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Chapter

Exposure to Xenobiotics and 
Gene-Environment Interactions  
in Autism Spectrum Disorder:  
A Systematic Review
João Xavier Santos, Célia Rasga and Astrid Moura Vicente

Abstract

Heritability estimates indicate that genetic susceptibility does not fully explain 
Autism Spectrum Disorder (ASD) risk variance, and that environmental fac-
tors may play a role in this disease. To explore the impact of the environment in 
ASD etiology, we performed a systematic review of the literature on xenobiotics 
implicated in the disease, and their interactions with gene variants. We compiled 
72 studies reporting associations between ASD and xenobiotic exposure, includ-
ing air pollutants, persistent and non-persistent organic pollutants, heavy metals, 
pesticides, pharmaceutical drugs and nutrients. Additionally, 9 studies reported 
that interactions between some of these chemicals (eg. NO2, particulate matter, 
manganese, folic acid and vitamin D) and genetic risk factors (eg. variants in the 
CYP2R1, GSTM1, GSTP1, MET, MTHFR and VDR genes) modulate ASD risk. The 
chemicals highlighted in this review induce neuropathological mechanisms previ-
ously implicated in ASD, including oxidative stress and hypoxia, dysregulation 
of signaling pathways and endocrine disruption. Exposure to xenobiotics may be 
harmful during critical windows of neurodevelopment, particularly for individu-
als with variants in genes involved in xenobiotic metabolization or in widespread 
signaling pathways. We emphasize the importance of leveraging multilevel data 
collections and integrative approaches grounded on artificial intelligence to address 
gene–environment interactions and understand ASD etiology, towards prevention 
and treatment strategies.

Keywords: autism spectrum disorder, xenobiotic exposure, early-life exposure, 
genetic risk factors, gene-environment interactions, exposome

1. Introduction

Many neuropsychiatric disorders are thought to have a multifactorial etiology, 
with interactions between genetic susceptibility and environmental factors likely 
contributing to their onset and progression [1]. ASD has a particularly complex 
genetic architecture, with implicated genes accumulating thanks to more accessible 
and less costly high-throughput genotyping and sequencing technologies. Between 
15 to 25% of ASD cases occur in the context of clinically defined monogenic 
syndromes and chromosomal rearrangements [2], and therefore have a genetic 
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diagnosis. However, most patients still do not have a clearly identified genetic cause. 
Genome-wide association studies (GWAS), carried out in large cohorts using SNP 
arrays, did not find consistently associated ASD genes [3], but showed that individ-
uals with ASD carry a significantly higher burden of de novo Copy Number Variants 
(CNVs) than expected [4, 5]. More recently, exome and genome sequencing studies 
have been detecting a growing number of loss-of-function Single Nucleotide 
Variants (SNVs) in patients [5, 6]. Some of these SNVs are rare de novo genetic vari-
ants with high penetrance, but most have low to moderate effects, indicating that 
a multiplicity of common, low effect variants are discrete contributors to ASD risk 
variance. These CNVs and SNVs map to dozens of different candidate genes, which 
frequently cluster in neurobiological pathways (e.g. synaptic processes, behavior 
regulation, cognition and neuronal signaling) as well as in chromatin modification 
and gene expression regulation processes [4–7], providing evidence for the biologi-
cal mechanisms disrupted in the disorder.

Recent ASD heritability estimates vary between 64 and 85% [8, 9], and incom-
plete concordance rates between monozygotic twins are reported [10, 11]. These 
observations suggest that ASD, and its hallmark clinical heterogeneity, is not solely 
determined by genetics, and that environmental factors may contribute to its risk. 
Due to the extreme vulnerability of the developing brain to environmental stressors 
[12], the impact of environmental factors in this neurodevelopmental pathology is 
of particular concern. In this context, the environment comprises all non-genetic 
factors that can influence the onset or progression of the disease. Generally, envi-
ronmental factors include xenobiotics, i.e. any natural or synthetic foreign agent 
that enters the organism through ingestion, inhalation, dermal absorption, injec-
tion or by placental transfer, and also other external factors like medical events or 
lifestyle, psychosocial and cultural variables [13, 14].

From conception to death, individuals are to some degree shaped by an ever-
changing environment. However, its impact in health and disease through the life 
course is still mostly unexplored. Given the early onset of ASD, environmental expo-
sure during the prenatal period to the second year of life is of particular relevance, 
while at later stages it may still modulate disease progression and possibly treatment 
efficacy [13, 15]. In this review we focus specifically on the role of xenobiotics in 
ASD, and on the impact of interactions between genetic variants and xenobiotic 
exposure. Literature reporting xenobiotic exposure in ASD is already extensive. We 
expect this systematic review may guide and encourage further studies to elucidate 
the impact of gene–environment interactions in ASD.

2. Methods

We systematically reviewed studies in two categories: (a) studies report-
ing xenobiotic exposure implicated in ASD; (b) studies reporting interactions 
between the previously defined xenobiotics and any genetic factor. We fol-
lowed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) standard checklist [16]. Systematic reviews of the literature were 
performed successively for categories (a) and (b).

2.1 Information sources and search strategy

PubMed and EBSCO were queried from inception to November 2020, for 
records published in peer-reviewed English-language journals.

For records in category (a) PubMed and EBSCO were interrogated using 
updated and dropped clinical terms (“autis*”; “asperger” and “pervasive 
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developmental disorder”) in combination with the terms “environment*”, or 
“xenobiotic”, or “toxin” or with terms for xenobiotics’ names (“antidepressants”; 
“air pollutants”; “bisphenol A”; “folic acid”; “metal”; “PBDE”; “PCB”; “pesticide”; 
“PFC”; “phthalate”; “vitamin D”). Regarding category (b) the query was done 
using the same clinical terms in combination with “gene–environment” term and 
with terms for xenobiotics names identified in previous search.

