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Chapter

Survey of Some Exact and
Approximate Analytical Solutions
for Heat Transfer in Extended
Surfaces
Raseelo Joel Moitsheki, Partner Luyanda Ndlovu

and Basetsana Pauline Ntsime

Abstract

In this chapter we provide the review and a narrative of some obtained results
for steady and transient heat transfer though extended surfaces (fins). A particular
attention is given to exact and approximate analytical solutions of models describ-
ing heat transfer under various conditions, for example, when thermal conductivity
and heat transfer are temperature dependent. We also consider fins of different
profiles and shapes. The dependence of thermal properties render the considered
models nonlinear, and this adds a complication and difficulty to solve these model
exactly. However, the nonlinear problems are more realistic and physically sound.
The approximate analytical solutions give insight into heat transfer in fins and as
such assist in the designs for better efficiencies and effectiveness.

Keywords: exact solutions, approximate solutions, lie symmetry methods,
approximate methods, heat transfer, fins

1. Introduction

In the study of heat transfer, a fin may be a solid or porous and stationary or
moving that extends from an attached body to rapidly cool off heat of that surface.
Cooling fins find application in a large real world phenomena particularly in engi-
neering devices. Fins increase the surface area of heat transfer particularly for
cooling of hot bodies. These come in different shapes, geometries and profiles.
These differences provide variety of effectiveness and efficiencies. The literature
with regard to the study of heat transfer in fins is well documented (see e.g. [1]).
The solutions either exact, numerical or approximate analytical continue to be of
immerse interest and this is due to continued use of fins in engineering devices.

Much attention has been given to linear one dimensional models [2–4] whereby
Homotopy Analysis Method (HAM) was used to determine series solutions for heat
transfer in straight fins of trapezoidal and rectangular profiles given temperature
dependent thermal properties; nonlinear one dimensional models [5] wherein pre-
liminary group classification methods were utilised to contract invariant (symme-
try) solutions; heat transfer in linear two dimensional trapezoidal fins [6]; heat
transfer in two dimensional straight nonlinear fins were considered [7] wherein Lie
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point symmetries and other standard methods were invoked and recently nonlinear
three dimensional models [8] were considered wherein three dimensional Differ-
ential Transform Methods (DTM) were employed to construct approximate ana-
lytical solutions. The dependence of thermal properties on the temperature renders
the equations highly nonlinear. The non-linearity brings an added complication or
difficulty in the construction of solutions and particularly exact solutions.

Few exact solutions are recorded in the literature, for example for one dimen-
sional problems [2–5, 9–15], two dimensions [6, 7, 16, 17]. An attempt to construct
exact solutions for the three dimensional problems is found in [8], however these
were general solutions. For this reason, either approximate analytical or numerical
solutions are sought. However, the accuracy of numerical schemes is obtained by
comparison with he exact solutions.

This chapter summaries the work of Moitsheki and collaborators in the area of
heat transfer through fin. In their work, they employed Lie symmetry methods to
construct exact solutions. These methods include, the preliminary group classifica-
tion, the Lie point symmetries, conservation laws and associate Lie point symme-
tries, non-classical symmetry methods and recently non classical potential
symmetries. It appeared that most of the constructed exact solutions do not satisfy
the prescribed boundary conditions. The idea then becomes, start with the simple
model that satisfy the boundary conditions and compare it with the approximate
solutions to establish confidence in the approximate methods, then extend analysis
to problems that are difficult to solve exactly.

We acknowledge that some scholars employed many other approximate
methods to solve boundary value problems (BVPs); for example the Homotopy
Analysis Method [18], Collocation Methods (CM) [19], Homotopy Perturbation
Methods (HPM) [20], Haar Wavelet Collation Methods (HWCM) [21], Collocation
Spectral Methods (CSM) [22], modified Homotopy Analysis Method (mHAM) [23],
Spectral Homotopy Analysis Methods (SHAM) and the Optimal Homotopy Analy-
sis Methods [24]. In this chapter we restrict discussions to Lie symmetry methods
for exact solutions, and DTM and VIM for approximate analytical methods.

