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Chapter

Cytokine Profile as a Marker 
of Cell Damage and Immune 
Dysfunction after Spinal Cord 
Injury
Georgii Telegin, Aleksandr Chernov, Alexey Belogurov, 

Irina Balmasova, Nikolai Konovalov and Aleksandr Gabibov

Abstract

The study reviews findings of the recent experiments designed to investigate 
cytokine profile after a spinal cord injury. The role of key cytokines was assessed 
in the formation of cellular response to trauma. The specific immunopathogenic 
interaction of the nervous and immune systems in the immediate and chronic 
post-traumatic periods is summarized. The practicality of a step-by-step approach 
to assessing the cytokine profile in spinal cord injury is shown, the need to take into 
account the combination of pathogenetic and protective components in the imple-
mentation regulatory effects of individual cytokines, their integration into regen-
erative processes in the damaged spinal cord, which allows a rational approach to 
the organization of the treatment process and the development of new medicines.

Keywords: Spinal cord injury, glial scare, cytokines, cellular response

1. Introduction

Spinal cord injury (SCI) is a significant global public health issue and a common 
cause of permanent disability in patients [1, 2]. According to the WHO world popu-
lation estimates, every year up to 500,000 people suffer a spinal cord injury [3], 
including young adults between the ages of 20 and 35 [4]. The annual incidence rate 
of traumatic SCI (TSCI) in developed countries is approx. 3 per 100,000 population 
[5], though these data could be inconsistent with the big picture, since 16%-30% of 
patients with spinal injuries die before being admitted to the hospital [6, 7]. Thus, 
functional recovery of the spinal cord with structural damages caused by trauma is 
recognized as one of the most challenging and socially essential topics of modern 
regenerative medicine [8].

Mortality from SCI depends mainly on the severity of spinal cord lesion, and at 
the pre-hospital phase, it reaches 37% [9]. In-hospital mortality rates are affected 
by the severity of spinal cord damage and the SCI-related early or late complica-
tions, as well as the timeliness of specialized health care provision. Mortality 
rates range between 8 and 58.3% in different medical settings, depending on 
their capacity [10–12]. High mortality rates (ranging between 16% and 18%) are 
reported for children. Frequently they are associated with a trauma of the cervical 
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spine, especially its upper portion [13–16]. The leading causes of death comprise 
respiratory problems, cardiovascular disorders, thromboembolic events, infectious 
complications, and suicides [17]. Disability rates after vertebral column and spinal 
cord injuries vary from 57.5 to 100%, and the data indicate a trend towards an 
annual increase of people with disabilities after SCI [18].

Prominent underlying SCI causes include road traffic injuries (36–43%), falls 
from height (24.2–63.2%), shallow water diving (3–32%), sports activities and 
accidents (22.5%) [19–22], while criminal traumas account for 10-25% of the 
injuries [23]. The leading causes of injuries vary for different years and across 
geographic regions [24]. In this context, spinal cord injuries related to ocean waves 
are commonly reported in the coastal areas, among beachgoers, etc. [25].

Spinal cord injuries resulting from vertebral column trauma are reported for 
36–72% of patients [10, 11, 26, 27]. Craniocerebral trauma is more commonly asso-
ciated with cervical spine fractures (18–72%). Thoracic spine fractures are usually 
combined with multiple non-vertebral injuries, such as bone fractures (10.3–48%), 
traumas of the thoracic cavity and its internal organs (as high as 52%), and lumbar 
spine injuries – with broken limb bones (up to 27%) and pelvic bones (up to 15%), 
and damage of the abdominal organs (9.8–18.7%) [21, 27–31]. By type, SCIs are 
divided into open (penetrating) and closed (nonpenetrating) injuries to the spine. 
In peacetime, closed SCI account for 70.1–88.6% of cases [26, 32].