2.2 Screening and eligibility criteria

All identified records were imported to the Mendeley reference manager. 
PRISMA flowcharts for (a) and (b) categories are shown in Figure 1. For record 
screening, the following exclusion criteria were applied: 1) review articles and letters 
to editor; 2) articles where the participants’ diagnosis of ASD was not confirmed 
according to criteria from The Diagnostic and Statistical Manual of Mental Disorders 
III, IV or 5 editions or from the International Classification of Diseases 9 or 10 edi-
tions; 3) articles not related to exposure to xenobiotics (category (a)) or not related 
to gene–environment interactions (category (b)); 4) articles focusing only on animal 
models, because despite the existence of several robust animal models that provide 
insight into the biological mechanisms and therapeutics for the disorder, these are 
unable to fully comprise the behavioral spectrum; 5) articles reporting associations 
between vaccination or thimerosal exposure and ASD (category (a)), because a role 
for vaccination and exposure to thimerosal preservative has been discredited [17].

After screening, for category (a) eligible articles were included in the final 
results if they reported statistically significant associations between xenobiotic 
exposure and ASD risk. Prenatal to early postnatal (i.e. preconception to the second 

Figure 1. 
PRISMA flowcharts for (1A) the identification of articles reporting associations between xenobiotic exposure 
and ASD; (1B) the identification of articles reporting associations between gene–environment interactions 
and ASD.
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year of life) and later childhood exposure were considered separately. For category 
(b) eligible articles were included if they implicated gene–environment interactions 
in ASD risk, as long as the environmental component was the exposure to any of the 
xenobiotics’ identified in category (a).

3. Results

3.1 Xenobiotic exposure associated with ASD

Figure 1A shows the flowchart for the identification of relevant publications. 
After removing duplicates, a total of 4108 unique records were screened using the 
defined exclusion criteria, resulting in 130 eligible research papers. Application of the 
inclusion criterion (i.e. to report an association between exposure and ASD) resulted 
in 72 articles selected to the final list of publications [18–89], shown in Table S1.  
From the 72 articles included, 51 (70.8%) reported prenatal to early postnatal expo-
sure (up to 2 years of age), while 24 (33.3%) reported later childhood (from 2 years) 
to early adulthood exposure (Table S1). Three records reported association of both 
prenatal/early postnatal and childhood exposure with ASD [20, 28, 81].

The identified xenobiotics were categorized in seven major groups: Air 
Pollutants, Toxic Heavy Metals, Non-Persistent Organic Pollutants (non-POPs), 
Persistent Organic Pollutants (POPs), Pesticides, Pharmacological Drugs and 
Nutritional Factors (Figure 2). POPs include bisphenol A and phthalates, while 
non-POPs include polybrominated diphenyl ethers (PBDEs), polychlorinated 
biphenyls (PCBs) and perfluorinated compounds (PFCs). The first five groups 
comprise ubiquitous toxins present in air, daily use products and the food chain, 
while exposure to the last two groups occurs through ingestion.

Historical proof-of-concept evidence for a role of xenobiotic exposure in ASD 
comes from three studies, which reported for the first time a very high prevalence 
of the disorder among subjects prenatally exposed to teratogens. Specifically, 
these studies reported an ASD prevalence of 4% among individuals exposed to 
thalidomide [63], of 8.8% in subjects exposed to valproic acid [59] and of 21.4% in 
individuals exposed to misoprostol [64] (Table S1).

Evidence supporting an association with ASD is stronger for exposure to air 
pollutants and pesticides, as all studies examining these toxins report an increased 
risk for the disorder (Table S1). Usually, these studies gather air quality or pesticide 
application data for large geographical areas and, by applying geocoding methods, 
investigate how exposure patterns relate to ASD prevalence. Each of these studies 
includes, at least, one hundred cases, with larger ones examining exposure in thou-
sands of subjects [18, 22, 23, 29, 30, 52]. Environmental agencies are instrumental 
for collection of airborne pollutant and pesticide data in large populations from 
geographically defined areas, enabling valuable geocoding approaches. Because heavy 
metals can circulate in the air, large population geocoding studies, involving hundreds 
of subjects, are also applied to assess exposure to these chemicals [31, 32, 34]. Some 
studies quantifying exposure to heavy metals, as well as those that analyze POPs, 
non-POPs or vitamin D, need to resort to biological matrices. Because this data is so 
labor intensive to collect, most evidence comes from small datasets of less than one 
hundred subjects. For instance, this review identified 4 studies assessing heavy met-
als in biological matrices like hair, nails and teeth, all carried out in small numbers of 
subjects [33, 35, 36, 38]. Regarding POPs and non-POPs, evidence for an association 
with ASD is still limited, as fewer reports addressed these chemicals (Table S1). Two 
studies provide evidence for an increased risk of ASD from prenatal exposure to PCBs 
[43, 44] while, in other two, PFCs prenatal exposure was found to decrease ASD  
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risk [45, 46]. Concerning PBDEs, the only study reporting associations with the 
disorder observed a decreased risk due to exposure to BDE-153 and BDE-100 
congeners, but an increased risk, only in girls, due to exposure to BDE-47 [42]. 
For bisphenol A and phthalates, two small size studies for each chemical report 
an increased risk of ASD associated with childhood exposure [39–41]. All studies 
on antidepressants report an increased risk of ASD (Table S1) and, as these usu-
ally resort to medical records to assess exposure, include thousands of subjects. A 
decreased risk of the pathology due to folic acid supplementation is observed by 
assessing medical records from large samples [68, 69]. However, two recent small 
size reports, which measured folic acid levels in maternal serum, show an increased 
risk of ASD associated with prenatal folic acid intake at very high concentrations 
[70, 71]. In case–control datasets a decreased risk for the disorder is associated 
with higher prenatal and childhood blood concentrations of 25-hydroxyvitamin 
D, the main circulating form of this nutrient, with mean serum concentrations 
values ranging from 9.9 ng/ml to 28.5 ng/ml in cases and 15.0 ng/ml to 40.1 ng/ml in 
controls [72–79, 83, 85–88]. Most of these studies comprise less than one hundred 
subjects, however 3 studies examining dried blood spots [84, 86] or medical records 
[81] were carried out in hundreds or thousands of subjects.

