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Abstract 

Tuberculosis (TB) remains difficult to control despite effective treatment and the presence of 

more sensitive diagnostic tools. Immunity against Mycobacterium tuberculosis (Mtb) infection 

can further be impacted by other concomitant infections (like human immunodeficiency virus) 

and non-communicable diseases (like Type 2 diabetes (T2D)) rendering individuals 

susceptible to TB. T2D patients are three times more likely to progress from latent to active 

TB. Therefore, it is crucial to better understand why people with T2D are at increased risk for 

TB progression. We hypothesize that distinct bio-signatures exist in whole blood of TB patients 

and close contacts (CCs) of TB patients with latent TB infection (LTBI) with T2D compared to 

those without T2D and that these bio-signatures correlate with impaired immune responses to 

Mtb in peripheral blood mononuclear cells (PBMCs) and monocytes (MNs) in CCs.  

RNA was extracted from whole blood stimulated with Mtb antigens using the Quantiferon TB 

Gold in-tube assay and NanoString analysis was performed to determine whether specific 

transcription signatures exist between CCs with LTBI with and without T2D. We characterized 

serum cytokines and endocrine signatures by luminex and enzyme-linked immunosorbent 

assay. PBMCs and MNs from the same individuals were isolated and stimulated with live 

H37Rv Mtb to determine Mtb uptake and killing. Bacterial uptake and killing was correlated 

with HbA1c to determine whether there was an association with glycaemic control. RNA from 

TB patients, TB patients with transient hyperglycaemia (TB-THG) and TB patients with T2D 

(TB-T2D) was also extracted from whole blood stimulated with Mtb antigens and analysed 

using NanoString. Interleukin-22 was also measured in serum from these patients. PBMCs 

from TB patients were further used to determine the frequency of mucosal associated invariant 

T (MAIT) cells before, during and after TB treatment.  

Fifteen gene transcripts were downregulated in TB-T2D compared to TB and TB-THG 

patients. We identified a gene signature that was able to differentiate between TB-THG and 

TB-T2D. We further identified a gene signature unique to the CCs with LTBI and T2D, which 

could be associated with an increased risk of developing active TB. Differences in cytokines, 

hormones, lipids, differential blood counts and Mtb uptake was observed when comparing 

CCs with and without T2D. Differential expression of IL-6, IL-18 and IL-22 in CCs with and 

without T2D highlights the differential regulation of the immune response during T2D. We 

showed that the frequency of MAIT cells in the periphery of TB-T2D was significantly lower 

compared to TB-THG at baseline, suggesting the MAIT cells in TB-T2D have redistributed to 

either the lung or adipose tissue. The increase of MAIT cells in the periphery at month 2 

compared to baseline could mean that MAIT cells population was restored in the blood due to 

TB treatment.  
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Our gene expression results suggests that downregulated gene transcripts may be involved 

in pathways that favour immunopathology in TB-T2D. In addition, gene signatures 

differentiating THG from T2D could be useful in preventing the unnecessary diagnosis of 

patients with THG as having T2D. Differential gene expression in CCs with LTBI with and 

without T2D shows potential to be involved in the mechanisms leading to susceptibility to 

active TB. Cytokine and hormone data confirms that during T2D, the immune response is 

differentially regulated which may influence the response to infections. Lastly, MAIT cell 

frequency could be useful for monitoring treatment responses in TB-T2D patients. 
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Abstrak 

Tuberkulose (TB) bly moeilik om te beheer ten spyte van effektiewe behandeling en die 

teenwoordigheid van meer sensitiewe diagnostiese toetse. Immuniteit teen Mycobacterium 

tuberkulose (Mtb) kan verder beïnvloed word deur ander gepaardgaande infeksies (soos 

menslike immuniteitsgebrekvirus) en nie-oordraagbare siektes (soos tipe 2 diabetes (T2D)) 

wat individue vatbaar maak vir TB. Pasiënte met T2D het ŉ groter kans om van latent na 

aktiewe TB te vorder en is dit noodsaaklik om te verstaan waarom mense met T2D ‘n groter 

risiko vir TB-progressie het. Ons veronderstel dat daar afsonderlike bio-handtekeninge in heel 

bloed van TB pasiënte asook nabye kontakte (CCs) van TB pasiënte met latente TB-infeksie 

(LTBI) en T2D in vergelyking met dié sonder T2D bestaan en dat hierdie bio-handtekeninge 

met verswakte immuunresponse teenoor Mtb in mononukleêr selle in perifere bloed (PBMCs) 

en monosiete (MNs) van CCs korreleer. 

RNS is uit volbloed wat met Mtb-antigene (Quantiferon TB Gold toets) gestimuleer is onttrek. 

Nanostring-analise is uitgevoer om vas te stel of spesifieke transkripsie-patrone tussen CCs 

met LTBI en met of sonder T2D bestaan. Ons het serum sitokiene en endokriene 

handtekeninge identifiseer deur luminex en ensien-gekoppelde Immunosorbent-toetse. 

PBMCs en MNs van dieselfde individue is geïsoleer en met lewendige H37Rv Mtb gestimuleer 

om Mtb opname en beheer te bepaal. Bakteriese opname en dood was met HbA1c 

gekorreleer om vas te stel of daar 'n verband met bloedsuiker was. RNS van TB-pasiënte, TB-

pasiënte met oorgang hiperglukemie (TB-THG) en TB-pasiënte met T2D (TB-T2D) was ook 

uit heelbloed  wat met Mtb-antigene gestimuleers was onttrek en met behulp van die 

Nanostring tegnologie geanaliseer. IL-22 was ook in the serum van hierdie pasiënte gemeet. 

PBMCs van TB pasiënte is verder gebruik om die frekwensie van ‘mucosal associated 

invariant’ T (MAIT) selle voor, tydens en na TB behandeling te bepaal. 

Vyftien geen-transkripsies is in TB-T2D afwaarts gereguleer in vergelyking met TB- en TB-

THG pasiënte. Ons het 'n geen-handtekening geïdentifiseer wat in staat was om tussen TB-

THG en TB-T2D te onderskei. Ons het verder 'n handtekening van gene geïdentifiseer wat 

uniek is aan die CCs met LTBI en T2D wat met 'n verhoogde risiko om aktiewe TB te 

ontwikkeling geassosieer kan word. Verskille in sitokiene, hormone, lipiede, differensiële 

bloedtellings en Mtb opname is waargeneem tydens die vergelyking van CC's met en sonder 

T2D. Differensiële uitdrukking van IL-6, IL-18 en IL-22 in CCs met LTBI met en sonder T2D 

beklemtoon die differensiële regulering van die immuunrespons tydens T2D. Ons het getoon 

dat die frekwensie van MAIT selle in die sirkulasie van TB-T2D laer was as TB-THG by 

basislyn, wat daarop dui dat die MAIT-selle in TB-T2D na die long- of vetweefsel migreer. Die 

toename van MAIT selle in die bloed by maand 2 in vergelyking met basislyn kan beteken dat 

MAIT selpopulasies in die bloed herstel, as gevolg van TB behandeling. 
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Ons geen-uitdrukking resultate dui daarop dat af-gereguleerde geen-transkripsies betrokke 

kan wees in immuunpaaie wat patologie in TB-T2D bevoordeel. Daarbenewens kan geen-

handtekeninge wat THG van T2D onderskei, nuttig wees om ŉ misdiagnose van THG as T2D 

te vermy. Differensiële geen-uitdrukking by individue met LTBI met en sonder T2D toon 

potensiaal om betrokke te wees by die meganismes wat lei tot vatbaarheid vir aktiewe TB. 

Sitokien- en hormoon data bevestig dat tydens T2D, die immuunrespons differensieel 

gereguleer word, wat die respons op infeksies kan beïnvloed. Laastens, MAIT-sel frekwensies 

kan nuttig wees vir die monitering van behandelings uitkomste in TB-T2D-pasiënte. 
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CHAPTER 1 

Literature review and introduction 

1. Diabetes 

1.1 Diabetes prevalence 

Diabetes mellitus (DM) is a chronic disease that occurs either because there are defects in 

beta cell function in the pancreatic islets, which then cannot produce adequate levels of insulin, 

like in type 1 diabetes (T1D), or the produced insulin cannot be utilized by insulin responsive 

tissues such as muscles, liver and adipocytes, like in type 2 diabetes (T2D). T2D manifests 

due to insulin resistance and/or pancreatic β-cell failure (decreased/no insulin secretion). In 

both cases, hyperglycemia occur, meaning individuals with T2D may still be secreting insulin, 

but do not respond to the insulin due to the increased insulin resistance. Chronic 

hyperglycaemia subsequently decreases beta cell function and insulin secretion as a result of 

the glucotoxicity, lipotoxicity, and enhanced oxidative stress (Guillausseau et al. 2008; 

Upadhyay et al. 2017).  T1D is the least prevalent form of diabetes and was, for many years, 

classified as the inherited form of the disease until it became evident that genetic factors and 

auto-immune reactions play a role in the development of T1D (Florez et al. 2003).  

In 2017, it was estimated that about 425 million people of the age group 20-79 years have 

T2D and this number is expected to reach 629 million by 2045 (Cho et al. 2018). Approximately 

five million people died due to T2D, globally in 2017 ( Cho et al. 2018). Asia contributes to 

about 60% of the global T2D prevalence with India having about 62 million people living with 

T2D and more than 77 million with pre-diabetes (Kaveeshwar and Cornwall, 2014). Of the 

latter, 70% will continue to develop T2D (Tabák et al. 2012). Pre-diabetes refers to impaired 

glucose tolerance, impaired fasting glucose (IFG) or intermediate hyperglycaemia (Echouffo-

Tcheugui and Dagogo-Jack, 2012). It is associated with micro-and macro-vascular 

complications, as well as an increased risk to progress to T2D (Brannick et al. 2016).  It is 

therefore important to closely monitor patients with pre-diabetes in an attempt to prevent them 

from developing T2D. In Sub-Saharan Africa (SSA), there is an estimated 15.5 million people 

with T2D between the ages of 20 and 79, and 1.8 million of those reside in South Africa 

(International Diabetes Federation, 2017). An estimated 69.2% of people living with T2D in 

SSA are undiagnosed and therefore at higher risk of developing harmful and costly 

complications (International Diabetes Federation,2017). In South Africa, the prevalence of 

self-reported T2D is 9.2% and increases with age: from 7.1% amongst 50–59-year olds to 

10.6% amongst 60–69-year olds and 12.4% amongst those 70 years and older (Werfalli et al. 

2018). In the Western Cape Province of South Africa, the highest prevalence of T2D has been 

reported in the Coloured population (Erasmus et al. 2012), who also has an undiagnosed T2D 

prevalence of 18.1% (Erasmus et al. 2012). This suggests that there might be even more 
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people with T2D because there are patients with T2D who remain undiagnosed and who are 

unaware of the damage caused by the disease (International Diabetes Federation, 2015). As 

a result, controlling this disease will be more difficult. As urbanisation increases and 

populations age, T2D will pose an ever-growing threat in these communities (International 

Diabetes Federation, 2017). 

1.2 Diagnosis of diabetes 

Measurements of plasma glucose and glycated haemoglobin A1c (HbA1c) are used as 

diagnostic tools for T2D (Florkowski, 2013). The World Health Organization (WHO) together 

with the National Diabetes Data Group in the US recommend the use of the oral glucose 

tolerance test (OGTT) measuring both fasting and two hours plasma glucose concentrations 

(National Diabetes Data Group, 1979). According to the American Diabetes Association (ADA) 

a fasting blood glucose level (FBG) of ≥ 7.0 mmol/L or a blood glucose level of ≥ 11 mmol/L 

after ingesting 75 g of glucose indicates that a person has DM (ADA, 2011). Impaired glucose 

tolerance (IGT) is characterised by a blood glucose level between 7.8 and 11 mmol/L, after 

ingesting glucose, and impaired fasting glucose (IFG) as a FBG between 6.1 and 6.9 mmol/L 

(ADA, 2011). The WHO recommends a FBG cut off of 7 mmol/L for diagnosis of DM (ADA, 

2011). Both the ADA and WHO recommended HbA1c, with a cut off of ≥ 6.5%, as an additional 

test to diagnose DM (International expert committee, 2009; WHO, 2011), however, OGTT 

remains the gold standard.. Unlike real time glucose measurements, HbA1c gives an 

indication of average blood glucose concentrations over two to three months period (Reynolds 

et al. 2006). The advantage of HbA1c measurements is that individuals are not required to be 

fasted, it requires less time to perform compared to an OGTT and the pre-analytical stability 

of HbA1c is high. Despite the advantage of HbA1c, the levels are known to vary in racial 

groups, with Black Africans having higher HbA1c compared to caucasians (Herman et al. 

2007; Kirk et al. 2013). In African Americans, changing from using glucose to HbA1c, resulted 

in about 650 000 missed T2D cases (Paterson, 2017). Furthermore, the glucose-6-phosphate 

dehydrogenase (G6PD) variant rs1050828 is common in people of African and African 

American decent and impacts HbA1c outcome, which if not recognised, can result in 

undiagnosed T2D when using HbA1c (Paterson, 2017). People with hemizygous T, 

heterozygous and homozygous T allele were found to have low HbA1c compared to those 

without T and also had lower red blood cell counts, hemotocrit and haemoglobin. It was 

suggested that the effect of rs1050828 variant on HbA1c is likely through reducing red blood 

cell lifespan (Paterson, 2017). As G6PD deficiency can be clinically ‘silent’ until illness 

strikes,some researchers suggest looking into the possible benefits of screening the G6PD 

genotype in parallel to testing HbA1c to diagnose T2D, especially in populations with African 

ancestry or population groups where the G6PD deficiency is common to avoid missed or 
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delayed diagnosis of the disease (Wheeler et al. 2017). Although the OGTT is the gold 

standard for T2D diagnosis, it is more challenging to perform as it requires overnight fasting 

(Florkowski, 2013). Other pre-test preparations are recommended such as ensuring that an 

appropriate diet was followed for three days prior to the test (Florkowski, 2013). The test itself 

is time-consuming, taking at least two hours. In addition, when measuring plasma glucose 

concentrations, blood should be processed within several minutes after collection, because 

red blood cells continue to consume glucose which could lead to false negative results (Bruns 

and Knowler, 2009). Missed T2D cases could be due to the lack of standardized testing for 

T2D (Matsha et al. 2016) and more studies should focus on diagnostic tools to improve 

certainty of the estimates of T2D prevalence. Earlier detection of T2D also has a benefit on 

the management of disease outcomes such as glycaemic control, which in turn will reduce the 

risk of developing T2D complications. 

1.3 Diabetes treatment 

Traditionally, diet modifications have been the basis for DM management. There are several 

classes of medications for the treatment of DM, which are used as an adjunct to diet and 

exercise. These include biguanides, sulfonylureas, meglitinide derivatives, alpha-glucosidase 

inhibitors, thiazolidinediones (TZDs), glucagon like peptide–1 (GLP-1) agonists, dipeptidyl 

peptidase IV (DPP-4) inhibitors, selective sodium-glucose transporter-2 (SGLT-2) inhibitors, 

and insulin (National diabetes service scheme, 2016). It is important that T2D medications be 

reviewed by patients’ general practitioner every year as part of the T2D annual cycle of care 

(National diabetes service scheme, 2016). 

Biguanides are the first line treatment for T2D, an example is metformin (Inzucchi et al. 2015). 

Metformin mediates its effects through two mechanisms to improve blood glucose 

concentration, it inhibits gluconeogenesis and enhances peripheral insulin sensitivity 

(Goodarzi and Bryer-ash, 2005). A dose of 500 mg metformin is initially prescribed to patients, 

once or twice a day with breakfast or/and dinner and may be increased after a week to 850 to 

1000 mg, twice a day, depending on how the patient responds to the treatment and whether 

the patient experiences any side effects (Upapdyay et al. 2017). Metformin can be used alone 

or in combination with sulfonylureas, TZDs or insulin (Khardori, 2018). On its own, it reduces 

HbA1c by an average of 1.5% (Knowles et al. 2002) and reduces the progression of pre-

diabetes to T2D by 31%. Thus, it is thought to be a good prophylaxis for T2D in individuals 

with pre-diabetes (Inzucchi et al. 2015). Metformin also reduces body weight and in 

combination with insulin therapy, reduces complications associated with DM such as 

macrovascular disease, heart failure, stroke and other peripheral artery diseases (Kooy et al. 

2009). Sulfonylureas are the second most prescribed drugs for T2D. They stimulate the 

pancreatic beta cells to secrete insulin (Mendez et al. 2014). These drugs are associated with 
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a reduction of HbA1c by 1-2% and blood glucose levels of about 20% (Bolen et al. 2006). 

They are used both as monotherapy and in combination with insulin and other oral drugs for 

treating hyperglycaemia. An example is Glimepiride which is the only sulfonylurea approved 

by the food and drug administration (FDA) for combination therapy. Other examples include 

Glyburide and Glipizide. Meglitinide functions similarly to sulfonylurea by inducing the 

production of insulin by the pancreatic beta cells and examples include Repaglinide and 

Nateglinide (Melander, 2004). These drugs are FDA approved for monotherapy use and in 

combination with Metformin or TZDs (Khardori, 2018). TZDs include Pioglitazone and 

Rosiglitazone. These drugs improves the target cell responses to insulin by stimulating 

glucose uptake through the nuclear receptor called peroxisome proliferator-activated receptor-

γ (PPARγ) in skeletal muscles and adipose tissue and as a result, lower glucose plasma levels 

(Ahmadian et al. 2013). TZDs can be used as monotherapy and in combination with 

sulfonylureas and/or metformin and insulin (Khardori, 2018). Alpha-Glucosidase inhibitors 

promote the body to break down starchy foods and sugar, examples include Acarbose and 

Miglitol (Mendez et al. 2014). These drugs lower the blood glucose levels. They can be used 

as monotherapy or in combination with sulfonylurea (Khardori, 2018). Incretin based therapies 

consists of GLP-1 receptor agonists and DPP-4 inhibitors (Inzucchi et al. 2012). GLP-1 

receptor agonists are injectable drugs mimicking the endogenous GLP-1 which stimulates 

glucose-dependent insulin release to normalize hyperglycaemia (Meier, 2012). Exenatide, 

Albiglutide and Liraglutide are some of the examples of GLP-1 analogues and function by 

improving glycaemic control. Exenatide is administered twice daily while Albiglutide and 

Liraglutide are administered once daily (Khardori, 2018). DPP-4 is an endogenous metabolic 

enzyme that is involved in the regulation of glucose homeostasis if inhibited (Meier 2012). 

DPP-4 assists the body to continue releasing insulin by increasing the plasma levels of GLP-

1 through the inhibition of its proteolytic degradation (Meier, 2012). DPP-4 include drugs such 

as Sitagliptin, Saxagliptin, Linagliptin and Alogliptin. DPP-4 inhibitors can be used in 

combination with metformin, TZDs and sulfonylurea (Khardori, 2018). SGLT-2 inhibitors are 

agents that lower the glucose concentrations in the kidneys by increasing urinary glucose 

release (Ferrannini and Solini, 2012). Examples include Canagliflozin, Dapagliflozin and 

Empagliflozin (Khardori, 2018). 

In T2D, the use of insulin is only prescribed when beta cells are exhausted (Li et al. 2015). 

Insulin treatment is divided into three categories according to their mechanism of action, which 

are basal (long-acting), prandial (rapid-acting) or pre-mixed (mix of long- and rapid-acting). 

Basal insulin treatment uses a human preparation called protamine Hagedorn (NPH) as well 

as other insulin analogues. The analogues include detemir and glargine. The insulin 

analogues have a prolonged action and result in lower hypoglycaemia rates compared to NPH. 

Stellenbosch University https://scholar.sun.ac.za



5 
 

Their HbA1c reducing abilities are however comparable. The analogues regulate early 

postprandial hyperglycaemia and late postprandial hypoglycaemia (Hirsch, 2005). The use of 

pre-mixed insulin, which is a combination of basal and prandial insulin, is convenient as it 

reduces the number of daily insulin injections and simplify insulin treatment. Studies 

comparing the three insulin types show that the HbA1c lowering capabilities are comparable 

while basal insulin reduces the risk of hypoglycaemia and weight gain (Holman et al. 2009). 

2. Tuberculosis 

2.1. Tuberculosis prevalence 

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis (Mtb). The bacteria 

primarily affect the lungs of the infected individual. Despite being a curable disease, TB 

remains one of the top 10 causes of death globally (WHO, 2018). In 2017, there were 10 

million incident cases of TB in the world and 1.3 million people died because of TB (Figure 

1.1) (WHO, 2018). About 82% of TB deaths occurred in the African Region and the South-

East Asia Region in 2017 (WHO, 2018). South Africa has the third highest incidence of TB 

following China and India and in 2017 the WHO estimated the incident of TB to be 500 000 in 

South Africa (Figure 1.1) (WHO, 2018). It is estimated that 80% of the South African population 

is latently infected with Mtb (Kanabus, 2017). 

 
Figure 1.1: TB incidence of the highest TB endemic areas in the world reported in 2017 (WHO, 2018). 

 

Approximately 25% of people worldwide are infected with Mtb (Houben and Dodd, 2016). In 

most individuals Mtb remains in a latent, asymptomatic state called latent TB (LTBI) and 

approximately 5-10% progress to the active, symptomatic form of TB within the first two years 

after infection (Comstock et al. 1974; Lillebaek et al. 2002). Latently infected individuals are at 
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increased risk of developing active TB when their immune systems becomes compromised 

due to infection with human immunodeficiency virus (HIV) (Wood et al. 2011) or have T2D 

(Jeon and Murray, 2008).  

In addition, there are about 157 505 people in South Africa who do not know that they have 

TB (WHO, 2018) and who unknowingly continue to spread the disease. Approximately 54 

million lives were saved through TB diagnosis and treatment between 2000 and 2017 (WHO, 

2018), which shows the importance of identifying and treating patients as a means to control 

the TB epidemic. Furthermore, to prevent and control TB disease, Mycobacterium bovis 

Bacillus Calmette-Guerin (BCG) is widely used as vaccine to prevent TB meningitis associated 

deaths in infants and young children (Trunz et al. 2006), however, it does not prevent the 

development of pulmonary TB in adults (Pai et al. 2016). Emphasis has therefore been placed 

on the development of more efficacious vaccines to prevent TB disease in adults. 

2.2 Diagnostic tools for TB infection and disease 

The successful management of TB depends on the ability to detect patients with the disease 

and initiating TB treatment. Currently, there are no diagnostic tools that can accurately 

differentiate between LTBI and TB disease (Tebruegge et al. 2010). Methods widely used to 

diagnose TB include microbiological, molecular as well as immunological tests and X-ray.  

2.2.1 Immunological tests determine whether a patient’s T cells have been sensitized to Mtb 

specific antigens (Andersen et al. 2000). The Tuberculin skin test (TST) using purified protein 

derivatives (PPD) is used to test for Mtb infection. The procedure involves injecting tuberculin 

PPD under the skin of the inner forearm. If the individual was exposed or infected with Mtb 

and has a memory T cell response, an induration ≥ 5 mm in children and HIV positive 

individuals and ≥ 10 mm in other high risk groups will form after 48–72 hours (CDC, 2016). It 

is however less specific as it can result in false positive readouts due to repeated TST testing, 

antigenic cross reactivity with BCG after vaccination or infection with non-tuberculous 

mycobacterium (NTM) (Tebruegge et al. 2010).  

Interferon-gamma (IFN-y) release assays (IGRA) such as the Quantiferon (QFT) TB Gold in-

tube, QFT TB Gold Plus and T-SPOT TB test are also used for the diagnosis of Mtb infection. 

These assays measure cell mediated immune responses in individuals suspected of being 

infected with Mtb. The QFT TB Gold in-tube test consists of three tubes coated with the 

following; a nil tube, containing no additives and serves as negative control to adjust for 

background IFN-y production, a TB-antigen tube, coated with an antigen cocktail containing 

region of difference-1 (RD-1) encoded Mtb antigens (early secretory antigen-6 (ESAT-6), 

culture filtrate protein-10 (CFP-10) and TB 7.7) and a mitogen tube, coated with 

phytohaemagglutin-P (PHA) that serves as a positive control. Whole blood is incubated 
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overnight in the three tubes during which CD4+ T cells are stimulated to release IFN-y (Pai et 

al. 2008), which is measured by ELISA (Yi et al. 2016). The QFT TB Gold Plus assay utilizes 

two antigen tubes. The TB-1 antigen tube contains larger CFP-10 and ESAT-6 peptides that 

stimulates CD4+ T cells and the TB-2 antigen tube contains shorter peptides to stimulate CD8+ 

T cells, resulting in an increase in the sensitivity of the test (Yi et al. 2016; Losi et al. 2016). 

CD8+ sensitization is important because the IFN-ү is not only produced by CD4+ cells, also 

CD8+ cells (Petruccioli et al. 2016). CD8+ T cell activation is useful in immunocompromised 

individuals where there are poor CD4+ responses (Petruccioli et al. 2016).  

Similarly to the QFT, the T-SPOT TB assay measures IFN-y produced by activated T cells 

after Mtb antigen stimulation and by doing so indicates whether a person has developed a 

memory T cell response against Mtb (Hill et al. 2005). PBMCs are isolated and incubated with 

ESAT-6 and CFP-10 in plates coated with anti-IFN-y antibodies (Wang et al. 2007). The IFN-

y secreted by sensitized T cells is captured by specific antibodies on the plate and presented 

as spots (Oxford Immunote Ltd, Edinburgh, UK; Zhu et al. 2014). Depending on whether a 

patient presents with symptoms associated with TB or show lesions suggesting TB on chest 

X-ray or computerised tomography (CT) scan result, they will be diagnosed as either being 

LTBI or having TB when their T-SPOT result is positive (CDC, 2000).  

2.2.2 Microbiological tests include staining for acid-fast bacilli in sputum smear as well as 

culturing of sputum samples. These techniques are not specific to Mtb and are time consuming 

(Murray and Thompson, 1980). Direct sputum smear microscopy utilizes the Ziehl Nielsen 

acid-fast staining to visualize Mycobacterial species including Mtb, M. ulcerans, M. leprae and 

NTMs using a microscope. A minimum of 5000 bacilli/mL are required for the test to be positive 

(Murray and Thompson, 1980). Therefore, a negative smear does not necessarily rule out TB 

and a positive smear does not confirm Mtb infection but rather the presence of Mycobacterial 

species. 

The mycobacteria growth indicator tube (MGIT) automated mycobacterial detection system 

(BD BACTEC MGIT 960 system, BD) is the gold standard for TB diagnosis and requires at 

least 10 bacilli/mL for a positive diagnosis (Siddiqi and Rusch-Gerdes, 2006). The 

decontaminated sputum sample is inoculated in the tube and then incubated at 36°C and 

monitored continuously by a BACTEC 960 instrument for 42 days before the test can be 

deemed negative. The MGIT system allows the detection of mycobacterial growth using a 

fluorescent indicator embedded in silicone at the bottom of the tube. The fluorescent indicator 

is quenched by oxygen present in the broth. Once the growing mycobacteria replicate and 

utilise the available oxygen, the unmasked fluorescence is detected by the system and flagged 

as positive (O'Brien, 2016). 
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2.2.3 Molecular test 

The GeneXpert MTB/RIF assay (GeneXpert MTB/RIF; Cepheid, Sunnyvale, CA) is a 

molecular test based on the Polymerase Chain Reaction (PCR) principle. The GeneXpert 

MTB/RIF assay was developed in 2009 to simultaneously diagnose Mtb and rifampicin (RIF) 

drug resistance within two hours (Blakemore et al. 2010). This test is recommended for use 

as an initial diagnostic tool when MDR-TB is suspected and during HIV-TB co-infection (WHO, 

2010), but is not yet a replacement for culture. In March 2017, the GeneXpert Ultra (GeneXpert 

MTB/RIF Ultra, Cepheid) was launched which has an increased sensitivity that is comparable 

to that of the MGIT (WHO, 2018). The WHO recommendations for the use of Xpert MTB/RIF 

also apply to the use of Ultra as the initial diagnostic test for all adults and children with signs 

and symptoms of TB (WHO, 2018). 

2.3. Treatment of TB 

LTBI treatment is not common in South Africa, because individuals with LTBI are likely to 

become re-infected with Mtb in such a high TB burden setting, and therefore prophylactic 

treatment is not only not effective (Churchyard et al. 2012), but may also fuel drug resistance. 

Prophylactic treatment is only given to children below the age of five years who are close 

contacts (CCs) of TB patients (WHO, 2018), individuals with LTBI who are HIV positive, 

women who are pregnant and individuals with other immunosuppressive conditions 

(Leutkemeyer, 2013). In low TB incident countries, on the other hand, preventative treatment 

is given to individuals with LTBI to prevent the development of TB (Lönnroth et al. 2015). The 

preventative therapy options includes a weekly dose of Rifapentine and INH for three to four 

months, a daily dose of RIF plus INH for three months or a daily dose of RIF for three to four 

months (WHO, 2018). 

2.3.1 The standard TB treatment reduces the number of actively growing bacteria, prevents 

transmission of the bacilli and prevents death (Nahid et al. 2016). The standard first line 

treatment regimen for new and previously treated TB patients includes Ethambutol (EMB), 

INH, RIF and Pyrazinamide (PZA). Standard TB treatment consists of two phases; an initial 

two months intensive phase where EMB, INH, RIF and PZA are given followed by a 

continuation phase of four months where INH and RIF are given (WHO, 2018). Directly 

observed treatment short course (DOTS) is a strategy used, where patients are observed 

swallowing their medication to ensure completion of therapy (Nahid et al. 2016).  

2.3.2 The treatment regimen for drug resistant TB, including RIF resistant TB (RR-TB), 

multi-drug resistant TB (MDR-TB) and extensively drug resistant TB (XDR-TB) is different from 

the standard TB treatment and includes second-line drugs. MDR-TB occurs when Mtb is 

resistant to RIF and INH and both RR-TB and MDR-TB requires treatment with second-line 

drugs (WHO, 2018). XDR-TB occurs when Mtb acquires resistance to INH, RIF, at least one 
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fluoroquinolones (Levofloxacin and Moxifloxacin (Mfx)) and a second-line injectable drug 

(Amikacin, Capreomycin or Kanamycin) (WHO, 2018). In 2018, the WHO convened a 

Guideline Development Group who is revising the guidelines of the drug resistant TB regimen 

including the use of the shorter nine months MDR-TB regimen (WHO, 2018). The new 

guidelines will be released late in 2018. Medicines to select as first priority include the later 

generation of fluoroquinolones (levofloxacin or moxifloxacin), bedaquiline and linezolid. Other 

agents are included based on their relative potency. The use of injectable drugs is not required 

anymore and longer oral-only regimens are still available for many patients. The older 

injectable drugs, kanamycin and capreomycin, are no longer recommended for use by the 

WHO due to their association with severe side effects such as nephrotoxicity and ototoxicity.

  

3. Latent Mtb infection and T2D 

Participants who are latently infected with Mtb and who have T2D are at a three times 

increased risk of developing TB compared to a healthy individual with LTBI (Jeon and Murray, 

2008). Therefore, screening TB contacts for T2D is effective for identifying new T2D cases at 

high risk of developing TB (Restrepo et al. 2018). We enrolled 95 contacts after screening 247 

individuals for T2D in South Africa and demonstrated that 17.4 % of TB contacts in our South 

African cohort have T2D and almost half of these individuals (43.9 %) are not aware that they 

have this disease (Restrepo et al. 2018). The factors associated with T2D such as 

hyperglycaemia and dyslipidaemia may play a role in the altered immune function associated 

with T2D, increasing the risk of TB development in individuals with LTBI and T2D (Restrepo 

et al. 2018). The immune profile of individuals with LTBI and T2D compared to LTBI without 

T2D have been characterized by reduced T helper 1 (Th1), Th17 and Th2 associated 

cytokines (Kumar et al. 2014; Figure 1.2). Cytokines associated with Th1 (interleukin-2 (IL-2), 

IFN-ү, Tumour necrosis factor- α (TNF-α) and Th17 (IL-17 A, IL-17F, IL-22) cells as well as 

the IL-1 family (IL-1α, IL-1β, IL-18) are important in resistance to TB (Cooper and Khader, 

2008; O’Garra et al. 2013). In plasma of individuals with LTBI and T2D (LTBI-T2D), IL-2, IFN-

y and TNF-α were significantly lower compared to LTBI (without T2D) (Kumar et al. 2014). IL-

17F was significanlty lower while IL-22 was significantly higher in LTBI-T2D compared to LTBI. 

IL-1 family cytokines such as IL-1β and IL-18 were lower in LTBI-T2D compared to LTBI and 

IL-1α was not different between the two groups (Kumar et al. 2014). The pro-inflammatory 

cytokines, IL-6, IL-12 and granulocyte macrophage-colony stimulating factor (GM-CSF) 

measured in plasma were the same in both groups (Kumar et al. 2014). Th2 (IL-4, IL-5, IL-13) 

associated and regulatory (IL-10, transforming growth factor-β (TGF-β)) cytokines, which play 

a role in the progression to TB disease (O’Garra et al. 2013), were not significantly different in 

plasma between LTBI-T2D and LTBI (Kumar et al. 2014). Only IL-10 was significantly lower 
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in plasma of LTBI-T2D patients compared to individuals with LTBI. The concentration of IFN-

ү, TNF-α, IL-17A and IL-10 measured in whole blood stimulated with Mtb antigens (CFP-10, 

ESAT-6 and TB7.7), using the QFT-intube assay, are significantly lower in LTBI-T2D patients 

compared to individuals with LTBI (Kumar et al. 2014). 

 

        

Figure 1.2 The influence of T2D on the onset of TB, dysregulated immune response and clinical presentation of 

the TB during TB-T2D comborbidity (adapted from (Restrepo, 2016)). 

 

4. TB and T2D 

Globally, 790 000 TB cases were attributable to T2D and 880 000 people who had HIV also 

had TB (WHO, 2018). HIV infection is accountable for 8.7% and T2D for 7.5% of TB cases in 

the world in 2017 (WHO, 2018). However, since there are about 36 million HIV infected people 

and 460 million people with T2D (WHO, 2018), it is said that there will be more TB-T2D cases 

than TB-HIV (Lonnroth et al. 2014 ). About 75% of all people with T2D live in low- and middle-

income countries, where TB also flourishes (Kapur et al. 2016). About 25% of TB cases in 

India has T2D and 50% stress induced hyperglycaemia (Viswanathan et al. 2012). Among the 

TB patients with T2D, approximately 60% were previously diagnosed with T2D, which may 

have a negative effect on the immune response and could enhance TB morbidity 

(Viswanathan et al. 2012). In South India in 2011, T2D was a greater risk factor for TB (30.9%) 

than HIV (10.6%) (Gupta et al. 2011). A Mexican study showed that 39% of patients with T2D 

had TB, which is roughly five times more than TB cases attributable to HIV (Restrepo et al. 

2011). In SSA, where the TB incidence is high, little is known about how T2D affects the TB 

burden (Skowroński et al. 2014), and there is an urgent need for such studies. Stopping the 
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rise of T2D globally would avoid 6 million new incident cases and 1.1 million TB deaths during 

a 20 year period (Pan et al. 2015). Should interventions reduce the T2D incidence by 35%, 

7.8 million TB cases and 1.5 million TB deaths could be averted by 2035 (Pan et al. 2015). An 

estimated increase in T2D in TB endemic areas contributes to the challenge to control TB 

disease (International Diabetes Federation, 2015; Pereira et al. 2016). Patients with poorly 

controlled T2D, in particular, are at increased risk of developing active TB (Baker et al 2012) 

and are at increased risk of poor TB treatment outcome and death (Jeon and Murray, 2008; 

Dolley et al. 2009; Restrepo et al. 2011) (Figure 1.2).  

Although studies have generally identified T2D as a risk factor for TB disease development 

rather than TB disease as a risk factor for the onset of T2D (Stevenson et al. 2007; Harries et 

al. 2010), we cannot rule out this possibility, as a contributing factor to the increase in TB-T2D 

cases (Critchley et al. 2017), as TB (in absence of T2D) is well known to be associated with 

transient stress induced hyperglycaemia (Magee et al. 2018). T2D is not only associated with 

TB disease progression from LTBI, but is also linked to more severe clinical presentation of 

TB disease. Patients with TB-T2D are more likely to present with pulmonary and not extra-

pulmonary TB, have more cavities, increased TB severity scores, they are contagious for 

longer due to delayed culture conversion rates and at increased risk of MDR-TB (Fisher-Hoch 

et al. 2008; Gil-Santana et al. 2016; Liu et al. 2017) (Figure 1.2; Restrepo, 2016). The latter is 

somewhat controversial as some studies do not show an association between T2D and MDR-

TB (Magee et al. 2013; Chiang et al. 2015). TB-T2D patients compared to TB with no T2D are 

characterized by alterations in Th1 and Th17 cytokines (Kumar et al. 2013). Th1 (IL-2, IFN-y, 

TNF-α), Th17 (IL-17A, IL-22) and regulatory (IL-10 and TGF-β) cytokines were previously 

compared between TB-T2D and TB patients (Kumar et al. 2013). IL-22 was significantly lower 

in TB-T2D whereas IL-2, IFN-y, IL-17, IL-10 and IL-5 were significantly higher in TB-T2D in 

comparison to TB patients (Kumar et al. 2013a; Kumar et al. 2013b). There was no difference 

in the concentration of TNF-α and TGF-β between the two groups. In addition, IL-1 family 

members (IL-1β, IL-18) and other pro-inflammatory (IL-6) cytokines were higher and type 1 

interferon (IFN-β) lower in the plasma of TB-T2D patients compared to TB patients (Kumar et 

al. 2013). IL-12, GM-CSF, IL-1α, IFN-α, IL-8, Chemokine (C-C) motif ligand 11 (CCL11), 

CCL2, CCL4, granulocyte colony–stimulating factor (G-CSF), Chemokine (C-X-C) motif ligand 

CXCL10 and platelet derived growth factor (PDGF) were not significantly different between 

the two groups (Kumar et al. 2013).  