2. Mathematical descriptions

Mathematical descriptions represent some physical phenomena in terms of
deterministic models given in terms of partial differential equations (PDEs). These
differential equations become non-linear when heat transfer coefficient and ther-
mal conductivity depend on the temperature (see e.g. [5]). This non-linearity was
introduced as a significant modifications of the usually assumed models see e.g. [2].

In this chapter we present a few models for various heat transfer phenomena.

2.1 2 + 1 dimensional transient state models

Mathematical modelling for heat transfer in fins may be three dimensional
models.

2.1.1 Cylindrical pin fins

We consider a two-dimensional pin fin with length L and radius R. The fin is
attached to a base surface of temperature Tb and extended into the fluid of temper-
ature Ts. The tip of the fin is insulated (i.e., heat transfer at the tip is negligibly
small). The fin is measured from the tip to the base. A schematic representation of a
pin fin is given in Figure 1. We assume that the heat transfer coefficient along the
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fin is nonuniform and temperature dependent and that the internal heat source or
sink is neglected. Furthermore, the temperature-dependent thermal conductivity is
assumed to be the same in both radial and axial directions. The model describing the
heat transfer in pin fins is given by the BVP (see e.g. [17])

ρcp
∂T

∂t
¼ ∂

∂Z
K Tð Þ ∂T

∂Z

� �

þ 1

R

∂

∂R
K Tð ÞR ∂T

∂R

� �

: (1)

The initial condition is given by

T 0,R,Zð Þ ¼ Ts, 0≤R≤Ra, 0≤Z ≤L,

here, Ts is the temperature of the surrounding fluid.
Boundary conditions are given by

T t,R,Lð Þ ¼ Tb, 0≤R≤Ra, t>0,

∂T

∂Z
¼ 0, Z ¼ 0, 0≤R≤Ra, t>0:

K Tð Þ ∂T
∂R

¼ �H Tð Þ T � Ts½ �, R ¼ 0, 0≤Z ≤L, t>0,

∂T

∂R
¼ 0, R ¼ Ra, 0≤Z ≤L, t>0,

In non-dimensionalized variables and parameters we have,

∂θ

∂τ
¼ ∂

∂z
k θð Þ ∂θ

∂z

� �

þ E2 1

r

∂

∂r
k θð Þr ∂θ

∂r

� �

, (2)

subject to the initial condition

θ 0, r, zð Þ ¼ 0, 0≤ z≤ 1, 0≤ r≤ 1,

Figure 1.
Schematic representation of a pin fin.
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and boundary conditions

θ τ, 1, rð Þ ¼ 1, 0, ≤ r≤ 1, τ>0,

∂θ

∂z
¼ 0, z ¼ 0, 0≤ r≤ 1, τ>0,

k θð Þ ∂θ
∂z

¼ �Bih θð Þθ, z ¼ 0, 0≤ z≤ 1, τ>0,

∂θ

∂r
¼ 0, r ¼ 1, 0≤ z≤ 1, τ>0,

where the non-dimensional quantities E ¼ L
δ
, and Bi ¼ Hbδ

Ka
, are the fin extension

factor and the Biot number respectively. Also,

t ¼ L2ρcp
Ka

τ, Z ¼ Lz, R ¼ Rar,

K ¼ Kak, H ¼ Hbh, T ¼ Tb � Tsð Þθ þ Ts:

where τ, z, r, k, h and θ are all dimensionless variables. Ka and Hb are the
ambient thermal conductivity and the fin base heat transfer coefficient respectively.

Notice that other terms may be added, for example internal heat generation
(source term) and fin profile.

2.1.2 Rectangular straight fins

Following the similar pattern, in dimensionless variables we have (see e.g. [8])

∂θ

∂τ
¼ ∂

∂x
k θð Þ ∂θ

∂x

� �

þ E2 ∂

∂y
k θð Þ ∂θ

∂y

� �

, (3)

subject to the initial condition

θ 0, x, yð Þ ¼ 0, 0≤ x≤ 1, 0≤ y≤ 1,

and boundary conditions

θ τ, 1, yð Þ ¼ 1, 0, ≤ y≤ 1, τ>0,

∂θ

∂x
¼ 0, x ¼ 0, 0≤ y≤ 1, τ>0,

k θð Þ ∂θ
∂y

¼ �Bih θð Þθ, y ¼ 0, 0≤ x≤ 1, τ>0,

∂θ

∂y
¼ 0, y ¼ 1, 0≤ x≤ 1, τ>0,

2.2 Two-dimensional steady state models

In this section we consider the two dimensional steady state models. The sym-
metry analysis of these models have proven to be challenging. In some cases stan-
dard method such as separations of variables have been employed to determine
exact solutions.
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2.2.1 Cylindrical pin fins

For steady state problem, the heat transfer is independent of the time variable.
For example, the time derivative in Eq. (2) vanish (see e.g. [16]).