3.2 Gene-environment interactions associated with ASD

Figure 1B shows a flowchart for the identification of relevant publications. 
The query revealed 392 unique records, of which 15 remained after application of 

Figure 2. 
Number of studies reporting negative and positive associations between exposure to xenobiotics and ASD, 
including prenatal to early postnatal and childhood to early adulthood exposures. NO2 – Nitrogen dioxide; 
O3 – Ozone; PM2.5 – Particulate matter with a diameter less than 2.5 μm; PM10 – Particulate matter 
with a diameter between 2.5 and 10 μm; SO2 – Sulfur dioxide; PAHs – Polycyclic aromatic hydrocarbons; 
BPA – Bisphenol a; PBDEs – Polybrominated diphenyl ethers; PCBs – Polychlorinated biphenyls; PFCs – 
Perfluorinated compounds; OC pesticides – Organochlorine pesticides; OP pesticides – Organophosphate 
pesticides.
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exclusion criteria. Nine research articles reported gene–environment interactions 
in ASD (Table 1). The environmental component of these interactions included 
air pollutants (PM10, NO2 and O3), PCBs, manganese and nutritional factors 

Study Genetic factor Xenobiotic Ncases|Ncontrols Main conclusion

Schmidt et al 
2012 [65]

677 C > T 
genotype in 

MTHFR

Folic acid 272|154 Daily prenatal maternal folic 
acid intake >600 μg was 

associated with a reduced 
ASD risk when the mother, 

the child or both had the 
low-activity 677 C > T 

variant.

Volk et al 2014
[21]

rs1858830 CC 
genotype in 

MET

NO2 and 
PM10

251|156 Carriers of the CC genotype 
with higher prenatal 

exposure to NO2 or to PM10 
were at increased risk 

of ASD when compared 
to subjects with CG or 

GG genotypes and lower 
exposure.

Rahbar et al 
2015 [90]; and 
Rahbar et al 
2018 [91]

Ile/Ile genotype 
of GSTP1

Manganese 100|100 [90]; 
163|163 [91]

Among carriers of Ile/Ile 
GSTP1 genotype, those 
with blood manganese 

concentrations >12 μg/L had 
higher risk of ASD.

Schmidt et al 
2015 [92]

rs10741657 AA 
genotype in 

CYP2R1

Vitamin D 384|234 AA genotype associated 
with a decreased ASD risk 
when maternal vitamin D 

intake was <400 IU.

Coşkun et al 
2016 [93]

rs2228570 TT 
genotype in 

VDR

Vitamin D 237|243 Trend for an association 
of the TT genotype with 

elevated circulating 25(OH)
D levels in children with 

ASD.

Kim et al  
2017 [94]

Copy number 
duplications 

burden

O3 158|147 Higher burden of CNVs, 
namely duplications, and 

O3 exposure increases ASD 
risk.

Mandic-Maravic 
et al 2019 [95]

GSTM1-null 
genotype

Any 
medication

113|114 Maternal use of medication 
during pregnancy associated 

with high ASD risk in 
offspring with a GSTM1-

null genotype.

Bach et al.  
2020 [96]

GSTM1-null 
genotype

PCB-153 169|169 Positive association between 
PCB-153 levels and ASD risk 
among carriers of GSTM1-

null genotype, when 
adjusting for eating yogurt 
and fish, and paternal age 

at birth.

25(OH)D – 25-hydroxyvitamin D; CYP2R1 – cytochrome p450 2r1; GSTM1 – glutathione S-transferase Mu 1; 
glutathione S-transferase Pi 1; IU – International Units; MET – MET proto-oncogene, receptor tyrosine kinase; 
MTHFR – methylenetetrahydrofolate reductase; VDR – vitamin D receptor.

Table 1. 
Gene–environment interactions reported in ASD. Listed are gene-environment interactions pairs associated 
with ASD as identified by the systematic literature review using PRISMA guidelines.
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(folic acid and vitamin D), while the genetic component was a specific genotype 
or, in one study, the overall burden of copy number duplications (Table 1).

Most of the genes assessed in these studies are involved in the metabolism of 
xenobiotics. GSTM1 and GSTP1 encode glutathione S-transferases (GSTs), which 
catalyze the conjugation of substrates with reduced glutathione, easing their clear-
ance from the organism. VDR encodes a nuclear receptor of vitamin D, whereas 
CYP2R1 encodes a hydroxylase responsible for the conversion of this nutrient to 
its main circulating form (25(OH)D). MTHFR encodes a rate-limiting enzyme 
involved in folic acid metabolism. Contrary to the other genes, the MET gene is not 
directly involved in the metabolism of xenobiotics, but encodes a pleotropic tyro-
sine kinase involved in brain development through the MET signaling pathway [97].

4. Discussion

4.1 Exposure to xenobiotics and ASD

4.1.1 Air pollutants, heavy metals, POPs and non-POPs, and pesticides

Five attributes that are transversal to many of the xenobiotics reviewed in this 
study, including air pollutants, toxic heavy metals, POPs, non-POPs and pesticides, 
likely account for the increased risk of ASD associated with their exposure: 1) 
ubiquitous exposure; 2) bioaccumulation potential; 3) neurotoxicity; 4) endocrine-
disrupting potential and 5) ability to cross physiological barriers.

Exposure to these toxins is ubiquitous, since they are present in the environ-
ment, in everyday household and industrial products, and in food. For airborne 
toxins, this ubiquity is exacerbated by transboundary flows of pollutants, a 
phenomenon in which toxins circulate long distances and deposit on land and 
water bodies far from their sources [98]. POPs exhibit high lipid solubility and low 
hydrophilicity, and are resistant to environmental degradation through chemical 
or biological processes, increasing their risk of bioaccumulation in human adipose 
tissue, the ecosystem and in the food chain [99]. Some air pollutants (e.g. PAHs), 
pesticides (e.g. OCs) and heavy metals (e.g. lead and organic mercury) are also per-
sistent (resistant to degradation) and bioaccumulative chemicals [99]. For instance, 
methylmercury (MeHg), one of the main sources of organic mercury, can easily 
cross the blood–brain barrier and the placenta, and bioaccumulates in the brain, 
potentially leading to mercury poisoning [100]. Conversely, non-POPs like bisphe-
nol A and phthalates are quickly excreted through feces and urine [101], but their 
presence in everyday products (e.g. water bottles and canned food, cosmetics and 
personal care products, and toys) and industrial activities is extremely widespread, 
rendering exposure to these chemicals continuous and universal.

