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Chapter

Nanocomposite and Nanofluids: 
Towards a Sustainable Carbon 
Capture, Utilization, and Storage
Ronald Nguele, Katia Nchimi Nono and Kyuro Sasaki

Abstract

Large volumes of unconventional fossil resource are untapped because of the 
capillary forces, which kept the oil stranded underground. Furthermore, with the 
increasing demand for sustainable energy and the rising attention geared towards 
environment protection, there is a vital need to develop materials that bridge the 
gap between the fossil and renewable resources effectively. An intensive attention 
has been given to nanomaterials, which from their native features could increase 
either the energy storage or improve the recovery of fossil energy. The present chap-
ter, therefore, presents the recent advancements of nanotechnology towards the 
production of unconventional resources and renewable energy. The chapter focuses 
primarily on nanomaterials applications for both fossils and renewable energies. 
The chapter is not intended to be an exhaustive representation of nanomaterials, 
rather it aims at broadening the knowledge on functional nanomaterials for possible 
engineering applications.

Keywords: nanoparticle, nanocomposite, oil recovery, CO2 sequestration,  
solar energy

1. Introduction

Metal Oxides (MO) are a class of compounds that are as abundant in the nature 
than in the library of synthetic inorganic compounds. While the use of MO as 
bulk materials is widely applied, developing new class of materials based on MO, 
understanding their chemistry, tuning their characteristics, and developing novel 
potential engineering are still under investigation. MO nanoparticles (MO-NP) are 
MO with a diameter ranging between 10 and 100 nm with a high surface-to-volume 
ratio, which explains their advantageous features compared to similar materials of 
micro- or macro-size [1].

MO-NPs can contain either a single metallic specie (nanoparticle, NP) or two 
or more different metallic species (nanocomposite, NCP). When the metal species 
are separated and independent at the molecular level, the nanocomposites could 
refer to a simple mixture of oxides with several component phases. In some systems, 
nanocomposites consist in stoichiometric (or non-stoichiometric) replacement of a 
metal ion by another one in the first oxide crystallographic structure. Such substitu-
tion systems are referred as mixed MOs e.g. spinels [2] or perovskites [3, 4].
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MO-NPs also include core-shell architectures where each particle has an inner 
core made of one type of MO, and the outer shell consisting in another MO. Just as 
single nanoparticles, composite nanoparticles exhibit size confinement properties 
(optical and electronic). Their composition and the atomic order of aggregates are 
pivotal factors for their specific features, which are tailored during their synthe-
sis. MO-NPs have a high surface-to-volume ratio, which increases the reactivity. 
Dispersed in base fluid (BF), MO-NP enhances the native properties of the solution 
compared to the case in which no MO-NPs were added.

This chapter does not intend to list, in an exhaustive manner, the features of 
nanofluid. Rather, the authors aim to discuss, from both the chemistry and the 
engineering point of view, the key features of MO-NFs transferable to the carbon 
capture utilization and storage (CCUS). The chapter will cover the different synthe-
sis methods of the NP and NCP, the formulation of NF as well as the application in 
respect of CCUS.

2. Synthesis of MO-NPS and MO-NCPs

MO-NPs can be obtained through two opposite approaches including top-
down and bottom-up. The former technique consists in successive mechanical 
operations of divisions and fragmentations, or in the irradiation of the bulk 
phase with a powerful energy source including UV, X-Rays, electron beam 
[5]. Using the bottom-up approach, MO-NPs are formed within the reaction 
medium, subsequently to the clustering of single atoms. The growth in size is 
time-dependent, and may be facilitated by additional treatment such as  
calcination [6].

2.1 Physical methods

2.1.1 Spray pyrolysis

Spray pyrolysis is generally used for the preparation of thin-films or pulverulent 
materials. It consists in the spraying of a solution or a suspension containing the 
metallic precursors in an oven, followed by a high temperature treatment. This 
method allows the formation of spherical oxides as the shape of the oxides are 
strongly dependent of the drops generated at the entrance of the furnace. Given the 
rapid rate of nucleation at high temperature, there is a one-droplet, one-particle 
mechanism.