In unstimulated serum (obtained from the QFT in-tube assay), IFN-y, TNF-α, IL-17 and IL-1 

were significantly elevated in TB-T2D patients compared to TB patients. Similarly, the same 

was seen after measuring the cytokines in Mtb-antigen stimulated serum. IL-10 was also 

significantly higher in TB-T2D compared to TB, but IL-1β was not different between the groups 
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in this sample type (Kumar et al. 2013). When using broncho alveolar lavage (BAL), which is 

a representative sample of the site of disease, IFN-ү is higher and IL-10 lower in TB-T2D 

compared to TB (Sun et al. 2012). 

5. Innate immunity 

5.1 Innate immunity in TB 

The innate immune response during Mtb infection is important and some individuals are able 

to clear the infection without developing an adaptive immune response to Mtb, also referred 

to as early clearance (EC) (Verrall et al. 2013). After EC, the TST and/or IGRA tests remain 

negative because the T cells are not primed (Figure 1.3). If EC is not achieved, CD4+ T cells 

secreting IFN-ү are subsequently recruited and the adaptive response initiated (Verrall et al. 

2013). Once T cells are primed and effector memory T cells against Mtb antigens are in 

circulation, the TST or IGRA becomes positive (Figure 1.3). The major host innate immune 

cells that are important during Mtb exposure are macrophages, dendritic cells (DCs), 

neutrophils and the natural killer (NK) cells (Sia et al. 2015). Mtb interacts with the receptors 

expressed on the surface of these innate cells called pattern recognition receptors (PRRs) 

such as toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors 

(CLRs) (Killick et al. 2013). 

                                     

 

 

Figure 1.3: Possible outcomes after Mtb exposure: 1) Stage I and stage II showing early clearance which 

involves innate immune response, and no apparent adaptive immune response, resulting in IFN-y release assay 
(IGRA) and tuberculin sensitivity test (TST) negativity, 2) stage III involving adaptive immune response and delayed 
clearance or latent infection shown by IGRA/TST positivity (adapted from Verrall et al. 2014). 
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Macrophages are known to be the primary defence cell type during the initial encounter with 

Mtb. Mtb pathogen associated molecular patterns (PAMPs) such as glycolipids, lipoproteins 

and carbohydrates are recognized by PRRs on macrophages and induce a network of 

signalling pathways that will favour antimicrobial effector functions within macrophages (Sia 

et al. 2015). The mechanisms used by macrophages to eliminate Mtb involve inflammasome 

activation, production of oxygen and nitrogen components, phagosome acidification, 

autophagy of intracellular Mtb and apoptosis (Cadena et al. 2016). IFN-y plays an important 

role in host response against Mtb infection and activates macrophages to kill and restrict Mtb 

growth. In addition, IFN-γ induces the production of cytokines such as IL-12 and TNF-α by 

macrophages and other myeloid cells while inhibiting IL-10 production (Flynn et al. 1993; 

MacMicking et al. 1997; Liu et al. 2003; Mcnab et al. 2014). Type 1 interferons; IFN-α and IFN-

β are associated with unfavourable outcomes during Mtb infection (McNab et al. 2014) through 

inhibition of macrophages responsiveness to IFN-y and subsequent activation (Mcnab et al. 

2014). Studies have shown decreased bacterial load and increased survival of mice when 

IFN-α and IFN-β signalling are inhibited (Manca et al. 2005; Ordway et al. 2007; Stanley et al. 

2007). Mtb infected IFN-αR1 knock out mice had a significantly lower bacterial burden 

compared to wild type mice (Mcnab et al. 2014). When knock out mice were treated with both 

IFN-β and IFN-y, no change in bacterial load was observed, suggesting that type I IFNs inhibit 

macrophage restriction of Mtb growth and killing in response to IFN-y (Mcnab et al. 2014). 

Type I IFNs may therefore act to interrupt Th1 immune response, by making macrophages 

unresponsive to IFN-y and subsequently suppressing production of pro-inflammatory 

cytokines. Additionally, type I IFNs may act directly to prevent IFN-y mediated killing of Mtb by 

macrophages, allowing Mtb to replicate within these cells (Mcnab et al. 2014). The role of type 

1 IFNs is not universally observed, type 1 IFNs were shown to reduce the number of 

macrophages in the lung, reducing Mtb target cells in the lung, while addition of IFN-ү 

enhances their ability to restrict bacterial Mtb growth (Desvignes et al. 2012). It is speculated 

that the contradicting results are due to the different Mtb strain used and differences in study 

designs (Mcnab et al. 2014). 

DCs are key players in innate immunity during Mtb infection (Bhatt and Salgame, 2007) and 

are important for the transitioning from innate to adaptive immune response (Prendergast and 

Kirman, 2013). They are antigen presenting cells (APCs) and secrete cytokines that activate 

naive lymphocytes (Mellman et al. 2001; Sia et al. 2015). DCs secrete IL-12 (Giacomini et al. 

2001), which subsequently activate NK cells and T cells to produce IFN-y. DC-specific ICAM-

grabbing nonintegrin (DC-SIGN) is the predominant receptor on human DCs that recognises 

Mtb (Tailleux et al. 2003). The mycobacterial macrophage receptors such as complement 

receptor (CR3) and mannose receptor (MR) play a minor role in the recognition of 
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mycobacterial ligand lipoglycan lipoarabinomannan (LAM) by DCs. This may be due to the 

greater abundance of DC-SIGN on DCs relative to CR3 and MR (Tailleux et al. 2003).  

Tailleux et al. investigated DC-SIGN trafficking in DCs infected with GFP-expressing Mtb 

H37Rv using confocal microscopy (Tailleux et al. 2003). During early phagocytosis (first hour), 

most bacilli were detected on the cellular membrane of DCs or co-localized with DC-SIGN in 

nascent phagosomes. DC-SIGN staining was not detected on phagosomes that had detached 

from the plasma membrane, indicating that it was excluded from the vacuoles immediately 

after phagocytosis (Tailleux et al. 2003). It is thus thought that DC-SIGN is rapidly expelled 

from the phagosome and recycled to the cell membrane (Tailleux et al. 2003). The intracellular 

trafficking pattern of DC-SIGN in Mtb infected DCs could also indicate that DC-SIGN 

transports the mycobacterial glycolipids from the bacterial vacuole to various subcellular 

compartments, where glycolipids could be loaded onto CD1 molecules for presentation to CD1 

restricted lymphocytes (Schaible et al. 2000). Mtb exploits this pathway to gain access to DCs 

via DC-SIGN. In doing so they can impair DC function and down-regulate DC mediated 

responses (Geijtenbeek et al. 2003; Mihret, 2012).  

NK cells form part of the innate immune response, and have been identified as inflammatory 

cytokine producing and cytotoxic lymphocytes and are largely known for their role in protection 

against viral infections and tumorigenesis (Sivori et al. 1997; Moretta et al. 2002), as well as 

controlling Mtb infection (Guerra et al. 2012). NK cells mediate their effector function indirectly 

by activating macrophages via IFN-ү and directly through the production of cytotoxic granules 

such as perforin, granzyme and granulysin (Liu et al. 2017). NK cells can also kill Mtb infected 

monocytes through direct contact and not via IFN-ү or cytotoxic granules (Brill et al. 2001). 

Additionally, it has been reported that NK cells can produce IL-22 and restrict intracellular Mtb 

growth by enhancing phagolysosomal fusion (Dhiman et al. 2003; Allen et al. 2015). 

Furthermore, IL-21 produced by T cells plays a role in the regulation of NK cell function and 

NK cells activated by IL-21 produce cytotoxic granules that lyse Mtb infected monocytes 

(Paidipally et al. 2018). NK cells are associated with early resistance against intracellular 

pathogens (Junqueira-kipnis et al. 2003). Mice infected with Mtb by aerosol, have an increased 

frequency of IFN-ү producing NK cells in their lungs (Junqueira–Kipnis et al. 2003). After 

depleting the NK cells, there was no difference in the lung bacterial burden, suggesting that 

removing NK cells do not necessarily have an impact in the early protective response to Mtb.  

Using cell-type deconvolution of transcriptomic data from several cohorts of different ages, 

genetic backgrounds, geographical locations and infection stages, an increase in the 

abundance of circulating NK cells in individuals with LTBI, with a corresponding decrease 

during active disease and higher levels upon clinical cure are features that are common to 

all cohorts (Chowdhury et al. 2018). 
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Neutrophils play an important role in TB immunity, they are the first, and most abundant cell 

type to be recruited to the lung after Mtb infection (Korbel et al. 2008). The role of neutrophils 

during Mtb infection is conflicting, for example, antimicrobial effectors from neutrophil granules 

such as elastase, collagenase, and myeloperoxidase can mediate both anti-mycobacterial 

activity and immunopathology in human TB (Dallenga and Schaible, 2016; Sia et al. 2015). 

One mechanism which leads to immunopathology involves the ESAT-6 mediated induction of 

an intracellular calcium overload in neutrophils which is followed by necrosis of the cells and 

the formation of neutrophil extracellular traps (NETs) (Francis et al. 2014). Death of neutrophils 

results in NETs which contain DNA, myeloperoxides and metalloproteinases (Parker et al. 

2012; Francis et al. 2014). A neutrophil-driven IFN-inducible gene profile, consisting of both 

IFN-y and type 1 IFN-α and -β signalling was reported to be a signature for TB disease and to 

be involved in the pathogenesis of TB (Berry et al. 2010). Absolute neutrophil counts are high 

in TB patients at diagnosis and reduce to levels compared to healthy controls at the end of TB 

treatment (Veenstra et al. 2006). In addition, this increase in blood neutrophils is associated 

with delayed sputum conversion (Martineau et al. 2011). Since the discovery of the IFN related 

gene signature, many investigated the role of type 1 IFN in innate immune responses during 

Mtb infection (Donovan et al. 2017). Type I IFN signatures in TB patients are associated with 

neutrophils and studies in mice with increased susceptibility to Mtb suggest that type I IFN 

signalling facilitates infection of permissive neutrophils resulting in damaging tissue pathology 

(Donovan et al. 2017). IFN-αR knock out in mice known to be susceptible to Mtb showed 

increased survival compared to wild type mice infected with Mtb H37Rv (Dorhoi et al. 2014). 

Furthermore, early depletion of neutrophils rescued TB-susceptible mice to levels observed in 

mice lacking IFN-αR1. It was concluded that type 1 IFN alters early innate events at the site 

of Mtb invasion leading to fatal immunopathology (Dorhoi et al. 2014). Despite the 

immunopathology aspect of neutrophils (Berry et al. 2010), they restrict Mtb growth in vitro 

(Korbel et al. 2008). Neutrophil peptides 1-3, cathelicidin LL 37 and lipocalin 2, have the ability 

to restrict Mtb growth and the depletion of neutrophils in whole blood results in poor Mtb control 

(Martineau et al. 2007). Loss of autophagy related gene 5 by neutrophils sensitizes mice to 

Mtb infection (Kimmey et al. 2015). Type 1 IFN controls Mycobacterium bovis and 

Mycobacterium smegmatis growth in infected mice (Kuchtey et al. 2006; Ruangkiattikul et al. 

2017). The exact role of neutrophils during Mtb infection is controversial and this has been 

attributed to the difficulties of working with the cells. They are short lived cells, easily activated 

and cannot be cryopreserved (Lowe et al. 2012). There is thus an urgent need for further 

studies on the role of neutrophils during Mtb infection. 
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5.2 Innate immunity in TB-T2D 

A study conducted by Gomez and colleagues showed that there is a reduced association of 

Mtb with  monocytes in T2D patients (Gomez et al. 2013), suggesting that the ability of the 

host cells to recognize Mtb is altered. The reduced association was likely due to the reduced 

expression of complement and Fc-gamma receptors (Restrepo et al. 2014). Initially, it was 

shown that alveolar macrophages (AMs) in TB-T2D patients are less activated compared to 

TB patients, which may contribute to susceptibility to Mtb infection (Wang et al. 1999; Lecube 

et al. 2011). TB patients have hypodense AMs which are also correlated to severity of disease, 

and activation. TB-T2D patients have low hypodense AMs suggestive of less activation (Wang 

et al. 1999). The level of activation was measured by the ability of cells to phagocytose E.coli 

bioparticles. Phagocytic capacity of AMs from TB-T2D is also lower compared to AMs from 

TB patients (Lecube et al. 2011). Furthermore, altered innate immunity was shown in TB-T2D 

using a mouse model (Vallerskog et al. 2011). Mice had reduced expression of chemokine 

CCL2 and CCL5, that stimulate migration of macrophages and DC to the lung (Vallerskog et 

al. 2011). The delay in macrophage recruitment results in delayed priming of the adaptive 

immune response that is necessary to restrict Mtb replication (Vallerskog et al. 2011).  

In the lung, DCs are highly represented but if DCs cannot migrate from the lung to the draining 

lymph nodes, their ability to activate antigen specific T cells is compromised (Khader et al. 

2006). T2D influences the phenotype and function of DCs in Mtb infected individuals and 

patients with TB (Kumar et al. 2015). The frequencies of DC are lower in Mtb infected 

individuals and TB patients with T2D compared to no T2D (Kumar et al. 2015). In addition, 

DCs were found to show a trend towards a negative correlation with hyperglycaemia during 

TB disease (Kumar et al. 2016). Kumar et al. investigated the influence of TB treatment on the 

frequency of DCs (kumar et al. 2016). TB patients without T2D did not show any difference in 

the frequency of DCs during TB treatment while TB-T2D showed a diminished DC frequency 

at baseline and at month two of TB treatment, which increased at month 6 (Kumar et al. 2016). 

The authors suggested that hyperglycaemia drives these alterations in the frequency of DCs 

in TB (Kumar et al. 2016).  

TB-T2D patients have altered NK cell responses with elevated frequencies of TNF-α, IL-17A 

and IL-17F secreting NK cells compared to TB patients, following stimulation of whole blood 

with Mtb antigens (ESAT-6 and CFP-10) (Kumar et al. 2015). The frequency of NK cells 

expressing the degranulation molecule, CD107a, was diminished in TB-T2D compared to TB 

during Mtb antigen stimulation (Kumar et al. 2015). Since T2D alters the NK cell response to 

Mtb, it was suggested that this alteration contributes to the increase in disease severity and/or 

immune-mediated pathology observed in TB patients with T2D ( Kumar et al. 2015). In whole 

blood from T2D patients and healthy individuals, the frequency of NK cells was not different 
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between the groups (Guo et al 2012). The expression of natural killer group 2 (NKG2D) 

member was, however, positively correlated to body mass index and the CD107a produced 

by NK cells was higher in the T2D patients than controls. It was suggested that the activated 

NK cells may be involved in obesity dependent chronic inflammation associated with T2D 

pathogenesis (Guo et al. 2012). 

As previously mentioned, neutrophils play an important role in TB immunity (Korbel et al. 

2008). The role of neutrophils in recurrence and increased susceptibility to mycobacterial 

infection in T2D have been suggested before (Moutschen et al. 1992). TB-T2D have been 

associated with increased neutrophilic rich inflammation (Andrade et al. 2014; Prada-medina 

et al. 2017). There is a significantly higher number of neutrophils in blood of T2D patients, but 

they exhibit reduced capacity to phagocytose mycobacteria (Raposo-Garcia et al. 2017). 

Chemotaxis of neutrophils is lower in diabetic patients compared to healthy controls (Tater et 

al. 1987). Furthermore, activation of neutrophils and bactericidal activity was lower in 

neutrophils from diabetic patients compared to healthy individuals (Delamaire et al. 1997). In 

a streptozotocin (STZ) induced murine model of chronic diabetes (diabetes induced by STZ 

for more than three months) there was a higher Mtb burden in the lungs compared to normal 

non-diabetic mice (Martens et al. 2007), highlighting the inability of diabetic mice to control 

Mtb. Mycobactericidal activity of neutrophils did not differ between T2D patients and healthy 

individuals when their PBMCs were infected with Mtb (Raposo-Garcia et al. 2017). Although 

most reports show impaired phagocytic activity, chemotaxis and activation of neutrophils in 

T2D compared to healthy individuals (Delamaire et al. 1997; Raposo-Garcia et al. 2017), 

contradicting results in the ability of neutrophils to kill bacteria exist. C3Heb/FeJ mice are 

highly susceptible to Mtb and form hypoxic, neutrophilic driven, necrotic granulomas upon 

infection with Mtb (Vilaplana et al. 2013). Treatment with ibuprofen for three to four weeks, 

after infection, improved both pathology and mycobacterial loads. After one week of ibuprofen 

treatment, fewer and smaller lung lesions with intra-alveolar neutrophils were observed in 

treated mice, whereas untreated mice had central caseous necrotic areas. Treated mice also 

had reduced pulmonary mycobacterial burden and extended survival (Vilaplana et al. 2013). 

This study shows that repurposing this widely used drug, suitable for children, ameliorates 

massive neutrophilic-associated inflammation upon Mtb infection (Dallenga and Schaible, 

2016). The reported data shows that neutrophilic inflammation in T2D patients could also be 

targeted for host directed therapy  (HDT) for TB treatment in TB-T2D patients (Prada-Medina 

et al. 2017). 

6. Innate-like T cells 

Innate-like T cells can rapidly produce cytokines after exposure to an antigen and are 

implicated in the defence against Mtb infection (Huang,  2016). They are activated by the 
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major histocompatibility (MHC) class 1-like molecules (Huang, 2016). Innate-like T cells are 

mostly restricted by Cluster of differentiation 1 (CD1) and MHC-related protein 1 (MR1) 

(Huang, 2016). CD1 is restricted to invariant natural killer T (NKT) and MR1 is restricted to 

mucosal associated invariant T (MAIT) cells. Although innate-like T cells are known to be 

abundant in mucosal sites (Dusseaux et al. 2011; Kenna et al. 2003), MR1, CD1a and CD1c 

restricted T cells are also frequent in the periphery (Gold et al. 2010; de Lalla et al. 2011; Jong 

et al. 2014). The importance of innate-like T cells is due to their ability to express invariant T 

cell receptor α (TCRα) sequences (Porcelli et al. 1993). 

6.1 Innate-like T cells in TB 

NKT cells are predominantly CD8+ (Ho et al. 2002; Gumperz et al. 2002) and express an 

invariant TCRVα24 chain paired with the TCRVβ11 chain, which enables the recognition of 

glycolipid antigens such as α-galactosylceramide (α-GalCer) on the MHC-1 like molecule 

CD1d (Godfrey et al. 2004). NKT cells express the surface receptor NK1.1, which is also 

expressed on NK cells (Tudhope et al. 2010). NKT cells are not cytotoxic (Smyth et al. 2002), 

even though they express perforin, Fas ligand (FASL) and NKG2D (Godfrey et al. 2004). Upon 

activation, NKT cells upregulate CD40L and activate monocytes, DCs, NK, T and B cells by 

producing IFN-y and IL-4, showing their importance in the transition from innate to adaptive 

immunity (Kaer, 2005; Cerundolo et al. 2009). NKT cells can function as either regulatory or 

effector cells in different diseases (Godfrey et al. 2004; Wermeling et al. 2010). The low 

frequency of NKT cells in human peripheral blood mononuclear cells (PBMCs) (between 0.05-

0.92%) (Montoya et al. 2007), impacts the study of these cells in humans. The frequency of 

NKT cells can be expanded by alpha galactosaceramide and cultured for longer period with 

autologous irradiated mononuclear cells which can then change their surface receptors and 

may differ from unmanipulated resting NKT cells (Montoya et al. 2007). 

In a murine Mtb infection model, treatment with αGalCer improved infection outcome by 

activating T cells through NKT cell activation, similarly to mice that were treated with standard 

TB chemotherapy (Sada-ovalle et al. 2010). In another study, co-culturing splenocytes from 

uninfected mice with Mtb infected macrophages, showed suppressed bacterial load due to 

NKT cell function (Sada-ovalle et al. 2008). NKT cells have been reported to play a protective 

role in the immune response of mice against Mtb, but not much is known about their role in 

human Mtb (Kee et al. 2012). To address this, PBMCs were isolated and were phenotypically 

defined using flow cytometry. Patients with TB disease had a lower frequency of NKT cells 

compared to individuals with LTBI (Kee et al. 2012; Montoya et al. 2008; Snyder-cappione et 

al. 2007; Sutherland et al. 2009). NKT cell frequencies are similar in individuals with LTBI and 

healthy controls, but higher than TB patients (Snyder-cappione et al. 2007; Sutherland et al. 

2009). In contrast to these studies, Veenstra et al. showed that the frequency of NKT cells in 
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TB patients was higher compared to healthy controls and correlated with a faster TB treatment 

response (Veenstra et al. 2006). When used in combination with NK cells they were identified 

as variables indicating the likelihood of culture conversion early during TB treatment (Veenstra 

et al. 2006). It was suggested that these cells hold promise to be considered as markers for 

TB treatment response (Veenstra et al. 2006).  

MAIT cells are predominantly CD8+, with a small subset being CD4+ (Reantragoon et al. 2016). 

These cells express an invariant TCRVα7.2, C-type lectin-like receptor CD161 and 

dipeptidase CD26 and produce IFN-ү, granzyme B, granulysin and IL-17 (Gold and 

Lewinsohn, 2013; Sharma et al. 2015). MAIT cells are activated by riboflavin precursor 

metabolites in an MR1 dependent manner (Kjer-Nielsen et al. 2012;Gold and Lewinsohn, 

2011). They can also be activated by cytokines in a MR1 independent manner owing to IL-

18R, IL-12R and IFNR that are expressed on the MAIT cells (Le Bourhis et al. 2011;Ussher et 

al. 2015). MAIT cells upregulate granzyme B and perforin following activation and greatly 

enhance their killing ability of the infected cells (Dusseaux et al. 2011; Kurioka et al. 2014). In 

addition, MAIT cells have chemokine receptors, CCR2, CCR5, CCR6 and CXCR6 that allows 

them to reside in mucosal tissues (Dusseaux et al. 2011; Le Bourhis et al. 2011) (Figure 1.4). 

They also express transcription factors including RAR-related orphan receptor γt (RORγt), T-

bet and pro-myelocytic leukemia zinc-finger (PLZF) at rest (Leeansyah et al. 2014; Walker et 

al. 2012) (Figure 1.4). 

MAIT cells predominantly reside in the gut where their accumulation is dependent on MR1 

expressing B cells and commensal flora (Martin et al. 2009). They also occur in the blood 

where 1-10% of the T cells are MAIT cells (Dusseaux et al. 2011). The frequency of MAIT 

cells in bacterial and viral infections, as well as in metabolic and autoimmune diseases vary 

(Billerbeck et al. 2010; Magalhaes et al. 2015; Loh et al. 2016; Petersone and Walker, 2017), 

implying that they play an important role in the regulation of immune responses in these 

diseases. Low frequencies of MAIT cells in the blood during TB disease is due to their 

migration to the site of disease (Gold et al. 2010). Wong et al. also demonstrated this after 

measuring MAIT cell frequencies in the broncho alveolar lavage fluid (BALF) and blood of TB 

patients and TB-HIV co-infected patients (Wong et al. 2012), higher frequencies of MAIT cells 

were found in the BALF than in the periphery. The addition of MAIT cells to BCG-infected 

macrophages resulted in the increased killing of the bacteria, demonstrating the protective 

role MAIT cells play during Mtb infection (Chua et al. 2012). MAIT cells not only assist in the 

control of bacterial infection, but also in the detection of bacterially infected cells (Gold et al. 

2010; Le Bourhis et al, 2010). Cytokines such as IL-12, IL-18 produced by activated 

macrophages during Mtb infection can activate MAIT cells to release IFN-ү and TNF-α (Le 

Bourhis et al. 2011). Since MAIT cell frequencies are reduced during TB disease, it is 
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suggested that these cells can be used as biomarkers to differentiate between LTBI and active 

TB. In addition, MAIT cell frequencies can be used to monitor TB treatment outcomes (Sharma 

et al. 2015). 

 

Figure 1.4: MAIT cell phenotype and different cellular activation pathways. Mature MAIT cells in peripheral blood 

express the chemokine receptors CCR2, CCR5, CCR6, CXCR6, the C-type lectin-like receptor CD161, the 

dipeptidase CD26 and a CD45RO+CCR7− effector memory phenotype, with the majority of human MAIT cells 

expressing the CD8 co-receptor. MAIT cells also express the transcription factors RAR-related orphan receptor γt 

(RORγt), T-bet and promyelocytic leukemia zinc-finger (PLZF) at rest. During bacterial infection, derivatives of the 

riboflavin biosynthesis pathway are presented by MR1 on the surface of APCs. Alternatively, viruses can also 

rapidly activate MAIT cells in an MR1-independent manner due to the induction of IL-18, IL-12 and IFNα. Activated 

MAIT cells express IFN-γ, TNF-α, granzyme B, perforin and IL-17 (Reproduced from (Kurioka et al. 2016)). 

 

6.2 Innate-like T cells in TB and T2D 

Little is known about the role of NKT cells in the pathogenesis of T2D. To address this, blood 

from T2D patients and healthy controls were investigated for activated and inhibitory NKT cells 

by using flow cytometry (Guo et al. 2012). There was no difference in the frequency of NKT 

cells in T2D patients compared to healthy individuals (Guo et al. 2012). NKT cell frequency 

was also examined in PBMCs and BALF of TB patients with and without T2D (Zhang et al. 

2011). There were more NKT cells in blood and BALF from TB patients with T2D compared 

to TB without T2D (Zhang et al. 2011). Further analysis in PBMCs showed that NKT cells were 

higher in TB regardless of T2D status but lower in T2D patients with no TB and also in healthy 

controls (Zhang et al. 2011). This led to suggest that NKT cells measurements could be 

potential diagnostic marker for TB disease (Zhang et al. 2011).  
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In a disease such as DM which is a risk factor for TB, the frequency of MAIT cells are altered 

(Magalhaes et al. 2015). MAIT cells were shown to be activated under changes in the make 

up of the gut microbiota, their activated form are associated with increased Th1 and Th17 

cytokines (Andreone et al. 2018). MAIT cells exhibiting high levels of granzyme B as well as 

proinflammatory cytokines are thought to directly kill beta cells in humans with T1D (Rouxel et 

al. 2017), which could have an effect on the production of insulin. In obesity, however, MAIT 

cells were correlated to fasting insulin levels in children (Carolan et al. 2015) and negatively 

correlated to body mass index (BMI) in adults (Carolan et al 2015). Furthermore, bariatric 

surgery improved metabolic parameters such as BMI, HbA1c, leptin, adiponectin and was also 

associated with increased MAIT cell frequency (Magalhaes et al. 2015). There is however, no 

information on the association of MAIT cell frequencies with hormones like cortisol or DHEA 

which are known to have immunomodulatory effects (Buford et al. 2008; Dong et al. 2016). In 

end stage renal disease (ESRD), a complication of DM, MAIT cells are diminished (Juno et al. 

2018). Individuals with LTBI suffering from ESRD have a 7-50 fold chance of developing TB 

(Hu et al. 2018; Mota et al. 2015). The MAIT cells in patients with ESRD have altered GM-

CSF responses to microbial stimulation (Juno et al. 2018). Aging has also been associated 

with a reduction in MAIT cells and their ability to produce IFN-ү (Geest et al. 2018), in addition, 

T2D is also common in elderly people (Kirkman et al. 2012). Whether the alterations in MAIT 

cells in T2D patients are associated with the susceptibility of these patients to develop TB is 

not known. What we do know is that they are diminished and less activated in T2D as shown 

by the reduced expression of CD69 and CD25 as well as reduced IFN-y and TNF-α production 

(Magalhaes et al. 2015). However, the exact role of MAIT cells in metabolic diseases is 

unclear. Furthermore, little is also known about MAIT cell frequencies and functions in TB-

T2D patients.  

7. Adaptive immunity 

7.1 Adaptive immunity in TB 

Adaptive immunity is an antigen specific response and has memory, to be able to mount an 

immune response during a second encounter with the same antigen. The ability of the host to 

recognize pathogens is important for the initiation of the adaptive immune response to an 

infection (Chackerian et al. 2002). The adaptive immune response is characterized by the 

activation of T (CD4+ and CD8+) and B lymphocytes. Infected innate cells, like macrophages 

and DCs, present antigens to the T lymphocytes (Dgeda et al. 2010). Upon recognizing the 

antigen, naïve T cells will differentiate into T cytotoxic lymphocytes (TCL (CD8+)), T helper 

cells (Th1, Th2, Th17) and T regulatory (Treg) cells, to name a few. Th17 cells are known to 

secrete cytokines, such as IL-17, IL-21 and IL-22, which are responsible for the recruitment of 

monocytes and neutrophils to the site of infection (Dheda et al. 2010). Tregs inhibit the 
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production of cytokines and T cell proliferation, and modulate Th1, Th2 and Th17 responses 

(Josten and Ottenhof, 2008). It is known that progressive TB disease is associated with low 

Th1 and high Th2 activity, whereas in close contacts (CCs) of TB patients there is a high 

Th1/Th2 ratio (Lienhardt et al. 2002). Patients who present with a favourable outcome at the 

end of TB treatment show a higher Th1/Th2 ratio as opposed to patients with poor clinical 

outcome (Lienhardt et al. 2002). Mtb infection induces IFN-y responses in both CD4+ and CD8+ 

T cells, which play a central role in the containment and killing of the bacterium (Kaufman and 

McMichael, 2005). The Th1 cells produce IFN-y, IL-2, TNF-α, IL-12, GM-CSF that incite the 

activation of Th1, CD8+ CTL, macrophages and neutrophils to kill the invading pathogen 

(Dgeda et al. 2010). Once activated, CD8+ cells secrete granulysin, granzyme and perforins, 

and directly kill the cells infected with Mtb (Ngai et al. 2007). 

Cytokines such as IL-4, IL-5, IL-10 and IL-13 are produced by Th2 cells and activate B 

lymphocytes. B cells are responsible for antibody production and antigen presentation (Dheda 

et al. 2010). The presence of B cells and antibody (Ab)-responsive immune cells in TB 

granulomas supports their involvement in immune responses against Mtb infection (Tsai et al. 

2006). The role of B cells have been studied in mice, where mice deficient in B cells showed 

higher splenic, lung and liver bacterial loads, six weeks after intravenous Mtb infection 

compared to mice without B cell deficiency. B cells can therefore exert beneficial effects on 

host responses to tuberculous infection (Vordermeier et al. 1996). In another study, B cell 

knock out mice were aerosol infected with a low dose of a clinical Mtb strain (CDC 1551) and 

compared to wild type mice (Bosio et al. 2000). B cell knock out (BKO) mice had less lesions 

in the lung and delayed dissemination of bacteria from lungs to peripheral organs. BKO mice 

in which naive B cells were reintroduced, but not mice given Mtb specific antibodies (before 

infection), developed pulmonary granulomas and dissemination patterns similar to wild type 

mice (Bosio et al. 2000). Mtb specific antibodies were obtained through cardiac puncture of 

mice that were infected with the Mtb CDC 1551 strain for 30 days, a period associated with 

the secretion of antibodies against a variety of mycobacterial antigens (Huygen et al. 1990). 

In this report, B cells were associated with increased cellular infiltration of the lungs by 

macrophages, neutrophils and CD8+ T cells in wild type mice (Bosio et al. 2000). Although 

there is contradicting reports on the role of B cells in TB, their functions, such as antibody 

production and antigen presentation, show that they are an important immune cell type that 

requires further exploring. 

7.2 Adaptive immunity in TB-T2D 

TB-T2D is characterized by increased levels of Th1 (IFN-y, TNF-α, and IL-2), Th2 (IL-5, IL-10) 

and Th17 (IL17-A) cytokine responses (Kumar, et al. 2013). Stimulation of whole blood from 

TB-T2D patients with PPD, showed a higher Th1 cytokine profile but not Th2 cytokines 
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(Restrepo et al. 2008). Th1 and Th17 cytokines positively correlate with HbA1c which means 

that patients with poorly controlled DM have higher levels of these cytokines (Kumar et al. 

2013). These increased Th1 and Th17 mediated cellular responses are likely contributing to 

increased immune pathology in TB disease during T2D (Kumar et al. 2013). Recently, Wang 

et al. found that the proportion of Th2 and Th17 cells, but not Th1 cells, are significantly 

increased in TB patients with T2D after antigen stimulation of whole blood cells (Wang et al. 

2018). These findings were confirmed in a study where PBMCs were stimulated with Mtb 

antigens and TB-T2D patients showed lower Th1/Th2 cytokine ratios, and a higher Th2 bias 

(Al-Attiyah and Mustafa, 2009). The decrease in Th1/Th2 ratio noted by Wang et al. in TB 

patients with T2D suggests there is an anti-inflammatory or Th2 bias in these patients that 

could contribute to the increased susceptibility seen in these patients (Wang et al. 2018). 

However in our cytokine analysis we found that TB-T2D patients had higher Th2 cytokines (IL-

4, IL-5, IL-10 and IL-13) (Manuscript in preparation). 

High expression of IL-22 is beneficial to the host in many infectious and inflammatory 

disorders, and if produced in excess can cause immunopathology (Rutz et al. 2013). In TB-

T2D, this cytokine was reported to be expressed at lower levels compared to TB patients 

(Kumar et al. 2013). In addition, TB-T2D has also been associated with increased systemic 

levels of pro-inflammatory (IL-1β, IL-6 and IL-18) and anti-inflammatory (IL-10) cytokines 

(Kumar et al. 2013). Varying results have been reported with some showing no difference in 

Th1 cytokines in TB patients with and without T2D (Gan et al. 2014; Stalenhoef et al. 2008).  

The influence of T2D on immune cells were investigated by staining whole blood with 

monoclonal antibodies for various immune cell types using flow cytometry (Kumar et al. 2015). 

TB-T2D patients have lower frequencies of effector memory CD8+ T cells and higher 

frequencies of central memory T cells compared to TB patients. Classical memory B cells 

were higher in TB-T2D compared to TB patients (Kumar et al. 2015). TB-T2D patients also 

have a higher frequency of CD4+ T cells producing Th1 cytokines compared to TB patients 

after stimulation of whole blood with Mtb antigens (Kumaret al. 2013). This hyperactive antigen 

specific T cell response in TB-T2D that is significantly higher than responses in TB patients 

without T2D may be associated with increased lung pathology in TB patients with T2D (Kumar 

and Babu, 2017). CD8+ T cells in TB-T2D patients are characterized by diminished granzyme 

B, perforin and CD107a production compared to TB without T2D, which are important for killing 

of infected cells (Kumar et al. 2015).  

 

8. Gene expression analysis in TB 

Several studies have successfully shown that blood gene transcripts are capable of 

differentiating individuals with active TB from those with Mtb infection. The use of biomarkers 
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obtained from blood transcripts is fairly new and research in this field is increasing due to its 

contribution in identifying transcriptional signatures associated with diagnosing TB and TB 

treatment responses (von Both et al. 2015; Thompson et al. 2017). Transcriptional profiling of 

whole blood RNA revealed a 16-gene signature that predicts progression from LTBI to active 

TB diseases (Zak et al. 2016). This signature predicted progression to active TB, 12 months 

prior to diagnosis of TB disease (Zak et al. 2016). Following this study, it was thought that 16 

genes are too many to incorporate in a simple point of care test, and was further optimized to 

reduce the number of genes. A four-gene signature was identified that predicts which patients 

with LTBI will develop active TB two years prior to diagnosis (Suliman et al. 2018; Thompson 

et al. 2018). Gene expression studies in serum exosomes (Lv et al.  2017), specific immune 

cells such as DCs (Blischak et al. 2017) and PBMCs (Serrano et al. 2016) also identified gene 

profiles able to predict susceptibility to TB disease. The risk of TB progression in LTBI with 

HIV and T2D is much higher than compared to otherwise healthy LTBI positive individuals 

(Jeon and Murray, 2008; Murray et al. 2014). The question is whether the identified signatures 

are equally applicable to LTBI positive individuals with other diseases. For example, the 

signature identified by Zak et al. (2016) was in HIV negative individuals and is there a need to 

test the signature in HIV positive and T2D cohorts, because these groups are at greater risk 

of TB. To address this, Dawany et al. reported that the 393-gene signature from Berry et al. 

(2010), could not identify TB in patients co-infected with HIV (Dawany et al. 2014). However, 

a transcriptional profile identified by Prada-Medina et al. in patients with TB-T2D shared 

elements with the profiles in TB patients without T2D (Prada-Medina et al. 2017).  

