
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800

Chapter

Deep Learning for Subtyping and
Prediction of Diseases: Long-Short
Term Memory
Hayrettin Okut

Abstract

The long short-term memory neural network (LSTM) is a type of recurrent
neural network (RNN). During the training of RNN architecture, sequential infor-
mation is used and travels through the neural network from input vector to the
output neurons, while the error is calculated and propagated back through the
network to update the network parameters. Information in these networks incor-
porates loops into the hidden layer. Loops allow information to flow multi-
directionally so that the hidden state signifies past information held at a given time
step. Consequently, the output is dependent on the previous predictions which are
already known. However, RNNs have limited capacity to bridge more than a certain
number of steps. Mainly this is due to the vanishing of gradients which causes the
predictions to capture the short-term dependencies as information from earlier
steps decays. As more layers in RNN containing activation functions are added, the
gradient of the loss function approaches zero. The LSTM neural networks (LSTM-
ANNs) enable learning long-term dependencies. LSTM introduces a memory unit
and gate mechanism to enable capture of the long dependencies in a sequence.
Therefore, LSTM networks can selectively remember or forget information and are
capable of learn thousands timesteps by structures called cell states and three gates.

Keywords: deep learning, recurrent neural networks, long-short term memory

1. Introduction

Artificial neural networks (ANNs) are a type of the computing system that
mimics and simulates the function of the human brain to analyze and process the
complex data in an adaptive approach. They are capable of implementing massively
parallel computations for mapping, function approximation, classification, and
pattern recognition processing that require less formal statistical training. More-
over, ANNs have the ability to identify very high complex nonlinear relationships
between outcome (dependent) and predictor (independent) variables using multi-
ple training algorithms [1, 2]. Generally speaking, in terms of network architec-
tures, ANNs tend be classified into two different classes, feedforward and recurrent
ANNs, each may have several subclasses.

Feedforward is a widely used ANN paradigm for, classification, function
approximation, mapping and pattern recognition. Each layer is fully connected to
neurons in another layer with no connection between neurons in the same layer.

1

As the name suggests, information is fed in a forward direction from the input to
the output layer through one or more hidden layers. MLP feed forward with one
hidden layer can virtually predict any linear or non-linear model to any degree of
accuracy, assuming that you have a appropriate number of neurons in hidden layer
and an appropriate amount of data. Adding more neurons in the hidden layers to an
ANN architecture gives the model the flexibility of fitting extremely complex
nonlinear functions. This also holds true in classification modeling in approximating
any nonlinear decision boundary with great accuracy [2].

Recurrent neural networks (RNNs) emerged as an operative and scalable ANN
model for several learning problems associated with sequential data. Information in
these networks incorporate loops into the hidden layer. These loops allow informa-
tion to flow multi-directionally so that the hidden state signifies past information
held at a given time step. Thus, these network types have an infinite dynamic
response to sequential data. Many applications, such as Apple’s Siri and Google’s
voice search, use RNN.

The most popular way to train a neural network is by backpropagation (BP).
This method can be used with either feedforward or recurrent networks. BP
involves working backward through each timestep to calculate prediction errors
and estimate a gradient, which in turn is used to update the weights in the network.
For example, to enable the long sequences found in RNNs, multiple timesteps are
conducted that unrolls the network, adds new layers, and recalculates the predic-
tion error, resulting in a very deep network.

However, standard and deep RNN neural networks may suffer from vanishing
or exploding gradients problems. As more layers in RNN containing activation
functions are added, the gradient of the loss function approaches zero. As more
layers of activating functions are added, the gradient loss function may approach
zero (vanish), leaving the functions unchanged. This stops further training and
ends the procedure prematurely. As such, parameters capture only short-term
dependencies, while information from earlier time steps may be forgotten. Thus,
the model converges on a poor solution. Because error gradients can be unstable, the
reverse issue, exploding gradients may occur. This causes errors to grow drastically
within each time step (MATLAB, 2020b). Therefore, backpropagation may be
limited by the number of timesteps.

Long Short-Term Memory (LSTM) networks address the issue of vanishing/
exploding gradients and was first introduced by [3]. In addition to the hidden state
in RNN, an LSTM block includes memory cells (that store previous information)
and introduces a series of gates, called input, output, and forget gates. These gates
allow for additional adjustments (to account for nonlinearity) and prevents errors
from vanishing or exploding. The result is a more accurate predicted outcome, the
solution does not stop prematurely, nor is previous information lost [4].

Practical applications of LSTM have been published in medical journals. For
example, studies [5–14] used different variants of RNN for classification and
prediction purposes from medical records. Important, LSTM does not have any
assumption about elapsed time measures can be utilized to subtype patients or
diseases. In one such study, LSTM was used to make risk predictions of disease
progression for patients with Parkinson’s by leveraging longitudinal medical records
with irregular time intervals [15].

The purpose of this chapter is to introduce Long Short-Term Memory (LSTM)
networks. This chapter begins with introduction of multilayer feedforward archi-
tectures. The core characteristic of an RNN and vanishing of the gradient will be
explained briefly. Next, the LSTM neural network, optimization of network
parameters, and the methodology for avoiding the vanishing gradient problem will
be covered, respectively. The chapter ends with a MATLAB example for LSTM.

2

Deep Learning Applications

2. Artificial neural networks and multilayer neural network

Artificial Neural Networks (ANNs) are powerful computing techniques that
mimic functions of the human brain to solve complex problems arising from big and
messy data. As a machine learning method, ANNs can act as universal approximators
of complex functions capable of capturing nonlinear relationships between inputs and
outcomes. They adaptively learn functional structures by simultaneously utilizing a
series of nonlinear and linear activation functions. ANNs offer several advantages.
They require less formal statistical training, have the ability to detect all possible
interactions between input variables, and include training algorithms adapted from
backpropagation algorithms to improve the predictive ability of the model [2].

Feed forward multilayer perceptron (Figure 1) is the most used in ANN architec-
tures. Uses include function approximation, classification, and pattern recognition.
Similar to information processing within the human brain, connections are formed
from successive layers. They are fully connected because neurons in each layer are
connected to the neurons from the previous and the subsequent layer through adapt-
able synaptic network parameters. The first layer of multi-layer ANN is called the
input layer (or left-most layer) that accepts the training data from sources external to
the network. The last layer (or rightmost layer) is called the output layer that contains
output units of the network. Depending on prediction or classification, the number of
neurons in the output layer may consist of one or more neurons. The layer(s)
between input and output layers are called hidden layer(s). Depending on the archi-
tecture multiple hidden layers can be placed between input and output layers.

