge all configurations.
Thereby short orders are batched first to generate a lower number of total cycles traversed.

The first combination configuration starts with calculating the number of picking locations per
order. The orders are sorted from their smallest to largest number of stops in list φs. Algorithm 9
selects the first order for batching according to φs and the second order according to a matrix
provided by one of the span metrics from Section 4.3.2. All combination configurations of the
stops-spans combinations are depicted in Table 4.4(a) and result in the combinations F-CO,
P-CO, Q-CO and H-CO.

The minimum span can also be used for sequencing orders. Therefore orders are sorted from
the shortest minimum span to the longest in a list φp. The second combination configuration
selects the first order according to list φp, while the second order of the batch is selected from
one of the span metrics. In Table 4.4(b) all configurations of the spans-spans combinations are
described resulting in K-CO, L-CO, O-CO and G-CO.
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Algorithm 9: Combination heuristic (CO)

Input: An ascending list φ, a batching metric comprising a n× n matrix M with entries mij , an empty
solution set B
Output: The solution set B as a list of batched orders

1: B ← ∅
2: while | B | < n/2 do
3: k ← first order in φ
4: mkq = min

j
[mkj ]

5: B ← B ∪ (k, q)
6: Remove both rows and columns k and q from M
7: Remove the orders corresponding to k and q from φ
8: end while
9: Return B

In the third combination configuration, the first order for batching is selected according to
list φp and the second order is selected according to a matrix provided by the stop metrics from
Section 4.3.1. The combination metrics U-CO, V-CO and W-CO result from the configurations
of the spans-stops combinations as depicted in Table 4.4(c).

Using the shortest minimum span as a basis leads to better results in terms of total number of
cycles traversed, since it includes more information about the specific locations of the items of
an order. Starting the search with the shortest minimum span and then checking a matrix of
picking location metrics as in the spans-stops combination results in the lowest number of total
cycles traversed when all combination metrics are compared.

In Figure 4.5 the combination metrics cut down the number of cycles traversed when compared
to the span metrics. The combination of spans and stops improves the results compared to the
stops metrics of the picking location metrics. However, it still does not provide results as good
as the non-identical stops or the stops ratio metric. Sorting the stops or spans from smallest
to largest in a list leads to multiple orders with the same number of stops or the same length
of spans. This can lead to multiple order candidates that could be included in the next batch.
Changing the sequence of a list does not improve or worsen the results significantly. To overcome
this specific location information with regards to both picking locations and passed locations is
incorporated in the next batching metric.

4.3.4 Addition metrics

In the third extension, span metrics are added to picking location metrics. The route overlap
addition metrics will therefore contain information about both the spans and the stops. All
different possible combinations between the stops, non-identical stops, stops ratio, minimum
span, non-identical minimum span, non-identical span, and the spans ratio metric have been
tested.

The non-identical span is added to the stops metric resulting in the stops non-identical spans
metric in matrix Z with general element zij . It merges the number of picking locations for two
orders with the combined span that is not part of a minimum span for those two orders. The first
part of this metric is adopted from Hofmann and Visagie [55] and described in equation (4.1).
The idea of the second part originates from the smallest additional covering area introduced
by Ho et al. [52], but is adjusted for this system. This second part is added according to
equation (4.6). Thereby the orders with the smallest number of combined picking locations and
shortest non-identical span are selected to form a batch.
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The stops non-identical spans metric zij is calculated by

zij = (|Si|+ |Sj | − |Si ∩ Sj |) + (|P̃min
i |+ |P̃min

j | − |P̃min
i e P̃min

j |), with i 6= j. (4.8)

In the second addition metric, the number of non-identical picking locations for two orders are
merged with the biggest gap for two orders. This makes up the non-identical stops-spans metric
in matrix B. The first part of this metric is the total number of non-identical picking locations
as developed by Hofmann and Visagie [55] provided in equation (4.2). The second part is an
adaptation to the specific layout of the picking system according to equation (4.6). Batches
are formed by the orders with the smallest number of non-identical picking locations and the
shortest non-identical span between them.

The non-identical stops-spans matrix B with element bij can be formulated as

bij = (|Si|+ |Sj | − 2 |Si ∩ Sj |) + (|P̃min
i |+ |P̃min

j | − |P̃min
i e P̃min

j |), with i 6= j. (4.9)

Finally, the stops-spans ratio with general element cij in matrix C can be calculated by adding
the stops-spans ratio (as developed by Hofmann and Visagie [55] and defined in equation (4.3))
and the spans ratio (defined in equation (4.7)). The length of the non-identical part of the
minimum span is divided by the length of the combined minimum span. This is added to the
non-identical picking locations divided by the combined picking locations. Therefore the closer
this metric gets to zero, the lower is the incompatibility between orders in terms of walking
distance.

The stops-spans ratio matrix C with element cij can be calculated as

cij =
nij
tij

+
dij
sij
, with i 6= j. (4.10)

In Table 4.5(a) the symmetric matrix that results from calculating the stops non-identical spans
metric for all orders in the small picking line example is displayed. The IP would batch Order 1
and 3 in the first batch and Order 2 and 4 in the second batch. Calculating the non-identical
stops-spans metric for all orders in the example leads to Table 4.5(b). Batch 1 could be made up
of Order 1 and Order 4 and Batch 2 would be composed of Order 2 and Order 3. All stops-spans
ratios for the example are illustrated in Table 4.5(c). Order 1 and 4, or Order 2 and 3 could be
batched together.

Z =


2 3 4

1 15 13 14

2 − 12 13
3 − − 13


(a) The Z matrix.

B =


2 3 4

1 13 10 12

2 − 9 11
3 − − 10


(b) The B matrix.

C =


2 3 4

1 1.51 1.13 1.35

2 − 0.95 1.21
3 − − 1.13


(c) The C matrix.

Table 4.5: The matrices Z, B and C for the small picking line, with the best batching of orders for
each metric shown by the framed numbers in that matrix.

All three measurements improve in terms of minimum number of cycles traversed when solved
10 times compared to the picking location metrics proposed by Hofmann and Visagie [55]. This
is shown in Figure 4.5. Applying the GR heuristic results in the best average of cij with 24 222
versus the best average of rij with 24 230 in total number of cycles traversed for the Retailer’s
50 sample picking waves. This is followed by bij with 24 236 versus nij with 24 240 and zij with
24 332 versus tij with 24 693 total number of cycles traversed. The descriptive statistics for the
combination of batching metrics and GR are illustrated in Table 4.6.
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T-GR-GD N-GR R-GR Z+GR B+GR C+GR

Mean 24 693 24 240 24 230 24 332 24 236 24 222
Median 24 687 24 243 24 229 24 336 24 236 24 223
Range 76 77 52 51 87 43
Std.Dev. 30.937 29.993 16.900 16.068 21.541 15.521
Variance 957.104 899.558 285.600 258.178 464.011 240.900

Table 4.6: Descriptive statistics for the total number of cycles traversed to pick all the orders for all
50 picking waves using the GR heuristic.

However, the GS heuristic provides even lower numbers of total cycles traversed for the route
overlap addition metrics. The algorithm searches greedily for the global minimum in the metric
and then uses that to batch. It is deterministic and was thus only solved once. For the route
overlap addition metrics it results in 24 189 cycles for cij , 24 166 for bij , and 24 149 for zij .
Therefore the combination of route overlap addition metrics and GS is recommended.
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Figure 4.5: Box and whisker plots of the total cycles traversed per algorithm per route overlap metric.
All instances with GR were solved 10 times.

4.4 Discussion of experimental results

The combination of route overlap addition metrics generate the lowest number of total cycles
traversed for the 50 sample picking waves. Therefore their performance will be evaluated against
the picking location metrics proposed by Hofmann and Visagie [55]. These results will also be
analysed statistically.
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4.4.1 Route overlap versus picking location metrics

The following combinations produce the best results for picking location metrics (meaning the
lowest number of cycles traversed for the 50 sample picking waves): The stops metric (T-GR-
GD) and the great deluge metaheuristic (using the greedy random heuristic as an initial starting
solution); the non-identical stops metric (N-GR) and the greedy random heuristic; and the stops
ratio (R-GR) and the greedy random heuristic. For route overlap metrics, the best results are
generated by: The stops non-identical spans (Z-GS) and the greedy smallest entry heuristic; the
non-identical stops-spans (B-GS) and the greedy smallest entry heuristic; and the stops-spans
ratio (C-GS) and the greedy smallest entry heuristic. This is pointed out by a comparison of all
metric-algorithm combinations in Figure 4.5.

The best performing picking location and route overlap metrics are evaluated in terms of solution
quality and computational times in Figure 4.6. An upper and a lower bound might contextualise
the performance of the different metrics in terms of the total number of cycles traversed to pick
all orders. In the worst case, order batching would not be introduced. The maximal SKU per
picking wave describes the maximum number of orders needed to pick a SKU. It can therefore
give an idea about the minimum number of cycles that has to be traversed for a picking wave [78].
For the 50 sample picking waves, the maximal SKU results in 40 361 cycles. In the best case,
walking distance could be reduced by 50%. Therefore the maximal SKU provides a strict lower
bound of 20 181 cycles. However, this is a poor bound as it incorporates two relaxations. Firstly,
it does not include the walking distance needed to link up orders. Secondly, it does not take
into account that spans of orders from different batches may not overlap. An approximation for
comparison is provided by the nearest end heuristic that is known to produce good solutions.
However, it cannot be used as a bound [78]. Applying the nearest end heuristic without batching
results in 46 711 cycles. These cycles could be cut in two and put next to each other resulting
in 23 356 cycles. But again, taking into account that orders have to be linked so that different
batches may not overlap, this would not be a feasible solution. Nevertheless, the 23 356 cycles are
an estimate that can be aimed at while evaluating performance as it may be closer to the optimal
solution than the 20 181 cycles determined by the maximal SKU. Another benchmark used in
literature employs a FIFO rule, as described in Section 4.3, that results in 25 451 total cycles
traversed. This provides a guideline to compare the performance of the batching metrics against
a random batching approach. The benchmark is depicted by a red dashed line in Figure 4.6(a).

All six metrics outperform the benchmark used in literature. Within the picking location metrics,
the R-GR combination produces the lowest number of total cycles traversed with a mean of
24 230 cycles. This is higher than the C-GS combination of 24 189 cycles which in turn is the
highest number of total cycles traversed within the route overlap metrics. Therefore the route
overlap metrics perform better in terms of solution quality compared to the picking location
metrics as depicted in Figure 4.6(a).

The stops non-identical spans metric Z produces 24 149 cycles – the lowest number overall, since
the smallest number of combined stops between two orders allows for different spans. The order
specific locations are dominant in this metric.

Two additional decision tiers of allocating and placing a SKU have to be solved for each picking
wave and a choice of configuration if an exhaustive optimisation of the picking system is the
aim. A time frame of about 30 seconds per picking wave to form batches was determined by the
Retailer. All decision tiers can then be solved in less than a minute making a real life application
feasible.

In terms of computational time as illustrated in Figure 4.6(b), the combinations N-GR and
R-GR solve the fastest, while the hybrid of GR-GD with the T metric takes slightly longer. The

Stellenbosch University https://scholar.sun.ac.za



70 Chapter 4. Route overlap metrics for order batching

T
-G

R
-G

D

N
-G

R

R
-G

R

Z
-G

S

B
-G

S

C
-G

S

24 000

24 200

24 400

24 600

24 800

25 000

25 200

25 400
N

u
m

b
er

o
f

to
ta

l
cy

cl
es

tr
av

er
se

d
ov

er
5
0

p
ic

k
in

g
w

av
es

(a) Total cycles traversed per metric.

T
-G

R
-G

D

N
-G

R

R
-G

R

Z
-G

S

B
-G

S

C
-G

S

0

500

1 000

1 500

T
o
ta

l
co

m
p
u
ta

ti
o
n
a
l

ti
m

e
fo

r
5
0

li
n
es

in
se

co
n
d
s

(b) Computational time per metric-algorithm com-
bination.

Figure 4.6: Comparison in terms of total cycles traversed between best performing picking location and
route overlap metrics.

route overlap metrics with the GS heuristic take longer than the picking location metrics. The
C metric takes longer to solve than then B or Z metric as the entries of this matrix produced
by a ratio are less distinct. Nevertheless, the route overlap metrics are still within the set time
limit and thus produce practically implementable times.

4.4.2 Statistical analysis

The application of picking location metrics as approximations for walking distance before picker
routing has been validated [55]. That is why the application of route overlap metrics is also
validated by a regression analysis. The correlation between each metric’s objective function
value and the number of cycles traversed is thus investigated. For stops non-identical spans
this evaluation results in R2 = 0.782, for non-identical stops-spans in R2 = 0.786, and for the
stops-spans ratio in R2 = 0.785. Thereby a strong correlation between all route overlap metrics
and the final walking distance is indicated. However, the regression analysis does not provide
a basis for comparison between metrics as the objective value of each metric is expressed in
different units.

Inferential statistical tests are necessary for the comparison of the influence of the different
metrics on the number of cycles traversed. Chiarandini et al. [23] propose either a univariate
model focusing on one of the measurements or a bivariate model focusing on both measurements
combined. The main focus of this analysis will be on the solution quality in terms of number of
cycles traversed for all 50 picking waves, since the time requirement has shown to be suitable for
a real life application. Therefore a one-way ANOVA with a Tuskey’s HSD post-hoc test will be
used to analyse the influence of the six metrics [101]. The one-way ANOVA shows a statistical
significance (F (5, 24) = 475.24, p = 3.5727 × 10−23) in Table 4.7, pointing out the influence of
the metrics on the total number of cycles traversed. With the help of the Tuskey’s HSD post-hoc
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test it can be concluded that there is a statistically significant difference when comparing picking
location metrics to route overlap metrics [102, 103].

One-way ANOVA Sum of squares df Mean square F p

Between metrics 1 054 364.30 5 210 872.86 475.24 3.5727× 10−23**
Within metrics 10 649.20 24 443.72

Note: Two asterisks indicate significance at the 5% level or below.

Table 4.7: One-way ANOVA on metrics.

4.5 Conclusion

Since the combination of stops non-identical spans and greedy smallest entry algorithm shows the
lowest number of 24 149 cycles traversed for all 50 sample picking waves, it is the recommended
combination for applying order batching to a unidirectional cyclical picking line. Applying
random batching leads to 25 451 total cycles traversed and results in 5.4% additional walking
distance. If batching is introduced pickers walk 48.3% shorter.

Even though metrics including information about the specific layout of the picking system have
shown to be valid for approximating distance, the route overlap metrics still remain an approx-
imation before picker routing. In general, the results indicate that the more information about
the specific layout is incorporated, the lower the total number of cycles traversed. Therefore a
dynamic batching idea is suggested for future research. However, the same start and end of a
batch incorporating two orders increases the walking distance. To overcome this, the philosophy
of starting and ending the orders at the same location might be challenged.

4.6 Chapter summary

In this chapter order batching was introduced to a unidirectional cyclical picking line as utilised
in a South African retailer’s DC. Different stop-span-based order-to-route closeness metrics that
approximate walking distance before picker routing were developed. These route overlap metrics
include the following: the stops non-identical spans that combines the picking locations and non-
identical spans; the non-identical stops-spans that connects the non-identical picking locations
and the non-identical spans; and finally the stops-spans ratio that incorporates the non-identical
picking locations, the combined picking locations, the non-identical spans and the combined
spans. The greedy smallest entry algorithm in combination with these route overlap metrics
produced the lowest number of total cycles traversed when tested on 50 sample picking waves of
different sizes in terms of orders and SKUs. The combination of stops non-identical spans and
greedy smallest entry algorithm is recommended. The route overlap metrics extend the picking
location metrics that have been proposed by Hofmann and Visagie [55] by incorporating more
information about the specific layout of a unidirectional cyclical picking line including the order
specific measurement of a minimum span.

The combinations that produce the lowest number of total cycles traversed on the 50 sample
picking waves for the picking location metrics and the route overlap metrics were compared.
The Z-GS route overlap metric traversed 81 cycles less than the R-GR picking location metric.

The span based measures developed in this chapter reduced the total walking distance even
further. This reduction in walking distance may be translated into time savings. However,
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picking multiple orders simultaneously will increase the time a picker has to stop at a location
which may reduce walking speed through congestion. The next chapter aims at simulating the
unidirectional cyclical picking line including order batching to measure time savings and thereby
quantify a potential decrease in operational cost.
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Order batching reduces walking distance on a unidirectional cyclical picking line, but does it also
minimise overall picking time? Before picker routing, batches are formed by means of proximity
measures and combination heuristics. Additionally, order batching increases pick density which
might lead to congestion and also influences the number of pickers in the system. This picking
system is modelled as a discrete event simulation, which can measure the total time savings and
also give an idea of the best number of pickers after order batching. Historical input data and
the simulation model output is verified and validated. The potential of using pick density as a
predictor for the picking time reduction is investigated.
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5.1 Introduction

Distribution centres (DCs) form a link between supply and demand in supply chains. Approx-
imately 25% of a company’s total logistics cost can be attributed to DCs [49]. Within a DC
the highest contributor to operational cost, about 50 − 65%, is the order picking system that
transforms inbound bulk stock into outbound customer orders [29, 113]. Therefore, decreasing
the total picking time is crucial when improving the order picking system that will ultimately
minimise total logistics cost. A warehouse designer has to address the questions of physical
configuration of the DC and order picking policy to minimise operational cost [44].

In this dissertation the order picking system of a prominent South African retailer (referred to
as the Retailer) is considered. Serving about 2 000 stores with varying customer profiles the DC
has to handle a large number of non-uniform orders on a daily basis. A key characteristic of
the Retailer is the central planning of stock that goes to each store. Instead of store managers
requesting stock, the planners at a central planning department allocate stock keeping units
(SKUs) available at the DC to the stores. Central planners issue details on the specific SKUs
(and their quantities) that have to be distributed to each store. The DC then selects a subset
of these instructions to be picked in a single picking wave to fulfil the store requirements. Such
a picking wave is processed on a picking line in the DC. On a specific picking line a single
SKU is assigned to a unique location for each wave. A picking wave thus includes the following
activities: populating the line with the selected SKUs; the actual picking process; and finally,
the removal of excess stock from the line back to storage [78].

In Figure 5.1 a schematic representation of the layout of a picking line with m locations is
shown. The unidirectional cyclical picking line is a picker-to-parts system. A picking line at the
Retailer’s DC in Cape Town consists of 144 locations with a conveyor belt in the middle. The
conveyor belt has three access gates: one at each end, and one in the middle. Consequently, only
a part of the picking line is in use, and the line has 68 to 76 available locations. Each SKU has
a unique location on the picking line. Five pallets of the identical SKUs can be stored at each
location. Additional stock is kept on the floor space between different picking lines. Therefore
stock does not have to be replenished from storage racks during a picking wave. The number
of units of each SKU to be picked for each store is known prior to the start of the picking wave
giving orders a deterministic nature within the wave. All orders are picked by pickers moving
around the conveyor belt in a clockwise direction. Each picker pushes a trolley with enough
space for two cartons – one carton for each order. The pickers are guided through the picking
process by a voice recognition system (VRS) that sends them to the closest required SKU. An
empty carton is placed on the trolley and registered with the VRS before the picking of an order
starts. Once the picking of the order is completed or the carton is full the carton is placed on
the conveyor belt for further processing in the dispatch area of the DC [76, 77].

Locations

Locations

Conveyor belt

m
21

m i m
2

+ 1

Figure 5.1: A schematic representation of a picking line with m locations. Source: De Villiers [30].

The layout of the unidirectional cyclical picking line shows similarities to unidirectional carousels,
but in the case considered here pickers move relative to static SKUs. Automated warehouse
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carousel systems are usually used for picking small- or medium-sized products. A picker oper-
ating the system remains at a fixed location during picking while the carousel rotates to present
stock to the picker. Therefore a typical carousel is a parts-to-picker system. The cyclical layout
of the picking line with one picker per order guided by an automated VRS is similar to a uni-
directional carousel. However, the main difference between the Retailer’s system and carousel
systems studied in literature is the presence of wave picking with all orders known and fixed
before the start of a specific wave of picking. In most bidirectional carousels only one picker is
used thus investigating the number of pickers in the system is omitted in literature. It is possible
to insert multiple pickers in this set up to reduce the overall time of picking orders in a wave.

Tompkins et al. [110] categorised three picking policies, namely discrete order picking in which
the picker picks all items for a single order in a tour, batch picking in which all items for
multiple orders are collected in a tour, and zone picking in which a picker is allocated to a
specific zone in the DC and is assigned to the orders in that zone. Walking to, from and in
between picking locations account for approximately 50% of the picker’s time in discrete order
picking. A reduction of walking distance can be achieved by the introduction of order batching.

Hofmann and Visagie [55, 56] introduced order batching by means of different metrics and
showed a reduction in walking distance in the unidirectional cyclical picking system (measured
in cycles traversed, as introduced by Matthews and Visagie [78]). However, order batching may
result in picker congestion that consequently influences the overall completion time. Batching
orders decreases the walking distance, but increases pick density which in turn influences picker
congestion. This has an effect on the number of pickers in the system and raises the question of
how many pickers should be used during a wave of picking to minimise the total picking time.
Existing literature does not focus on the layout of a unidirectional cyclical picking line [73].
Van Gils et al. [114] show a gap between academic research and practice in addressing these
real life issues such as picker blocking. Therefore, if only travel distance is taken into account,
managers might choose inefficient policies.

This chapter aims at answering the question of how much time is saved by the introduction of
order batching to a unidirectional cyclical picking line using the batching metrics by Hofmann
and Visagie [55, 56]. The influence of the increased pick density and congestion on the total
picking time is thus studied in the remainder of this chapter. A discrete event simulation
approach is used to determine the total completion time of picking waves. The simulation can
thus be used to check if a reduction in walking distance reduces the picking time, and if it does,
by how much.

After a brief introduction to discrete event simulation (DES) the proposed simulation model
is introduced in Section 5.2. The data gathering process is described in Section 5.2.3. In
Section 5.2.4 the model is verified and validated. Different batching metrics are tested and
compared in terms of picking time in Section 5.3 and explanatory variables are evaluated to
account for picking time reduction. Section 5.4 provides a conclusion and an outlook on future
research opportunities.

5.2 Simulation of a pick wave

The unidirectional cyclical picking line is modelled in a DES to compare picking times gen-
erated by applying different batching metrics. Simulation has proven to be a practical and
implementable tool in optimising warehouse operations [41]. Simulation models address picker
speeds and other conditions more realistically than analytical models [44]. Van Gils et al. [114]
uses a DES to explore real life issues in a parallel aisles warehouse layout. The random dis-
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tributions for walking velocity, picking speed, and setup time are fitted and the results of the
simulation model are validated against real life data. Van Gils et al. [115] emphasise the impor-
tance of accounting for these real life issues in bringing together theory and practice. Therefore,
after a brief literature review on DES modelling, the input data is extracted from real historical
picking data, while the output data is verified and validated against historical data from the
Retailer’s warehouse management system (WMS). Picker blocking is addressed by looking at
a good number of pickers that would allow for maximal picking efficiency, while still avoiding
heavy congestion by influencing pick density.