2.2.2 Rectangular straight fins

For steady state problem, the heat transfer is independent of the time variable.
For example, the time derivative in Eq. (3) is zero (see e.g. [7]).

2.3 1 + 1 dimensional transient model for straight fins

2.3.1 Solid stationary fins

For solid stationary straight fins the model is given by (see e.g. [25, 26])

∂θ

∂τ
¼ ∂

∂x
f xð Þk θð Þ ∂θ

∂x

� �

�M2θh θð Þ, 0≤ x≤ 1: (4)

subject to initial and boundary conditions

θ 0, xð Þ ¼ 0, 0≤ x≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂x

�

�

�

�

x¼0

¼ 0, τ≥0:

2.3.2 Solid moving fins

It appear, as far as we know, this is still an open problem and in preparation.

∂θ

∂τ
¼ ∂

∂x
f xð Þk θð Þ ∂θ

∂x

� �

�M2θh θð Þ � Pef xð Þ ∂θ
∂x

, 0≤ x≤ 1: (5)

subject to initial and boundary conditions

θ 0, xð Þ ¼ 0, 0≤ x≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂x

�

�

�

�

x¼0

¼ 0, τ≥0:

2.3.3 Porous stationary fins

The model was considered in [27].

∂θ

∂τ
¼ ∂

∂x
f xð Þk θð Þ ∂θ

∂x

� �

�Nc θ � θað Þnþ1 �Nr θ4 � θ4a
� �

, 0≤ x≤ 1: (6)

subject to initial and boundary conditions

θ 0, xð Þ ¼ 0, 0≤ x≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂x

�

�

�

�

x¼0

¼ 0, τ≥0:

2.3.4 Porous moving fins

The model describing heat transfer in porous moving fin is considered in [28]
and is given by
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∂θ

∂τ
¼ ∂

∂x
f xð Þk θð Þ ∂θ

∂r

� �

�Nc θ � θað Þnþ1 �Np θ � θað Þ2 �Nr θ4 � θ4a
� �

� Pef xð Þ ∂θ
∂x

, 0≤ x≤ 1: (7)

subject to initial and boundary conditions

θ 0, xð Þ ¼ 0, 0≤ x≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂x

�

�

�

�

x¼0

¼ 0, τ≥0:

2.4 1 + 1 dimensional transient model for radial fins

2.4.1 Solid stationary fins

For solid stationary radial fins thge model is given by

∂θ

∂τ
¼ 1

r

∂

∂r
rf rð Þk θð Þ ∂θ

∂r

� �

�M2θh θð Þ, 0≤ r≤ 1: (8)

subject to initial and boundary conditions

θ 0, rð Þ ¼ 0, 0≤ r≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂r

�

�

�

�

r¼0

¼ 0, τ≥0:

2.4.2 Solid moving fins

For solid moving radial fins the model is given by (see e.g. [29]),

∂θ

∂τ
¼ 1

r

∂

∂r
rf rð Þk θð Þ ∂θ

∂r

� �

�M2θh θð Þ � f rð ÞPe ∂θ
∂r

, 0≤ r≤ 1: (9)

subject to initial and boundary conditions

θ 0, rð Þ ¼ 0, 0≤ r≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂r

�

�

�

�

r¼0

¼ 0, τ≥0:

2.4.3 Porous stationary fins

For solid stationary radial fins the model is given by

∂θ

∂τ
¼ 1

r

∂

∂r
rf rð Þk θð Þ ∂θ

∂r

� �

�Np θ � θað Þ2 �Nr θ4 � θ4a
� �

, 0≤ r≤ 1: (10)

subject to initial and boundary conditions

θ 0, rð Þ ¼ 0, 0≤ r≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂r

�

�

�

�

r¼0

¼ 0, τ≥0:

2.4.4 Porous moving fins

For porous moving radial fins the model is given by

∂θ

∂τ
¼ 1

r

∂

∂r
rf rð Þk θð Þ ∂θ

∂r

� �

�Np θ � θað Þ2 �Nr θ4 � θ4a
� �

� f rð ÞPe ∂θ
∂r

, 0≤ r≤ 1: (11)
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subject to initial and boundary conditions

θ 0, rð Þ ¼ 0, 0≤ r≤ 1, θ τ, 1ð Þ ¼ 1;
∂θ

∂r

�

�

�

�

r¼0

¼ 0, τ≥0:

2.5 One-dimensional steady state model for straight fins

Considering heat transfer in a one dimensional longitudinal fin of cross
area Ac with various profiles. The perimeter of the fin is denoted by P and
length by L: The fin is attached to a fixed prime surface of temperature Tb

and extends to the fluid of temperature T
∞
: in non-dimensional variables,

one obtains

d

dx
f xð Þk θð Þ dθ

dx

� �

�M2θh θð Þ ¼ 0, 0≤ x≤ 1: (12)

subject to

θ 1ð Þ ¼ 1,
dθ 0ð Þ
dx

¼ 0:

In case of a moving radial fin the term

f xð ÞPe dθ
dx

is added to Eq. (12).

2.6 One-dimensional steady state model for radial fins

Considering heat transfer in a one dimensional stationary radial fin of cross area
Ac with various profiles. The perimeter of the fin is denoted by P and length by
Lrb � rt The fin is attached to a fixed prime surface of temperature Tb and extends
to the fluid of temperature T

∞
: One may assume that at the tip of the fin rt ¼ 0: In

non-dimensional variables, one obtains

1

r

d

dr
rf rð Þk θð Þ dθ

dx

� �

�M2θh θð Þ ¼ 0, 0≤ x≤ 1: (13)

subject to

θ 1ð Þ ¼ 1,
dθ 0ð Þ
dr

¼ 0:

In case of a moving radial fin the term

f rð ÞPe dθ
dr

is added to Eq. (13) (see e.g. [30]).
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3. Methods of solutions

3.1 Brief account on lie symmetry methods

In this subsection we provide a brief theory of Lie point symmetries.
This discussion and further account can be found in the book of Bluman and
Anco [31].

3.1.1 m dependent and n independent variables

m dependent variables u ¼ u1, u2, … , umð Þ and n independent variables x ¼
x1, x2, … , xnð Þ, u ¼ u xð Þ with m≥ 2, arise in studying systems of differential
equations. We consider extended transformations from x, uð Þ�space to
x, u, u 1ð Þ, u 2ð Þ, … , u kð Þ
� �

� space. Here u kð Þ denotes the components of all kth-order

partial derivatives of u wrt x:.
definition Total derivative. The total differentiation operator wrt xi is

defined by

Di ¼
∂

∂xi
þ uαi

∂

∂uα
þ uαij

∂

∂uαi
þ … þ uαii1i2 … ik

∂

∂uαi1i2 … in

þ … , i ¼ 1, 2, … , n:

where

uαi ¼
∂uα

∂xi
, uαij ¼

∂
2uα

∂xi∂x j
, etc:

We seek the one-parameter Lie group of transformations

xi ¼ xi þ εξi x, uð Þ þO ε2
� �

,

uα ¼ uα þ εηα x, uð Þ þO ε2
� �

,
(14)

which leave the system of equation in question invariant. These transformations
are generated by the base vector

X ¼ ξi x, uð Þ ∂

∂xi
þ ηα x, uð Þ ∂

∂uα
:

The kth-extended transformation of (14) are given by

uαi ¼ uαi þ εζαi x, u, u 1ð Þ
� �

þ O ε2ð Þ,

uαij ¼ uαij þ εζαij x, u, u 1ð Þ, u 2ð Þ
� �

þ O ε2ð Þ,

: :

: :

: :

uαi1,i2,… ,ik
¼ uαi1,i2,… ,ik

þ εζαi1,i2,… ,ik
x, u, u 1ð Þ, u 2ð Þ, … , u kð Þ
� �

þ O ε2ð Þ,

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(15)