Training occurs at the neuronal level in the hidden and output layers by
updating synaptic strengths, eliminating some, and building new synapses. The
central idea is to distribute the error function across the hidden layers,
corresponding to their effect on the output. Figure 1 demonstrates the architecture

Figure 1.
(adapted from Okut, 2016). Artificial neural network design with 4 inputs (pi). Each input is connected to up

to 3 neurons via coefficients w
lð Þ
kj (l denotes layer; j denotes neuron; k denotes input variable). Each hidden and

output neuron has a bias parameter blj . Here P = inputs, IW = weights from input to hidden layer (12 weights),

LW = weights from hidden to output layer (3 weights), b1 = Hidden layer biases (3 biases), b2 = Output layer
biases (1 bias), n1 = IWP + b1 is the weighted summation of the first layer, a1 = f(n1) is output of hidden layer,
n2 = LWa1 + b 2 is weighted summation of the second layer and t̂ = a2 = f(n2) is the predicted value of the
network. The total number of parameters for this ANN is 12 + 3 + 3 + 1 = 19.

3

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

of a simple feedforward MLP where P identifies the input layer, next one or more
hidden layers, which is followed by the output layer containing the fitted values.
The feed forward MLP networks is evaluated in two stages. First, in the
feedforward stage information comes from the left and each unit evaluates its
activation function f. The results (output) are transmitted to the units connected to
the right. The second stage involves the backpropagation (BP) step and is used for
training the neural network using gradient descent algorithm in which the network
parameters are moved along the negative of the gradient of the performance func-
tion The process consists of running the whole network backward and adjusting the
weights (and error) in the hidden layer. The feedforward and backward steps are
repeated several times, called epochs. The algorithm stops when the value of the loss
(error) function has become sufficiently small.

3. Recurrent neural networks

Because the two stages, outlined in Figure 1 above, are used in all neural net-
works, we can extend MLP feedforward neural networks for use in sequential data
or time series data. To do so, we must address time sequences. Recurrent neural
networks (RNNs) address this issue by conducting multiple time steps that unrolls
the network, adds new layers, and recalculates the prediction error, resulting in a
very deep network. First, the connections between nodes in the hidden layer(s)
form a directed graph along a temporal sequence allowing information to persist.
Through such a mechanism, the concept of time creates the RNNs memory. Here,
the architecture receives information from multiple previous layers of the network.

Figure 2 outlines the hidden layer for RNN and demonstrates the nonlinear
function of the previous layers and the current input (p). Here, the hyperbolic
tangent activation function is used to generate the hidden state. The model has
memory since the bias term is based on the “past”. As a consequence, the outputs
from the previous step are fed as input to the current step. Another way to think
about RNNs is that a recurrent neural network has multiple copies of the same
network, each passing a message to a successor (Figure 3). Thus, the output value
of the last time point is transmitted back to the neural network, so that the param-
eter estimation (weight calculation) of each time point is related to the content of
the previous time point.

3.1 Training recurrent neural networks

Similar to feedforward MLP networks, RNNs have two stages, a forward and a
backward stage. Each works together during the training of the network. However,
structures and calculation patterns differ. Let us first consider the forward pass.

Stage 1: Forward pass.
The forward pass will be summarized into 5 steps:

1.Summation step. In this step two different source of information are combined
before nonlinear activation function will be take place. The sources are the

values of weighted input W pð Þpt

� �

and weighted previous hidden state with

bias ht�1W
hð Þ þ b hð Þ

� �

. Here, pt and W pð Þ are input vector and the input

weight matrix, ht-1 is value of previous hidden state, W hð Þ is weight matrix of
hidden state pertains the previous hidden state with the current one and b(h).
Is bias. Since the previous hidden state and current input are measured as

4

Deep Learning Applications

vectors, each element in the vector is placed in a different orthogonal
dimension

ah tð Þ ¼ W pð Þpt þ ht�1W
hð Þ þ b hð Þ

� �

(1)

Figure 3.
An unrolled RNN with a hidden state carries pertinent information from one input item in the series to others.
The blue and red arrows in the figure are indicating the forward and the backward pass of the network,
respectively. With backward pass, we sum up the contributions of each time step to the gradient. In other words,
because W is used in every step up to the output, we need to backpropagate gradients from t = 4 through the
network all the way to t = 0.

Figure 2.

A typical RNN that has a hyperbolic tangent activation function e xð Þ�e� xð Þ

e xð Þþe� xð Þ

� �

to generate the hidden state. Because of

the hidden state RNNs have a “memory” that information has been calculated so far is captured. The information

in hidden state passed further to a second activation function 1
1þe� xð Þ

� �

to generate the predicted (output) values. In

RNNs, the weight (W) calculation of each time point of the network model is related to the content of the previous
time point. We can process a sequence of vectors of inputs (p) by applying a recurrence formula at every time step.

5

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

The weight of the previous hidden state and current input are placed in a
trainable weight matrix. Element-wise multiplication of the previous hidden

state vector with the hidden state weights (ht�1W
hð ÞÞ and element wise

multiplication of the current input vector with the current input weights

W pð Þpt

� �

produces the parameterized of state vector and input vector.

2.Hyperbolic tangent activation function is applied to the summed of the two

parameterized vectors W pð Þpt þ ht�1W
hð Þ þ b hð Þ

� �

to push the output

between �1 and 1 (Figure 2).

f ah tð Þð Þ ¼ ht ¼
e W pð Þptþht�1W

hð Þþb hð Þð Þ � e� W pð Þptþht�1Wþb hð Þð Þ

e W pð Þptþht�1W
hð Þþb hð Þð Þ þ e� W pð Þptþht�1Wþb hð Þð Þ

(2)

3.The network input to the output unit at time t with element-wise multiplication

of output weights and with updated (current) hidden state htW
yð Þ

� �

.

Therefore, the value before a softmax activation function takes place is ao tð Þ ¼

htW
yð Þ þ b yð Þ. HereW yð Þ and b yð Þ are the weight and bias of the output layer.

4.The output of the network at time t is calculated (the activation function
applied to the output layer depends on the type of target (dependent) variable
and the values coming from the hidden units. Again, a second activation
function (mostly sigmoid) is applied to the value generated by the hidden
node. The predicted value of a RNN block with sigmoid:

ŷt ¼
1

1þ e W yð Þhtþb yð Þ
� � (3)

During the training of the forward pass of the RNN, the network outputs
predicted value (ŷi, i ¼ t� 1, t, tþ 1, … ::, tþ sÞ at each time step. We can
image the unfold (unroll) of RNN given in Figure 3. That is, for each time
step, an RNN can be imaged as multiple copies of the same network for the
complete sequence. For example, if the sequence is a sentence of four words
as; “I have kidney problem” then the RNN would be unrolled into a 4-layer
neural network, one layer for each word. The output given in (3) is used to
train the network using gradient descent after calculation of error in (4).