Most of these toxins have well established neurotoxic properties [102]. Many, 
including bisphenol A, phthalates, pesticides, PAHs, PCBs, PBDEs and lead, are 
also endocrine-disrupting chemicals (EDCs), defined as any “exogenous substance or 
mixture that alters function(s) of the endocrine system and consequently causes adverse 
health effects in an intact organism, or its progeny, or (sub)populations” [103]. While 
EDCs were initially strictly defined as mimics of estrogens, androgens and thyroid 
hormones, acting as both agonists or antagonists to hormone receptors, it is now 
accepted that they act through much broader mechanisms [104]. EDCs interact 
with neurotransmitter receptors and transcriptional co-activators [104], and have 
been implicated in dysregulation of trafficking and signaling pathways [105], as 
well as of epigenetic mechanisms [106]. Early exposure to these toxins, which have 
overlapping neurotoxic and endocrine-disrupting properties, can therefore lead to 
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neurodevelopmental complications, with some coining the term neural-disrupting 
chemicals [107]. Experimental studies in humans and rodents have shown that most 
of these toxins cross both placental and blood–brain barriers [108, 109], enabling 
their neurodevelopmental toxicity. The endocrine effects of these toxins may also 
contribute to the male bias observed in ASD diagnoses. A recent systematic litera-
ture review of studies published from 1970 to 2016, concluded that many EDCs 
exhibit gender-specific effects, and that the male brain seems to be more vulnerable 
to neurotoxicity [110]. Corroborating this hypothesis, some of the studies identified 
in this review report gender-specific associations [20, 34, 42, 51].

Given the awareness regarding the hazardous health effects of exposure to these 
toxins, restrictive policies or bans on their use are often legislated. These include 
bans on the agricultural application of harmful pesticides [111], the widespread pro-
duction of bisphenol A-free baby bottles [112] and regulations on PCBs, PBDEs and 
PFCs production [113]. However, such legislations are not always fully effective. For 
instance, despite bans, exposure to POPs is still ubiquitous because of their resis-
tance to degradation [113]. Restrictions on bisphenol A use led to replacement by 
analogues (bisphenol F and bisphenol S) for which harmful effects are also reported 
[114], and are therefore regrettable substitutions. The transgenerational effects of 
these toxins are also important, as they can affect not only the exposed individual, 
but also subsequent generations, through epigenetic mechanisms [99, 104]. Most 
of the identified chemicals have been persistently used since the 1950s, leading to 
a growing environmental burden and accumulation of insults over several genera-
tions. Consequently, some authors speculate that these delayed effects may account 
in part for the steady prevalence increase in ASD reported in the last decades [115].

4.1.2 Pharmacological drugs

The increased prevalence of ASD among subjects prenatally exposed to three 
pharmaceutical drugs (thalidomide, valproic acid and misoprostol) provided the 
first strong evidence for the involvement of environmental risk factors in ASD. 
Thalidomide is an immunomodulatory drug, widely prescribed to alleviate morning 
sickness in pregnant women during the 50s, while misoprostol is a prostaglandin 
analogue used as an abortion inductor and valproic acid is prescribed for epilepsy 
and bipolar disorder. These drugs are teratogens (i.e. agents that alter the growth 
or structure of the developing embryo or fetus, causing birth defects), and likely 
induce brain damage leading to behavioral and cognitive deficits [116]. Nowadays, 
thalidomide is no longer used during gestation, while the intake of misoprostol and 
valproic acid by pregnant women is contraindicated.

We also identified 5 research articles associating maternal antidepressant intake 
during pregnancy with ASD risk, particularly for Selective Serotonin Reuptake 
Inhibitors (SSRIs). SSRIs act by increasing the extracellular levels of serotonin and 
are known to cross the placenta [117] and to be secreted through breast milk at low 
levels [118]. Increased serotonin levels have repeatedly been found in blood samples 
from ASD subjects [119]. While individual research studies report associations 
between prenatal exposure to antidepressants and ASD, a recent meta-analysis 
[120] underpins the inconsistency of overall findings. Thus, a clinical balance 
between the risks of untreated maternal depression and unclear neurodevelopmen-
tal risks of antidepressant exposure for the offspring is warranted.

4.1.3 Nutritional factors

The most encouraging results for protective factors for ASD come from studies 
examining disease risk and nutrient sufficiency. Overall, there is significant evidence 
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that folic acid and vitamin D supplementation during pregnancy and childhood are 
prophylactic for neurodevelopmental disorders.

Folic acid promotes the closure of the neural tube, reducing the risk of early 
neurodevelopmental problems: periconceptional folic acid intake prevents up to 
70% of neural tube defects, with national health agencies recommending that 
women of childbearing age take 0.4 to 1 mg folic acid daily prior and during gesta-
tion [121]. However, while the natural folate is initially metabolized in the gut, folic 
acid is mainly metabolized in the liver, where the activity of dihydrofolate reductase 
(DHFR), the enzyme that converts folic acid to its biologically active form tetra-
hydrofolate, is reduced [122]. Thus, sustained high folic acid supplementation may 
eventually become noxious due to the accumulation of unmetabolized folic acid 
[122]. In agreement, two studies have observed a higher risk of ASD when mothers 
consume extremely high levels of this nutrient during pregnancy [70, 71].

Vitamin D plays a fundamental role in calcium and phosphorus metabolism, 
and is therefore crucial for various biological processes, among which the main-
tenance of brain homeostasis. Animal studies have also shown that the vitamin D 
receptor (VDR) is expressed in the brain since early in development [123]. Despite 
the growing number of studies reporting insufficiency of vitamin D in children 
with ASD, ambiguous cut-off levels for vitamin D insufficiency render difficult 
comparisons between studies [124].

4.2 Gene-environment interactions in ASD

The identification of consistent environmental risk factors for ASD is very 
relevant in view of the failure of genetics to fully explain the disease etiology and 
the clinical spectrum. However, integrating the emergent data on environmental 
risk factors for ASD with established genetic findings has been challenging. In this 
systematic review we identified 9 studies reporting specific gene–environment 
interaction pairs in ASD.

