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INTRODUCTION

Design of Experiment (DOE) has been known to liectfie for software configuration testing (Hoskins
D.S., 2005). Here, each component of the systemalled a “factor,” and each test case is called an
“experimental run.” An experimental run represemtgst case to comprehend the system’s componemtse
each component is represented by its valid numeiige or configuration (Chan, F.T.,). When the egstis
tested exhaustively, the “full factorial” designtbe experiment is used. However, when the systdarge and
the full factorial design is not desirable, theatftional factorial” design is used to reduce thpegxnental run
to a subset of the full factorial design. The fiawal factorial design is used with systems of ntienfactors;
conversely, systems with categorical factors camsetthis method for experiments (Montgomery, D2006).
The D-Optimality design, on the other hand, hashesed with systems, including categorical facttrseduce
the experimental run by selecting a subset of frors the full factorial. Instead of a purely rand@ubsets
selection of experimental runs from the full facabrdesign, the use of the D-Optimality design roeithin
experiments leads to the production of experimembas that are closer to full factorial design (Kas, D.S.,
2005).

Recently, an alternative design based on Covekimgy (CA) has been used for the approximationudif f
factorial design (Hoskins, D.S., 2005). Compareth\i-Optimality, empirical evidence demonstratest t6A
produces better results than the full factorialragimnation experiments (Hoskins, D.S., 2005; HoskiD.S.,
2004). In such a design, each t-set of factorsystem components) is covered by a set of expetahams (at
least once) to form a CA. Motivated by the effeetiess of CAs, a number of recent studies have éoloois the
construction of CAs for configuration testing usingay strategies, where t signifies the interacstrength of
the component. These strategies aim to optimatlyce the number of test cases (i.e., the numbeved in the
CA) by ensuring that each test case greedily cowersequired t-interactions (or t-set of factas)east once
for a typically large space of possible test valu@snsidering CA construction as an NP hard contjmurtal
optimization problem (Yilmaz, C., 2004) many stoaés based on Al have been developed in the litexat
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including Genetic Algorithm (GA) (Chen, X., 2009hiBa, T., 2010), Ant Colony (ACA) (Chen, X., 2009;
Wang, Z.Y., 2008; Cohen, M.B., 2008), Particle Swa&ptimization (PSO) (Ahmed, B.S., 2011, Ahmed,.B.S
2012) and more. Several Al based strategies anglbeviewed in this article.

Literature:
This section of the article presents an overviéprevious works on related field that provide trezessary
background for the purpose of this review.

A. Combinatorial Testing:

Today, software systems are built using multipenponents. These components often have interactions
amongst them to execute a system’s function. Ofsgstem faults are caused by unexpected interaction
amongst these components (Williams, A.W. and RrbbErt, 2001). Exhaustive testing, i.e. testingoasible
combinations is reasonable for a small systemhmuhtimber of combinations grow larger with largestems.

Exhaustive testing is impossible for large and plex systems due to factors including time, cost] a
resource constraints. In that case, one approathisago guarantee that we test all pairs of intéwas or all n-
way interactions (Coheet al, 2003). For this reason, there is a need for tlligent sampling strategy that can
select a subset of inputs as test data from amentig large search space. Recently, the widesprsaaf t-way
strategy (where t indicates the interaction strienbas provided a dramatic solution to such a gmbiDalalet
al. (1999) present empirical results that shows #ienpse interactions testing finds large numbeeeristing
faults in a software system. Buatral. (1998) provides more empirical results to supfueteffectiveness of this
type of test coverage. If restricted to pairwisearage, it is not guaranteed that faults that oedtlr three or
four way interactions can be found (Cohen, M.BQ320

Many Al based search strategies (e.g. based oatigemgorithm (GA), Ant Colony algorithm (ACA),
Particle Swarm Optimization, as well as Harmonyr8eaAlgorithm) have been developed to optimize CA
construction.