In addition to the shrinkage occurring following the formation of oxides, 
micrometers precursors can allow the formation of particles in the nanometer size 
range [7]. NCPs can also be obtained through this method by mixing several metal 
ions in the precursor solution. The formulation of the composites is controlled by 
adjusting the stoichiometric proportions of each metallic species in the  
solution [8, 9].

2.1.2 Chemical vapor deposition (CVD)

This technique is used mostly for the preparation of 2D metallic or inorganic 
materials of nanometric thickness. Usually, volatiles precursors are delivered on a 
heated surface on which a thin layer of materials is deposited upon a chemical reac-
tion in vapor phase. Additional physical processes such as evaporation or sputtering 
are usually required to complete the synthesis.
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During the preparation of MOs by CVD, oxidation and hydrolysis are the 
primary chemical reactions taking place in the presence of oxidizing agents (oxygen 
or ozone) and the precursors are usually metal alkoxides [10].

2.1.3 Sonochemistry

Sonochemistry is a branch of chemistry supported by the formation, growth, 
and collapse of bubbles in a liquid upon irradiation with high intensity ultrasound 
waves. The bubbles can reach a temperature and pressure as high as 5000°C and 
500 mPa respectively [11]. These conditions increase the chemical reactivity of the 
species in the reactor. When the water is the solvent, radical •OH, H2O2 and O3 are 
generated, leading thereby to oxidant medium suitable for the preparation of MO.

Treatment of solutions of copper (Cu), zinc (Zn) and cobalt (Co) acetates under 
a high-intensity ultrasonic horn has been used to produce nanosized CuO, ZnO, 
and CoO3 respectively [12]. This method has also been used for the preparation of 
nanocomposite when the suitable precursors are mixed [13].

2.2 Chemical methods

2.2.1 Hydrothermal synthesis

Hydrothermal or solvothermal synthesis (if water is the solvent) is a synthesis 
method in which the precursors (dissolved or dispersed in water) are placed in an 
autoclave where the reaction takes place at high temperature and pressure [14]. 
Hydrothermal allows the synthesis of MO-NPs from a wide variety in shape, size, 
structure, and composition, provided that key-factors such as temperature,  
pressure, pH, concentration of reactants are well-controlled [15–20].

2.2.2 Sol-gel synthesis

It involves the hydrolysis and condensation of metal alkoxides, acetates, nitrates, 
sulfates, and chlorides. Their hydrolysis in solution results from the dispersion of 
metal hydroxides, which further undergo condensation leading to the formation 
of 3-dimensional network namely a gel. The gel is either dried by removing the 
solvent or treated by chemical reaction to give the condensed MO materials [21]. 
The solvent used is generally water (aqueous sol-gel). In most non-aqueous synthe-
sis, additives such as surfactant can be required to control the morphology of the 
particles and most importantly to prevent/reduce their aggregation [22, 23].

2.2.3 Co-precipitation

The co-precipitation method entails the co-precipitation of cations in an aque-
ous media by the addition of an alkaline solution. A short burst of nucleation occurs 
when the concentration of the species reaches its critical super-saturation, and 
then, there is a slow growth of the nuclei by diffusion of the solutes to the surface of 
the crystal. MO-NPs are dried further or sometimes calcined at temperatures above 
500°C, in which case there is an alteration of the structure of material [24].

The co-precipitation method can be relevant for the synthesis of both MO-NP 
and MO-NCP [25]. The size and morphology of the nanoparticles produced by this 
method can be controlled by varying the molar ratio of the two precursor ions, the 
base used, mixing rate, the pH, and the temperature [26]. Unfortunately, it pro-
duces wastewaters with very basic pH needs to be treated before been discarded.
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2.3 Alternative synthesis methods

Most of the methods of synthesis of nanomaterials allow a great flexibility in the 
choice of the precursors and the morphology of the material through the control 
of key parameters such as temperature, concentration, or pH. However, they also 
required the use of toxic chemical reactants or additives. In this regard, alternative 
synthesis routes have been exploited, with mitigated results, including biosynthesis, 
plasma assisted. Extraction from ores as for it fits in the strategy of valuation of 
naturally occurring ores.