In South Africa, preventative treatment is not given to LTBI positive individuals, because it 

would be too expensive and ineffective due to the high chance of re-infection in a TB endemic 

country. These signatures are therefore useful and can potentially be used to identify 

individuals with LTBI who are at increased risk of developing active TB and who can potentially 

be given prophylactic treatment in an attempt to reduce the TB burden (Cohn et al. 2000). In 

a whole blood transcriptomic study, Cliff et al. identified a transcriptional signature which 

correlated with the extent of TB disease in the lung as determined by radiography and 

concluded that immune responses in the blood can reflect the local reaction to Mtb in the lung 

(Cliff et al. 2015). Not only do blood transcript signatures identify individuals at risk of TB 

development, but can also inform of the severity of the disease in the lung. Thompson et al. 

further identified a five-gene signature that predicts TB treatment outcomes which correlated 

with the inflammatory state in the lungs of TB patients as measured by positron emission 

tomography–computed tomography (PET-CT) (Thompson et al. 2017). Bio-signatures to 

determine relapse and which can be applied to different ethnic groups and co-morbidities, 

including T2D are needed. 
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9. Immune and endocrine interactions 

Cytokines produced by activated immune cells feed back to the central nervous system and 

induce neuroendocrine responses that, in turn, can modulate immune responses to infections 

(Webster et al. 2002). Chemical messengers produced by the immune cells facilitate the 

communication between the immune and neuro-endocrine system and also the immune and 

central nervous system (CNS) (Dantzer et al. 1998; Bottasso et al. 2012). Chronic, low-level 

inflammation that occurs during T2D travels to the brain and activate the hypothalamic-

pituitary-adrenal (HPA) axis, and the sympathetic system (Bottaso et al. 2012; Bouzaki and 

Zierath, 2007; Ottaviani and Francheschi, 1996; Chrousos, 2000). Activation of the HPA axis 

results in the production of corticotropin-releasing hormone (CRH) and vasopressin (VP), 

which travels via the portal vein to the pituitary gland and activate corticotropic cells, which 

subsequently produce adrenocorticotropic hormone (ACTH) (Antoni, 1986; Aguilera, 1994; 

Aguilera, 2012). ACTH travels to the adrenal gland which has two major zones; the cortex and 

the medulla, which will produce glucocorticoids (GCs) and catecholamines (CA), respectively 

(Rhen and Cidlowski, 2005; Aguilera, 2012). GCs inhibit Th1 responses by favouring Th2 

cytokine responses (Howard and Zwilling, 1999). Chronic stress, for example, leads to the 

activation of the sympathetic system and results in the upregulation of the CAs, adrenaline 

and noradrenaline (Figure 1.5) (Webster and Glaser, 2008; Tian et al. 2014). GCs and CAs 

bind to their receptors on immune cell and inhibit the secretion of pro-inflammatory cytokines 

such as IL-1β, IL-6, TNF-α and IFN-y, and enhances the production of anti-inflammatory 

cytokines such as IL-4, IL-13 and IL-10 (Figure 1.5) (Elenkov and Chrousos, 1999; Tracey 

2002). In addition, GCs will inhibit transcription factors such as nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB), activator protein 1 (AP-1), Janus kinase/signal 

transducers and activators of transcription (JAK-STAT), mitogen activated kinases, signal 

transducer and activator of transcription 3, which may in turn inhibit pro-inflammatory cytokine 

production (Tracey 2002) (Figure 1.5).  
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Figure 1.5: The activation of the HPA axis, sympathetic and immune system. Stress activates the HPA and 

Sympathomedullary axis which secrete (i) GC and (ii) CA hormones respectively, the hormones act on receptors 
on the surface or cytoplasm of the immune cells. (iii) Motor vagus secretes CAs, which in the end result in 
decreased pro-inflammatory cytokines while increasing anti-inflammatory responses. (iv) There is a shift to Th2 
opposed to Th1 responses. (v) In the cell, the hormones inhibit inflammation related pathways including NF-kB and 
further inhibit pro-inflammatory responses (Adapted from (Tian et al. 2014)). 

 

Serotonin, produced by nerve cells also has immune modulatory properties. Serotonin is 

stored in platelets and is released during platelet activation induced upon inflammation (Herr 

et al. 2017). The immunomodulatory effects of serotonin are mediated through binding to the 

serotonin receptors expressed on immune cells (Mossner and Lesch, 1998). Binding of 

serotonin to the 5 hydroxytryptamine-1 (5HT-1) receptor on monocytes, reduced the ability of 

the monocytes to suppress NK cell functions (Hellstrand and Hermodsson, 1993). In addition, 

the effect of serotonin on IFN-y-induced phagocytosis varies according to the concentration of 

IFN-y to which the macrophages are exposed (Sternberg et al. 1987). At low concentrations 

of IFN-y, serotonin augments phagocytosis, whereas at high concentrations of IFN-y, 

serotonin suppresses phagocytosis (Sternberg et al. 1987). Serotonin induces the production 

of various cytokines in monocytes, macrophages, DCs (IL-1β, IL-6, IL-8, IL-12p40 and IFN-ү) 
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and lymphocyte (IL-2, IL-16 and IFN-ү), but supresses TNF-α production in monocytes, 

macrophages and DCs (Figure 1.6) (Duerschmied et al. 2014) supporting the notion of the 

bidirectional communication between central nervous and immune system. 

 

 

Figure 1.6: Immunomodulatory properties of serotonin. Blue - activated or upregulated, red - inhibited or 

reduced, question mark - unknown effect (Duerschmied et al. 2014). 

9.1 Immunendocrine changes during TB 

The pituitary gland produces ACTH (HPA axis), luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) (HPG axis) as well as thyroid-stimulating hormone (TSH) (HPT 

axis) resulting in the production of cortisol by the adrenal gland, oestrogen and testosterone 

by the gonads as well as triiodothyronine and thyroxine by the thyroid gland. Activation of the 

HPA axis influences the behaviour of the immune system via GCs and 

dehydroepiandrosterone (DHEA), which counteracts the GC effects (Webster et al. 2002; 

Bottasso et al. 2007). GCs can both inhibit or stimulate the innate and adaptive immune 

responses (Webster et al. 2002). Del Rey et al. measured IL-10, IFN-y and IL-6 and several 
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hormones of the pituitary, adrenal, gonadal and thyroid glands in male patients with newly 

diagnosed TB and compared them to healthy controls (del-Rey et al. 2007). TB patients had 

increased plasma concentrations of the above mentioned cytokines and decreased 

concentrations of testosterone and DHEA (del-Rey et al. 2007). Growth hormone (GH) 

concentrations were higher in TB patients, higher concentrations were seen for cortisol, 

estradiol, thyroid hormones and no differences were observed in insulin like growth factor 1 

concentrations (del Rey et al. 2007). Immune responses during TB therefore affect endocrine 

functions (Turnbull and Rivier, 1999; Van den Berghe 2003). Since GCs favour Th2 

responses, elevated concentrations of GCs are not favourable for the development of the 

effective cell mediated response against Mtb (Bottasso et al. 2013). Supernatants from 

cultures of Mtb stimulated PBMCs of TB patients have been shown to inhibit DHEA secretion 

by a human adrenal cell line (del-Rey et al. 2007). Chronic persistence of decreased DHEA 

concentrations and of increased cortisol/DHEA ratios have harmful consequences for the host 

due to uncontrolled inflammatory processes that may affect the control of tissue damage and 

the development of protective immune responses (Imrich, 2002). TB patients have higher 

cortisol, estradiol, prolactin, GH, thyroid hormone and dopamine concentrations, as well as 

lower adrenaline and noradrenaline concentrations when compared to healthy controls (del 

Rey et al. 2007; Opolot et al. 2015). TB patients also have higher IFN-y, TNF-α, C-reactive 

protein (CRP), IL-1β, IL-6 and IL-10 levels compared to healthy controls (del Rey et al. 2007; 

Opolot et al. 2015). Kleynhans et al. showed that concentrations and treatment responses of 

various hormones were different in patients with different TB treatment outcomes (Kleynhans 

et al. 2017). Cortisol concentrations were higher in TB disease and decreased during 

treatment and remained lower in the cured group while it was higher in individuals who failed 

TB treatment (Kleynhans et al. 2017). Cortisol concentrations in patients with a failed TB 

treatment outcome correlated with immune markers such as CRP and serum amyloid protein 

–A (SAP-A) and interleukin 2 receptor subunit alpha (IL-2Rα) at baseline, matrix 

metalloproteinase 9 at week four of TB treatment and interferon inducible protein-10 (IP-10) 

at the end of treatment (Kleynhans et al. 2017). Increased inflammatory marker levels during 

TB results in increased cortisol concentrations as part of a feedback mechanism to prevent 

excessive inflammatory responses and immunopathology. These data provide evidence that 

there exists a relation between endocrine and immune systems during TB and the interaction 

between these systems need to be studied further and can potentially be used as biomarkers 

for TB disease progression, severity and even treatment responses. There is a dysregulation 

of the HPA, HPG and HPT axis, and the production of pituitary hormones during severe TB 

disease, and such dysregulation might be responsible for the aggravation of the disease 

(Bottasso et al. 2007). 
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9.2 Immune-endocrine changes in TB-T2D 

T2D is a known risk factor for TB and studies have shown that both diseases have altered 

endocrine responses, which are likely to play a role in certain immuno-endocrine-metabolic 

associated disorders (Fernandez et al. 2016). As mentioned previously, endocrine alterations 

can contribute to TB disease outcomes (Bottasso et al. 2013). The chronic inflammation 

contributes to the activation of the HPA axis and increases the severity of infections or lead to 

susceptibility to such infections through the suppressive ability rendered by GCs (Besedovsky 

and del-Rey, 1996; Bottasso et al. 2013). The occurrence of both TB and T2D may present a 

particular trend of immune and endocrine activation that is worth investigating in order to 

understand the association between the two diseases (Fernandez et al. 2016). In light of 

these, Fernandez and colleagues analysed blood levels of cytokines, hormones and immune 

responses to mycobacteria in TB-T2D patients. It was found that TB patients had higher 

concentrations of cytokines compared to healthy controls whereas TB-T2D patients had even 

higher IL-6 and IFN-y compared to TB patients (Fernandez et al. 2016). IL-10 levels remained 

the same between TB and TB-T2D but lower in healthy subjects (Fernandez et al. 2016). In 

the same study, the concentration of cortisol was found to be higher in individuals with TB-

T2D (Fernandez et al. 2016). Bottasso et al. showed that higher cortisol is associated with TB 

severity (Bottasso et al. 2013) and TB-T2D patients were previously reported to have more 

severe TB disease than patients with only TB (Baker et al. 2012; Gil-santana et al. 2016). 

Estradiol levels were high in patients with TB and significantly higher in patients with TB-T2D 

(Fernandez et al. 2016). Estradiol and cortisol were positively associated with IFN-y and IL-6 

(Fernandez et al. 2016). The adverse immune-endocrine profile observed in TB patients is 

more pronounced during TB concomitant with T2D characterised by more intense immune 

and endocrine inflammatory reactions, which shows the detrimental effects of T2D on Mtb 

infection (Fernandez et al. 2016). 
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10. Hypothesis, Aims and Objectives 

Central hypothesis  

We hypothesize that T2D causes a systemic dysregulation of the immune-endocrine 

networks which is associated with distinct blood bio-signatures and impaired monocytes and 

PBMCs function. 

Aim 1: 

The first aim of this project was to identify differentially expressed immune genes in 

unstimulated and Mtb-antigen stimulated whole blood of latently infected close contacts of TB 

patients as well as active TB patients with and without T2D. 

Specific objectives were to: 

1.1 Characterize messenger ribonucleic acid (mRNA) transcript signatures in unstimulated 

(nil) and Mtb-antigen stimulated whole blood collected from QFT tubes of individuals with 

LTBI with and without T2D. 

1.2 Characterize the mRNA transcript signatures in unstimulated (nil) and Mtb-antigen 

stimulated whole blood collected from QFN tubes of TB patients with and without T2D at 

baseline and month 6. 

Aim 2: 

To investigate immune and endocrine changes in the serum and plasma of individuals with 

LTBI as well as TB patients with and without T2D. 

Specific objectives were to: 

2.1 Characterize cytokine and hormone levels in individuals with LTBI and TB patients with 

and without T2D using luminex and ELISA. 

2.2 Determine whether any associations exist between cytokine and endocrine signatures 

with in vitro Mtb killing. 

2.3 Determine whether any associations exist between glycaemic control and in vitro Mtb 

killing. 

Aim 3: 

To determine the frequency of MAIT cells in TB patients with and without T2D. 

Specific objectives were to: 

3.1 Determine the frequency of the MAIT cell population in TB and TB-T2D patients using 

flow cytometry. 
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CHAPTER 2 

Materials and methods 

2.1.1 Informed consent and ethical clearance 

This study was part of the ALERT and TANDEM studies. Ethical approval was obtained for 

the ALERT Study (Altered Immune-endocrine Axis in Type 2 diabetes and Tuberculosis 

risk:which was aimed at better understanding of the link between TB and T2D,  to identify 

individuals at increased risk for TB progression) and the TANDEM study (Concurrent 

Tuberculosis and Diabetes: aimed at improving Care through bi-directional Screening and 

Unravelling the Causal Link through Study of Genetic Susceptibility Factors) from the Human 

Research Ethics Committee of the University of Stellenbosch (N13/05/064, TANDEM and 

N13/05/064A, ALERT). The studies were conducted according to the Helsinki Declaration and 

International Conference on Harmonization guidelines (WMA, 2001). Written informed 

consent was obtained from all study participants. 

2.1.2 Study participants and sample collection 

Individuals with LTBI with and without T2D were screened and enrolled as part of the NIH 

funded ALERT study. Individuals with LTBI were defined as individuals sharing at least five 

hours per week in a house or closed space with a confirmed pulmonary TB case, test positive 

for Quantiferon IFN-ү assay and negative for active TB (discussed in II below). TB patients 

with and without T2D were enrolled in the EU FP7 funded TANDEM study, before TB 

treatment (baseline, BL), after completion of intensive phase treatment at month 2 (M2) and 

at the end of TB treatment (M6). TB patients were recruited at six TB clinics, Fisantekraal, 

Ravensmead, Uitsig, Adriaanse, Elsies River and Durbanville, in Cape Town, Western Cape, 

South Africa. TB patients gave permission for study personnel to visit their homes and to invite 

their family members and close friends to take part in the study. 

i. ALERT participants 

Forty CCs of TB patients who tested positive for LTBI on a Quantiferon TB-Gold in-tube (QFT) 

assay were included in this study. All the ALERT participants were fasted and the specimens 

collected before 09:00AM to control for circadian rhythm. At enrolment, clinical parameters 

such as insulin, cortisol, lipid profiles, complete blood count (CBCs) and anthropometric 

measurements were determined. T2D status was diagnosed based on a FBG and HbA1c 

(American Diabetes association, 2010). Patients were classified as LTBI without T2D (LTBI-

noT2D; n = 10; HbA1c < 5.6 %, FBG ≤ 100 mg/dL (5.6 mmol/L)), LTBI with preT2D (LTBI-

PreT2D; n = 10; HbA1c 5.7-6.49 %, FBG 100-125 mg/dL (5.6-6.9 mmol/L)), LTBI with T2D 

(LTBI-T2D; n = 10; HbA1c 6.5-7.9 %, FBG ≥ 126 mg/dL (7 mmol/L)) and LTBI with poorly 

controlled T2D (LTBI-pT2D; n = 10; HbA1c ≥ 8 %, FBG ≥ 183 mg/dL (10.2 mmol/L)).  
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ii. Inclusion and exclusion criteria for ALERT 

The inclusion criteria were LTBI (based on positive QFT assay) and the age of 30 to 65 years. 

Individuals were excluded if they were HIV positive, pregnant or breast-feeding, if they had 

active TB (confirmed by positive GeneXpert MTB/RIF (Cepheid, California, USA), sputum 

culture or abnormal chest X-ray (CXR), type 1 diabetes, and if they used steroids or any other 

medication that affects immunity (i.e. non-steroidal anti-inflammatories). 

iii. TANDEM participants 

HbA1c was measured at BL and at M6 for TB patients. TB patients were classified as TB only 

(n = 9), TB with transient hyperglycaemia (TB-THG; n = 5) and TB with T2D (TB-T2D; n = 7) 

using HbA1c cut-offs as follow: HbA1c <5.6 % for TB, HbA1c ≥ 6.5 % for TB-THG at BL but 

normal at M6, and HbA1c ≥ 6.5 % for TB-T2D at BL and M6. Four of the five TB-THG patients 

had a family history of diabetes, but were not taking diabetes medication during the course of 

the study. All TB-T2D patients were on standard TB treatment (Isoniazid (INH), RIF, 

Ethambutol (EMB) and Pyrazinamide (PZA) for the first two months, and INH and RIF for the 

following four months) as recommended by the South African National Tuberculosis program, 

and all seven were on T2D medication (Insulin and/or metformin). Twelve uninfected HCs and 

13 T2D patients without TB were included as controls. All the TANDEM participants were 

between the ages of 30 and 60 years and were age and gender matched.  

iv. Inclusion and exclusion criteria for TANDEM 

The inclusion criteria were TB disease confirmed by abnormal CXRs, positive GeneXpert 

MTB/RIF (Cepheid) and/or positive MGIT (BD BACTEC MGIT 960 system, BD, New Jersey, 

USA) culture. The TB patients received conventional TB therapy (described above). 

Participants were excluded if they were pregnant, HIV positive, had drug resistant Mtb and 

were using immunosuppressive drugs. All TB, TB-THG and TB-T2D patients used for this 

study adhered to and completed more than 80 % of their TB treatment and all were 

successfully cured at the end of treatment. 

2.1.3 Sample processing for ALERT study 

Blood collected in Sodium heparin (NaHep; BD), serum (Geiner bio-one, Kremsmunster, 

Austria), EDTA (Geiner bio-one) and Lithium heparin tubes (LiHep; BD)) and sputum were 

collected from all study participants at BL (ALERT and TANDEM), M2 and M6 of TB treatment 

(TANDEM). 
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i. Plasma and serum isolation 

EDTA (1x 6 mL) and serum (2x 6 mL) blood tubes were spun down at 12 000 xg (Eppendorf 

centrifuge 5702, Merck-Millipore, Massachusetts, USA) for 10 minutes and the plasma and 

serum aliquoted and stored at -80°C for further use. 

ii. Quantiferon TB-gold in tube (QFT) processing 

One mL of blood, collected in a LiHep tube (1x 4 mL), was transferred to each of the three 

tubes of the QFT assay (Qiagen, Hilden, Germany). The nil tube contains no additives and 

serves to adjust for background IFN-y production, the TB-Ag tube is coated with an antigen 

cocktail including ESAT 6, CFP-10 and TB 7.7 specific for Mtb and the mitogen tube contains 

phytohaemogglutin-P (PHA) which is a positive control. After adding the blood, the tubes were 

inverted ten times and incubated at 37 °C for 16-22 hours. Blood was transferred from the 

QFT tubes into a 2 mL cryogenic vials (Sigma-Aldrich, Missouri, USA ) and centrifuged for 15 

minutes at 15 000 xg. The supernatants were stored at -80 °C and the pellet stored in 

RNALater (Thermo Fisher scientific, Virginia, USA) at 4 °C overnight, before being transferred 

to -80 °C. The preserved QFT pellets were used for RNA extractions and the supernatants 

used in an ELISA to measure IFN-y concentrations.  

iii. Peripheral blood mononuclear cells (PBMCs) isolation 

Blood collected in NaHep tubes (6x 9 mL) was used for PBMC isolations by density gradient 

centrifugation. Briefly, blood were transferred to 50 mL falcon tubes (Sigma-Aldrich) and 

centrifuged at 800 xg for 12 minutes at 20 °C (acceleration=9; brake=0). The plasma was 

transferred to a 15 mL falcon tube (Corning Science, Newyork, USA) and stored on ice. Care 

was taken not to disturb the white blood cell interphase. The remaining plasma, white blood 

cell interphase and top part of the red blood cell layer were transferred to a new 50 mL falcon 

tube (Corning Science) and mixed. PBS containing 1 mM EDTA (Sigma-Aldrich) and 1 % 

Human serum albumin (SEH) were added to the cells (up to 35 mL mark), to replenish the 

plasma, and mixed by pulse vortexing. The cells were layered onto 15 mL Ficoll-Paque-Plus 

(GE HealthCare Bio-science, Uppsala, Sweden) and centrifuged at 600 xg for 30 minutes at 

20°C (brake=0; acceleration=0). Plasma, including SEH, was removed except for 5-10 mL 

above the buffy coat. The buffy coat was transferred to a 50 mL tube and washed with cold 

RPMI-HEPES medium (Sigma-Aldrich). Cells were centrifuged at 4°C at 600 xg for four 

minutes (acceleration=9; brake=0) after which the supernatant was discarded. Cells were 

washed for a second time using RPMI-HEPES and spun down at 4°C at 150 xg for eight 

minutes (acceleration=9; brake=0) to remove excess platelets. The supernatant was 

discarded and the pellet resuspended in 5 mL of RPMI (Biowest, Nuaillé, France) 
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supplemented with 2 mM glutamine (GLUT; Sigma-Aldrich) and 100U/mL penicillin (PEN; 

Sigma-Aldrich) (RPMI+GLUT+PEN). 

iv. Counting of PBMCs and overnight culturing: 

Ten µl of the cell suspension were added to 90 µl of 10 % Trypan blue (in PBS) and counted 

using a Countess Cell counter (Invitrogen, California, USA). The total cell count, live cell count, 

dead cell count and viability (%) were reported and the live cell count used to determine the 

number of cells needed for the downstream assays. Six hundred thousand cells were cultured 

overnight in RPMI+GLUT+PEN medium containing 20 % autologous plasma in 2 mL sterile 

screw cap tubes (Scientific specialists SSIBIO USA), in a final volume of 600 μl at 37 °C and 

5 % CO2. 

v. Monocytes (MNs) isolation 

MNs were isolated from PBMCs using the Miltenyi Pan Monocyte isolation kit and LS MACS 

separation columns (Miltenyi biotec, Bergisch Gladbach, Germany). PBMCs were spun down 

at 300 xg for 10 minutes at 4 °C and the supernatant discarded. FcR blocking reagent and 

biotinylated antibody (Ab) cocktail were added and the cells incubated for five minutes at 4 °C. 

MACS buffer was added as well as anti-biotin microbeads, the cells were again incubated for 

seven minutes at 4°C. During the incubation step, the columns were primed with MACS rinsing 

buffer (Miltenyi biotec) and the volume of the cell suspsension adjusted to a total volume of 

500 µl using the MACS rinsing buffer. The cell suspension was applied to the column and the 

flow-through containing the monocytes collected in a 15 mL tube. The column was washed 

three times with 3 mL rinsing buffer. The cells collected as part of the flow-through was 

centrifuged at 300 xg for seven minutes at 4 °C, the supernatant discarded and the pellet 

resuspended in 1 mL RPMI+GLUT+PEN media. The MNs were counted, as mentioned above, 

and 130 000 cells/well were seeded in poly-D-lysine coated flat bottom plates (Corning 

Sciences, USA) in a final volume of 200 μL and incubated overnight at 37 °C and 5 % CO2. 

Purity checks were performed for the first participants and we confirmed the purity to be > 90 

% with all of the isolations. Due to the limited number of cells, we did not do it for all 

participants. Purity check was performed by staining a fraction of the isolated MNs using 

monoclonal antibodies anti-human CD14 and anti-human CD16. The MNs were centrifuged 

at 400 xg for five minutes and the media was discarded. MNs were incubated with the 

antibodies for 30 minutes at 4°C. After washing with FACS buffer, MNs were fixed with 4 % 

formalin for 15 minutes in the dark. Formalin was washed off with 1 mL FACS buffer and the 

cells resuspended in 100 µl FACS buffer prior to acquisition. Stained cells were kept at 4°C 

until they were acquired on the FACSCanto II flow cytometry instrument (BD). 
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vi. PBMCs and MNs infection with Mtb H37Rv to determine Mtb uptake and killing 

After overnight culturing, the PBMCs were centrifuged at 400 xg for five minutes, the 

supernatant discarded and the cells washed with 600µl RPMI-HEPEs. MNs adhered to the 

poly-D lysine coated flat bottom plates, therefore no centrifugation was required before 

aspirating the media and washing the cells with 200 µl RPMI-HEPES. PBMCs and MNs were 

infected for two hours with Mtb H37Rv at an MOI of 3.25:1 and 1:1 respectively, washed and 

further incubated for one day and three days (for MNs) or six days (for PBMCs) in RPMI+GLUT 

media supplemented with 20 % autologous plasma at 37 °C and 5 % CO2. Culture 

supernatants collected from PBMC (after two hours, day one, day three and day six) and MNs 

(after two hours, day one and day three) were filter sterilized using Millex 4 mm syringe filters 

(Merck-Millipore) and stored at -80°C until cytokine profiling. 

At each of the time points, PBMCs and MNs were washed and lysed using 0.05 % SDS for 

five minutes. The SDS was diluted out by adding an equal volume (300μL) of Middlebrook 

7H9 broth (BD). The lysates were serially diluted and plated on 7H11 Middlebrook (BD) plates. 

The plates were monitored weekly for contamination and the colony forming units (CFU) 

enumerated after three weeks. Additional PBMCs were removed from the tubes using 2 mM 

EDTA (Sigma-Aldrich) and stored in RNALater (Invitrogen) at 4 °C overnight and transferred 

to -80 °C the following day until RNA was isolated.  

Some MNs were treated with 100 µl of Cetyltrimethyl ammonium bromide (CTAB; Sigma-

Aldrich) for 10 minutes to lyse the cells. Nuclei were then counted using a haemocytometer to 

determine the number of viable cells.  

2.1.4 Sample processing for the TANDEM study 

Serum, plasma, whole blood (stored in RNALater) and cryopreserved PBMCs were previously 

collected and stored as part of the TANDEM study and analysed as mentioned below. 

2.1.5 RNA extraction study 

RNA was extracted from the QFT assay cell pellets for both the ALERT and TANDEM study. 

The pellet, which was stored in RNALater (as mentioned above), was thawed and total RNA 

extracted using the Ribopure Ambion RNA isolation kit (Life Technologies, Carlifornia, USA). 

The extraction was done according to the manufacturer’s instruction. Briefly, samples were 

thawed and spun down at 14 000 xg (Eppendorf centrifuge 5415C, Merck-Millipore) for one 

minute. The supernatants were discarded and lysis buffer added to the pellets. Sodium acetate 

solution was added and the samples vortexed to ensure all the cells were lysed. Chloroform 

(350 μl) was added to the cell lysates and the samples vortexed to remove DNA and proteins, 

followed by five minutes incubation at RT. The mixture was centrifuged for a minute at 14 000 

xg and the aqueous phase transferred to a new microcentrifuge tube. Absolute molecular 
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grade ethanol (600 µl) was added to the aqueous phase and the samples vortexed. The 

samples were transferred to a column, centrifuged and the flow through discarded. The 

column was washed with buffer 1 and again with buffer 2/3 and centrifuged for 10 seconds at 

14 000 xg after each wash step. The RNA was eluted in a total volume of 100 µl elution buffer. 

The eluted RNA was treated with 8 U/ µl DNase I, which is included in the Ribopure Ambion 

isolation kit (Life Technologies), for 30 minutes, to remove DNA. DNase activity was halted by 

adding the inactivation reagent and incubating the samples for two minutes at RT. After 

centrifuging the sample, the supernatant was collected into a new tube and quantified (see 

below). RNA samples were divided into 20 µl aliquots, to avoid multiple freeze-thaw cycles, 

and stored at -80 °C. 

2.1.6 RNA quantification, gene expression assay and data analysis 

Total RNA was quantified using the Nanodrop 2000c spectrophotometer (Thermo Fisher 

Scientific) and the RNA Qubit kit (Life technologies, Oregon, USA). Samples with a 

concentration of ≥ 20 ng/µl and a 260/280 and 260/230 ratio of ≥ 1.7 were included in the 

NanoString analysis. Eighty-four TANDEM and 80 ALERT samples were shipped to 

NanoString Technologies in Seattle Washington through their Cape Town supplier, Anatech, 

to determine the gene expression of 594 genes included in the nCounter GX Human 

Immunology kit V2 (supplementary Table 1). The nCounter analysis platform from NanoString 

is a direct digital detection assay of individual target molecules and does not require any 

amplification or reverse transcription step. Briefly, 100 ng of each RNA sample was added to 

the hybridization buffer containing the Codeset and incubated at 65 °C for 16 hours. The 

CodeSet consists of reporter and capture probes that hybridize to the target sequences of 

interest, forming a tripartite complex. The complexes were purified and immobilized onto the 

surface of a sample cartridge on the prep station using the high sensitivity protocol pre-set. A 

microscope with CCD camera was used to capture images of the surface of the sample 

cartridge where the barcodes were bound and gene transcripts were counted. The barcodes 

were decoded and cross-referenced to a specific target resulting in actual counts of specific 

target molecules in a particular sample (Gene expression assay user manual, NanoString 

Technology, Seattle, WA). Zipped RCC files were received from NanoString Technology. 

NanoString RCC data files were imported into the nSolver 3 software (nSolver Analysis 

software, v3.0) where they were normalized to housekeeping genes. The housekeeping genes 

had an average read count four fold higher than the negative controls and any gene with 

counts less than 20 was reported to be negative. The analysis was done, in consultation with 

a biostatistician at the University of Queensland, using JMP statistical software (SAS Institute 

for comparing gene expression) and the nil and Ag/nil ratio of the gene expression between 

the TB, TB-THG and TB-T2D groups and between LTBI and LTBI-T2D were analysed. 
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2.1.7 Enzyme linked immunosorbent assay (ELISA) in ALERT samples 

Stored plasma samples were thawed on the day the ELISA was done and all the reagents 

were brought to RT before being used. 

i. Elabscience® ELISA kit: Serotonin (5-hydroxytryptamine) ELISA 

The serotonin competitive ELISA (Biocom, California, USA) was performed following the 

manufacturer’s instructions. Briefly, 50 µl of the samples, standards and blank were added in 

duplicate to the pre-coated plate to the positions indicated on the template. Fifty µl of 

biotinylated detection antibody was added to the wells and the plates incubated for 45 minutes 

at 37 °C. After the incubation step, the plates were washed three times. Hundred µl Avidin-

Horseradish Peroxidase (HRP) was added to each well and the plates incubated for 30 

minutes. The plates were washed five times before 90 µl of Tetramethylbenzidine (TMB) 

substrate was added. The plates were again incubated for 15 minutes after which 50 µl sulfuric 

acid was added to stop the reaction. Colorimetric changes were detected at 450 nm using an 

Imark microplate reader (Bio-rad Laboratories, California, USA). A standard curve ranging 

from 15.63-1000 pg/mL was used and the Microplate manager 6 software, (Bio-rad 

Laboratories) used to calculate the serotonin concentrations in the samples.  

ii. Abnova 3 kit Catecholamine ELISA: Adrenaline/Noradrenaline/Dopamine ELISA kit 

The hormones in question were first extracted before the samples were analysed using the 

catecholamine ELISA kit (Abnova, Taipei City, Taiwan). Extractions were done according to 

the manufacturer’s instruction and using the extraction plates provided. Briefly, 10 µl of the 

standards, controls and 300 µl of the plasma samples were added to the plates followed by 

250 µl of deionized water. Assay and extraction buffer were then added to each well and the 

plates incubated for 30 minutes at RT while shaking at 600 rpm (all subsequent incubation 

steps were done at RT while shaking). Each well was washed twice and the plates incubated 

for five minutes between each wash step. Acylation buffer (150 µl) and acylation reagent (25 

µl) were added to each well followed by a 15 minute incubation. After washing and drying the 

plate, hydrochloric acid (0.025 M; 175 µl) was added to all the wells and the plate incubated 

in the dark for 10 minutes. Thereafter, the samples were ready to be loaded onto the three 

different ELISA plates: 

For the dopamine ELISA, 25 µl of the Catechol-o-methyltransferase enzyme solution was 

added to the microtiter strips of the dopamine ELISA plate followed by 50 µl of the isolated 

samples and 25 µl of the controls and standards, to allow for the formation of methyldopamine. 

Hydrochloric acid (0.025 M; 25 µl) was added to all the wells and the plate incubated for 30 

minutes. Fifty µl rabbit anti-dopamine antibody was added and the plate incubated for two 

hours. The plates were washed three times, before 100 µl anti-rabbit immunoglobulin-
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peroxidase conjugate was added. Thereafter the plate was incubated for 30 minutes. After the 

30 minutes incubation step, the plates were washed and 100 µl TMB substrate solution added. 

After 25 minutes, 100 µl of sulfuric acid was added to the plate to stop the reaction. The plates 

were read at 450 nm using an Imark microplate reader (Bio-rad Laboratories) and the 

concentrations calculated using the Microplate manager 6 software (Bio-rad Laboratories). A 

4-parameter logistic regression standard curve was used and ranged from 57.4-15054 pg/mL. 

The measured concentrations were divided by 60 (as recommended by the manufacturer) to 

obtain the actual dopamine concentration. 

For the noradrenaline ELISA, 25 µl of enzyme solution (Catechol-O-methyltransferase) was 

added in the noradrenaline microtiter strip. Twenty µl of the extracted standards, controls and 

samples were added to appropriate wells and incubated for 30 minutes. Fifty µl of rabbit anti-

noradrenaline antibody was added in all wells and the plates incubated for two hours. 

Subsequent steps were done similarly as for dopamine. A standard curve ranging from 51-

14251 pg/mL was used, and the measured concentration divided by 30 (as recommended by 

the manufacturer) to obtain the actual noradrenaline concentration. 

Lastly, for the adrenaline ELISA, 25 µl of enzyme solution (Catechol-O-methyltransferase) 

was pipetted into the adrenaline microtiter strips. Hundred µl of the isolated samples, controls 

and standards were added to their respective wells followed by a 30 minute incubation. Fifty 

µl rabbit anti-adrenaline antibody was added in all wells and the plates incubated for two hours. 

Subsequent steps were performed as previously described for dopamine and noradrenaline. 

The standard curve with the lowest detection limit of 9.1 and highest detection limit of 426 

pg/mL was used and the measured concentrations divided by 30 to obtain the actual 

concentration. All quality controls (QCs) were within the expected ranges.  

iii. Elabscience® ELISA kit: Interferon inducible T cell alpha chemoattractant (I-TAC) 

sandwich ELISA 

Hundred µl of neat serum samples, standards and blank were added to the pre-coated I-TAC 

ELISA plate (E-EL-H0051, Elabscience) and incubated for 90 minutes at 37 °C. The plates 

were washed three times. After the wash steps, 100 µl of Avidin-HRP conjugate was added 

to the wells and the plate incubated for 30 minutes. After washing the plates five times, 90 µl 

of substrate solution was added and again incubated for 15 minutes. Fifty µl of sulfuric acid 

was used to stop the reaction and the optical densities read at 450 nm using the Imark 

microplate reader (Bio-rad Laboratories). A standard curve ranging from 62.5-4000 pg/mL was 

used to calculate the unknown concentrations using the Microplate manager 6 software (Bio-

rad Laboratories).  
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iv. Elabscience® ELISA kit: Interleukin 22 (IL-22) ELISA in ALERT and TANDEM 

samples  

Serum samples from both the ALERT and TANDEM study were included in the IL-22 ELISA 

(E-EL-H0106, Elabsciences). The ELISA plates were pre-coated with an Ab specific to human 

IL-22. Standards and neat samples were added to the plates in duplicate and the plates 

incubated for 90 minutes at 37 °C.  One hundred µl of the biotinylated capture antibody was 

added after removing the samples and the plate incubated for one hour. The plates were 

washed three times with wash buffer and 100 µl of Avidin-HRP conjugate added to the wells. 

After a 30 minutes incubation step, the plates were washed five times and 100 µl of substrate 

reagent was added. The plate was again incubated for 15 minutes, after which the 50 µl 

sulfuric acid was added to stop the reaction. The colorimetric changes were immediately 

detected at 450 nm using the Imark microplate reader (Bio-rad Laboratories) and a 4 

parameter logistic regression standard curve ranging from 15.63-1000 pg/mL was used. The 

Microplate manager 6 software (Bio-rad Laboratories) was used to calculate the IL-22 

concentrations in the samples. 

2.1.8 Luminex in ALERT samples 

A customized multiplex screening assay from RnD Systems (Qiagen) was used to determine 

the concentration of 14 immune proteins namely; IFN-ү, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-13, IL-

18, IL-21, IL-22, IL-23, IL-27, IL-33, and TNF-α. Two single-plex assays were used to measure 

the concentrations of Oncostatin (OSM) and IL-35 both from Merck (Merck- Millipore). 

i. Human Magnetic Luminex®: RnD Screening assays (14-plex) 

Serum samples were diluted (1:2) and the assay done according to the manufacturer’s 

instructions. Fifty µl of the micro particle cocktail was added into each well in the 96-well plate 

followed by 50 µl of the samples and standards. The plates were sealed and incubated for two 

hours at RT in the dark while shaking at 800 rpm. The plates were washed three times. Fifty 

µl of biotinylated antibody cocktail was added and the plates incubated for one hour, followed 

by three wash steps. The plates were incubated for 30 minutes after the addition of 50 µl of 

streptavidin-phycoerythrin (PE) conjugate and washed three times. Finally, wash buffer was 

added and the plates left on the shaker for two minutes to re-suspend the beads. The sample 

was read immediately on the Bio-Plex 200 instrument (Bio-rad Laboratories) and a four 

parameter logistic regression standard curve was used to determine concentrations of all the 

cytokines in the samples using the Bio-Plex Manager software, version 6 (Bio-rad 

Laboratories). The standard curve for each analyte was ranging from; IFN-ү 43.2-11220 

pg/mL, IL-1β 15.8-3840 pg/mL, IL-13 454.8-110520 pg/mL, IL-33 47.8-11500 pg/mL, IL-8 4.4-

1060 pg/mL, IL-10 3.3-790 pg/mL, IL-22 16.4-3970 pg/mL, TNF-α 8.9-2170 pg/mL, IL-21 29.4-
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7140 pg/mL, IL-23 228.8-55600 pg/mL, IL-6 4.8-1180 pg/mL, IL-18 54.6-13260 pg/mL, IL-

27 375.7-91290 pg/mL and IL-4 15.4-3750 pg/mL. 

ii. Milliplex® Map Kit: IL-35 and Oncostatin luminex 

Luminex plates were primed with assay buffer for 10 minutes at RT while shaking at 600 rpm. 