5.2.1 Background

According to Law [70], DES models a system evolving over time. Thereby, the simulation
represents the instantaneous change of state variables at discrete points in time. An event,
which occurs at these points in time, is defined as an instant with the potential to change the
state of the system. DES represents the internal processes of a system, its components, and its
interactions. It is thus dynamic when compared to mathematical models, descriptive models
and statistical models [5].

The collection of information that is needed to define what is happening within a system is
called system state variables. In a discrete system these variables remain constant and only
change at event times. Therefore, the picking system at the Retailer is modelled as a discrete
system as it only changes states upon picker action. An object that requires explicit definition
is referred to as an entity. In this simulation each picker is a dynamic entity. Each entity
has attributes such as walking velocity, picking speed, and handling speed. A resource is an
entity that provides service to the dynamic entity. Each picking location has the attribute of
accommodating a unique SKU of a certain quantity to pick from and can thus be described as
a resource of which a picker can request one or more items. The state of the location can be
idle or blocked by another picker. Requests from entities are processed according to the list
of sequenced orders. The orders have been sequenced by a nearest end heuristic that chooses
the order with the nearest ending location from a given starting location to be picked next [78].
Events initiate the beginning of an activity, the ending of an activity, or a delay. The duration of
an activity is known prior to its start and describes the length of time in which entities engage. In
this simulation the activities walking, picking, and handling draw random times from statistical
distributions. Delays are caused by a combination of different system conditions and can have
indefinite durations. In this simulation, a delay may occur if more than one picker wants to pick
from the same location at the same time. A mechanism that moves simulated time forward, in
this case driven by the advance of the next event, conducts the DES [5].

5.2.2 Simulation model

The environment in which the simulation takes place is a picking system in the Retailer’s DC as
depicted in Figure 5.2. The locations in the picking line are the resource entities. Pickers push
a trolley with the capacity of two cartons (for two orders). Pickers request a unique SKU at a
location when they arrive there. All locations can be either unoccupied or occupied by a picker
requesting SKUs.

The dynamic entities of the simulation model are the pickers. Each picker can carry out one
of three activities, namely walk to a SKU, pick a SKU for one or two orders, and handle the
carton by preparing and packing it. All activities are depicted in Figure 5.3. Each picker’s
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Figure 5.2: Picking line in the Retailer’s DC in Cape Town, South Africa.

attributes are the speeds at which these activities are carried out. If a picker finds a location
being occupied by another picker then the picker is delayed.

walk to
next location

pick
a SKU

handle
a carton

Picker

Figure 5.3: Picker entity with its three different activities during a picking wave.

The following assumptions are made while extracting input data for the picker speeds to model
the Retailer’s order picking system. These assumptions align the simulation with the real life
set up to model constraints that are currently applied at the Retailer.

1. Pickers complete an order before starting the next order.

2. Picking and handling times are independent of SKU and location.

3. The proportion of time spent allocated to the three activities does not vary over pickers.

The logic of a picker in the simulation model is illustrated in a flow chart in Figure 5.4. In the
picking system environment multiple pickers carry out the order picking process. This process
starts with a new order. The picker prepares a carton and walks to a picking location in the
picking line. If the location is occupied by another picker, the picker has to wait until the
previous picker finishes picking. When the location is unoccupied, the picker picks the SKU. If
the current carton is full and the SKU is the last SKU requested by the order, the carton is
packed and placed on the conveyor belt. The picker will then start a new order. If the carton is
not full and the last SKU of the current order is reached the carton is also packed and placed
on the conveyor belt. However, if the carton is not full and the last SKU of the current order
is not reached the picker walks to the next SKU for the current order. The process is repeated
until all orders of a picking wave are picked.

This simulation was implemented in Python 3.6 [94] utilising the C-based libraries Numpy [89]
and Pandas [93]. The implementation was run on a Dell Optiplex 5050 with a Intel Core i7-7700
CPU at 3.6 GHz, 1x8GB 2400MHz DDR4 RAM, a 2.5” 256GB SSD class 20 drive, and the
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Figure 5.4: A schematic representation of the logical flow chart of the simulation model.

Microsoft Windows 10 Enterprise 2016 LTSB operating system [84]. For the statistical analysis
of the input data and the generated output data R [95] was used.

5.2.3 Input data capturing

Historical time stamp data recorded by the WMS for the picking process were received from
the Retailer. However, the time stamp data only indicate the time when a pick was completed.
They do not include the times for handling the carton, walking to the SKU and the duration of
a pick. Thus this data do not provide walking velocities nor picking and handling distributions
which is critical for the verification and validation process. Therefore a time study of the picking
process on the unidirectional cyclical picking line in the DC was performed. The time spent
walking, picking, and handling could thus be calculated for every picker present in the picking
line. In Table 5.1 an example of the data provided by the time study is displayed.

Walking Picking Handling
Start Stop Duration Start Stop Duration Start Stop Duration

08 : 29 : 09 08 : 29 : 13 3.99 08 : 29 : 13 08 : 29 : 15 1.56 08 : 29 : 15 08 : 29 : 21 5.75
08 : 29 : 21 08 : 29 : 25 3.96 08 : 29 : 25 08 : 29 : 29 3.58
08 : 29 : 29 08 : 29 : 30 0.57 08 : 29 : 30 08 : 29 : 37 6.89
08 : 29 : 37 08 : 29 : 39 1.79 08 : 29 : 39 08 : 29 : 45 5.87
08 : 29 : 45 08 : 29 : 47 1.88 08 : 29 : 47 08 : 29 : 57 9.62 08 : 29 : 57 08 : 30 : 00 2.99
08 : 30 : 00 08 : 30 : 03 2.68 08 : 30 : 03 08 : 30 : 10 6.66
08 : 30 : 10 08 : 30 : 13 2.74 08 : 30 : 13 08 : 30 : 19 5.99 08 : 30 : 19 08 : 30 : 31 11.52
08 : 30 : 31 08 : 30 : 36 4.98 08 : 30 : 36 08 : 30 : 40 3.72
08 : 30 : 40 08 : 30 : 42 1.93 08 : 30 : 42 08 : 30 : 50 7.51
08 : 30 : 50 08 : 30 : 52 1.94 08 : 30 : 52 08 : 30 : 57 4.61

sum 26.46 sum 56.01 sum 20.26
% of total 25% % of total 55% % of total 20%

Table 5.1: An example of the recorded times spent walking, picking, and handling. Start and stop times
are measured in (hh:mm:ss). Duration is measured in (s).

A proportion of time spent walking, picking, and handling could be obtained from the time
study. The proportions are shown in Table 5.2(a).

The average picking times, handling times, and walking velocities are calculated by combining
the extracted time proportions from the Retailer’s WMS data. In Table 5.2(b) an example of the
time stamp data is provided which gives information on a picker, order, location, SKU identity
number, packslip code, date and time.
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Walking 27.95%
Picking 48.05%
Handling 24.00%

(a) The proportion of
time spent by the
pickers per activity.

Picker Order Location SKU Packslip Date Time

Picker 1 6759 052 910141 891974178 06/05/2019 08 : 32 : 59
Picker 1 6427 056 918535 891974179 06/05/2019 08 : 33 : 10
Picker 1 6427 057 918536 891974179 06/05/2019 08 : 33 : 16

(b) An example of the time stamp data. Time is measured in (hh:mm:ss).

Table 5.2: Proportions and time stamp data to obtain walking, picking, and handling speeds.

At least 10 cycles were considered to calculate the average walking velocity, the average picking
time, and the average handling time. Cycles with excessive time delays and congestion were
disregarded [45]. Excessive time delays between two picks can occur due to breaks or congestion.
For each picker, over these at least 10 cycles, the number of locations that were passed, the
number of picks that were made, the number of cartons that were handled, and the total time
spent picking can be calculated.

The calculation of walking velocities, picking times, and packing times, follows from the infor-
mation about the number of locations, the picks, and the cartons. The time stamp data of one
picker completing a minimum of 10 full cycles is provided as an example. There are 144 locations
per picking cycle, but this picker has to pass 1 681 locations if the starting locations of the first
order (128 locations) and the ending locations of the last order (113 locations) of the 10 sample
cycles are taken into account. This picker completed 548 picks and prepared and packed 43 car-
tons. The picker spent a total of 6 297 seconds in the picking process. The time spent in each
process step can be calculated using the total times and the proportion. The walking velocity
is given by the time it takes a picker to pass the length of one location. Passing the picking
locations in 1 760 seconds leads to an average walking velocity of 1.0472 seconds per location.
The average time per pick can be calculated by dividing the total picking time by the number
of picks. For this example it was calculated as 5.5212 seconds. The average handling time was
calculated as 35.1413 seconds per carton. The data for this example is presented in Table 5.3.

Proportion Total time Events Average rates

Walking 27.95% 1 760 1 681 locations 1.0472 s/location
Picking 48.05% 3 026 548 picks 5.5212 s/pick

Handling 24.00% 1 511 43 cartons 35.1413 s/carton

Table 5.3: An example of the table to calculate walking velocity, picking time, and packing time for a
specific picker. Time is measured in (s).

For any specific picker the triangular distribution for walking velocity, average picking time,
and average handling time were used [46]. The smallest value over all pickers was defined as
the lower bound, while the largest value over all pickers was defined as the upper bound of the
distribution.

The pick density measure in the unidirectional cyclical picking line plays an important role
in this simulation because it has an influence on the total completion time of a picking wave.
Hagspihl and Visagie [46] measured pick density as the average number of locations that are
empty between every pick, if one picker completes the entire picking wave. In a picking line
with high pick density a picker stops and picks more frequently. Therefore, a low value for
this measure describes a small number of passed bays per gap and thus represents a high pick
density. A low value for this measure describes a small number of passed bays per gap and thus
represents a high pick density. The average gap size dg with the unit of passed locations per
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gaps can be calculated as

dg =
1

g

g∑
j=1

γj , (5.1)

where γj is the length of the j-th gap and g is the total number of gaps. Observations on the
floor, confirmed that pickers walk faster in a picking line with low density, since there is more
distance between locations to pick up speed. Numerical experiments, in which time stamp data
were fitted to time study data, determined the criteria for low, medium and high levels of pick
density measure. A large dg for batched orders lies above 10 passed locations per gap (low
pick density measure) and the corresponding triangular distributions are shown in Table 5.4(a).
As displayed in Table 5.4(b) walking velocity decreases in a picking line with a medium dg
of 3 − 9 passed locations per gap as compared to a line with a big dg. Moreover, picking
and handling increases slightly as the proportion of number of picks and cartons to locations
increases. A small dg above zero but below two passed locations per gap (high pick density
measure) decreases the walking velocity even further, due to frequent stops. Picking lines with
high pick densities are often made up of heavier and slightly bulkier SKUs, this increases the
time per pick but decreases the time to pack a carton [114]. The speeds for picking lines with
high densities are depicted in Table 5.4(c). The problem with this measure is that the density is
picker route specific. The density can only be calculated once the pickers are routed. It would
thus be good to consider density measures that are not route specific.

Lower Central Upper

Walking 0.4603 0.8376 1.2327
Picking 2.7937 5.1983 6.8197

Handling 9.4149 26.0441 47.7112

(a) Distributions with a big gap size (low
density).

Lower Central Upper

1.0472 1.3883 1.8852
4.0486 5.5418 6.8197
21.9297 34.4901 47.7112

(b) Distributions with a medium
gap size (medium density).

Lower Central Upper

1.8852 2.7076 3.2327
6.8197 16.1065 23.5212
9.4150 17.0853 21.9297

(c) Distributions with a small
gap size (high density).

Table 5.4: Triangular distributions for picking lines with different gap sizes.

The general distance pick density measure dm is defined without prior routing within the picking
system. Therefore, it includes the total number of stops s to describe where a picker has to stop,
the number of locations m available in the system and the maximal SKU υ. The maximal SKU
is needed by the maximum number of orders in a picking wave. It thus provides a minimum
number of cycles that has to be traversed to pick all orders [78]. Pick density measure dm can
only take on values from 0 − 1 with a high value representing a high pick density. The pick
density measure dm with the unit stops per locations can be calculated as

dm =
s

m · υ
. (5.2)

The Retailer’s definition of pick density measure dr is also independent of picker routing. It
includes the total number of stops s and the total number of orders n multiplied with the total
number of SKUs u which describes the maximum number of stops possible. However, this
definition of pick density does not include any approximation of distance. Therefore, a fairly
low number of stops may indicate that the pick density is low even though SKUs are located
closely to each other. The pick density measure dr of the Retailer with the unit of actual stops
per potential stops can be formulated as

dr =
s

n · u
. (5.3)
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The density can also be expressed as the ratio between the total number of stops s and the total
number of orders n as pick density measure dn. This definition is independent of picker routing
but not ideal. Since only averages are considered in this equation, it may describe a picking
wave in which the majority of the orders have a few picks with a similar density to a picking
wave that has an even spread of picks per order.

The pick density measure dn with the unit of stops per orders can be calculated by

dn =
s

n
. (5.4)

All four pick density measure definitions will be compared in the real world example. Thereby
the best way of describing pick density in a unidirectional cyclical picking line can be identified.

An exponential distribution was fitted to the varying picking and handling times, since it can be
directly attributed to each SKU picked or each carton handled [45]. The Kolmogorov-Smirnov
test [101] and Anderson-Darling test [26] were used to measure the goodness of fit (GOF) of the
exponential distribution for the picking and handling time distributions. The test statistic for
the exponential distribution of the picking and handling time distributions was not rejected for
a 99% confidence level as displayed in Table 5.5.

Exponential distribution: λ = 0.212542
Kolmogorov-Smirnov

Size 3 196
Statistic 0.0117
P-value 0.7715
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.019 0.022 0.024 0.027 0.029
Reject? no no no no no

Anderson-Darling
Size 3 196
Statistic 0.4757
P-value 0.7717
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.816 1.162 1.321 1.591 1.959
Reject? no no no no no

(a) GOF for the picking distribution.

Exponential distribution: λ = 0.159236
Kolmogorov-Smirnov

Size 1 225
Statistic 0.0227
P-value 0.5519
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.031 0.035 0.039 0.043 0.047
Reject? no no no no no

Anderson-Darling
Size 1 225
Statistic 0.7766
P-value 0.4982
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.816 1.162 1.321 1.591 1.959
Reject? no no no no no

(b) GOF for the handling distribution.

Table 5.5: Goodness of fit test for picking and handling distributions.

5.2.4 Verification and validation of output data

The verification and validation (VV) of the simulation model is important, because it confirms
that the model produces realistic results. VV is thus used to increase the confidence in the
simulation, not to prove its absolute accuracy [96]. Model verification ensures that the real world
system has been translated into a computer model accurately and that its implementation is
correct. Model validation substantiates the model as having sufficient accuracy for the intended
application of the simulation [100]. Robinson [96] suggests four strategies for performing the VV
of a simulation model: conceptual model validation; data validation and verification; white-box
validation; and black box validation.

Conceptual model validation determines whether the simulation contains all necessary detail to
meet the objectives proposed for their study [96]. The DES aims at answering the question of
how much picking time was saved by introducing order batching to the unidirectional cyclical
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picking line. The detail involved in the simulation is sufficient as it includes the three activities
of walking, picking, and handling. It also addresses the occurrences of congestions that may
arise from multiple pickers picking at the same location. The properties of the model have been
discussed with management at the Retailer who confirmed that enough detail is present in the
simulation model. Enough detail is thus included to determine the overall savings in picking
time with the help of this simulation model.

Data validation determines if the data used to build, experiment and validate the model are
sufficiently accurate [96]. The input data for this simulation has been obtained by a time
study of the picking system and combined with historical data recorded by the WMS. An
exponential distribution has been fitted to the picking and handling times. Kolmogorov-Smirnov
and Anderson-Darling tests have not been rejected for a 99% confidence level. Therefore the
input data is sufficiently accurate. The walking velocity defines how long it takes for a picker to
pass one location, while congestion causes a delay before the next pick event.

Verification ensures that the simulation is consistent with the conceptual model. The white-box
validation determines whether each part of the model accurately represents their real world
counterpart [96]. In this VV step, it is checked that the picker velocity, the picking time,
and handling time are aligned with the actual data. It was ensured that the picker picks orders
according to the right sequence, thus walks in the right direction and exhibits the right behaviour
when encountering another picker. A single picker was modelled in the simulation and the
activities were checked in the code. Analysis of the events showed that the picker always walks
in the correct direction, picking the right orders, and handling the right cartons. If more than
one picker was inserted into the simulation, the model reflects the anticipated behaviour of the
picker slowing down and waiting when destined locations were occupied. The walking velocities,
picking speeds, and handling speeds of the simulation output were assessed for correctness.

Black-box validation determines whether the simulation represents the real world at a sufficiently
aggregate level [96]. In this VV step the model output is compared to historical data. Therefore
the data of 10 sample picking waves are considered and displayed in Table 5.6. These 10 picking
waves were selected by the Retailer as representative of the picking line setup.

Wave
ID

Orders SKUs Cartons dg dm dr dn Picks per
distance

Cartons per
distance

SKU
[kg]

SKU
[m3]

Large data set
2405 1 788 74 2 556 5.44 0.21 0.22 16.10 0.43 0.04 0.553 0.003
2784 1 784 68 2 349 4.01 0.46 0.39 26.37 0.78 0.04 0.289 0.003
2433 1 780 74 2 771 6.24 0.36 0.26 18.98 0.51 0.04 0.619 0.003
3010 1 779 74 2 060 5.48 0.34 0.20 14.44 0.39 0.03 0.388 0.002
3318 1 742 74 2 655 7.59 0.24 0.22 16.11 0.44 0.04 0.604 0.004
Medium data set
3483 1 691 141 2 463 17.90 0.16 0.13 18.16 0.26 0.02 0.406 0.003
2580 1 557 68 1 620 4.40 0.40 0.25 17.02 0.50 0.03 0.287 0.002
Small data set
2848 1 028 6 1 231 1.43 0.53 0.41 2.04 0.86 0.51 2.051 0.004
2856 691 9 1 190 1.77 0.56 0.19 1.70 0.42 0.42 6.032 0.013
2765 490 6 526 1.43 0.58 0.24 1.44 0.67 0.50 1.398 1.41

Table 5.6: Historical data for 10 sample picking waves.

The data set includes the picking line (or wave) identifier (ID), the number of orders, the
number of SKUs, the number of cartons, the pick density measures, the ratio of number of picks
to locations, the ratio of number of packs to location, the average weight in kg per SKU per
picking wave, and the average volume in m3 per SKU per picking wave. The dataset is divided
into large picking waves of more than 1 699 orders, medium sets between 1 100 − 1 699 orders
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and small sets of less than 1 100 orders with a range in the number of SKUs from 6 − 141.
The picking wave data of 2405, 2784, 2433, 3010, 3318 and 2580 fall under medium gap size dg.
Picking wave 3483 has a large gap size dg, while picking waves 2848, 2856 and 2765 have a
small gap size dg. High density levels for the small data sets are pointed out by pick density
measure dm. However, dr fails to identify the higher density clearly. The pick density measure dn
manages to show an increase in density for the small data sets.

The accuracy of the model is influenced by the number of simulation replications. According to
Burghout [16] an equation that is derived from a statistical 1− α confidence level t-test on the
simulated mean as extracted from a more general procedure described by Law [70] can determine
this number. Let

N(w) be the number of replications,
X̄(w) be the estimate of the real completion time,
S(w) be the standard deviation,
ε be the percentage error of the simulated mean and
tw−1,1−α/2 be the two-tailed t-distribution critical value for w− 1 degrees of freedom at

an α significance level.

Then the necessary number of replications can be calculated by

N(w) =

(
S(w)tw−1,1−α/2

X̄(w)ε

)2

. (5.5)

The total completion time cannot be inserted into equation (5.5), since pickers starting a wave
rarely finish it. Therefore this calculation uses the completion times of specific pickers with a
sample size of 24. For example, for 20 replications the standard deviation of the total completion
times is 970 which is 2% of the simulated mean of the completion times (which is 49 054 seconds).
The historical completion time for a specific picker was 49 143 seconds. The acceptance of an
error of a minute per hour results in ε = 0.016. The t-distribution critical value for 19 degrees of
freedom is 2.093. The number of necessary replications calculated by substituting these values
in equation (5.5) results in approximately 6.69 replications. Although seven replications are
sufficient to provide adequate results, the simulation was replicated 10 times for each picking
wave.

The model accuracy was measured by comparing the historical data of an isolated picker’s path
(for a certain distance), to a run that simulates that same path. This was done multiple times
with different pickers. The total completion time cannot be used as pickers rarely start and
finish the same picking wave in real life. Therefore, the picker specific historical data have been
summed up and cleaned from excessive time delays between two picks. Outliers (occurring from
the ad hoc addition or removal of pickers from the line) have been removed from the historical
completion times.

A difference between the historical completion times and simulated completion times can be
computed [45]. If the calculated differences are normally distributed with a mean close to zero,
it implies that the simulation times are accurate. The standard deviation describes the spread of
the values around the mean. Illustrated in Table 5.7(a) the mean of 10 replications falls between
the 95% confidence intervals for each picking wave.

A normal distribution was fitted to the differences in total completion times. The Kolmogorov-
Smirnov test [101] and Anderson-Darling test [26] were used to measure the GOF of the normal
distribution for the time differences. The example of a picking wave in Table 5.7(b) shows that
the test statistic was not rejected for a 99% confidence level.

Stellenbosch University https://scholar.sun.ac.za



84 Chapter 5. Simulation of a picking line’s completion time

Wave
ID

Mean
errors

Standard
deviation
of errors

Confidence
intervals

2405 −25.74 475.52 [−321, 269]
2784 110.11 297.78 [−75, 295]
2433 138.19 347.71 [−77, 354]
3010 −6.94 154.41 [−103, 89]
3318 −67.64 521.25 [−391, 255]
3483 32.37 481.30 [−266, 331]
2580 61.34 197.74 [−61, 184]
2848 53.16 139.95 [−34, 140]
2856 43.04 156.09 [−54, 140]
2765 −29.97 120.62 [−105, 45]

(a) CI for the time differences. Time in (s).

Normal distribution: µ = −25.74, σ = 475.52
Kolmogorov-Smirnov

Size 10
Statistic 0.2391
P-value 0.5404
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.323 0.369 0.409 0.457 0.489
Reject? no no no no no

Anderson-Darling
Size 10
Statistic 0.2624
P-value 0.6188
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.509 0.631 0.752 0.873 1.035
Reject? no no no no no

(b) GOF for the time differences on picking wave 2405.