2.3.1 Biosynthesis of MOs NPs

This synthetic approach includes the use of vegetal substances (plant extracts 
or agricultural wastes) but can also involve living organisms such as bacteria and 
fungi. Natural extracts used for the preparation of the MO materials are available 
and renewable, in addition to contain organic groups that can react with the metal 
ions is solution in the absence of further additives [27, 28].

2.3.2 Plasma assisted synthesis

The plasma state is obtained from the ionization of noble gases, which increases 
the reactivity of the medium rich in electrons and chemical species upon reaching a 
very high temperature, up to 10000K [29]. Non-thermal plasma is an advantageous 
alternative that can be operated at atmospheric pressure [30]. Among the different 
types of systems used for plasma production, gliding arc discharge is reported to 
attractive for MO-NPs synthesis.

Under humid air as feeding gas, glidarc discharge produces acidic and very 
oxidizing environment in which many transitions metal ions precipitate as 
hydroxides or oxides [31–33]. However, one of the major disadvantages associ-
ated to this technique is the poor control on the size range and morphology of the 
particles.

2.3.3 Extraction from ores

Mineral ores are naturally occurring rock, from which the metal content can 
be extracted via hydrometallurgy [34]. During MO extraction, the ore is succes-
sively crushed, roasted, leached, and precipitated. The leaching step consists in the 
solubilization of the metal species under its ionic forms by the action of a strong 
acid or a strong base. Usually, impurities remain insoluble and are removed from 
the mixture.

The metal ions remaining in solution are then concentrated by solvent (water) 
evaporation before further treatment for the precipitation. When the mineral 
contains one major species, single MO particles are produced, but for more complex 
ore, composite materials can be obtained [35, 36].

3. Preparation and stability of metal oxide nanofluid

3.1 Preparation

Preparation of NFs is the most challenging step, as far as the experimental stud-
ies with NFs are concerned. This is so because nanofluids need special requirements 
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including stable suspension, low agglomeration of particles, and no chemical 
change of the fluid.

3.1.1 Preparation using direct method or one-step approach

One-step technique (or direct approach) consists in formulating the nanofluid 
right after their synthesis. The literature reports two major approaches including 
direct evaporation and the laser ablation method. In either approach, the nanofluid 
is obtained after a transition from the gas to solid phase [37, 38].

3.1.2 Preparation using two-step method approach

Two step approach is designed in a manner that the surface of MO-NPs is 
sufficiently wet so to mitigate the particle impingement [39]. This is done by either 
using mechanical mixing [40] or sonication or the combination of both [41, 42] as 
shown in Figure 1.

During the mechanical mixing, the large flocs are broken down and the indi-
vidual particles are kept separated from each other. During the sonication stage, 
the ultrasound waves, by stretching the molecular spacing of fluid, creates cavities 
within, which cause subsequently the chemical bonds to break [44]. However, due 
to the intrinsic properties of MO-NPs, a poor dispersion is often yielded which 
is mitigated by either extending the mixing time, adding few drops of acidifying 
agents [45] or even bubbling gas during the preparation [43].

3.2 Stability of MO-NFs

3.2.1 Monitoring the stability of NFs

3.2.1.1 Sedimentation and centrifugation method

Sedimentation method is the simplest and most straightforward method to 
investigate the stability of a nanofluid. A fixed volume of nanofluid is transferred 
into a graduated test tube and observed over the time. Figure 2 shows the sedimen-
tation of alumina-based NFs upon increasing the load in NPs.

The monitoring of the volume of deposited NPs showed that a load in alumina-
NP of 0.05 wt.% was sufficient to give a stable nanofluid. The literature reports 
similar results, in which no or little visual sedimentation of particles can be 
observed from the naked eye [46].

Figure 1. 
Preparation of polymer-based NFs; Adapted with permission from [43]. Copyright (2019) American Chemical 
Society.
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3.2.1.2 Spectrophotometric analyses

This approach relies on the intensity of absorption when the light passes through 
a target sample. As shown in Figure 3, Ngo et al. monitored the stability of alumina-
based nanofluid by combining colorimetry and spectrophotometry [47].