5.Then the error (loss function, cost function) at each time step is calculated to
start the “backward pass”:

Et yt, ŷt
� �

¼ �yt log ŷtÞ (4)

Here y and ŷt are actual and predicted outcomes, respectively. After calculation
of the error at each time step, this calculated error is injected backwards into the
network to update the network weights at each epoch (iteration). As there are many
training algorithms based on some modification of standard backpropagation, the
chosen error measure can be different and depends on the selected algorithm. For
example, the error Et y

� �

¼ Et yt, ŷt
� �

given in (4), has an additional term, Et(w), in
the Bayesian regularized neural networks (BRANN) training algorithm that penal-
izes large weights in anticipation of achieving smoother mapping. Both Et(y),
Et(w), have a coefficient as β and α, respectively (also referred to as regularization
parameters or hyper-parameters) that need to be estimated adaptively [1, 16].

6

Deep Learning Applications

Stage 2: Backward Pass.
After the forward pass of RNN, the calculated error (loss function, cost func-

tion) at each time step is injected backwards into the network to update the network
weights at each iteration. The idea of RNN unfolding in Figure 3 takes place the
bigger part in the way RNNs are implemented for the backward pass. Like standard
backpropagation in feed forward MLP, the backward pass consists of a repeated
application of the chain rule. For this reason, the type of backpropagation algorithm
used for an RNN to update the network parameters is called backpropagation
through time (BPTT). In BPTT, the RNN network is unfolded in time to construct a
feed forward MLP neural network. Then, the generalized delta rule is applied to
update the weights W(p), W(h) and W(y) and biases b(h) and b(y). Remember, the
goal with backpropagation is minimizing the gradients of error with respect to the
network parameter space (W(p), W(h) and W(y) and biases b(h) and b(y)) and then
updates the parameters using Stochastic Gradient Descent. The following equation
is used to update the parameters for minimizing the error function:

W t ¼ W t�1 � a
∂E

∂W
:

Here, a is learning rate and ∂E
∂W is the derivative of the error function with respect

to parameters space. The same is applied to all weights and biases on the networks.
The error each time step is

E0 y, ŷð Þ ¼ �ylog ŷ

The total error is calculated by the summation of the error from all time steps as:

E ¼
X

t

� yt log ŷt (5)

The value of gradients ∂E
∂W at each time step is calculated as (the same rule is

applied to all parameters on the network):

∂E

∂W
¼
X

t

∂Et

∂W
(6)

To calculate the error gradient given in Eq. (6):

∂Et

∂W
¼

∂Et

∂ ŷt

∂ ŷt
∂ht

∂ht
∂ht�1

∂ht�1

∂ht�2

∂ht�2

∂ht�3
… … … … :

∂h0
∂W.

To calculate the overall error gradient, the chain rule of differentiation given in
(7) is used.

∂E

∂W
¼
X

t

∂Et

∂ ŷt

∂ ŷt
∂ht

∂ht
∂ht�1

∂ht�1

∂ht�2

∂ht�2

∂ht�3
… … … … :

∂h0
∂W

(7)

Then the network weights can be updated as follow:

W
hð Þ
tþ1 ¼ W

hð Þ
t þ a

∂E

∂W hð Þ

W
pð Þ
tþ1 ¼ W

pð Þ
t þ a

∂E

∂W pð Þ

7

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

W
yð Þ

tþ1 ¼ W
yð Þ

t þ a
∂E

∂W yð Þ

Note that, as given in (2), the current state (ht) = tanh W pð Þpt þ ht�1W
hð Þ þ b hð Þ

� �

depends on the quantity of the previous state (ht-1) and the other parameters.

Therefore, the differentiation of ℎt and ℎj (here j = 0, 1, … ., t-1) given in (7) is a
derivative of a hidden state that stores memory at time t.

The Jacobians of any time
∂hj
∂hj�1

� �

and for the entire time will be:

∂hj
∂hj�1

¼
∂ht
∂ht�1

∂ht�1

∂ht�2

∂ht�2

∂ht�3
… … :

∂hjþ1

∂hj
¼
Y

t

j¼jþ1

∂hj
∂hj�1

(8)

while the Jacobian matrix for hidden state is given by:

∂hj
∂hj�1

¼
∂hj

∂hj�1,1
,

∂hj
∂hj�1,2

…
∂hj

∂hj�1,s

� �

¼

∂hj,1
∂hj�1,1

⋯
∂hj,1
∂hj�1,s

⋮ ⋱ ⋮

∂hj,s
∂hj�1,1

⋯
∂hj,s
∂hj�1,s

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(9)

Putting the Eqs. (7) and (8) together, we have the following relationship:

∂E

∂W
¼
X

t

X

j

∂Et

∂yt

∂yt
∂ht

Y

t

j¼jþ1

∂hj
∂hj�1

 !

∂hj
∂W

: (10)

In other words, because the network parameters are used in every step up to the
output, we need to backpropagate gradients from last time step (t = t) through the

network all the way to t = 0. The Jacobians in (10),
∂hj

∂hj�1

� �

, demonstrates the eigen

decomposition given by W ið ÞTdiag f 0 hj�1

� �� �

, where the eigenvalues and eigenvec-

tors are generated. Here the W ið ÞT is the transpose of the network parameters
matrix. Consequently, if the largest eigenvalue is greater or smaller than 1, the RNN
suffers from vanishing or exploding gradient problems (see Figure 3).

4. Long short-term memory

As mentioned before, the output from RNNs is dependent on its previous state
or previous N time steps circumstances. Conventional RNN face difficulty in learn-
ing and maintaining long-range dependencies. Imagine the unfolding RNN given in
Figure 3. Each time step requires a new copy of the network. With large RNNs,

thousands, even millions of weights are needed to be updated. In other word,
∂hj
∂hj�1

is

a chain rule itself. For Figure 3, for example, the derivative of ∂h4
∂h3

¼ ∂h4
∂h3

∂h3
∂h2

∂h2
∂h1

∂h1
∂h0

.

Imagine an unrolling the RNN a thousand times, in which every activation of the
neurons inside the network are replicated thousands of times. This means, espe-
cially for larger networks, that thousands or millions of weights are needed. As
Jacobian matrix will play a role to update the weights, the values of the Jacobian
matrix will range between �1, 1 if tanh activation function is applied to the

f ah tð Þð Þ ¼ ht ¼ tanh W yð Þht þ b yð Þ
� �

given in (2). It can be easily imagined that the

8

Deep Learning Applications

derivatives of tanh (or sigmoid) activation function would be 0 at the end. Zero
gradients drive other gradients in previous layers towards 0. Thus, with small
values in the Jacobian matrix and multiple matrix multiplications (t-j, in particular)
the gradient values will be shrunk exponentially fast, eventually vanishing
completely after a few time steps. As a result, the RNN ends up not learning long-
range dependencies. As in RNNs, the vanishing gradients problem will be an
important issue for the deep feedforward MLP when multiple hidden layers (mul-
tiple neurons within each) are placed between input and output layers.