Because most of the identified genes cluster in biotransformation processes, 
their dysregulation may result in a deficient metabolism of xenobiotics, inducing 
pathological mechanisms that contribute to ASD onset. GSTM1 and GSTP1 are 
expressed in the brain, where they degrade multiple toxins [108]. Brain-expression 
of MTHFR and VDR, which are involved in metabolism of folic acid and vitamin 
D respectively, supports the importance of these nutrients for brain function. The 
mechanisms through which variants in the MET gene and air pollutants interact 
are unclear, but the role of the MET protein as a key signaling molecule during 
neurodevelopment [97] suggests that the genetic component of gene–environment 
interactions pairs goes beyond xenobiotics-responding proteins. In fact, MET is a 
known strong candidate gene for ASD [97], as are GSTM1, MTHFR and VDR, albeit 
with less supportive evidence.

While relatively scarce, the identified studies already offer valuable insights 
supporting the potential for preventive strategies based on environmental predic-
tors for subjects carrying a genetic susceptibility variant. For example, controlling 
exposure to high levels of NO2 or PM10 of carriers of the MET gene rs1858830 CC 
genotype could potentially lower their risk for ASD [21]. For subjects carrying a 
low-activity variant in MTHFR gene, which encodes for methylenetetrahydrofolate 
reductase, the risk of ASD might be mitigated by an adequate daily intake of folic 
acid during pregnancy [65]. In these 9 studies the environmental component of 
the gene–environment interaction pairs includes air pollutants (NO2, PM10 and 
O3), a PCB congener, manganese and nutrients (folic acid and vitamin D), open-
ing many possibilities for prevention. While exposure to some factors (eg. outdoor 
air pollution) may be difficult to control, changes in nutrients intake are easier 



Autism Spectrum Disorder - Profile, Heterogeneity, Neurobiology and Intervention

10

to implement, and are particularly important for ASD-subjects carrying known 
specific variants in genes like DHFR [125], MTHFR [126] and VDR [127].

4.3 Strategies to assess early environmental exposure in ASD: the exposome

In 2005, Wild introduced the term “exposome” for a concept that complements 
the genome, and defined it as “life-course exposures (including lifestyle factors), from 
the prenatal period onwards” [128]. Unlike the genome, the exposome is highly 
dynamic, and is so diverse that no single technique will be able to completely quan-
tify it. The large number of non-genetic risk factors associated with ASD reflects 
this, as such factors include not only environmental exposure to xenobiotics, but also 
psychosocial and lifestyle parameters. The 9 studies identified in this review tended 
to focus on a single or on a few environmental factors, employing the measuring 
method best suited for each factor. However, the simultaneous consideration of a set 
of exposures may much better describe the impact of the environment in individu-
als, and there are already a number of such studies under development for ASD.

To assess environmental exposure in ASD, the prospective cohort study 
MARBLES [129] recruits pregnant women who already have a biological child 
with the disorder, and are therefore at higher risk of a second child with ASD. 
The MARBLES study collects longitudinal information from the children, up to 
36 months old, including environmental exposure, genetic and clinical data. This 
design allows the assessment of pre and early post-natal exposure to risk factors 
that may contribute to ASD risk. Because participants are recruited before or during 
pregnancy, monitoring of gestation and early childhood offers a chance to accu-
rately measure exposures, allowing for the identification of early biomarkers.

Other studies with similar designs apply spectrometric methods to quantify 
the levels of toxins or their metabolites in biological matrices, usually through the 
collection of blood [42–45], urine [39, 41, 51] or hair [33, 38] samples. However, 
prospective designs are not always possible, and cross-sectional studies do not 
allow assessment of past exposures. Retrospective studies are a viable alternative, 
benefiting from new methods that allow assessment of previous exposure [14]. For 
instance, vanguard studies are now using naturally shed deciduous teeth [35] to 
retrospectively quantify exposure to xenobiotics in ASD subjects. During odonto-
genesis, deciduous teeth store signatures of exposure to chemicals, from the second 
trimester in utero until their replacement by permanent teeth [35]. The neonatal 
line, which is formed at birth, marks a histological feature that differentiates pre- 
and postnatally formed tooth layers. Consequently, teeth can be used to capture 
both the dose and timing of past exposures.

Another promising matrix takes advantage of archived dried blood spots 
collected through population-wide newborn-screenings for metabolic and 
congenital diseases. Chemicals relevant for ASD have been successfully detected 
in archived blood spots, including bisphenol A, PFCs, lead, mercury, PBDEs and 
PCBs [130, 131]. When correctly collected and stored, analytes remain stable in 
neonatal spots for years.

Other retrospective studies employ geo-referencing methods to collect informa-
tion regarding exposure to air pollutants, pesticides and some heavy metals  
[18, 19, 24, 27, 32, 34, 49, 52]. These studies leverage indoor and outdoor air quality 
data, usage of agricultural pesticides or the location of environmentally-significant 
sites (e.g. landfill sites and high-intensity traffic roads) and apply geographic infor-
mation systems techniques to infer potential associations with ASD risk. Early-life 
exposure questionnaires can also be used as a tool to assess past exposures and events 
[50, 66]. Finally, medical and prescription records and registries may be consulted 
when studying pharmaceutical drugs or supplement intake [54, 56].
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Overall, a comprehensive analysis of the exposome must address a multiplicity of 
factors that includes not only exposure to chemicals in variable settings and situations, 
but also medical procedures, events and lifestyle, psychosocial and cultural variables.

4.4  Shift towards integrative strategies that address gene-environment 
interactions in ASD

All research studies identified in this review that report gene–environment 
interactions in ASD, published up to November 2020, examined specific xenobiot-
ics (Table 1). Knowledge regarding interactions between genetics and the environ-
ment is vast outside of ASD context, and might be the basis to define what specific 
interactions to analyze. Leveraging from public, manually curated, literature-based 
resources, such as the Comparative Toxicogenomics Database [132] and the Toxin and 
Toxin-Target Database [133], that compile gene–environment interactions data, is 
fundamental. Genomic information, including SNV and CNV data, is also avail-
able from large international consortiums that aimed at detecting variants in ASD 
patients, such as the Autism Genome Project [4], the Simons Simplex Collection 
[134] and the Autism Sequencing Consortium [135]. For subjects for whom genetic 
data is already available or is currently being generated, an effort to collect exposure 
data might be very rewarding.