3.2.1.3 Other monitoring methods

Another straightforward approach for monitoring the nanofluid stability is to 
measure the particle size at different time intervals. This could be achieved by either 
using scanning/transmitting electron micro- scope (SEM/TEM) or zeta potential 
[48]. SEM/TEM allows to directly visualize the distribution of particle size and the 
evolution of particle coagulation. Easy and fast, SEM/TEM does not require separa-
tion of NP from the solvent [49].

As far as colloidal suspensions are concerned, Zeta potential defines the  
electro kinetic potential in a nanofluid. It indicates the interaction energy between 

Figure 2. 
Sample pictures of water-based NFs prepared using alumia oxide NPs and ethylene glycol as BF.

Figure 3. 
Monitoring alumina-based NFs stability using UV-Vis spectroscopy and 1-(-2pyridylazo)-2-naphthol, PAN. 
Adapted with permission from [47]. Copyright (2020) American Chemical Society.
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particles. High absolute value of zeta potential means stronger repulsive force 
between NPs, and hence indicates better stability of nanofluid.

3.2.2 Enhancing the stability of nanofluid

The stability of NF is fully acquired when there is a minimization of the surface 
area of the NPs dispersed in the solution. To prevent the particle agglomeration, 
an energy barrier must be created to prevent them from passing the unstable to 
stable energy state. This could be performed by (a) by addition of acidic or alkaline 
materials, (b) altering the preparation step, and (c) choosing a proper BF [50–52].

Figure 4 shows the influence of the preparation step of nanofluid stability.
The results showed that the acidity of the solution decreases regardless the 

preparation method. However, combing both the sonication and the magnetic 
stirring could prolong the stability of the nanofluid. Furthermore, Nguele et al. [43] 
and later Ngo et al. [47] reported that bubbling gas during the preparation could 
further enhance the stability regardless the type of base fluid (Figure 5).

The average decrease in acidity of about 20 % from the initial value (pH =5.4) 
was observed throughout the preparation stage when CO2 gas, which contrasts 
with an increase in pH twice higher when O2 was bubbled. Regardless the reason 
pertaining to the increase in pH (i.e., carbonation for CO2 bubbling and radical 
formation for O2 bubbling), the surface modification of NP and thus the stability is 
enhanced.

The addition of dispersants is an alternative for enhancing the stability of NFs 
[48, 50, 53]. These dispersants attach to the surface of the NP due to the mutual 
affinity. In addition, the tail of the attached dispersant works as a steric barrier, 
which prevents the particles from agglomerating. Such effect, known as steric 
hindrance, inhibits the coagulation of NPs in the suspensions (Figure 6).

Figure 4. 
Influence of preparation step on the stability of nanofluid; the nanofluid consists in Si-NP dispersed in an 
aqueous polymeric solution, Reprint with permission from [43] Copyright (2019) American Chemical Society.
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4. Application of MO-NFs to fossil, gas storage and renewable energy

4.1 Fossil energy and enhanced oil recovery (EOR)

4.1.1 Tertiary oil recovery

Improved oil recovery (IOR) or enhanced oil recovery (EOR) are two terms 
used loosely to describe the improvement of oil recovery after both the primary 
and the secondary stages of oil production become economically unattractive 
or technically not feasible. In principle, IOR is the general term to designate any 
implemented means after secondary process that increases considerably the amount 
of oil recovered. On the hand, EOR defines a specific technique (or a combination 
of techniques) implemented to decrease the residual oil.

Figure 5. 
Influence of gas bubbling on the stability of nanofluid; the nanofluid consists in Si-NP dispersed in a deionized 
water.

Figure 6. 
Influence of BF on the stability of nanofluid at 25oC; the nanofluid consists in Si-NP dispersed in a polymer 
(PVOH) solution prepared following two-step approach using CO2 bubbling.
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EOR methods are grouped into thermal and non-thermal methods. Thermal 
methods are the most advanced techniques among EOR methods and are best suited 
for heavy oils and tar sand formations. In these methods, the heat is supplied to the 
reservoir in form of steam or fire, which favors the vaporization of stranded oil. The 
major drawbacks associated to thermal-EOR pertain to the geometry and the petro-
physical properties of the candidate formation [54].