The long short-term memory networks (LSTMs) are a special type of RNN that
can overcome the vanishing gradient problem and can learn long-term dependen-
cies. LSTM introduces a memory unit and a gate mechanism to enable capture of
the long dependencies in a sequence. The term “long short-term memory” origi-
nates from the following intuition. Simple RNN networks have long-term memory
in the form of weights. The weights change gradually during the training of the
network, encoding general knowledge about the training data. They also have short-
term memory in the form of ephemeral activations, which flows from each node to
successive nodes [17, 18].

4.1 The architecture of LSTM

The neural network architecture for an LSTM block given in Figure 4 demon-
strates that the LSTM network extends RNN’s memory and can selectively remem-
ber or forget information by structures called cell states and three gates. Thus, in
addition to a hidden state in RNN, an LSTM block typically has four more layers.
These layers are called the cell state (Ct), an input gate (it), an output gate (Ot), and
a forget gate (ft). Each layer interacts with each other in a very special way to
generate information from the training data.

Figure 4.
Illustration of long short-term memory block structure. The operator “⨀ ” denotes the element-wise
multiplication. The Ct-1, Ct, ht and ht are previous cell state, current cell state, current hidden state and
previous hidden state, respectively. The ft; it; ot are the values of the forget, input and output gates, respectively.

The ~Ct is the candidate value for the cell state,W
(f), W(i), W(c), W(o) are weight matrices consist of forget gate,

input gate, cell state and output gate weights, and b(f), b(i), b(c), and b(o) are bias vectors associated with them.

9

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

A block diagram of LSTM at any timestamp is depicted in Figure 4. This block is
a recurrently connected subnet that contains the same cell state and three gates
structure. The pt, ht�1, and Ct�1 correspond to the input of the current time step,
the hidden output from the previous LSTM unit, and the cell state (memory) of the
previous unit, respectively. The information from the previous LSTM unit is com-
bined with current input to generate a newly predicted value. The LSTM block is
mainly divided into three gates: forget (blue), input-update (green), and output
(red). Each of these gates is connected to the cell state to provide the necessary
information that flows from the current time step to the next.

A sigmoid activation function 1
1þe� xð Þ

� �

is implemented in the forget gate. For the

input and output gates, however, a combination of sigmoid and hyperbolic tangent-

tanh- e xð Þ�e� xð Þ

e xð Þþe� xð Þ

� �

are used to provide the necessary information to the cell state. The

information generated by the blocks flow through the cell state from one block to
another as the chain of repeating components of the LSTM neural network holds.
Details about cell state and each layer are given in different subtitles.

4.1.1 Cell state

As shown in the upper part of Figures 4 and 5, the cell state is the key to LSTMs
and represents the memory of LSTM networks. The process for the cell state is very
much like to a conveyor belt or production chain. The information about the
parameters runs straight forward the entire chain, with only some linear interac-
tions, such as multiplication and addition. The state of information depends on
these interactions. If there are no interactions, the information will run along
without changes. The LSTM block removes or adds information to the cell state
through the gates, which allow optional information to cross [19].

4.1.2 Forget gate

The Forget Gate (ft) decides the type of information that should be thrown away
or kept from the cell state. This process is implemented by a sigmoid activation
function. The sigmoid activation function outputs values between 0 and 1 coming
from the weighted input (Wf pt), previous hidden state (ht-1), and a bias (bf). The
forget gates (Figure 6) can be described by the equation given in (11). Here, σ is the

Figure 5.
The cell state, the horizontal line running through the top of the diagram of an LSTM.

10

Deep Learning Applications

sigmoid activation function, W(f) and b(f) are the weight matrix and bias vector,
which will be learned from the input training data.

f t ¼ σ W fð Þ pt, ht�1

� �

þ b fð Þ
� �

¼
1

1þ e� W fð Þ
: pt,ht�1ð Þþb fð Þð Þ

(11)

The function takes the old output (ht�1) at time t � 1 and the current input (pt)
at time t for calculating the components that control the cell state and hidden state
of the layer. The results are [0,1], where 1 represents “completely hold this” and 0
represents “completely throw this away” (Figure 6).

4.1.3 Input gate

The Input Gate (it) controls what new information will be added to the cell state
from the current input. This gate also plays the role to protect the memory contents
from perturbation by irrelevant input (Figures 7 and 8). A sigmoid activation
function is used to generate the input values and converts information between 0
and 1. So, mathematically the input gate is:

it ¼ σ W ið Þ pt, ht�1

� �

þ b ið Þ
� �

¼
1

1þ e� W ið Þ
: pt,ht�1ð Þþb ið Þð Þ

(12)

whereW(i) and b(i) are the weight matrix and bias vector, pt is the current input
timestep index with the previous time step ht-1. Similar to the forget gate, the
parameters in the input gate will be learned from the input training data. At each
time step, with the new information pt, we can compute a candidate cell state.

Next, a vector of new candidate values, ~Ct, is created. The computation of the new
candidate is similar to that of (11) and (12) but uses a hyperbolic tanh activation
function with a value range of (�1,1). This leads to the following Eq. (13) at time t.

~Ct ¼ tanh W cð Þ pt, ht�1

� �

þ b cð Þ
� �

¼
e W cð Þ

: pt,ht�1ð Þþb cð Þð Þ � e� W cð Þ
: pt,ht�1ð Þþb cð Þð Þ

e W cð Þ
: pt,ht�1ð Þþb cð Þð Þ þ e� W cð Þ

: pt,ht�1ð Þþb cð Þð Þ
(13)

In the next step, the values of the input state and cell candidate are combined to
create and update the cell state as given in (14). The linear combination of the input
gate and forget gate are used for updating the previous cell state (Ct-1) into current

Figure 6.
The forget gate controls what information to throw away from the memory.

11

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

cell state (Ct). Once again, the input gate (it) governs how much new data should

be taken into account via the candidate (~CtÞ, while the forget gate (ft) reports how
much of the old memory cell content (Ct-1) should be retained. Using the same
pointwise multiplication (⨀ ¼Hadamard product), we arrive at the following
updated equation:

Ct ¼ f t ⨀Ct�1 þ it ⨀ ~Ct (14)

4.1.4 Output gate

The Output Gate (ot) controls which information to reveal from the updated cell
state (Ct) to the output in a single time step. In other words, the output gate
determines what the value of the next hidden state should be in each time step. As
depicted in Figure 9, the hidden state comprises information on previous inputs.
Moreover, the calculated value of the hidden state for the given time step is used for

Figure 7.
The input-update gate decides what new information should be stored in the cell state, which has two parts: A
sigmoid layer and a hyperbolic tangent (tanh) layer. The sigmoid layer is called the “input gate layer” because it

decides which values should be updated. The tanh layer is a vector of new candidate values ~Ct that could be
added to the cell state.