2.  Factors that determine the course of spinal cord injury and its 
classification

The level and length of SCI, as well as the timeline of the treatment of spinal 
cord compression, affect the grade and severity of neurological problems and, 
ultimately, mobility and self-care of patients, as well as their prognosis and 
recovery, and return to normal life [33]. The cervical spine trauma is associated 
with spinal cord lesions in 12–70% of injured people and characterized by the 
predominance of severe damages (contusion, compression, haematomyelia) and 
high mortality rates (35–70%). Spinal cord lesions occur in 31–75% of thoracic 
and lumbar spine traumas [21, 26, 27, 29, 34]. In general, injuries of the cervical 
spine account for 17–61% of cases [30, 34], thoracic – 7.2–40% [26, 29, 34, 35], and 
lumbar spine – from 8.7 to 57.8% [26, 29, 31, 34].

Types of spinal cord trauma include contusion, concussion, compression, crush, 
and disruption. The spinal cord’s compression is found in 20–26.7% of the injured 
persons, compression and contusion – in 40–50.5%, compression and crush – in 
7–15.7%, and anatomical disruption – in 4.3–7.1% of patients [34]. The grade of 
the spinal cord injury is one of the principal prognostic factors. The distinction is 
made between “complete” and “incomplete” SCI, or its morphological disruption 
(anatomical or axonal). Complete SCI at the cervical level is reported for 33.7–52% 
of patients, thoracic level – 12.5-54%, and at the lumbar level – 15–21% [33].

In addition to SCI, non-traumatic spinal cord lesions may occur due to epidural 
abscess and hematoma, intradural tumor or other types of metastatic tumors, 
and complications after surgical treatment [7, 36]. The treatment of the acute 
phase in SCI cases takes more time than the treatment of spinal cord lesions of 
non-traumatic origin. Also, patients with SCI are more likely to have urinary tract 
infections and other complications [37].

Before early 1990s, a uniform or generally recognized classification system of 
SCI was not available. Physicians usually distinguished different levels of injury, 
complete and incomplete SCI.
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Then, in 1992 the American Spinal Injury Association (ASIA) developed a 
classification system for identifying the severity of spinal cord injury based on 
descriptions of motor and sensory functions [38, 39].

1. A = complete spinal cord injury: no motor or sensory function is preserved in 
the sacral segments S4-S5;

2. В = incomplete injury: sensory function preserved but not motor function is 
preserved below the neurological level and includes the sacral segments S4-S5;

3. С = incomplete injury: motor function is preserved below the neurologi-
cal level, but less than half of key muscles below the neurological level have 
a muscle grade less than 3 (i.e., they are not strong enough to move against 
gravity);

4. D = incomplete injury: motor function is preserved below the neurological 
level, and at least half of key muscles below the neurological level have a muscle 
grade of 3 or more (i.e., the joints can be moved against gravity);

5. Е = normal: motor and sensory functions are normal.

Many researchers indicate that in addition to diagnostic implications the ASIA 
scale has tremendous prognostic value [38, 40–43]. Later, the AO Subaxial Cervical 
Spine Injury Classification (SLIC) system was published, which includes morpho-
logical information in its scoring that helps determine the extent of the patient’s 
injury [44].

Practicing surgeons and radiologists use classification and scoring systems 
Subaxial Cervical Injury Classification and Severity (SLICS) and Thoracolumbar 
Injury Classification and Severity (TLICS), respectively, to evaluate the sever-
ity of cervical and thoracolumbar spine injuries [45]. Besides, the Spinal Cord 
Independence Measure (SCIM) has been developed to assess functional improve-
ments of the spinal cord in the course of treatment and rehabilitation. Also, the 
SCIM has prognostic value [46].