Non-thermal methods encompass techniques that reduce the interfacial ten-
sion (IFT) between the stranded oil and resident fluids and the viscosity of the 
oil. Among the most prominent methods, gas-EOR stands out because of it offers 
the possibility to sequester greenhouse gases. During a gas-EOR, the injected gas 
dissolves into the oil after a first (or multiple) contact leading to a foamy oil, whose 
viscosity is lower than that of the original oil [55]. Often, gas-EOR is challenged, in 
part by, the deposition of heavy fractions [56–58].

If the slug is a surfactant [59], a polymer [60], or even a micellar solution [61], 
the oil is produced by reduction of IFT or wettability. Major problems associated to 
surfactant-EOR are the loss of chemical, phase partitioning and trapping, and the 
slug by passing. Unlike chemical-EOR, microemulsion-EOR relies on the reduc-
tion of the mobility ratio. Microemulsions, kinetically more stable than emulsions, 
are potentially viable because of the ultra-low IFT and their high interfacial area 
[62–64].

Microbial-EOR uses the potential of microbes to yield either bio-surfactant, 
slimes (polymers), biomass and/or gases such as CH4, CO2, N2 and H2 as well as 
solvents and certain organic acids [65, 66]. Oil recovery mechanisms in microbial-
EOR are like those of the classic chemical methods. This includes IFT reduction, 
emulsification, wettability alteration, improved mobility ratio, selective plugging, 
viscosity reduction, oil swelling and increased reservoir pressure due to the forma-
tion of gases [67, 68].

Nano-EOR has been reported to be the next generation of EOR, which is  
evidenced by the wealth in literature covering the topic [69–75]. Therefrom, it 
appears that the mechanisms of oil production using MO-NPs are (1) wettability 
and the IFT alteration, (2) advanced drag reduction, and (3) the decrease of the 
mobility ratio.

4.1.2 EOR mechanisms in respect of MO-NPs

4.1.2.1 Wettability and IFT alteration

Wettability is the preferential tendency of one fluid to wet (or to spread) onto 
a surface [76]. To produce more oil, the wettability of the oil-water-rock system 
should be shifted from oil-wet to a water-wet or strongly water wet condition. 
MO-NPs can adsorb onto the rock surface and form a nanotexture, which contrib-
utes to wettability alteration [77]. However, these mechanisms are affected by the 
formation salinity (Figure 7).

At a low salt concentration, the activity coefficient of the salt increases in a 
manner that the salt molecules sit within the oil phase. With the presence of salt 
at the interface, the excess surface concentration turns positive from which results 
a low contact angle (Figure 7a) and higher IFT (Figure 7b). An oil production 
scenario in which the salt concentration is large, the salting-out effect seems to 
prevail [47].

MO-NPs are depleted at the interface and transferred back to oil phase. This 
breaks the oil-water interface adsorption, hence a high contact angle. The same 
behavior could be extended when two immiscible liquids (oil and water) meet each 
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other. The molecules at the surface of both of those liquids become unbalanced 
forces of attraction, which cause the IFT to rise.

Adding MO-NPs could not only reduce the IFT but also the contact angle. For 
example, it was found adding only 0.25 wt.% of MO-NP to a polymeric BF, the 
contact angle as well as the IFT between the nanofluid and heavy oil (API 16o) 
decreases about 50% from its initial value (Figure 8).

4.1.2.2 Improve mobility ratio of injected fluids

The mobility ratio of water to oil is one of the most critical factors to influence 
water flood efficiency. When mobility is greater than one, it is considered unfavor-
able as the displacing fluid is more mobile than oil in the porous medium; the slug 
tends to bypass oil and early breakthrough is experienced at the producers (chan-
neling). At a mobility ratio of less than one, water is less mobile than oil leading to 
better displacement and recovery of oil.

The mobility ratio can be decreased either by reduction of the viscosity of the 
resident oil or by increasing that of the nanofluid. As shown in Figure 9, increas-
ing the load in MO-NP (SiO2-NP in this experiment) prompted an increase in oil 
recovery in a waterflooded sandstone.