Table 5.7: Differences in total completion times between historical data and simulation data for 10 sam-
ple picking waves.

The VV results show that the simulation has an acceptable accuracy level and can thus be used
to simulate the picking time of the Retailer’s real world unidirectional cyclical picking system.

5.2.5 Number of pickers

Inserting more than one picker in the picking wave can decrease the overall completion time of
the wave, but can also lead to congestion if pickers have to pick items from the same location.
With the introduction of order batching pick density increases, influencing congestion levels.
This raises the question of how many pickers should be used on a picking wave.

Unfortunately there is no data available on congestion times. A picker that arrives at an occupied
location has to wait until the previous picker completes the pick and the location becomes
unoccupied again.

The aim of determining a good number of pickers for the picking wave takes two factors into
consideration. While keeping congestion at a controllable level, the total completion time is
minimised. Three techniques are considered to accomplish this: the absolute minimum approach,
the critical limit approach, and marginal analysis.

In the absolute minimum approach the number of pickers is increased iteratively. Research by
Hagspihl and Visagie [46] has shown that the total completion time decreases as more pickers are
inserted into the picking system until the congestion becomes so high that the total completion
time increases again. In their research, 45 pickers could be inserted into a wave before the total
completion time increased (indicating congestion influences). The model output of this chapter
confirms the same pattern. The DC management normally uses about eight pickers per picking
wave. However, if there is little congestion the management might insert another picker. As
confirmed by management, no more than 20 pickers will ever be inserted into the picking wave.
For all large picking waves the allowed 20 pickers generate the lowest total completion time.
However, this results in very high congestion levels of 36− 66%. These levels of congestion lead
to excessive labour costs, low morale amongst pickers, and labour inefficiencies.

The critical limit approach introduces a limit to the time a picker should be waiting for another
picker to finish the picking during the total completion time. The DC aims at efficient picker
utilisation thus keeping the percentage of picker congestion low. Therefore a good number of
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pickers is chosen by setting a limit on picker congestion. The Retailer suggests the critical limits
between 15% and 17.5% to determine a good number of pickers. For medium picking waves with
a medium density, this would result in 11 pickers. A large picking line with low density results
in 12, while a short picking line with high density in 7 pickers.

The total completion time approach produced unacceptable levels of congestion, while the critical
limit approach provided realistic results. But choosing the acceptable level of congestion is
difficult and at best an educated guess. Therefore the third approach considers total completion
time and congestion simultaneously. In marginal analysis (MA) the input of an extra unit brings
additional benefits and costs that are weighed up against each other. An extra unit is added
until the additional benefit is less than the additional cost. At this point the previous number of
units can be determined as optimal for the system [121]. In this case, the benefit of adding one
picker to the system lies in the marginal decrease of total completion time. Thereby answering
the question of how much the total completion time decreases if one extra picker is inserted.
The cost is determined by the increase in total congestion if one extra picker is added. Both
values are then weighed against each other.

An example of a MA performed on a large picking wave is depicted in Figure 5.5. In this picking
wave, the cost in congestion is higher than the benefit of decreasing total completion time when
inserting picker number 10. Therefore a good number of pickers for this picking wave is 9. A
good number of pickers over the whole dataset is 9 pickers, which is close to the number of
pickers the Retailer has determined by trial and error.
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Figure 5.5: A plot of the marginal times gained and lost with the increase in the number of pickers for
picking wave 2405.

According to Gue et al. [44] pick density has a direct influence on congestion in a parallel
narrow aisles warehouse layout. The more pickers in the picking system, the more congestion
arises. This is enhanced by higher picker speeds. Passing another picker, as it is allowed in the
Retailer’s picking system, lowers congestion levels. Gue et al. [44] observed little blocking under
a low pick density, while congestion increases with higher pick densities. However, as pick density
continues to increase it results in less congestion, as pickers travel less and pick more. Only while
travelling pickers can be blocked, so less picker blocking occurs if pickers are busy picking the
majority of the time. According to Hagspihl and Visagie [46] there is a correlation between pick
density and a good number pickers. The dataset used in this chapter supports these findings.
A large picking wave with low density shows the shortest total completion time operating with
10 pickers. Medium picking waves with medium pick densities result in 8 − 9 pickers, while
short waves with high densities are most efficient with7 pickers (or the maximum number of
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pickers possible). The DC management often inserts 8−9 pickers per picking wave per day thus
validating the results.

5.3 Comparison between batching metrics

Different batching metrics were tested to answer the question of how much picking time can
be saved by introducing order batching to the unidirectional cyclical picking line. Therefore
batching metrics based on the picking locations, batching metrics based on the section of the
picking line that is traversed to pick an order (route overlap), and a combination of both are
simulated.

5.3.1 Experimental results

The simulation of completion times per picking wave is carried out on the 10 sample picking
waves. Each experiment is replicated 10 times and the average in picking time per wave is
compared. For evaluation purposes picking times without batching and a benchmark with a
first-in-first-out random approach (FIFO) from literature are included in the analysis. The
following approaches were shown to give good results in reducing walking distance. Therefore
they are used to investigate possible time savings.

The stops ratio batching metric combined with a greedy random heuristic (R-GR) was introduced
by Hofmann and Visagie [55] and is based on the number of picking locations that a picker has
to stop to collect items for an order. The stops ratio batching divides the non-identical stops
(the number of stops that are not shared between two orders) by the identical stops (the number
of stops that are similar between two orders). The lower the incompatibility between two orders
the closer this metric is to zero. The greedy random heuristic combines orders with a low level
of incompatibility according to a random permutation to form batches.

Matthews and Visagie [78] defined a span of an order as the distance that has to be covered
to pick all items of that order given a starting location. Searching for the biggest gap between
the items of an order leads to the so-called minimum span of the order that starts at the end
of the biggest gap. This minimum span idea forms the basis of the spans ratio batching metric
that is combined with a greedy smallest entry heuristic (A-GS) as developed by Hofmann and
Visagie [55]. This approach divides the non-identical minimum span (the part of the minimum
span that is not the same between two orders) by the minimum span (the part of the minimum
span that is similar between two orders). The greedy smallest entry combines orders with a low
level of incompatibility into batches by searching for the smallest entry globally.

The stops non-identical spans metric combined with the greedy smallest entry heuristic (Z-
GS) suggested by Hofmann and Visagie [55] adds the minimum span idea to the stops metric.
Thereby leading to the smallest number of cycles traversed for all 10 sample picking waves as
shown in Table 5.8.

The total completion time for all 10 sample picking waves is the lowest when applying order
batching through the Z-GS metric (see Table 5.8). A lower number of total cycles traversed
consistently leads to shorter times, thus showing that order batching reduces picking time.

Hong [60] suggests that the batching algorithm has a significant effect on the pick density level.
In other words, congestion levels impact the total completion times of picking waves. The gap
size dg is depicted in Table 5.8 for each of the 10 sample picking waves and dm, dr and dn for the
batching metrics that result in the lowest picking times. In most cases the Z-GS metric results
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Wave ID No batch Random (FIFO) Stops ratio (R-GR) Spans ratio (A-GS) Stops non-identical spans (Z-GS)

Cycles Time dg Cycles Time dg Cycles Time dg dm dr dn Cycles Time dg Cycles Time dg dm dr dn

2405 1 788 49 645 5.44 894 38 809 4.73 894 38 797 4.50 0.28 0.29 21.23 894 38 727 4.63 894 38 708 4.26 0.29 0.30 22.14

2784 1 643 57 684 4.01 865 48 127 3.76 848 47 971 3.39 0.50 0.46 31.24 860 47 952 3.43 847 47 939 3.37 0.51 0.47 31.96

2433 1 540 53 393 6.24 864 42 683 5.47 825 42 583 5.21 0.39 0.33 24.57 852 42 578 5.31 807 42 548 5.07 0.42 0.35 24.58

3010 1 394 44 769 5.48 785 34 855 4.47 747 34 738 4.25 0.38 0.26 19.44 767 34 701 4.38 741 34 700 4.05 0.39 0.27 20.27

3318 1 698 46 392 7.59 864 36 125 6.96 863 36 307 6.78 0.29 0.26 19.37 870 36 097 6.77 857 36 021 6.74 0.30 0.27 20.16

3483 1 542 42 138 17.90 819 33 390 17.84 797 32 559 13.77 0.22 0.18 24.77 817 32 590 17.65 799 32 573 17.63 0.21 0.17 24.16

2580 1 364 39 782 4.40 738 31 403 3.56 718 31 343 3.31 0.43 0.32 22.01 723 31 369 3.25 710 31 342 3.24 0.44 0.33 22.77

2848 707 9 735 1.43 447 8 937 1.61 365 8 661 1.43 0.53 0.41 2.05 422 8 855 1.51 353 8 642 1.42 0.54 0.42 2.09

2856 366 13 930 1.77 271 13 334 1.81 188 12 931 1.73 0.56 0.19 1.75 249 13 166 1.95 187 12 912 1.71 0.57 0.20 1.80

2765 238 24 123 1.43 167 22 854 1.78 123 22 186 1.42 0.25 0.59 1.47 156 22 902 1.65 123 21 979 1.41 0.60 0.26 01.49

12 280 381 580 6 714 310 436 6 368 308 097 6 610 308 879 6 318 307 360

Table 5.8: Comparison of different batching metrics. Walking distance is measured in cycles traversed
on the picking line. Time is measured in (s). The three different density measurements have units
according to their definitions.

in the highest pick density making pickers pick more and travel less. Congestion increases with
batching, but when batching is incorporated efficiently with a good number of pickers congestion
can be lower than in a system without batching.

The Pearson correlation coefficient [101] is used to further analyse the interaction between
walking distance, picking time and pick densities using order batching through the Z-GS metric.
The correlation coefficient of 0.84 shows a strong positive correlation between completion time
and total number of cycles traversed, confirming that less cycles correlate with shorter times. The
correlation between picking time and pick densities is calculated to test the influence of density
on picking speed. Thereby the correlation coefficient of 0.30 between completion time and gap
size dg indicates a positive moderate correlation, emphasising that a picker can gain speed in
longer gaps as depicted in Figure 5.6(a). Route independent pick density measure dm shows a
strong positive correlation between completion time and density with a correlation coefficient
of 0.78. This relationship is illustrated in Figure 5.6(b). Depicted in Figure 5.6(c), pick density
measure dr has a positive moderate correlation coefficient of 0.25 as an increase in value seems
to indicate an increase in density (comparable to dm). Even though pick density measure dn
has a strong positive correlation coefficient of 0.93 which is illustrated in Figure 5.6(d), it only
considers averages and thereby may not be able to distinguish between different compositions of
orders. For example dn favours FIFO in all sample picking waves even though long picking times
are produced by this batching metric. Therefore, the pick densities may not explain picking time
solely and the influence of pick densities on a reduction of picking time has to be investigated
further.

5.3.2 Explanatory variables

The differences in picking time reduction can be investigated with the help of explanatory
variables such as number of orders, maximal SKU, number of locations, same locations, number
of picks, and number of cartons. The four different pick densities will be tested on their ability
to predict the magnitude of picking time reduction.

In Table 5.9 the explanatory variables for introducing order batching by applying Z-GS are
depicted. In general, larger picking waves with more SKUs (and thus more locations, such as
for example wave 3483 with 141 locations) seem to reduce picking time in accordance with the
introduction of order batching more so than smaller picking waves (such as for example waves
2848, 2856 and 2765 with 5, 9 and 6 locations respectively). Picking waves with a higher number
for maximal SKU seem to result in a higher picking time reduction through batching. If there
are a lot of picks and a lot of SKUs needed from the same location (for example on wave 2784) a
lower picking time reduction (due to congestion) is observed. The picking time reduction slowly
decreases with many cartons to pack (for example on wave 2433).
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Figure 5.6: Correlation between completion time and different measures of pick density, namely dg,
dm, dr and dn.

Wave ID Pick time reduction Orders Max SKUs Locations Same location Picks Cartons

2405 22.09% 1 788 1 788 74 1 596 28 793 2 556

2784 16.89% 1 784 1 507 68 2 106 47 047 2 349

2433 20.31% 1 780 1 243 74 1 772 33 777 2 771
3010 22.49% 1 779 982 74 1 361 25 696 2 060
3318 22.36% 1 742 1 526 74 1 472 28 055 2 655

3483 22.73% 1 691 1 298 141 881 30 702 2 463
2580 21.21% 1 557 986 68 1 767 26 498 1 620

2848 11.22% 1 028 663 5 739 2 093 1 231

2856 7.31% 691 326 9 153 1 173 1 190

2765 8.86% 490 202 6 0 708 526

Table 5.9: Explanatory variables for 10 sample picking waves.

All variables can be predetermined by the number and quantity of SKUs per order or the set up
of the picking wave except for the same location variable. The same location shows how often
pickers had to stop and wait at the same location at which another picker was busy picking thus
leading to congestion in the wave. Therefore, it can only be determined after a simulation run.

For each of the four pick densities a linear regression is carried out to determine which measure of
pick density can best predict picking time reduction. In a stepwise linear regression, significant
explanatory variables with a variance influence factor below 10 are combined with each pick
density measure to generate a multiple regression model per pick density measure. The test
data set of the 10 sample picking waves is extended to 60 waves by including the 50 sample
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picking waves from the Retailer’s DC in Durban to increase the sample size.

The Retailer runs another DC in Durban, South Africa. The picking lines in this DC are made
up of 56 locations with the conveyor belt in the middle. All processes are carried out similar. The
50 sample picking lines tested in Hofmann and Visagie [55, 56] are from the Durban DC, thus
the simulation is run on these lines and results are presented in Appendix A.1 for completeness.

The results of a multiple regression model that includes the gap size dg and the statistically
significant explanatory variables (orders, locations, picks, and cartons) are shown in Table 5.10.
The regression model results in an adjusted R2 of 0.67. The coefficient estimate for dg, and the
locations is positive, indicating that if the gap size increases pickers walk faster and the picking
time reduces. The more picks or cartons (as indicated by the negative coefficient estimates) the
less time can be saved. However, the influence of picks and cartons on the picking time reduction
is small.

Coefficients Estimate Std. error t-value p-value

Intercept 9.132 1.650 5.534 9.4E − 07
Gap size dg 0.251 0.055 4.604 2.6E − 05**
Orders 0.006 0.001 6.596 1.9E − 08**
Locations 0.121 0.029 4.133 1.3E − 04**
Picks −0.0002 0.0001 −3.015 3.9E − 03**
cartons −0.0013 0.0006 −2.248 2.9E − 02**

Residual standard error: 3.082 on 54 degrees of freedom
Adjusted multiple R2: 0.6735
F -statistic: 25.35
p-value: 4.639E − 13

Note: Two asterisks indicate significance at the 5% level or below.

Table 5.10: Multiple regression model summary on gap size dg and explanatory variables.

The results of a multiple regression model that includes the route independent pick density
measure dm and the statistically significant explanatory variables (orders, locations, and picks)
are shown in Table 5.11. The regression model results in an adjusted R2 of 0.58. The density dm,
orders and locations have a positive influence on the picking time reduction, thus the higher the
density the more time can be saved. From all coefficient estimates the estimate for density dm
is the highest. Therefore, density measure dm is the best indicator of picking time reduction.

Coefficients Estimate Std. error t-value p-value

Intercept 8.290 2.121 3.909 2.6E − 04
Density dm 10.250 4.574 2.241 2.9E − 02**
Orders 0.006 0.001 5.853 2.8E − 07**
Locations 0.164 0.032 5.133 3.9E − 06**
Picks −0.0004 0.0001 −7.592 4.1E − 10**

Residual standard error: 3.5 on 55 degrees of freedom
Adjusted multiple R2: 0.579
F -statistic: 20.99
p-value: 1.192E − 10

Note: Two asterisks indicate significance at the 5% level or below.

Table 5.11: Multiple regression model summary on pick density measure dm and explanatory variables.

Unfortunately, a linear regression of the pick densities dr and dn is not statistically significant.
Therefore, a multiple regression would only incorporate the explanatory variables orders, picks
and locations and the regression model would result in an adjusted R2 of 0.55.
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From the route independent pick density measures, only the multiple regression model of dm
is significant. Even though the adjusted R2 of the dm model is slightly lower than that of the
dg model, pick density measure dm is a better predictor for picking time reduction, because
it can be used independently of picker routing. A decrease in walking distance results in the
average reduction of 17.54% in picking time in the dataset with 10 sample picking waves (the
average reduction for the entire test data set of 60 sample picking waves is 20.91%). Therefore,
it can be confirmed that a reduction in walking distance through order batching reduces the
overall picking time.

5.4 Conclusion

The experiments showed that a reduction in walking distance by implementing a stops non-
identical spans batching metric leads to up to 21% picking time reduction per picking wave.
The route independent pick density measure dm showed a strong correlation coefficient of 0.78
with total completion time. A multiple regression model that included dm and the statistically
significant explanatory variables (orders, locations, and picks) resulted in an adjusted R2 of 0.58.
Therefore, these variables can be used as a predictor for the possible reduction in completion
time.

The picking lines of the Durban DC are run most efficiently with up to nine pickers per picking
line under the current performance indicators. As suggested by Hofmann and Visagie [55] the
stops non-identical spans batching metric is able to reduce the walking distance measured in
cycles traversed to a minimum. The reduced walking distances resulted in the shortest overall
picking time, thus confirming that a reduction in walking distance increases pick density and
leads to a shorter picking time in the Durban DC.

Van Gils et al. [116] emphasises the importance of combining different planning problems to
increase the overall efficiency in warehouses. As this chapter aims at introducing order batching
to the order sequencing decision tier on the picking line, the decision tiers of where to place the
SKU on the line and on which line to pick the SKU should be addressed.

5.5 Chapter summary

This chapter showed that order batching on a unidirectional cyclical picking line decreases not
only the walking distance, but also leads to a reduction in picking time. The picking system of a
Retailer’s DC was modelled in a discrete event simulation. Input for the walking velocity, picking
and handling distributions was retrieved through a time study carried out at the Retailer’s
DC. The output of the simulation was verified and validated against historical data from the
Retailer’s WMS. Different batching metrics, based on the picking location, the route overlap, or
a combination of these were tested in an experimental set up.

DCs may incorporate a picking module that contains picking lines without conveyor belts in
the middle. Managers can thus decide whether to run a unidirectional cyclical picking line or
employ a Z-configuration which allows pickers to cross the aisle. The DES can be used as a tool
to compare a unidirectional cyclical picking line set up to a Z-configuration, since it measures
the picking time and not the walking distance. This will be the topic of the next chapter.
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In this chapter, a new configuration to a unidirectional cyclical picking line is introduced. If the
structural set up is changed by removing the conveyor belt in the middle, the picking line can
operate either in a U- or Z-configuration. The question arises which configuration minimises
walking distance and thereby picking time the most. Therefore, a worst case scenario, average
case scenario, and a real world simulation are analysed. Both configurations are combined with
adaptations of the order batching metrics to reduce walking distance. An indicator of when to
switch between configurations is also investigated.

6.1 Introduction

The order picking system in the distribution centre (DC) of a prominent South African retailer
(referred to as the Retailer) is considered in this chapter. The picking system transforms bulk
stock into customer requests and is the main activity within a DC. Generally, order picking
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contributes the most to the operational cost in a DC [29, 113]. Therefore, optimising the order
picking system has the potential to improve the efficiency of the entire supply chain of the
Retailer.

On a daily basis the Retailer serves about 2 000 stores with a large number of non-uniform orders
due to varying store profiles. Mainly selling apparel to the lower income part of the population
in South Africa, the Retailer needs to reach this market with stores all across the country.
The Retailer has adopted a central inventory planning approach to keep operational cost low,
while managing this large number of stores. Planners at the planning department of the central
office allocate stock keeping units (SKUs) to stores, instead of store managers placing orders
individually. This centralised approach drives the design of the order picking system. Once the
central planner releases all the store requirements of a certain SKU to the DC, that SKU can
be picked in a picking wave. A picking wave is processed on a picking line, where each SKU is
assigned to a unique location. A picking wave consists of the following activities: populating the
picking line with SKUs, picking the SKUs, and removing excess stock from the picking line [78].

The Retailer operates three DCs. While all DCs have structural differences, the fundamental
layout of the picking system is the same. This chapter’s findings can thus be applied to the
picking systems in all of the Retailer’s DCs.

The DC in this study runs a picking line with a conveyor belt in the middle and a module
with three floors having a similar set up. However, the conveyor belt has been taken out in the
module to allow for different walking configurations for pickers. The picking system is depicted
in Figure 6.1(a). The three floors are connected by a main conveyor belt on to which full boxes
are placed.

(a) A schematic representation of the pick-
ing system layout with four picking lines.

Locations

Locations

Conveyor belt

m
21

m i m
2

+ 1

(b) A schematic representation of a picking line
with m locations including a conveyor belt.
Source: De Villiers [30].

Figure 6.1: A schematic representation of the picking line with and without a conveyor belt in the
middle. In the picking system, the picking line on the left is on the ground floor and has a conveyor belt.
It closely resembles the detailed schematic representation of the picking line on the right. The picking
lines next to it do not have conveyor belts in the middle.

A schematic representation of a unidirectional cyclical picking line with m locations is shown in
Figure 6.1(b). A picking line consists of 60 to 76 locations on two pick faces with or without
a conveyor belt. Each location has the capacity to store up to five pallets of stock. Sufficient
stock can thus be placed on the line before a wave of picking starts. The location of each SKU
on the picking line is unique. The orders are deterministic as all store requirements per SKU
are known prior to the start of a picking wave. This implies that no replenishment of SKUs are
needed during a wave of picking.
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The cyclical layout of the picking line system with pickers guided by a voice recognition system
(VRS) is similar to a unidirectional carousel system. In a carousel system the operating picker
remains in a fixed location during the picking process, while the carousel moves the product
to the picker resulting in a parts-to-picker system. Usually small- to medium-sized products
are picked by an automated carousel system [73]. In the Retailer’s picking system SKUs are
stationary and multiple pickers move in a clockwise direction to the next SKU that needs to
be picked. All SKUs are at ground level and pickers sequentially process one order at a time
while walking around the conveyor belt in a clockwise direction, thus classifying this order
picking system as a single layer, single bin, unidirectional carousel according to Hassini [48].
Despite the similarities, the use of wave picking with all orders known and fixed a priori is the
major difference between this system and carousel systems studied in literature. Furthermore,
a unidirectional cyclical picking line can accommodate multiple pickers [78].