SCI is classified chronologically into the following four phases:

1. acute phase – less than first 48 hours after the injury; the clinical course com-
prises of spinal shock and, as a result, the symptoms and signs are similar for 
various grades of SCI;

2. early (subacute) phase is defined to be 48 h – 14 days after the injury; likewise 
in the acute phase, clinical observations may include a syndrome of complete 
block of conduction in the spinal cord due to spinal shock, altered blood and 
cerebrospinal fluid flow; edema and swelling of the spinal cord;

3. intermediate phase is defined to be 14 days – 3 months; spinal shock symp-
toms disappear, and the actual severity and range of spinal cord injury is 
determined;

4. chronic phase – more than 3 months after the injury; the recovery of spinal 
cord functions occurs depending on the SCI grade; neurological status may 
deteriorate due to the scarring process, cyst formation, post-traumatic  
syringomyelia, etc. [23, 47–51].
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Spinal cord injury triggers the development of a complex series of pathophysi-
ological reactions, including primary and secondary damage of the nervous tissue 
[52–54]. The inflammatory response to the primary structural changes in the spinal 
cord is followed by the release of multiple regulatory peptides, including proinflam-
matory cytokines [55, 56].

3.  A role of the immune system and cytokines in the acute phase of spinal 
cord injury

3.1  Cells of the nervous system in spinal cord injury as inductors, effectors and 
targets of inflammatory acute phase reactions

Two different phases are distinguished in the pathogenesis of the acute period 
of SCI; each of them is associated with a complex series of pathophysiological 
reactions in response to the nervous tissue damage [57, 58].

The first phase of the injury, which starts on the first day, immediately after 
mechanical trauma, involves mechanisms of the injury and disorders associated 
with these mechanisms. Neurons, astrocytes, oligodendrocytes, as well as other 
components of nerve signal transmission, are physically affected, and these events 
are accompanied by disorders of vascular components, including the blood–brain 
barrier (BBB) [56–60], which results in the tissue infiltration by inflammatory 
cells [61–63].

The inflammatory response to primary structural changes in the SC is associated 
with the release of multiple regulatory peptides, including proinflammatory ones, 
and cytokines [64, 65]. Cytokines are synthesized by the activated macro- and 
microglia, damaged vascular endothelium, as well as the immune system cells 
mobilized from the circulation system and transported to the site of injury and the 
adjacent areas due to a change in the BBB permeability [66].

It has been established that several important molecular components of the 
immune system, including tumor necrosis factor (TNF-α), inducible nitric oxide 
synthase (iNOS), nuclear factor (NF)-kB, interleukin (IL)-1β, and/or a factor of 
apoptosis Fas ligand (FasL), are activated as early as within a few minutes after 
SCI [67–69]. The activation of these molecules further results in inflammation and 
other kinds of significant neurological disorders [70].

The second phase comprises of endogenously induced degradation of the ner-
vous tissue and associated consequences [70]. Increased glutamate concentration in 
the damaged spinal cord (SC) tissue induces neuronal excitotoxicity (a pathological 
process causing the neurotransmitter-mediated damage and death of nerve cells) 
due to the excess of intracellular Ca2+. This process promotes the accumulation of 
reactive oxygen species [71–73], which, in turn, affect such cellular components as 
nucleic acids, proteins, and phospholipids and cause considerable cell losses and 
subsequent neurological dysfunction [74, 75].

It is important to highlight that the endogenous cells (neurons and glial cells) 
of human SC (but not the blood leukocytes) contribute to the early production of 
IL-1β, IL-6, and TNF-α during the post-traumatic inflammatory response [76–78].

Activated astrocytes represent the primary source of all damaging factors: 
they account for about 30% of the cellular composition; and the overexpression 
of the microRNA miR-136-5p in these cells during SCI is considered as one of the 
inducers of proinflammatory factors and chemokines (primarily TNF-α and IL-1β) 
[79–81]. This process triggers an inflammatory immune response involving type 
17 T-helpers [82]. Angiogenesis mediated by microRNA (miR-210) is another SCI-
related event [83, 84].
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3.2  Distinct role of the innate immune cells and its cytokine release in acute 
phase reactions to spinal cord injury

However, the role of the immune cells secreting proinflammatory cytokines in 
SCI should not be underestimated. This process is stimulated by hemorrhages in the 
SC tissue after its damage [85, 86]. They contribute to the infiltration of affected 
regions by neutrophils, monocytes/macrophages, and T lymphocytes [87–90], i.e. 
cells releasing the same factors, i.e. TNF-α, IL-1α, IL-1β, and IL-6 [91, 92].