The contents were discarded and 25 µl of standards and quality controls added to the wells 

as indicated on the plate template. Twenty five µl of assay buffer was added to all the sample 

wells and 25 µl of serum matrix to the wells containing the standards and quality controls. The 

diluted serum sample for IL-35 (1:4) and for OSM (1:2) were added to the sample wells 

containing assay buffer. Twenty five µl of beads were added to all the wells and the plates 

incubated for 16 hours, at 4 °C while shaking. After the incubation step, the plates were 

washed three times. Twenty five µl of detection antibody was added to each well and the 

plates incubated for one hour at RT (shaking). Following incubation, 25 µl of streptavidin-PE 

conjugate was added, without removing the contents of the wells, followed by a 30 minute 

incubation step. After washing the plate three times, 150 µl of sheath fluid was added and the 

plate left on the shaker for five minutes to re-suspend the beads. The mean fluorescent 

intensities were read on the Bio-Plex 200 instrument (Bio-rad Laboratories). The standard 

curve ranging from 6.9 to 5000 pg/mL for OSM and 0.8 to 800 ng/mL for IL-35 was used to 

calculate unknown cytokine concentrations using the Bio-Plex Manager software, version 6. 

The actual concentrations were obtained by multiplying by the dilution factor. All QCs were 

within the expected ranges. 

2.1.9 Flow cytometry: TANDEM study 

i.  Thawing of peripheral PBMCs 

Thawing media (TM), prepared by adding 10% of heat inactivated FBS (HyClone; BD) in RPMI 

(Biowest) with L-Glutamine (Sigma-Aldrich), was heated to 37 °C in a water bath prior to 

adding it to the cells. Cryopreserved PBMCs were thawed in a 37 °C water bath. One ml of 

the TM was added in a dropwise manner to the cells. The cells were gently mixed with the TM 

and transferred to a 15mL tube containing 8 mL of TM. The cells were centrifuged at 250 xg 

for 10 minutes, the media discarded and the cells again washed with 10 mL TM. After the 

second wash step, the cells were resuspended in 1 mL TM. PBMCs were counted, as 

described in section 2.1.3 iv, to determine the cell number and viability. 

ii.  Surface staining of PBMCs 

PBMCs (2.5x105 cells) were centrifuged at 250 xg for five minutes and washed with 1 mL of 

PBS (All wash steps were followed by centrifugation). PBMCs were first stained with the 

Live/dead (Zombie aqua; BD) stain, diluted to 1:100 in PBS, and incubated for 15 minutes at 

4°C. After the incubation step, the cells were first washed with 1 mL of PBS and secondly with 
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1 mL of FACS buffer (2 % FBS in PBS). A MAIT cell antibody panel was used to stain the cells 

and included pre-titrated anti-human antibodies purchased from BD and BioLegend 

(Cambridge, UK). The panel include CD26-FITC (1:5 dilution, 10 µl; BD), anti-human CD8-

APC-Cy7 (1:20 dilution, 2.5 µl; BD), anti-human CD4-BV412 (1:20 dilution, 2.5 µl; BD), anti-

human CD3-Per-Cp (1:40 dilution, 1.25 µl; BD), anti-human TCR Vα7.2-APC (1:10 dilution, 5 

µl; BioLegend), and anti-human CD161-PEcy7 (1:20 dilution, 2.5 µl; BioLegend) monoclonal 

antibodies. Cells were incubated with the antibody panel for an hour at 4 °C. The cells were 

washed after 30 minutes with FACS buffer. After washing with FACS buffer, PBMCs were 

fixed with 4 % formalin for 15 minutes in the dark. Formalin was washed off with 1 mL FACS 

buffer and the cells resuspended in 100 µl FACS buffer. Samples were kept at 4 °C until the 

samples were acquired on the FACSCanto II flow cytometry instrument with FACS Diva 

software, version 10 (BD). The results were analysed on FlowJo v10.1 software (TreeStar, 

Ashland, OR). 

2.1.10 Statistical analysis 

For the multiplexing data, values below and above the standard curve range, were 

extrapolated by the Bio-Plex Manager Software. Statistical analysis of clinical data was done 

using GraphPad PRISM version 6 (GraphPad Software Inc., California, USA). For more than 

two groups a Kruskal-Wallis analysis of variance (ANOVA) with a Dunn’s post hoc test to 

correct for multiple comparisons was used. When testing for significant differences between 

two groups a non-parametric Mann-Whitney U test was used. Statistical analysis of MAIT cell 

frequencies, cytokine, hormone and CFU data was done using Statistica version 13 (StatSoft, 

Ohio, USA). The data were analysed using a repeated measures ANOVA with a Fisher LSD 

post hoc test. Correlations between groups were determined by Spearman correlations on 

GraphPad PRISM version 6 (GraphPad Software). Gene expression analysis was done using 

JMP statistical software version 13.2 (SAS institute, North Carolina, USA) and significance 

was assessed using repeated measures ANOVA and Dunns correction Ingenuity pathway 

analysis software (QIAGEN) was used to generate pathways for the differentially expressed 

genes.  
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CHAPTER 3 

Identification of distinct immune gene expression signatures in active TB patients and 

close contacts with and without type 2 diabetes 

3.1. Introduction 

Progression from LTBI to active TB disease occurs when the immune system fails to control 

the infection (Sutherland et al. 2014). Transcriptional analysis of whole blood and Mtb antigen 

stimulated blood has become an important tool to study the expression of immune system 

related genes and shows promise in identifying possible biomarkers for TB progression and 

treatment responses (Cliff et al. 2013; Zak et al. 2016; Thompson et al. 2017). Transcriptomic 

analysis of healthy controls, patients with T2D and TB patients with and without T2D showed 

there are shared elements with published TB signatures in TB patients without T2D (Prada-

Medina et al. 2017; Berry et al. 2010). In the same study, increased neutrophil counts were 

associated with TB disease severity in patients with TB-T2D as previously reported in TB 

patients (Prada-Medina et al. 2017; Berry et al. 2010). Interestingly, pathways correlating to 

diabetic associated complications including several epigenetic reprogramming pathways were 

overexpressed in patients with TB-T2D, compared to patients with T2D only (Prada-Medina 

et al.2017). In this study, differentially expressed genes in TB-T2D patients included the four 

genes of the Maertzdorf TB diagnostic signature (Maertzdorf et al. 2015) as well as nine of the 

16 genes of the Zak signature predicting TB progression within two years of infection (Zak et 

al. 2016). the fact that a gene expression profile exists which predicts which individuals who 

are LTBI positive will develop TB disease, our aim was to identify altered gene expression 

profiles in individuals with LTBI as well as TB patients with and without T2D and to describe 

the underlying molecular mechanisms that could contribute to the increased susceptibility to 

TB observed in these participants. In addition, we aimed to describe changes in gene 

expression profiles at the end of TB treatment. Pathway analysis was done in an attempt to 

understand alterations in immune responses in the different patient groups.  

3.2 Methods 

The detailed methods were discussed in chapter 2. Ex-vivo and Mtb antigen stimulated whole 

blood gene transcripts from CCs with LTBI with, and without T2D and TB patients with and 

without T2D (BL and M6) were measured using the NanoString Technology. CCs of TB 

patients with and without T2D were recruited as part of the ALERT study and TB patients with 

and without T2D were enrolled as part of the EU FP7 funded TANDEM study. Briefly, whole 

blood was added to the three tubes of the QFT assay, incubated overnight and the supernatant 

and cells harvested. The supernatants were stored at -80°C, and the pellet resuspended in 

RNALater, which preserves RNA and then stored in -80°C. The pellet stored in RNA later was 

later thawed and total RNA extracted using Ribopure Ambion RNA isolation kit following the 
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manufacturer’s instructions. Total RNA was quantified using the Nanodrop as well as the RNA 

Qubit kit. 

RNA of unstimulated (nil) and Mtb antigen stimulated (antigen tube) whole blood of TB patients 

(TB n=9, TB-THG n=5 and TB-T2D n=7; BL and M6) and individuals with LTBI (LTBI-noT2D 

n=20, LTBI-T2D n=20) were shipped to NanoString Technologies (in Seattle Washington) to 

determine the gene expression of 594 genes (579 immunological genes and 15 housekeeping 

genes) as part of the nCounter GX Human Immunology kit V2. Statistical significance was 

assessed using repeated measures ANOVA and Hochberg’s correction between three groups 

and student T-test used to determine differences between two groups. 

3.3 Results  

3.3.1 Demographic and clinical characteristics 

Participants with LTBI (n=20) and LTBI-T2D (n=20) and 21 TB patients (TB n=9, TB-THG n=5 

and TB-T2D n=7) were included in this study. No significant differences were seen in age 

between the groups (Table 3.1). The clinical parameters for the LTBI and LTBI-T2D groups 

were taken at a single time point and for TB, TB-THG and TB-T2D at BL and M6. At BL, the 

median BMI in LTBI and LTBI-T2D was significantly higher compared to TB and TB-THG. The 

median BMI at M6 was significantly higher in the TB-T2D group compared to both the TB and 

TB-THG groups, as shown in (Table 3.1). The median HbA1c was significantly higher in the 

LTBI-T2D and TB-T2D groups compared to LTBI and TB (Table 3.1), respectively. At BL, there 

were differences in HbA1c between TB-THG and TB-T2D although not significant, however, 

significant differences were observed in TB-THG and TB-T2D at M6 (Table 3.1). Even though 

the HbA1c is much higher in the TB-T2D group it did not reach significance due to the low 

power because of the small sample size. We measured High density lipoprotein (HDL), Low 

density lipoprotein (LDL), triglycerides and total cholesterol (CHL) in LTBI and LTBI-T2D at 

BL. Triglycerides were significantly higher in LTBI-T2D (vs. LTBI), but no significant 

differences were observed in HDL, LDL and total CHL. In TB-THG and TB-T2D, the lipid 

measurements were performed at week 2 and at M6 and no significant differences were 

observed. Generally, the lipid concentrations were elevated in individuals with T2D 

irrespective of LTBI or TB status, with the exception of HDL, which was lower. With respect to 

medication, 50 % of the LTBI-T2D patients were on metformin, 25 % on insulin and 80 % were 

on a combination of medication and none of them were on prophylactic LTBI treatment in line 

with TB treatment policies in South Africa. All TB-T2D patients were on TB standard treatment, 

100 % were on metformin, 71% on insulin and 57% taking a combination of medication. The 

demographic and clinical information is summarised in Table 3.1. 
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Table 3.1 Demographic and clinical parameters of LTBI, LTBI-T2D, TB, TB-THG and 
TB-T2D patients 

Group LTBI 

(n=20) 

LTBI-T2D  

(n=20) 

TB 

(n=9) 

TB-

THG(n=5) 

TB-

T2D(n=7) 

P-value 

T2D history and 

management 

      

T2D medication 

Metformin (%) 

Insulin (%) 

Other medication (%) 

Known diabetic status  

 

- 

- 

- 

- 

 

10(50) 

5(25) 

16 

11 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

7(100) 

5(71) 

4 

5 

 

Sociodemographic       

Age, median (IQR) 

Sex, number (%) 

Female 

Male 

BMI, median (IQR) 

Baseline 

Month 6  

46.5(12.0)a 

 

13(65) 

7(35) 

 

25.0(10.2)b 

- 

56(12.3)a 

 

17(85) 

3(15) 

 

28.5(6.5)b 

- 

48(5.5)a 

 

4(44) 

5(56) 

 

18.4(5.7)a 

19.1(5.1)a 

48(10.5)a 

 

2(40) 

3(60) 

 

18.2(0.7)ac 

19.1(2.4)a 

46(7.0)a 

 

5(71) 

2(29) 

 

26.0(6.9)abc 

26.6(7.6)b 

0.0827 

 

 

 

 

<0.0001 

  0.0055 

Clinical information, 

median (IQR) 

      

RBG (mmol/L)  

Baseline 

FBG(mmol/L) 

HbA1c (%)  

Baseline 

Month 6 

Creatinine (µmol/L) 

Week2 

Month 6 

Total CHL (mmol/L) 

BL 

Week2 

 

- 

4.8(1.6)a 

 

5.7(0.78)a 

- 

 

- 

- 

 

4.6(1.1)a 

- 

 

- 

9.1(7.9)b 

 

7.9(3.8)b 

- 

 

- 

- 

 

5.1(2.2)a 

- 

 

5.7(1.9)a 

- 

 

5.7(0.5)a 

5.5(0.7)a 

 

- 

- 

 

- 

- 

 

6.0(3.7)a 

- 

 

6.7(0.4)ab 

5.7(0.6)a 

 

53.5(40.5)
a 

#49.5(61.0

)a 

 

- 

 

#18.35(4.1)a 

- 

 

12.0(1.9)b 

10.7(5.3)b 

 

56.0(19.0)a 

51.0(3.0)a 

 

- 

4.8(2.8)a 

 

0.0513 

<0.0001 

 

<0.0001 

0.0014 

 

0.4678 

0.4762 

 

0.1403 

0.7715 
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Month 6 

HDL (mmol/L) 

BL 

Week2 

Month 6 

LDL (mmol/L) 

BL 

Week2 

Month 6 

Triglycerides 

(mmol/L) 

BL 

Week2 

Month6 

- 

 

1.4(0.4)a 

- 

- 

 

2.5(1.1)a 

- 

- 

 

0.9(0.7)a 

- 

- 

- 

 

1.2(0.5)a 

- 

- 

 

3.1(1.4)a 

- 

- 

 

1.6(1.0)b 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

4.5(1.7)a 

#4.0(0.3)a 

 

- 

1.4(0.6)a 

1.5(1.3)a 

 

- 

2.65(2.5)a 

#2.0(0.4)a 

 

- 

0.8(0.6)a 

#1.1(0.5)a 

5.2(3.1)a 

 

- 

1.0(0.5)a 

1.2(1.3)a 

 

- 

3.2(1.2)a 

2.8(2.5)a 

 

- 

1.3(0.6)a 

2.7(2.8)a 

0.0952 

 

0.2229 

0.3429 

0.5714 

 

0,1560 

0.6857 

0.1333 

 

0.0025 

0.1913 

0.0952 

       

Data expressed as n (column %) unless specified. BMI-Body mass Index, RBG-Random blood glucose, Bold 

number indicates a significant ANOVA, P-value of <0.05 was considered significant using Kruskal-Wallis and 

Dunns post-hoc test. Letters indicate statistical significance if different from each other. Values with the same letter 

are not significantly different from each other. #- 2 participants in that particular group 

3.3.2 Overall transcript expression in unstimulated and stimulated blood from LTBI, 

LTBI-T2D, TB, TB-THG and TB-T2D at BL 

Gene expression analysis of a total of 594 immune genes was performed using the NanoString 

Technology platform to identify differentially expressed transcripts. The differential transcripts 

were investigated in the unstimulated and stimulated blood from individuals with LTBI with and 

without T2D and also in the TB, TB-THG and TB-T2D patients. The individuals with LTBI with 

and without T2D were compared to each other and TB, TB-THG and TB-T2D patients 

compared to one another. Gene transcripts data were reported as unstimulated, from the nil 

tube and stimulated, from the antigen tube divided by the value from the nil tube. 

Figure 3.1A shows the number of total transcripts that were differentially expressed in TB 

compared to TB-THG in both stimulated and unstimulated samples, shown as stim TB-THG 

and unstim TB-THG, respectively. Figure 3.1A also shows total differentially expressed 

transcripts inTB compared to TB-T2D in both stimulated and unstimulated samples, shown as 

stim TB-T2D and unstim TB-T2D, respectively. Two hundred and fifty genes were upregulated 

and 329 downregulated in the unstimulated blood of individuals with LTBI compared to LTBI-

T2D (Figure 3.1C). In the stimulated blood, 263 genes were upregulated and 315 

downregulated in individuals with LTBI compared to LTBI-T2D (Figure 3.1C). Observed 
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differences in the transcripts from unstimulated blood in TB patients compared to TB-THG and 

TB-T2D, shows that ex-vivo differences exist in the RNA of the investigated patients. 

Furthermore, the differentially expressed genes are shown on Venn diagrams to highlight the 

overlap of any of the differentially expressed transcripts between TB-THG and TB-T2D 

compared to TB. We found 182 and 187 of stimulated gene transcripts to be similarly 

downregulated and upregulated in TB-THG and TB-T2D compared to TB, respectively. 

Interestingly, 86 of the gene transcripts from stimulated whole blood were upregulated in TB-

THG and downregulated in TB-T2D, in addition, 123 were downregulated in TB-THG and up 

regulated in TB-T2D (Figure 3.1B). The Venn diagram was also done for LTBI and LTBI-T2D 

to determine the unique and shared genes between them (Figure 3.1D). A total of 211 gene 

transcripts which were upregulated in unstimulated blood of LTBI-T2D individuals were 

downregulated in stimulated blood from LTBI-T2D compared to LTBI. Two hundred and twenty 

four gene transcripts were downregulated in unstimulated blood and upregulated in stimulated 

blood from LTBI-T2D. Furthermore, 104 gene transcripts downregulated in unstimulated blood 

from T2D patients were also downregulated in the stimulated blood, and 39 genes were 

similarly upregulated in unstimulated and also in RNA from stimulated blood of LTBI-T2D 

(Figure 3.1D). There is a contrast between TB compared to both groups with high glucose 

(TB-THG and TB-T2D) leading to upregulation of more genes (than downregulation), while 

individuals with LTBI compared to LTBI with high glucose shows more downregulated than 

upregulated genes (Figure 1A and D). 
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Figure 3.1 Overall transcriptomic gene expression in TB, TB-THG and TB-T2D. RNA was isolated from whole 

blood stimulated with Mtb specific antigen using QFT assay (nil, unstimulated and Ag, stimulated). Gene expression 
analysis of 594 genes as part of the nCounter GX Human Immunology kit V2 was done on the extracted RNA. 
Column graphs were generated on excel and Venny 2.0 software was used to generate Venn diagrams. Column 
graph showing the number of all upregulated and downregulated transcripts from RNA isolated from unstimulated 
and stimulated blood of TB patients compared to TB-T2D and TB-THG (A).  A Venn diagram showing the number 
of all differentially expressed transcripts and the transcripts that are shared between the groups (B). Column and 
Venn diagrams showing the number of all upregulated and downregulated transcripts from RNA isolated from 
unstimulated and stimulated blood of LTBI individuals compared to LTBI-T2D (C and D).+ means upregulated and 
- means downregulated, unstim is forunstimulated, stim is for stimulated. 

  

3.3.3 Differentially expressed blood transcripts in unstimulated whole blood of TB-

THG and TB-T2D (vsTB) at baseline 

To determine differentially expressed whole blood gene transcripts from TB, TB-THG and TB-

T2D patients, heatmaps were used to determine the clustering of the gene expression data in 

the different groups. Gene expression was considered significantly different when the p value 

was < 0.01 and FDR-value was < 0.05 when compared to another group. Sixty-three genes 

were significantly different between TB-T2D and TB, of which, 25 were upregulated and 38 

downregulated in the TB-T2D group (Figure 3.2A and C). Twenty-nine genes were 

differentially expressed between TB-T2D and TB-THG, of which, 25 were downregulated and 

four upregulated in the TB-T2D patients (Figure 3.2B and D). TB compared to TB-THG 

showed significant differences in the five genes (P selectin glycoprotein ligand 1 (SELPLG), 

membrane metallo-endonuclease (MME), intelectin 1 (ITLN1), complement component 1Q 
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subcomponent binding protein (C1QBP) and  B cell lymphoma like protein 11 (BCL2L11), 

(data not shown). Two genes were upregulated in TB-THG vs TB (SELPLG and MME) and 

three downregulated genes (ITLN1, C1QBP and BCL2L11). We used the Ingenuity pathway 

analysis (IPA) software to analyse differentially expressed genes from unstimulated blood 

between the TB and TB-THG, and found that pathways associated with innate immune 

responses including the complement system and apoptosis pathway were highly represented.  

All significantly downregulated and upregulated genes from unstimulated blood at BL were 

analysed using Venn diagrams to enable visualization of shared and unique gene transcripts 

(Figure 3.2E, F). Twenty-two genes were exclusively downregulated in the TB-T2D (vs TB), 

two were significantly downregulated in TB-THG (vs TB) and 10 were specific to TB-T2D (vs 

TB-THG). BCL2L11, an apoptotic marker, was similarly downregulated in TB-THG and TB-

T2D compared to TB. Fifteen gene transcripts (CCL2, CCL4, CCL3, IL-1A, cluster of 

differentiation 163 (CD163), CXCL2, plasminogen activator urokinase (PLAU), CXCL1, IL-

1R1, tumour necrosis factor receptor superfamily member 8 (TNFRSF8), CCRL2, NF-KB1, 

proteasome non-ATPase regulatory subunit 7 (PSMD7), proteasome subunit beta type 

5(PSMB5) and B cell lymphoma 2 associated X protein (BAX)) were downregulated when TB-

T2D was compared to both TB and TB-THG (Figure 3.2E). The 15 gene transcripts may be of 

significance particularly, since these genes were downregulated in TB-T2D vs. TB and also 

found downregulated in TB-T2D vs. TB-THG. The genes that are altered by higher glucose 

appear to be in part similar between TB-T2D and TB-THG, but not ignoring the fact that 

differences between both groups exists which are not driven by excessively high blood glucose 

as shown by the distinct 15 gene signature between TB-T2D vs TB and TB-T2D vs TB-THG. 

These result shows the uniqueness of the 15 gene transcript profile to TB-T2D and may have 

impact in the pathogenesis and clinical outcomes associated with T2D during TB-T2D 

comorbidity. Twenty-four genes were exclusively upregulated in TB-T2D (vs TB), three were 

upregulated in TB-T2D (vs TB-THG) and two were specific to TB-THG (vs TB). One gene 

transcript (mitogen activated protein kinase activation protein kinase 2 (MAPKAPK2) was 

similarly upregulated in TB-T2D and TB-THG compared to TB (Figure 3.2F). Fewer gene 

transcripts were differentially expressed after stimulation, between patinets with TB-T2D 

compared to patients with TB. Results demonstrating changes in stimulated whole blood at 

BL are shown in supplementary Figure 1 A-C and month 6 gene expression shown in 

supplementary Figure 2A-C. 
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Figure 3.2: Differentially expressed gene transcripts between TB, TB-THG and TB-T2D. RNA was isolated 

from whole blood of TB-T2D, TB-THG and TB stimulated with Mtb specific antigen using QFT assay (nil, 
unstimulated only represented in the figure). Gene expression of 594 genes as part of the nCounter GX Human 
Immunology kit V2 was done on the extracted RNA. Down and upregulated transcripts from unstimulated blood of 
TB compared to TB-T2D (n= 14, A and C), and TB-THG vs. TB-T2D (n=12, B and D). Downregulated and 
upregulated genes commonly and exclusively expressed between the TB-T2D vs TB, TB-THG vs TB and TBT2D 
vs TBTHG (E and F). JMP SAS was used to generate heatmaps and volcano plots, Venny 2.0 software was used 
to generate Venn diagrams and used Student T test to determine statistical difference between the groups. Genes 
with a p value was < 0.01 and FDR < 0.05 was statistically significant. - downregulated, + upregulated. Figure A 
Red TB-THG, Blue TB-T2D, Figure B red TB, blue TB-T2D.  

 

3.3.4 Differentially expressed gene transcripts in blood from LTBI with and without 

T2D 

Analysis of differentially expressed genes was done to identify distinct genes associated with 

LTBI-T2D. Genes have been described showing differences between LTBI and TB, however, 

there is no published data on LTBI-T2D gene expression. There were 26 genes, 16 

significantly upregulated and 10 significantly downregulated in unstimulated blood from LTBI-

T2D compared to LTBI (Figure 3.3A). Stimulating with Mtb antigens increased the 

transcriptomic differences that we saw since stimulated blood resulted in 42 genes significantly 

expressed, and 36 of those were downregulated in LTBI-T2D patients compared to LTBI 

(Figure 3.3B).. There were seven genes exclusively upregulated in the unstimulated blood of 

LTBI-T2D patients (Figure 3.3E i) and nine that were exclusively downregulated in the LTBI-

T2D patients (Figure 3.3E ii) compared to LTBI. After stimulation, there were five genes 

uniquely upregulated (Figure 3.3E iii) and 27 downregulated (Figure 3.3E iv) in the individuals 

with LTBI-T2D (vs LTBI). Interleukin-18 plays a critical role in immune response against Mtb 

infection (Schneider et al. 2010). Our results showed the IL-18 gene transcript to be the only 
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one that was downregulated in the unstimulated and upregulated in the stimulated blood of 

LTBI-T2D (vs LTBI). Nine of the gene transcripts were upregulated in the unstimulated and 

downregulated in stimulated blood of individuals with LTBI-T2D (vs LTBI) (Figure 3.3E vi). 

 

Figure 3.3: Differentially expressed gene transcripts in LTBI and LTBI-T2D. RNA was isolated from whole 

blood of LTBI-T2D and LTBI stimulated with Mtb specific antigen using QFT assay (nil, unstimulated and Ag, 
stimulated). Gene expression of 594 genes as part of the nCounter GX Human Immunology kit V2 was done on 
the extracted RNA. Significantly down and upregulated transcripts from unstimulated blood of LTBI-T2D compared 
to LTBI (A and C). Downregulated transcripts from stimulated blood of LTBI-T2D and LTBI (B and D). 
Downregulated and upregulated genes commonly and exclusively expressed between the LTBI-T2D vs LTBI are 
shown in 3E: I-VI. JMP SAS was used to generate heatmaps and volcano plots, Venny 2.0 software was used to 
generate Venn diagrams and used Student T test to determine statistical difference between the groups. Genes 
with a p value < 0.01 and FDR < 0.05 was statistically significant. – means downregulated, + means upregulated, 
unstim is for unstimulated, stim for stimulated, Red LTBI, Blue LTBI-T2D. 

3.3.5 A core gene signature in whole blood differentiates TB-THG from TB-T2D 

patients at baseline 

Differentially expressed genes were used to run a recursive partitioning analysis (RPA) to 

identify gene transcripts that can categorize patients in a group that describes their condition, 

either as TB, TB-THG or TB-T2D. The partition is created in such a way that gene expression 

with similar response values are grouped. After the partition is completed, a constant value of 

the response variable is predicted within each patient group (Sun et al. 2011). Figure 3.4A is 

a representative cubic cluster of patients depending on the expression levels of the following 

genes; PSMB5, complement component receptor 1 (C1R) and C1QBP from unstimulated 

blood at BL. PSMB5 with a log2 expression value of less than 6.1 predicted all TB-T2D patients 

with an area under the curve (AUC) of 1.00 (Figure 3.4B). To further characterize TB and TB-

THG, C1QBP with a log2 expression value of < 6.7 was able to predict all five TB-THG patients 

(AUC=0.98; Figure 3.4B), but included one of the TB patients in this group. Subsequently, the 
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addition of C1R, with a log2 expression value of < 0.2, could separate all TB from TB-THG 

patients with an AUC of 0.99 (Figure 3.4B). The gene signature consisting of PSMB5, C1QBP 

and C1R were therefore able to accurately discriminate the three patient groups. A univariate 

analysis was done on the three genes to describe their expression in the different test samples 

as shown in Figure 3.4C to F. PSMB5 was significantly lower in TB-T2D compared to both TB 

and TB-THG (p=0.0001). C1QBP was significantly higher in TB compared to both TB-THG 

and TB-T2D (p=0.0069) (Figure 3.4C-D). C1R was not different among the groups (p=0.7328; 

data not shown).  

Furthermore, the RPA was done for the stimulated blood at BL and three genes differentiating 

TB-THG from TB-T2D were identified, LILRB4, LGALS3 and ABCB1. When the level of 

expression of LILRB4 was ≥ 1.02, the genes were able to identify all TB-THG, however at an 

expression level of ≤ 1.02 the gene was not able to discriminate between TB and TB-T2D. To 

further characterize TB and TB-T2D patients, the addition of galectin 3 (LGALS3) with the 

expression value of ˃  0.08 was able to identify all TB-T2D patients but included one TB patient 

in this group. Subsequently, the addition of ATP binding cassete subfamily B member 1 

(ABCB1) with a log2 expression ˃ -0.39 could separate all TB from TB-T2D patients with an 

AUC of 0.99. Using this approach we found a transcript signature in Mtb-antigen stimulated 

whole blood that can differentiates patients with TB-THG from TB-T2D (LILRB4, LGALS3 and 

ABCB1). A univariate analysis on these transcripts showed that leukocyte immunoglobulin like 

receptor B4 (LILRB4) was significantly higher in TB-THG compared to both TB and TB-T2D 

(p=0.0003) and that LGALS3 was significantly higher in TB-T2D compared to both TB and TB-

THG (p<0.0001) (Figure 3.4E-F). ABCB1 was not different between the groups (p=0.5601) 

(data not shown).  
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Figure 3.4: Gene signature distinguish between TB-THG and TB-T2D. (A) Cubic clustering from recursive 

partition analysis (RPA) of gene transcripts from RNA isolated from unstimulated blood of patients at baseline 
showing three markers accurately categorizing patients in either TB (red), TB-THG (green) and TB-T2D (blue). (B) 
Receiver operating characteristics curve showing the accuracy of the three markers to predict any of the patients 
as either TB, TB-THG or TB-T2D patients. Diamond plots showing differences in the expression of PSMB5, C1QBP 
in unstimulated blood (C and D) and LILRB4 and LGALS3 transcripts in stimulated blood (E and F). Mean 
expression was reported and ANOVA used to determine statistical significance. *p<0.01, **p<0.001, ***p<0.0001. 

3.3.6 Gene signatures in whole blood could be associated with dysregulated 

pathways in LTBI-T2D that may increase susceptibility to TB 

A group of differently expressed genes from unstimulated whole blood were used in RPA to 

identify a gene signature that would accurately classify LTBI with (n=20) and without T2D 

(n=20). Three genes cluster of differentiation (CD59), tumour necrosis factor ligand 

superfamily member 11 (TNFSF11) and cluster of differentiation (CD247) were able to 

distinguish between LTBI and LTBI-T2D. CD59 with a log2 expression value of ≥ 8.25 could 

identify 12 of the 20 patients as T2D.  TNFSF11 (at a cut off < 3.85) and CD247 (at cutoff < 

9.52) were added to the model to further distinguish the eight remaining T2D patients and by 

doing so, a three gene signature, could discriminate all LTBI from LTBI-T2D with an AUC of 

1.00 (Figure 3.5A and B). In addition, significant gene transcripts from stimulated blood were 
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also used for the RPA modelling. TNFRSF8, LILRA6 and PSMB7 were identified as good 

predictors for either LTBI or LTBI-T2D individuals. TNFRSF8 at a log2 expression value of ≥ 

0.85, LILRA6 with a log2 value of ≤ 0.06 and PSMB7 with a log2 value of ≤ 0.12 were able to 

accurately classify patients as LTBI or LTBI-T2D with an AUC of 1.00 (data not shown). Most 

importantly, these gene signatures could be involved in immunological pathways that may 

render patients with T2D susceptible to TB.  

A univariate analysis of the RPA predictive genes was done for both signatures from 

unstimulated and stimulated blood. CD59 was significantly higher in the LTBI-T2D compared 

to LTBI (p=0.0059) (Figure 3.5C). TNFSF11 (p=0.1573) and CD247 (p=0.7727) were not 

significantly different between the two groups in unstimulated blood (data not shown). From 

the stimulated samples, TNFRSF8 was significantly higher in the LTBI-T2D compared to LTBI 

(p=0.0097) (Figure 3.5D). Leukocyte immunoglobulin like receptor A6 (LILRA6) (p=0.3137) 

and PSMB7 (p=0.6046) were not significantly different (data not shown). 

 

Figure 3.5: Gene signature distinguishing between LTBI and LTBI-T2D. (A) Cubic clustering from recursive 

partition analysis (RPA) of gene transcripts from RNA isolated from unstimulated blood of study participants 
highlighting three markers that shows distinct immune signature in LTBI-T2D (blue) compared to LTBI (red) (B) 
Receiver operating characteristics curve of unstimulated blood at baseline showing the accuracy of the three 
markers to identify altered immune genes in LTBI-T2D compared LTBI. Diamond plots showing differences in the 
expression of CD59 and TNFRSF8 transcripts in LTBI-T2D compared to LTBI (C and D). *p<0.01, **p<0.001, 
***p<0.0001. 
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3.3.7 The number of differentially expressed gene transcripts was reduced in TB-T2D 

patients at month 6 

The transcript expression profile at M6 was investigated to determine how TB treatment would 

affect immune gene expression in the different patient groups. When comparing the gene 

expression between BL and M6, seven genes were differentially expressed in TB-THG 

(compared to TB). Platelet and endothelial cell adhesion molecule 1 (PECAM1), integrin 

subunit alpha 6 (ITGA6), CCR7, membrane spanning 4 domains A1 (MS4A1) and transcription 

factor 7 (TCF7) were significantly upregulated, while toll interleukin 1 receptor domain 

containing adapter molecule 1 (TICAM1) and IL17A were downregulated (data not shown).  At 

M6, however, none of the genes were differentially expressed between TB-THG and TB 

(Figure 3.6A). In TB-T2D (vs TB) we observed a drastic reduction in differentially expressed 

genes at M6 compared to BL. There were now eight genes downregulated (TICAM1, PSMD7, 

chromosome 14 open reading frame 166 (C14orf166), BCL2L11, PSMB7, mothers against 

decapentaplegic homolog 5 (SMAD5), Interleukin enhancer binding factor 3 (ILF3) and 

CXCL10) and two genes upregulated (PECAM1 and B cell linker protein (BLNK)) in TB-T2D 

(vs TB) at M6 (Figure 3.6B). Even after the decrease in the total number of differentially 

expressed genes in TB-T2D from BL to M6, there were four genes (ILF3, PSMD7, PSMB7 

and BCL2L11) which were downregulated at both time points. At M6, five genes (TP53, 

SMAD5, PSMC2, C14orf166 and C1QBP) were downregulated in TB-T2D compared to TB-

THG (Figure 3.6C).  PECAM1 was upregulated and TICAM1 downregulated in TB-T2D 

compared to TB at M6, the same was seen when comparing TB-THG to TB at M6. At the end 

of treatment, the reduction in gene transcripts and loss of differential expression is expected 

as the patients are cured. It is possible that the immune response is returning to normal, while 

the differences that remain are specific to T2D. 
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Figure 3.6: Differentially expressed gene transcripts between TB, TB-THG and TB-T2D at month 6. RNA was 

isolated from whole blood of TB-T2D, TB-THG and TB stimulated with Mtb specific antigen using QFT assay (nil, 
unstimulated only represented in the figure). Gene expression of 594 genes as part of the nCounter GX Human 
Immunology kit V2 was done on the extracted RNA. Down and upregulated transcripts from unstimulated blood of 
TB compared to TB-THG (A), TB vs. TB-T2D (B) and TB-THG vs TB-T2D. JMP SAS was used to generate 
heatmaps and used Student T test to determine statistical difference between the groups. Genes with a p value < 
0.01 and FDR < 0.05 was statistically significant. Figure A Red TB, Blue TB-THG, Figure B red TB, blue TB-T2D 
and Figure C red TB-THG and blue TB-T2D.  

3.3.8 Antigen presentation and Th1 activation and glucocorticoid signalling pathways 

are dysregulated in whole blood from LTBI, LTBI-T2D, TB, TB-THG and TB-T2D 

participants 

To investigate the role of the genes that were differentially expressed in the study groups, we 

performed an IPA analysis. Genes from unstimulated and stimulated whole blood, which were 

significantly different between LTBI-T2D and LTBI revealed alterations in immune responses 

such as antigen presentation and Th1 activation pathway (Table 3.2). From the stimulated 

whole blood of TB compared to TB-T2D at BL, the differentially expressed genes were 

involved in the regulation of triggering receptor expressed on myeloid cells (TREM-1) 

signalling which is critical for innate immune responses including activation of inflammatory 

responses (Colonna and Facchetti, 2003). TREM-1 is poorly expressed in Mtb infection, and 

correlates with inflammatory response rather than with bacterial proliferation (Colonna and 

Facchetti, 2003). In our results, TREM-1 could be induced by T2D in TB patients. 

Glucocorticoid receptor signalling was also among the overrepresented pathways in TB-T2D 

patients compared to TB. This could be associated with the IL-10 production that is seen in 

TB-T2D patients, because glucocorticoids suppress pro-inflammatory responses, which may 
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enhance the secretion of other anti-inflammatory molecules (Schaaf and Cidlowski, 2003). 

The complement and apoptosis pathways were observed when genes differentially expressed 

between TB and TB-THG from unstimulated whole blood at BL were investigated. After 

stimulating whole blood with Mtb-antigens, pathways involving IL-22 signalling, IL-15 

production and type 1 interferon signalling were overrepresented in TB-THG at BL (Table 3.2). 