Theorem 1.1 The extended infinitesimals satisfy the recursion relations
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ζαi ¼ Di η
αð Þ � uαjDi ξ

j
� �

,

ζαij ¼ D j ζ
α
i

� �

� uαilD j ξ
l

� �

,

: :

: :

: :

ζαi1,i2,… ,ik
¼ Dik ζαi1 … ik�1

� �

� uαi1,i2 … ik�1l
Dik ξl

� �

,

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(16)

Introducing the Lie Characteristic function defined by

Wα ¼ ηα � ξ juαj ,

then

ζαi ¼ Di W
αð Þ þ ξ juαji,

ζαij ¼ DiD j W
αð Þ þ ξkukij,

: :

: :

: :

ζαi1,i2,… ,ik
¼ Di1 …Dik Wαð Þ þ ξ juji1,i2 … ik :

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(17)

The corresponding (kth extended) infinitesimal generator is given by

X k½ � ¼ ξi x, uð Þ ∂

∂xi
þ ηαi x, uð Þ ∂

∂uα
þ ζαi

∂

∂ui
þ … þ ζαi1,i2,… ,ik

∂

∂ui1,i2,… ,ik

, k≥ 1:

Theorem 1.2 A differential function F x, u, u1, … , u pð Þ
� �

p≥0, is a pth-order

differential invariant of a group G if

F x, u, u1, … , u pð Þ
� �

¼ F x, u, u1, … , u pð Þ
� �

:

Theorem 1.3 A differential function F x, u, u1, … , u pð Þ
� �

p≥0, is a pth-order

differential invariant of a group G if

X p½ �F ¼ 0,

where X p½ � is the pth prolongation of X:.

3.2 Approximate methods

3.2.1 p-dimensional differential transform methods

For an analytic multivariable function f x1, x2, … , xp
� �

, we have the p-dimen-
sional transform given by

F k1, k2, … , kp
� �

¼ 1

k1!k2!… kp!

∂
k1þk2þ…þkp f x1, x2, … , xp

� �

∂xk11 ∂xk22 … ∂x
kp
p

" #�

�

�

�

�

x1,x2,… ,xpð Þ¼ 0,0,… ,0ð Þ

:

(18)
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The upper and lower case letters are for the transformed and the original func-
tions respectively. The transformed function is also referred to as the T-function,
the differential inverse transform is given by

f x1, x2, … , xp
� �

¼
X

∞

k1¼0

X

∞

k2¼0

…

X

∞

kp¼0

F k1, k2, … , kp
� �

Y

p

l¼1

xkll : (19)

It can easily be deduced that the substitution of (18) into (19) gives the Taylor
series expansion of the function f x1, x2, … , xp

� �

about the point x1, x2, … , xp
� �

¼.

0, 0, … , 0ð Þ. This is given by

f x1, x2, … , xp
� �

¼
X

∞

k1¼0

X

∞

k2¼0

…

X

∞

kp¼0

Qp
l¼1x

kl
l

k1!k2!… kp!

∂
k1þk2þ…þkp f x1, x2, … , xp

� �

∂xk11 ∂xk22 … ∂x
kp
p

" #�

�

�

�

�

x1¼0,… ,xp¼0

:

(20)

For real world applications the function f x1, x2, … , xp
� �

is given in terms of a
finite series for some q, r, s∈ℤ. Then (19)becomes

f x1, x2, … , xp
� �

¼
X

q

k1¼0

X

r

k2¼0

…

X

s

kp¼0

F k1, k2, … , kp
� �

Y

p

l¼1

xkll : (21)

We now give some important operations and theorems performed in the p-
dimensional DTM in Table 1. Those have been derived using the definition in (18)
together with previously obtained results [32].