Figure 7. 
Influence formation salinity on wettability and IFT alteration. (a) Wettability alteration modified from 
adapted with permission from [47]. Copyright (2020) American Chemical Society. (b) IFT alteration; this 
study.

Figure 8. 
Influence of type of MO-NPs on IFT alteration.
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The experiments were conducted using light mineral (specific density 0.838, 
viscosity of 26 cP at 25oC) and light crude oil (specific density 0.860 viscosity of 
9.54 cP at 25oC). It was found a higher production when light mineral oil was used. 
This is because of the difference in native composition including a low acid number, 
a high concentration of asphaltene.

4.1.2.3 Pore channels plugging

Pore channels plugging can be caused by two mechanisms: mechanical entrap-
ment and log-jamming. These mechanisms were evaluated in this study by the 
injection of Si-NP dispersed in aqueous polymeric solution. Two types of forma-
tions were considered including a homogeneous formation with a uniform porosity 
and a heterogeneous formation with contrasted porosity. The results are shown in 
Figure 10.

The production in homogeneous formation decreases monotonically with the 
load in Si-NP, while a reverse trend was observed for a heterogeneous model. In a 
homogeneous formation, the increase in MO-NP load causes the plugging of pore 
throats, whose size are smaller than the average size in MO-NP dispersed (log jam-
ming). As the nanofluid travels within the formation, the narrowing of flow area 
and the differential pressure led to a velocity increase of the nanofluid.

Figure 9. 
Relationship between MO-NP viscosity and oil recovery factor.

Figure 10. 
Oil recovery using Si-NPs in contrasted sandstone formations.
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The smaller molecules will flow faster than causing accumulation of MO-NP 
at the entrance of the pore throats. For larger load, there is a possibility of having 
a plugging at the entrance of the throat due to the size of the nanofluid (mechani-
cal entrapment). For formations with contrasted porosity, the log-jamming or 
mechanical entrapment could be beneficial.

As the pore is plugged, there is a pressure build in the adjacent pore throat, forc-
ing out the oil trapped in the pore throat or the water to move to a layer with lower 
porosity. This can be considered as temporary log-jamming. This phenomenon is 
mainly governed by the concentration and size of NPs, flow rate and the diameters 
of pore throats (Figure 11).

4.1.2.4 Preventing asphaltene precipitation

Asphaltene precipitation can cause severe problems due to the deposition inside 
the reservoir, at the wellhead, and/or inside the pipelines. However, it is believed 
MO-NPs have the potential to inhibit the adsorption and thus delay the deposition 
[78, 79]. The particles, in contact with the asphaltenes molecules can minimize the 
interactions asphaltene-asphaltene and/or asphaltene-rock leading therefore to a 
mitigation (Figure 12).

In this regard, MO-NPs are suitable candidates because their inherent proper-
ties. In this study, asphaltenes were extracted from dead heavy crude oil (API 16o) 
as per the procedure discussed by Goual [80]. An asphaltenic solution of 1wt.% was 
prepared by diluting extracted asphaltenes with toluene. Two set of experiments 
were conducted at room temperature including porosity impairment (Figure 13a) 
and adsorption on sandstone (Figure 13b).

Figure 11. 
Relationship between the displacement efficiency, porosity impairment and type of MO-NPs.

Figure 12. 
Conceptual approach of asphaltene inhibition during CO2 injection.
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It could be seen that the porosity of the waterflooded sandstone decreases upon 
injection CO2 (Figure 13a). Adding MO-NPs to the same water, the impairment could 
be improved with lowest obtained for Al-NP. This is so because of the higher adsorption 
capacity of MO-NPs, which interacts more strongly with the asphaltenes. The influence 
of MO-NP is noticeable as evidenced by the decrease in adsorption (Figure 13b).

4.2 Application of MO-NFs to CO2 Sequestration

As of 2018, 70% of the global warming was subsequent to the release of green-
house gases (GHG) to the atmosphere, with fossil resources contributing to up to 37.1 
billion metric tons. The total concentration in carbon dioxide, CO2, in the atmosphere 
was reported to hit its highest level ever (407 ppm) million. Great efforts should be 
invested to reduce CO2 concentration to an acceptable value. Carbon dioxide capture, 
utilization and storage (CCUS) technology of which Carbon capture and storage 
(CCS) technologies have a potential to reduce CO2 emissions to the atmosphere due to 
the huge global capacity for underground storage [81]. With 21 large-scale CCS proj-
ects operating worldwide, the volume of storable CO2 is estimated to be up to 37 Mtpa.