Given the emerging evidence highlighted by this literature review, there is a 
clear need to shift from studies that separately address the role of genetics and the 
environment towards multidisciplinary strategies that explore both components as 
interacting risk factors. Such strategies will inform about the mechanisms through 
which environmental exposure interacts with genetic background, contributing 
to ASD onset. Models must further consider ASD phenotypic and genetic hetero-
geneity. To fully understand the etiology of this very complex disorder, genetic, 
environmental exposure, epigenetic and clinical data needs to be collected simul-
taneously for the same group of individuals. It is possible that different gene–gene 
and gene–environment interactions are associated with distinct clinical subgroups 
of individuals with ASD and, consequently, phenotypic stratification may also be 
incorporated into study design. Conceiving such designs is challenging, especially 
given the large population datasets that are needed to achieve statistical power 
for the discovery of small-effect variables associated with the disorder [136, 137]. 
Artificial Intelligence (AI) methods, including data mining and machine learning 
algorithms, will be crucial to overcome the challenge of integrating substantial 
amounts of data, allowing the detection of environmental exposure patterns 
contributing to ASD onset.

4.5 Biological mechanisms underlying gene-environment interactions in ASD

Understanding the biological mechanisms underlying gene–environment 
interactions that contribute to ASD is fundamental to distinguish between causal 
and non-causal exposures identified through association studies. While knowledge 
on this is still limited, given the diversity of risk factors it is likely that multiple 
mechanisms converge in ASD etiology.

Genetic mutations rendering some individuals more susceptible to certain 
xenobiotics is the simplest gene–environment interaction mechanism. For instance, 
a gene functional polymorphism that inhibits the enzymatic degradation of a given 
toxin may lead to its detrimental accumulation in the organism. Many xenobiotic-
responding enzymes, like cytochrome P450 enzymes and GSTs, are expressed in 
the brain, suggesting the occurrence of metabolic processes that inactivate toxins 
locally [108].
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Epigenetics, a gene expression regulatory process that involves heritable and 
reversible biochemical modifications of DNA or histones, independent of the 
DNA sequence, acts at the interface between genes and the environment. These 
processes include DNA methylation, histone methylation and acetylation events, 
and post-transcriptional regulation by non-coding RNAs, which are known to be 
involved in brain development [138]. Environmental factors can modulate genet-
ics through epigenetic mechanisms and xenobiotics implicated ASD are known to 
alter epigenetic patterns. For instance, valproic acid inhibits histone deacetylases 
up-regulating the expression of various genes [139]. 5-MethylTHF, a metabolite of 
folic acid produced by MTHFR enzymatic activity, is a donor of the carbon group 
used to methylate DNA [140]. Consequently, MTHFR gene polymorphisms that 
result in a diminished activity of the enzyme (i.e. MTHFR 677C > T polymor-
phism) might affect methyl donation and lead to impaired epigenetic regulation 
[141]. Epigenetic effects of air pollutants [142], BPA [143] and PCBs [144] have 
also been described.

Neuropathological mechanisms that putatively lead to ASD, such as oxida-
tive stress, neuro-inflammation, hypoxic damage, abnormal signaling pathways 
and endocrine disruption, can be induced by exposure to xenobiotics. Reduced 
brain levels of glutathione, the major endogenous cellular antioxidant responsible 
for the detoxification of xenobiotics, and other oxidative stress biomarkers have 
been observed in ASD subjects [145]. Evidence for increased levels of neuro-
inflammation biomarkers in ASD, including brain levels of pro-inflammatory 
cytokines and microglia activation, which may be stimulated by allergens such as 
pesticides, has been reported [146]. Proxies for fetal and newborn hypoxia, indi-
cating a deprivation of oxygen supply, have been reported in neonates that later 
develop ASD [26] and may be elicited by early-life events. Xenobiotics also interact 
directly with intracellular neurotransmitter pathways [108] leading to signaling 
impairments. For example, acetylcholinesterase, the enzyme that catalyzes the 
acetylcholine neurotransmitter breakdown, is the primary target of inhibition by 
organophosphate pesticides [147] Most of the identified xenobiotics are endocrine 
disruptors and a role for hormonal imbalances in the disorder is plausible, particu-
larly given the male skewness in ASD diagnoses. Atypical steroidogenic activity, 
namely increased androgen [148] and estrogen [149] levels in the amniotic fluid, 
has been reported in affected males. Gender-specific effects of environmental 
toxins [110] and consequent hormonal imbalances may also be implicated in 
the female protective effect, a hypothesis proposed to explain the ASD male bias.

A novel area of interest in ASD is the role of gut-brain axis, which refers to 
biochemical signaling connections between the gastrointestinal tract and the 
central nervous system. Dysbiosis of the gut microbiome likely accounts for a high 
comorbidity of gastrointestinal symptoms in ASD patients [150]. While the liver is 
the predominant site of xenobiotic metabolism, the gastrointestinal tract is the first 
line of defense against ingested compounds, and is rich in both host and microbial 
enzymes. As the gut microbiota metabolize hundreds of dietary, pharmaceutical 
and industrial chemicals, dysbiosis could lead to impairments in the gut-brain axis 
resulting in neurological insults.

5. Conclusion

This review highlights the accumulating evidence for a role of exposure to xeno-
biotics in ASD risk, and reinforces the need of developing strategies that consider 
genetics and the environment as interacting components in ASD etiology. This is 
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further supported by the still limited but promising results originating from studies 
that explore gene–environment interactions.

However, the current knowledge is likely just the tip of the iceberg. Given the 
enormous progress in high throughput methodologies for analysis of biomolecules 
(genomics, transcriptomics, proteomics, metabolomics), together with the develop-
ment of comprehensive surveys on environmental exposure and advances in arti-
ficial intelligence methods for the integrative analysis of large amounts of data, the 
field is ripe for new discoveries. The expectation is that knowledge of the exposome 
of individuals can be integrated with their genomes to define patterns of interactions 
that cause their particular configuration of behaviors in the autism spectrum. There 
are however many challenges ahead, particularly concerning the collection of such 
extensive information from patients in sufficient numbers for integrative analysis.