There are two fundamental approaches in manual order picking, namely single order picking
and batch picking. In batch picking one picker is responsible for the picking of multiple orders
simultaneously, while in single order picking the picker only picks one order at a time. In batch
picking, the overall picking time can be reduced since multiple orders are picked simultane-
ously [28]. In Figure 6.2(a) four orders indicated by the colours yellow, red, green and blue
are illustrated. Starting with picking the yellow order, followed by green, blue and red a picker
would have to pass 37 locations. Randomly forming an orange batch out of the yellow and red
order, and a purple batch out of the green and blue order, and starting the picking sequence
with the orange batch, leads to only 19 locations that have to be passed as displayed in Fig-
ure 6.2(b). This example illustrates that order batching may be an efficient way to minimise
walking distance and thus reduce order picking time. In this paper the number of orders that
can be batched is restricted to two, as a trolley can only accommodate two orders at a time
without having to sort orders after the batch picking process.

10 9 8 7 6

54321

(a) A schematic representation of single order
picking.

10 9 8 7 6

54321

(b) A schematic representation of batch
picking.

Figure 6.2: An example to compare walking distance in single order picking and batch picking.

Some picking lines have no conveyor belt in the middle as illustrated in Figure 6.1(a). Therefore,
it gives the option to either pick items in a unidirectional configuration (U) with the pickers
walking clockwise along the locations, or in a Z-shaped configuration (Z) that allows pickers to
cross from locations on the one pick face to the other. The objective of this paper is to determine
the configuration – either Z or U – in which a wave should be picked to minimise picking time.

A brief background on the two configurations is given in Section 6.2 characterising each con-
figuration and presenting walking distance minimisation approaches. Some theoretical results
are presented in Sections 6.3 and 6.4. The results are confirmed by a simulation of the picking
module to compare the U- to the Z-configuration in terms of total picking time in Section 6.5.
The numerical experiment in Section 6.6 incorporates the adapted batching metrics of the unidi-
rectional picking line. A potential indicator that helps to select the configuration is investigated.
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Finally, an outlook on future work concludes this chapter in Section 6.7.

6.2 Background

The choice between the two configurations (U versus Z) will be the focus of this chapter as
illustrated in Figure 6.3. Therefore, their main characteristics are pointed out and literature on
the minimisation of walking distance in each configuration is reviewed.

10 9 8 7 6

54321

(a) A picker walking in the U-
configuration.

10 9 8 7 6

54321

(b) A picker walking in the Z-
configuration.

Figure 6.3: A schematic representation of possible walking/picking paths of pickers in the U- and
Z-configurations.

In the U-configuration all pickers move in a clockwise direction along the locations as illustrated
in Figure 6.3(a). A trolley is pushed by each picker and the VRS guides the pickers to the closest
required SKU. Empty cartons are registered with the VRS before the picking process starts and
order packslip codes are attached to each carton. If no conveyor belt is available, full cartons or
cartons that contain completed orders are transported on the bottom shelf of the trolley to the
next drop off point either at the start or at the end of the picking line [76, 77].

The unidirectional cyclical picking line with a conveyor belt in the middle was first introduced
by Matthews and Visagie [78], who adapted methods from bidirectional carousels to sequence
orders with the objective to minimise the walking distance per picking wave. They suggested the
concept of a maximal cut to determine a solution within one cycle (the distance measurement in
the unidirectional cyclical picking line) of a lower bound to the problem. However, the Retailer
decided to implement the nearest end heuristic as an easy and fast option to sequence orders.
The nearest end heuristic chooses from any given starting position the order with the nearest
ending position next [76]. Both these methods can be applied to sequence the picking of order
batches, because a batch can simply be viewed as one large order from a modelling perspective.

If there is no conveyor belt in the middle of the picking line, the picking line can also operate
under a Z-configuration. In a Z-configuration, a picker alternates between the two pick faces
moving in one direction. If a required SKU on the same pick face is closer then the next SKU
on the opposite pick face, the picker stays on the same side. Otherwise, the picker crosses over
to the opposite pick face, as illustrated in Figure 6.3(b). At the end of the picking line, the
picker turns around to move in the opposite direction. The additional picking operations, such
as handling cartons, picking, and interacting with the VRS, remain the same in the Z- as in the
U-configuration. By taking the conveyor belt out, this new configuration is introduced to the
picking system.

Goetschalckx and Ratliff [40] introduced a Z-shaped configuration as a classical order picking
problem. In their study, a picker has to cross an aisle to reach the opposite pick face and walk
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to other aisles to pick all items. For this chapter, the structure of the module (the picking
line without the conveyor belt) is such that a picker can remain between the two pick faces
of the module and thus stays within one aisle. Picking in a Z-configuration is comparable to
the traversal picking policy of Goetschalckx and Ratliff [40] as the picker starts and finishes at
two different locations on the picking line. Therefore, this policy is used to determine picker
paths in the Z-configuration of this system. The nearest end heuristic suggested by Matthews
and Visagie [78] is adapted for the Z-configuration to sequence batches that reduce the overall
picking time. Goetschalckx and Ratliff [40] concluded that the density of the order and the
width of the aisle determine the walking distance. They showed that for most aisle widths in
practice, it is more efficient to pick from both pick faces rather than a single pick face at a time
if the order densities are below 0.5 [61]. Pick density might thus be used as an indicator to
determine when the Z-configuration outperforms the U-configuration.

Order batching was introduced to the unidirectional cyclical picking line by Hofmann and Vis-
agie [55, 56] as an efficient way to reduce walking distance. In their discrete event simulation
(DES) of the unidirectional cyclical picking line with conveyor belt, Hofmann and Visagie [59]
showed that the reduction of walking distance through order batching can be translated into
a reduction in picking time. The order batching metrics and the DES can be adapted for the
Z-configuration that is introduced in this paper.

The management of the Retailer may decide to either run in a Z-configuration, in which case a
picker can cross the aisle to different pick faces, or in a U-configuration (similar to the picking
line with the conveyor belt). The following question arises: Under which circumstances will
a Z-configuration outperform a U-configuration? Similar to the findings of Goetschalckx and
Ratliff [40] the pick density may be used as an indicator of when to switch from a Z- to a U-
configuration. Gue et al. [44] suggests that the pick density has a direct influence on congestion
in a warehouse layout with parallel narrow aisles. Furthermore, the pick density is significantly
influenced by the batching algorithm according to Hong [60].

The effect of order batching and the pick density on the U- and Z-configuration are investigated.
A worst case, an average case, and a real world simulation are used to determine the best
configuration for the Retailer’s picking system.

6.3 Worst case behaviour

In Figure 6.4 a picking sequence of three items (or SKUs) within an order is illustrated. It
is assumed that each order contains at least three or more picks (or stops). The number of
locations is indicated by m, the number of stops for this order by s, and the aisle width (the
distance between two pick faces) is denoted by t. A gap between two picks within an order are
the locations that are passed without stopping to pick. Therefore, a picker walks m

s locations
between picks. The pick density of an order is the number of stops for that order divided by the
number of locations on the picking line, in other words s

m .

The worst case scenario for the U-configuration arises when the largest gap within an order
is minimised as illustrated in Figure 6.4(a). This will happen when all the gaps are equal in
size – or when the stops are spread out as evenly as possible around the picking line. Such an
arrangement will result in the longest possible walking distance to pick all the SKUs in an order.
Considering one order at a time, the worst case for the U-configuration is to walk m

s locations
s− 1 times to pick an order.

The worst case scenario for the Z-configuration is when the items of an order are divided in half
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Figure 6.4: Comparison of worst case location distributions for the U- and Z-configuration.

and the two halves are spread out as equally as possible along the two pick faces. A picker thus
has to cross from one side of the aisle to the other after every pick. An example of this worst
case scenario is depicted in Figure 6.4(b). Considering one order at a time, the worst case in

the Z-configuration is to walk
√(

m
2s

)2
+ t2 locations s − 1 times to visit the s stops to pick an

order.

The worst case scenarios for both configurations are depicted in Figure 6.4. This setup results
in the U-configuration generating a shorter walking distance if

(s− 1)(
m

s
) <

[(m
2s

)2
+ t2

] 1
2

(s− 1) (6.1)

m2

s2
<
m2

4s2
+ t2 (6.2)

4m2

4s2
− m2

4s2
− t2 < 0 (6.3)

4s2t2 > 3m2 (6.4)

s2 >
3m2

4t2
(6.5)

s >

√
3

4

m

t
. (6.6)

Note that, because of the assumption that s ≥ 3, it follows that s 6= 1 and thus the division by
s − 1 in equation (6.1) is allowed. Also, because an order can only have a positive number of
picks the negative of the square root may be ignored in equation (6.6).

From the result in equation (6.6) it is clear that the number of stops s in an order must be
sufficiently large to prefer the U-configuration in terms of walking distance. This confirms the
idea that pick density is important in making a decision between U- and Z-configurations.

Table 6.1 depicts a small example with 30 to 120 locations m per picking line and aisle width t
ranging from 1 to 5 locations. For example, if the aisle width is two locations and the number
of locations on the picking line is 60, then the order has to have more than 26 stops for the U-
configuration to generate a shorter distance than the Z-configuration according to equation (6.6).
The last column shows at which pick density s

m the configuration on the picking line should
change from a Z- to a U-configuration to obtain a shorter walking distance in the worst case
scenario.
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Number of locations in the picking line Critical density

t 30 40 50 60 70 80 90 100 110 120 s
m

1 26 35 43 52 61 69 78 87 95 104 0.87
2 13 17 22 26 30 35 39 43 48 52 0.43
3 9 12 14 17 20 23 26 29 32 35 0.29
4 6 9 11 13 15 17 19 22 24 26 0.22
5 5 7 9 10 12 14 16 17 19 21 0.17

Table 6.1: A summary of the worst case scenario for both the U- and Z-configuration. The body of
the table contains the number of stops, s, needed to prefer the U-configuration above the Z-configuration
when using equation (6.6). These values range from 30 − 120 locations in the picking line and an aisle
width, t, ranging between 1 and 5 locations. The critical density column provides the pick density
(expressed as a fraction) at which the U-configuration will result in a shorter walking distance than the
Z-configuration for each aisle width.

In the real world application most picking line set ups hold space for around 70 locations. The
aisle width is approximately three locations. In a practical application, the Z-configuration is
thus preferred at a pick density s

m that is below 0.29 in the worst case scenario.

In the best case scenario the U-configuration always outperforms the Z-configuration, since there
are no empty locations between the stops of an order in this scenario. In other words, for this
scenario, crossing the aisle at any point would increase the walking distance since SKUs can
simply be picked sequentially along the line.

6.4 Average case behaviour

In an average case, one order is simulated by randomly arranging SKUs (or stops) into locations
on the picking line. The shortest walking distance for this random arrangement for both con-
figurations is then calculated and compared. The average case simulation (AC) is described in
Algorithm 10 with α simulation replications.

Algorithm 10: Average case simulation (AC)

Input: A number of SKUs s, a number of locations m, a aisle width t, α simulation replications
Output: The average difference in walking distance between the configurations for every number of SKUs

1: for k in s do
2: for j in α do
3: Randomly arrange k on m
4: Calculate walking distance in U-configuration
5: Calculate walking distance in Z-configuration
6: Subtract walking distance in U-configuration from walking distance in Z-configuration and add it to

the total difference
7: end for
8: Divide total difference in walking distance by α and add it to the output list
9: end for

10: Return a list containing the average difference in walking distance between the U- and Z-configuration for
each k

In Table 6.2, the aisle width t ranges from 1 to 5 locations, while the number of locations per
picking line m ranges from 30 to 120 locations. If the aisle width is four locations and the
number of locations on the picking line is 80 for example, then walking in the Z-configuration is
shorter, because it produces a shorter walking distance until up to 13 stops, s. The last column
of Table 6.2 shows the pick densities for the average case simulation. These values can be used
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to determine when one should switch from a Z-configuration to a U-configuration.

Number of locations in the picking line Critical density

t 30 40 50 60 70 80 90 100 110 120 s
m

1 18 25 31 38 44 51 58 64 71 77 0.63
2 9 13 17 21 25 28 32 36 40 44 0.34
3 7 8 11 13 16 19 21 24 27 30 0.22
4 4 5 7 10 12 13 16 18 20 22 0.16
5 3 4 6 7 9 10 12 14 15 17 0.12

Table 6.2: A summary of the average case scenario for both the U- and Z-configurations. The body of the
table contains the number of stops, s, needed to prefer the U-configuration above the Z-configuration when
using Algorithm 10 with α = 1 000 simulation replications. These values range from 30 − 120 locations
in the picking line and an aisle width, t, ranging between 1 and 5 locations. The critical density column
provides the pick density (expressed as a fraction) at which the U-configuration will result in a shorter
walking distance than the Z-configuration for each aisle width.

In real life most picking lines can accommodate around 70 locations with an aisle width slightly
narrower than three locations. The Z-configuration outperforms the U-configuration until a
pick density of approximately 0.22 in the average case simulation. This density is marginally
lower than in the worst case scenario where only one order is processed. However, a real world
application will consist out of more than one order and the locations of the items of an order
will be predefined. Therefore, a simulation of the real world application will be used to compare
the walking time of both configurations.

6.5 Real world simulation

A DES suggested by Hofmann and Visagie [59] measures the picking time on a unidirectional
cyclical picking line with a conveyor belt. This DES is modified to measure picking time in the
U-configuration without a conveyor belt and the Z-configuration to compare the total completion
times of the two configurations. The module in the Retailer’s DC describes the environment
in which the simulation takes place and is depicted in Figure 6.5. On each side, unique SKUs
are placed at the picking line’s locations. Pickers walk according to the configuration along the
picking line pushing a trolley with the capacity of two orders. Locations can be either unoccupied
or occupied when a picker stops to request SKUs. Each picker carries out the three activities
of walking to a SKU, picking a SKU, and handling the carton into which the SKU gets placed.
Therefore, each picker’s attributes are the speed at which these activities are carried out.

Figure 6.5: Picking line in the module of the Retailer’s DC.

The assumptions that align the simulation with the real life set up of the Retailer’s picking
module are the same as for the picking line with a conveyor belt described by Hofmann and
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Visagie [59]. Firstly, pickers complete an order (or batch) before they start a new one. Secondly,
the times for picking and handling are independent of SKU and location. Thirdly, it is assumed
that there are no variations between pickers concerning the proportion of time spent per activity.

In Figure 6.6 the logic of the simulation is illustrated in a flow chart. Multiple pickers operate in
the picking system. If a new order is started the picker prepares a carton (handling of the box)
and walks to the location of the first SKU of the order according to the U- or Z-configuration.
The logic of the pick path is the main difference between the two configurations. If a location
is occupied, the picker has to wait for the person preceding her to move on to the next location
before performing her pick. If the location is unoccupied, the picker picks the SKU required
from that location. If the current carton is full, or the requested SKU is the last SKU of the
order, the carton is placed on the conveyor belt in the U-configuration (with conveyor belt). In
the Z-configuration, the carton gets packed and stored at the bottom of the trolley until it can
be dropped off at the start or end of the picking line. Until the picking wave is completed this
process is repeated.

first
order

new
order

handle
a box

walk to
next location
according to
configuration

location
occupied?

wait

pick
a SKU

box full?

last SKU?

last SKU?
handle
a box

no

yes yes yes yes

no

no

no last
order

Picker

Picking system

Figure 6.6: A schematic representation of the logical flow chart of the simulation model in the Retailer’s
module. The pick path logic in the walking activity depends on the configuration.

For the implementation of the simulation Python 3.6 [94] utilising the C-based libraries Numpy [89]
and Pandas [93] was used. The simulation was run on a Dell Optiplex 5050 with a Intel Core
i7-7700 CPU at 3.6 GHz, 1x8GB 2400MHz DDR4 RAM, a 2.5” 256GB SSD class 20 drive, and
the Microsoft Windows 10 Enterprise 2016 LTSB operating system [84]. The statistical analysis
of the input and simulated output data was carried out in R [95].

6.5.1 Input data capturing

In the DES the picker entity has three different activities, namely (1) walking from one picking lo-
cation to the next, which might include crossing from one side to the other in the Z-configuration,
(2) picking and (3) handling which consists of preparing and packing a carton. The picking pro-
cess in the module of the DC was analysed to calculate walking velocities, the picking time
distributions, and handling time distributions.

Table 6.3(a) shows the proportion of time spent on each task for the U-configuration as it per-
tains to the picking module. For the U-configuration, picker tasks include: walking, picking, and
handling. Table 6.3(b) shows the proportion of time spent on each task for the Z-configuration.
For this configuration crossing the aisle is included as a task. Here, the combination of walking
and crossing accounts for about 33.98% of the total time spent on tasks. While the time spent
on handling is almost the same between the two configurations, the walking time proportion
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is higher in the Z-configuration as it includes the manoeuvring of the trolley during the cross-
ing activity. Combining the extracted proportions with time stamp data from the Retailer’s
warehouse management system, the walking, picking and handling times could be calculated.

Walking 28.55%
Picking 51.18%
Handling 20.27%

(a) Time proportion
per activity in the
U-configuration.

Walking 21.86%
Crossing 12.11%
Picking 43.78%
Handling 22.25%

(b) Time proportion
per activity in the
Z-configuration.

Table 6.3: The proportion of time spent by the pickers per activity in the U- and Z-configuration.

In calculating the average walking velocity, picking, and handling times, a minimum of 10 cy-
cles or orders without excessive time delays (breaks for example) were considered. Over these
10 cycles or orders the number of passed locations, picks, and handled boxes can be determined.

The time stamp data for a picker completing at least 10 cycles in the U-configuration is shown
in Table 6.4. If the starting point of the first order (additional 1 location) and the final location
of the last order (additional 32 locations) are included and the picking line has 64 locations,
this picker has to pass 673 locations. The picker prepared and packed 30 cartons and picked
468 times. The picker spent a total of 3 215 seconds on the picking process in the U-configuration.
The average rates per activity can be determined from this. The picker passed 673 locations in
918 seconds. This yields a walking velocity of 1.3639 seconds per location. The picking time
and handling time was calculated as 3.5156 seconds per pick, and 21.7266 seconds per carton
respectively.

Proportion Total time Events Average rates

Walking 28.55% 918 673 locations 1.3639 s/location
Picking 51.18% 1 645 468 picks 3.5156 s/pick

Handling 20.27% 652 30 cartons 21.7266 s/carton

Table 6.4: An example of the table to calculate walking velocity, picking and packing times for a specific
picker in the U-configuration. Time is measured in (s).

In Table 6.5 an example of a picker completing 10 orders in the Z-configuration is shown, since
no cycles are completed. This picker passes 396 locations and crosses between the locations
97 times to collect the items of the 10 orders. Thereby, the picker picks 379 times and handles
43 cartons. A total of 3 519 seconds is spent on picking the 10 orders. Therefore, the average
walking velocity is 1.9427 seconds per location with an average rate of crossing velocity of
4.3949 seconds per crossing. Picking time is on average 3.5156 seconds per pick, and handling a
carton can be achieved in 18.2066 seconds per carton in this example.

Proportion Total time Events Average rates

Walking 21.86% 769 396 locations 1.9427 s/location
Crossing 12.11% 426 97 crossings 4.3949 s/crossing
Picking 43.78% 1 541 379 picks 3.5156 s/pick

Handling 22.25% 783 43 cartons 18.2066 s/carton

Table 6.5: An example of the table to calculate walking velocity, picking and packing times for a specific
picker in the Z-configuration. Time is measured in (s).
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The triangular distributions of the average walking (and crossing) velocities, and the average
handling and picking times for any specific picker are used as input for the simulation. The
lower limit is defined by the smallest value over all pickers and the upper limit is determined by
the largest value over all pickers [59].

The pick density measure dm as defined by Hofmann and Visagie [59] shows how often a picker
has to stop per distance travelled. It plays an important role in the simulation as it influences
the total completion time of a picking wave. Matthews and Visagie [78] proposed the SKU with
the greatest number of store requirements as a lower bound for the number of picking cycles that
are traversed. This SKU is called the maximal SKU. Therefore, the pick density measure dm
takes the number of all stops in a picking wave and divides it by an estimate of walking distance
defined by the maximal SKU multiplied by the number of locations on the picking line. This
density measure ranges from 0 to 1. A value closer to 1 indicates a higher pick density, while a
value closer to 0 indicates a lower pick density.

Lower Central Upper

Walking 1.2548 1.5470 1.9626
Picking 3.5022 4.5775 6.0200

Handling 21.2922 24.4368 32.5645

(a) Triangular distributions with low pick
density in the U-configuration.

Lower Central Upper

Walking 1.1548 1.5701 1.9626
Picking 3.5022 4.4525 5.1556

Handling 18.9453 23.7504 32.5645

(b) Triangular distributions with high pick
density in the U-configuration.

Lower Central Upper

Walking 1.4559 1.8211 2.3319
Crossing 3.1448 4.7523 7.9214
Picking 3.2627 4.1459 5.6186

Handling 13.9286 21.2867 27.9213

(c) Triangular distributions with low pick
density in the Z-configuration.

Lower Central Upper

Walking 1.4559 1.9069 2.5069
Crossing 3.1448 4.5023 5.9214
Picking 3.7984 4.6244 5.6186

Handling 13.9286 21.2867 31.9213

(d) Triangular distributions with high pick
density in the Z-configuration.

Table 6.6: Triangular distributions for picking lines with different configurations and different pick
densities dm.

There are different distributions for a high and low density picking line, since generally pickers
walk faster when the pick density is low since they gain more speed walking towards the next
SKU without stopping often. The distributions of each configuration for low pick densities
are illustrated in Table 6.6(a) and Table 6.6(c), while the distributions for high pick densities
are shown in Table 6.6(b) and Table 6.6(d). Hofmann and Visagie [59] showed that the pick
density dm influences picker speed.

An exponential distribution can be applied to both the picking and handling times. The goodness
of fit (GOF) of these distributions were measured by the Kolmogorov-Smirnov test [101] and the
Anderson-Darling test [26]. The results are shown in Tables 6.7 and 6.8 for both configurations.
The test statistics were not rejected at a 99% confidence level.

6.5.2 Verification and validation of output data

The verification and validation (VV) of a simulation ensures that it accurately represents the
real world system [100]. Hofmann and Visagie [59] verified and validated the DES model for a
unidirectional cyclical picking system with a conveyor belt through conceptual model validation,
data validation (statistical testing of input data), white-box, and black-box validation. Whether
a conveyor belt is part of the picking line set up or not does not change the main activities of
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Exponential distribution: λ = 0.251755
Kolmogorov-Smirnov

Size 2 690
Statistic 0.0162
P-value 0.4798
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.021 0.024 0.026 0.029 0.031
Reject? no no no no no

Anderson-Darling
Size 2 690
Statistic 0.5328
P-value 0.7136
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.816 1.162 1.321 1.591 1.959
Reject? no no no no no

(a) GOF for the picking distribution.

Exponential distribution: λ = 0.179220
Kolmogorov-Smirnov

Size 809
Statistic 0.0217
P-value 0.8401
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.038 0.043 0.048 0.053 0.057
Reject? no no no no no

Anderson-Darling
Size 809
Statistic 0.3639
P-value 0.8836
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.816 1.162 1.321 1.591 1.959
Reject? no no no no no

(b) GOF for the handling distribution.