The identified pathways are critical for immune response during TB and their differential 

expression shows that there are major differences between patients with and without T2D, 

and need to be further investigated to understand the biological functions in the individual 

groups. 
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Table 3.2: IPA of differentially regulated genes in the study participants 
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3.4. Discussion 

Humans infected with Mtb can clear the pathogen, become latently infected or develop active 

TB disease (Lu et al. 2011) and the risk of progression is significantly increased in T2D patients 

(Jeon and Murray, 2008). However, the factors influencing pathogen clearance and disease 

progression from latent infection are poorly understood (O’Garra et al. 2013). Our study 

investigated gene expression data from unstimulated and Mtb-antigen stimulated whole blood 

to identify distinct gene signatures in individuals with LTBI with and without T2D, and TB with 

and without T2D. We identified differential gene expression profiles, which may contribute to 

increased susceptibility of T2D patients to TB and increased disease severity in TB-T2D 

comorbidity, as well as delayed treatment response and unfavourable treatment outcomes.  

T2D is a risk factor for poor TB treatment outcomes including treatment failure and relapse 

(Dooley et al. 2009; Critchely et al. 2017) and the WHO recommends that all active TB patients 

be screened for T2D. This is however not broadly implemented. The TB-THG group is 

characterised by high HbA1c prior to TB treatment which decreases during the first three 

months of treatment (Tabarsi et al. 2014). It is therefore advised to monitor HbA1c of TB 

patients during treatment in order to confirm their T2D status. Our study was able to identify a 

signature that could differentiate between TB-THG and TB-T2D, which could be useful in 

preventing the unnecessary treatment in those who would have been incorrectly diagnosed 

as having T2D. Most importantly, T2D screening of TB patients is recommended by the WHO 

(Restrepo et al. 2011), however HbA1c testing using a cut-off of 6.5% will not be able to 

distinguish patients with THG from T2D. Therefore, our gene signature could complement 

standard T2D screening of TB patients and also support a re-evaluation of HbA1c cut-offs for 

T2D diagnosis in TB patients. 

We identified 15 gene transcripts that were dysregulated in unstimulated whole blood from 

TB-T2D patients compared to TB and TB-THG. It is possible that the products of these 15 

gene transcripts (CCL2, CCL4, CCL3, IL-1A, CD163, CXCL2, PLAU, CXCL1, IL-1R1, 

TNFRSF8, CCRL2, NFKB1, PSMD7, PSMB5 and BAX) contribute to immunopathology in TB-

T2D because their expression was unique to TB-T2D. Our unpublished data revealed that 

serum CCL2 protein is highly upregulated in TB-T2D patients, and could mean that high CCL2 

in TB-T2D negatively feeds back to downregulation of CCL2 at the mRNA level. It is also 

possible however that the high CCL2 concentrations in the serum are a spill-over from the site 

of disease and produced by immune cells recruited to the lung and not by immune cells in the 

circulation. Others also showed that serum of TB-T2D patients have elevated CCL2 protein 

levels (Panee, 2013). It has been shown that downregulated proteins are well correlated with 

their mRNA gene transcripts, however this trend was not reported for upregulated proteins, 

because they were either correlated with unchanged or downregulated mRNA gene 
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expression (Fournier et al. 2010). This could be why we observe downregulated CCL2 

transcripts while its protein has been reported to be upregulated in TB-T2D patients (Panee, 

2013). Insufficient CCL2 mRNA expression in diabetic wounds were reported to be primarily 

responsible for the delay in macrophage response in these wounds (Wood et al. 2014). We 

believe that the downregulation of the products of the gene transcripts mentioned above may 

favour altered recruitment of immune cells to the site of inflammation and affect immunity. Our 

results show that the TNFRSF8, BAX and NF-kB1 gene transcripts which are important for 

triggering apoptosis are inhibited in TB-T2D patients (Donath et al. 2003). Furthermore, 

Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAPK2), a protein kinase 

downstream of the p38 mitogen-activated protein kinase pathway, is involved in pathological 

conditions by upregulating various inflammatory pathways (Fiore et al. 2015). MAPKAPK2 

was found to be upregulated in TB-T2D compared to TB and TB-THG patients, in our study, 

and could be involved in promoting dysregulated inflammatory processes that are seen in TB-

T2D patients. Complement system C1q transcript is highly expressed in early stages of TB 

disease (Esmail et al. 2018). Interestingly, compliment c1q binding protein (C1QBP) was 

downregulated in our unstimulated sample of TB-THG (vs TB). C1QBP was also 

downregulated after stimulation in T2D compared to LTBI. C1QBP and SERPING, also 

downregulated in T2D compared to LTBI, were highly abundant in whole blood of TB patients 

compared with LTBI (Esmail et al. 2018). Since the complement pathway is upregulated during 

Mtb infection and gets downregulated during TB treatment (Cliff et al. 2013), Suliman et al. 

speculated that c1q is involved in TB pathology (Suliman;  Thompson et al. 2018). In keeping 

with this, its expression is strongly associated with active TB disease and disease severity 

(Cai et al. 2014). Even though the exact role of C1QBP is still unknown, it has been shown to 

play a role in regulating apoptosis and inflammatory processes in the mitochondrial matrix 

(Feichtinger et al. 2017). The downregulation of this transcript in our results was seen along 

with the downregulation of BCL2L11, which is an apoptotic gene. The inhibition of BCL2L11 

is associated with inhibition of apoptosis as well as autophagy (Dai and Grant, 2015). In our 

unstimulated blood from TB-T2D patients compared to TB, BCL2L11 gene transcript was 

downregulated.  

Immunity to TB requires effective innate and adaptive immune responses (Cooper and 

Khader, 2008; Beisiegel et al. 2009). NF-kB is a mediator of pro-inflammatory gene 

development and functions in both innate and adaptive immunity (Liu et al. 2017). NF-kB 

induction was high in TB compared to TB-T2D, this was accompanied by the induction of 

CD14 found on monocytes, CD163 expressed on macrophages and natural killer cell receptor 

2B4 (CD244) which are important players of the innate immune response. As part of this study, 

in patients with TB compared to TB-T2D, the components contained in cytotoxic granules such 
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as perforin (PRF1), granulysin (GNLY) and granzyme B (GZMB) were also elevated and 

corresponded to the expression of CD244 in unstimulated samples. Kumar et al. showed that 

the frequency of CD8+ T cells producing PRF1 or GZMB or CD107a were decreased in TB-

T2D group compared to TB in unstimulated whole blood and even after stimulation with Mtb-

antigens (CFP-10 or ESAT-6) (Kumar et al. 2015). NK cells producing PRF1 or GZMB were 

not significantly different between TB-T2D and TB at baseline and after stimulation with Mtb-

antigens, however, CD107a produced by NK cells was significantly lower in TB-T2D compared 

to TB after Mtb-antigens stimulation (Kumar et al. 2015). Kumar’s finding is different from our 

gene expression results since we saw similar results in the unstimulated blood and not after 

Mtb-antigens stimulation. However, this is not surprising since the gene expression and its 

protein abundance has been shown to be poorly correlated (Maier et al. 2009). The key 

transcription factor NF-kB of M1 macrophages is essential for the development of the Th1 

responses such as IL-12, IFN-ү, IL-23, and IL-27 which are required to control Mtb replication 

(Cooper and Khader, 2008), as well as IL-1β, TNF-α, and IL-6 (Wang et al. 2014). Blood 

transcriptional assays that enable early accurate TB diagnosis could have an important impact 

on control of the global TB epidemic (Walter et al. 2016). The immunological factors involved 

in the host immune response network in Mtb infection and TB reactivation have not yet been 

clearly elucidated. Identifying the host genes responsible for TB susceptibility and resistance 

may be the key towards better understanding the mechanisms leading to the development of 

the disease, and also identify pathways for targeted HDT. The genes that were differentially 

expressed in unstimulated LTBI-T2D compared to LTBI were associated with activation of 

necrosis and cell death of tumour cells, inhibition of immune response of leukocytes, 

maturation of blood cells, which may be implicated in the regulation of the immune response 

during Mtb infection. CCL2, CD163, TNFRSF8, cytokine inducible SH2 containing protein  

(CISH), guanylate binding protein 5(GBP5), promyelocytic leukemia (PML) and transporter 

associated with antigen presentation (TAP1) were differentially expressed in LTBI-T2D 

compared to LTBI and TB-T2D compared to TB patients which implies that these genes could 

have some significance in promoting TB susceptibility in LTBI and pathology in TB patients 

with T2D.  

A gene signature unique to LTBI-T2D patients was identified and includes CD59, TNFS11 and 

CD274. Only CD59 was significantly higher in individuals with LTBI-T2D compared to LTBI. 

CD59 is a membrane glycoprotein which protects host cells from the membrane attach 

complex mediating lysis (Koski et al. 1996). The membrane attack complex can result in tissue 

injury during dysregulated complement activation that occurs during chronic inflammatory 

conditions (Huang et al. 2006). This can result in overexpression of CD59, which, in tumour 

cells has been associated with tumour development (Fishelson et al. 2003). In our LTBI-T2D 
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patients, it is possible that CD59 protects the Mtb infected cells from complement mediated 

lysis which favours replication within the cells. A process which is perhaps exploited by Mtb. 

Zak et al. identified a 16 gene signature that could predict development of TB two years prior 

to diagnosis (Zak et al. 2016). Suliman et al. also identified a RISK4 gene signature that 

identifies those at risk for TB progression within two years (Suliman et al. 2018). In our study, 

TAP1, SERPING-1 and GBP5 genes were downregulated in T2D compared to LTBI after 

stimulation with Mtb antigens. The mentioned genes are also in the 16 gene signature 

identified by Zak et al. Before Mtb antigens stimulation, these genes were upregulated in LTBI-

T2D compared to LTBI, and were downregulated after stimulation. This shows that LTBI-T2D 

patients express some of the signature genes associated with progression to TB. Whether this 

is associated with an increased risk to progress to TB in T2D patients is not yet known. The 

complete signatures identified by Zak et al. (2016) and Suliman et al. (2018) could not be 

detected in our study. This was expected since a published 393-gene TB signature identified 

previously could not identify TB in patients co-infected with HIV (Dawany et al. 2014). The 

other reason was that our study used a specific immunological panel, which only looked at a 

subset of genes unlike the mentioned studies which used more in depth techniques such as 

RNA-seq. Due to T2D, the expression of genes is likely to differ.  

The IL-18 gene transcript was downregulated in the RNA isolated from unstimulated blood 

and upregulated in the Mtb antigen stimulated blood of individuals with LTBI-T2D compared 

to LTBI. In our unpublished data, we showed higher serum protein levels of IL-18 in LTBI-T2D 

compared to LTBI. This means that there is an inverse relationship between IL-18 protein and 

mRNA (similarly to what we observed for CCL2), which could feedback to suppress the IL-18 

transcript. In a study where IL-18 knock out mice were infected with Mtb, the IL-18 knock out 

mice had more CFUs in their lungs, compared to wildtype mice, and the CFUs were reduced 

after treating the mice with IL-18 (Sugawara et al 1999). In this study, the authors concluded 

that IL-18 is important for the development of protective immunity during Mtb infection 

(Sugawara et al. 1999). IL-18 increases FASL expression and NF-κB activation and its 

downregulation has been associated with increased Mtb susceptibility (Dinarello, 1999). The 

IL-18 gene has been studied in TB and LTBI models. We found it to be differentially expressed 

in LTBI-T2D compared to LTBI. Interestingly, in unstimulated LTBI-T2D samples, this gene 

transcript was downregulated and upregulated after Mtb antigen stimulation. This could be as 

a means of immune activation, and implies that IL-18 expression is affected during LTBI-T2D. 

These results have not been reported elsewhere, however, the inflammatory gene profile 

described by Zak et al. included this marker (Zak et al. 2016).  

 

Stellenbosch University https://scholar.sun.ac.za



67 
 

Transforming growth factor beta (TGF-β) is an anti-inflammatory and immunosuppressive 

cytokine, it antagonizes the activation of NF-kB in lymphocytes, on the one hand, NF-kB also 

inhibit activities of TGF-β (Geiser et al. 1993). TGF-β receptor-1 transcript was increased in 

our results in the TB-T2D compared to TB, and we think that this increase could underlie or 

result in irregular TGF-β production. If it does influence TGF-β production, it could explain the 

increased Th2 responses that have been reported in other studies (Al-Attiya and Mustafa, 

2009; Wang et al. 2018). However, in LTBI-T2D the upregulation of TGF- β is associated with 

the down regulation of Th1 (Kumar et al. 2014). 

Generally, the immune responses (especially the NF-kB signalling pathway) against Mtb were 

downregulated in the unstimulated blood from TB-T2D patients which could be a contributing 

factor in delayed Mtb clearance and unfavourable TB treatment outcomes. Interestingly, 

TNFRSF8 or CD30 which is expressed by activated lymphocytes (T and B cells), was 

downregulated in TB-T2D and one of its major functions is to arbitrate the signal transduction 

that leads to the activation of NF-kB (Liu et al. 2017). TNFRSF8 was also down-regulated in 

unstimulated LTBI-T2D compared to LTBI and as we know, TNF-α suppressors have been 

associated with progression to TB disease in LTBI individuals (Cantini et al. 2016).  

We were able to perform gene expression assay on both TANDEM and ALERT samples and 

found that there are unique gene profiles among our study patients. These gene profiles will 

be useful to characterize the biological composition and the immune response profile during 

different disease states. We identified a 15 gene signature that was downregulated in TB-T2D 

patients when compared to both TB and TB-THG and suggested that it could be involved in 

the immunopathology associated with TB-T2D. In addition, we also identified a biosignature 

using RPA (C1QBP, C1R and PSMB5) that could distinguish between TB-THG and TB-T2D 

in unstimulated blood. We were able to identify novel gene signature in unstimulated blood 

(CD59, TNFSF11 and CD247) from individuals with LTBI-T2D compared to LTBI which should 

be further evaluated in functional assays to elucidate their involvement in the increased 

susceptibility to TB observed in individuals with T2D. We were not able to perform a direct 

comparison for our 594 gene expression between the participant groups of the two different 

studies as the gene expression analysis was batched and run at different times. The first gene 

expression analysis was performed on the TANDEM patients, and a year later we ran the 

same gene expression panel on ALERT patients. We further acknowledge that we had a 

relatively low sample size for the gene expression assays. 
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CHAPTER 4 

Immune-endocrine changes in the serum and plasma of individuals with LTBI and TB 
patients with and without T2D, association with glycaemic control and Mtb control in 

phagocytic mononuclear cells. 

4.1 Introduction 

T2D is increasing in low and middle income countries where TB is also endemic (Harries et 

al. 2011). T2D is considered a risk factor for TB; apart from hyperglycaemia, altered 

phagocytosis by monocytes, dysregulated T cell immune response, altered hormone and 

cytokine production have been reported in TB-T2D patients (Restrepo and Schlesinger, 2013; 

Gomez et al. 2013; Kumar et al. 2014). Individuals with LTBI-T2D exhibit diminished circulating 

levels of type 1 (IFN-ү, IL-2 and TNF-α) and type 17 (IL-17F) cytokines (Kumar et al. 2014). 

Furthermore, decreased systemic levels of other pro-inflammatory cytokines such as IL-1β 

and IL-18, and the anti-inflammatory cytokine IL-10 have been reported (Kumar et al. 2014). 

Moreover, inflammatory cytokine production can activate the HPA axis (Fernandez et al. 

2016). The activation of the HPA axis leads to secretion of ACTH, ultimately resulting in the 

production of cortisol from the adrenals (Burford et al. 2017). Dysregulated cortisol production 

is associated with inhibition of immune cell functioning, such as antigen presentation leading 

to reduced Mtb control (Angerami et al. 2013), and has also been associated with TB severity 

(Santucci et al. 2011). The immune-endocrine profile is dysregulated in TB and more so in TB-

T2D comorbidity (Fernandez et al. 2016). Little is known about the dysregulation of the 

immune-endocrine interaction in LTBI-T2D, although this may contribute to the susceptibility 

of T2D patients to TB disease. We therefore aimed to characterize cytokine and hormone 

levels in latently infected individuals and TB patients with and without T2D and evaluate if 

there is correlation among the cytokines, hormones and Mtb association and control by 

PBMCs and MNs from these participants. 

4.2 Methods 

The detailed methods are discussed in Chapter 2. Forty close contacts of TB patients with and 

without T2D (enrolled as part of the ALERT study) and 21 TB patients with and without T2D 

at BL and M6 (enrolled as part of the TANDEM study) were included. The blood collected in 

NaHep tubes was used for PBMC isolation using the density gradient centrifugation method 

(for ALERT patients). Subsequently, MNs were isolated using Miltenyi Pan Monocyte isolation 

kit and LS MACS separation columns (Miltenyi biotec). The PBMCs and MNs were infected 

with H37Rv Mtb for two hours. Mtb uptake was determined, and cells were further incubated 

for one and three days (for MNs) or six days (for PBMCs), to determine the ability of the MNs 

and PBMCs to control and kill the Mtb in both the LTBI (noT2D) and LTBI-T2D (T2D). 

Differential blood cell counts and clinical parameters (HbA1c, FBG, lipids, weight and height) 

were determined. Weight and height was used to calculate the BMI of each participant. The 
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serum and plasma samples that were previously stored at -80°C were thawed and ELISAs 

used to measure adrenaline, noradrenaline, dopamine, (Abnova) serotonin, I-TAC and IL-22 

(Biocom). Luminex was used to simultaneously measure IFN-ү, TNF-α, IL-1β, IL-4, IL-6, IL-8, 

IL-10, IL-13, IIL-18, IL-21, IL-22, IL-23, IL-27, IL-33, (Qiagen), IL-35 and oncostatin (OSM) 

(Merck-Millipore) in the same samples. The CFU data were correlated with the cytokines, 

hormones, blood glucose levels, lipids and differential blood cell counts. IL-22 ELISA was 

performed on serum samples from both the ALERT and TANDEM study. Repeated measures 

ANOVA with a Fisher LSD post hoc test as well as Kruskal-Wallis with Dunn’s post hoc test 

were used to determine statistical differences between the groups. Spearman correlation 

analysis was used to determine association between variables. 

4.3 Results 

4.3.1 Study participants and characteristics 

The participants included in this chapter are the same as in the previous chapter. Their 

demographics and clinical parameters are summarized in Table 3.1. The ALERT participants 

were latently infected individuals with and without T2D, and in this particular chapter, 

participants were divided into four subclasses; noT2D (HbA1c 4.0-5.69%, n=10), PreT2D 

(HbA1c 5.7-6.49%, n=10), T2D (HbA1c 6.5-7.9%, n= 10) and poorly controlled T2D (pT2D) 

(HbA1c ≥8%, n=10). TANDEM participants were TB patients with and without T2D, and were 

grouped as follow, TB (HbA1c ≤5.7%), TB with transient hyperglycaemia (TB-THG; HbA1c 

≥6.5% at BL only and not on DM medication) and TB-T2D (HbA1c ≥6.5% at BL and M6, and 

taking DM medication). 

4.3.2 Cytokine responses in latently infected individuals with and without T2D 

T2D is characterised by chronic inflammation and dysregulated immune response (Xia et al. 

2017). LTBI-T2D have low circulating levels of IFN-ү, IL-2, TNF-α and IL-17F (Kumar et al. 

2014), as well as IL-1β, IL-18, IL-10 (Kumar et al. 2014). In this study, we measured the 

circulating concentrations of Th1 (IFN-ү and TNF-α ), Th2 (IL-4, IL-10, IL-13, IL-33, IL-35 and 

IL-27), Th17 (IL-22) as well as a range of other pro-inflammatory cytokines (IL-1β, IL-6, IL-18, 

IL-21 and IL-23) and chemokines (IL-8 and I-TAC) in the serum and plasma of individuals with 

LTBI with and without T2D.  

In this section we first compared the cytokine concentrations in the two groups, LTBI (including 

noT2D and preT2D) and LTBI-T2D (includingT2D and pT2Ds). Serum concentrations of IL-6 

were significantly higher in individuals with LTBI-T2D compared to LTBI-noT2D (Figure 4.1A). 

IL-18 showed a trend towards higher concentrations in LTBI-T2D compared to LTBI-noT2D 

(Figure 4.1B). There was no significant difference in concentrations of the following cytokines; 

IL-27 (Figure 4.1C), IL-4, IL-8, IL-13, IL-22, I-TAC and OSM (data not shown) between LTBI-
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T2D and LTBI-noT2D. IFN-ү, TNF-α, IL-10, IL- 21, IL-22, IL-23, IL-33 and IL-35 were not 

detected in majority of the study participants and therefore were not included in the analysis. 

 

 

Figure 4.1 Circulating cytokine levels in LTBI-noT2D compared to LTBI-T2D. IFN-ү, TNF-α, IL-1β, IL-4, IL-6, 

IL-8, IL-10, IL-13, IL-18, IL-21, IL-22, IL-23, IL-27, IL-33, IL-35, OSM were measured using luminex and I-TAC and 
IL-22 using ELISA in serum samples of LTBI-noT2D (HbA1c 4.0-6.4%, n=20) and LTBI-T2D (HbA1c ≥6.5%, n=20) 
patients. (A) IL-6 concentrations were significantly higher in LTBI-T2D compared to LTBI-noT2D. (B) IL-18 
concentrations were also higher in LTBI-T2D patients compared to LTBI-noT2D participants, but did not reach 
statistical significance. (C) IL-27 concentrations were not significantly different between LTBI-noT2D and LTBI-
T2D. Data are represented as LS means with 95% confidence intervals (CI). The significant difference between 
the groups was calculated using the Mann-Whitney U T test and a p-value < 0.05 was considered significant. 

4.3.3 IL-22 and IL-18 concentrations are higher in pT2D patients  

IL-22 has been shown to induce antimicrobial peptides, promotes epithelial repair and inhibits 

intracellular growth of Mtb in macrophages (reviewed in Domingo-gonzalez et al. 2016). IL-

18, produced by monocytes and macrophages, is associated with protection against Mtb 

infection (Schneider et al. 2010). When further subdividing the study participant into LTBI with 

preT2D, T2D and pT2D, we found that IL-18 concentrations were significantly higher in LTBI-

pT2D compared to LTBI-noT2D (p=0.02; Figure 4.2A). There was a trend towards higher 

levels of IL-18 in LTBI-pT2D when compared to LTBI-preT2D (p=0.06; Figure 4.2A). IL-22 was 

significantly higher in LTBI-pT2D compared to LTBI-T2D (p=0.04; Figure 4.2B). IL-22 was also 

higher in LTBI-pT2D compared to LTBI-noT2D, however, this difference failed to reach 

significant difference (p=0.09). IL-6 did not show any significant difference when comparing 

the four groups to each other. 
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Figure 4.2 IL-18, IL-22 and IL-6, concentrations compared among LTBI-noT2D, preT2D, T2D and LTBI-pT2D 
patients. Serum samples from LTBI-noT2D (HbA1c% 4.0-5.69, n=10), PreT2D (HbA1c% 5.7-6.49, n=10), T2D 

(HbA1c% 6.5-8, n= 10) and pT2D (HbA1c%≥8, n=10) were used to measure IFN-ү, TNF-α, IL-1β, IL-4, IL-6, IL-8, 
IL-10, IL-13, IL-18, IL-21, IL-22, IL-23, IL-27, IL-33, IL-35 and OSM using the luminex technology and  IL-22 and I-
TAC  using ELISA. (A) IL-18 is significantly higher in LTBI-pT2D (vs noT2D). (B) IL-22 is higher in LTBI-pT2D 
compared to LTBI-T2D (p=0.02) and LTBI-preT2D (p=0.09). (C) No statistical significant difference in IL-6 is 
observed among the four groups. The data were analysed using an ANOVA with a Fisher LSD Post-hoc test. Data 
are represented as LS means with 95% CI, ANOVA p value is shown on the graph. Letters (a-b) are used to indicate 
significant differences, groups with the same letter are not statistically different from each other. 

4.3.4 IL-22 cytokine is higher in TB-T2D  

The role of IL-22 in TB is contradicting, with some studies suggesting a pathological role, while 

other studies suggest a protective role for IL-22 during TB  (Treerat et al. 2017). Given the 

importance of IL-22, we measured its concentration in TB, TB-THG and TB-T2D patients at 

BL and M6 using an ELISA. IL-22 concentrations were significantly lower in TB-THG patients 

compared to TB-T2D at BL (Figure 4.3A) and this trend was also seen at M6, although not 

statistically significant   (Figure 4.3B). To determine if TB treatment has an effect on IL-22 

levels, we compared IL-22 expression at BL and M6 in the three groups and no differences 

were observed, however, TB-T2D showed a trend towards decreased IL-22 at M6 compared 

to BL (Figure 4.3C).  

Furthermore, we wanted to compare the concentration of IL-22 in TB, TB-THG and TB-T2D 

patients before and after TB treatment to that of individuals with LTBI with and without T2D. 

There was an overall significant difference in IL-22 concentration at BL (ANOVA), however, 

after correcting for multiple comparisons with the Dunn’s post hoc test, there were no 

significant differences detected among any of the groups (Figure 4.3D). When comparing the 

end of treatment (M6) IL-22 concentrations of the TB patients to those measured in the LTBI 

groups, we found that the end of treatment, IL-22 concentrations were significantly higher in 

the TB-T2D (M6) compared to LTBI and LTBI-T2D (T2D)  (Figure 4.3E).  
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Figure 4.3 IL-22 concentrations in LTBI-T2D compared to TB-T2D. Serum from individuals with LTBI with 

noT2D (HbA1c 4.0-5.69%), preT2D (HbA1c 5.7-6.49%), T2D (HbA1c 6.5-8%) and pT2D (HbA1c ≥8%) was used 
for measuring IL-22 using ELISA. (A) IL-22 measurement in TB, TB-THG and TB-T2D at BL. (B) IL-22 
measurement in TB, TB-THG and TB-T2D at M6. (C) IL-22 measurements to determine treatment effect in TB, TB-
THG and TB-T2D at BL and M6. (D) IL-22 measurement in LTBI-noT2D, LTBI-preT2D, LTBI-T2D, LTBI-pT2D, TB, 
TB-THG and TB-T2D at BL. (E) IL-22 measurement in LTIB-noT2D, LTBI-preT2D, LTBI-T2D, LTBI-pT2D, and M6 
of TB, TB-THG and TB-T2D. The ANOVA p-value is shown on the graph and differences between the groups 
indicated with a *. The data was analysed using the Kruskal-Wallis test with a Dunn’s post hoc test to determine 
difference between the groups. *P <0.05, **P<0.01. 

4.3.5 No differences in catecholamines, vitamin D, cortisol and insulin concentrations 

in LTBI participants with and without T2D  

Cytokines produced during Mtb infection and T2D may alter endocrine responses which in 

turn could have an effect on theprogression of the disease (Webster et al. 2002). We therefore 

wanted to investigate the plasma concentrations of some hormones (mentioned below) in LTBI 

participants with and without T2D. We measured catecholamine (dopamine, adrenaline and 

noradrenaline) and serotonin concentrations with ELISA, while measurements of insulin, 

cortisol and Vitamin D levels were done at the national health laboratory services for these 

participants. We were unable to measure Noradrenaline due to technical problems 

encountered in the laboratory. No differences were observed in the circulating concentrations 

of the measured hormones between LTBI-T2D and LTBI-noT2D. Figures comparing the levels 

of cortisol (Figure 4.4A), insulin (Figure 4.4B), adrenaline (Figure 4.4C) and serotonin (Figure 
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4.5D), between T2D and noT2D, are shown below. Dopamine and Vitamin D data were not 

included. 

 

Figure 4.4 Hormone concentrations in LTBI-T2D compared to LTBI-noT2D. Measurements of cortisol (A) and 

insulin (B) were assessed by clinical laboratory testing through the national health laboratory services (NHLS). 
Adrenaline (C) and serotonin (D) were measured with ELISA. All the hormones were not significantly different 
between LTBI-T2D and LTBI-noT2D. Data was analysed using Mann-Whitney U T test and represented as LS 
means with 95% CI. P <0.05 was considered significant. 

4.3.6 Insulin was higher in LTBI with pT2D compared to LTBI with noT2D 

It is known that T2D patients are characterized by hyperglycaemia and insulin resistance 

(Taskinen and Boren, 2015), therefore we wanted to determine if subdividing our participants 

according to glycaemic levels would result in differences in hormones associated with T2D. 

After subdividing the participants into the four groups, there was a significant difference in 

insulin levels between LTBI-pT2D and LTBI-noT2D (p=0.03; Figure 4.5A). This is not 

surprising as high insulin observed in the LTBI-pT2D patients is driven by the insulin treatment 

some of the patients received (5 of the 10 pT2D patients reported using insulin) or could be 

due to hyperinsulineamia. There were no differences observed in any of the hormones; vitamin 

D, cortisol, serotonin and catecholamines measured when comparing the four patient groups 

(Fig 4.5B).  
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Figure 4.5. Hormone levels in patients with LTBI and noT2D, preT2D, T2D and pT2D. Insulin (A) and serotonin 

(B) concentrations were measure in the plasma samples of LTBI-noT2D (HbA1c 4.0-5.69%), LTBI-preT2D (HbA1c 
5.7-5.64%), LTBI-T2D (HbA1c 6.5-8%) and LTBI-pT2D (HbA1c ≥8%) patients by ELISA. The data was analysed 
using an ANOVA with a Fisher LSD post hoc test. Data are represented as LS means with 95% CI. Letters (a-b) 
indicate significance differences. Groups with the same letter are not statistically different from each other. 

4.3.7 Triglycerides were higher in LTBI-T2D compared to LTBI-noT2D 

Dyslipidaemia is one of the best described characteristics of T2D (Taskinen and Boren, 2015), 

and is involved in the regulation of chronic inflammation (Wellen and Hotamisligil 2005). Since 

T2D is characterized by low grade chronic inflammation (Huang et al. 2014), we wanted to 

investigate the lipid profile in our study participants. We, therefore, investigated total CHL, 

triglycerides, LDL and HDL levels in the plasma of participants with LTBI with and without T2D. 

As shown in Figure 4.6A, the LTBI-T2D patients had significantly higher triglyceride 

concentrations in their blood compared to LTBI-noT2D. The total CHL (Figure 4.6B) and LDL 

(data not shown) were higher and HDL (data not shown) was lower in LTBI-T2D patients, but 

the differences were not significant. 

 

 

Figure 4.6 Triglycerides and cholesterol in LTBI-T2D compared to LTBI-noT2D. Lipids concentrations were 

assessed by clinical laboratory testing through the national laboratory services (NHLS). (A) Triglycerides were 
significantly higher in LTBI-T2D compared to LTBI-noT2D. (B) Total CHL was not significantly different between 
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the two groups. Data were analysed using Mann-Whitney U T test. Data are represented as LS means with 95% 
CI. P <0.05 was considered significant. 

4.3.8 Poorly controlled glycaemia drives the increase in lipids in T2D patients 

To determine if the differences between the participants were dependant on the glycaemic 

control, the analysis was done in the four subgroups. Triglycerides were significantly higher in 

LTBI-pT2D compared to all the other groups (Figure 4.7A). Total CHL was significantly higher 

in LTBI-pT2D in comparison to LTBI-noT2D (p=0.01; Figure 4.7B). LDL was significantly 

higher in LTBI-pT2D compared to LTBI-noT2D (p=0.01; Figure 4C) and showed a trend 

towards higher levels compared to LTBI-preT2D (p=0.06; Figure 4.7C). HDL concentration 

was significantly higher in LTBI-noT2D compared to LTBI-PreT2D and LTBI-T2D (p=0.03; 

Figure 4.7D). Overall, all lipids measurements were higher in LTBI-pT2D compared to LTBI-

noT2D, with the exception of HDL, which was the highest in the LTBI-noT2D. 

 

 

Figure 4.7 Lipid concentrations in LTBI-noT2D, LTBI-preT2D, LTBI-T2D and LTBI-pT2D participant groups. 

Lipids were measured in serum from LTBI-noT2D (HbA1c 4.0-5.69%, n=10), LTBI-PreT2D (HbA1c 5.7-6.49%, 
n=10), LTBI-T2D (HbA1c 6.5-8%, n= 10) and LTBI-pT2D (HbA1c ≥8%, n=10). (A) Triglycerides were significantly 
higher in LTBI-pT2D compared to the other groups. (B) Total CHL was significantly higher in LTBI-pT2D compared 
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to LTBI-noT2D. (C) LDL was also significantly higher in LTB-pT2D (compared to LTBI-noT2D) and there was a 
trend for it to be higher in than LTBI-preT2D. (D) HDL was significantly lower in LTBI-noT2D (compared to LTBI-
T2D). The obtained concentrations were analysed using an ANOVA with a Fisher LSD post hoc test. Data are 

represented as LS means with 95% CI. Letters (a-b) are used to indicate significance. Groups with the same letter 
are not statistically different from each other. 

4.3.9 No difference in complete blood cell counts in LTBI with and without T2D 

To determine the effect T2D might have on the full and differential blood cell counts, we 

compared the absolute number and frequency of blood cells in LTBI participants with and 

without T2D. Total red and white blood cells, as well as platelet counts were measured. In 

addition, neutrophil, monocyte, basophil and lymphocyte numbers were determined. No 

significant changes in the full and differential cell counts were observed between LTBI-T2D 

and LTBI-noT2D (data not shown). 

4.3.10 Individuals with LTBI and pT2D have increased white blood cell and 

lymphocyte counts 

Differential blood cell counts in our participants after stratification according to HbA1c was 

determined and we found higher white blood cell counts in LTBI-pT2D compared to LTBI-

noT2D (p=0.01; Figure 4.8A) and a trend towards higher levels in LTBI-pT2D when compared 

to preT2D (p=0.08 Figure 4.8A). The lymphocyte counts were higher in the LTBI-pT2D 

compared to LTBI-noT2D (p=0.01), preT2D (p=0.02) and T2D (p=0.02) as shown in (Figure 

4.8B). The neutrophil absolute counts did not show any differences, however, there was a 

trend towards higher counts in both LTBI-pT2D and LTBI-preT2D compared to LTBI-noT2D 

(p=0.07) (data not shown). There was no difference among the absolute counts of monocytes, 

eosinophils and basophils, and there was also no significant changes in the frequency of all 

the different blood cell counts among the four groups. 

 

Figure 4.8. Absolute counts of white blood cells and lymphocytes in participants with LTBI and noT2D, 
preT2D, T2D and pT2D. Whole blood from LTBI-noT2D (HbA1c 4.0-5.69%, n=10), LTBI-preT2D (HbA1c 5.7-

6.49%, n=10), LTBI-T2D (HbA1c 6.5-8%, n= 10) and LTBI-pT2D (HbA1c ≥8%, n=10) was used to measure the 
blood cell counts. (A) Illustrates significantly higher white blood cell count in LTBI-pT2D compared to LTBI-noT2D. 
(B) Lymphocyte counts are significantly higher in LTBI-pT2D compared to noT2D, preT2D and T2D. The obtained 
counts were analysed using an ANOVA with Fisher LSD post hoc test to determine difference between groups. 
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Data are represented as LS means with 95% CI. Letters (a-b) are used to indicate significance. Groups with the 
same letter are not statistically different from each other. P <0.05 was considered significant. 

4.3.11 PBMCs from participants with LTBI and T2D show poor association and control 

of Mtb  

Innate responses are compromised in patients with chronic hyperglycaemia and macrophages 

from these patients have impaired association as well as bactericidal activity (Llorente et al. 

2000). In this study, the PBMCs from individuals with LTBI with and without T2D were infected 

with Mtb H37Rv to determineassociation and killing activity. The CFU count at two hours was 

used as a measure of the number of Mtb associated with MNs, and the CFU counts at day 

one (D1), day three (D3) (MNs) or day six (D6) (PBMCs) as a measure of controlling Mtb 

growth, and decreasing CFU over time is a sign of Mtb killing. There was no correction made 

for the differential blood cell counts. 

PBMCs from LTBI-T2D patients had significantly lower CFUs at two hours suggesting 

poorassociation of Mtb when compared to LTBI-noT2D (p=0.04; Figure 4.9A). Fold changes 

in CFU counts at D1 and D6 were calculated by dividing the CFU counts of each of these time 

points with the corresponding two-hour CFU counts. Fold changes were used to control for 

variations in Mtb uptake. PBMCs from LTBI-T2D and LTBI-noT2D had significantly higher CFU 

counts at D6 compared to D1 (p=0.01 and p=0.02, respectively; Figure 4.9B). No difference 

in killing ability of the PBMCs were observed when LTBI-T2D were compared to LTBI-noT2D. 

It is important to note that these findings vary to those of the entire ALERT cohort showing no 

difference in phagocytosis between the two groups and also showing significantly higher Mtb 

fold growth in LTBI-T2D compared to LTBI-noT2D. The differences are most likely due to the 

small number of participants included in this substudy. The analysis for the larger parent study 

is still ongoing. 

It has been shown that pT2D increases TB risks (Leung et al. 2008). For that reason we further 

classified and analysed the data of the participants in the four subclasses depending on 

HbA1c. We found that after two hours the CFU counts from PBMCs isolated from LTBI-T2D 

were significantly reduced compared to LTBI-noT2D (p=0.02), LTBI-preT2D (p<0.01) and 

interestingly to LTBI-pT2D (p=0.01) (Figure 4.9C). There was a trend towards higher CFU in 

PBMCs of LTBI-T2D compared to PBMC from LTBI-noT2D, at D6 (p=0.06; Figure 4.9D). 

