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Chapter

Water Waves and Light: Two
Unlikely Partners
Georgios N. Koutsokostas,Theodoros P. Horikis,

Dimitrios J. Frantzeskakis, Nalan Antar and İlkay Bakırtaş

Abstract

We study a generic model governing optical beam propagation in media featur-
ing a nonlocal nonlinear response, namely a two-dimensional defocusing nonlocal
nonlinear Schrödinger (NLS) model. Using a framework of multiscale expansions,
the NLS model is reduced first to a bidirectional model, namely a Boussinesq or a
Benney-Luke-type equation, and then to the unidirectional Kadomtsev-Petviashvili
(KP) equation – both in Cartesian and cylindrical geometry. All the above models
arise in the description of shallow water waves, and their solutions are used for the
construction of relevant soliton solutions of the nonlocal NLS. Thus, the connection
between water wave and nonlinear optics models suggests that patterns of water
may indeed exist in light. We show that the NLS model supports intricate patterns
that emerge from interactions between soliton stripes, as well as lump and ring
solitons, similarly to the situation occurring in shallow water.

Keywords: Kadomtsev-Petviashvili equation, nonlocal nonlinear Schrödinger
equation, line solitons, soliton interactions, lump solitons, patterns of light

1. Introduction

For many decades, solitons, namely robust localized waveforms that propagate
undistorted in nonlinear dispersive media, have been a topic of particular interest in
physics [1, 2] and applied mathematics [3, 4]. These waveforms have a variety of
fascinating properties that should be mentioned: due to their particle-like nature,
solitons collide elastically, thus preserving their shape after the collision process. In
some cases, as e.g. in shallow water, line soliton collisions give rise to the emergence
of various wave patterns, including X-, H-, or Y-shaped waves, as well as other,
even more complicated, waveforms – see, e.g., Ref. [5] for a set of remarkable
examples and observations. Such patterns can be described by multidimensional
line soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation, a variant of
the KP equation [6] with negative dispersion – as is the case of water waves with
small surface tension. In particular, the KP equation can be expressed as:

∂

∂x

∂u

∂t
þ 6u

∂u

∂x
þ ∂

3u

∂x3

� �

þ 3σ
∂
2u

∂y2
¼ 0, (1)

where σ ¼ �1: for σ ¼ þ1 (negative dispersion/small surface tension) Eq. (1) is a
KPII, while for σ ¼ �1 (positive dispersion/large surface tension) Eq. (1) is a KPI.
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We should mention that both versions of the KP belong to the – rather
limited – class of completely integrable equations in 2þ 1ð Þ-dimensions [3].

Important to the collision-induced emergence of different types of wave pat-
terns in shallow water is the fact that quasi (line) solitons of the KPII are stable.
Furthermore, of paramount importance is the effect of soliton resonances [7–10],
whereby two (or more) colliding solitons resonate under certain conditions, thus
creating novel stable structures. It is, thus, not surprising that the collision dynam-
ics of many robust solitons, can give rise to a wealth of complex wave patterns
[11–16] (see also [1]).

The above discussion motivates the following question: can solitons, similar to
those governed by the KPII equation and feature rich collision dynamics (as in
shallow water waves), be also predicted – and, possibly, observed – in nonlinear
optics? In this context, key model is the nonlinear Schrödinger (NLS) equation,
which is known to support soliton solutions (see, e.g., Ref. [17] and references
therein). As was shown some time ago [18], the 2þ 1ð Þ-dimensional defocusing
NLS can be asymptotically reduced to the KPI equation, which allows one to
approximate dark soliton stripes of the NLS as line solitons of KPI; then, the fact
that line KPI solitons are unstable [3], can be used to investigate the transverse
instability of dark solitons [18–20]. On the other hand, as was recently shown [21],
the presence of nonlocality introduces an effective surface tension in the system.
Then, in the case where the surface tension is small – corresponding to the case of
strong nonlocality – it can be shown that the nonlocal NLS model can be asymptoti-
cally reduced to a KPII equation. This result allows for the derivation of approximate
stable line soliton solutions of the nonlocal NLS, which behave similarly to the stable
line solitons of KPII, i.e., they undergo elastic collisions and form patterns similar to
those observed in shallow water.

The scope of this work is to review the above ideas and present a variety of
soliton solutions and their dynamics in the framework of a defocusing nonlocal NLS
model. These solutions stem from the soliton solutions of KP models, which are
derived from the nonlocal NLS via a two-step multiscale expansion method. We
show that, similarly to the water wave case, the nonlocal NLS can also support
complicated wave patterns, arising from “complex interactions” between two or
more antidark soliton stripes that are supported in the strong nonlocality regime. In
addition, we present other soliton solutions, namely dark lumps (pertinent to the
KPI equation), as well as ring dark and antidark solitons (pertinent to the cylindrical
KP (cKP), alias Johnson’s Equation [22, 23]). In particular, a summary of our main
results, as well as the organization of this work, are as follows.