B. Covering Array:

Covering arrays (CA) are combinatorial designsulsa "pairwise testing" or "t-wise testing" of fwvare
system. Since exhaustive testing is impracticahost large systems, CA has been proposed and eailyiri
studied for application to software interactiontiteg to find errors coming from all t-wise (or sriea)
interactions of parameter values, whilst reducheynumber of tests needed to be carried out (HsskirS. et
al., 2005; Burr, K. and W. Young, 1998). CA has bésmoduced to complement Orthogonal Array (OA)
limitations. Since, OA requires the component valte be uniform; it has been shown to be too iEste
(Wang, Z.Y..et al., 2008). CA emerged to overcome this limitationQk (Shiba, T.get al., 2004). Compared
with other methods, empirical evidence demonstrdted CA produces better results than full factoria
approximation experiments (McCaffrey, 2010; Stharkkr 1995). These strategies aim to optimally oedilne
number of test cases (i.e., the number of rowhén@A) by ensuring that each test case greedilgrsothe
required t-interactions (or t-set of factors) atdeonce for a typically large space of possibdéealues.

A covering array, CA. (N; t, k, v), is an N xk array for which every N x t sub array has the prgpthat
everyt-tuple appears as a row at leasimes. Herd is the strengthk is the number of factors (degree), and
the number of symbols for each factor (order). Whénl, every t-way interaction is covered at leaste; this
is the case of most interest, and we often dmithen it is 1. The covering array is optimal ifciintains the
minimum possible number of rows. The size of such\aering array is the covering array number:

CAN (t, k, v)

C. Covering Array NP Optimization Problem:

CA construction has been considered as NP hardoam@mtional optimization problem in determining
covering array number (Yilmaz, C., 2004; Torreselerz, J., E. Rodriguez-Tello, 2010). Some other
applications related to the CA construction probleiee in experimental design where it is absojutelcessary
to test the interaction of all combinations of raraeters, and hence that all such selections arered by
columns of the array (Chateauneuf, M.A. 2002).

Addressing the problem of finding the coveringagrnumber in reasonable time has been the focus of
much research. Amongst the approximate methodshtnat been developed for constructing coveringyarra
are recursive methods, algebraic methods, greedhati® and meta-heuristic methods. More and more
researches are focused on developing Al techniduekis literature. This is because Al-based stiate
naturally excel in dealing with combinatorial opi@ation problem and outperformed other strategiddased
strategies for constructing CA include Genetic Aitjon (GA), Ant Colony (ACA), Simulated AnnealinGA),
Particle Swarm Optimization (PSO), Harmony SeartdgoAthm (HS) and more.

Al Strategies In Ca Construction:
A. Genetic Algorithm for Pairwise Test Sets (GAPTS)[8]
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All the GA based strategies rely on chromosomedividuals with fithess value which indicates the
effectiveness in solving the problem. Chromosowi#is high fithess values used to produce offspsotytions
which have the same or increased fithess valuentba#ly, the fittest chromosomes will dominate the
population when the low fitness level chromosonresraplaced by the offspring.

McCaffrey (2010) proposed Genetic Algorithm forirRése Test Sets (GAPTS) as a possible solution for
generating pairwise test sets (Ahmed, B.S., 20GAPTS is tested against seven benchmark inputaedsthe
results are compared with other pairwise test gaioer algorithms. GAPTS uses the population siz200fThis
size is relatively small compared to other genatigorithms. GAPTS’s effectiveness did not increasth
larger population size with respect to the finahpie test set size.

GAPTS algorithm uses roulette wheel method incsiglg the individuals as basis of offspring prodiuct
Being the common selection method in GA, roulettee@l selects individuals for GAPTS by the ratiothod
fitness value to the sum of all fitness value i@ gopulation. For crossover, GAPTS uses singletpoossover
method. To ensure each crossover operation produeesalid chromosome-solutions, GAPTS ensures the
crossover point location fell on the test vectoutmbary. A fixed mutation rate of 0.001 used in GAPEach
gene is independently mutated to new legal gengevalth probability equals to mutation rate.
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Fig. 1: Principal GAPTS Data Structure.