Typically, these cytokines reach their peak level 6–12 hours after the injury; they 
also induce an inflammatory response in acute and subacute phases and contribute 
to the lesion extension in rostral and caudal directions [93–95]. It was shown that 
activated microglia and macrophages infiltrating the SC are responsible for the 
subsequent necrosis and apoptosis of neurons, astrocytes, and oligodendrocytes 
located closely to the site of the lesion [96, 97], thus worsening the neurological 
outcome [98, 99]. The modulation of proinflammatory and immune effects in the 
SC tissue during its injury involves interferons through the increase in the number 
of stimulators of interferon genes (STING) in the tissue [100, 101].

Within the first 24 hours after SCI, an additional immunological effect takes 
place: the number of natural killer (NK) cells with an activated phenotype 
increases significantly, which is manifested by the overexpression of CD69, 
HLA-DR, NKG2D, and NKp30 on their membrane as well as the enhanced 
cytotoxic activity [102]. Furthermore, an increased level of the brain-derived 
neurotrophic factor (BDNF) that can be produced by vascular endothelial cells was 
found in the patients’ plasma samples. At this phase of SCI, it strongly correlated 
with the percentage of NK cells and the expression of CD69 and NKp30 activating 
molecules on their surface [103].

Early interventions for reducing inflammation and preventing apoptosis have 
become a common strategy in the targeted medical care provided to SCI patients. 
However, the latest updates in this field suggest that the inflammatory process has 
apparent protective aspects that should not be ignored during treatment [104].

As for the cytokine release signals, they can enter the cells through the Toll-like 
receptors (TLRs) of the SC [105, 106]. TLRs are best known as the structures for 
pathogen recognition and initiation of the innate immune response [107, 108]. 
However, they can also detect tissue damage and trigger sterile inflammation by 
binding to endogenous ligands typical for stressed or damaged cells. In addition 
to the cells associated with the immune system, TLRs have also been identified 
in neurons of the central nervous system (CNS) and glial components, including 
microglia, astrocytes, and oligodendrocytes [109, 110]. To this end, Toll-like recep-
tors may play both direct and indirect roles in SCI [111]. Indirect effects are most 
likely mediated by microglia or immune system cells penetrating the damaged CNS 
tissue [112]. It is also established that restorative responses in SCI-related ischemic 
disorders are taking place with the predominant participation of Toll-like receptor 3 
and subsequent regulation by TLR4 [113].

One of the mechanisms of innate immune defense during SCI-related inflam-
matory response is associated with the unique role of mast cells [114]. Mast cells 
are abundant in the CNS and play an intricate role in the progression of neuro-
inflammatory disorders. In particular, it was shown that the experimental mast-
cell deficient mice had increased astrogliosis and T-cell infiltration, while their 
functional recovery after SCI was significantly reduced [115]. Moreover, these 
mice have significantly increased levels of the cytokines MCP-1, NFα, IL-10, and 
IL-13 in the SC. The available data demonstrate the relationship between these 
findings and the fact that, if the same number and functional activity of mast 
cells are maintained, their chymases cleave MCP-1, IL-6, and IL-13. This suggests 
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a protective role of the above cellular elements in the development of inflamma-
tory changes in the nervous tissue in SCI cases [116]. It should be noted that, in 
addition to astrocytes and microglia, IL-10 is also produced by macrophages, B 
cells, and Th2 cells [117, 118]. Being an immunomodulator, IL-10 stimulates the 
generation of regulatory T cells while suppressing the activity of Th1 and NK 
cells [119].