Yet more CCS projects are needed to reach the Paris 2 °C target, which is partly due 
to the leakage of the stored CO2 through the faults of the formation within which the 
gas is trapped [82, 83]. A typical CCS project encompasses the capture, the compression 
and transport, and the injection in the designed formation. The success of a gas storage 
depends primarily on the trapping mechanisms occurring during CO2 containment.

A trapping mechanism refers a process (either physical or chemical), which 
improves the sequestration of CO2. Among the different known trapping mecha-
nisms, three processes stand out including residual, solubility and mineral trapping 
[84]. During the residual trapping, CO2, injected at its supercritical state, displaces 
the fluids as it moves through the porous rock. As CO2 moves upward due to the 
buoyancy difference, some of the CO2 will be left behind as disconnected droplets 
within the pore throats, which are immobile.

This mechanism, however, is challenged by the faults present the geological 
formation (cap rock). The fault could crack due to the over-pressurization of the 
aquifer leading to a leak in CO2 Solubility trapping involves the dissolution of super-
critical CO2 in the salty water (brine), which leads to a fluid denser than the native 
fluids. From the difference in buoyancy, the resulting fluids force CO2 to sink at the 
bottom of formation over time. The problem, in here, is that not only the solubility 
of CO2 in brine is low, but it reaches quickly its saturation causing thereby an over 
pressurization of the aquifer.

Figure 13. 
Asphaltene mitigation by addition of different types of MO-NPs dispersed into water. (a) Porosity impairment 
after CO2 injection. (b) Static adsorption after CO2 injection.
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Mineral trapping, which is the slowest of the processes, is the final phase. It 
results from the geochemical reactions of carbonic acid (H2CO3) and the native 
minerals of the formation. This trapping mechanism is dependent on the rock min-
erals, the pressure of the gas, temperature and porosity of the host formation [85]. 
However, if mineral trapping is hastened, it may weaken the cap rock and the over-
lying formation causing a serious leak in CO2. From above, it appears that the extent 
to which the CO2 reacts with the formation water (dominated by its solubility) will 
vary according to factors such as pressure, temperature, the solubility of CO2, the 
fluid and fluid/rock chemistry. The selection of a proper MO-NF could enhance the 
trapping mechanisms, and ultimately ensure an efficient CO2 sequestration.

This is potentially achieved by injecting a nanofluid that buffers the acidity 
within the host formation (Figure 14b), but more importantly will yield a gel-like 
material (Figure 14a), denser than the resident fluid in the host formation.

In this study, it was found that formulating a nanofluid from Si-NP and poly-
vinyl alcohol under CO2 bubbling would lead to the formation of silicated gels. 
Increasing the load in Si-NP yields a rigid gel (Figure 15).

The results suggest that condensation of SiO2-NF depends rather on the load 
in Si-NP than the concentration in PVOH. However, further investigations are 
required to understand the extent to which the host formation-fluid chemistry 
alters the solubility of CO2, and the host formation parameters (fluid chemistry, 
temperature, and pressure) alter the gel formation.

4.3 Renewable energy production

4.3.1 Overview of photo thermal energy production

Up to date, the primary energy supplied for human needs comes from fossil and 
nuclear resources. These can be harmful to environment because they cause global 
warning, ozone layer depletion, biosphere and geosphere destruction, and ecologi-
cal devastation [86]. These drawbacks have geared the attention towards cleaner 
energy. Solar energy is one of the most promising amongst them not only because 
its exploitation can fulfill the entire world demand in energy, but more importantly 
it is one of the cleanest source or energy [87].

Figure 14. 
Conceptual enhancement of CO2 sequestration by Si-NF injection.
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Solar thermal energy consists in transforming photons into heat, which is col-
lected and distributed by the means of devices called solar collectors [88]. A solar 
system usually has at least three components including the solar collector, a heat 
exchanger, and a thermal storage system (Figure 16).