GAPTS uses two mechanisms to address the populstiamgnation effect. Form of elitism used to ensure
chromosomes with highest fithess values are imnitore removal in each generation. A form of immidgpat
used to randomly generate chromosomes to be idséoteevery 1000 generation. GAPTS algorithm is
implemented in C# programming language by usindipiudd results as guidelines. McCaffery’'s studyufoon
investigating effectiveness of GAPTS with respexttdst set size. GAPTS test results then companeld a
analyzed with results from other pairwise testgeateration tools. Promisingly, GAPTS produce combplar or
better results than other tools in 39 out of 4Qainses. However GAPTS algorithm required more gsier
time than other tools. GAPTS took significant time the input size increased. McCaffrey mentionedisn
study that time required by different algorithmsi@ a significant factor in most software testsognarios.

B. Ant Colony System Based Variable Strength InteractiTesting (ACS — VSIT)Ghen, X., 200R

The VSIT proposed by Cheat al. is based on Ant Colony System (ACS), a promisiagant of Ant
Colony Optimization algorithm (ACO). ACS has adwageg over other variants of ACO because its edge
selection rule which provides the direct way to baance between new edge exploration and accusdulat
knowledge about the problem. Besides that, the ajleipdating rule is applied only to the best sohut
available. ACS is also capable of applying locaneimone updating rule whilst ants construct a swiut
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Fig. 2: Graph representation of solution space.
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Figure 2 shows the solution space of the ACS tsapbnerate a single test. ACS simulate the beha¥io
artificial ants crawling on this graph. Pheromos@ivariable associated with each edge, readadlenadified
by those artificial ants. Cheat al. approach adopts one-test-a-time strategy. Thasegty initializes and empty
the test suite at first, then continues to geneadtst, removes the interaction covered by theates adds it to
the test suite. The loop is terminated and tes¢ saturned when all the interactions are covered.

This test suite generation can be summarizedllsvioA set of ants are initially put on a node wheach
ant repeatedly apply the edge selection rule tddbai solution. Both the heuristic information are t
pheromone information will guide the rule. Localdagting rule will be applied by the ants to modifet
pheromone amount on the visited edges. Pheromowoerdns modified again once all ants have builirthe
solutions. This will be done by applying global agidg rule. In Chen’s algorithm, heuristic values decided
by considering both the number of interactions @sdorresponding strength. One-test-a-time styateas a
characteristic that, earlier generated tests hawe imteraction coverage. That affects the intéwactoverage
ability of tests which are generated later. Cheal. adopts tests minimization algorithm to merge safthe
tests without compromising the interaction coverage therefore reduce the final test suite size.

The experimental run of the proposed algorithndésigned in Java. The inputs are obtained from a
previous research by Cohen, which is based on &ieuil Annealing (SA). The best results out of 20
experimental runs then compared with Cohen’s reanlt some other greedy algorithms such as Density,
ParaOrder and tools such as PICT and TVG. Cheslsltseeanalyze thoroughly in comparison with allsde
previous research results. ACS based VSIT neaslgmbéle Cohen’s SA approach results and outperfothreed
rest of the methods and tools. Although, Cohen’thottis proven to yield better results of consingtCA in
most of the cases, ACS managed to produce singifaldts with Cohen’s method. Cheinal. even records the
time taken for ACS VSIT to generate those CA, whicth Chen’s research in between Cohen’s algorithch a
the other algorithms and tools that have been aadlin terms of performance.

C. Particle Swarm Test Generator(PSTG) (Ahmed, B.212; Ahmed, B.S., 2012):

PSTG is a Particle Swarm Optimization (PSO) bastestegy (Ahmedtt al., 2012). PSO simulates the
swarm behavior of flocks of birds or schools ohfigust like previous strategy, PSO also includeslland
global searches to manipulate candidate solutieash candidate solutions are known as particletimavhole
population is called as a swarm. By recording imfation about its movement, each particle worksiengearch
space to find a better solution. This informatismélated to particle of interest, which includetoeity, current
position, personal best, local best and global. BSTG is composed of two main algorithms; a Cojaadm
Generator Algorithm and a Test Suite Generator Allgm.

PSTG combination generator algorithm generatesptrameters combinations and the values for each
parameter combination. Parameters generated imbivhere 0 indicates exclusion and 1 indicateusion of
the particular parameter. Interaction elementgyarerated accordingly by using those parameter iatibns.
This algorithm then store generated interactiomelat in an indexed list. Index of each group ofititeraction
elements is then recorded in indexing record tdifaie searching.