The cytokine and hormone secretion pattern after spinal cord injury largely 
depends not only on the mechanisms of induction and immune response but also 
on the level of injury. Thus, the experiments in the rat model clearly demonstrated 
similar differences in the production of vascular endothelial growth factor (VEGF), 
leptin, interferon-γ-induced chemokine IP-10, IL-10, IL-18, granulocyte colony-
stimulating factor (G-CSF), and chemokine fractalkine in animals’ plasma. In 
contrast to the thoracic spine trauma, injury to the cervical spine is associated with 
a reduced expression of these mediators. A potential mechanism underlying this 
finding is sympathetic dysregulation caused by a higher location of the spine injury 
[120, 121]. Experiments in mice have also demonstrated that cytokines (e.g. inter-
leukins IL-3, IL-6, IL-10, IL-13, and G-CSF) impacted the systemic changes after 
spinal cord injury in the lower thoracic region (Th910). In parallel, the activation 
of T lymphocytes and neutrophils was determined during the acute phase of the 
reported changes [122]. Thus, the immunopathogenic mechanisms primarily linked 
to innate immune cells and proinflammatory cytokines have a central role in the SCI 
acute phase.

Damaged neurons and neuroglial cells after spinal cord injury become a source 
of chemokines (fractalkine, MCP-1, and IP-10) [120, 122] targeting monocytes/
macrophages and lymphocytes and promoting their entry into the lesion site. Mast 
cells represent one of the first cells of the innate immune system that exert their 
effect in the injury site. As already mentioned, mast cells can regulate chemokine 
secretion; however, their role is far from being clear. On the one hand, these cells 
can be a source of cytokines and other mediators promoting inflammation [123]. 
On the other hand, chymases released from mast cells during their activation and 
subsequent degranulation can destroy chemokines and proinflammatory cytokines, 
limiting the intensity of inflammatory response [116].

Most chemokines produced by cells of the injured spinal cord promote the 
recruitment of monocytes/macrophages [124], which eliminate cell debris, while 
chemokine IP-10 also recruits NK cells [125]. The involvement of NK cells in the 
innate immune response is also facilitated by the fact that after SCI the spinal cord 
cells express injury patterns, particularly stress-induced molecules (MICA, MICB), 
that are considered as ligands for NKG2D receptors [126]. In turn, their high level 
of expression by NK cells was demonstrated for spinal cord injury [101]. At first 
glance, manifestations of NK cells’ cytotoxic activity against the nervous tissue in 
spinal cord injury significantly aggravate the destructive processes during trauma 
[101]. However, the involvement of NK cells in the elimination of exclusively the 
cells carrying injury patterns contributes to a more rapid suppression of destructive 
processes at the site of spinal cord lesion.

The study focused on another crucial player, macrophages, under the con-
ditions of tissue damage has demonstrated that there are two stages of their 
activation [127]. During the first stage, these cells acquire an inflammatory (M1) 
phenotype mediated by endogenous molecules released during cellular damage. 
When reparative processes are triggered in response to damage at later stages, 
activated macrophages are polarized into the resident (M2) phenotype [127]. Thus, 
it is suggested that M1 macrophages are predominantly produced during the SCI 
acute phase. Their induction after SCI is also stimulated by interferons [128] that 
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accumulate (as mentioned above) in the damaged tissues [100]. The macrophages 
secrete IL-12, IL-10, IL-1β, IL-6, IL-23, IL-21, TNF-α, and iNOS specific for this 
phenotype; high levels of these factors have been reported for the described patho-
logical condition [120, 122, 127].

The cytokines have different functions: IL-12 further triggers adaptive cellular 
responses; IL-10 has an immunosuppressive effect and is involved in the induction 
of regulatory T cells; IL-1β, IL-6, IL-21, IL-23, and TNF-α exert a proinflammatory 
effect; TNF-α and iNOS provoke cellular damage reactions [128, 129].