Figure 8.
Memory update is done using old memory via the forget gate and new memory via the input gate.

12

Deep Learning Applications

the prediction (ŷt ¼ softmax :ð ÞÞ. Here, softmax is a nonlinear activation function
(sigmoid, hyperbolic tangent etc.).

ot ¼ σ W oð Þ ht�1, pt
� �

þ b oð Þ
� �

¼
1

1þ e� W oð Þ ht�1,ptð Þþb oð Þð Þ
(15)

ht ¼ ot ⨀ tanh Ctð Þ ¼ ot ∙
eð f t ⨀Ct�1þit ⨀ ~CtÞ � e�ð f t ⨀Ct�1þit ⨀ ~CtÞ

eð f t ⨀Ct�1þit ⨀ ~CtÞ þ e�ð f t ⨀Ct�1þit ⨀ ~CtÞ

(16)

ŷt ¼ σ W yð Þht þ b yð Þ
� �

¼
1

1þ e� W yð Þhtþb yð Þð Þ
(17)

First, the previous hidden state (ht-1) is passed to the current input into a
sigmoid function. Next newly updated cell state is generated with the tanh function
[15, 18]. Finally, the tanh output is multiplied with the sigmoid output to determine
what information the hidden state should carry (16). The final product of the
output gate is an updated of the hidden state, and this is used for the prediction at
time step t. Therefore, the aim of this gate is to separate the updated cell state
(updated memory) from the hidden state. The updated cell state (Ct) contains a lot
of information that is not necessarily required to be saved in the updated hidden
state. However, this information is critical as the updated hidden state at each time
is used in all gates of an LSTM block. Thus, the output gate does the assessment
regarding what parts of the cell state (Ct) is presented in the hidden state (ht). The
new cell and new hidden states are then passed to the next time step (Figure 9).

Figure 9.
The output state decides what information will be output using a sigmoid σ and tanh (to push the values to be
between �1 and 1) layers.

Summary of forward pass

1.Forget gate: Controls what information to throw away and decides how much from the part should be

remember. f t ¼ σ W fð Þ pt,ht�1

� �

þ b fð Þ
� �

2. Input-Update Gate: Controls information to add cell state from current input and decides how much

should be added to the cell state ıt ¼ σ W ið Þ pt,ht�1

� �

þ b ið Þ
� �

, ~Ct ¼ tanh W cð Þ pt,ht�1

� �

þ b cð Þ
� �

13

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

4.2 Backward pass

Like the RNN networks, an LSTM network generates an output ŷt
� �

at each time
step that is used to train the network via gradient descent (Figure 10). During the
backward pass, the network parameters are updated at each epoch (iteration). The
only fundamental difference between the back-propagation algorithms of the RNN
and LSTM networks is a minor modification of the algorithm. Here, the calculated
error term at each time step is Et ¼ �yt log ŷt . As in RNN, the total error is
calculated by the summation of error from all time steps E ¼

P

t � yt log ŷt:
Similarly, the value of gradients ∂E

∂W at each time step is calculated and then the

summation of the gradients at each time steps ∂E
∂W ¼

P

t
∂Et

∂W is obtained. Remember,

the predicted value, ŷt, is a function of the hidden state (ŷt ¼ σ W yð Þht þ b yð Þ
� �

Þ

and the hidden state (ht) is a function of the cell state (ht ¼ ot ⨀ tanh Ctð ÞÞ:These
both are subjected in the chain rule. Hence, the derivatives of individual error terms
with respect the network parameter:

∂Et

∂W
¼

∂Et

∂ ŷt

∂ ŷt
∂ht

∂ht
∂ct

∂ct
∂ct�1

∂ct�1

∂ct�2

∂ct�2

∂ct�3
… … … … :

∂c0
∂W

(18)

and for the overall error gradient using the chain rule of differentiation is:

∂E

∂W
¼
X

t

∂Et

∂ ŷt

∂ ŷt
∂ht

∂ht
∂ct

∂ct
∂ct�1

∂ct�1

∂ct�2

∂ct�2

∂ct�3
… … … … :

∂c0
∂W

(19)

As Eq. (19) illustrates, the gradient involves the chain rule of ∂ct in an LSTM training
using the backpropagation algorithm,while the gradient equation involves a chain rule
of ∂ht for a basic RNN. Therefore, the Jacobianmatrix for cell state for an LSTM is [20]:

∂cj
∂cj�1,1

,
∂cj

∂cj�1,2
…

∂cj
∂cj�1,s

� �

¼

∂cj,1
∂cj�1,1

⋯
∂cj,1
∂cj�1,s

⋮ ⋱ ⋮

∂cj,s
∂cj�1,1

⋯
∂cj,s
∂cj�1,s

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(20)

The problem of gradient vanishing

Recall the Eq. (14) for cell state is Ct ¼ f t ⨀Ct�1 þ it ⨀ ~Ct. When we consider
Eq. (19), the value of the gradients in the LSTM is controlled by the chain of

3.Output gate: Determines the part of the current cell state makes it to the output

ot ¼ σ W oð Þ ht�1,pt

� �

þ b oð Þ
� �

.

4.Current cell state: Ct ¼ f t ⨀Ct�1 þ it ⨀ ~Ct

5.Current hidden state: ht ¼ ot ⨀ tanh Ctð Þ) ht ¼ LSTM pt ,ht�1

� ��

6.LSTM block prediction: ŷt ¼ σ W yð Þht þ b yð Þ
� �

7.Calculate the LSTM block error for the time step: Et yt, ŷt
� �

¼ �yt log ŷt
�

14

Deep Learning Applications

derivatives starting from the part ∂ct
∂ct�1

. Expanding this value using the expression for

Ct ¼ f t ⨀Ct�1 þ it ⨀ ~Ct.

∂ct
∂ct�1

¼
∂ f t ⨀Ct�1 þ it ⨀ ~Ct

� �

∂ f t�1 ⨀Ct�2 þ it�1 ⨀ ~Ct�1

� �

¼
∂ct
∂ f

∂ f

∂ht�1

∂ht�1

∂ct�1
þ

∂ct
∂i

∂i

∂ht�1

∂ht�1

∂ct�1
þ

∂ct

∂~Ct

∂~Ct

∂ht�1

∂ht�1

∂ct�1
þ

∂ct
∂ct�1

(21)

Note the term ∂ct
∂ct�1

does not have a fixed pattern and can yield any positive value in

the LSTM, while the ∂ct
∂ct�1

term in the standard RNN can yield values greater than 1 or

less than 1 after certain time steps. Thus, for an LSTM, the termwill not converge to 0
or diverge completely, even for an infinite number of time steps. If the gradient starts
converging towards zero, the weights of the gates are adjusted to bring it closer to 1.