Because environmental exposure is amenable to adjustment or avoidance, 
the most important clinical outcome of better understanding gene–environment 
interactions in ASD is the potential for mitigating risk by controlling exposure 
of individuals with a genetic vulnerability. This line of research thus opens novel 
and important perspectives to future prevention and personalized interventions 
for ASD.
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Appendix

Xenobiotic Study Ncases/

Ncontrols

Time of 

exposure

Exposure 

assessment

Risk

NO2 Becerra et al. 2013 7421/
72253

Prenatal Geocoding/air 
quality

Increased

Volk et al. 2013 279/
245

Prenatal to 
postnatal

Geocoding/air 
quality

Increased

Jung et al. 2013 342/
48731

Prenatal to 
childhood

Geocoding/air 
quality

Increased

Volk et al. 2014 251/156 Prenatal Geocoding/air 
quality

Increased

Raz et al. 2017 2098/
54191

Postnatal (9 m) Geocoding/air 
quality

Increased

Ritz et al. 2018 15387/
68139

Postnatal (9 m) Geocoding/air 
quality

Increased
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Xenobiotic Study Ncases/

Ncontrols

Time of 

exposure

Exposure 

assessment

Risk

O3 Becerra et al. 2013 5839/
55757

Prenatal Geocoding/air 
quality

Increased

Jung et al. 2013 342/
48731

Prenatal to 
childhood

Geocoding/air 
quality

Increased

Kaufman et al. 
2019

428/
6420

Postnatal Geocoding/air 
quality

Increased

McGuinn et al. 
2020

674/855 Prenatal 
3rdtrimester

Geocoding/air 
quality

Increased

PM2.5 Becerra et al. 2013 5839/
55757

Prenatal Geocoding/air 
quality

Increased

Volk et al. 2013 279/245 Prenatal to 
postnatal

Geocoding/air 
quality

Increased

Volk et al. 2014 251/156 Prenatal Geocoding/air 
quality

Increased

Raz et al. 2015 245/
1522

Prenatal Geocoding/air 
quality

Increased

Talbott et al. 2015 217/226 Prenatal Geocoding/air 
quality

Increased

Chen et al. 2018 124/
1240

Postnatal to 
childhood

Geocoding/air 
quality

Increased

Ritz et al. 2018 15387/
68139

Postnatal (9 m) Geocoding/air 
quality

Increased

Kaufman et al. 
2019

428/
6420

Prenatal to 
Postnatal

Geocoding/air 
quality

Increased

Jo et al. 2019 2471/
243949

Prenatal 
1sttrimester

Geocoding/air 
quality

Increased

McGuinn et al. 
2020

674/855 Postnatal  
(1st year)

Geocoding/air 
quality

Increased

PM10 Volk et al. 2013 279/245 Prenatal to 
postnatal

Geocoding/air 
quality

Increased

Volk et al. 2014 251/156 Prenatal Geocoding/air 
quality

Increased

Kalkbrenner et al. 
2015

979/
14666

Prenatal 
3rdtrimester

Geocoding/air 
quality

Increased

Chen et al. 2018 124/
1240

Postnatal to 
childhood

Geocoding/air 
quality

Increased

Ritz et al. 2018 15387/
68139

Postnatal (9 m) Geocoding/air 
quality

Increased

SO2 Jung et al. 2013 342/
48731

Prenatal to 
childhood

Geocoding/air 
quality

Increased

Ritz et al. 2018 15387/
68139

Postnatal (9 m) Geocoding/air 
quality

Increased

PAHs von Ehrenstein  
et al. 2014

104/
53181

Prenatal Geocoding/air 
quality

Increased

Talbott et al.  
2015 (2)

215/
4856

Prenatal Geocoding/air 
quality

Increased
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Xenobiotic Study Ncases/

Ncontrols

Time of 

exposure

Exposure 

assessment

Risk

Lead Priya and Geetha 
2011

45/50 Childhood 
(4-12y)

Hair and nails Increased

Roberts et al. 2013 325/
22101

Perinatal  
(at birth)

Geocoding/air 
quality

Increased

von Ehrenstein  
et al. 2014

348/
78373

Prenatal Geocoding/air 
quality

Increased

Talbott et al.  
2015 (2)

215/
4856

Prenatal Geocoding/air 
quality

Increased

Arora et al. 2017 22/54 Postnatal 
(15w)

Deciduous teeth Increased

El-Ansary et al. 
2017

35/30 Childhood 
(3-12y)

Red blood cells Increased

Manganese Roberts et al. 2013 325/
22101

Perinatal  
(at birth)

Geocoding/air 
quality

Increased

Arora et al. 2017 22/54 Postnatal 
(15w)

Deciduous teeth Decreased

Mercury Windham et al. 
2006

284/657 Perinatal  
(at birth)

Geocoding/air 
quality

Increased

Obrenovich et al. 
2011

26/39 Childhood  
(up to 6y)

Hair Decreased

Roberts et al. 2013 325/
22101

Perinatal  
(at birth)

Geocoding/air 
quality

Increased

Priya and Geetha 
2011

45/50 Childhood 
(4-12y)

Hair and nailS Increased

El-Ansary et al. 
2017

35/30 Childhood 
(3-12y)

Red blood cells Increased

BPA Stein et al. 2015 46/52 Childhood 
(10.1 ± 3.7y)

Urine Increased

Kardas et al. 2016 48/41 Childhood 
(7.5 ± 2.9y)

Serum Increased

Phthalates Testa et al. 2012 48/45 Childhood 
(11.0 ± 5y)

Urine Increased

Kardas et al. 2016 48/41 Childhood 
(7.5 ± 2.9y)

Serum Increased

PBDEs Lyall et al. 2017 (1) 545/418 Prenatal 
2ndtrimester

Maternal serum Increased  
Decreased

PCBs Cheslack-Postava 
et al. 2013

75/75 Prenatal (early 
pregnancy)