Table 6.7: Goodness of fit test for picking and handling distributions in the U-configuration.

Exponential distribution: λ = 0.243666
Kolmogorov-Smirnov

Size 2 241
Statistic 0.0142
P-value 0.7555
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.023 0.026 0.029 0.032 0.034
Reject? no no no no no

Anderson-Darling
Size 2 241
Statistic 0.6826
P-value 0.5736
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.816 1.162 1.321 1.591 1.959
Reject? no no no no no

(a) GOF for the picking distribution.

Exponential distribution: λ = 0.171663
Kolmogorov-Smirnov

Size 773
Statistic 0.0337
P-value 0.3429
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.038 0.044 0.049 0.055 0.059
Reject? no no no no no

Anderson-Darling
Size 773
Statistic 0.7004
P-value 0.5585
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.816 1.162 1.321 1.591 1.959
Reject? no no no no no

(b) GOF for the handling distribution.

Table 6.8: Goodness of fit test for picking and handling distributions in the Z-configuration.

walking, picking, and handling on the picking line. Therefore, the VV carried out by Hofmann
and Visagie [59] also confirms the interactions of the DES in the U-configuration without con-
veyor belt. A black-box validation is carried out for the U- and Z-configuration separately, since
it includes the comparison of model output and real life data.

The conceptual model validation for the Z-configuration confirms that the DES is sufficiently
detailed since it includes all relevant picker activities (walking, picking, handling, and cross-
ing) [96]. The management of the Retailer confirms that the level of detail of the simulation
is adequate. The input data has been statistically tested and thus validated during the cap-
turing in Section 6.5.1. The consistency between the conceptual model and the DES for the
Z-configuration is ensured by model verification [96]. The white-box validation of the DES [96]
for the Z-configuration has checked whether a picker walks, crosses, picks and handles at the
correct times and in the right sequence. A single picker was modelled and the picker’s activities
were tested to perform this validation. Additionally, the picker behaviour when encountering
another picker was assessed for correctness.

The number of simulation replication influences the accuracy of the model in the black box
validation of both configurations. Hofmann and Visagie [59] determined that 10 replications are

Stellenbosch University https://scholar.sun.ac.za



6.5. Real world simulation 103

adequate. This is confirmed for both configurations. The Retailer selected 10 sample picking
waves of each configuration as representatives. These samples are compared against simulation
outputs.

For the U-configuration the comparison between the historical and simulated completion times is
illustrated in Table 6.9. The simulation times seem to be accurate since the calculated differences
are normally distributed with a mean that is close to zero. The standard deviation indicates
the spread of values that is close to the mean. The mean of 10 replications falls between the
95% confidence intervals for each picking wave as illustrated in Table 6.9(a). The Kolmogorov-
Smirnov test [101] and Anderson-Darling test [26] are used to measure the GOF of the normal
distribution that was fitted to the differences in total completion times. In Table 6.9(b) the
example of picking wave 3519 shows that the test statistic was not rejected for a 99% confidence
level. All picking wave outputs for the U-configuration have been confirmed in this manner.

Wave
ID

Mean
errors

Standard
deviation
of errors

Confidence
intervals

3519 12.67 115.19 [−59, 84]
3357 46.05 174.33 [−62, 154]
3378 71.51 134.23 [−12, 154]
3600 87.03 144.54 [−3, 176]
3662 −7.35 101.83 [−71, 56]
3554 7.28 101.83 [−73, 88]
3520 −50.12 144.41 [−138, 39]
3317 −30.74 85.90 [−84, 22]
3516 −27.44 103.09 [−91, 36]
3369 −70.07 144.21 [−160, 19]

(a) Confidence intervals for the time differences.
Time in (s).

Normal distribution: µ = −107.33, σ = 115.19
Kolmogorov-Smirnov

Size 10
Statistic 0.1994
P-value 0.7520
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.323 0.369 0.409 0.457 0.489
Reject? no no no no no

Anderson-Darling
Size 10
Statistic 0.2238
P-value 0.7590
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.509 0.631 0.752 0.873 1.035
Reject? no no no no no

(b) GOF for the time differences on picking wave 3519.

Table 6.9: Differences in total completion times between historical data and simulation data for 10 sam-
ple picking waves in the U-configuration.

The comparison of the historical and simulated completion times for the Z-configuration is shown
in Table 6.10. Differences are normally distributed with a mean close to zero, indicating that
simulation times are accurate. The standard deviation shows that values are spread out close
to the mean. Additionally, for each picking wave the mean of 10 replications falls between
the 95% confidence intervals as depicted in Table 6.10(a). In Table 6.10(b) the example of
picking wave 3660 shows that the test statistic was not rejected for a 99% confidence level in
the Kolmogorov-Smirnov [101] and Anderson-Darling [26] GOF test of the normal distribution
that was fitted to the differences. All picking wave outputs for the Z-configuration have been
confirmed in this manner.

A marginal analysis compares the time lost to congestion to the time gained in overall completion
time of a picking wave with an increase in pickers, as introduced to the unidirectional cyclical
picking system by Hofmann and Visagie [59]. It shows that 8 or less pickers is a good number
for both configurations.

The verification and validation of the simulation shows that the model represents the real world
application to a satisfactory degree. To simulate reality, the DES (with the picker number
set to 8, and picker attributes as discussed above) will be used to compare the picking wave
completion times of the different configurations including order batching. It will be tested if the
pick density dm can indicate which configuration leads to faster completion times.
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Wave
ID

Mean
errors

Standard
deviation
of errors

Confidence
intervals

3660 14.00 174.09 [−94, 122]
3410 38.20 185.44 [−77, 153]
3141 −20.07 154.92 [−116, 76]
3569 −54.01 156.83 [−101, 7]
3281 61.26 106.27 [−33, 189]
3735 27.79 128.80 [−52, 108]
3597 −6.43 93.03 [−64, 51]
3441 38.41 146.41 [−14, 91]
3709 −76.33 149.22 [−169, 16]
3348 10.54 46.41 [−18, 39]

(a) Confidence intervals for the time differences.
Time in (s).

Normal distribution: µ = 14.004, σ = 174.09
Kolmogorov-Smirnov

Size 10
Statistic 0.2348
P-value 0.5632
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.323 0.369 0.409 0.457 0.489
Reject? no no no no no

Anderson-Darling
Size 10
Statistic 0.2116
P-value 0.8006
Alpha 0.2 0.1 0.05 0.02 0.01
C-value 0.509 0.631 0.752 0.873 1.035
Reject? no no no no no

(b) GOF for the time differences on picking wave 3660.

Table 6.10: Differences in total completion times between historical data and simulation data for
10 sample picking waves in the Z-configuration.

6.6 Simulation results

The real world simulation is applied to investigate the influence of the picking system configura-
tion on the total completion time of a picking wave. Order batching has been shown to reduce
picking time significantly and will be introduced through adapted batching metrics and tested
on both configurations. Furthermore, it will be investigated whether the pick density measure
can be used as an indicator to choose one of the configurations.

6.6.1 Input datasets

The total simulated completion time per picking wave was determined for 10 historical picking
waves with U-configuration and 10 waves with Z-configuration to compare the two configurations
in a simulation with real world input data. Therefore, the average total completion times of
10 replications of each experiment are compared. For each configuration, the Retailer selected
sample picking waves that are representative. The Retailer applies the rule of thumb that if a
picker has to stop at less than a third of the locations the Z-configuration is used.

The information on the U-configuration waves is depicted in Table 6.11(a), while the waves of
the Z-configuration are illustrated in Table 6.11(b). Each picking wave depicts information on
the number of orders, the number of locations, the number of picks and the number of cartons
as these factors influence the overall picking time [59]. A large dataset contains more than
1 580 orders. This is followed by a medium dataset that contains between 1 551− 1 580 orders.
Finally a small dataset contains less than 1 551 orders.

6.6.2 Simulation output

Different batching metrics were developed by Hofmann and Visagie [55, 56] to reduce picking
time on a unidirectional cyclical picking line [59]. They are used here to investigate their effect
on the choice of configuration through a minimisation of picking time and the pick density
measure dm.

The batching metrics that are applied to these sample picking waves are a first-in-first-out
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Wave ID Orders Locations Picks Cartons

Large data set
3519 1 783 76 27 177 2 138
3357 1 716 64 15 434 2 017
3378 1 716 76 15 506 2 186
3600 1 672 76 16 082 2 143
3662 1 654 64 18 284 2 275

Medium data set
3554 1 566 64 31 418 2 030
3520 1 561 76 34 065 1 864
3317 1 558 64 15 152 2 878

Small data set
3516 1 550 64 10 343 1 706
3369 1 472 76 5 052 1 580

(a) Sample picking waves in the U-configuration.

Wave ID Orders Locations Picks Cartons

Large data set
3660 1 801 72 22 838 2 709
3410 1 730 60 20 958 1 859
3141 1 725 72 15 806 2 556
3569 1 595 72 16 575 1 899
3281 1 583 72 34 587 1 821

Medium data set
3735 1 566 60 28 998 1 689
3597 1 563 60 46 164 1 761
3441 1 561 60 24 978 2 915

Small data set
3709 1 432 72 8 577 1 631
3348 687 60 1 178 690

(b) Sample picking waves in the Z-configuration.

Table 6.11: Historical data for 10 sample picking waves in the U- and Z-configuration.

(FIFO) random approach as a benchmark, the stops ratio batching metric in combination with
a greedy random heuristic (R-GR), and the stops non-identical spans metric combined with a
greedy smallest entry heuristic (Z-GS). These metrics have shown to reduce the total completion
time in this order picking system using a U-configuration [59]. The picking times without order
batching are included for comparison.

The stops ratio metric (R-GR) divides the number of stops that are not similar between two
orders by the number of stops that the two orders have in common [55]. This metric can be
applied to both the U- and Z-configuration. In a unidirectional cyclical picking line the span of
an order is the distance that has to be covered for the collection of all items of that order. The
minimum span is determined by finding the biggest gap between any two SKUs of an order.
The end of the biggest gap is the start of the minimum span [78]. Even though there is no
unidirectional cycle in the Z-configuration, this logic can be adapted to finding a minimum path
in the Z-configuration. Therefore, the stops non-identical spans metric (Z-GS), as suggested by
Hofmann and Visagie [56], adds the minimum span or path to the number of stops that are not
shared between two orders.

In Table 6.12, which presents picking waves that were run in U-configuration historically, the
shortest simulated total completion time is achieved in eight of the 10 picking waves by applying
the stops non-identical spans metric to the picking waves. The U-configuration produces shorter
total completion times than the Z-configuration in picking waves 3554 and 3520 only. Addition-
ally, picking waves 3554 and 3520 are the only waves that have a pick density measure dm above
0.4. Generally it seems that the higher the pick density the greater the time saving will be when
switching to a U-configuration. The random batching of orders (FIFO) could not outperform
the other two batching metrics. The average time saving of applying order batching to the
10 sample picking lines of the best performing configuration is 43.60%.

In Table 6.13, which presents picking waves that were run in Z-configuration historically, the
stops non-identical spans batching metric also provides the shortest total completion times in
eight out of the 10 picking waves. The stops ratio batching metric also seems to work well
in combination with the Z-configuration. Even though picking waves 3660, 3410, 3141, 3569,
3709 and 3348 produce the shortest picking time in the Z-configuration, the other four picking
waves perform faster in a U-configuration. The pick density measure dm in these cases is above
0.4. The higher the pick density the more often the picker is forced to cross the aisle in the
Z-configuration, and this increases the overall picking time. The developed batching metrics all
outperform the random batching approach. In comparison to not introducing order batching,
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Wave ID No batch Random (FIFO) Stops ratio (R-GR) Stops non-identical spans (Z-GS)

Density dm U Switch to Z Density dm U Switch to Z

3519 41 716 29 263 0.330 29 021 25 760 0.327 28 967 25 964

3357 30 264 20 079 0.208 19 526 17 096 0.218 19 471 17 093

3378 33 482 21 899 0.183 21 337 16 567 0.188 21 286 16 560

3600 32 162 21 199 0.380 20 837 16 094 0.366 20 591 16 143

3662 31 893 20 907 0.232 20 859 19 871 0.240 20 824 19 802

3554 37 633 28 264 0.427 28 226 29 164 0.466 28 222 29 214

3520 40 868 29 898 0.466 28 458 29 942 0.478 28 430 29 973

3317 28 721 18 906 0.253 18 704 16 664 0.263 18 606 16 639

3516 22 012 14 925 0.298 14 013 11 228 0.302 13 767 11 098

3369 19 916 13 047 0.100 10 778 6 471 0.102 10 680 6 238

Table 6.12: Comparison of different batching metrics in the U-configuration. Picking time per batching
metric is measured in (s). Density is the number of stops per distance measured in the number of
locations.

on average 25.23% saving in total completion time can be achieved by applying the batching
metrics in the best performing configuration.

Wave ID No batch Random (FIFO) Stops ratio (R-GR) Stops non-identical spans (Z-GS)

Density dm Z Switch to U Density dm Z Switch to U

3660 28 804 23 971 0.236 22 031 26 918 0.241 22 029 26 818

3410 29 386 23 889 0.336 22 005 22 820 0.342 21 910 22 752

3141 22 016 17 744 0.187 16 144 21 614 0.169 16 173 21 616

3569 23 703 18 907 0.198 17 236 21 934 0.193 17 276 21 942

3281 44 896 38 243 0.389 34 697 32 541 0.403 35 183 32 454

3735 28 993 24 688 0.611 25 141 25 060 0.639 22 981 22 977

3597 41 635 35 808 0.672 33 872 33 728 0.676 33 450 33 389

3441 32 102 26 749 0.503 24 657 24 364 0.509 24 580 24 294

3709 13 969 12 005 0.257 10 440 14 228 0.276 10 271 13 990

3348 2 117 2 108 0.123 1 485 2 145 0.130 1 470 2 132

Table 6.13: Comparison of different batching metrics in the Z-configuration. Picking time per batching
metric is measured in (s). Density is the number of stops per distance measured in the number of
locations.

Additionally, introducing order batching to the picking system increases the pick density mea-
sure dm as distance decreases. Table 6.14 compares 10 sample picking lines. Single orders are
picked first, then batches of two are formed through the stops ratio metric and then batches of
four are generated using the same approach. Without batching, a pick density measure dm that
exceeds approximately 0.4 produces the shortest picking time in the U-configuration. Forming
batches of two orders generates shorter completion times in the U-configuration with a dm above
0.43. Moreover, a dm exceeding 0.45 produces the shortest picking times in the U-configuration
for batches containing four orders. These results indicate that order batching increases pick
density and thereby favours the U-configuration.

The configuration seems to influence the completion time of the picking waves. The pick density
may help to determine which configuration to choose. This will be further investigated in the
following statistical analysis.

6.6.3 Pick density and configuration selection

A regression analysis was performed to evaluate the total completion time difference between
the U- and Z-configuration on the dataset in which both batching metrics were switched to
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Wave ID Orders No batch Batch of 2 Batch of 4

Density dm Time Z Time U Density dm Time Z Time U Density dm Time Z Time U

4759 1 807 0.160 32 694 38 591 0.209 21 147 25 274 0.288 14 972 15 148

4772 1 573 0.275 31 485 37 011 0.337 22 562 26 083 0.372 15 889 16 325

4798 1 815 0.174 30 476 35 022 0.214 21 197 24 166 0.278 13 328 14 066

4905 1 647 0.273 32 725 37 257 0.388 23 312 25 694 0.448 16 959 16 632

4784 1 792 0.391 35 908 38 205 0.527 28 194 28 187 0.620 20 215 19 062

4850 1 573 0.423 36 763 35 710 0.496 27 750 26 046 0.505 18 878 16 535

4774 1 576 0.396 29 186 32 326 0.427 22 755 22 506 0.446 13 819 13 120

4825 1 575 0.485 60 265 49 656 0.526 45 240 39 555 0.581 24 772 21 114

4902 1 655 0.416 35 167 34 729 0.474 25 603 24 828 0.460 17 902 15 452

5010 1 573 0.410 47 774 43 415 0.510 34 346 31 848 0.460 21 588 18 724

Table 6.14: Comparison between no order batching, batches of two and batches of four in both config-
urations. Time is measured in (s).

the other configuration. The p-value of the dummy variable for the Z-configuration is signifi-
cant, suggesting that there is a statistical evidence of a difference in average completion time
between configurations. This is displayed in Table 6.15. The average completion time in the
U-configuration is estimated to be 28 306 seconds, whereas the average completion time in
the Z-configuration is estimated to be 15 596 seconds. An adjusted R2 of 0.49 indicates that
49% of the total completion time difference can be explained by the configuration. Therefore,
if the introduced Z-configuration generates the lowest total completion time, it is on average
12 710 seconds less.

Coefficients Estimate Std. error t-value p-value

Intercept 28 306 2 420 11.697 7.61× 10−10**
Configuration −12 710 2 892 −4.394 0.00035**

Residual standard error: 5 928 on 18 degrees of freedom
Adjusted R2: 0.49
F -statistic: 19.31

Note: Two asterisks indicate significance at the 5% level or below.

Table 6.15: Regression model summary on the difference in average total completion time between the
configurations.

To investigate if the pick density measure dm can be used as an indicator to choose a configura-
tion, the correlation between the pick density measure dm and the configuration that generates
the smallest picking time throughout all order batching metrics is evaluated. It results in a
Pearson correlation coefficient [101] of 0.77 showing a strong correlation between dm and com-
pletion time, thus indicating that dm can be used as an indicator to support the configuration
selection.

Figure 6.7 contains the total simulated completion times (for batched orders) plotted against
the pick density measure dm for both configurations. Between a density of 0 and 0.22 the Z-
configuration seems to generate the shortest total completion times. Below a density of 0.22
the Z-configuration also outperforms the U-configuration in the average scenario presented in
Section 6.4. The average completion time in the U-configuration is 16 145 seconds, while the
average completion time in the Z-configuration is 11 736 seconds for the picking lines with a
density less than 0.22. There is no clear indication whether to choose the Z- or U-configuration
for densities between 0.22 and 0.38. For the U-configuration the average completion time is
19 551 seconds and for the Z-configuration it is 19 110 seconds. At a density of 0.38 the two
fitted regression lines cross as depicted in Figure 6.7. Therefore, at a density above 0.38 the U-
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Figure 6.7: The completion times plotted against an increasing pick density measure together with the
fitted regression lines for both configurations.

configuration seems to consistently outperform the Z-configuration. In this interval, the average
completion time in the U-configuration is 27 949 seconds, while the average completion time in
the Z-configuration is 30 120 seconds.
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Figure 6.8: The completion time difference between the Z- and U-configuration plotted against an
increasing pick density measure. As pick density increases the Z- becomes the U-configuration, thus the
difference tends to zero as density increases.

These observations are confirmed by the difference in completion time depicted in Figure 6.8 in
which the total completion time for the U-configuration is subtracted from the Z-configuration.
The higher the pick density, the more positive value points are generated as the U-configuration
outperforms the Z-configuration.

Regression analyses were performed between the completion time for both the U-configuration
and Z-configuration including batching versus the pick density measure dm. A summary of the
results from the regression models is depicted in Tables 6.16 and 6.17. According to the adjusted
R2, 43.81% of the total completion times in the U-configuration can be explained by dm, while
59.94% of the total completion times in the Z-configuration can be explained by the pick density
measure.
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Coefficients Estimate Std. error t-value p-value

Intercept 11 358 1 789 6.347 7.37× 10−8**
Pick density dm 31 530 5 036 6.261 1× 10−7**

Residual standard error: 5 332 on 48 degrees of freedom
Adjusted R2: 0.4381
F -statistic: 39.2

Note: Two asterisks indicate significance at the 5% level or below.

Table 6.16: Regression model summary on the density dm and the U-configuration.

Coefficients Estimate Std. error t-value p-value

Intercept 5 618 1 910 2.942 0.00501**
Pick density dm 46 338 5 375 8.621 2.58× 10−11**

Residual standard error: 5 691 on 48 degrees of freedom
Adjusted R2: 0.5994
F -statistic: 74.33

Note: Two asterisks indicate significance at the 5% level or below.

Table 6.17: Regression model summary on the density dm and the Z-configuration.

6.7 Conclusion

All three approaches, namely the worst case, the average case, and the DES, predicted the same
ball park in which to switch from a Z- to a U-configuration. In the DES each configuration
was combined with adapted batching metrics that have been developed for the unidirectional
cyclical picking line to reduce walking distance and thus save picking time. The pick density
measure suggested to choose the Z-configuration if dm is lower than 0.22 and to choose the
U-configuration if dm is higher than 0.38. In between these densities, the choice of configuration
is not clear.

No conveyor belt can lead to more congestion since more workers are crossing the aisle. In
the Z-configuration the cartons are dropped off at different points in the layout and collection
by external workers may cause additional obstacles to the process flow. It seems that the
more the pick density measure increases, the more beneficial the U-configuration becomes. The
question then becomes: should both systems be used, or would it be more beneficial to optimise
assignments and arrangements on the picking line to favour a particular configuration?

The importance of the pick density measure was emphasised in this chapter. Future work should
focus on increasing pick density. The question of which SKUs to assign to which picking lines
and how to arrange these SKUs on the picking line to increase pick density should be answered.
This might help to choose a configuration before orders (or batches) are sequenced. Order
batching seems to increase pick density and thereby shorten the total picking time to complete
a picking wave.

6.8 Chapter summary

In this chapter, the structural setup of the picking module in the Retailer’s picking system was
investigated. Pickers can either walk in the existing U-configuration, that is clockwise around
the conveyor belt, or in a Z-configuration, that allows for crossing between the two sides of the
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picking line, since there is no conveyor belt between the two pick faces.

A worst case model which explores the worst distribution of items for each configuration, an
average case simulation with the items of an order randomly spread out in each configuration,
and a DES for the existing U- and introduced Z-configuration were investigated. The DES,
incorporating real world picking wave samples, showed that the pick density measure dm can be
used as an indicator to decide when the Z-configuration will outperform the U-configuration.

The next chapter attempts to optimise the Retailer’s order picking system holistically including
order batching as an additional layer in the decision making process.
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The picking system with unidirectional cyclical picking lines gives rise to four optimisation
problems or decision tiers that must be solved. All four decision tiers together constitute a
picking wave. Therefore, the implementation of order batching to all four tiers is investigated.
When to introduce order batching to the four decision tiers has to be determined, since orders
are not finalised yet at the beginning of the optimisation process. The effect of increasing pick
density to minimise walking distance and thereby reduce picking time is analysed.

7.1 Problem background

The prominent South African retailer, referred to as the Retailer, that is considered here serves
approximately 2 000 stores in Southern Africa on a daily basis. These stores mainly sell apparel
to the lower income part of the South African population. Serving such a large number of stores
has led to the evolution of a unique picking system. An order picking system transforms bulk
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supply into customer orders and is thus the main activity in a company’s distribution centre
(DC). This activity accounts for 50% to 65% of the operational cost of a DC [29, 113].