4.3 Other type of LSTMs

Several modifications to original LSTM architecture have been recommended
over the years. Surprisingly, the original continues to outperform, and has similar
predictive ability compared with variants of LSTM over 20 years.

4.3.1 Peephole connections

This is a type of LSTM by adding “peephole connections” to the standard LSTM
network. The theme stands for peephole connections needed to capture information

Figure 10.
Illustration of the (A) an LSTM unit from 3-time steps with input data (demographic and clinical data).
LSTM network takes inputs from to the current time step to update the hidden state and (LSTM pt,ht�1

� ��

)

with relevant information. The “x” in the circles denote point-wise operators, σ and tanh are sigmoid (1
1þe� xð Þ

� �

,

generates between 0 and 1) and hyperbolic tangent (e xð Þ�e� xð Þ

e xð Þþe� xð Þ

� �

, generates between �1 and 1) activation

functions. (B) an RNN with 3-time steps. It has only a tangent, e xð Þ�e� xð Þ

e xð Þþe� xð Þ

� �

, activation function in the block.

15

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

inherent to time lags. In other words, with peephole connections the information
conveyed by time intervals between sub-patterns of sequences is included to the
network recurrent. Thus, peephole connections concatenate the previous cell state
(Ct-1) information to the forget, input and output gates. That is, the expression of
these gates with peephole connection would be:

f t ¼ σ W fð Þ pt, ht�1,Ct�1

� �

þ b fð Þ
� �

it ¼ σ W ið Þ pt, ht�1,Ct�1

� �

þ b ið Þ
� �

ot ¼ σ W oð Þ ht�1, pt
� �

þ b oð Þ
� �

(22)

This configuration was offered to improve the predictive ability of LSTMs to
count and time distances between rare events [21].

4.3.2 Gated recurrent units

Gated recurrent units (GRU) is a simplified version of the standard LSTM
designed in a manner to have more persistent memory in order to make it easier for
RNNs. A GRU is called gated RNN and introduced by [22]. In a GRU, forget and
input gates are merged into a single gate named “update gate”. Moreover, the cell
state and hidden state are also merged. Therefore, the GRU has fewer parameters
and has been shown to outperform LSTM on some tasks to capture long-term
dependencies.

4.3.3 Multiplicative LSTMs (mLSTMs)

This configuration of LSTM was introduced by Krause et al., [23]. The architec-
ture is for sequence modeling combines LSTM and multiplicative RNN architec-
tures. mLSTM is characterized by its ability to have different recurrent transition
functions for each possible input, which makes it more expressive for
autoregressive density estimation. Krause et al. concluded that mLSTM outper-
forms standard LSTM and its deep variants for a range of character-level language
modeling tasks.

4.3.4 LSTM with attention

The core idea behind the LSTM with Attention frees the encoder-decoder archi-
tecture from the fixed-length internal illustration. This is one of the most transfor-
mative innovations in sequence to uncover the mobility regularities in the hidden
node of LSTM. The LSTM with attention was introduced by Wu et al., [24] for
Bridging the Gap between Human and Machine Translation in Google’s Neural
Machine Translation System. The LSTM with attraction consists of a deep LSTM
network with 8 encoder and 8 decoder layers using attention and residual connec-
tions. Most likely, this type of LSTM continues to power Google Translate to this day.

4.4 Examples

Two examples using MATLAB for LSTM will be given for this particular
chapter.

Example 1 This example shows how to forecast time series data for COVID19 in
the USA using a long short-term memory (LSTM) network. The variable used in

16

Deep Learning Applications

training data is the rate for the number of positive/number of tests for each day
between 01/22/2020–2112/22/2020. Data set was taken from publicly available h
ttps://covidtracking.com/data/national. web site and data are updated each day
between about 6 pm and 7:30 pm Eastern Time Zone. The initiative relies upon
publicly available data frommultiple sources. States in the USA are not consistent in
how and when they release and update their data, and some may even retroactively
change the numbers they report. This can affect the predictions presented in these
data visualizations (Figure 11a-d). The steps for example 1 are summarized in the
Table 1 (MATLAB 2020b) and results are illustrated in Figure 11a-d. LSTM net-
work was trained on the first 90% of the sequence and tested on the last 10%.
Therefore, results reveal predicting the positive last 38 days.

This example trains an LSTM network to forecast the number of positively
tested given the number of cases in previous days. The training data contains a
single time series, with time steps corresponding to days and values corresponding
to the number of cases. To make predictions on a new sequence, reset the network
state using the “resetState” command in MATLAB. Resetting the network state pre-
vents previous predictions from affecting the predictions on the new data. Reset the
network state, and then initialize the network state by predicting on the training
data (MATLAB, 2020b). The solid line with red color in Figure 11a and c indicates
the number of cases predicted for the last 30 days.

Figure 11.
Total daily number of positively tested COVID19 and the rate (positively tested/number of test) conducted in
the USA. (a) Plot of the training time series of the number of positively tested COVID19 with the forecasted
values, (b) compare the forecasted values of the number of positively tested with the test data set. This graph
shows the total daily number of virus tests conducted in each state and of those tests, how many were positive
each day. (c) Plot of the training time series of the rate of positively tested COVID19 (d) compare the forecasted
values of the rate of positively tested with the rates in the test data set. The trend line in blue shows the actual
number of positive cases and the trend line in red shows the number predicted for the last 38 days.

17

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

Example 2: Data from example 2 is from SEER 2017 for different age groups.
SEER collects cancer incidence data from population-based cancer registries of the
U.S. population. The SEER registries collect data on patient demographics, primary
tumor site, tumor morphology, stage at diagnosis, and the first course of treatment,
and they follow up with patients for vital status. The example given in this chapter

Example 1. MATLAB Codes and descriptions of the codes

a. Data prepretion Descriptions

numTimeStepsTrain = floor(0.95*numel(Tpositive));

dataTrain = Tpositive(1:numTimeStepsTrain+1);

dataTest = Tpositive(numTimeStepsTrain+1:end);

Partition the training and test data. Train on

the first 95% of the sequence and test on the

last 5%

b. Define LSTM Descriptions

numHiddenUnits = 300;

layers = [...sequenceInputLayer(numFeatures)

lstmLayer(numHiddenUnits)

fullyConnectedLayer(numResponses)

regressionLayer];

Define LSTM Network Architecture and create

an LSTM regression network. Specify the

LSTM layer to have 300 hidden units

c. Specify the training options Descriptions

options = trainingOptions(‘adam’, ...

‘MaxEpochs’,1000, ...

‘GradientThreshold’,1, ...

‘InitialLearnRate’,0.005, ...

‘LearnRateSchedule’,'piecewise’, ...

‘LearnRateDropPeriod’,125, ...

‘LearnRateDropFactor’,0.2, ...

‘Verbose’,0, ...