Solar collectors use working fluids exposed to the solar irradiation. One of the 
most attractive candidates working fluid is water, given its price, its availability, 
and its eco-friendliness. The optimal temperature that can be obtained from a solar 
system depends on the type of solar collectors, which include flate-plate, parabolic 
through and parabolic dish collectors [89, 90].

4.3.2 Relevance of MO-NPs in solar thermal systems

The efficiency of a solar thermal systems is strongly related to the thermal effi-
ciency of the working fluid, which is the ratio of useful energy effectively transferred. 
Ideal working fluids should exhibit peculiar thermophysical properties such as low 
viscosity, high thermal conductivity and high specific heat capacity, in addition to 
chemical stability [91]. The interest of MO-NPs for solar applications lies on their 
ability to enhance of the properties, which results in a significant improvement of the 
outlet temperature and the net power produced within a solar thermal system.

The literature reports that MO nanofluids have a higher thermal conductivity 
than that water taken alone [92]. The replacement of water as Heat Transfer Fluid 
(HTF) by a SiO2-water based nanofluid has demonstrated the ability to enhance the 
performance of a FP collector through the reduction of the viscosity, the enhance-
ment of the specific heat capacity and the rise of the temperature of the HTF at the 
outlet temperature of the solar system [93].

Figure 15. 
Silicated-gel formed from Si-NP and polyvinyl alcohol without (a) porous medium and (b) in a porous 
medium.

Figure 16. 
Schematic representation of a thermal solar system for water heating applications.
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A theoretical model assessing the performance of a solar thermal system using 
Al2O3-water based nanofluid as Direct Absorber Solar Collector (DASC) has 
shown an increase of 10% of the collector efficiency compared to water-based flat 
plate solar collectors operating in the same conditions [94]. However, the optical 
performance of MO-NF as DASC depends of the volume fraction of MO-NPs [95]. 
MO-NP can also be associated with photovoltaic devices within hybrid Photovoltaic 
Thermal (PV/T) systems.

In such configurations, the electrical and thermal energy are simultaneously 
generated by a photovoltaic module and the working fluid, respectively [96]. 
Furthermore, nanofluids, exhibiting magnetic properties, offer the possibility 
to increase the thermal conductivity of a working fluid upon the application of a 
magnetic field [97, 98]. Nano ferrofluids, standing amongst, were found to improve 
significantly the efficiency of the photothermal or PV/T systems [99].

However, the major challenge with such types of nanofluids is the formulation of 
stable working fluid. This is so because nano ferrofluids have the propensity either 
to agglomerate in solution [100] or to suffer from chemical instability [101]. The 
combination of Fe3O4 with other MO-NP in composite materials usually allows to 
overcome those limitations. Therefore, exploration of the thermophysical features 
of composite MO nanofluids is an interesting direction aiming at the optimization 
of solar thermal systems.

5. Concluding remarks

The present chapter has covered the topic of metal oxide nanoparticles (MO-
NP) and nanocomposites (MO-NCP) and their application for carbon capture 
utilization and storage (CCUS). It was shown that MO-NP (or MO-NCP) can be 
synthesized using physical, chemical, and biological methods. Each approach 
is tuned to give a MO-NP (or MO-NCP) with specific features. Regardless the 
production route, it was highlighted the stability of the nanofluid was the main 
challenge.

In respect of CCUS application, the most prominent results were obtained from 
silica (SiO2) and alumina (Al2O3) oxides. SiO2-NP could alter the wettability in a 
manner to increase the production of heavy oil. Dispersed into polymeric base fluid, 
it was shown SiO2-NP could yield a gel-structure, which can plug the large voids of 
formation, leading to either an increment of oil production or prevent the leakage 
of sequestered gases. On the other, Al2O3-NP and its silicate composite could delay 
the deposition in heavy materials during the oil production using carbon dioxide 
(CO2) injection. On the other hand, it was shown that ferrous and ferric nanofluids 
could improve the heat transfer of the fluid, making them good candidate for solar 
thermal energy.
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