The Retailer’s 2 000 stores generate a large number of non-uniform orders to reach a market
with varying customer profiles and locations all across the country. The Retailer has introduced
a central inventory planning approach to keep operational cost low, while managing this large
number of stores. Instead of store managers individually placing orders, planners at the central
planning department allocate stock keeping units (SKUs) to stores. The order picking system
evolved from this centralised approach.

A central planner releases all the store requirements for a subset of SKUs to be picked in a
specific time window (typically a week). The picking process operates in waves. A picking wave
consists of bringing stock to a picking line, arranging the stock on the picking line, picking the
stock on the picking line, and cleaning the picking line of leftover stock (if there is any). A
wave of picking thus fulfils all stores requirements for the SKUs present in that wave. Picking
instructions are released in distributions (DBNs). DBNs are groups of SKUs of the same product
(for example white T-shirts). SKUs within a DBN thus only differ in the sizes of this product
(for example small, medium and large). Once the DBNs with their pick instructions for all the
stores are released to the DC, all the SKUs in the DBNs are scheduled to be picked in a picking
wave [78].

The Retailer’s DC uses unidirectional cyclical picking lines that operate independently and
in parallel to pick the SKUs in the DBNs during a picking wave. The picking line set up is
illustrated in Figure 7.1.

Locations

Locations

Conveyor belt

m
21

m i m
2

+ 1

(a) A schematic representation of a picking
line with m locations in a U-configuration.
Source: De Villiers [30].

(b) A schematic representation of the four
picking lines in the Cape Town DC.

Figure 7.1: A schematic representation of the order picking system in the Retailer’s DC. On the left,
the detailed schematic representation of a picking line has a conveyor belt in the middle. On the right,
the picking system has a picking line with a conveyor belt and three picking lines without conveyor belts.

Figure 7.1(a) schematically illustrates a unidirectional cyclical picking line with m locations. A
picking line normally consists of 64 to 76 locations and has the option of a conveyor belt in
the middle. Each SKU in the DBN gets assigned to a unique location on the picking line. Up
to five pallets of SKUs can be stored at each location. Therefore, no replenishment of stock is
necessary during a wave of picking. Pickers are guided by a voice recognition system (VRS). If
the U-configuration is used, the pickers walk in a clockwise direction around the conveyor belt
to fulfil the orders. In the Z-configuration, the pickers may also cross over to a picking location
at the opposite side of the picking line [58].
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If the pickers are viewed as static relative to moving SKUs, the cyclical layout of the unidi-
rectional picking line shows similarities to a unidirectional carousel system from literature. In
carousel systems operating pickers remain at a fixed location during the picking process. A
typical carousel system is classified as a parts-to-picker system [73]. The unidirectional cyclical
picking line, on the other hand, would be classified as a picker-to-parts, single layer, single bin,
unidirectional carousel [48].

Besides the structural similarities of a unidirectional cyclical picking line and a unidirectional
carousel, the presence of wave picking with all orders known and deterministic before the start
of the picking process, is a major difference between the two picking systems. Additionally,
a unidirectional cyclical picking line can accommodate multiple pickers, while a unidirectional
carousel can only be operated by one picker at a time [78].

Figure 7.1(b) schematically illustrates an order picking system with unidirectional cyclical pick-
ing lines. In the example of the Retailer’s DC in Cape Town, one picking line with a conveyor
belt is placed on the floor, while three additional picking lines run in a picking module. The
picking lines that run in the module do not have a conveyor belt in the middle which allows
for different configurations of the picking system. A conveyor connects the three floors of the
module. This conveyor transports the cartons to other processing areas.

The Retailer’s picking system with the unidirectional cyclical picking line layout could be de-
scribed as a synchronised zone picking system as each picking line runs independently and in
parallel to the other [29]. The independently run picking lines allow pickers to join any other
picking wave once the current picking wave is completed. Thereby the challenge of work balance
in zone picking systems is circumvented [80]. Nevertheless, the rate at which picking lines are
populated and picked has to be balanced. This can be achieved by increasing the number of
pickers while still keeping congestion to a minimum. Hofmann and Visagie [59] suggested that
the pick density determines a good number of pickers in this picking system. In this example, a
good number of pickers is determined to be around eight pickers.

This chapter focuses on the Cape Town DC, but findings can be equally applied to the Retailer’s
DC in Durban and Johannesburg, South Africa. Even though there are structural differences
between the DCs, the fundamental layout and logic of the order picking system stays the same.

7.2 Problem description

Four sequential and dependent decision tiers are generated by the process of managing picking
waves. During Tier 1 the DBNs (collection of SKUs) are assigned to available picking lines.
SKUs are arranged into locations during Tier 2. A picking configuration is selected during
Tier 3, while sequencing orders is the focus of the final decision tier, Tier 4. Minimising the
total travel distance of pickers to reduce the total completion time per picking wave is the main
objective for all four decision tiers [82]. The four decision tiers are presented in more detail next.

Tier 1 in which DBNs are assigned to available picking lines give rise to the SKU to picking line
assignment problem (SPLAP). All the SKUs in a DBN should be processed during the same
wave of picking. This decision tier must be solved on a daily basis. The number of waves that
start each day is dependent on the number of available picking lines on that day. Once the
customer requirements for each SKU are released, the associated DBNs can be assigned to a
picking wave [82]. Currently, picking line managers assign DBNs based on in-house rules such
as minimisation of the number of different store readiness groups (departments per product)
and lead time considerations. With the progression of the week the importance of the deadline
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based rationale increases, making the assignment of older DBNs more urgent.

In Tier 2 SKUs are assigned to locations, in other words, it is arranged on an available picking
line. This decision results in the SKU arrangement problem (SAP). The interaction between
Tier 1 and 2 is depicted in Figure 7.2, where SKUs are first assigned to picking lines and then
arranged on the picking lines to start a new wave of picking [82]. Picking line managers currently
arrange SKUs according to personal guidelines such as evenly spreading out high volume SKUs
to avoid congestion.

DBNs with SKUs

Picking lines

Figure 7.2: A schematic representation of Tiers 1 (left) and 2 (right). A DBN is represented by a
shape. Each shaded shape represents a SKU. Different shades are SKUs of the same DBN. Source:
Matthews [77].

Tier 3 entails the selection of the best configuration in which the picking line should operate.
This decision tier only exists in picking lines that have no conveyor belt in the middle as shown
in Figure 7.3. Tier 3 generates the system configuration problem (SCP), which determines the
logic of how pickers walk. In the U-configuration, all pickers move in a clockwise direction around
the conveyor belt, as illustrated in Figure 7.3(a). In the Z-configuration, the picker moves in
one direction alternating between the two pick faces. The picker only turns around at the end
of the picking line to move in the opposite direction. If a required SKU on the same pick face
is closer then the next SKU on the opposite pick face, the picker stays on this side. Otherwise,
the picker crosses over to the opposite pick face. This scenario is depicted in Figure 7.3(b) [58].
Currently, picking line managers use a rule of thumb to switch from a Z- to a U-configuration:
if the picker has to stop at more than a third of the locations the U-configuration is used.

10 9 8 7 6

54321

(a) A schematic representation of
a U-configuration in the module.

10 9 8 7 6

54321

(b) A schematic representation of
a Z-configuration in the module.

Figure 7.3: Comparison of picker walking (dashed lines) in a U- and Z-configuration. The different
shapes depict the SKUs that must be picked for an order. Thus a picker must visit all those locations to
pick an order.

Finally, before the wave of picking commences, Tier 4 sequences the orders of that wave. This
forms the order sequencing problem (OSP). Orders do not necessarily require all SKUs present
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in a picking wave. Orders may be assigned to any picker at any location that is available after
completing a previous order [82]. The effect of alternative sequences for orders is illustrated in
an example in Figure 7.4. In the U-configuration of a unidirectional cyclical picking line the
pick path of three orders are depicted by the dashed lines in the colours yellow, green and blue.
The different symbols indicate different SKUs. In Figure 7.4(a), the yellow order is picked first,
followed by green and blue, resulting in the picker passing 27 locations. In Figure 7.4(b), the
picking starts with the blue order, followed by yellow and green. This order sequencing leads
to a pick path length of only 24 locations. In this small example, the choice of order sequence
results in a difference in walking distance of three locations.

10 9 8 7 6

54321

(a) Order sequence option 1.

10 9 8 7 6

54321

(b) Order sequence option 2.

Figure 7.4: A schematic representation of Tier 4. Depending on the sequencing of orders a picker either
has to pass 27 locations in Option 1 or 24 locations in Option 2.

Between all four decision tiers there is a flow of information. This information flow is shown
in Figure 7.5. It is critical to analyse the reciprocal paths of information flow between all
decision tiers simultaneously because all tiers are interconnected. For example, the DBNs that
are assigned to a picking wave define the SKUs that have to be arranged on the picking line in
Tier 2. The SKU locations determine the configuration in the third tier and the sequence of
orders in the fourth. It is essential to understand the interactions between the four decision tiers
to optimise the picking system holistically. Therefore, each decision tier must be investigated
carefully [82].

Assign DBNs
to waves

Tier 1:

Arrange
SKUs on the
picking line

Tier 2:

Choose
configuration

Tier 3:

Sequence
orders for

pickers
Tier 4:

The distance
walked for the

SKU arrangement

The distance
walked in the

best configuration

The distance walked
for the order sequence

A set of SKUs

An arrange-
ment of SKUs

A way in which
pickers should walk

Order batching

Figure 7.5: Schematic representation of the information flow between the four decision tiers.
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The introduction of order batching to the DC’s picking system influences the walking distance
of a picker. In manual order picking the two main concepts are single order picking or batch
picking. While in single order picking one order is picked by one picker, in batch picking multiple
orders are picked simultaneously by one picker. Thereby order batching can effectively reduce
walking distance. The reduction in walking distance may result in overall picking time savings,
which can be translated into a reduction of labour cost [28].

In Figure 7.6 the impact of order batching on walking distance in the unidirectional cyclical pick-
ing line is illustrated in a small example. Matthews and Visagie [78] introduced the measurement
of cycles traversed to measure the walking distance in the unidirectional cyclical picking line.
Therefore, one cycle traversed is added to the count every time a picker completes a full cycle
during the picking process. In single order picking, as illustrated in Figure 7.6(a), the four orders
indicated by the colours yellow, red, green, and blue, are picked starting with yellow, then green,
then blue and finally red. If the number of cycles traversed are counted, it results in four cycles.
In batch order picking, if the orders yellow and red form the orange batch, and green and blue
the purple batch as depicted in Figure 7.6(b), a picker only has to traverse two cycles. This
example illustrates how batching two orders can reduce walking distance by as much as 50%.

10 9 8 7 6

54321

(a) A schematic representation of single order
picking.

10 9 8 7 6

54321

(b) A schematic representation of batch
picking.

Figure 7.6: Comparison of the walking distance in single order picking and batch picking.

Hofmann and Visagie [55, 56] introduced order batching to the layout of a unidirectional cyclical
picking line by developing distance approximation metrics and combination heuristics. Further-
more, Hofmann and Visagie [59] showed that the reduction in walking distance influences picker
congestion, but still leads to an overall reduction in picking time. Therefore, order batching
may be included in the optimisation of the four decision tiers in the order picking system of the
Retailer.

The main objective of this chapter is to reduce walking distance to shorten the total completion
time of a picking wave. Order batching will be included in the optimisation of the picking
system, since it has shown to efficiently reduce walking distance and picking time [55, 56, 59].
It can be seen as another layer to the optimisation problem as depicted in Figure 7.5, since it
potentially may interact with all four decision tiers. The decision tiers have a different impact
on order batching, because orders are not formed before Tier 1 and locations are not assigned
before Tier 2. Tier 3 is a novel inclusion in this optimisation process.

This chapter aims to achieve two objectives. The first objective aims at identifying solution
approaches in each decision tier that support the introduction of order batching. The second
objective is to determine when to introduce order batching to the decision making process to
minimise the total walking distance of all pickers to pick all orders in a picking wave.

After the brief background of the real world application and an introduction to the decision
problem, a literature review on order picking optimisation in the unidirectional cyclical picking
line is presented in Section 7.3. The four decision tiers are then described and optimisation
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approaches are presented in Section 7.4. In Section 7.5 different solution approaches are tested
on real life historical data of the Retailer’s DC, spanning an entire month. The chapter is
concluded in Section 7.6 with a summary and an outlook on future research.

7.3 Literature

For the order picking system with a unidirectional cyclical picking line, three decision tiers
have been studied [78, 80, 81, 82]. The picking line module introduced a fourth decision tier,
namely deciding on a configuration of the picking system [58]. Therefore, a brief overview on
the published research within each of the four decision tiers (in this layout as compared to other
layouts) will be presented next, starting with Tier 1 and ending with Tier 4.

The SKU to picking line assignment problem (SPALP) considers the assignment of DBNs, a
collection of SKUs, to picking waves. The picking waves may be viewed as zones as each picking
line functions independently, but non-zoned picking system approaches may also be used and
modified [82].

For the assignment of SKUs to zones, Matthews and Visagie [80] developed a decision framework
based on the method of Kim and Smith [65] that assigns SKUs of the same order to locations that
are near to one another. Therefore, they introduced a greedy insertion procedure that assigns
DBNs to picking waves in a greedy manner and thus reduces walking distance by minimising
the sum of the sizes of the maximal SKU for each picking line. The maximal SKU is the SKU
with the largest number of stores requiring it. It serves as a lower bound for the number of
cycles that has to be traversed during the picking process [78]. However, these zones consisted
of a single aisle occupied by a single picker, and thus did not take into account a cyclical layout
or the presence of multiple pickers [80].

For the assignment of SKUs in non-zoned picking systems, Manzini [75] introduced a correlation
measure that is calculated by the number of orders requiring two particular SKUs to minimise
total picking time. Bindi et al. [11] developed a similarity measure based on SKU correlations, a
stock turn coefficient, and a Jaccard statistic which improved DC throughput. Accorsi et al. [2]
considered storage allocation (inventory level per SKU) and storage assignment (location of
SKU) simultaneously. They proposed a top-down hierarchical procedure for overall picking
optimisation. Therefore, different approaches such as allocation rules, correlation measures
and clustering algorithms were combined and tested. Based on these studies, Matthews and
Visagie [81] developed four desirability scores to combine with the greedy insertion procedure to
not only address the problem of minimising walking distance, but also to reduce the number of
small cartons and to improve the volume distribution. Their desirability score, which considers
the number of stores required by the candidate DBN including at least one DBN that was
already assigned to a picking line, was recommended.

In addition to the zone and non-zoned assignment approaches, store requirements may also
be used to assign DBNs to picking waves. Chen and Wu [21] adopted association rules to
identify order connections that reflect the demand relationships of customers to form batches.
According to Chen et al. [20] the association rules apply the apriori algorithm to extract large
ordersets. These groups of orders, that are frequently requested together, are indicated by
these demand patterns. No approximation metrics for travel distance have to be developed as
demand patterns can be directly extracted from the order database. Their test instances use a
rectangular warehouse with parallel picking aisles applying a S-shape picking strategy, but as no
distance approximations are necessary this does not influence the batching algorithm. Chiang
et al. [22] applied a data mining approach to generate similarity measures between SKUs to use

Stellenbosch University https://scholar.sun.ac.za



118 Chapter 7. Batching orders in a picking system

in a storage assignment model. They developed an association index between each available
storage location and new SKU and assigned these SKUs. They then assigned SKUs to their
locations using a general assignment model that minimises the number of aisles.

In the SKU arrangement problem (SAP) Matthews and Visagie [82] identified solution ap-
proaches to minimise walking distance within a picking wave by rearranging SKUs. Their exact
mixed integer linear programming formulation was not able to solve real life data instances, thus
they modified heuristic approaches from literature to meet the requirements of this layout. In a
bidirectional carousel the organ pipe arrangement proposed by Vickson and Fujimoto [119] min-
imises the long run average travel time that is spent on picking a sequence of single independent
and identically distributed orders. In a unidirectional carousel it is optimal to assign SKUs to
locations in a greedy sequential manner [118]. Both cases were applied to carousels with an infi-
nite set of stochastic orders and adapted to process a set of deterministic orders [82]. Litvak and
Vlasiou [73] proposed a SKU allocation approach developed by Stern [105] which places SKUs
close to each other if there is a high probability of them appearing in the same order. This
heuristic was adapted by considering the number of orders requiring two SKUs as the number of
adjacencies between them according to a maximal adjacency principle [82]. Analysing the effect
of SKU arrangements on congestion Hagspihl and Visagie [46] introduced a classroom discipline
heuristic. This heuristic uses a set that is ordered based on pick frequency inserting SKUs to
minimise congestion. The effects of the classroom discipline approach on minimising walking
distance was tested [82].

Matthews and Visagie [82] showed that the order sequencing (Tier 4) outweighs SKU assignment
(Tier 2). In other words, walking distance can be reduced much more by proper order sequencing
than by arranging SKUs in a particular way. By implementing the last decision tier, walking
distance can be reduced by as much as 15% as opposed to a 1% improvement for Tier 2. None of
the modified algorithms produced an optimal solution in the unidirectional cyclical layout with a
set of deterministic orders. Therefore, they recommended using any of the easily implementable
heuristic solution approaches.

Kress et al. [67] investigated the storage assignment in carousel racks as a SKU partitioning
problem to minimise the number of groups that have to be accessed when retrieving an order.
They were able to minimise the average picker idle times (when the carousel rotates) with their
branch-and-bound algorithm which performed better when compared to a random and an organ
pipe arrangement. However, they did not include the order sequence in the assumptions of
their model, which according to Matthews and Visagie [82] outweighs the gain of the SKU
arrangement optimisation.

The choice of configuration (SCP) of a unidirectional cyclical picking line was investigated by
Hofmann and Visagie [58]. They suggest the pick density measure dm that divides all stops of
a picker by a distance approximation (number of locations × maximal SKU) as an indicator of
when to switch from a Z- to a U-configuration.

Matthews and Visagie [78] investigated the order sequencing problem (OSP) for a single picking
wave with a fixed SKU arrangement. They assumed that the time to pick stock and time to
handle boxes does not influence the sequence of orders and thus minimised walking distance to
reduce overall completion time. Even though they introduced a maximal cut approach, they
recommended an easily implementable nearest end heuristic that yields comparable walking
distances. Based on the nearest order and nearest item heuristic by Bartholdi and Platzman [8],
it selects the order with the nearest ending location, given a starting point, to be sequenced
next.

A batch can be viewed as a single but bigger order. Order batching as an additional layer
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to the decision process can be handled by adopting the solution approaches of Matthews and
Visagie [78, 80, 81, 82], Chen et al. [20], Chen and Wu [21], and Hofmann and Visagie [58].
All four decision tiers may provide support for order batching and the picking system could be
optimised holistically.

7.4 Incorporating order batching in the four decision tiers

The four decision tiers of the picking system are analysed in the following section. Ways to
incorporate order batching in each decision tier (even if no orders are defined yet, since they are
defined by decisions made in the first tier) are suggested.

7.4.1 DBN assignment to picking waves

Tier 1 assigns the already released DBNs into specific picking waves for a given day while
minimising the total walking distance [80]. The problem can be described as a generalised
assignment problem (GAP) in which DBNs are assigned to picking waves. A wave of picking
(on an available picking line) may also be viewed as a knapsack which has to be filled with a set
of DBNs. Each DBN has to be assigned to a picking line with a limited capacity (or locations).
The DBN’s location requirements can be interpreted as an item’s weight. With the introduction
of the maximal SKU as a lower bound for the number of cycles traversed in the picking line,
the objective of this decision tier can be restated as minimising the maximal SKU for a picking
line [71].

No orders are yet formed and thus no order based batching can be introduced at this stage of
the order picking optimisation process. However, selecting DBNs for a high pick density reduces
walking distance and thereby benefits order batching [58, 59]. Tier 1 aims at increasing pick
density, which indirectly supports better order batching.

According to Matthews and Visagie [80] an integer programming formulation of the GAP was
not solvable within 10 minutes, even when they introduced a relaxation of the formulation that
adjusted the size of all maximal SKUs. Toth and Martello [111] developed an insertion heuristic
for the GAP. This approach ranks all unassigned items with regards to its best and second
best possible knapsack assignment in decreasing order. The greedy insertion approach (GI) as
described in Algorithm 11 was designed on this basis, ensuring that all DBNs get assigned [80].
If DBNs with a large number of stores requiring it are added to a picking line, the pick density
of this picking line may increase.

Algorithm 11: Greedy insertion heuristic (GI)

Input: A set of picking lines L ordered by the number of floor and rack locations available for the picking
line l. A set of DBNs D.
Output: An assignment of DBNs to picking lines.

1: while Unassigned DBN which fits into the remaining l do
2: Select the DBN with the largest maximal SKU which fits into picking line l.
3: Assign DBN to the picking line l.
4: end while

Correlation approaches between adjacent SKUs can also be used to solve Tier 1 [77]. This
approach improves the speed of the order picking operation and balances the carton flow. The
desirability measure (DM) considers how many stores require a particular DBN. The candidate
DBN d must form part of a set Dl and this set must already be assigned to a picking line l. This
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approach showed the best results in terms of minimising walking distance. All assigned DBNs
are merged and considered as a single DBN and the intersection (or correlation) of this new DBN
and the set of stores requiring the candidate DBN is calculated. According to Matthews [77]
the desirability score A(Dl, d), with G representing the set of stores, can be calculated by

A(Dl, d) = |Gl ∩ Gd|. (7.1)

The desirability score is inserted into the greedy insertion algorithm as displayed in Algorithm 12
as the greedy insertion heuristic using a desirability measure (GIDM). The pick density may
increase, if the same set of stores require a DBN that is already assigned to the picking line.

Algorithm 12: Greedy insertion heuristic using a desirability measure (GIDM)

Input: A set of picking lines L ordered by the number of floor and rack locations available for the picking
line l. A set of DBNs D and a set of pre-assigned Dl associated with each picking line.
Output: An assignment of DBNs to picking lines.

1: while Unassigned DBN which fits into the remaining l do
2: Select DBN with largest desirability score A(Dl, d) which fits into picking line l.
3: Assign DBN to picking line l.
4: end while

A pattern mining approach to form batches out of orders was first introduced by Chen and
Wu [21] and further extended by Chen et al. [20]. However, there are no orders at this stage
of the decision process as DBNs are not assigned to picking waves yet. Nevertheless, SKUs
are already linked with store requirements. If SKUs, that are required by the same stores,
are assigned to the same picking line, the pick density may increase. The apriori algorithm
as developed by Agrawal et al. [3] is modified to uncover relationships between data and also
used to form picking waves out of similar DBNs. In the first stage, associations between DBNs
in terms of support, confidence and lift are recognised. In this case, support shows how often
DBN 1 and 2 are requested together by all stores. Confidence describes the likelihood that if a
store requests DBN 1 it will also request DBN 2. Lift is a simple correlation measure that defines
the degree to which the request of DBN 1 increases the request of DBN 2 [47]. In the second
stage, a clustering procedure that maximises the sum of the support values is employed [20].