‘Plots’,'training-progress’);

Training with Adam (adaptive moment

estimation)

To prevent the gradients from exploding, set

the gradient threshold to 1.

The software updates the learning rate every

certain number of epochs by multiplying with

a certain factor.

Number of epochs for dropping the learning

rate

Factor for dropping the learning rate when

‘LearnRateSchedule’,'piecewise’

d. Train the LSTM network Descriptions

net = trainNetwork(XTrain,YTrain,layers,options); Train the LSTM network with the specified

training options

e. Initialize -training and loop over

net = predictAndUpdateState(net,XTrain);

[net,YPred] = predictAndUpdateState(net,YTrain

(end));

numTimeStepsTest = numel(XTest);

for i = 2:numTimeStepsTest

[net,YPred(:,i)] = predictAndUpdateState(net,YPred

(:,i-1),'ExecutionEnvironment’,'cpu’); end;

The training and update data Next, make the

first prediction using the last time step of the

training response YTrain(end). Loop over the

remaining predictions and input the previous

prediction to predictAndUpdateState.

f. Update Network State with observed values Descriptions

net = resetState(net);

net = predictAndUpdateState(net,XTrain);

Update Network State with Observed Values

g. Predict on each time step

YPred = [];

numTimeStepsTest = numel(XTest);

for i = 1:numTimeStepsTest

[net,YPred(:,i)] = predictAndUpdateState(net,XTest

(:,i),'ExecutionEnvironment’,'cpu’);

end

Predict on each time step. For each prediction,

predict the next time step using the observed

value of the previous time step.

*All descriptions are based on MATLAB 2020b and related examples from the MATLAB.

Table 1.
MATLAB codes and specification of cods for Example 1*.

18

Deep Learning Applications

is the cancer type and non-cancer causes of death identified from the survey.
https://seer.cancer.gov/data/. The steps for example 2 are summarized in Table 2
(MATLAB 2020b) and because of space limitation, only the cloud of cancer from

Example 2. MATLAB Codes and descriptions of the codes

a. Data prepretion Descriptions

filename = “filename”

data = readtable(filename,'TextType’,'string’);

To import the text data as strings, specify the text

type to be 'string’.

b. Partition data Descriptions

crossval = cvpartition(‘DataName.

ClassVaribleName’,0.30);

dataTrain = DataName(training(crossval),:);

dataValidation = DataName (test(crossval),:);

Partition data into sets for training and validation.

Partition the data into a training partition and a

held-out partition for validation and testing.

Specify the holdout percentage to be 30%.

c. Extract the text data Descriptions

textDataTrain = dataTrain.TextVariableName_;

textDataValidation = dataValidation.

TextVariableName _;

YTrain = dataTrain. TextVariableName;

YValidation = dataValidation. TextVariableName;

Extract the text data and labels from the

partitioned tables. Here TextVariableName is

column name for the group variable (for example

age group) and TextVariableName is the column

name for the text variable (in this example the

name of cancer types)

d. Create a cloud for the text Descriptions

figure

wordcloud(textDataTrain);

To check that you have imported the data

correctly, visualize the training text data using a

word cloud.

e. Preprocess Text Data

documentsTrain = preprocessText

(textDataTrain);

documentsValidation = preprocessText

(textDataValidation);

Preprocess the training data and the validation

data using the preprocessText function.

f. Convert document to sequences Descriptions

enc = wordEncoding(documentsTrain);

sequenceLength = 10;

XTrain = doc2sequence(enc,

documentsTrain,'Length’,sequenceLength);

XTrain(1:5)

XValidation = doc2sequence(enc,

documentsValidation,'Length’,sequenceLength);

Encoding to convert the documents into

sequences of numeric indices.

g. Create and Train LSTM Descriptions

inputSize = 1;

embeddingDimension = 30;

numHiddenUnits = 200;

numWords = enc.NumWords;

numClasses = numel(categories(YTrain));

layers = [...

sequenceInputLayer(inputSize)

wordEmbeddingLayer(embeddingDimension,

numWords)

lstmLayer(numHiddenUnits,'OutputMode’,'last’)

fullyConnectedLayer(numClasses)

softmaxLayer

classificationLayer]

Initialize the embedding weights

h. Specify training options Descriptions

options = trainingOptions(‘adam’, ...

‘MiniBatchSize’,30, ...

MiniBatchSize: Classifies data using mini batches

of size

19

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

‘GradientThreshold’,8, ...

‘Shuffle’,'every-epoch’, ...

‘ValidationData’,{XValidation,YValidation}, ...

‘Plots’,'training-progress’, ...

‘Verbose’,false);

‘GradientThreshold: Clip gradient values for the

threshold

i. Train the LSTM network Descriptions

net = trainNetwork(XTrain,YTrain,layers,

options);

Train the LSTM network using

the trainNetwork function.

j. Predict using new data Descriptions

reportsNew = [...

“The text definition here.”];

Classify the event type of three new reports.

Create a string array containing the new reports.

k. Preprocess Convert and Classify Descriptions

documentsNew = preprocessText(reportsNew);

XNew = doc2sequence(enc,

documentsNew,'Length’,sequenceLength);

labelsNew = classify(net,XNew)

*All descriptions are based on MATLAB 2020b and related examples from the MATLAB.

Table 2.
MATLAB codes and specification of cods for Example 2*.

Figure 12.
Visualizing the training data text file for SEER-2017 cancer types by age groups using a word cloud of LSTM.
The MATLAB codes to create this figure are given in Table 2. The bigger the word, the more often diagnosed
cancer type in 2017.

20

Deep Learning Applications

age groups is illustrated in Figure 12. Here, in order to input the documents into an
LSTM network, the “wordEncoding(documentsTrain)” is used. This code converts
the name of diseases into sequences of numeric indices. The disease names (all types
of text structure) in LSTM with MATLAB are performed in three consecutive steps:
1) tokenize the text 2) convert the text to lowercase and, 3) erase the punctuation.
The function stops predicting when the network predicts the end-of-text character
or when the generated text is 500 characters long.

5. Conclusions and future work

LSTM is a very powerful ANN architecture for disease subtypes, time series
analyses, for the text generation, handwriting recognition, music generation, lan-
guage translation, image captioning process. The LSTM approach is effective to
make predictions as equal attention is provided for all input sequences by the
information flows through the cell state. Because of the mechanism adopted, the
small change in the input sequence does not harm the prediction accuracy done by
LSTM. Future work on LSTM has several directions. Most LSTM architectures are
designed to handle data evenly distributed between elapsed times (days, months,
years, etc.) for the consecutive elements of a sequence. More studies are needed to
improve the predictive ability of LSTM for nonconstant consecutive observations
elapsed times. Moreover, further studies are needed for possible overfitting prob-
lems for training with smaller data sets. Rather than using early stopping to avoid
the overfitting, Bayesian regularized approach would be more effective to ensure
that the neural network halts training at the point where further training would
result in overfitting. As the Bayesian regularized approach uses a different loss
function with different hyperparameters, this approach demands costly computa-
tion resources.