Furthermore, the four subclasses were investigated to determine Mtb containment. PBMCs 

from LTBI-noT2D (p=0.03), LTBI-preT2D (p=0.02) and LTBI-T2D (p<0.01) had a significant 

increase in CFUs from D1 to D6 (Figure 4.9D), whereas, a trend towards an increase from D1 

to D6 was observed in LTBI-pT2D (p=0.08; figure 4.9D). 
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Figure 4.9 The influence of T2D on the containment of Mtb by PBMC of latently infected participants. PBMCs 

from LTBI-noT2D (HbA1c 5.7-6.4%, n=20) and LTBI-T2D (HbA1c ≥6.5%, n=20) (A and C) and PBMC from LTBI-
noT2D (HbA1c 4.0-5.6%9, n=10), LTBI-PreT2D (HbA1c 5.7-6.49%, n=10), LTBI-T2D (HbA1c 6.5-8%, n= 10) and 
LTBI-pT2D (HbA1c≥8, n=10) (B and D) were infected with Mtb for two hours. Cells were lysed immediately after 
the infection as well as one and six days post infection. The data were analysed using ANOVA with a Fisher LSD 
post hoc test. Data are represented as LS means with 95% CI. Letters a-d indicate statistical significance with the 
same letter indicating no difference between or among groups. 

4.3.12 MNs from T2D have poor Mtb control 

MNs from patients with T2D have decreased phagocytic activity (Komura et al. 2010), and 

lower association with Mtb (Gomez et al. 2013) which could result in poor Mtb control. To 

determine the phagocytic capacity of MNs in our study cohort, MNs were isolated from PBMCs 

and infected with Mtb. Although our study showed that MNs from LTBI-noT2D had higher Mtb 

uptake compared to LTBI-T2D, the difference observed was not significant (Figure 4.10A). We 

further determined the Mtb killing capacity of the MNs from LTBI-noT2D and LTBI-T2D. CFUs 

increased in both groups from D1 to D3 with D3 CFU counts of LTBI-T2D reaching statistical 

significance (p=0.02; Figure 4.10B). In LTBI-noT2D the increase in CFUs from D1 to D3 

remained a trend (p=0.06; Figure 4.10B). There was no significant difference in CFU between 

LTBI-T2D and LTBI-noT2D at D1 (p=0.47) and D3 (p=0.24) post infection (Figure 4.10B). 

We further analysed the MNs CFU results according to the four subclasses and did not see 

any differences in the association of Mtb with MNs (Figure 4.10C). We continued to determine 

the growth and the ability of the MNs to control Mtb in these patients. Fold changes from D1 

and D3 were compared. MNs from both LTBI-noT2D and LTBI-T2D showed a significant 
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increase in CFU from D1 to D3 (p=0.04 and p<0.01, respectively; Figure 4.10D). The CFU fold 

growth from MNs of LTBI-preT2D and LTBI-pT2D did not significantly change from D1 to D3 

(Figure 4.10D). There was no significant difference in CFU among the four groups at D1 and 

D3 (Figure 4.10D). 

 

Figure 4.10 The influence of T2D on the containment of Mtb by MNs. MNs from LTBI-noT2D (HbA1c 5.7-6.4%, 

n=20) and LTBI-T2D (HbA1c ≥6.5%, n=20) (A and C) and MNs from LTBI-noT2D (HbA1c 4.0-5.69%, n=10), LTBI-
preT2D (HbA1c 5.7-6.49%, n=10), LTBI-T2D (HbA1c 6.5-8%, n= 10) and LTBI-pT2D (HbA1c ≥8%, n=10) (B and 
D) were infected with Mtb for two hours. CFUs counts were determined for uptake at two hours and Mtb burden 
and control at D1 and D3. The CFU data was analysed using ANOVA with a Fisher LSD post hoc test. Data is 

represented as LS means with 95% CI. Letters a-c indicate statistical significance with the same letter are not 
statistically different from each other. 

4.3.13 No association between FBG and HbA1c with Mtb uptake by PBMCs 

There was poor Mtb association with PBMCs from T2D patients. Following that observation, 

we did a spearman correlation between the clinical characteristics associated with T2D. We 

found a negative correlation between BMI and Mtb uptake by PBMC (p=0.07, r=-0.29) of 

patients with LTBI and T2D, however this was only a trend. There was no correlation between 

FBG and Mtb uptake by MNs (p=0.14; r=0.25; Figure 4.11A) and PBMCs (p=0.14, r=0.25; 

Figure 4.11B). There was also no relationship between Mtb uptake by MNs (p=0.12, r=0.27; 

Figure 4.11C) and PBMCs (p=0.82, r=-0.04; Figure 4.11D) with HbA1c. 

When the participants were further divided into the four groups according to HbA1c (LTBI-

noT2D, LTBI-preT2D, LTBI-T2D and LTBI-pT2D), FBG positively correlated with Mtb uptake 
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in PBMCs of LTBI-noT2D (p=0.03, r= 0.68) as well as in LTBI-T2D (p=0.01, r= 0.75; data not 

shown). There was no correlation between FBG and Mtb uptake by PBMC of LTBI-preT2D 

(p=0.25, r=0.40) and LTBI-pT2D (p=0.73, r=0.13; data not shown). 

 

 

Figure 4.11 Correlation of glycaemic control with Mtb uptake. FBG was correlated to Mtb uptake by MNs (A) 

and PBMCs of (B). HbA1c was correlated to Mtb uptake by MNs (C) and PBMCs (D). The associations were 
determined using Spearman correlations. 

4.3.14 Correlations between Mtb killing and cytokines  

We observed that IL-6, IL-18 and IL-22 serum concentrations were high in T2D patients and 

investigated further whether there were associations between the cytokine concentrations and 

the Mtb uptake and killing. Firstly, we did correlations of cytokines and CFU data in all 

participants. IL-6 did not shown any significant correlation with Mtb uptake by MNs (p=0.19, 

r=-0.23; Figure 4.12A) or PBMCs (p=0.63, r=-0.08; Figure 4.12B) and the same was seen for 

IL-18 and IL-22. I-TAC showed a trend towards a positive correlation with Mtb uptake by 

PBMCs (p=0.06, r=0.30; data not shown) and IL-4 a trend towards a negative correlation with 

D1 CFU fold change in PBMCs (p=0.09, r=-0.27; data not shown). I-TAC was negatively 

correlated to D6 CFU fold change in PBMCs (p=0.01, r=-0.49). 
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In the analysis of the four groups, we found that IL-6 was positively correlated with Mtb uptake 

by PBMCs in the LTBI-noT2D group (p=0.03, r=0.68; data not shown) while IL-22 showed a 

trend towards a negative correlation with Mtb uptake by PBMCs in the same group (p=0.06, 

r=0.71). IL-6 was negatively correlated to D1 CFU fold growth in PBMCs (p<0.01, r=-0.91). In 

addition, I-TAC revealed a trend towards a negative correlation with D6 CFU fold growth in 

PBMCs (p=0.05, r=-0.64).  

In LTBI-preT2D, IL-6 was not significantly correlated to Mtb uptake by PBMCs (p=0.13, r=-

0.52; data not shown). IL-4 was positively correlated to D3 CFU fold growth in MNs (p=0.03, 

r=0.59) and a similar association was found with IL-18 and D3 CFU fold change in MNs 

(p=0.04, r=0.76). A trend towards a positive correlation was seen between IL-8 and D3 CFU 

fold change in MNs (p=0.07, r=0.69). IL-4 (p=0.08, r=-0.66) and IL-8 (p=0.07, r=-0.71) revealed 

a trend towards a negative association with Mtb uptake by MNs. 

IL-6 was positively correlated with Mtb uptake by PBMCs in LTBI-T2D patients (p=0.02, 

r=0.72; data not shown). Furthermore, IL-6 showed a trend towards negative correlation with 

D6 CFU fold change in PBMC (p=0.06, r=-0.61). IL-13 (p=0.04, r=-0.65) and I-TAC (p=0.02, 

r=-0.73) negatively correlated with fold change in PBMCs at D6. IL-18 on the other hand was 

trending towards a negative correlation with Mtb uptake by MNs (p=0.05, r=-0.74)  

There was a negative correlation between IL-6 and Mtb uptake by PBMCs of LTBI-pT2D 

(p=0.01, r=-0.75; data not shown), similarly, OSM was also negatively correlated to Mtb uptake 

by PBMC (p=0.04, r=-0.72).  

 

Figure 4.12 Correlation of serum cytokines with Mtb uptake by PBMCs. (A) IL-6 correlated to Mtb uptake by 

MNs (A) and PBMCs (B). The associations were determined using Spearman correlations. 

4.3.15 Correlations between Mtb killing and measured catecholamines, cortisol, 

insulin and vitamin D  

A correlation analysis was done to determine whether plasma hormone concentrations are 

associated with differences in CFU. This is relevant as PBMCs and MNs were cultured in 20% 

autologous plasma. There was no significant association between Mtb uptake by MNs 
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(p=0.78, r=0.-0.05; Figure 4.13A) and PBMCs with vitamin D (p=0.66, r=-0.08; Figure 4.13B) 

and other measured hormones. There was a weak positively correlated between Vitamin D 

and D1 CFU fold growth in PBMCs (p=0.02, r=0.39).  

When groups were subdivided according to HbA1c, vitamin D in LTBI-noT2D did not correlate 

with Mtb uptake by PBMC (p=0.50, r=0.29). A trend towards a positive correlation between 

cortisol and Mtb uptake by MNs (p=0.09, r= 0.58) was shown in the same group. Adrenaline 

measured in LTBI-noT2D also showed a trend to negatively correlate with D3 CFU fold change 

in MNs (p=0.08, r=-0.63).  

Vitamin D concentrations from LTBI-preT2D correlated negatively with Mtb uptake by PBMCs 

(p=0.02, r=-0.73). There was a trend for adrenaline to positively correlate with Mtb uptake by 

PBMC (p=0.06, r=0.62). In addition, in LTBI-preT2D there was a negative correlation between 

cortisol and CFU fold change in PBMC at D1 (p=0.01, r=-0.77) and a trend for a positive 

correlation between adrenaline and D1 fold change in PBMCs (p=0.08, r=0.59). 

Adrenaline measured in T2D patients was negatively correlated to Mtb uptake by PBMCs 

(p<0.01, r=-0.81). Vitamin D had a positive correlation with Mtb uptake by PBMC (p=0.04; 

r=0.72, Figure 4.13C). Serotonin showed a positive association with the CFU fold change from 

PBMCs at D1 (p=0.04; r= 0.62). Adrenaline was negatively correlated to Mtb uptake by MNs 

(p=0.02, r=-0.81) in T2D patients. 

Furthermore, dopamine positively correlated with D1 fold change in MNs in pT2D patients, 

however this was not statistically significant (p=0.07, r=0.69). 

Figure 4.13 Correlation of plasma hormones with Mtb uptake by PBMCs. Vitamin D was correlated to Mtb 

uptake by MNs (A) and PBMCs (B). The associations were determined using Spearman correlations. 

4.3.16 Correlations between Mtb killing and lipids 

Most of the patients with T2D are characterised by dyslipidaemia and it is believed that this 

dyslipidaemia play a role in susceptibility to TB disease (Martens et al. 2008). We wanted to 

determine the association between lipids and Mtb uptake and killing. In all the participants, 

there was no association between any of the lipids and Mtb uptake by MNs (p=0.22, r=0.21; 
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Figure 4.14A) or PBMCs (p=0.10, r=-0.26; Figure 4.14B), total CHL is shown as a 

representative of the hormone data. A trend for a positive correlation between LDL and D1 

CFU fold change in PBMC. 

When the participants were subdivided according to HbA1c, lipids of LTBI-noT2D did not 

correlate with CFUs. 

In LTBI-preT2D there was a trend towards negative correlation between triglycerides and D1 

CFU fold change in PBMCs (p=0.06, r=-0.61) of the same group.  

Total CHL was negatively correlated with Mtb uptake by PBMCs in LTBI-T2D (p=0.02, r=-0.73; 

data not shown). There was a trend for a negative correlation between LDL and Mtb uptake 

by PBMCs (p=0.06, r=-0.62). In MN cultures, there was a negative correlation between total 

CHL and Mtb uptake in LTBI-T2D (p=0.05, r=-0.75). LDL showed a trend for a negative 

correlation with Mtb uptake by MNs (p=0.08, r=-0.67). Triglycerides were trending towards a 

negative correlation with D3 CFU fold change in MNs in the same group (p=0.05, r=-0.74).  

In LTBI-pT2D, there is a trend towards a negative correlation between LDL and Mtb uptake 

by MNs (p=0.09, r=-0.71). 

This shows that there are some interplay between the lipids in the plasma and the ability of 

cells to control Mtb. In our ALERT cohort, we found that LDL was associated with reduced Mtb 

growth (manuscript in preparation), which we did not find in the smaller subset of individuals 

in this study. 

 

Figure 4.14 Correlation of lipids with Mtb uptake by PBMCs. Total CHL was correlated to Mtb uptake by MNs 

(A) and PBMCs (B). The associations were determined using Spearman correlations. 

4.3.17 Correlations between Mtb killing and complete blood counts 

We observed that there was poor association of Mtb with PBMC from T2D patients, therefore, 

we investigated whether correlations exist between the frequency and the absolute counts of 

the blood immune cells and Mtb killing. In all participants, there was no association between 
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Mtb uptake by MNs (p=0.42, r=-0.15; Figure 4.14A) or PBMCs (p=0.84, r=0.03; Figure 4.14B) 

and white cell counts.  

Whole blood cell counts from LTBI-noT2D showed a trend to positively correlate with Mtb 

uptake by PBMCs (p=0.08, r=-0.70; Figure 4.15A). Lymphocyte frequency was negatively 

correlated with Mtb uptake by PBMCs (p=0.03, r=-0.69). Still in LTBI-noT2D, the lymphocyte 

frequency also showed a trend towards a positive correlation to D1 fold change in PBMCs 

(p=0.07, r=0.60) and D6 fold change in PBMCs (p=0.09, r=0.57). The MN absolute count was 

also negatively correlated with D6 CFU fold change in PBMCs (p<0.01, r=-0.81). 

In LTBI-preT2D, white blood cell counts had no correlation with Mtb uptake by PBMC (p=0.39, 

r=0.33; Figure 4.15B). MN frequency was positively correlated to D6 PBMC CFU fold growth 

(p=0.04, r=0.73). White blood cell counts (p=0.09, r=0.71) only showed a trend towards a 

positive correlation with Mtb uptake by MNs, additionally, white blood cell counts were 

inversely correlated to D3 MN CFU fold growth (p=0.03, r=-0.82). 

In LTBI-T2D, the whole blood cell count was not correlated to Mtb uptake by PBMC (p=0.61, 

r=0.19). MN frequency had a trend towards negative correlation with Mtb uptake by PBMC 

(p=0.08, r=-0.57). MN frequency was negatively associated with Mtb uptake by MNs at two 

hours (p=0.04, r=-0.73). Lymphocyte frequency from T2D patients was negatively correlated 

to D1 MN CFU fold growth (p<0.01, r=-0.90). 

In LTBI-pT2D, there was no association between white blood cell counts and Mtb uptake by 

PBMC (p=0.41, r=0.30). MN frequency from pT2D patients had a trend to a negative 

correlation with D1 PBMC fold growth (p=0.05, r=-0.63), further we showed a trend for a 

negative correlation between MN count and D6 PBMC fold growth (p=0.08, r=-0.59).  

 

Figure 4.15 Correlation of differential blood counts with Mtb uptake. White blood cell counts correlation to Mtb 

uptake by MNs (A) and PBMCs (B). The associations were determined using Spearman correlations. 
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4.4 Discussion 

The chronic inflammation accompanying TB disease is associated with altered cellular 

immunity, as well as altered cytokine production (Kumar et al. 2014; Kumar et al. 2015; 

Pearson-stuttard et al. 2015; Kumar et al. 2016). Studies have been conducted in an attempt 

to understand the influence of T2D in the control of Mtb infection (Restrepo et al. 2008; Alim 

et al. 2017; Raposo-Garcia et al 2017; Boillat-Blanco et al. 2018). With this in mind, we studied 

the immune profile in patients with T2D residing in a high TB burden area in SA. Therefore, 

we investigated the influence of T2D on the immune response during Mtb infection of PBMCs 

and MNs isolated from LTBI individuals with and without T2D and further analysed the 

cytokines, hormones, lipids and differential blood cell counts in these participants. 

TNF-α is an important cytokine for the immune response during Mtb infection (Shim, 2014). 

Individuals with LTBI receiving TNF-α antagonists are at high risk of developing TB disease 

(Tobin et al. 2011). In a study that investigated immunological responses to Mtb infection in 

T2D patients and healthy controls, the levels of TNF-α were higher in the T2D patients 

(Raposo-Garcia et al. 2017). TNF-α was however, not detected in the serum of our 

participants. TNF-α was reported to be low in Mtb antigen stimulated whole blood and Mtb 

infected PBMCs of T2D patients (Kumar et al. 2015; Alim et al. 2017). The fact that TNF-α 

was below the detection limit in our study participants could be due to the nature of samples 

we used, which was serum while other studies measured this cytokine in either Mtb stimulated 

or infected samples. IFN-ү is also a crucial cytokine in anti-mycobacterial immunity (Tascon 

et al. 1998). IFN-ү plays a central role in Th1 responses required to clear Mtb infection. Mice 

incapable of producing IFN-ү presented with a high Mtb burden in the spleen and lungs after 

intraperitoneal Mtb infection (Tascon et al. 1998). In a recent study investigating the 

immunological responses to Mtb infection in T2D patients and healthy controls, IFN-ү could 

not be detected in T2D patients (Raposo-Garcia et al. 2017). In our study we also saw similar 

results where the concentration of IFN-ү was undetectable in plasma of LTBI-T2D. 

IL-23 along with IL-1β and IL-6 are essential for Th17 differentiation (Annunziato et al. 2012) 

and inducing IL-22 production (Rutz et al. 2013). Low concentration of IL-22 in LTBI-T2D 

patients in our study could be associated with the low levels of IL-23 and IL-1β cytokines 

especially since they were undetected, with the exception of IL-6. Dhiman et al. showed that 

high IL-22 is associated with protection in infectious diseases (Dhiman et al. 2009). Contrary 

to our finding, Kumar et al. reported higher IL-22 in the serum of LTBI-T2D patients compared 

to LTBI-noT2D (Kumar et al. 2015). This difference could be attributable to ethnicity since 

Kumar and colleagues investigated this in Chennai, India, and it has been shown that patients 

with T2D have metabolic differences depending on where they are from (Restrepo et al. 2018), 

which means that there might be other factors like cytokine which differ. Together with IL-17, 
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IL-22 promotes lung repair, the release of pro-inflammatory chemokines and cytokines, and 

antimicrobial proteins (Rutz et al. 2013; Ronacher et al. 2018). 

Despite its protective role and wound healing properties, excessive production of IL-22 can be 

harmful and induce necrosis. IL-22 further reduces blood glucose levels, restores insulin 

sensitivity and modulate lipid metabolism in mice (Hasnain et al. 2014). In humans, Kumar et 

al. reported low IL-22 in PPD stimulated whole blood and in plasma of TB-T2D patients 

compared to TB patients (Kumar et al. 2013; Kumar et al. 2015) which could be associated 

with the disease progression of T2D in TB disease (Treerat et al. 2017) or can favour Mtb 

control in TB. IL-22 concentrations in our TB-T2D patients was not significantly different 

compared to TB-THG but was higher compared to TB patients. This was contrary to what 

Kumar et al. found in their study where IL-22 was significantly lower in TB-T2D compared to 

TB patients (Kumar et al. 2015). Higher IL-22 concentration in our study may be a way of the 

immune system to promote metabolic balance and control of TB disease. However, the 

differential expression of IL-22 in our patients and varying results in previous studies supports 

the importance of IL-22 in the regulation of the immune response, and warrants further 

investigation to understand the exact role of IL-22.  

IL-18 production is low in Mtb antigen stimulated whole blood of LTBI-T2D compared to LTBI 

without T2D (Kumar et al. 2014). We however found higher IL-18 in the LTBI-pT2D compared 

to LTBI only. IL-18 plays a critical role in inducing Th1 responses during Mtb infection 

(Schneider et al. 2010; Ponnana et al. 2017), without IL-18, the Th1 responses are decreased 

and mycobacterial replication increases (Schneider et al. 2010). In our study, we expected 

lower IL-18 expression in LTBI-T2D compared to LTBI since T2D is associated with increased 

susceptibility to TB progression. However, due to chronic inflammation in T2D, increased IL-

18 may be due to dysregulated immune responses associated with T2D. In our mycobacterial 

infection assay, we found a negative correlation between IL-18 and Mtb uptake by MNs in 

LTBI-T2D and positively correlated to Mtb burden in MNs at D3. Our finding therefore show 

that IL-18 was associated with poor association of Mtb with MNs in T2D patients and with poor 

control of Mtb by MNs.  

IL-6 is a pro-inflammatory cytokine and its upregulation is associated with inflammatory 

diseases such as TB (Martinez et al. 2013) and T2D. IL-6 is required for the rapid expression 

of an initial IFN-ү response during Mtb infection (Saunders et al. 2000). This is because IL-6 

knock out mice showed increased bacterial growth in the lung within 14 days of Mtb infection 

compared to wild type mice (Saunders et al. 2000). In TB-T2D, IL-6 plasma concentrations 

are high compared to TB (Kumar et al. 2013). We measured IL-6 in LTBI-T2D, and we found 

high IL-6 compared to LTBI. IL-6 has the ability to impair insulin signalling in insulin-sensitive 

tissues (Nikolajczyk et al. 2012). We believe that higher IL-6 in T2D is due to chronic low grade 
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inflammation and could be associated with insulin resistance since it is one of the 

characteristics of T2D patients. Lower IL-6 production by macrophages from diabetic mice 

infected with Mycobacterium fortuitum contributed to increased bacterial growth in the infected 

macrophages which suggests that IL-6 is required for better control of bacteria (Abdul Alim et 

al. 2017). Despite the fact that IL-6 is a pro-inflammatory cytokine, its high expression in our 

study was associated with poor Mtb uptake by PBMCs from T2D patients. As previously 

mentioned in our findings, T2D patients had lower Mtb uptake by PBMCs compared to noT2D, 

with that in mind, we also think that IL-6 may promote immune suppression in T2D patients 

(Zhang et al. 2014).  

Vitamin D inhibits intracellular growth of Mtb by interfering with the accumulation of infection 

induced lipid droplets (Salamon et al. 2014). Contrarily, vitamin D can suppress pro-

inflammatory cytokines and induce anti-inflammatory cytokine responses (Penna and Adorini 

2000; Unger et al. 2009). Bhatt et al. investigated whether administration of vitamin D could 

affect immunity against Mtb in mice and found that vitamin D affected granuloma formation 

and failed to contain the bacteria (Bhatt et al. 2016). In our study, there was a trend that T2D 

patients had higher levels of vitamin D compared to noT2D. Banerjee et al. however found 

that vitamin D concentration were lower in the serum of T2D patients compared to noT2D 

(Banerjee et al. 2017). We further found that vitamin D was positively correlated to Mtb uptake 

in PBMCs. This is consistent with previous reports that vitamin D significantly enhances the 

phagocytic potential of macrophages isolated from healthy individuals (Chandra et al. 2004). 

In a study where TB patients were given vitamin D while on intensive phase of TB treatment, 

the bacterial load was reduced in vitro as measured by reduced time to sputum conversion 

(Martineau et al. 2014).  

T2D is characterized by hyperglycaemia due to insulin resistance and also associated with 

severe dyslipidaemia (Taskinen and Boren, 2015). Dyslipidaemia is characterized by high 

levels of triglycerides, and/or cholesterol as well as low HDL (Vrieling et al. 2018). In our study 

LTBI-pT2D patients had higher triglycerides and total CHL compared to noT2D, preT2D and 

T2D patients. LDL was also higher in LTBI-pT2D compared to LTBI-noT2D, followed by higher 

HDL in LTBI-noT2D compared to LTBI-T2D. Mtb has been shown to depend on host-derived 

lipids for replication and survival (Lee et al. 2013; Tsai et al. 2017; Walpole et al. 2018). Several 

studies have identified high cholesterol as a risk factor for TB disease (Martens et al. 2008; 

Soh et al. 2016) and reducing cholesterol levels using statins were beneficial in reducing the 

risk of TB disease (Lai et al. 2016; Su et al. 2017). In our study, total CHL in T2D patients was 

negatively correlated to association of Mtb with PBMCs, which shows the interplay between 

lipids and Mtb uptake. A potential therapy targeting cholesterol catabolism can effectively 

lower intracellular growth of Mtb (Tsai et al. 2017) and more studies should focus on 
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investigating the use of CHL lowering drugs in conjunction with TB treatment to prevent TB 

disease especially in LTBI-T2D. 

The leukocytes (white blood cells, neutrophils, lymphocytes, MNs and eosinophils) counts are 

elevated in patients with T2D (Shim et al. 2006; Nakhjavani et al. 2014). Higher white blood 

cell and lymphocyte counts are characteristics of T2D development in obese patients 

(Vatcheva et al. 2014). In support of that, we found higher white blood cell counts in 

uncontrolled T2D (pT2D) patients compared to noT2D. Our study found lymphocyte counts 

significantly higher in the pT2D patients compared to noT2D, preT2D and T2D. This was 

similar to other reports where pT2D patients had elevated lymphocyte counts (Ali et al. 2018). 

T2D exerts adverse effect on neutrophils and MNs functions (Geerlings and Hoepelman 1999; 

Raposo-Garcia et a. 2017). Although higher in T2D patients, no significant difference was 

observed in neutrophil counts in our study participants, however, Ali et al. found significantly 

elevated neutrophil counts in T2D compared to noT2D (Ali et al. 2018). The negative 

correlation observed in our study for neutrophils and MNs with Mtb uptake in T2D patients has 

been shown before (Lecube et al. 2011; Gomez et al. 2013; Raposo-Garcia et al. 2017). 

It is well established that T2D is associated with altered MN and neutrophil functions 

(Hatanaka et al. 2006; Alba-Loureiro et al. 2007; Restrepo et al 2014). Despite the evidence 

that MNs from TB naïve T2D patients are altered (reduced phagocytosis) (Restrepo et al. 

2014; Raposo-Garcia et al. 2017), we cannot say for sure that these alterations are the only 

factors contributing to the altered immune responses observed in T2D patients, because in 

our study, the MNs did not show any difference in H37Rv Mtb uptake between T2D and noT2D 

participants. Additionally, in a recent study, the lipid profile was shown to vary in T2D patients 

from different ethnic groups, and we believe that this variation could also affect the function of 

the phagocytic cells (Restrepo et al. 2018). The killing ability of MNs from both noT2D and 

T2D was not different, as shown by a significant increase in CFU at D3 in each group. Our 

results supported previous studies where no difference in Mtb killing by MNs derived 

macrophages, and blood were observed (Reyes-Ruvalcaba et al. 2008; Raposo-Garcia et al. 

2017).  

Our results adds to the small body of knowledge that is available on the immune profile, 

including cytokine production, hormone production and the ability to contain bacteria by 

immune cells from individuals with LTBI with and without T2D. We have shown that there is a 

need for more studies to define the immune profile of these individuals, to help us learn and 

understand the immune mechanisms during Mtb infection and influence of plasma soluble 

proteins and lipids in Mtb phagocytosis and killing assays. 
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CHAPTER 5 

Investigation of MAIT cells in TB patients with and without T2D 

5.1 Introduction 

MAIT cells predominantly occur in the gut where their accumulation is dependent on MR1 

expressing B cells and commensal flora (Martin et al. 2009). They also occur in the blood 

where 1-10% of T cells are MAIT cells (Dusseaux et al. 2011). The frequency of MAIT cells in 

bacterial and viral infections, as well as in metabolic and autoimmune diseases vary 

(Billerbeck et al. 2010; Magalhaes et al. 2015; (Loh et al. 2016; Petersone and Walker, 2017), 

implying that they might play an important role in the regulation of immune responses in these 

diseases. It is said that low frequencies of MAIT cells in the blood during Mtb infection is due 

to their migration to the site of infection (Gold et al. 2010). Wong et al. also demonstrated this 

after measuring MAIT cell frequencies in the Broncho alveolar lavage fluid (BALF) and blood 

of TB patients and TB-HIV co-infected patients (Wong et al. 2012). Higher frequencies of MAIT 

cells were found in the BALF than in the periphery. The addition of MAIT cells to BCG-infected 

macrophages resulted the increased killing of the bacteria demonstrating the protective role 

MAIT cells play during Mtb infection (Chua et al. 2012). MAIT cells not only assist in the control 

of bacterial infection, but also in the detection of bacterially infected cells (Gold et al. 2010; Le 

Bourhis et al, 2010).  

In the context of T2D, it has been shown that patients with T2D have a reduced peripheral 

MAIT cell frequency when compared to HCs (Magalhaes et al. 2015). This is in part due to the 

alterations in the gut microbiota in T2D patients (Vaarala and Atkinson, 2008.), which affects 

the riboflavin pathway which is essential in MAIT cell activation (Treiner et al. 2003). The exact 

role of MAIT cells in metabolic diseases is, however, unclear. The aim of this study, therefore, 

was to determine the frequency of MAIT cells in the South African Coloured population 

residing in a high TB burden area in Cape Town, South Africa. The frequency of MAIT cells 

were determined in the following groups; HCs, T2D, TB, TB-THG and TB-T2D using flow 

cytometry. In addition, MAIT cell frequencies were monitored before, during and after TB 

treatment in TB subgroups. 

5.2 Study participants and methodology  

Cryopreserved PBMCs from 64 participants (TANDEM); were retrieved, thawed and stained 

with a MAIT cell flow cytometry antibody panel. The flow cytometry panel consisted of the 

following anti-human monoclonal antibodies; CD3, CD4, CD8, CD161, CD26 and TCR Vα-7.2 

as well as a live/dead (Zombie aqua) stain. PBMCs from HCs, T2D, TB, TB-THG, and TB-

T2D patients were stained and the frequency of MAIT cells compared at baseline (BL). In 

addition, PBMCs from TB, TB-THG and TB-T2D patients were stained at month 2 (M2) and 

month 6 (M6) to monitor the frequency of MAIT cells during and after TB treatment. The 
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PBMCs were stained for one hour at 4°C in 2% FACs buffer. Cells were acquired using a 4 

laser, 8 colour FACS Canto II flow cytometry instrument (Becton Dickson). The results were 

analysed using FlowJo v10.1 (TreeStar, Ashland, OR). At first, lymphocytes were selected 

using SSC-A and FSC-H, doublets were excluded using FSC-A and FSC-H and live cells 

selected using SSC-A and the live/dead stain (Figure 5.1). CD8+TCR Vα7.2+ T cells were 

selected and from this population CD26++ CD161++ cells were selected. Flow data was 

analysed using ANOVA and LSD Fishers post hoc test were used to determine differences 

between the groups. Differences between clinical information was determined in GraphPad 

prism version 6 using the Kruskal Wallis with Dunns post hoc to determine differences 

between the groups. A p-value < 0.05 was considered significantly different. Spearman 

correlation was performed to determine correlations between MAIT cells and blood glucose 

levels.  

5.3 Results 

5.3.1 Study participants and clinical parameters  

Among the 64 participants that were selected for this study, 17 were TB patients, 9 were TB-

THG, 13 were TB-T2D and 13 were T2D only patients. Twelve HCs were also included. 

Patients with T2D were using metformin or metformin in combination with insulin and other 

T2D medication (Table 5.1). There were no significant differences in the ages of the different 

patient groups (Table 5.1). The BMI at BL was significantly higher in T2D and TB-T2D patients 

compared to the HCs, TB and TB-THG patients (Table 5.1). Both at M2 and M6, there was 

significantly higher BMI in the TB-T2D group compared to TB and TB-THG. RPG was 

significantly higher in the TB-T2D patients compared to T2D and HCs. HbA1c was significantly 

higher in the TB-T2D and T2D patients compared to TB patients, whereas HbA1c in T2D was 

also significantly higher than the HCs. At M6 however, HbA1c in the TB-T2D patients was 

higher compared to both TB and TB-THG (Figure 5.1). 
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Table 5.1. Demographic and clinical information of all study participants. 

Group HC(12) T2D(13) TB(17) TB-

THG(9) 

TB-

T2D(13) 

P value 

LTBI positive (%) 10 (83%) 11 (85%) - - - 

T2D medication 

Metformin 

Insulin 

Other medication 

Known diabetic 

status 

 

- 

- 

- 

- 

 

 

10 

10 

2 

- 

 

 

- 

- 

- 

- 

 

1 

5 

1 

- 

 

11 

6 

4 

- 

Sociodemographi

c 

      

Age, median (IQR)                                            

Sex, number (%) 

Female 

Male 

BMI, median (IQR)    

Baseline 

Month 2 

Month 6 

40.5(19)a 

 

6(50) 

6(50) 

 

23.4(10.2)ab 

- 

- 

44(19)a 

 

6(46) 

7(54) 

 

26.5(8.6)a 

- 

- 

47(14)a 

  

7(41) 

10(59) 

 

18.6(4.8)cb 

19.4(4.0)a 

20.2(4.4)a 

48(16.5)a 

 

2(22) 

7(78) 

 

18.3(0.8)cb 

19.5(2.2)a 

19.3(1.7)a 

46(11)a 

 

11(85) 

2(15) 

 

26.0(9.8)a 

24.9(6.5)b 

26.6(9.4)b 

0.6764                                                   

 

 

 

 

<0.0001 

0.0005 

0.0116 

Clinical 

information 

      

RPG(mmol/L)  

Baseline# 

HbA1c (%)  

Baseline# 

Month 6 

 

5.1(1.2)a 

 

5.3(0.58)ac 

- 

 

15(6.3)b 

 

10.3(4.71)b 

- 

 

 

5.6(2.1)ac 

 

5.3(0.38)a 

5.6(0.6)a 

 

 

6.6(1.9)ab 

 

5.6(0.65)ab 

5.65(0.7)a 

 

18.4(4.1)bc 

 

12.6(0.4)bc 

   9.9(6)b 

 

 

<0.0001 

 

<0.0001 

<0.0001 

#- 2 participants in the TB-T2D group 

5.3.2 TB-T2D have significantly low CD3+CD8+TCR Vα7.2+ CD26++ CD161++ MAIT cells 

at baseline 

MAIT cells were defined as CD3+ CD8+TCR Vα7.2+ CD26++CD161++ and reported as a 

percentage of CD8+ T cells (Figure 5.1). HCs had significantly higher MAIT cell frequency than 

TB-T2D at baseline (p=0.02). TB-T2D patients also had significantly lower MAIT cell frequency 

compared to TB-THG at BL (p=0.02; Figure 5.2 A, B and C). TB-T2D had lower MAIT cell 

frequencies compared to TB-THG at M2 (p=0.01; Figure 5.2 A and B). There was no significant 

difference in MAIT cell frequency between TB-T2D and TB at M2 (p=0.64). There was a trend 

in MAIT cell frequency at M2 between TB-THG and TB (p=0.08; Figure 5.2 A and B). There 

was no observed significant difference in MAIT cell frequency at M6 in all groups, despite a 

trend between TB and TB-THG, where TB-THG had higher MAIT cells (p=0.06; Figure 5.2 A-

C). 
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5.3.3 CD3+CD8+TCR Vα7.2+ CD26++ CD161++ MAIT cell frequency increases at month 2 

of TB treatment 

We further investigated whether TB treatment will have an effect on the frequency of CD8+TCR 

Vα7.2+ CD26++ CD161++ MAIT cells in the three TB patient groups. The frequency of MAIT 

cells in TB patients did not change during TB treatment. There was a trend towards increase 

in MAIT cell frequency from BL to M2 (p=0.05) and a significant decrease from M2 to M6 

(p=0.01) in the TB-THG group (Figure 5.2A and B). In the TB-T2D group there was a 

significant increase in the frequency of MAIT cells from BL to M2 (p=0.003), however, MAIT 

cell frequency from M2 to M6, was not significantly different (p=0.15) (Figure 5.2A and B). 

MAIT cell frequencies in this group was significantly lower at BL when compared to the end of 

treatment (p<0.0001; Figure 5.2A and B).These results show that TB-THG patients have 

varying MAIT cell frequency compared to TB and TB-T2D. The different treatment responses 

observed in the frequency of CD8+TCR Vα7.2+ CD26++ CD161++ cells in these two group 

suggest that the TB-THG and TB-T2D are more different from one another than previously 

thought. 

5.3.4 The frequency of CD3+CD8+TCR Vα7.2+ CD26++ CD161++ MAIT cells of TB-T2D 

patients at month 6 is comparable to T2D  

We determined whether the frequency of MAIT cells in TB patients at M6, recovers to the 

levels seen in HCs. The frequency of CD3+CD8+TCR Vα7.2+ CD26++ CD161++ MAIT cells in 

the TB-T2D, which was lower at BL, recovered at M6 compared to frequencies similar to HCs 

(at BL) and all the other groups, Figure 5.2 A, C and D. 

 

Figure 5.1. Characterization of circulating peripheral MAIT cells (CD3+CD8+TCR Vα7.2+ CD26++ CD161++). 