In the table

δ k1 � e1, k2 � e2, … , kp � ep
� �

¼
1 if ki ¼ ei for i ¼ 1, 2, ::, p:

0 otherwise:

	

We now provide one result of the p-dimensional DTM without proof.
Theorem. Proof in [32].
If

f x1, x2, … , xp
� �

¼ g x1, x2, … , xp
� �

h x1, x2, … , xp
� �

,

then

F k1, k2, … , kp
� �

¼
X

k1

i1¼0

X

k2

i2¼0

…

X

kp

ip¼0

G k1, k2, … , kp þ ip
� �

H k1 þ i1, … , kn�1 þ ip�1, kp
� �

:

Original function f x1, x2, … ,xp

� �

T-function F k1,k2, … , kp
� �

f x1, x2, … , xp
� �

¼ λg x1, x2, … , xp
� �

F k1, k2, … , kp
� �

¼ λG k1, k2, … , kp
� �

f x1, x2, … , xp
� �

¼ g x1, x2, … , xp
� �

� p x1, x2, … , xp
� �

F k1, k2, … , kp
� �

¼ G k1, k2, … , kp
� �

� P k1, k2, … , kp
� �

f x1, x2, … , xp
� �

¼ ∂
r1þr2þ…þrp g x1 , x2 , … , xpð Þ

∂x
r1
1 ∂x

r2
2 … ∂x

rp
p

F k1, k2, … , kp
� �

¼ k1þr1ð Þ!… kpþrpð Þ!
k1 !… kp !

k1 þ r1, … , kp þ rp
� �

f x1, x2, … , xp
� �

¼ Qp
l¼1x

el
l F k1, k2, … , kp

� �

¼ δ k1 � e1, k2 � e2, … , kp � ep
� �

Table 1.
Theorems and operations performed in p-dimensional DTM.
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3.2.2 Variational iteration methods

Lθ þNθ ¼ g xð Þ, (22)

where L and N are linear and nonlinear operators, respectively, and g xð Þ is the
source inhomogeneous term. He [33], proposed the VIM where a correctional
functional for Eq. (22) can be written as

θ jþ1 xð Þ ¼ θ j xð Þ þ
ðx

0
λ tð Þ Lθ j tð Þ þN~θθ tð Þ � g tð Þ

� �

dt, (23)

where λ is the general Lagrange multiplier, which can be be identified

optimally via the variation theory, and ~θn is a restricted variation, which

means δ~θn ¼ 0 [34]. The Lagrange multiplier can be a constant or a function
depending on the order of the deferential equation under consideration. The
VIM should be employed by following two essential steps. First we determine
the Lagrange multiplier by considering the following second order differential
equation,

θ0
0
xð Þ þ aθ0 xð Þ þ bθ xð Þ ¼ g xð Þ, θ 0ð Þ ¼ α, θ0 0ð Þ ¼ β, (24)

where a and b are constants. The VIM admits the use of a correctional function
for this equation as follows,

θ jþ1 xð Þ ¼ θ j xð Þ þ
ðx

0
λ tð Þ θ0

0
j tð Þ þ a~θ

0
j tð Þ þ b~θ j tð Þ � g tð Þ

� �

dt: (25)

Taking the variation on both sides of Eq. (25) with respect to the independent
variable θ j gives,

δθ jþ1

δθ j
¼ 1þ δ

δθ j

ðx

0
λ tð Þ θ0

0
j tð Þ þ a~θ

0
j tð Þ þ b~θ j tð Þ � g tð Þ

� �

dt


 �

, (26)

or equivalently

δθ jþ1 xð Þ ¼ δθ j xð Þ þ δ

ðx

0
λ tð Þ θ0

0
j tð Þ þ a~θ

0
j tð Þ þ b~θ j tð Þ � g tð Þ

� �

dt


 �

, (27)

which gives

δθ jþ1 xð Þ ¼ δθ j xð Þ þ δ

ðx

0
λ tð Þ θ0

0
j tð Þdt

� �

,




(28)

obtained upon using δ~θ j ¼ 0 and δ~θ
0
j ¼ 0. Evaluating the integral of Eq. (28) by

parts gives,

δθ jþ1 ¼ δθ j þ δλθ0j � δλ0θ j þ δ

ðx

0
λ0
0
θ jdt, (29)

or equivalently

δθ jþ1 ¼ δ 1� λ0jt¼x

� �

θ j þ δλθ0j þ δ

ðx

0
λ0
0
θ jdt: (30)
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The extreme condition of θ jþ1 requires that δθ jþ1 ¼ 0. Equating both sides of
Eq. (30) to 0, yields the following stationary conditions

1� λ0jt¼x ¼ 0, (31)

λjt¼x ¼ 0, (32)

λ0
0�
�

t¼x
¼ 0: (33)