The predominant cytokine profile, as well as the presence of M1 macrophage-
producing cells in combination with the effect of autoantigens of the damaged 
spinal cord, suggests that the population of T lymphocytes involved in the immune 
response at the initial stage includes Th17 cells whose functional role has already 
been proven in the SCI acute phase. The functional role of this subpopulation is 
closely related to achieving the balance T-helper-17/regulatory T-cells (Th17/Treg). 
Q. Fu et al. [82] described these processes as follows. The Th17/Treg cell balance is 
regulated by molecules RORγT and FoxP3, while FoxP3 expression can be inhibited 
by RORγT expression. As mentioned above, SCI is accompanied by the migration 
of M1 macrophages to the injury site and the release of proinflammatory cytokines, 
including IL-6 and IL-21. As a result, T-helpers (CD4+ T lymphocytes) are able to 
differentiate into CD4+IL−17A+ Th17, which contribute to the inflammatory response 
by recruiting neutrophilic granulocytes. In combination with proinflammatory 
cytokines produced at the injury site by macrophages, neurons, and neuroglia 
cells, the products of Th17 and neutrophils considerably enhance the inflammation 
process. Researchers consider the latter as a harmful component of the pathogenesis 
of post-traumatic changes in the spinal cord.

It is worth noting that Th17 induction during the initial phase requires one more 
cytokine, the transforming growth factor β (TGFβ), which is mainly secreted by 
Treg cells. The formation of these cells playing an important role in the Th17/Treg 
balance is mediated primarily by IL-10, which is also secreted by M1 macrophages 
in relatively small amounts during the initial phase of tissue damage. Like TGFβ, 
IL-10 has an immunosuppressive effect, limiting an excessive autoimmune inflam-
matory process after spinal cord injury [127, 130].

Thus, innate immune responses and T cell-mediated responses prevailing during 
the SCI acute phase could be assessed controversially. On the one hand, they aim to 
destroy cells in the damaged spinal cord tissue through their apoptosis or cytolysis 
and to induce inflammatory response enhancing neurological dysfunction. On the 
other hand, these reactions contribute to the elimination of destroyed cell elements 
along with their intrinsic autoantigens, injury patterns, and inflammation media-
tors, and also involve the inflammatory response regulation mechanisms. Based 
on these conclusions, a simplified approach cannot be used for assessing the role 
of immune processes in spinal cord injury. These processes are also important for 
selecting a treatment strategy during the SCI acute phase. It is necessary to evaluate 
the balance between the immune mechanisms prevailing in each particular case and 
exhibiting either a protective or pathogenic effect, instead of relying on individual 
indicators.

Already during the acute phase, spinal cord injury induces a strong inflamma-
tory response [131] and a robust immune response both within and beyond the 
injury site [132]; these responses do not tend to resolve. In this case, the interaction 
takes place between the CNS and the immune system (i.e., the two central systems 
maintaining homeostasis in the entire body). That is why the process is not limited 
by the immune response in the site of spinal cord injury but also affects the whole 
immune system [133].
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4.  Role of the immune system and cytokines in the chronic phase of 
spinal cord injury

4.1  The importance of immunosuppressive manifestations in the chronic phase 
of spinal cord injury

The functions of the immune system change dramatically as the SCI acute phase 
progresses to the chronic stage. The failure or insufficient activity of vegetative 
innervation in the lymphatic and endocrine tissues disturb immune function for a 
long time after the initial trauma [134]. The main manifestations of such disorders 
are immune depression and the autoimmune process [133], although inflammatory 
reactions also maintain their significant role in pathogenesis.

Systemic changes at the level of cell populations and lymphocyte subpopulations 
during the SCI chronic phase are mainly related to the T cell-mediated adaptive 
immunity. Thus, it has been demonstrated that the total count of T cells (CD3+) 
and T helper cell subpopulation (CD3+ CD4+) in the blood is declining, although 
the count of activated CD4+ T cells (HLA-DR + CD4+) remains elevated [135]. This 
situation may occur if the count of T helper cells in the blood decreases due to their 
migration to the affected organ.

Regulatory T cells (Tregs) exhibiting suppressive properties are of special 
interest in this scenario. These cells have a CD3 + CD4 + CD25 + CD127lo pheno-
type with the predominance of activated CCR4 + НLA-Dr + fraction. The level of 
transforming growth factor β (TGFβ), the major cytokine of these cells, is consider-
ably increased in SCI cases, which largely explains the observed immune dysfunc-
tion and its consequences, such as the impaired defense against infections and/or 
persistent chronic inflammation [88, 135].