PBMCs from HC, T2D, TB, TB-THG and TB-T2D were thawed and stained using anti-human antibodies for CD3, 
CD4, CD8, CD26, CD161 and TCR Vα7.2 for MAIT cells in 64 participants.  All events were acquired using a 4 
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laser, 8 colour FACS Canto II flow cytometry and analysed on flowJo v10.1. We gated on lymphocytes using SSC-
A and FSC-H, doublets were excluded using FSC-A and FSC-H. Live cells were selected using SSC-A and the 
live/dead stain. CD8+TCR Vα7.2+ were selected from CD3 T cells, from this population CD161++CD26++ cells were 
selected. 

 

 

Figure 5.2: CD8+TCR Vα7.2+ CD26++ CD161++ MAIT cell frequencies. CD8+TCR Vα7.2+ CD26++ CD161++ MAIT 

cell frequencies from 64 participants (HCs n=13, TB n=17, T2D n=12, TB-THG n=9, TB-T2D n=13) were 
determined in PBMCs. Figure A and B illustrate the changes in MAIT cell population during TB treatment. Figure 
C and D show pie charts displaying the MAIT cell frequencies from T2D and HCs as well as TB, TB-THG and TB-
T2D at BL and M6, respectively, ANOVA with a LSD post hoc test was used to determine differences in the 

frequencies of MAIT cells between the groups, the pie chart was drawn in GraphPad prism version 6. And a p-
value <0.05 was considered significant. BL baseline, M2 month2, M6 month6. 

5.3.5 Association of T2D parameters with CD8+TCR Vα7.2+ CD26++ CD161++ MAIT cells 

HbA1c and RBG were measured in the study groups and was correlated with the MAIT cell 

frequencies. There was no correlation between MAIT cells and blood glucose levels (Figure 

5.3 A and B). 
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Figure 5.3 Correlation plots of MAIT cells with glycaemic parameters. There was no significant correlation 

between (A) MAIT cell frequencies and HbA1c (r=-0.04; p=0.74) or (B) MAIT cell frequencies and RBG (r=-0.09; 

p=0.51) using the Spearman ranks correlation test in Graphpad Prism version 6. 

 

5.4 Discussion  

MAIT cell frequencies range from 1-10 % of T cells in peripheral blood of healthy people 

(Kurioka et al. 2016). In this study an average of 1.14 % of MAIT cells (CD8+TCR Vα7.2+ 

CD26++ CD161++) were found in cryopreserved PBMCs. Such low frequencies have previously 

been reported from PBMCs. Paquin-Proulx et al. reported 1.07% in thawed PBMCs of HCs 

(Paquin-proulx et al. 2018). Lee et al. reported different MAIT cell frequencies in blood of HCs; 

1.17%, 2.12% and 3.99 % according to the age of the study participants (Lee et al. 2014). The 

highest frequency was observed in the younger age group (21-40 years), followed by middle 

age (41-60 years) and elderly (61-92 years) (Lee et al. 2014). Since the depletion in MAIT cell 

frequencies is negatively associated with age (van der Geest et al. 2018), our study 

participants were matched by age. Therefore, in our study the association between MAIT cells 

and age was not observed.  

There were differences in MAIT cell frequencies in our study compared to other reports (Gold 

et al. 2010; Le Bourhis et al. 2011; Jiang et al. 2014; Sakala et al. 2015). The reason could be 

attributable to the various phenotypes used to define the MAIT cell population. In this study 

we used the following phenotype CD3+CD8+TCR Vα7.2+ CD26++ CD161++ (shared with us by 

David Lewinsohn). Many gating strategies have been used to describe circulating MAIT cell 

population. Eberhard et al. used CD3+CD4-CD161+TRC7.2+, Magalhaes et al. used CD3+CD4-

CD161++TCR Vα7.2+, and Wong et al. used CD3+CD8+CD161++CCR6 and 

CD3+CD8+CD161++CCR5 (Wong et al. 2013; Eberhard et al. 2014; Magalhaes et al. 2015). 

The use of the different markers in varying combinations to describe MAIT cells could be the 

reason for large variations in the findings from different reports.  

MAIT cells play a key role in protection against several pathogens, including Mtb (Gold et al. 

2010). Previous studies show that MAIT cell frequencies in the periphery decrease during TB 

and other bacterial infections compared to HCs (Gold et al. 2010; Wong et al. 2013; Grimaldi 
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et al. 2014; Sharma et al. 2015). Contrarily, people with LTBI were shown to have higher MAIT 

cell frequencies compared to TB patients or uninfected controls. In addition to that, the authors 

also found no difference in MAIT cells in TB patients compared to uninfected controls (Paquin-

Proulx et al. 2018). Our study supports the latter results since the reduction of MAIT cells in 

our TB patients were lower than the HCs who were all LTBI positive. In our data set, however, 

this difference did not reach statistical significance. 

In a study investigating MAIT cells in obese and T2D patients before and after bariatric 

surgery, the MAIT cell frequency increased in the blood of patients who did not initially show 

any MAIT cells before surgery (Magalhaes et al. 2015). However, when MAIT cells were not 

in the blood, they were detected in adipose tissue and it was hypothesized that MAIT cells 

migrate to the site of inflammation (Magalhaes et al. 2015). What we found was in agreement 

with this since in uninfected T2D patients, the MAIT cells were lower than that of HCs, however 

not significant. The difference became apparent when MAIT cells were lower in TB-T2D 

patients. This result may be explained by the migration of MAIT cells to the adipose tissue 

(Magalhaes et al. 2015) or to the lung (Gold et al. 2010) as previously showed. There are no 

other published results on MAIT cells in TB-T2D co-morbidity. 

TB is associated with increased insulin resistance and stress-induced hyperglycaemia or TB-

THG, which may lead to over diagnosis of T2D during the early stages of TB disease (Boillat-

Blanco et al. 2016). There was a trend towards higher frequency of MAIT cells in TB-THG 

compared to TB at M2. In addition, there was a significantly higher MAIT cell frequency in TB-

THG compared to TB-T2D at M2 confirming that this subgroup of TB patients is unique from 

TB and TB-T2D. It could be that the high MAIT cell frequency in TB-THG patients is associated 

with protection from acquiring T2D in these patients. This would however, require a 

longitudinal study to determine if TB-THG patients develop T2D and if MAIT cell frequency 

plays a role. 

TB patients, after TB treatment (M6), had a lower frequency of MAIT cells to that of the HCs 

(although not significant). It is possible that the residual infection, at M6, might still result in the 

recruitment of MAIT cells to the lung. In line with this finding, Paquin-proulx et al. reported that 

MAIT cells in individuals with LTBI was significantly higher compared to TB patients and 

speculated that high MAIT cells may be associated with Mtb control and protection from TB 

disease progression (Paquin-proulx et al. 2018). TB-T2D patients at M6 of TB treatment 

however had comparable frequency of MAIT cells to that in T2D patients. This is possible due 

to the clearance of Mtb and cause MAIT cells to redistribute to the periphery. 

We investigated whether TB treatment will have an impact on the frequency of MAIT cells in 

TB patients and they did not change significantly during the six months of treatment. This is 
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different from what was previously reported by Sharma et al. who showed that MAIT cells are 

restored in the blood of TB patients undergoing TB treatment (Sharma et al. 2015). It has been 

shown that the lack of MAIT cells in the blood during TB is due to redistribution to the lung 

(Gold et al. 2010; Wong et al. 2013). All the TB patients included in our study converted to 

sputum negative for Mtb at M2. We believe that due to the decrease in the bacterial load in 

the lung, some of the MAIT cells would be restored in the blood and some would be killed 

along with the bacteria at the lung. This could explain why there was no significant change in 

MAIT cells during the course of TB treatment. There are no other studies reporting MAIT cells 

treatment response during TB. 

During the course of TB treatment, TB-THG patients showed a trend towards increased MAIT 

cell frequency from BL to M2. This increase would also be explained by the lower bacteria at 

the site of disease during treatment (Sharma et al. 2015). Interestingly, in TB-THG, the MAIT 

cell frequency significantly decreased from M2 to M6. This is different from what has been 

reported in the context of TB (Sharma et al. 2015). The fact that the patients are TB-THG and 

not TB only could be reason for this unexpected result. Gérart et al. reported that over 

activation of MAIT cells may result in activation induced cell death (Gérart et al. 2013), 

therefore, MAIT cells in the lung die due to apoptosis before they are restored to the blood. 

The impact of TB treatment on MAIT cells was also investigated in TB-T2D patients. MAIT 

cells increased significantly from BL to M2 and are lower at BL compared to M6. Despite 

having T2D, the MAIT cell frequency in TB-T2D were restored in the periphery and this is in 

agreement with what was previously discussed by Sharma et al. in the context of TB patients 

(Sharma et al. 2015).  

Chua et al. co-cultured MAIT cells with BCG-infected macrophages from TB patients and 

found fewer mycobacteria compared to macrophages without MAIT cells (Chua et al. 2012; 

Lepore et al. 2014).  It is not known how T2D will affect the function of MAIT cells therefore 

more studies are required to understand their behaviour in different disease states, especially 

in a population where both TB and T2D poses a major problem. Moreover, MAIT cells play a 

role in setting a stage for establishing coordinated adaptive immune response to infection 

(Wong et al. 2016). Our patients with TB-T2D presented with reduced MAIT cells. Lower MAIT 

cell frequencies will most likely contribute to the dysregulated immune response against 

diseases (Kwon et al. 2015). MAIT cells play a protective role in TB, but their exact role in TB-

THG or TB-T2D co-morbidity has not been characterized and requires further investigation 

especially in the blood and in BALF, which is a representative sample of the site of TB disease. 

As expected we found higher MAIT cell frequencies in the HCs compared to TB-T2D patients 

at BL. Interestingly, in the TB-THG, the MAIT cells were higher at BL compared to the other 
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groups (HC, TB and TB-T2D). Further characterisation of MAIT cells should be done in our 

patient group, looking at different phenotypes to fully understand their expression in different 

disease states. Seeing that there is limited information on MAIT cells in TB with and without 

T2D, we wanted to measure MAIT cell numbers in TB and TB-T2D patients and include LTBI-

T2D as a control, however, in the end the LTBI-T2D group, as we did not have enough PBMCs 

available for this group. 
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CHAPTER 6 

6.1 Discussion  

Hyperglycaemia during TB is associated with a high T2D risk and poor TB outcome (Moreira 

et al. 2018). Moreira et al. investigated the effect of hyperglycaemia in TB patients and found 

that a larger number of TB patients with hyperglycaemia exhibited adverse outcomes and a 

significantly higher mortality rate compared to euglycaemic patients (Moreira et al. 2018). T2D 

is a risk factor for TB and poor TB treatment outcome including treatment failure and relapse 

(Dooley et al. 2009) and for this reason the WHO, World Diabetes Foundation (WD) and the 

International Union Against TB and Lung Disease (IUATLD) recommend that all newly 

diagnosed TB patients are screened for T2D (Harries et al 2013). The TB-THG group is 

characterised by high HbA1c prior to TB treatment that decreases during the course of TB 

treatment (Tabarsi et al. 2014). It is therefore advised to monitor HbA1c of TB patients during 

TB treatment to confirm T2D status (WHO. 2018). Our study was able to identify a gene 

transcript signature that enables the differentiation between THG and T2D, which could be 

useful in preventing the unnecessary treatment of THG patients who were originally diagnosed 

as having T2D. Since HbA1c testing alone will not be able to distinguish patients with THG 

from T2D a gene signature could complement standard T2D screening of TB patients. 

6.1.1 Gene expression signatures in active TB patients with and without T2D 

Transcriptional analysis of whole blood and Mtb antigen stimulated whole blood has become 

an important tool to study the expression of immune system related genes and shows promise 

for identifying possible biomarkers for TB diagnosis, progression to active TB disease and TB 

treatment responses (Cliff et al. 2013; Zak et al. 2016; Thompson et al. 2017). Despite the 

usefulness of transcriptomic studies in addressing immune related responses, the exploration 

of transcriptional analyses in the context of TB-T2D co-morbidities is scarce (Prada-medina et 

al. 2017). Prada-Medina et al. showed that previously identified TB blood gene transcripts 

specific for diagnosing TB disease may not be affected by the presence of T2D (Prada-Medina 

et al. 2017). More studies in populations where TB-T2D co-morbidity is a burden would be of 

great significance for the identification of new molecular markers specific to T2D in TB patients 

to improve TB care in T2D patients (Donovan et al. 2017).  

Patients with TB-T2D comorbidity are more likely to fail TB treatment and present with more 

severe TB disease compared to TB patients without co-morbidities (Dooley et al. 2009), 

despite higher circulating levels of Th1 and Th17 cytokines in TB-T2D patients (Kumar et al. 

2013). IL-10 is also elevated in TB-T2D patients (Kumar et al. 2013), however stimulation of 

whole blood from TB-T2D patients with PPD, showed higher Th1 associated cytokine profile 

but not Th2 cytokines (Restrepo et al. 2008). The elevated Th1 associated cytokines produced 

in TB-T2D potentially contributes to increased immune pathology (Kumar and Babu, 2017). 
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Therefore we wanted to determine gene expression in the TB patients with and without T2D 

in South African Coloured population in an attempt to describe the immunological mechanisms 

associated with TB pathology and treatment outcomes. We identified gene transcripts 

including CCL2, CCL4, CCL3, IL-1A, CD163, CXCL2, PLAU, CXCL1, IL-1R1, TNFRSF8, 

CCRL2, NFKB1, PSMD7, PSMB5 and BAX, were downregulated in unstimulated whole blood 

of TB-T2D compared to both TB and TB-THG. MAPKAPK2 was upregulated in unstimulated 

whole blood of TB-T2D and TB-THG compared to TB. The downregulation of the following 

important chemokine gene transcripts; CCL2, CCL4, CCL3, CCRL2, CXCL1, CXCL2 may 

suggest alterations in leukocyte diapedesis and therefore alterations in the recruitment of 

immune cells to the site of inflammation. It has been shown that altered serum chemokine 

protein concentration can alter anti-TB immunity in T2D patients and can fuel TB-T2D 

(Aravindhan et al. 2018). The recruitment of phagocytic cells like neutrophils and 

macrophages are required to control Mtb growth and replication and initiate wound healing 

(Hong et al. 2004). Defects in trafficking of phagocytic cells to the site of inflammation will 

therefore delay innate and adaptive responses.  

CCL2 acts as chemo-attractant for monocytes, as well as some other immune cells such as 

memory T lymphocytes and NK cells (Lu et al. 1998; Deshmane et al. 2009). CCL2 treatment 

of diabetic mice has shown immune cell infiltration into wounds which favours the healing of 

the wounds (Wood et al. 2014). CCL2 mRNA expression was significantly higher in the lungs 

of HN878-infected mice and associated with increased macrophage localization within the 

granuloma, however, in CCR2 knock out mice there was inefficient migration of macrophages 

to the granuloma when less CCL2 mRNA was expressed (Algood et al. 2003; Dunlap et al. 

2018). We found that CCL2 was reduced in unstimulated whole blood of TB-T2D compared 

to TB and TB-THG. Infection of PBMCs with Mtb induced mRNA expression of CCL2 that was 

greater in pulmonary TB patients compared to localized extra pulmonary TB patients (Hasan 

et al. 2009).  

Chemokines such as CCL3 released by neutrophils recruit monocytes to the site of infection 

(Mayadas et al. 2014). CCL3 mRNA was reported to be downregulated in whole blood of TB 

patients when compared to individuals with LTBI (Mistry et al. 2007). In addition, after infecting 

PBMCs with Mtb, there was no observed differences in CCL3 mRNA transcript among 

pulmonary TB, localised extra pulmonary TB and disseminated extra pulmonary groups 

(Hasan et al. 2009). Mtb infected mice were also reported to have low CCL3 mRNA compared 

to normal mice (Schneider et al. 2010). In support of these finding, we showed downregulation 

of CCL3 mRNA in unstimulated whole blood from TB-T2D compared to TB patients. 

CCRL2 is a chemokine receptor also known as lipopolysaccharide (LPS) inducible C-C related 

gene (L-CCR) and shares the highest homology with CCR1 and CCR5 (Shimada et al. 1998; 
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Otero et al. 2010). CCRL2 binds chemerin which is a chemotactic protein (Zabel et al. 2008). 

A previous study reported an increase in the expression of CCRL2 in the RAW 264.7 

macrophage cell line and in murine macrophages after stimulation with LPS, this study was 

aimed at understanding the role of CCRL2 during microbial infection (Shimada et al. 1998). 

Stimulation of mouse neutrophils with LPS resulted in the increased expression of CCRL2, 

with most of the cells co-expressing CCRL2 and CXCR2 (Del Prete et al. 2017). To determine 

the role of CCRL2, mice deficient in CCRL2 were injected intraperitoneally with LPS and a 

reduction in neutrophil count was reported (Del Prete et al. 2017). In our study, we found 

CCRL2 mRNA to be downregulated in unstimulated whole blood of TB-T2D compared to TB. 

The difference in the study design, the use of cell lines and different antigen stimulants makes 

it difficult to speculate what effect the changes in CCRL2 mRNA will have in our study 

participants. There is however no information available on the expression of CCLR2 during 

TB-T2D. Since CCRL2 binds chemerin and presents it to the leukocytes expressing chemR23 

(Gonzalvo-feo et al. 2014), the reduction in CCRL2 may be associated with reduced migration 

of leukocytes to inflammatory sites.  

CXCL1 has been reported to be important for Th17 differentiation, neutrophil extracellular trap 

formation and reactive oxygen species production (Jin et al. 2014). Together, CXCL1 and 

CXCL2 have been identified as novel paracrine regulators for the production of anti-microbial 

molecules and inflammatory mediators during Mtb infection in humans (Boro et al. 2016). 

CXCL1 and CXCL2 are involved in the activation of inflammasomes and production of IL-1β 

in macrophages. When CXCL1 and CXCL2 were blocked using neutralizing antibodies, there 

was a reduction in IL-1β in supernatants after stimulation of macrophages with Mtb (Boro et 

al. 2017). In bone marrow derived (BMD) DCs from mice infected with BCG, large amounts of 

CXCL1 and CXCL2 were reported and resulted in an increased recruitment of neutrophils in 

the lungs of the mice (Doz et al. 2013). Neutrophils were subsequently responsible for the 

production of IL-10 and reduction in IL-17A production. Furthermore, depletion of the 

neutrophils resulted in a decrease in IL-10 and favoured IL-17A production (Doz et al. 2013).  

CXCL1 and CXCL2 are expressed at low concentrations in the sera and the lung tissue of 

mice infected with Mtb (Schneider et al. 2010). Stimulation of polymorphonuclear granulocytes 

with Mtb and LAM resulted in increased mRNA and protein of CXCL1 by human 

polymorphonuclear granulocytes (Riedel and Kaufmann, 1997). BMD macrophages from mice 

infected with the Erdman Mtb strain had gene expression of CXCL2 (Scott and  Flynn, 2002). 

In addition, infected BMD macrophages with the Erdman Mtb strain as well as the clinical 

isolates CSU22 and CSU46 also resulted in increased CXCL2 gene transcript expression 

(Rhoades et al. 1995). An increase in CXCL2 was also seen in a DM mice (db/db) compared 

to a control mice, three days post bacterial infection other than Mtb (Naguib et al. 2004). We 
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found a downregulation of CXCL1 and CXCL2 gene transcript in unstimulated whole blood of 

TB patients. There is however no gene expression data available when comparing TB-T2D 

and TB patients.  

CD163 is a scavenger receptor expressed exclusively on monocytes and macrophages, and 

function as an innate immune sensor for bacteria and induces local inflammation (Kristiansen 

et al. 2001). Increased CD163 expression on the surface of monocyte is associated with 

insulin resistance in patients with T2D, suggesting a novel pathophysiological role for CD163 

(Kawarabayashi et al. 2017). CD163 mRNA was found to be higher in fat depots of obese 

patients compared to non-obese individuals (Kračmerová et al. 2014). Increased soluble 

CD163 was reported to be a strong predictor of risk for developing T2D in obese patients 

(Zanni et al. 2012). A positive correlation between plasma soluble CD163 and mRNA CD163 

was described in the adipose tissue of obese patients (Kračmerová et al. 2014), however, 

CD163 frequency on MNs from adipose tissue was significantly decreased and soluble CD163 

significantly increased in T2D patients with vascular complications compared to patients 

without vascular complications (Min et al. 2016). Suggesting that CD163 protects T2D patients 

from developing T2D associated complications (Min et al. 2016). CD163 protein therefore 

possibly plays a role in the pathophysiology of T2D.  

In this study, we found that CD163 mRNA in TB-T2D was downregulated in unstimulated 

whole blood compared to TB patients. The upregulation of CD163 is a marker of switching 

from pro-inflammatory towards anti-inflammatory profile (Weaver et al. 2013), therefore, the 

downregulation of CD163 mRNA in TB-T2D corresponds to the pro-inflammatory profile in 

these patients. CD163 was also found to be significantly reduced on the surface of MNs from 

T2D patients after stimulation with LPS compared to unstimulated MNs (Khondkaryan et al. 

2018), and was thought to be associated with persistent activation of MNs (Khondkaryan et 

al. 2018). In our study, we showed that stimulation of whole blood with Mtb-antigens, favours 

an Mtb specific upregulation of CD163 mRNA shifting responses to an anti-inflammatory 

profile in TB-T2D upon stimulation when compared to TB patients. The exact role of CD163 

in chronic inflammation remains poorly described (Kawarabayashi et al. 2017) and requires 

further investigation. In our study, the downregulation of CD163 mRNA may be associated 

with immunopathology in TB-T2D patients. 

Mtb promotes its replication by inhibiting apoptosis of infected macrophages (Blomgran et al. 

2012). In our study, gene transcripts from unstimulated blood that plays a role in apoptosis 

(IL-1A, IL-1R1, TNFRSF8, NF-KB, and BAX) were lower in TB-T2D compared to TB. NF-kB 

is the transcription factor in classical macrophages responsible for the development of the Th1 

response including the production of IL-12, IFN-ү, IL-23, and IL-27 which are required to 

Stellenbosch University https://scholar.sun.ac.za



102 
 

control Mtb replication (Cooper and Khader, 2008; Liu et al. 2017), as well as IL-1β, TNF-α, 

and IL-6 (Wang et al. 2014).  

S100A8, TAP1, S100A9, GBP1, TLR2, PSMB8 and PSMB9 were reported to be upregulated 

in whole blood of active TB patients compared to individuals with LTBI (Mistry et al. 2007). We 

also found that TAP1, TLR2, S100A9 and S100A8 are upregulated in unstimulated whole 

blood of TB compared to TB-T2D patients. S100A8 and S100A9 are upregulated during 

infection, stress, and many other inflammatory conditions (Wang et al. 2018). The increased 

expression of TLR (a receptor for pathogen associated molecules), in TB patients, shows that 

there is an upregulation of antigen recognition related pathways. The upregulation of TAP1 

and protein subunits of proteasomes, all are related to antigen presentation signalling, which 

shows that during TB-T2D, these pathways may be less represented compared to TB.  

PSMB5 along with C1R and C1QBP form part of the complement cascade and were 

collectively part of a gene signature that could distinguish TB-THG from TB-T2D in 

unstimulated whole blood. The complete cascade, as seen by C1R and C1QBP, as well as 

the antigen presentation pathway are the key pathways that are different in TB-THG and TB-

T2D. The activation of C1R is associated with immune response pathways suggestive of any 

infectious disease (Wu et al. 2017). However, our study did not show differences in C1R 

mRNA between the patients. C1QBP was amongst the gene transcripts significantly 

downregulated in TB patients compared to LTBI in whole blood using microarrays  (Mistry et 

al. 2007). We found, C1QBP to be downregulated in unstimulated whole blood of TB 

compared to TB-THG. In breast cancer the expression of PSMB5 mRNA was observed in M2 

macrophages, and it was hypothesised to be involved in immunosuppressive responses 

(Wang et al. 2017). Knock down of PSMB5 allowed macrophages to differentiate into M1 

phenotype. In our study, both PSMB5 and CD163 were downregulated in unstimulated whole 

blood of TB-T2D compared to TB.  

6.1.2 Gene expression in LTBI with and without T2D 

Blood transcriptional assays that enable early accurate TB diagnosis could have an important 

impact on control of the global TB epidemic (Walter et al. 2016). The immunological factors 

involved in the host immune response network in Mtb infection and LTBI reactivation have not 

yet been clearly elucidated. Identifying the host genes responsible for TB susceptibility and 

resistance may be the key towards better understanding the mechanisms leading to the 

development of the disease and identifying pathways that could be used as potential targets 

for HDT. The immune profile in LTBI-T2D is characterized by diminished production of Th1 

cytokines. Diminished concentration of the Th1 cytokines allows for potential immunological 

mechanisms that could account for the increased risk for TB progression (Kumar and Babu. 

2017). The immune profile in LTBI with T2D compared to LTBI without T2D is characterized 
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by low Th1 (IFN-y, IL-2 and TNF-α) and Th2 but not Th17 associated cytokines which was 

partially modulated by TGF-β, since blocking TGF-β resulted in increased Th1 and Th2 

cytokines (Kumar et al. 2016). There are however no gene expression data available from 

individuals with LTBI with T2D prior to developing active disease and TB-T2D. We therefore 

wanted to determine the differential gene expression in individuals with LTBI with and without 

T2D to identify host genes and pathways that could be associated with increased susceptibility 

to TB progression in LTBI-T2D. The genes that were differentially expressed in unstimulated 

whole blood of LTBI-T2D compared to LTBI were associated with the following functions or 

pathways: activation of necrosis and cell death of tumour cells, inhibition of immune response 

of leukocytes and maturation of blood cells of which some will impact immune response 

against Mtb. CCL2, CD163, TNFRSF8, CISH, GBP5, PML and TAP1 were differentially 

expressed in LTBI-T2D compared to LTBI and TB-T2D compared to TB patients and could 

potentially be involved in the underlying mechanisms responsible for the increased 

susceptibility to Mtb and the increased chance of developing active TB.  

A three gene signature unique to LTBI-T2D was identified which includes CD59, CD274 and 

TNFSF11. Upon univariate analysis, only CD59 was found to be significantly different between 

the two groups and was higher in LTBI-T2D compared LTBI. The role of CD59 has been 

shown to protect host cells from the membrane attach complex mediated lysis (Koski et al. 

1996). The membrane attack complex can result in tissue injury during dysregulated 

complement activation that occurs during chronic inflammatory conditions (Huang et al. 

2006). This can result in overexpression of CD59, however overexpression of CD59 in tumour 

cells has been associated with tumour development (Fishelson et al. 2003), protecting tumour 

cells from monoclonal antibody treatment (Fishelson et al. 2003). CD59 plays a role in 

promoting tumour cell growth (Fishelson et al. 2003). A study by Cliff et al. investigated 

changes in gene expression before and during TB treatment in whole blood (Cliff et al. 2013). 

Among other gene transcripts, CD59 was upregulated at diagnosis of TB (Cliff et al. 2013). 

There is no information on CD59 in LTBI and T2D. In our LTBI-T2D group, CD59 may help 

Mtb evade immune responses by protecting the Mtb infected cells from complement mediated 

lysis and promote Mtb replication. 

CD274, also referred to as programmed death 1 (PD-1), is a key immune checkpoint receptor 

expressed by activated T cells and mediates immune suppression (Yin et al. 2014). PD-1/PD-

L1 interaction is known to inhibit T cell effector function during TB disease (Shen et al. 2016). 

Wang et al. reported that when PD-L1 and PD-L2 were upregulated, T cell associated gene 

transcripts were down regulated, which indicates that PD-Ls mediated suppression may be 

initiated during TB disease (Wang et al. 2018). PD-1 was shown to induce apoptosis of IFN-γ 

producing NKT cells while sparing NKT cells that produce IL-4. Such a polarized NKT cell 
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function may impose a Th2 bias on the ensuing effector T cell response leading to inefficient 

clearance of Mtb. Inhibiting PD-1 may therefore affect the T cell response favouring the host 

by rescuing IFN-y producing NKT cells from apoptosis and enhancing Th1 effector T cell 

functions against Mtb (Singh et al. 2014). Phagocytosis and intracellular killing activity of 

macrophages were found to be increased significantly after blocking PD-1/PD-L pathway 

(Shen et al. 2016). Anti-PD-1/PD-L1 therapy holds promise as adjunctive therapy for chronic 

infectious diseases such as TB and should be tested in randomized clinical trials (Rao et al. 

2017). In our study, PD-L1 transcript was upregulated in the LTBI-T2D patients in the 

unstimulated samples compared to LTBI. PD-L1 was also identified as one of the transcripts 

in the signature that could be associated with susceptibility to TB progression in LTBI with T2D 

by suppressing T cell immunity.  

TNFSF11 encodes for receptor activator of the nuclear factor kappa B ligand (RANKL), which 

participates in physiological processes including organ development, bone remodelling and 

calcium homeostasis through osteoblast formation (Griffith et al.2012). There is no existing 

literature on the expression of TNFSF11 in individuals with LTBI. Our study did not show a 

significant difference in TNFSF11 expression between LTBI-T2D and LTBI, but in combination 

with other markers, can help us understand the mechanisms associated with TB susceptibility. 

RANKL has been reported to harbour immunosuppressive functions; blocking RANKL 

however, was not shown to affect immune responses in mice or humans (Guerrin et al. 2015; 

Conte et al. 2015). These findings suggest that RANKL plays a less prominent role in host 

defences against pathogens (Guerrini et al. 2015). In T2D, RANKL protein was upregulated 

compared to healthy patients (Conte et al. 2015). The role of RANKL has been studied in bone 

diseases and was found that a reduction in RANKL is associated with Mtb H37Ra induced 

bone loss. Whether this is enough to implicate TNFSF11 in the pathogenesis of T2D and 

susceptibility to TB progression is not clear. 

6.1.3 Immune and endocrine changes and association with Mtb uptake and killing 

Low-grade inflammation in T2D patients leads to the activation of the HPA-axis which 

subsequently results in increased cortisol secretion by the adrenals. Elevated levels of cortisol 

in serum result in immunosuppression leading to reduced Mtb containment (Pace et al. 2012). 

A few studies have focused on TB-T2D comorbidity (van Crevel and Dockrell, 2014; 

Fernandez et al. 2016). However, to date only a few studies in individuals with LTBI and T2D 

have been carried out (Kumar et al. 2013). We investigated the immune-endocrine profile to 

determine the effect of T2D on immune responses in recently Mtb exposed participants within 

the South African coloured population from the Western Cape. During an infection such as 

Mtb, the human host amounts an acute phase response (Gruys et al. 2005). These include 

changes in lipid profiles, cytokines, complement cascade and an increase in ACTH and 
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glucocorticoid concentrations (Gruys et al. 2005). Comparison of acute phase protein 

responses and sympathetic as well as stress hormones such as catecholamines and cortisol 

in plasma of TB patients and controls was done (Opolot et al. 2015). It was reported that both 

cortisol and dopamine were higher in TB patients, although not significantly for cortisol (Opolot 

et al. 2015). Higher dopamine and lower adrenaline concentration in the TB group was 

reported compared to HCs. Previously, elevated concentrations of adrenaline, noradrenaline, 

dopamine and cortisol were associated with severity of TB disease (Hafeiz et al. 1992). 

Noradrenaline was reported to be higher in TB patients compared to controls (Opolot et al. 

2015). We were unable to analyse the noradrenaline results due to technical errors. Mtb-

induced responses feedback to the brain to orchestrate sympathetic nervous system 

responses which in turn mediate immune responses in the periphery. The same immune cells 

are then also a source of noradrenaline that induces early differentiation of Th1 cells essential 

for protection against mycobacterial infection (Alaniz et al. 1999). Mice genetically deficient of 

the enzyme dopamine-hydroxylase which is required for the synthesis of noradrenaline were 

found to be more susceptible to Mtb (Alaniz et al. 1999), suggesting that it participates in the 

generation of an optimal, protective cell-mediated immune response in vivo.  

Noradrenaline was reported to be produced during early infection with Mtb by adrenergic nerve 

terminals and lymphocytes located in pulmonary inflammatory infiltrates and mediastinal 

lymph nodes, while during late infection noradrenaline production sharply decreases (Barrios-

payán et al. 2016). This suggests that during advanced disease, the sympathetic nervous 

system activity is less important, or perhaps contributes to establishing local pro-inflammatory 

activity due to the absence of the anti-inflammatory effect of noradrenaline on differentiated 

immune cells (Pongratz and Straub, 2014). There was no differences in the catecholamines 

reported between our study groups. No other studies have reported on catecholamines in the 

context of T2D, and makes our study the first to report this. 

Cytokines and hormones influence the cellular immune response, therefore the relationship 

and profile of plasma hormones such as cortisol needs to be investigated to understand how 

they affect immune response. In the plasma of TB patients compared to LTBI and HCs, 

concentration of cortisol was reported to be elevated (Santucci et al. 2011). In addition, cortisol 

levels were reported to be high in plasma of TB and TB-T2D patients compared to HCs 

(Fernandez et al. 2016). No difference have been reported between cortisol levels in TB and 

TB-T2D patients. The concentration of cortisol has also never been investigated in individuals 

with LTBI with and without T2D. We found no difference in cortisol in our study participants. 

Cortisol can inhibit Th1 responses, whereas DHEA induces them (Besedevoski et al. 1998; 

Turnbull et al. 1999). The HPA axis, represent a well-conserved mechanism to control an 

intense immune-inflammatory reaction as well as for the early mobilization of immune cells 
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and their redistribution to mount an adequate defensive response (Attilio et al. 2018). During 

an immune response, cortisol can inhibit the proliferation of the effector and differential 

apoptosis of regulatory T cells (Pandolfi et al. 2013). 

The upregulation of IL-6 is associated with inflammatory diseases such as TB (Martinez et al. 

2013) and involved in metabolic disorders such as T2D (Liu et al. 2016). In TB-T2D, IL-6 

plasma levels are high compared to TB (Kumar et al. 2013). In LTBI-T2D we also found IL-6 

serum concentrations to be higher compared to LTBI. High IL-6 concentrations in culture 

supernatants of monocyte-derived macrophages (MDMs) of TB-T2D patients compared to TB 

patients (Lope-Lopez et al. 2018). IL-6 has the ability to impair insulin signalling in insulin-

sensitive tissues (Nikolajczyk et al. 2012). High IL-6 concentrations has been shown to cause 

insulin resistance and T2D (Kumar et al. 2014). In our study, however, we did not calculate 

insulin resistance. Lower IL-6 production by macrophages from DM mice infected with 

Mycobacterial fortuitum was reported to contribute to increased bacterial growth in the infected 

macrophages, which suggest that IL-6 is required for better control of bacteria by 

macrophages (Abdul Alim et al. 2017). Plasma IL-6 concentrations were reported to be 

significantly higher in TB patients and TB-T2D patients compared to HCs (Fernandez et al. 

2016). Despite the fact that IL-6 is pro-inflammatory and plays an important role in bacterial 

control, high expression in the serum from our LTBI-T2D study participants was associated 

with poor Mtb uptake by PBMCs. Contrary to these findings, Zheng et al. found no difference 

in IL-6 concentrations in TB patients with and without T2D and HCs, (Zheng et al. 2013). In 

plasma of individuals with LTBI compared to HCs, IL-6 was elevated (Santucci et al. 2011). 

Our data and data from other human studies, suggest that during T2D, IL-6 is elevated and 

that TB augments the levels of this cytokine. In humans, IL-6 is associated with pathogenesis, 

and reducing IL-6 production may restore insulin resistance and the function of beta-cells, 

reducing heart failure and fatigue in patients with T2D (Conti et al. 2018). 

IL-18 plays a critical role by inducing Th1 responses during Mtb infection (Schneider et al. 

2010; Ponnana et al. 2017). Without IL-18, Th1 responses are decreased and mycobacterial 

replication increases (Schneider et al. 2010). Mice deficient in IL-18 will succumb to Mtb 

infection (Sugawara et al. 1999; Schneider et al. 2010), and have suppressed IFN-ү production 

(Dinarello, 1999). IL-18 was low in TB-T2D patients compared to TB (Restrepo et al. 2008; 

Kumar et al. 2013). IL-18 induces the release of IL-8 from mononuclear cells (Puren et al. 

1998), which is an attractant for neutrophils and also T cells (Puren et al. 1998). Neutrophilic 

inflammation is associated to TB pathogenesis (Berry et al. 2010) and, for this reason, we 

believe that IL-18 is involved in both protective and pathological responses. Liu et al. has 

shown that along with IL-1β and IL-6 elevated levels of IL-18 is associated with T2D (Liu et al. 

2016). It is possible that IL-18 has different roles during LTBI with and without T2D. In contrast 
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to what we found, Kumar et al. found serum IL-18 concentrations to be lower in LTBI-T2D 

(Kumar et al. 2014).This contradicting data suggests that more studies are required to 

evaluate the role of IL-18 in LTBI during T2D in different population groups. 

IL-22 cytokine is produced by cells of the innate and adaptive immune system (Wolk et al. 

2006), its role during host defence against Mtb infection still needs further investigation 

(Ronacher et al. 2018). Decreased plasma concentration of IL-22 was profoundly associated 

with susceptibility to impaired fasting glucose and T2D in Chinese subjects (Shen et al. 2018). 