This in turn gives

λ ¼ t� x: (34)

In general, for the nth order ordinary differential equation, the Lagrange multi-
plier is given by,

λ ¼ �1ð Þ j
j� 1ð Þ! t� xð Þ j�1: (35)

Having determined λ and substituting its value into (23) gives the iteration
formula

θ jþ1 xð Þ ¼ θ j xð Þ þ
ðx

0
t� xð Þ θ0

0
j tð Þ þ aθ0j tð Þ þ bθ j tð Þ � g tð Þ

� �

dt, (36)

The iteration formula Eq. (36), without restricted variation, should be used for
the determination of the successive approximations θ jþ1 xð Þ, j⩾0, of the solution
θ xð Þ. Consequently, the solution is given by

θ xð Þ ¼ lim
j!∞

θ j xð Þ: (37)

4. Survey of some solutions

In this section we demonstrate the challenge in the construction of exact solution
for heat transfer in pin fin. Also, we consider the work in [5].

4.1 Some exact solutions

4.1.1 Example 1

Given the power law thermal conductivity in heat transfer through pin fins, that
is in Eq. (3) k θð Þ ¼ θn. The model admits four finite symmetry generators. Amongst
the others, the two dimensional Lie subalgebra is given by

X1 ¼
∂

∂z
, X2 ¼ z

∂

∂z
þ r

∂

∂r
þ 2θ

n

∂

∂θ

Notice that

X1,X2½ � ¼ X1,
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and hence we start the double reduction first with X1 which implies τ, r, θð Þ are
invariants and leads to a steady state problem. Hence writing θ ¼ F τ, rð Þ and
substitute in the original equation, one obtains

Fτ ¼ E2 1

r

∂

∂r
rFnFrð Þ:

X2 becomes

X ∗

2 ¼ r
∂

∂r
þ 2F

n

∂

∂F
:

This symmetry generator leads to the first order ODE

g0 γð Þ ¼ 4E2 nþ 1

n2


 �

g γð Þnþ1:

In terms of original variables one obtains the general exact solution

θ τ, rð Þ ¼ rn=2 �4E2 nþ 1

n2


 �

τ þ c1

� ��1=n

:

The difficulty for group-invariant solutions is the satisfaction of the imposed or
prescribed boundary conditions. This has been seen in two dimensional steady state
problems [7, 16], and 1 + 1 D transient problems [25]. Perhaps the most successful
attempt in in [26]. For nonlinear steady state problems, some transformation such
as Kirchoff [7, 16], may linearise the two dimensional problems which then
becomes easier to solve using standard methods. Linearisation of nonlinear steady
state one dimensional problems is possible when thermal conductivity is a differ-
ential consequence of heat transfer coefficient [5].

4.1.2 Example 2

In [5], preliminary group classification is invoked to determine the thermal
conductivity which lead to exact solutions. It turned out that given a power law heat
transfer coefficient, thermal conductivity also takes the power law form. Given
Eq. (12) with both k θð Þ and h θð Þ given by θn then one obtains the solution

θ xð Þ ¼ cosh
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

Mx
� �

cosh
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

M
� �

" #1= nþ1ð Þ

: (38)

The expressions for fin efficiency and effectiveness can be explicit in this case.
Furthermore, this solution led to the benchmarking of the approximate analytical
solutions [35]. With established confidence in approximate methods, then one may
solve other problems that are challenging to solve exactly.

4.2 Some approximate solutions

4.2.1 Three dimensional DTM

In this subsection we consider heat transfer in a cylindrical pin fin. We consider
thermal conductivity given as a linear function of temperature 1þ βθ and a power
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law heat transfer coefficient. The three dimensional DTM solution of Eq. (2) is
given by

θ τ, r, zð Þ ¼ cτ þ cτrþ cτr2 þ cτr3 þ cτr4 þ cτr5 þ cτr6 þ cτr7 þ :… …

þcτz2 � Bicmþ1

1þ βcð Þ τrz
2 � 5c

2E2 τr
2z2 þ 10Bicmþ1

9E2 1þ βcð Þ
τr3z2 þ … …

þcτz3 � Bicmþ1

1þ βcð Þ τrz
3 � 9c

2E2 τr
2z3 þ 2Bicmþ1

E2 1þ βcð Þ
τr3z3 þ … …

⋮

(39)

One may determine the value of c by invoking the boundary at the base of the
fin, as such

cτ þ cτrþ cτr2 þ … þ cτ � Bicmþ1

1þ βcð Þ τr�
5c

2E2 τr
2
… þ cτ � Bicmþ1

1þ βcð Þ τr�
9c

2E2 τr
2 þ …

¼ 1:

To plot a three dimensional figure for this solution one may fix temperature, say
at τ ¼ 0:4 The results are shown in Figure 2.