The deficiency of T-cell-mediated immunity at the systemic level is also accom-
panied by a significant decrease in NK cell count during the chronic phase of SCI, 
which eventually leads to lethal infection [136].

Thus, starting on day 7 after the spinal cord injury, signs of regeneration of 
the myelin sheath of neurons associated with biochemically detectable activity of 
oligodendrocytes and production of proinflammatory cytokines TNF-α, IL-1β, 
and IL-6 were found [137]. Meanwhile, it was noted that a higher level of proin-
flammatory cytokines during the chronic phase correlated with a faster remission 
after SCI [51].

In fact, the proinflammatory cytokines trigger activation of astrocytes in the 
spinal cord glial tissue [138]. Astrocytes undergo proliferation and acquire one of 
the two phenotypes. Astrocytes having one phenotype actively secrete a glial fibril-
lary acidic protein (GFAP), which contributes to neuroregeneration. Contrariwise, 
astrocytes of the other phenotype secrete glutamine synthetase, which participates 
in glutamate accumulation and slows down neuronal regeneration in the injured 
spinal cord region. The balance between astrocytes of these two phenotypes 
determines the efficiency of repair processes in the neuronal tissue [139]. Neurons 
secrete neuregulin-1 (Nrg-1), which stimulates cell regeneration, contributes to the 
preservation of the spinal cord white matter, and positively regulates the functions 
of macrophages, T cells, and B cells. Today, it is even recommended as a medication 
for patients with spinal cord injury [140]. Although this positive regulation may 
occur, it is necessary to remember that all the described processes occur in the CNS; 
therefore, they can have both local and systemic manifestations.

Speaking about one of the key mechanisms of induction of the observed 
changes, a reference should be made to the data published by C.J. Ferrante and S.J. 
Leibovich [127]. They reported that after the acute phase of tissue damage, the mac-
rophage phenotype switched abruptly from M1 to M2, which differs much from the 
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typical M2 cells in terms of cytokine secretion. This variety was called the angio-
genic M2d phenotype. The main products of M2d macrophage secretion included 
vascular endothelial growth factor (VEGF) and IL-10, inducing the formation of 
regulatory T cells. That is why the angiogenic and immunosuppressive effects are 
predominant. Similar transformations were also found for macrophage microglial 
cells [141].

Special focus is placed on the role of tumor necrosis factor α during the SCI 
chronic phase. During this phase, the level of brain-derived neurotrophic factor 
(BDNF) is decreasing in the hippocampus, and at the same time, it is rising in the 
lateral part of the spinal cord. A deletion within the gene encoding TNF-α recep-
tor blocks this effect, but the presence of this cytokine restores the effect. These 
findings suggest that various structural synaptic changes in the spinal cord and 
hippocampal neurons are mediated by the overproduction of TNF-α in activated 
microglial cells, which can be associated with the development of chronic neuro-
pathic pain and memory deficit after spinal cord injury [142]. IL-1β reducing the 
efficiency of calcium pump function in neurons also contributes to the development 
of neuropathic pain [143].

4.2 Autoimmune component of the chronic phase in spinal cord injury

Particular attention should be paid to the autoimmune processes associated with 
spinal cord injury. D.P. Ankeny et al. [144] demonstrated that spinal cord injury 
and related immunodepression cause profound long-lasting changes in the func-
tions of B cells of the peripheral lymphoid tissue (the bone marrow and spleen) 
and the injured spinal cord. In particular, after their differentiation, the activated B 
cells are able to secrete autoantibodies that bind CNS proteins and nuclear antigens, 
including DNA and RNA. In patients with systemic lupus erythematosus, anti-DNA 
antibodies cross-reactively interact with glutamate receptors, causing excitotoxicity 
[145]. The same effect is reported for SCI-related autoantibodies, which exhibit 
similar neurotoxic properties.