The pattern mining approach (PMA) assigns DBNs to picking waves as depicted in Algorithm 13.
The support value is lowered dynamically until no significant association rules can be gener-
ated [47]. For cases where DBNs are still unassigned, the algorithm fills up available locations
in a greedy manner.

Algorithm 13: Pattern mining approach (PMA)

Input: A set of picking lines L. A set of DBNs D with store requirements per SKU.
Output: An assignment of DBNs to picking lines.

1: while Unassigned DBN which fits into the remaining l do
2: while Association rules generated by apriori algorithm not empty do
3: Select DBNs with highest support values which fit into picking line l.
4: Assign DBNs to picking line l.
5: if Unassigned DBNs then
6: Lower support value and update association rules.
7: end if
8: end while
9: Assign DBNs to remaining l in a greedy manner.

10: end while
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Besides the GI, the GIDM, and the PMA that aim at increasing pick density, a greedy random
assignment approach (GRA) will be used as a benchmark. This comparison tries to determine
whether an increase in pick density in Tier 1 supports order batching. The four algorithms will
be compared to historical assignments (HA).

7.4.2 SKU arrangement on the picking line

Tier 2 considers the arrangement of a set of SKUs in a single picking line while minimising the
walking distance of pickers in the process. Tier 2 has a small impact on the overall solution, and
the first and last decision tier outweighs this impact according to Matthews and Visagie [82].
Therefore, they recommended quick solution approaches to make implementation times of the
global problem feasible. Orders do not have any location information yet. Therefore, order-to-
route closeness metrics cannot be applied to introduce order batching. The objective at this
stage thus still remains to increase pick density.

A greedy random and a greedy sequential heuristic are introduced to analyse the effect of SKU
arrangement on batch forming. In the greedy random approach the SKUs are arranged randomly
on the available locations along the picking line. In the greedy sequential arrangement approach
the set of SKUs is ordered according to the maximal SKU (pick frequency) and is assigned to
available locations as illustrated in Algorithm 14.

Algorithm 14: Greedy sequential arrangement (GSL)

Input: A set of SKUs U in descending order by maximal SKU. A number of floor and rack locations m.
Output: An assignment of SKUs to locations on the picking line.

1: while Unassigned SKU which fits into the remaining locations m do
2: Assign SKUs to available locations m according to the sequence in U .
3: end while

The greedy random arrangement (GRL) serves as a benchmark. The greedy sequential arrange-
ment (GSL) increases pick density by assigning favoured SKUs (or SKUs on high demand) close
to each other. The latter may support order batching.

7.4.3 Configuration selection

The objective during Tier 3 is to select a configuration for the picking wave that was determined
by the first two decision tiers. Orders can only be formed after Tier 1 is complete and locations
are arranged during Tier 2. Picking location based order batching metrics are not influenced by
the configuration choice. However, the configuration does influence the order batching metric
that takes the picker path into consideration. A configuration should be chosen before order
batching is introduced to allow for different order-to-route closeness metrics.

Hofmann and Visagie [58] suggest the pick density measure dm as an indicator for when to switch
from a Z- to a U- configuration. The density measure includes the total number of stops s of a
picker to pick all orders, the number of locations m available in the system, and the maximal
SKU υ as an approximation of the number of cycles needed to pick all orders [59]. The pick
density measure can only take on values between 0 and 1 and is calculated as

dm =
s

m · υ
. (7.2)

According to Hofmann and Visagie [58] a high pick density measure dm generates shorter overall
picking times in a U-configuration. Therefore, if pick densities have been increased in Tier 1
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and 2 the implementation of a U-configuration becomes more likely. The choice of configuration
then influences the order batching metrics directly.

7.4.4 Order sequencing including order batching

The orders (or in this case batches of orders) are sequenced in Tier 4. Before the sequencing,
batches are formed according to the batching metrics developed by Hofmann and Visagie [55, 56],
since all information necessary to include order batching is now available.

The picking location metric with the highest reduction in walking distance suggested by Hofmann
and Visagie [55] is the stops ratio metric combined with a greedy random heuristic (RGR). The
metric divides the number of stops nij that are not shared between orders i and j by the number
of stops tij that are similar between orders i and j. The matrix R with elements rij can be
calculated as

rij =
nij
tij
, for all orders i and j, with i 6= j. (7.3)

The greedy random heuristic (GR) searches the rows of any matrix M with elements mij in a
random sequence. This is displayed in Algorithm 15. The algorithm randomly selects a row (say
k) and then finds the minimum element (say mkq) in row k and adds it to set B to indicate that
orders k and q are batched. Both rows and columns corresponding to k and q are then removed
from M. These steps are repeated until a list of batched orders is generated.

Algorithm 15: Greedy random heuristic (GR)

Input: A picking location metric consisting of a n× n matrix M with entries mij , an empty solution set B.
Output: The solution set B as a list of batched orders.

1: B ← ∅
2: while | B | < n/2 do
3: k ← random row from M
4: mkq = min

j
[mkj ]

5: B ← B ∪ (k, q)
6: Remove both rows and columns k and q from M
7: end while
8: Return B

The span (or path in the Z-configuration) of an order is the distance that has to be covered to
collect all items of an order, given a starting location [78]. The stops non-identical spans metric
that is combined with a greedy smallest entry heuristic (ZGS) includes this layout specific
measurement. The ZGS route overlap metric is discussed in greater detail by Hofmann and
Visagie [56]. The sets Si and Sj contain all stops for orders i and j respectively. The notation

P̃min
i and P̃min

j represent the biggest gap between the minimum spans of order i and j, and

|Pmin
i ePmin

j | indicates the length of the overlap in number of locations between Pmin
i and Pmin

j .
The stops non-identical spans metric can be calculated by

zij = (|Si|+ |Sj | − |Si ∩ Sj |) + (|P̃min
i |+ |P̃min

j | − |P̃min
i e P̃min

j |), with i 6= j, (7.4)

to form matrix Z. The greedy smallest entry heuristic (GS) searches globally for the smallest
entry through all elements mij of any matrix M. This is shown in Algorithm 16. The entry
that has to be batched next is the global smallest entry. The global smallest entry is the next
smallest entry with the biggest difference to the next second smallest entry in matrix M.

After batches are formed according to the these batching metrics, they have to be sequenced to
complete the fourth or final tier. Matthews and Visagie [78] developed a nearest end heuristic
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Algorithm 16: Greedy smallest entry heuristic (GS)

Input: A batching metric comprising a n× n matrix M with entries mij , an empty solution set B.
Output: The solution set B as a list of batched orders.

1: B ← ∅
2: while | B | < n/2 do
3: mkq = min

i,j
[mij ]

4: B ← B ∪ (k, q)
5: Remove the rows and columns corresponding to k and q from M
6: end while
7: Return B

(NE) that is easy to implement. As displayed in Algorithm 17 the batch with the nearest ending
location, given the current position, is added to the sequence. This NE algorithm will sequence
batches in U- and Z-configurations.

Algorithm 17: Nearest end heuristic (NE)

Input: A set of batches and SKU locations.
Output: A sequence of batches.

1: Set the current position to the first location
2: while The set of batches is not empty do
3: Search for the batch with the closest ending location, if picking starts from the current position
4: Add this batch to the sequence
5: Delete from the set of batches
6: Update the current position to the ending positing of the recently added batch
7: end while
8: Return the sequence of batches

7.5 Results

In Tier 1, order batching has an indirect impact on the stops and minimum spans. Depending
on which DBNs are assigned to which picking line, orders are formed that are later combined
into batches. The rearrangement of SKUs in Tier 2 has an effect on the minimum span or path,
but it does not affect the number of stops of an order [82]. The minimum span is dependent
on the arrangement of the locations of SKUs. Additionally, the configuration chosen in Tier 3
influences the stops non-identical spans metric, but not the stops ratio metric as all stops remain
the same. At Tier 4, orders have been finalised and SKUs have been arranged. This then allows
the approximation metrics to measure distances and combine orders into batches. After forming
the batches, they get sequenced for picking. A global performance of the picking system can
thus only be evaluated by first assigning DBNs to picking waves (Tier 1), then arranging the
SKUs on the picking line (Tier 2), then choosing the configuration of the picking wave (Tier 3),
then batching the newly composed orders, and finally sequencing the batches (Tier 4).

7.5.1 Data and scenarios

Historical data from the Retailer’s DC in Cape Town was used to test the solution approaches.
The data consist of 45 picking waves over 27 work days with the number of picking lines working
in parallel ranging from two to four. There are 1 206 unique DBNs containing 2 212 unique
SKUs. The master data for the numerical experiment was reorganised into four scenarios due
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to the different numbers of scheduled lines per day. Thereby algorithms can be compared more
comprehensively and picking waves that are not completed during a single working day can
be investigated. The data set is cleaned of outliers such as picking waves that contained less
than 15 SKUs for example. Each scenario contains a uniform set of instances. In other words,
the data for each scenario were taken from similar picking lines, workdays, and DBNs. The
properties of these scenarios are illustrated in Table 7.1.

Scenario Number of lines Number of days Number of DBNs Number of waves

1 2 27 767 30
2 3 21 708 24
3 4 9 330 12

Table 7.1: The composition of three test scenarios from historical data of the Cape Town DC.

All numerical experiments were implemented in Python 3.6 [94] utilising the C-based libraries
Numpy [89] and Pandas [93] and performed on a Dell Optiplex 5050 with a Intel Core i7-7700
CPU at 3.6 GHz, 1x8GB 2400MHz DDR4 RAM, a 2.5” 256GB SSD class 20 drive, and the
Microsoft Windows 10 Enterprise 2016 LTSB operating system [84]. The statistical analysis of
the experimental results was carried out in R [95].

In all three scenarios, the main objective is to minimise the total completion time of a picking
wave. The influence of including order batching is analysed in every decision tier of the optimi-
sation process. All combinations of solution approaches for each decision tier are illustrated in
Figure 7.7.

GRATier 1: HA

···

GI

···

GIDM

···

PMA

···

GRLTier 2: GSL

UTier 3: Z U Z

RGRBatching method: ZGS NB

NETier 4: NE NE

RGR ZGS NB

NE NE NE

RGR ZGS NB

NE NE NE

RGR ZGS NB

NE NE NE

Figure 7.7: Decision tree for different optimisation combinations including order batching. The newly
introduced Tier 3 is pointed out by a dashed line, while the additional layer of order batching is depicted
in blue.

In Tier 1 DBNs are assigned to SKUs according to a greedy random assignment approach
(GRA), the historical assignment (HA), the greedy insertion heuristic (GI), the greedy insertion
heuristic using a desirability measure (GIDM), and a pattern mining approach (PMA). In Tier 2
all SKUs contained in the DBNs that have been assigned to a picking wave are arranged on a
picking line. The greedy random heuristic (GRL) and the greedy sequential heuristic (GSL) are
applied to arrange SKUs on the locations. The historical arrangement of SKUs on picking lines
is not included as it cannot be applied to DBN assignments that differ from the historical data.
In Tier 3 orders are formed and information about the SKU locations is available. Depending on
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the pick density, a configuration can be chosen. Batches can then be formed applying the stops
ratio metric with the greedy random heuristic (RGR) and the stops non-identical spans metric
with the greedy smallest entry heuristic (ZGS). Additionally, no batching is included (NB) for
comparison. These order combinations are sequenced with the nearest end heuristic (NE) in
Tier 4. No further sequencing approaches are tested, since order batching happens before the
sequencing. A discrete event simulation (DES), as developed by Hofmann and Visagie [58, 59],
determines the total completion time per wave. The completion times can then be compared
for the different solution approaches. The optimisation approach of using GRA for the SPALP,
GRL for the SAP, a U-configuration of the picking line, and RGR for the batching of orders
would for example results in the abbreviation GRA-GRL-U-RGR-NE. Thereby, any path that
can be followed through the layers of Figure 7.7 defines a solution approach and can be described
through an abbreviation as explained.

Figure 7.8 contains the sum of the completion times measured in seconds for the 30 sample
picking waves in Scenario 1, if every solution approach (meaning every possible algorithm com-
bination) is tested. The configuration choice (Tier 3) has the biggest influence on the total
completion time (on average a difference of about 1 hour per picking wave). The ZGS batching
metric produces the shortest time in the U-configuration. In the Z-configuration the RGR seems
to generate slightly lower completion times. The arrangement of SKUs (Tier 2) does not have a
significant impact since it influences the total completion time by less than 1%. This is in line
with the findings of Matthews and Visagie [82]. The assignment using the GI seems to generate
the lowest total completion time. Nevertheless, GIDM and PMA also produce completion times
that are lower than GRA and HA and even outperform GRL on some lines.
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Figure 7.8: The total completion time for Scenario 1 with all potential optimisation approaches. The
x-axis label describes the first two choices (Tier 1 and 2), while the key describes the last three choices
(Tier 3, batching method, and Tier 4). Together they form one experimental set of algorithms. The
y-axis label indicates the time it takes to complete all 30 waves for each combination.

The average pick density can already be calculated after Tier 1, since the specific location of
SKUs does not have an influence. However, it is only calculated after Tier 3, since its influence
on order batching is investigated. In Figure 7.9 the corresponding pick density measure dm to
the total completion time of each picking wave is illustrated. In the experimental set up of
Hofmann and Visagie [58] the Z-configuration outperformed the U-configuration consistently
at a dm below 0.22. The U-configuration consistently returned the shortest total completion
times for a dm larger than 0.38. Therefore, the pick density measure 0.22 and 0.38 are depicted
in Figure 7.9 by red dashed lines. The GRA and HA assignment approaches do not focus on
increasing the pick density to support order batching. Therefore, only a few picking lines that
applied the GRA and HA assignment approach generated a pick density measure that is above
0.22. The average pick densities for GI, GIDM and PMA are all above a pick density measure
of 0.38. The findings of Hofmann and Visagie [58] are supported by the results of this chapter,
since all assignments that have a pick density measure above 0.38 generate lower total completion
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times in the U-configuration for the 30 sample picking lines of Scenario 1. This is illustrated in
Figure 7.9(a) for batching metric RGR and in Figure 7.9(b) for batching metric ZGS.
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(a) Time and density with RGR for the Z- and U-
configuration.
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(b) Time and density with ZGS for the Z- and U-
configuration.

Figure 7.9: The completion times plotted against an increasing pick density measure for both configu-
rations in Scenario 1 with batching metrics RGR and ZGS.

In the second scenario, the sum of the completion times for all solution approaches in the
24 sample picking waves is illustrated in Figure 7.10. Tier 3 seems to have an even bigger
influence in the difference between picking waves – about 1.5 hours. The lowest total completion
time for all samples is generated with the ZGS metric in the U-configuration. The impact of
Tier 2 remains lower than 1%. GI followed by GIDM generates the lowest completion times per
picking wave. PMA produces slightly longer completion times because it only assigns scheduled
SKUs. The central planning department would have to schedule more similar SKUs to increase
the efficiency of the PMA.
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Figure 7.10: The total completion time for Scenario 2 with all potential optimisation approaches. The
x-axis label describes the first two choices (Tier 1 and 2), while the key describes the last three choices
(Tier 3, batching method, and Tier 4). Together they form one experimental set of algorithms. The
y-axis label indicates the time it takes to complete all 24 waves for each combination.

The corresponding pick density measure dm to the total completion time of each picking wave is
depicted in Figure 7.11. No picking wave has a lower average pick density measure than 0.276 for
all different combinations. Therefore, the U-configuration results in the lowest completion times.
For the RGR batching metrics this is depicted in Figure 7.11(a), while for the ZGS batching
metric it is shown in Figure 7.11(b). The GI assignment approach results in the highest dm of
0.680 thus supporting order batching.

In Figure 7.12 the sum of the completion times for all potential decision tier combinations of the
12 sample picking waves in Scenario 3 is illustrated. Here the choice of configuration influences
the total completion time the most. The difference in the third scenario can amount to almost
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configuration.

Figure 7.11: The completion times plotted against an increasing pick density measure for both config-
urations in Scenario 2 with batching metrics RGR and ZGS.

2 hours per picking wave. The GI assignment followed by GIDM results in the lowest completion
times. Tier 2 again influences the overall picking time by less than 1%. Using ZGS for batching
the orders and walking in a U-configuration generates the lowest total completion time.
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Figure 7.12: The total completion time for Scenario 3 with all potential optimisation approaches. The
x-axis label describes the first two choices (Tier 1 and 2), while the key describes the last three choices
(Tier 3, batching method, and Tier 4). Together they form one experimental set of algorithms. The
y-axis label indicates the time it takes to complete all 12 waves for each combination.

In Figure 7.13 the pick density measure dm with the total completion time of each picking wave
in the third scenario is illustrated. The lowest dm value is 0.283. Therefore, the U-configuration
always yields lower total completion times. The highest pick density measure is 0.681 and is
again generated by the GI assignment in support of order batching. For the RGR batching metric
this is illustrated in Figure 7.13(a) and for the ZGS metric it is depicted in Figure 7.13(b).

The preferred solution method for each decision tier may be determined by analysing the three
scenarios. Tier 1 should make use of the GI assignment as it consistently increases pick density
the most. The influence of Tier 2 is very limited. Therefore, an easily implementable random
arrangement approach such as the GRL arrangement should be deployed. Implementing the
GI increases the pick density. Therefore, the pick density measure dm would favour the U-
configuration in Tier 3. The order batching metric ZGS generates the lowest completion times,
which can be determined after the orders are formed, locations of their SKUs are determined, and
a configuration of the picking system is chosen. In Tier 4 the easily implementable NE heuristic
sequences the batches for the pickers. Therefore, using the GI-GRL-U-ZGS-NE combination
consistently results in the lowest overall picking times. This holistic solution approach runs well
within the time frame that is deemed acceptable by the Retailer.
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Figure 7.13: The completion times plotted against an increasing pick density measure for both config-
urations in Scenario 3 with batching metrics RGR and ZGS.

The GI-GRL-U-ZGS-NE solution approach is tested against a benchmark solution approach
including historical assignment (HA), followed by a random arrangement of SKUs (GRL). With
a high enough pick density, the U-configuration is chosen but no batching (NB) is implemented
and the NE heuristic is applied to sequence the orders. This choice of algorithms generates
the benchmark solution approach as HA-GRL-U-NB-NE. The completion times for GI-GRL-
U-ZGS-NE and HA-GRL-U-NB-NE are plotted in Figure 7.14 for the three scenarios. In the
first scenario 28.4% of picking time can be saved, in the second scenario 27.9% and in the
third scenario 27.2% can be saved by applying the solution approach GI-GRL-U-ZGS-NE that
includes order batching.
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Figure 7.14: Comparison between the holistically optimised picking system including order batching
and a benchmark without order batching.

7.5.2 Statistical analysis

The influence of the four independent variables, namely Tier 1, Tier 2, Tier 3 and batching (ad-
ditional layer) on the total completion time per picking wave is investigated applying inferential
statistics. Tier 4 is not included since batching is introduced before this tier and batches can
simply be viewed as larger single orders. To see whether there is statistical difference between
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variables a one-way ANOVA per independent variable with a Tukey’s HSD post-hoc test and a
fractional ANOVA that includes all independent variables are applied to all scenarios.

In Table 7.2 the ANOVA for Tier 1 and Tier 2 are not statistically significant. However, the
ANOVA on batching is statistically significant (F (2, 1 557) = 117.2, p = 0.000) pointing out
the influence of order batching on the total completion time. The Tukey’s HSD post-hoc test
shows a significant difference between RGR and NB (difference between means = −21 449.4,
p = 0.000) and between ZGS and NB (difference between means = −21 418.8, p = 0.000). There
is a statistically significant difference between the configurations Z and U in Tier 3 (difference
between means = 12 148.67, p = 0.000) [106]. Nevertheless, the factorial ANOVA that includes
all four independent variables shows no significant influence through the interaction of Tier 1,
Tier 2, Tier 3 and batching (F (8, 1 500) = 0.002, p = 1.000) as illustrated in Table 7.2 [107].

Sum of squares df Mean square F p

One-way ANOVA
Tier 1 3.85E + 09 4 9.62E + 08 1.233 0.213
Error 1.21E + 12 1 555 7.8E + 08
Tier 2 2.08E + 06 1 2 081 219 0.003 0.955
Error 1.22E + 12 1 558 7.81E + 08
Tier 3 5.76E + 10 1 5.76E + 10 77.32 0.000**
Error 1.16E + 12 1 558 7.45E + 08
Batching 1.59E + 11 2 7.96E + 10 117.2 0.000**
Error 1.06E + 12 1 557 6.80E + 08

Four-way ANOVA
Tier 1 × Tier 2 5.48E + 07 4 1.37E + 07 0.021 0.999
Tier 1 × Tier 3 2.58E + 09 4 6.44E + 08 0.976 0.419
Tier 1 × Batching 2.19E + 09 8 2.74E + 08 0.414 0.913
Tier 2 × Tier 3 9.15E + 06 1 9.15E + 06 0.014 0.906
Tier 2 × Batching 2.26E + 07 2 1.13E + 07 0.017 0.983
Batching × Tier 3 1.36E + 09 2 6.80E + 08 1.031 0.357
Tier 1 × Tier 2 × Tier 3 5.09E + 07 4 1.27E + 07 0.019 0.999
Tier 1 × Tier 2 × Batching 9.38E + 06 8 1.17E + 06 0.002 1.000
Tier 1 × Batching × Tier 3 2.46E + 08 8 3.08E + 07 0.047 1.000
Tier 2 × Batching × Tier 3 7.91E + 07 2 3.96E + 07 0.060 0.942
Tier 1 × Tier 2 × Batching × Tier 3 1.17E + 07 8 1.47E + 06 0.002 1.000
Error 9.90E + 11 1 500 6.60E + 08

Note: Two asterisks indicate significance at the 5% level or below.

Table 7.2: One-way ANOVA and four-way ANOVA on Tier 1, Tier 2, batching and Tier 3.

The results suggest that order batching and the choice of configuration have the biggest influence
on the total completion time. Therefore, an integrated approach of optimising the picking system
should have a strong focus on Tier 3 and the additional layer of order batching.

7.6 Conclusion

Order batching reduces walking distance significantly and thus contributes to the main objective
of minimising the total completion time for picking waves. It is therefore an important additional
layer in the decision process. In the three scenarios tested in this chapter, an average of 27.8%
of picking time can be saved when the GI-GRL-U-ZGS-NE solution approach (which includes
order batching) is tested against the benchmark of HA-GRL-U-NB-NE.
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The U-configuration, given a high enough pick density on the picking line, outperforms the
Z-configuration. The question then becomes: should both systems be used, or would it be
more beneficial to focus optimisation efforts exclusively on the U-configuration? If only one
configuration choice is implemented, the optimisation process could be reduced to three decision
tiers. This suggestion should be discussed with the Retailer’s management.