4.2.2 Two dimensional DTM

The two dimensional DTM solution for a steady heat transfer through the cylin-
drical fin is given by

θ r, zð Þ ¼ c� Bicmþ1

1þ βc
rþ … þ cz2 � Bicmþ1

1þ βc
z2rþ … þ cz3 � Bicmþ1

1þ βc
z3rþ …

(40)

Figure 2.
Approximate analytical solutions for a two-dimensional cylindrical spine fin with a constant thermal
conductivity (β ¼ 0) for τ ¼ 0:4. The parameters are set such that E ¼ 2, Bi ¼ 0:2, and m ¼ 3. (see also, [8]).
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and c is obtained from

c� Bicmþ1

1þ βc
rþ … þ c� Bicmþ1

1þ βc
r�

12cþ 18βc2 þ 4E2βc2 þ 4E2βBi2c2mþ2

1þβcð Þ2

4E2 1þ βcð Þ
r2 þ … ¼ 1:

This solution is plotted in Figure 3

4.2.3 Comparison of one dimensional exact, DTM and VIM solutions

Here the solutions for the one dimensional heat transfer problems are compared,
namely the exact solution given in Eq. (38). The VIM solutions is given by

θ xð Þ ¼ cþ 3c2M2x2

2
� 3c5M2x2

2
þ c7M2x2

2
þ c5M4x4

8
� 3c7M4x4

2
þ 5c9M4x4

4
� c11M4x4

4
þ⋯

(41)

The constant c may be obtained using the boundary condition at the fin base.
The DTM solution is given by (see [35])

θ xð Þ ¼ cþ 3c2M2x2

2
� c2M2x2

6
þ c2M2 3� 4M2c

� �

x4

48
þ c2M2 1� 16M2c

� �

x5

240
�⋯

(42)

Likewise, the constant c is obtained using the boundary conditions.
These solutions are depicted in Figure 4.

Figure 3.
Approximate analytical solutions for a two-dimensional cylindrical spine fin with a constant thermal
conductivity (β ¼ 0) for τ ¼ 0:4. The parameters are set such that E ¼ 2, Bi ¼ 0:2, and m ¼ 3. (see also, [8]).
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5. Outlook and some concluding remarks

The interest in heat transfer through fins will continue unabated. This is brought
about by applications of fins in engineering appliances. The solutions to the prob-
lems give insight into effectiveness and efficiency of different fins. In this chapter
we provided a summary of some of the work in recent times. In particular, we
reviewed the exact and approximate analytical solutions. We demonstrated that
although the models describing hear transfer seem to be simple, they are in fact
challenging to solve exactly. When constructed, the exact solutions are used as
benchmarks for the approximate solutions. It appears that some models including
contracting or expanding have attracted some attention. The analysis of these
problems provide insight into heat transfer phenomena and assist in the design of
fins. The challenge is the construction of exact solutions, however one may con-
struct approximate analytical solutions. The problems discussed here are not
exhaustive.
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Nomenclature

Ac Cross-sectional area
Bi Biot number
E Aspect ratio

Figure 4.
A temperature distribution in a rectangular fin for varying values of n, M ¼ 1:7.(see also [36]).
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h dimensionless heat transfer coefficient
H Heat transfer coefficient
Hb Heat transfer coefficient at the base of the fin
h Dimensionless thermal conductivity
Ka Thermal conductivity of the fluid
K Thermal conductivity of the fin
L Length of the fin
R Radius
Ra Radius
t time
Tb Base temperature
Ts Fluid temperature
x Dimensionless fin length
X Fin length
y Dimensionless fin length
Y Fin length
Z Length of a cylindrical pin fin. Greek letters
τ Dimentionless time
θ dimensionless temperature
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