After spinal cord injury, the autoimmunity can also promote CNS regeneration 
and/or neuroprotection, though a tendency towards neurotoxicity manifestations 
can still be present. Myelin-reactive T cells exhibit a similar neuroprotective effect 
in the rat model of SCI [146]. The data on the role played by autoantibodies are 
inconsistent. After all, the antibodies specific to CNS proteins can promote axonal 
regeneration and remyelination [147], as well as demyelination, because anti-myelin 
antibodies can participate in building a “bridge” between myelin of nerve fibers and 
oligodendrocytes [148]. In any case, despite the ambiguity of the effects and their 
interpretations, it has been verified that B cells infiltrate the injured spinal cord 
during the chronic phase [144].

The presented review demonstrates that the interpretation of the results is 
challenging because it is difficult to distinguish local and systemic effects after 
spinal cord injury. In this regard, the feasibility of differentiating between the local 
and systemic manifestations of immune response opens up certain prospects. For 
example, significant changes in the cytokine profile after SCI, especially during 
the chronic phase, were found not only in blood. Changes in the cytokine profile 
in CSF were even more informative. Thus, A.R. Taylor et al. [149] determined the 
levels of IL-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, granulocyte-macrophage colony-
stimulating factor (GM-CSF), interferon-γ (IFNγ), keratinocyte chemoattractant 
(KC-like protein), IFNγ-inducible protein 10 (IP-10), monocyte chemotactic 
protein-1 (MCP-1), and tumor necrosis factor α (TNF-α) in cerebrospinal fluid as 
criteria characterizing the intensity of chronic inflammation. The concentrations 
of most cytokines and chemokines in CSF of animals after SCI correlated with the 
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injury duration and trauma severity at sampling and the long-term neurological 
outcome. Thus, after spinal cord injury, the IL-8 level was significantly higher than 
in the control group of healthy animals but showed a negative correlation with 
the injury duration. At the same time, the levels of colony-stimulating factors and 
MCP-1 negatively correlated with the long-term positive outcome.

5. Conclusions

The review of publications focused on the problem of SCI-related immune 
(including cytokine) processes demonstrates that the available data are inconsistent 
and difficult to interpret.

Both the nervous and the immune systems have essential regulatory functions in 
the body and are tightly interrelated, while their interaction mechanisms are very 
diverse. Both local and systemic effects are associated with the neurological and 
immune changes occurring after spinal cord injury.

Along with these general aspects, the SCI-related local and systemic changes in 
the central nervous system and immune processes should be assessed on a stage-by-
stage basis [150, 151]. Each phase is characterized by specific prevailing pathogen-
esis, which is initially linked to the response to injury and targeted at eliminating 
the damaged cells; then focus moves towards the inflammatory response with the 
aim of containing the affected area. Finally, a transition from local reactions to sys-
temic processes occurs during later stages; the outcome of the pathological process 
depends on the efficiency of these phases. Each phase is associated with a specific 
category of immune response. In this respect, various cell subpopulations charac-
terizing the innate and adaptive immunity or cytokines, the products secreted by 
these cells, can serve as markers of these immune responses [152, 153].

A specific feature of cytokines as markers of pathological changes after spinal 
cord injury is that they are secreted not only by immune cells but also by cells of 
the damaged spinal cord. The interaction between the nervous and immune sys-
tems can be characterized using the cytokine profile model. It has both theoretical 
research implications and diagnostic value and provides an opportunity to highlight 
the critical therapeutic targets.

Thus, cytokines contribute significantly to the pathogenesis of SCI-related 
traumatic disease and are responsible for its various manifestations. The cytokines 
can be secreted by immune cells; however, neurons of the damaged spinal cord are 
the main source of these biologically active substances. Therefore, the SCI-related 
cytokine pattern characterizes both the immune and neurological status and has a 
tremendous diagnostic and prognostic value.

Abbreviations

SC spinal cord
SCI spinal cord injury
CNS central nervous system
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