Acknowledgements

The author would like to sincerely thank to Rosey Zackula for reading and
revising the manuscript carefully.

Author details

Hayrettin Okut
The University of Kansas School of Medicine, Wichita, USA

*Address all correspondence to: hokut@kumc.edu

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

21

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

References

[1]Okut, H., Wu, X-L., Rosa, JM. G.,
Bauck, S., Woodward, B., Schnabel, D.
R., Taylor, F. J. and Gainola, D.
Predicting expected progeny difference
for marbling score in Angus cattle using
artificial neural networks and Bayesian
regression models. Genetics Selection
Evolution 2013, 45:34 doi:10.1186/
1297-9686-45-34.

[2]Okut H.,. Bayesian Regularized
Neural Networks for Small n Big p Data,
Artificial Neural Networks - Models and
Applications, Joao Luis G. Rosa,
IntechOpen, 2016. DOI: 10.5772/63256.

[3]Hochreiterand, S. and Schmidhuber,
J., Long Short-Term Memory. Neural
Computation. Volume 9 | Issue 8, 1997

[4] Schmidhuber, J. Deep Learning in
Neural Networks: An Overview". Neural
Networks.61: 85 17, 2015. arXiv:
1404.7828.

[5]Miotto, R., et al., “Deep patient: An
unsupervised representation to predict
the future of patients from the
electronic health records,” Sci. Rep.,
vol.6, no. 1, pp. 26094–26094, 2016.

[6] Choi, E., et al., “Doctor AI: Predicting
clinical events via recurrent neural
networks,” in Proc. 1st Mach. Learn.
Healthcare Conf., 2016, pp. 301–318.t

[7] Razavian, N., J. Marcus, and D.
Sontag, “Multi-task prediction of
disease onsets from longitudinal lab
tests,” in Proc. 1st Mach. Learn.
Healthcare Conf., 2016, pp. 73–100.

[8] Yang Chao-Tung, Yuan-An, C.., Wei
Chan, Y., Chia-Lin L., Yu-Tse T., Wei-
Cheng C. and� Po-Yu, L. Liu (2020).
Influenza-like illness prediction using a
long short-term memory deep learning
model with multiple open data sources.
The Journal of Supercomputing (2020)
76:9303–9329 https://doi.org/10.1007/
s11227-020-03182-5.

[9] S. Purushotham et al., “Benchmark of
deep learning models on large healthcare
mimic datasets,” 2017.online available: h
ttps://arxiv.org/abs/ 1710.08531

[10] Kim et al.,J. Y., “High risk
prediction from electronic medical
records via deep attention networks,”
Nov. 30, 2017. [Online]. Available:
https: //arxiv.org/abs/1712.00010

[11]Ma, F., et al., “Dipole: Diagnosis
prediction in healthcare via attention-
based bidirectional recurrent neural
networks,” in Proc. 23rd ACM SIGKDD
Int. Conf. Knowl. Discovery Data
Mining, Halifax, Canada, 2017,
pp. 1903–1911.

[12]Nguyen, P., Tran, T. and Venkatesh,
S. “Resset: A recurrent model for
sequence of sets with applications to
electronic medical records,” in Proc. Int.
Joint Conf. Neural Netw., Brazil, 2018,
pp. 1–9.

[13]Maxwell, A., et al., “Deep learning
architectures for multi-label classifica-
tion of intelligent health risk
prediction,” BMC Bioinf., vol. 18, no.
Suppl 14, pp. 523–523, 2017.

[14] Tingyan Wang, Yuanxin Tian , and
Robin G. Qiu. Long Short-Term
Memory Recurrent Neural Networks for
Multiple Diseases Risk Prediction by
Leveraging Longitudinal Medical
Records. EEE Journal Of Biomedical
And Health Informatics, Vol. 24, No. 8,
August 2020 DO:1 0.1109/
JBHI.2019.2962366.

[15] Baytas, I., Xiao, C., Zhang, X.,
Wang, F., Jain, K. A. and Zhou, Jiayu.
Patient Subtyping via Time-Aware
LSTM Networks. In Proceedings of
KDD Halifax, NS, Canada, 2017..DOI:
10.1145/3097983.3097997.

[16]Okut, H., Gianola, D., Rosa, J. G.,
Weigel, K. Prediction of body mass

22

Deep Learning Applications

index in mice using dense molecular
markers and a regularized neural
network. Genetics Research
(Cambridge). 2011. 93:189–201.

[17] Lipton, C. Z., Berkowitz, J. and
Elkan, C. A Critical Review of Recurrent
Neural Networks for Sequence
Learning. arXiv:1506.00019v4.

[18] Colah, C. Understating LSTM
Network. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/

[19] Ali. M. A., Zhuang, H., Ibrahim, A.,
Rehman, O., Huang, M and Wu, A. A
Machine Learning Approach for the
Classification of Kidney Cancer
Subtypes Using miRNA. Genome Data.
Appl. Sci. 2018, 8, 2422; doi:10.3390/
app8122422.

[20] https://www.geeksforgeeks.
org/lstm-derivation-of-back-propaga
tion-through-time/?ref=lbp. 2020.

[21]Gers, F. A., Schmidhuber, J. and
Cummins, F. Learning to forget:
Continual prediction with LSTM. In
Proc. ICANN’99, Int. Conf. on Artificial
Neural Networks, Vol. 2, pp. 850–855,
2000. Edinburgh, Scotland. IEE,
London. Extended version submitted to
Neural Computation.

[22] Kyunghyun, C., van Merrienboer,
Gulcehre, Caglar, F., Dzmitry, B.,
Fethi B.,Holger, H. and Yoshua, B.
Learning Phrase Representations using
RNN Encoder-Decoder for Statistical
Machine Translation, 2014.arXiv:
1406.1078.

[23] Krause, B., Murray, I. and Renals S.
Multiplicative LSTM for sequence
modelling., 2017. arXiv:1609.07959v3

[24]Wu, Y., Schuster,M., Chen, Z.,
Le V. Q., Norouzi, M., Macherey, W.,
Krikun, M, Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M.,
Liu, X., Kaiser, L., Gouws, S., Kato, Y.,
Taku, K., Kazawa, H., Stevens, K.,

Kurian, G., Patil, N., Wang, W., Young,
C., Smith, J., Riesa, J., Rudnick, A.,
Vinyals, O., Corrado, G., Hughes, M.
and Dean, J. Google's Neural Machine
Translation System: Bridging tshe Gap
between Human and Machine.
Translation.2017, arXiv:1609.08144v2

23

Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
DOI: http://dx.doi.org/10.5772/intechopen.96180