PSTG test suite generator algorithm adopts thaetis version of PSO. Swarm search space initchkzea
D-dimensional vector, where each dimension reptssgiparameter, and contains integer numbers bet@ee
and number of values of the ith parameter. PSTG ialtializes the velocity of each particle. Duriiigration,
particle’s velocity is updated to its current pimsit Velocity will be rounded to the nearest integg PSTG in
case where non-integer velocities are produced GP&Iopts simplest topology as particles in a swaatrix
array choose the neighbors next to each other.

Ahmedet al. compared their experimental results with exis#dpased strategies and computational based
strategy. By analyzing results from their work, w&n observe GA and ACA perform slightly better than
AETG, mAETG and PSTG. Due to large search spacegiperformed all other strategies in most casheyT
extend their experiment with PSTG by comparing weitmputational based strategies and tools sucR@&)
WHITCH, Jenny, TConfig and TVG. PSTG outperformedgh computational strategies in most of the
configurations. Even when PSTG is not at its big, test size still fall within the acceptable ran®STG is
proven to be competitive with other strategies osthof the cases.

D. Enhanced leader PSO (ELPSORezaee Jordehi, A., 2015):

ELPSO is another variant of PSO designed for sglvjlobal optimization problem. All PSO based
strategies suffers from premature convergence. W8wning complex optimization problem, these PSO
strategies often get trapped in local optima. Teakwexploration capability of PSO algorithms cayzedlems
in optimization, especially multimodal problems.

ELPSO is developed to have a strong explorative exploitative capability. In conventional PSO, the
particles may converge prematurely without explprthe search space because they are attractedatonsw
leader. Also in PSO, there is no mechanism to jagpiut from local optima, if the particle is traplpi@ local
optimum. ELPSO is designed to solve this two commmblems. Main characteristic of ELPSO is to ermean
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the swarm leader in every iteration of search. LP&O, Swarm leader will undergo a five-staged ssxive
mutation in each iteration. At the end of each mioitea new swarm leader will replace current swaeader if it
has higher fitness value than the current leadsg. fremature convergence problem is expected toitigated
since different portion of search space is expldeefind the best swarm leader in each iteratiorsuccessive
mutation, the swarm leader is only replaced bylibter leader. This ensures the whole swarm isciéd
towards the region that produced the swarm leadtértive higher fitness. This region has more gobjgdive
values and leads to achievement of more qualitytisol.

Five-staged mutations in ELPSO are classifiedvim groups; short jump mutation and long jump motati
Whilst short jump mutations help in avoiding prearatconvergence, high jump mutations ensure thigcjesr
are not trapped in local optima. These long jumpations play role as efficient jump-out mechanison f
particles to jump out of the local optima. In ELP,S@utations in stage 1, 2 and 3 are known as langpj
mutations to increase the particles capabilityutag out of local optimum after stagnation.

In Jordehi’'s experiment, ELPSO is validated by panmg with other meta-heuristic optimization
algorithms such as conventional PSO, firefly swaptimization (FSO), gravitational search algantfGSA),
brainstorm optimization (BSOA), artificial bee colp (ABC), HS and GA. The results, approve the
outperformance of ELPSO in terms of accuracy, coyesgce rate and scalability.

Conclusion:

All the reviewed strategies show the effectivenefsal based strategies in CA construction. McCaffe
GAPTS is proven to produce better or comparableltsethan other computational based tools in 390640
instances. Whilst, ACS-VSIT produces comparablaltesvith Cohen’s SA [21] algorithm and outperfomme
computational based tools as similar to GAPTS. P$df@parable results with other Al based algorittamd
once again produces better results than compugdti@ased tools.

Based on these, we can conclude that Al basetkgiea outperformed computational based tools and
strategies in dealing with combinatorial optimipatiproblem. Al based strategies have been proveretisr
solutions in finding optimized CA number in reasblestime compared to computational based strategies

However, existing works prove that, major drawtsaokthese algorithms are: long generation timetdue
repeated loop that try to find the best and neaimap solution and these algorithms only focus eguence-
less CA.

This review will be helpful for researchers to ideror manipulate new variant from existing aritic
intelligence strategies to overcome the commortéitiains and drawbacks in generating covering arrays
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