In T2D foot ulcers, IL-20 subfamily including IL-22 are upregulated during normal wound 

healing (Kolumam et al. 2017). In addition, mice deficient in the receptor for IL-22 was 

associated with delay in the healing of the wounds. IL-22 was also associated with increased 

innate host immune defences and tissue remodelling in the skin (Kolumam et al. 2017). We 

did not find any significant differences in IL-22 serum concentrations between LTBI and LTBI-

T2D, but we found differences between LTBI-T2D and LTB-pT2D, where IL-22 was 

significantly higher in LTBI-pT2D patients. Although the role of IL-22 has been associated with 

protection, excessive IL-22 responses may be detrimental. In fact, Ronacher et al. indicated 

that it is not clear whether IL-22 is increased to counteract immunopathology or if it contributes 

to pathology (Ronacher et al. 2018). Kumar et al. has reported higher IL-22 concentrations in 

LTBI-T2D compared to LTBI (Kumar et al. 2015), whereas we did not observe any significant 

differences between the two groups. The difference between the two studies being that Kumar 

et al. did not categorize the T2D patients into the different subgroups e.g. pre-T2D, T2D and 

pT2D. Comparison of circulating cytokines between individuals with LTBI with high BMI and 

low BMI was done and found higher IL-22 concentrations in high BMI individuals with LTBI 

(Anuradha et al. 2016), suggesting a link between BMI and IL-22 production. In our study, the 

individuals with LTBI with and without T2D did not show any significance difference in BMI, 

and perhaps could be why we did not see any difference in IL-22 concentrations. 

We observed significantly higher IL-22 concentrations in TB-T2D patients compared to TB-

THG at BL and no difference was observed between TB-T2D and TB patients. This is different 

to what Kumar et al. found, where IL-22 was lower in plasma samples of TB-T2D compared 

to TB (Kumar et al. 2013; Kumar et al. 2015). A negative correlation has been observed 

between IL-22 expression in the periphery and the lung, with higher IL-22 measured in BALF 

(Singh et al. 2018). Since serum IL-22 was higher in our TB-T2D patients, it is possible that 

these patients have low IL-22 in the lung where it is needed.  

Vitamin D deficiency is associated with an increased risk of TB disease and poor treatment 

outcome (Kim et al. 2017). When MDMs from T2D patients with low vitamin D receptor 

expression were supplemented with vitamin D, they were able to eliminate Mtb efficiently 

(Lopez-lopez et al. 2014). This study suggests the use of vitamin D as prophylaxis for TB in 
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high T2D endemic countries (Lopez-lopez et al. 2014). vitamin D in serum of patients with 

history of TB disease compared to uninfected controls was significantly lower vitamin D 

concentration in individuals with a history of TB compared to uninfected individuals (Kim et al. 

2018). In T2D patients, the same has also been reported where vitamin D is significantly 

reduced in their serum compared to HCs (Chandra et al. 2004). The high vitamin D in HCs, 

may partly be involved in the significantly enhanced phagocytic potential of macrophages 

isolated from these individuals (Chandra et al. 2004).  

Dyslipidaemia in T2D is characterized by high levels of triglycerides, and/or cholesterol as well 

as low HDL (Vrieling et al. 2018). In addition, dyslipidaemia is associated with necrotic 

granulomas and fibroplasia leading to exacerbated lung damage in TB patients and especially 

in TB-T2D patients (Dong et al. 2018). Dong et al. reported low HDL in smear negative patients 

with TB-T2D, which was associated with severe lung lesions in these patients (Dong et al. 

2018). HDL serum levels are reduced during infections and inflammation (Deniz et al. 2006; 

Dong et al .2018). This agrees with what we found where HDL concentrations were lower in 

LTBI-T2D compared to individuals with LTBI. Since low HDL is associated with severe lung 

lesions in TB-T2D patients as reported by Dong et al. and hyperinflammatory response of TB-

T2D (Prada-medina et al. 2017), one can assume that low concentrations in individuals with 

LTBI and T2D may play a role in susceptibility to TB disease. Cholesterol serves as an 

important carbon source utilized by Mtb to growth and persistence in mice (Pandey and 

Sassetti, 2008). High CHL has been identified as a risk factor for TB disease (Martens et al. 

2008; Soh et al. 2016) and statins use, which lowers CHL concentrations, reduces the risk of 

developing TB disease (Lai et al. 2016; Su et al. 2017). A potential therapy targeting CHL 

catabolism can effectively lower intracellular growth of Mtb (Tsai et al. 2017) and more studies 

should focus on investigating the use of cholesterol lowering drugs in conjunction with TB 

treatment to prevent TB disease in groups that are at increased risk such as LTBI-T2D. Lipids, 

such as LDL, may stimulate macrophage phagocytosis and subsequent release of 

inflammatory markers, induce mast cell degranulation and leukocyte recruitment (Medina et 

al. 2015). Our study did not show any relationship between LDL and Mtb killing, but in the 

larger parent study, the ALERT study, we found that LDL was associated with reduced Mtb 

growth in MNs (Manuscript in preparation). This shows that LDL can induce response against 

Mtb possible by facilitating the killing of Mtb in immune cells. 

Macrophages play a central role in the initiation and resolution of inflammatory responses to 

infectious pathogens (Auffray et al. 2009) and are frequently activated in T2D patients 

(Bianciardi, 2015), which means that they could play an important role in T2D development. 

Macrophages are equipped with scavenger receptors that recognize lipids and various 

microorganisms (Auffray et al. 2009). The high incidence of infectious diseases in patients 
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with T2D (Peleg et al. 2007; Weintrob et al.2009) indicates a dysfunctional innate immune 

response in these patients. In fact, reduced phagocytic and chemotactic activity of MNs and 

neutrophils have been shown (Delamaire et al. 1997; Llorente et al. 2000; Restrepo et al. 

2014). Our results supported previous studies where no difference in Mtb killing by MDMs, 

and PBMCs were observed (Reyes-ruvalcaba et al. 2008; Raposo-Garcia et al. 2017). 

However, it is possible that we do not see differences in the phagocytosis of MNs from T2D 

patients compared to noT2D because of small sample size, as data from the larger ALERT 

study, show differences in Mtb uptake by MNs from T2D compared to noT2D (Manuscript in 

preparation). 

6.1.4 MAIT cells in TB patients with and without T2D  

MAIT cells have innate like functions and have gained much attention as important role players 

in immunity to infectious diseases, such as Mtb, as well as in the pathogenesis of non-

communicable diseases, such as T2D (Shey et al. 2018). Most MAIT cells are identified as 

CD8+ and CD4-, but a small subset of MAIT cells do express CD4 (Kurioka et al. 2015). The 

different MAIT cell subsets suggests that they may also have unique functions. Recently, it 

has been shown that riboflavin tetramers can be used  to identify all MAIT cells (Reantragoon 

et al. 2013). MAIT cells can be activated through TCR dependent and independent pathway 

(Gold et al. 2010; Kurioka et al. 2015), regardless of the disease state. MAIT cells have site 

specific functions. The frequency of IL-17 producing MAIT cells were higher in the adipose 

tissue of T2D patients compared to the periphery (Magalhaes et al. 2015). Higher frequencies 

of MAIT cells producing IL-17 and IL-22 were found in the vaginal tract compared to higher 

frequencies of MAIT cells producing IFN-ү and TNF-α in the periphery (Gibbs et al. 2017).  

At baseline, MAIT cells are significantly reduced in the periphery of TB patients compared to 

uninfected HCs (Gold et al. 2010; Wong et al. 2013) which recover during the course of TB 

treatment (Sharma et al. 2015; Wong et al. 2013). When MAIT cells are reduced in the 

periphery during TB disease they migrate to the lung, as shown by measuring MAIT cell 

frequency in the BALF of TB patients with and without HIV co-infection (Wong et al. 2015). In 

TB-HIV co-infected patients, treatment did not restore MAIT cell frequencies in the periphery 

compared to TB patients (Wong et al. 2013). It has been shown that TB-HIV patients have 

high viral load in the lung (Shankar et al. 2014), because of the presence of the virus the MAIT 

cells remain in the lung. Similarly, in our TB-T2D patients, failure of MAIT cells to increase at 

M6 of TB treatment could mean that MAIT cells are still present in the adipose tissue or the 

lung. Malherbe et al. showed that even at M6 of TB treatment, after TB patients are cured 

based on negative MGIT culture results, there is still lesions in the lung consistent with TB 

disease and Mtb specific mRNA (Malherbe et al. 2016), which means that MAIT cells could 

still be in the lung even though the patients are clinically cured. There are no published results 
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on MAIT cell frequency in TB-T2D. Our study is the first to and provide information on the 

frequency of CD8+TCR 7.2++CD161++CD26++ MAIT cells and the influence of TB treatment on 

the frequency of these cells in TB and T2D patients. 

6.2 Conclusion 

Our first aim was to identify differentially expressed immune genes in unstimulated and Mtb-

antigen stimulated whole blood of newly exposed LTBI positive participants as well as TB 

patients with and without T2D. To achieve this RNA was isolated from QFT stimulated blood 

and differential expression of 594 genes involved in immune regulation was determined with 

the NanoString technology. 

Our study found fifteen important gene transcripts that need to be further investigated in the 

TB-T2D comorbidity to understand the immunological mechanisms involved in the pathology 

of T2D in TB patients. Proteins associated with these genes have been described, however, 

the true relationship between the protein and their gene transcripts have not been shown and 

this could give us a better understanding of what is happening during Mtb infection. We found 

genes associated with phagocytes trafficking to the site of infection, and those associated with 

apoptosis to be downregulated in the TB-T2D compared to TB and TB-THG. Furthermore, we 

were able to identify a gene signature that differentiates between THG and T2D in TB patients. 

This signature could be useful to identify THG and prevent the unnecessary treatment of these 

patients who would have been diagnosed with T2D. Most importantly, T2D screening of TB 

patients is recommended by the WHO, however HbA1c testing will not be able to distinguish 

patients with THG from T2D. Therefore, our gene signature could complement standard T2D 

screening of TB patients. We also identified a gene signature unique to individuals with LTBI 

with T2D. We show that these gene signatures are associated with complement pathways 

which may be involved in TB progression of individuals with LTBI-T2D.  

Secondly, we aimed to investigate immune and endocrine changes in the serum and plasma 

of individuals with LTBI with and without T2D and determine their association with Mtb uptake 

and killing. Chronic activation of the innate system is associated with T2D, and abnormal 

production of cytokines and chemokines. In our study, Th1 cytokines and IL-22 which is 

produced by Th17 and/ Th22 are more pronounced in LTBI-pT2D, which showed a heighted 

pro-inflammatory cytokine profiles including IL-6, IL-18 and IL-22 compared to individuals with 

LTBI. Lipid production in the plasma was also increased. Our results adds to the small body 

of knowledge that is available on the production of immune products by cells of individuals 

with LTBI with and without T2D. We have shown that there is a need for more studies to define 

the immune profile of these individuals, to help us learn and understand the immune 

mechanisms during Mtb infection and influence of plasma soluble proteins and lipids in Mtb 

phagocytosis and killing assays. 
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Lastly, we wanted to determine the frequency of MAIT cells in TB, TB-THG and TB-T2D at 

BL, M2 and M6 of TB treatment, since the reduction of MAIT cells in metabolic and infectious 

diseases have been widely shown. Despite their frequencies, the functions of MAIT cells in 

human TB-T2D have not be demonstrated. The varying frequencies of MAIT cells both during 

diseases and change during treatment, shows that they have an essential role during TB 

diseases and their roles needs to be delineated especially in patient with TB and T2D. Our 

results showed that the frequency of MAIT cells in TB-T2D was significantly lower compared 

to TB-THG at BL. This could mean that the MAIT cells in TB-T2D have redistributed to the 

tissue, either to the lung or the adipose tissue. The increase in the periphery at M2 and M6 

compared to BL could mean that the number of MAIT cells were restored to the blood due to 

good treatment outcome and reduced Mtb in the lung. MAIT cells could be used as a potential 

subtype for monitoring treatment responses in TB-T2D patients. 

 

Overall, with ALERT data we were able to show the link between the endocrine and the 

immune response. Although we could not show differences in cortisol levels as previously 

thought, the higher insulin production in plasma of LTBI-T2D as well as other cytokines such 

as IL-6, IL-18 and IL-22 from our study may reflect an association and connection between 

the immune and the neuroendocrine system. The reduced association of Mtb with PBMCs 

from individuals with LTBI-T2D as well as reduced Mtb control by MNs from LTBI-T2D may 

be linked to the insulin and cytokine levels in these individuals with LTBI-T2D and may in part 

play a role in the functioning of these immune cells. Insulin resistance has also been 

associated with increased Th1 and Th17 cytokine production. Even though Insulin has been 

shown to drive T cell differentiation towards an anti-inflammatory phenotype, we saw an 

increased insulin along with increased IL-6, IL-18 and IL-22 in our participants. These 

cytokines may also contribute to poor glycemic control and hyperlipidaemia as shown in our 

results where their increase was also accompanied by increased triglycerides in individuals 

with LTBI-T2D. Following this we will be measuring a range of hormones and cytokines directly 

from culture supernatants of the PBMCs and MNs infected with Mtb H37Rv to fully describe 

the interplay between mononuclear cells and hormones during T2D. 

6.3 Strengths and limitations of the study 

The number of study participants with LTBI with and without T2D was small. Recruitment of 

study participants continued beyond the time frame of my PhD, samples that were available 

at the time were used. This work continued to include all the participants enrolled in the study 

to increase the sample size and has now reached the recruitment target and analysis of data 

is ongoing. Serum cytokines and plasma hormone concentrations were correlated to the Mtb 

killing assay as they were cultured in 20% autologous plasma. As part of the larger study we 
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will continue to measure the cytokine concentrations in the culture supernatants which will 

also be correlated to Mtb killing assays. For the TANDEM study, only a small number of TB-

T2D were recruited, and matching the participants also resulted in even smaller numbers.  We 

were not able to do Mtb killing assays using the PBMCs of TB-T2D patients since the stored 

cells were not enough to do the killing assays. There were a limited number of samples 

available for the TANDEM study which prevented us from running all the ELISA and luminex 

assays on these participants. We were able to perform gene expression assay on both 

TANDEM and ALERT samples. We were not able to perform a direct comparison for our 594 

gene expression between the participant groups of the two different studies as the gene 

expression analysis was batched and run at different times. The first gene expression analysis 

was performed on the TANDEM patients, and a year later we ran the same gene expression 

panel on ALERT patients. Seeing that there is limited information on MAIT cells in TB with and 

without T2D, therefore we wanted to measure MAIT cell frequency in TB and TB-T2D patients 

and include LTBI-T2D as a control, however, we ended up doing this without a LTBI-T2D 

control, since we did not have enough PBMCs for the larger part of these individuals. Another 

limitation to our study for both ALERT and TANDEM populations was the exclusion of HIV 

positive individuals seeing that TB-HIV is quite a concern in South Africa. In general, the use 

of HbA1c and FBG as a diagnostic for T2D without the support of OGTT was another limitation 

since the OGTT is considered the gold standand and has been shown to perform as best 

diagnostic for T2D in our study population (Zemlin et al. 2011).  

6.4 Future work 

The identified genes signature that distinguish between TB-THG and TB-T2D need to be 

validated by screening for these signature in a different cohort so that it can be incorporated 

in a simple test to be used together with HbA1c to describe true T2D patients. The identified 

gene signature in latent TB with T2D will be followed up and further explored using functional 

assays, to understand the role of the transcripts and resulting proteins during Mtb infection. 

Cytokines and hormones are going to be measured from monocytes and PBMC culture 

supernatants and to identify associations between Mtb uptake and killing. This will give us a 

better understanding of what the immune and endocrine profile is during Mtb infection in 

individuals with LTBI with and without T2D and how that influence phagocytosis and Mtb 

killing. We collected and stored whole blood and broncho alveolar lavage from participants 

with LTBI with and without T2D, this will be used to determining the frequency of MAIT cells 

in the periphery and also at the site of TB disease, we would like to do this for TB with and 

without T2D patients as well to determine the frequency of MAIT cells recruited to the site of 

disease. 
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Addenda 

 

Supplementary Figure 1: Differentially expressed gene transcripts between TB, TB-THG and TB-T2D. RNA 

was isolated from whole blood of TB-T2D, TB-THG and TB stimulated with Mtb specific antigen using QFT assay 
(Ag/nil, stimulated only represented in the figure). Gene expression of 594 genes as part of the nCounter GX 
Human Immunology kit V2 was done on the extracted RNA. Down and upregulated transcripts from unstimulated 
blood of TB compared to TB-THG (A), TB vs. TB-T2D (B) and TB-THG vs TB-T2D. JMP SAS was used to generate 
heatmaps and used Student T test to determine statistical difference between the groups. Genes with a p value 
was < 0.01 and FDR < 0.05 was statistically significant. Figure A Red TB, Blue TB-THG, Figure B red TB, blue TB-
T2D and Figure C red TB-THG and blue TB-T2D.  

 

Supplementary Figure 2: Differentially expressed gene transcripts between TB, TB-THG and TB-T2D at 
month 6. RNA was isolated from whole blood of TB-T2D, TB-THG and TB stimulated with Mtb specific antigen 

using QFT assay (Ag/nil, stimulated only represented in the figure). Gene expression of 594 genes as part of the 
nCounter GX Human Immunology kit V2 was done on the extracted RNA. Down and upregulated transcripts from 
unstimulated blood of TB compared to TB-THG (A), TB vs. TB-T2D (B) and TB-THG vs TB-T2D. JMP SAS was 
used to generate heatmaps and used Student T test to determine statistical difference between the groups. Genes 
with a p value was < 0.01 and FDR < 0.05 was statistically significant. Figure A Red TB, Blue TB-THG, Figure B 
red TB, blue TB-T2D and Figure C red TB-THG and blue TB-T2D.  
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Supplemtary table 1: List of Nanostring genes included in the nCounter GX Human Immunology kit V2 
 

 

Official 
Symbol 

Accession Official 
Symbol 

Accession Official Symbol Accession Official 
Symbol 

Accession Official 
Symbol 

Accession 

ABCB1 NM_000927.3 BST1 NM_004334.2 CCL11 NM_002986.2 CD163 NM_004244.4 CD58 NM_001779.2 

ABL1 NM_005157.3 BST2 NM_004335.2 CCL13 NM_005408.2 CD164 NM_006016.4 CD59 NM_000611.4 

ADA NM_000022.2 BTK NM_000061.1 CCL15 NM_032965.3 CD19 NM_001770.4 CD6 NM_006725.3 

AHR NM_001621.3 BTLA NM_181780.2 CCL16 NM_004590.2 CD1A NM_001763.2 CD7 NM_006137.6 

AICDA NM_020661.1 C14orf166 NM_016039.2 CCL18 NM_002988.2 CD1D NM_001766.3 CD70 NM_001252.2 

AIRE NM_000383.2 C1QA NM_015991.2 CCL19 NM_006274.2 CD2 NM_001767.3 CD74 NM_001025159.1 

APP NM_000484.3 C1QB NM_000491.3 CCL2 NM_002982.3 CD209 NM_021155.2 CD79A NM_001783.3 

ARG1 NM_000045.2 C1QBP NM_001212.3 CCL20 NM_004591.1 CD22 NM_001771.2 CD79B NM_021602.2 

ARG2 NM_001172.3 C1R NM_001733.4 CCL22 NM_002990.3 CD24 NM_013230.2 CD80 NM_005191.3 

ARHGDIB NM_001175.4 C1S NM_001734.2 CCL23 NM_145898.1 CD244 NM_016382.2 CD81 NM_004356.3 

ATG10 NM_001131028.1 C2 NM_000063.3 CCL24 NM_002991.2 CD247 NM_198053.1 CD82 NM_002231.3 

ATG12 NM_004707.2 C3 NM_000064.2 CCL26 NM_006072.4 CD27 NM_001242.4 CD83 NM_004233.3 

ATG16L1 NM_198890.2 C4A/B NM_007293.2 CCL3 NM_002983.2 CD274 NM_014143.3 CD86 NM_175862.3 

ATG5 NM_004849.2 C4BPA NM_000715.3 CCL4 NM_002984.2 CD276 NM_001024736.1 CD8A NM_001768.5 

ATG7 NM_001136031.2 C5 NM_001735.2 CCL5 NM_002985.2 CD28 NM_001243078.1 CD8B NM_004931.3 

ATM NM_000051.3 C6 NM_000065.2 CCL7 NM_006273.2 CD34 NM_001025109.1 CD9 NM_001769.2 

B2M NM_004048.2 C7 NM_000587.2 CCL8 NM_005623.2 CD36 NM_001001548.2 CD96 NM_005816.4 

B3GAT1 NM_018644.3 C8A NM_000562.2 CCND3 NM_001760.2 CD3D NM_000732.4 CD97 NM_078481.2 

BATF NM_006399.3 C8B NM_000066.2 CCR1 NM_001295.2 CD3E NM_000733.2 CD99 NM_002414.3 

BATF3 NM_018664.2 C8G NM_000606.2 CCR10 NM_016602.2 CD3EAP NM_012099.1 CDH5 NM_001795.3 

BAX NM_138761.3 C9 NM_001737.3 CCR2 NM_001123041.2 CD4 NM_000616.4 CDKN1A NM_000389.2 

BCAP31 NM_005745.7 CAMP NM_004345.3 CCR5 NM_000579.1 CD40 NM_001250.4 CEACAM1 NM_001712.3 

BCL10 NM_003921.2 CARD9 NM_052813.4 CCR6 NM_031409.2 CD40LG NM_000074.2 CEACAM6 NM_002483.4 

BCL2 NM_000657.2 CASP1 NM_001223.3 CCR7 NM_001838.2 CD44 NM_001001392.1 CEACAM8 NM_001816.3 

BCL2L11 NM_138621.4 CASP10 NM_032977.3 CCR8 NM_005201.2 CD46 NM_172350.1 CEBPB NM_005194.2 

BCL3 NM_005178.2 CASP2 NM_032982.2 CCRL1 NM_016557.2 CD48 NM_001778.2 CFB NM_001710.5 

BCL6 NM_001706.2 CASP3 NM_032991.2 CCRL2 NM_003965.4 CD5 NM_014207.2 CFD NM_001928.2 

BID NM_001196.2 CASP8 NM_001228.4 CD14 NM_000591.2 CD53 NM_001040033.1 CFH NM_001014975.2 

BLNK NM_013314.2 CCBP2 NM_001296.3 CD160 NM_007053.2 CD55 NM_000574.3 CFI NM_000204.3 

CFP NM_002621.2 CXCL1 NM_001511.1 FCER1A NM_002001.2 HLA-DMA NM_006120.3 IFNG NM_000619.2 

CHUK NM_001278.3 CXCL10 NM_001565.1 FCER1G NM_004106.1 HLA-DMB NM_002118.3 IFNGR1 NM_000416.1 
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CIITA NM_000246.3 CXCL11 NM_005409.4 FCGR1A/B NM_000566.3 HLA-DOB NM_002120.3 IGF2R NM_000876.1 

CISH NM_145071.2 CXCL12 NM_000609.5 FCGR2A NM_021642.3 HLA-DPA1 NM_033554.2 IKBKAP NM_003640.3 

CLEC4A NM_194448.2 CXCL13 NM_006419.2 FCGR2A/C NM_201563.4 HLA-DPB1 NM_002121.4 IKBKB NM_001556.1 

CLEC4E NM_014358.2 CXCL2 NM_002089.3 FCGR2B NM_001002273.1 HLA-DQA1 NM_002122.3 IKBKE NM_014002.2 

CLEC5A NM_013252.2 CXCL9 NM_002416.1 FCGR3A/B NM_000570.4 HLA-DQB1 NM_002123.3 IKBKG NM_003639.2 

CLEC6A NM_001007033.1 CXCR1 NM_000634.2 FCGRT NM_004107.4 HLA-DRA NM_019111.3 IKZF1 NM_006060.3 

CLEC7A NM_197954.2 CXCR2 NM_001557.2 FKBP5 NM_001145775.1 HLA-DRB1 NM_002124.2 IKZF2 NM_016260.2 

CLU NM_001831.2 CXCR3 NM_001504.1 FN1 NM_212482.1 HLA-DRB3 NM_022555.3 IKZF3 NM_183232.2 

CMKLR1 NM_004072.1 CXCR4 NM_003467.2 FOXP3 NM_014009.3 HRAS NM_005343.2 IL10 NM_000572.2 

CR1 NM_000651.4 CXCR6 NM_006564.1 FYN NM_002037.3 ICAM1 NM_000201.2 IL10RA NM_001558.2 

CR2 NM_001006658.1 CYBB NM_000397.3 GATA3 NM_001002295.1 ICAM2 NM_000873.3 IL11RA NM_147162.1 

CRADD NM_003805.3 DEFB1 NM_005218.3 GBP1 NM_002053.1 ICAM3 NM_002162.3 IL12A NM_000882.2 

CSF1 NM_000757.4 DEFB103A NM_001081551.2 GBP5 NM_052942.3 ICAM4 NM_001039132.1 IL12B NM_002187.2 

CSF1R NM_005211.2 DEFB103B NM_018661.3 GFI1 NM_005263.2 ICAM5 NM_003259.3 IL12RB1 NM_005535.1 

CSF2 NM_000758.2 DEFB4A NM_004942.2 GNLY NM_006433.2 ICOS NM_012092.2 IL13 NM_002188.2 

CSF2RB NM_000395.2 DPP4 NM_001935.3 GP1BB NM_000407.4 ICOSLG NM_015259.4 IL13RA1 NM_001560.2 

CSF3R NM_156038.2 DUSP4 NM_057158.2 GPI NM_000175.2 IDO1 NM_002164.3 IL15 NM_172174.1 

CTLA4_all 
(common 
probe) 

NM_005214.3 EBI3 NM_005755.2 GPR183 NM_004951.3 IFI16 NM_005531.1 IL16 NM_004513.4 

CTLA4-TM 
(membrane-
bound 
form) 

NM_005214.3 EDNRB NM_003991.2 GZMA NM_006144.2 IFI35 NM_005533.3 IL17A NM_002190.2 

sCTLA4 
(soluble 
form) 

NM_001037631.1 EGR1 NM_001964.2 GZMB NM_004131.3 IFIH1 NM_022168.2 IL17B NM_014443.2 

CTNNB1 NM_001098210.1 EGR2 NM_000399.3 GZMK NM_002104.2 IFIT2 NM_001547.4 IL17F NM_052872.3 

CTSC NM_001814.4 ENTPD1 NM_001098175.1 HAMP NM_021175.2 IFITM1 NM_003641.3 IL18 NM_001562.2 

CTSG NM_001911.2 EOMES NM_005442.2 HAVCR2 NM_032782.3 IFNA1/13 NM_024013.1 IL18R1 NM_003855.2 

CTSS NM_004079.3 ETS1 NM_005238.3 HFE NM_139011.2 IFNA2 NM_000605.3 IL18RAP NM_003853.2 

CUL9 NM_015089.2 FADD NM_003824.2 HLA-A NM_002116.5 IFNAR1 NM_000629.2 IL19 NM_013371.3 

CX3CL1 NM_002996.3 FAS NM_000043.3 HLA-B NM_005514.6 IFNAR2 NM_000874.3 IL1A NM_000575.3 
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CX3CR1 NM_001337.3 FCAR NM_133280.1 HLA-C NM_002117.4 IFNB1 NM_002176.2 IL1B NM_000576.2 

          

IL1R1 NM_000877.2 IL6ST NM_002184.2 JAK1 NM_002227.1 LEF1 NM_016269.3 MAPKAPK2 NM_004759.3 

IL1R2 NM_173343.1 IL7 NM_000880.2 JAK2 NM_004972.2 LGALS3 NM_001177388.1 MARCO NM_006770.3 

IL1RAP NM_002182.2 IL7R NM_002185.2 JAK3 NM_000215.2 LIF NM_002309.3 MASP1 NM_139125.3 

IL1RL1 NM_016232.4 IL8 NM_000584.2 KCNJ2 NM_000891.2 LILRA1 NM_006863.1 MASP2 NM_139208.1 

IL1RL2 NM_003854.2 IL9 NM_000590.1 KIR_Activating_Subgroup_1 NM_001083539.1 LILRA2 NM_006866.2 MBL2 NM_000242.2 

IL1RN NM_000577.3 ILF3 NM_001137673.1 KIR_Activating_Subgroup_2 NM_014512.1 LILRA3 NM_006865.3 MBP NM_002385.2 

IL2 NM_000586.2 IRAK1 NM_001569.3 KIR_Inhibiting_Subgroup_1 NM_014218.2 LILRA4 NM_012276.3 MCL1 NM_021960.3 

IL20 NM_018724.3 IRAK2 NM_001570.3 KIR_Inhibiting_Subgroup_2 NM_014511.3 LILRA5 NM_181879.2 MIF NM_002415.1 

IL21 NM_021803.2 IRAK3 NM_007199.1 KIR3DL1 NM_013289.2 LILRA6 NM_024318.2 MME NM_000902.2 

IL21R NM_021798.2 IRAK4 NM_016123.1 KIR3DL2 NM_006737.2 LILRB1 NM_001081637.1 MR1 NM_001531.2 

IL22 NM_020525.4 IRF1 NM_002198.1 KIR3DL3 NM_153443.3 LILRB2 NM_005874.1 MRC1 NM_002438.2 

IL22RA2 NM_181310.1 IRF3 NM_001571.5 KIT NM_000222.2 LILRB3 NM_006864.2 MS4A1 NM_152866.2 

IL23A NM_016584.2 IRF4 NM_002460.1 KLRAP1 NR_028045.1 LILRB4 NM_001081438.1 MSR1 NM_002445.3 

IL23R NM_144701.2 IRF5 NM_002200.3 KLRB1 NM_002258.2 LILRB5 NM_001081442.1 MUC1 NM_001018017.1 

IL26 NM_018402.1 IRF7 NM_001572.3 KLRC1 NM_002259.3 LITAF NM_004862.3 MX1 NM_002462.2 

IL27 NM_145659.3 IRF8 NM_002163.2 KLRC2 NM_002260.3 LTA NM_000595.2 MYD88 NM_002468.3 

IL28A NM_172138.1 IRGM NM_001145805.1 KLRC3 NM_007333.2 LTB4R NM_181657.3 NCAM1 NM_000615.5 

IL28A/B NM_172139.2 ITGA2B NM_000419.3 KLRC4 NM_013431.2 LTB4R2 NM_019839.4 NCF4 NM_000631.4 

IL29 NM_172140.1 ITGA4 NM_000885.4 KLRD1 NM_002262.3 LTBR NM_002342.1 NCR1 NM_004829.5 

IL2RA NM_000417.1 ITGA5 NM_002205.2 KLRF1 NM_016523.1 LTF NM_002343.2 NFATC1 NM_172389.1 

IL2RB NM_000878.2 ITGA6 NM_000210.1 KLRF2 NM_001190765.1 LY96 NM_015364.2 NFATC2 NM_012340.3 

IL2RG NM_000206.1 ITGAE NM_002208.4 KLRG1 NM_005810.3 MAF NM_005360.4 NFATC3 NM_004555.2 

IL3 NM_000588.3 ITGAL NM_002209.2 KLRG2 NM_198508.2 MALT1 NM_006785.2 NFIL3 NM_005384.2 

IL32 NM_001012633.1 ITGAM NM_000632.3 KLRK1 NM_007360.1 MAP4K1 NM_007181.3 NFKB1 NM_003998.2 

IL4 NM_000589.2 ITGAX NM_000887.3 LAG3 NM_002286.5 MAP4K2 NM_004579.2 NFKB2 NM_002502.2 

IL4R NM_000418.2 ITGB1 NM_033666.2 LAIR1 NM_002287.3 MAP4K4 NM_004834.3 NFKBIA NM_020529.1 

IL5 NM_000879.2 ITGB2 NM_000211.2 LAMP3 NM_014398.3 MAPK1 NM_138957.2 NFKBIZ NM_001005474.1 

IL6 NM_000600.1 ITLN1 NM_017625.2 LCK NM_005356.2 MAPK11 NM_002751.5 NLRP3 NM_001079821.2 

IL6R NM_000565.2 ITLN2 NM_080878.2 LCP2 NM_005565.3 MAPK14 NM_001315.1 NOD1 NM_006092.1 
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NOD2 NM_022162.1 PSMC2 NM_002803.3 SH2D1A NM_001114937.2 TCF7 NM_003202.2 TNFRSF4 NM_003327.2 

NOS2 NM_000625.4 PSMD7 NM_002811.3 SIGIRR NM_021805.2 TFRC NM_003234.1 TNFRSF8 NM_152942.2 

NOTCH1 NM_017617.3 PTAFR NM_000952.3 SKI NM_003036.2 TGFB1 NM_000660.3 TNFRSF9 NM_001561.4 

NOTCH2 NM_024408.3 PTGER4 NM_000958.2 SLAMF1 NM_003037.2 TGFBI NM_000358.2 TNFSF10 NM_003810.2 

NT5E NM_002526.2 PTGS2 NM_000963.1 SLAMF6 NM_001184714.1 TGFBR1 NM_004612.2 TNFSF11 NM_003701.2 

PAX5 NM_016734.1 PTK2 NM_005607.3 SLAMF7 NM_021181.3 TGFBR2 NM_001024847.1 TNFSF12 NM_003809.2 

PDCD1 NM_005018.1 PTPN2 NM_002828.2 SLC2A1 NM_006516.2 THY1 NM_006288.2 TNFSF13B NM_006573.4 

PDCD1LG2 NM_025239.3 PTPN22 NM_015967.4 SMAD3 NM_005902.3 TICAM1 NM_014261.1 TNFSF15 NM_001204344.1 

PDCD2 NM_144781.2 PTPN6 NM_002831.5 SMAD5 NM_005903.5 TIGIT NM_173799.2 TNFSF4 NM_003326.2 

PDGFB NM_033016.2 PTPRC_all 
(common 
probe) 

NM_080921.2 SOCS1 NM_003745.1 TIRAP NM_148910.2 TNFSF8 NM_001244.3 

PDGFRB NM_002609.3 CD45R0 NM_080921.3 SOCS3 NM_003955.3 TLR1 NM_003263.3 TOLLIP NM_019009.2 

PECAM1 NM_000442.3 CD45RA NM_002838.4 SPP1 NM_000582.2 TLR2 NM_003264.3 TP53 NM_000546.2 

PIGR NM_002644.2 CD45RB ENST00000367367.1 SRC NM_005417.3 TLR3 NM_003265.2 TRAF1 NM_005658.3 

PLA2G2A NM_000300.2 PYCARD NM_013258.3 STAT1 NM_007315.2 TLR4 NM_138554.2 TRAF2 NM_021138.3 

PLA2G2E NM_014589.1 RAF1 NM_002880.2 STAT2 NM_005419.2 TLR5 NM_003268.3 TRAF3 NM_145725.1 

PLAU NM_002658.2 RAG1 NM_000448.2 STAT3 NM_139276.2 TLR7 NM_016562.3 TRAF4 NM_004295.2 

PLAUR NM_001005376.1 RAG2 NM_000536.3 STAT4 NM_003151.2 TLR8 NM_016610.2 TRAF5 NM_004619.3 

PML NM_002675.3 RARRES3 NM_004585.3 STAT5A NM_003152.2 TLR9 NM_017442.2 TRAF6 NM_145803.1 

POU2F2 NM_002698.2 RELA NM_021975.2 STAT5B NM_012448.3 TMEM173 NM_198282.1 TYK2 NM_003331.3 

PPARG NM_015869.3 RELB NM_006509.2 STAT6 NM_003153.3 TNF NM_000594.2 UBE2L3 NM_198157.1 

PPBP NM_002704.2 RORC NM_001001523.1 SYK NM_003177.3 TNFAIP3 NM_006290.2 VCAM1 NM_001078.3 

PRDM1 NM_001198.3 RUNX1 NM_001754.4 TAGAP NM_054114.3 TNFAIP6 NM_007115.2 VTN NM_000638.3 

PRF1 NM_005041.3 S100A8 NM_002964.3 TAL1 NM_003189.2 TNFRSF10C NM_003841.3 XBP1 NM_005080.2 

PRKCD NM_006254.3 S100A9 NM_002965.2 TAP1 NM_000593.5 TNFRSF11A NM_003839.2 XCL1 NM_002995.1 

PSMB10 NM_002801.2 S1PR1 NM_001400.3 TAP2 NM_000544.3 TNFRSF13B NM_012452.2 XCR1 NM_005283.2 

PSMB5 NM_001130725.1 SELE NM_000450.2 TAPBP NM_003190.4 TNFRSF13C NM_052945.3 ZAP70 NM_001079.3 

PSMB7 NM_002799.2 SELL NR_029467.1 TBK1 NM_013254.2 TNFRSF14 NM_003820.2 ZBTB16 NM_006006.4 

PSMB8 NM_004159.4 SELPLG NM_003006.3 TBX21 NM_013351.1 TNFRSF17 NM_001192.2 ZEB1 NM_001128128.1 

PSMB9 NM_002800.4 SERPING1 NM_000062.2 TCF4 NM_003199.1 TNFRSF1B NM_001066.2 
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Internal gene references  

 
Official Symbol 

 
Accession 

ABCF1 NM_001090.2 

ALAS1 NM_000688.4 

EEF1G NM_001404.4 

G6PD NM_000402.2 

GAPDH NM_002046.3 

GUSB NM_000181.1 

HPRT1 NM_000194.1 

OAZ1 NM_004152.2 

POLR1B NM_019014.3 

POLR2A NM_000937.2 

PPIA NM_021130.2 

SDHA NM_004168.1 

TBP NM_001172085.1 

TUBB NM_178014.2 

RPL19 NM_000981.3 
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