Alternatively, the competitiveness of the Z-configuration could be improved by including a bidi-
rectional option. In this bidirectional option, pickers would be able to pick orders that are located
in the opposite direction of their current picking path. Thereby, pickers would be allowed to
change directions, if the order that lies in the opposite direction is closer to the current location.
Future studies could thus aim at introducing a bidirectional option in the Z-configuration and
compare its efficiency to this of the current U-configuration.

7.7 Chapter summary

In this chapter, the picking system of a South African retailer was solved by looking at four
decision tiers within the system. Order batching was included as an additional layer in the
optimisation process. Tier 1 aims to answer which DBN should be assigned to which picking
line. The greedy insertion heuristic (GI), introduced by Matthews and Visagie [80], generated
the lowest completion time by increasing pick density. This increase in pick density indirectly
supports order batching. Secondly, the locations of the subset of SKUs that belongs to the
DBN are arranged. According to Matthews and Visagie [82] this decision does not have a
big influence on the overall picking time. This was confirmed by the results of this chapter.
Therefore, an easily implementable greedy random arrangement (GRL) solution approach is
recommended. Depending on the level of pick density measure either a U- or Z-configuration
was chosen in Tier 3. This choice determines how pickers have to walk along (U-configuration)
or between (Z-configuration) the locations of the picking line. If the pick density measure is
above 0.38, Hofmann and Visagie [58] recommended the application of a U-configuration. This
recommendation is supported by the results of this chapter. Therefore, an increase of pick
density through Tier 1 may result in a preference for the U-configuration.

Order batching was directly included between Tier 3 and 4. For the batching, a stops non-
identical spans batching metric with a greedy smallest entry heuristic (ZGS) is recommended.
Tier 4 views batches as bigger orders. Therefore, the nearest end heuristic, as introduced by
Matthews and Visagie [78], was the chosen solution approach for sequencing. This chapter shows
that all decision tiers can either indirectly support order batching through increasing the pick
density (Tier 1, 2 and 3) or directly include batches formed by batching metrics and combination
algorithms (Tier 4).

The introduction of order batching to the unidirectional cyclical picking line is summarised in
the next chapter. Recommendations for the practical application will be provided and some
ideas for future studies are highlighted.
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In conclusion of this dissertation, a summary of the dissertation is presented in the following
chapter. A summary of the main conclusions are provided and recommendations are suggested
to practitioners working in a picking system with a unidirectional cyclical picking line. In
Chapter 1 objectives were set for this dissertation. Section 8.3 explains how and where these
objectives were met throughout the dissertation. The major contributions of this dissertation
are also pointed out. To wrap up this chapter and dissertation, ideas for future research on this
topic are presented.

8.1 Dissertation summary

In Chapter 1, supply chain management was discussed and why it is important for supply chains
to run efficiently. The logistics network of a company forms part of its supply chain. Distribution
centres form nodes within the logistics network. DCs transform bulk stock from suppliers into
customer orders through the process of order picking. The process of order picking is the most
labour-intense and thus most costly process in the operation of a DC. In batch picking, multiple
customer orders are picked simultaneously thereby reducing walking distance during the picking
process. The logistics network of a prominent South African retailer, who provides the test
instances for the dissertation, was described. The focus was on the order picking system with
the specific picking line structure of a unidirectional cyclical picking line. This layout can be
compared to the unidirectional carousel discussed in literature.

In Chapter 2 a literature review on order batching was carried out. The standard order batching
problem is formulated in a single-block warehouse layout with parallel aisles that assigns orders
to batches to optimise the objective function. Larger problem instances cannot be solved to
optimality. Therefore, heuristics and metaheuristics have been developed. Construction heuris-
tics include priority rule-based algorithms such as a first-in-first-out approach, seed algorithms
that initiate batches and allocate orders to these batches, and saving algorithms that compare
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the time saving of a pair of orders to the individual order. Data mining approaches search for
similarities between SKUs before they are grouped into orders. Metaheuristics that are used to
solve the OBP are single solution-based algorithms such as iterated local search, variable neigh-
bourhood search, tabu search, simulated annealing, great deluge and hybrid methods combining
different metaheuristics. In literature, most OBPs are either solved in the standard single-block
parallel aisle warehouse layout or adapted to an automated storage and retrieval system. Ap-
plying the OBP to a unidirectional cyclical picking line structure has not been considered in
literature.

In Chapter 3 order batching was introduced to a picking system with the layout of a unidirec-
tional cyclical picking line. The objective was to minimise the walking distance of pickers in
the picking line. Three order-to-route closeness metrics were introduced to approximate walking
distance, since the orders will be batched before the pickers are routed. All metrics were based
on the picking location that determines when a picker has to stop at a location to collect the
items for an order. These metrics comprise a number of stops, a number of non-identical stops
and a stops ratio measurement. A regression analysis supported the idea that the introduced
metrics can be used to approximate walking distance. Besides exact solution approaches, four
greedy heuristics as well as six metaheuristics were applied to combine similar orders in batches.
The capacity of the picking device is restricted, thus only two orders per batch are allowed. All
metrics were tested using real life data of 50 sample picking waves from the DC of the Retailer
in Durban. The combination of stops ratio metric and the greedy random heuristic generated
the best results in terms of minimum number of total cycles traversed. It also seemed to be the
most computationally efficient.

In Chapter 4 order batching metrics were extended to include information about the specific
layout of a unidirectional cyclical picking line. Route overlap metrics were developed that add
information about the route similarity to approximate walking distance before picker routing and
thus identify compatible orders for batching. The stops non-identical spans, the non-identical
stops-spans, and the stops-spans ratio metric were developed. The best combination of route
overlap metric and solution approach was determined in a numerical experiment using real life
data of 50 sample picking waves from the Retailer’s DC in Durban. The usability of route
overlap metrics as approximations for walking distance before picker routing was confirmed by
the results. The combination of stops non-identical spans metric and the smallest entry heuristic
generated a lower number of total cycles traversed compared to picking location metrics.

An investigation into the effect of order batching on the overall picking time in a unidirectional
cyclical picking line was the main focus of Chapter 5. The three main actions of pickers in
this system are to walk (in a clockwise direction) to the next pick location, perform the picking
operation and to prepare the packaging carton. The total amount of work for the last two actions
remain constant during a given wave of picking, rendering the minimisation of walking distance
as the main objective when minimising the total picking effort. Order batching increases the
pick density, which might lead to an increase in congestion. Congestion can also be influenced
by the number of pickers in the picking wave. The question then became, what is the total
time saving, and what is the best number of pickers before and after batching? Therefore, this
system was modelled with a discrete event simulation to determine the influence of batching on
the total completion time. Historical data were compared to the output of the simulation for the
verification and validation of the simulation. It showed that the simulation represents the real
world picking system to a satisfactory degree. The simulation runs also showed that the order
batching heuristics that aim at minimising walking distance reduce the overall picking time by
up to 21% and a good number of pickers are dependent on the pick density. Furthermore, pick
density can be used as a predictor for picking time reduction.
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Chapter 6 introduced a new configuration to a unidirectional cyclical picking line. In the previous
chapters, a picking line with a conveyor belt was considered. If this conveyor belt is removed,
the picking line can operate in either a U- or a Z-configuration. In the U-configuration pickers
move in a clockwise direction to pick items from a single pick face at a time. To adapt this
to a Z-configuration, pickers may cross the aisle to pick from either pick face. Through the
introduction of a Z-configuration, the question arises which configuration will minimise walking
distance and thereby overall picking time. Three scenarios, namely a worst case, an average
case, and a real world simulation were evaluated to determine whether pick density can indicate
which configuration to choose. The configurations were then combined with adaptations of
the order batching metrics for the unidirectional cyclical picking line, since they have shown to
reduce walking distance. All three approaches showed that the Z-configuration only outperforms
the U-configuration when pickers on average stop at every fourth or fifth location. For real life
instances the U-configuration consistently outperformed the Z-configuration.

In Chapter 7 the total picking system was considered. The picking system gives rise to four
optimisation problems or decision tiers that must be solved. Together these four tiers constitute
a wave of picking. The effect of introducing order batching on all four decision tiers in this
picking system was investigated. Tier 1 assigns stock to a picking wave. Tier 2 arranges the
stock around the picking line for each wave of picking. This is followed by Tier 3 that decides on
the configuration and thereby determines the logic of how pickers should walk. Pickers can either
walk along the picking line (U-configuration) or cross the picking aisle (Z-configuration). Tier 4
sequences the orders to be picked during a picking wave. Order batching cannot be introduced
in the first two tiers of the decision process because orders are only formed once picking waves
have been finalised and location information known. In the absence of this information the best
approach was to solve the first two tiers with the objective to increase pick density. An increase
in pick density supported the use of a U-configuration over the Z-configuration in Tier 3. After
the first three decision tiers, order batching could be introduced through specific order batching
metrics and combination algorithms. A nearest end heuristic then sequenced the batches in the
last decision tier to minimise walking distance. This four decision tier optimisation approach
yielded about 28% saving in total completion time, when compared to benchmark scenarios.

8.2 Recommendations

Reducing walking distance increased congestion, but with a good number of pickers it decreased
the overall picking time. This was emphasised by the simulation of the picking process in
a unidirectional cyclical picking line developed in Chapter 5 and extended to include both
configurations of the picking line in Chapter 6. Optimising a picking system should focus on
reducing walking distance, as the time for picking and handling of products remains constant.
Therefore, minimising walking distance reduces the total completion time in a unidirectional
cyclical picking line.

Order batching showed to reduce walking distance effectively. Introducing order batching to a
unidirectional cyclical picking line was best achieved by applying the stops non-identical spans
batching metric combined with the greedy smallest entry heuristic. Even though solely imple-
menting picking locations based batching metrics shorten the walking distance considerably, as
shown in Chapter 3, adding information about the specific layout of the picking line, as provided
by Chapter 4, resulted in the shortest walking distance and thus reduced picking time for all test
instances provided by the Retailer. The additional time saving generated by this route overlap
metric constantly increases and with the Retailer running up to 12 picking waves in parallel each
day, this reduction contributes significantly to the saving in operational cost. The introduction
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of order batching as an extra layer should take place after the configuration of the picking line
has been determined in Tier 3 as this choice influences the span or path that a picker has to
walk during the order picking process.

In a holistic optimisation approach of the picking system four decision tiers, namely SPALP
(Tier 1), SAP (Tier 2), SCP (Tier 3) and OSP (Tier 4), have to be addressed. Tier 1 cannot
implement order batching as no orders are formed yet. However, increasing the pick density
measure dm, that was introduced in Chapter 5, while assigning orders to picking waves sup-
ports batch forming which in turn reduces walking distance. Therefore, a greedy heuristic that
increases pick density is recommended. This was shown in the results of Chapter 7. A sim-
ple greedy random arrangement heuristic can assign SKUs to their locations as proposed in
Chapter 7, because Tier 2 is far outweighed by Tier 4. The nearest end heuristic is an easily
implementable option to sequence orders for pickers, while reducing walking distance in the last
decision tier. This option is thus recommended and was implemented throughout Chapters 3, 4
and 7. The optimisation approach should focus on order batching and Tier 3.

If the pick density measure dm is above a critical threshold in Tier 3, the U-configuration will
always be preferred to the Z-configuration as presented in Chapter 6. The question thus arises
whether two configurations of the picking lines should be accessible, since increasing the pick
density measure dm supports order batching in the first two decision tiers and a high pick
density indicates a shorter picking time as pointed out in Chapter 5. Increasing the pick density
measure dm and only keeping the U-configuration alive would simplify the holistic optimisation
of the order picking system of the Retailer.

8.3 Achievements of objectives

The following objectives were identified in Section 1.5.

Objective I: Investigate the order picking system on a unidirectional picking line:

a Describe the layout and operations of the Retailer’s DCs to comprehend the broader
context of the problem;

b Describe the order picking system in detail to emphasise the characteristics of a unidirec-
tional cyclical picking line;

c Describe the different configurations of the order picking system.

Objective II: Perform a literature study:

a Describe the optimisation approaches on a unidirectional cyclical picking line;

b Describe the standard order batching problem and its solution approaches;

c Identify the differences (in layout) to a unidirectional cyclical picking line.

Objective III: Apply order batching to a unidirectional cyclical picking line:

a Model order batching on a unidirectional cyclical picking line;

b Emphasise the specific layout in the order batching approach.
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Objective IV: Build a simulation of the order picking system to measure picking time:

a Build a tool that can measure picking time by simulating the U-configuration of the uni-
directional cyclical picking line;

b Build a tool that can measure picking time by simulating the Z-configuration of the uni-
directional cyclical picking line;

c Identify a predictor for picking time;

c Determine an indicator for the selection of configuration.

Objective V: Apply order batching as an extra layer to all four decision tiers:

a Apply order batching to Tier 1;

b Apply order batching to Tier 2;

c Apply order batching and define Tier 3;

d Apply order batching to Tier 4.

Objective VI: Propose directions for future research:

a Summarise the contributions of this dissertation;

b Give recommendations to practitioners;

c Propose further optimisation ideas for a unidirectional cyclical picking line.

The research question in Section 1.4 is answered by addressing each objective. The achievement
of these objectives is presented.

Objective I was achieved in Chapter 1. The Retailer’s operation and its specific approach to
central planning of inventory and wave picking were pointed out. The set up of the unidirec-
tional cyclical picking line was compared to the unidirectional carousel in detail. Chapters 3
to 7 included information about the unidirectional cyclical picking line. Especially Chapter 6
emphasised the characteristics of the two configurations of the picking system.

Objective II was achieved in Chapter 2. Optimisation approaches on a unidirectional cyclical
picking line have been presented. The standard order batching problem in a single-block par-
allel aisles warehouse layout was described. Several solution approaches such as construction
heuristics and metaheuristics were introduced. The differences in the structural set up of the
unidirectional cyclical picking line layout were pointed out.

Objective III was achieved in Chapters 3 and Chapter 4. Order batching was introduced
to the unidirectional picking line by developing picking location based distance approximation
metrics in Chapter 3. Additionally, layout specific characteristics were taken into account by
introducing the route overlap addition metrics in Chapter 4. These distance approximations
seemed to produce batches that reduce walking distance the most.

Objective IV was achieved in Chapter 5 and extended to include both configurations of the
picking line in Chapter 6. The simulation that was developed can measure picking time in
the U-configuration and the Z-configuration. The pick density measure dm was identified as
a predictor for picking time together with the explanatory variables of orders, locations, and
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picks. Furthermore, dm can be used to indicate when to switch from a Z- to a U-configuration
to generate the shortest total completion time for a picking wave.

Objective V was achieved in Chapter 7. Order batching was applied indirectly through an
increase in pick density measure to the first and second decision tier. In Tier 3, the pick density
measure helped to choose the configuration that generates the shortest picking time. The U- and
Z-configurations were defined as they influence the introduction of order batching by determining
a picker’s path. Order batching was then applied before Tier 4. A batch of orders can be viewed
as one larger order to be sequenced in this last decision tier.

Objective VI will be achieved in this chapter. Firstly, the dissertation was summarised.
Recommendations to practitioners were provided. Further optimisation ideas for a unidirectional
cyclical picking line will be proposed after the contribution of the dissertation.

The three subproblems identified in Section 1.6, namely the introduction of order batching, the
simulation of a picking wave, and the optimisation of all decision tiers in the picking system
were addressed in five articles. The five articles resulted in Chapters 3 to 7 of this dissertation.

8.4 Contribution

The contribution of this dissertation lies in applying new and known heuristics to a new ap-
plication through adaptation, change, and improvement. The research question focused on the
effects of introducing current practices in an attempt to optimise an order picking system on
a unidirectional cyclical picking line in different configurations. By performing the research,
the identified gap in research was closed. Additionally, the application of this dissertation has
practical significance.

There was a gap in research in optimising the order picking system on a unidirectional cyclical
picking line. This problem was addressed through the established picking planning problem of
order batching. Order batching aims at reducing walking distance. To generate batches that fulfil
this aim successfully, information about the picker routes was needed. However, picker routing
before order batching is computationally too expensive. Therefore, distance approximation
measures were developed that take the specific structural set up of the unidirectional cyclical
picking line into account.

It was shown that walking distance can be translated into picking time. While order batching
increases congestion in the picking system, a good number of pickers can reduce the overall
picking time. This was shown in discrete event simulations of the order picking system in a U-
and a Z-configuration.

Additionally, in a holistic optimisation of the order picking system on a unidirectional cyclical
picking line, the general distance pick density measure dm has been defined. It can be used as
a picking time predictor and as an indicator of when to switch from a Z- to a U-configuration.
Increasing the pick density measure supports order batching through the first two decision
tiers and favours the U-configuration in Tier 3. This valuable measure can be helpful in making
decisions about managing the picking system. The effect of introducing the methodology of order
batching and structural changes through different configurations on this specific environment
was investigated.

The practical advantage of the optimisation lies in the efficient operation of the DC. Order
picking is the highest cost of operation. Therefore, it should be carried out in an efficient way.
DC managers can use the results of the simulation model as a decision support tool to improve
the current order picking system.
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This dissertation focuses on the order picking system. Other operations in the DC are not
investigated in detail. Additionally, the layout of the entire DC is fixed and thus not further
investigated. The methodologies chosen for the scope of the dissertation are a representation of
possible methodologies that are not exhaustive.

8.5 Future work

The importance of the pick density measure in reducing overall picking time has been determined
by the simulation. The batching metrics in the Chapters 3 and 4 increase pick density indirectly
(especially by including the characteristics of the unidirectional picking line in the stops non-
identical spans metric). While these metrics minimise the differences between orders and thereby
batch similar orders, a batching metric that maximises dm and thus increases pick density directly
could be developed to deepen the research.

The discrete event simulation developed in this chapter is used as a tool to measure picking time
instead of walking distance. Thereby the effect of order batching on congestion was analysed.
The picking system of the Retailer could be modelled as an agent-based simulation to simulate
the picking system even more exhaustive and thus include picker specific behaviour for example.

Beside the pick density measure, Chapter 5 showed that the explanatory variables, namely
orders, locations, and picks are also statistically significant in predicting the overall picking
time. Therefore, including these explanatory variables in the optimisation algorithms of Tier 1
may result in an even shorter overall picking time in Chapter 7.

Even though the Z-configuration does not generate shorter walking distances if the pick density
reaches a threshold, the Z-configuration could be improved. It might be extended to include
a bidirectional option that allows pickers to change directions if the next item is closer to the
current location. This may result in pickers increasing the pick density through operating in the
Z-configuration. Therefore, Z-picking could be a viable option in Tier 3. If no improvements can
be made to the Z-configuration the option should be taken out to simplify the decision making
process.

To broaden the research further, other methodologies such as self-organising systems could be
introduced. An example of a self-organising system in warehousing is the organisation of pickers
in a bucket brigade (BB). A BB is a variant of a traditional assembly line. Workers are required
to sequentially pass work from one to another. Workers are flexible, since there is no fixed
assignment of a worker to a station. A simple local rule to determine what to do next is followed
by each individual worker. The rule is to carry work from station to station until it is finished or
handed over to the next worker and then go back and start a new task. This enables workers to
share their workload. After the last worker completes the task, the worker walks back upstream
to take over work from the predecessor, who walks back to take over work from her predecessor.
This process is carried out until the first worker begins a new task at the starting point of the
assembly line. As a final requirement, workers in a BB have to be sequenced from slowest to
fasted along the direction of the material flow. However, if a worker catches up to her successor
she has to remain inactive until the station becomes available again. In a DC, bucket brigades
are most successfully implemented in the activity of order picking. Bucket brigades change the
set up of the picking system and the routing of the pickers [6, 7].

The implications of order batching on other operational areas of the Retailer could also be
investigated. The instructions from the central planning department dictate the operations
at the DC. The composition of these instructions could be optimised to improve data mining
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approaches for example. Including the planning department in the optimisation process would
present a company-wide global optimisation approach.
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Glossary

Cycles traversed counts the number of cycles that have to be traversed on a unidirectional
cyclical picking line to pick all items that are requested during a picking wave. It is used
as a distance measurement [78].

Maximal SKU is needed by the maximum number of orders and thus provides a minimum
number of cycles that has to be traversed to pick all orders of a picking wave [78].

Order is the set of store requirements for a single store for all the SKUs that are selected to
be processed in a picking wave [78].

Order picking retrieves products from storage or buffer areas and turns them into specific
orders to respond to a costumer request [29].

Order batching problem assigns orders to batches simultaneously and calculates a picking
tour for each batch to optimise an objective function [36].

Order sequencing problem sequences the orders to be picked by pickers during a picking
wave (Tier 4) [78].

Pick density is a measurement for how often a picker stops to pick at a location in relation to
the distance walked to collect the items [46, 59].

Picking location metrics are distance approximations that are based on each picking location
where a picker has to stop to pick items for an order [55].

Picking wave involves populating a picking line with SKUs to unique locations, the actual
order picking process and removing of excess stock from the picking line [78].

Route overlap metrics are distance approximations based on the span of each order [56].

SKU arrangement problem arranges SKUs on locations around the picking line (Tier 2) [82].

SKU assignment problem assigns DBNs containing SKUs to available picking lines (Tier 1) [80].

Span is the distance that has to be covered by a picker to collect all products of an order, given
a starting location [78].

System configuration problem determines either a U- or a Z-configuration for the picking
wave (Tier 3) [57].

Unidirectional carousel is a picking system that consists of a number of shelves that are
linked together and rotate in one direction in a closed loop. A picker that has a fixed
position in front of the carousel operates it [73].

139
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Unidirectional cyclical picking line is a picking system implemented by a prominent South
African retailer. SKUs are placed in locations around a conveyor belt in the middle of
the set up. Pickers operate it by moving clockwise around the conveyor belt collecting all
requested items [73].

U-configuration moves all pickers in a clockwise direction around a conveyor belt [78].

Z-configuration makes pickers cross the aisles if the next required SKU on the other side is
closer than the SKU on the same side [58].
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APPENDIX A

A.1 Comparison of different batching metrics on sample picking
waves in Durban

The Retailer’s DC in Durban is made up of 12 picking lines. Each picking line consists of
56 locations with a conveyor belt in the middle. The 50 sample picking lines presented in
Chapter 3 and 4 were recorded in Durban and are available online [79]. The discrete event
simulation presented in Chapter 5 has been tested on these sample picking waves. Table A.1
illustrates the comparison between no batching and different batching metrics (random, stops
ratio, spans ratio, and stops non-identical spans) in terms of number of cycles, total picking time
and pick density measure as described in Section 5.3.
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