Maternal serum Increased

Lyall et al. 2017 (2) 545/418 Prenatal (2nd 
trimester)

Maternal serum Increased

PFCs Lyall et al. 2018 553/443 Prenatal 
2ndtrimester

Maternal serum Decreased

Long et al. 2019 75/135 Prenatal Amniotic fluid Decreased

OC pesticides Roberts et al. 2007 465/
6975

Prenatal 
1sttrimester

Geocoding/
pesticides data

Increased

Cheslack-Postava 
et al. 2013

75/75 Prenatal 
1sttrimester

Maternal serum Increased

Brown et al. 2018 778/778 Prenatal 1st or 
2nd trimesters

Maternal serum Increased
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Xenobiotic Study Ncases/

Ncontrols

Time of 

exposure

Exposure 

assessment

Risk

OP pesticides Shelton et al. 2014 486/
315

Prenatal Geocoding/
pesticides data

Increased

Schmidt et al. 2017 296/
220

Prenatal Survey Increased

Philippat et al. 
2018

46/102 Prenatal Maternal urine Increased

von Ehrenstein  
et al. 2019

2961/
35370

Prenatal to 
postnatal

Geocoding/
pesticides data

Increased

Pyrethroids Shelton et al. 2014 486/315 Prenatal Geocoding/
pesticides data

Increased

Hicks et al. 2017 159/298 Prenatal Geocoding/
pesticides data

Increased

von Ehrenstein  
et al. 2019

2961/
35370

Prenatal to 
postnatal

Geocoding/
pesticides data

Increased

Glyphosate von Ehrenstein  
et al. 2019

2961/
35370

Prenatal to 
postnatal

Geocoding/
pesticides data

Increased

Antide 
pressants

Croen et al. 2011 298/
1507

Prenatal Medical records Increased

Rai et al. 2013 4429/
43277

Prenatal Medical records Increased

Gidaya et al. 2014 5215/
52150

Prenatal Medical records Increased

Harrington et al. 
2015

421/
464

Prenatal interview and 
medical records

Increased

Rai et al. 2017 5378/
249232

Prenatal Interview and 
medical records

Increased

Valproic Acid Moore et al. 2000 52 Prenatal Survey Increased

Bromley et al. 
2008

10/622 Prenatal Interview and 
medical records

Increased

Bromley et al. 2013 12/509 Prenatal Interview and 
medical records

Increased

Christensen et al. 
2013

5437/
630178

Prenatal Medical records Increased

Thalidomide Stromland et al. 
1994

100 Prenatal 
1sttrimester

Medical records Increased

Misoprostol Bandim et al. 2003 23 Prenatal 
1sttrimester

Interview Increased

Folic Acid Schmidt et al. 2012 429/
278

Prenatal (early 
pregnancy)

Interview Decreased

Surén et al. 2013 270/
84906

Prenatal (early 
pregnancy)

Survey Decreased

Al-Farsi et al. 2013 40/40 Childhood 
(3-5y)

Serum Decreased

Nilsen et al. 2013 234/89602 Prenatal Medical records Decreased

Levine et al. 2018 572/
44728

Prenatal Medical records Decreased

Raghavan et al. 
2018

86/1171 Postnatal 
(2-3d)

Maternal plasma Increased

Egorova et al. 2020 100/100 Prenatal Maternal serum Increased
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Xenobiotic Study Ncases/

Ncontrols

Time of 

exposure

Exposure 

assessment

Risk

Vitamin D Meguid et al. 2010 70/42 Childhood 
(5.3 ± 2.8y)

Serum Decreased

Tostes et al. 2012 24/24 Childhood 
(7.4 ± 2.7y)

Serum Decreased

Mostafa and 
AL-Ayadhi 2012

50/30 Childhood 
(8.2 ± 2.4y)

Serum Decreased

Neumeyer et al. 
2013

18/19 Childhood 
(10.6 ± 0.4y)

Serum Decreased

Gong et al. 2014 48/48 Childhood 
(3.7 ± 1.2y)

Serum Decreased

Bener et al. 2014 254/254 Childhood 
(5.5 ± 1.6y)

Serum Decreased

Kocovska et al. 
2014

40/40 Early 
adulthood 
(18.9 ± 2.9y)

Serum Decreased

Fernell et al. 2015 58/58 Neonatal Dried Blood 
Spots

Decreased

Magnusson et al. 
2016

9882/
499757

Prenatal to 
childhood

Medical records Decreased

Bener et al. 2017 308/
308

Childhood 
(5.4 ± 1.7y)

Serum Decreased

El-Ansary et al. 
2018

28/27 Childhood 
(7.0 ± 2.3y)

Plasma Decreased

Guo et al. 2018 332/197 Childhood 
(4.9 ± 1.5y)

Serum Decreased

Wu et al. 2018 310/
1240

Neonatal Dried Blood 
Spots

Decreased

Arastoo et al. 2019 31/31 Childhood Serum Decreased

Lee et al. 2019 1399/
1607

Neonatal Dried blood 
spots

Decreased

Alzghoul et al. 
2019

83/106 Childhood Serum Decreased

Sengenc et al. 
2020

100/100 Childhood Serum Decreased

Petruzzelli et al. 
2020

54/36 Childhood Serum Decreased

BPA – bisphenol A; d – days old; m – months old; NO2 – nitrogen dioxide; O3 – ozone; OC pesticides – 
organochlorine pesticides; OP pesticides – organophosphate pesticides; PAHs – polycyclic aromatic hydrocarbons; 
PBDEs – polybrominated diphenyl ethers; PCBs – polychlorinated biphenyls; PFCs – perfluorinated compounds; 
PM2.5 – particulate matter with a diameter less than 2.5 μm; PM10 – particulate matter with a diameter between 
2.5 and 10 μm; SO2 – sulfur dioxide; w – weeks old; y – years old.

Table S1. 
Studies reporting xenobiotic exposure associated with ASD, identified through systematic literature review. 
For each study the numbers of ASD cases (Ncases) and controls (Ncontrols), the timing of exposure (specific 
time-points of prenatal, postnatal or childhood periods are shown when stated by the referenced authors), 
the exposure assessment method, and the direction of association are listed (increased or decreased risk by 
exposure).
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