First, in Section 2, we introduce the nonlocal NLS model, present its continuous-
wave (cw) solution, and study its stability. Then, we perform a two-step multiscale
analysis. First, at an intermediate stage, we derive a Boussinesq – or a Benney-Luke
(BL) [24] – type equation, which is a long-wave, multi-dimensional and bi-
directional, shallow water wave model. Then, from the Boussinesq/BL-type equa-
tion, we derive its far field, pertinent to the long time behavior, which is the KP
equation, both in Cartesian and in cylindrical geometry. The reduction to the KP
model allows us to construct approximate soliton solutions of the nonlocal NLS,
which are presented in Section 3. In the strong nonlocality regime, we derive
antidark soliton stripes, satisfying an effective KPII equation, which are shown to
form patterns similar to those observed in shallow water; these include X-, Y, and
H-shaped waveforms, as well as other complicated patterns arising from resonant
interactions between more than two solitons. We also present dark lump solitons, as
well as ring dark and antidark soliton solutions of the NLS, which are numerically
found to propagate undistorted in the framework of the NLS model. Finally, in
Section 4, we briefly discuss the conclusions of this work.
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2. Nonlocal NLS and multiscale analysis

2.1 Introduction of the model and linear regime

The model under consideration is a two-dimensional (2D) defocusing NLS, with
a nonlocal nonlinearity, which is expressed in the following dimensionless form:

iut þ
1

2
Δu� nu ¼ 0, (2)

dΔn� nþ uj j2 ¼ 0: (3)

where subscripts denote partial derivatives, u∈, n∈,

Δ � ∂
2
x þ ∂

2
y, or Δ � 1

r
∂r r∂rð Þ þ 1

r2
∂
2
θ, (4)

is the Laplacian in Cartesian or polar coordinates respectively, while the param-
eter d∈þ measures the degree of nonlocality (see below). The above system finds
a number of physical applications. For instance, in the context of optics, this model
describes the evolution of the complex electric field envelope u, via a nonlinear
wave equation in the paraxial regime, coupled with a diffusion-type equation for

the nonlinear correction to the refractive index n depending on the intensity I ¼ uj j2
(in this case, t represents the propagation coordinate) [25, 26]. In this context, the
system (2)–(3) has been used to model experiments on liquid solutions exhibiting
thermal nonlinearities [27, 28]. In addition, it has also been used in studies of
plasmas (in this case, n represents the relative electron temperature perturbation)
[29, 30], as well as in nematic liquid crystals (in this case, n is the optically induced
angle perturbation) [31, 32].

As mentioned above, parameter d represents the degree of nonlocality: for d ¼ 0,
one recovers the local limit, whereby the system (2)–(3) reduces to the defocusing 2D
NLS equation with a local cubic (Kerr-type) nonlinearity:

iut þ
1

2
Δu� uj j2u ¼ 0, (5)

while for d 6¼ 0, Eqs. (2) and (3) feature a spatially nonlocal nonlinearity. Notice
that in our perturbative analytical approach below, d will be treated as a free
parameter, of order O 1ð Þ, thus allowing the model to acquire an arbitrary degree of
nonlocality.

Our analytical approach relies on the analysis of the hydrodynamic form of the
model. This can be derived upon using the Madelung transformation:

u ¼ u0
ffiffiffi

ρ
p

exp iϕð Þ, (6)

where u0 is a complex constant, while the unknown real functions ρ and ϕ

denote the amplitude and phase of the field u, respectively. Substituting into
Eqs. (2) and (3), we obtain the following hydrodynamical system of equations:

ϕt þ nþ 1

2
∇ϕð Þ2 � 1

2
ρ�1=2Δρ1=2 ¼ 0, (7)

ρt þ ∇ � ρ∇ϕð Þ ¼ 0, (8)
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dΔn� nþ u0j j2ρ ¼ 0, (9)

where ∇ � ∂x, ∂y
� �

or ∇ � ∂r, 1r ∂θ
� �

is the gradient operator in Cartesian or in

polar coordinates respectively.
The simplest, non trivial, solution of Eqs. (2) and (3) is of the form:

ρ ¼ 1, ϕ ¼ � u0j j2t, n ¼ u0j j2, (10)

which corresponds to the continuous wave (cw) solution u ¼ u0 exp ð�i u0j j2tÞ
and the constant function n ¼ u0j j2. This solution will serve as a “pedestal”, on top
of which we will seek nonlinear excitations, namely solitons. It is thus necessary to
investigate whether the solution (7) is modulationally stable. This can be done upon
introducing to Eqs. (7)–(9) the following perturbation ansatz:

ρ ¼ 1þ ε~ρ, ϕ ¼ � u0j j2tþ ε~ϕ, n ¼ u0j j2 þ ε~n, (11)

where 0< ε≪ 1 is a formal small parameter. This way, we obtain, at O εð Þ, the
following linear system:

~ϕt þ ~n� 1

4
Δ~ρ ¼ 0, (12)

~ρt þ Δ~ϕ ¼ 0, (13)

dΔ~n� ~nþ u0j j2~ρ ¼ 0: (14)

The above system can straightforwardly be decoupled as follows: solving

Eq. (12) for ~n, as well as Eq. (13) for Δ~ϕ, and substituting back in Eq. (13), the
following linear equation for ~ρ is obtained:

~ρtt � u0j j2Δ~ρ� dΔ~ρtt þ
1

4
1� dΔð ÞΔ2

~ρ ¼ 0: (15)

Since the above solution is linear we can examine its stability in first order by
examining the dispersion relation of plane wave solutions, i.e., ∝ exp i k � r� ωtð Þ½ �,
of wavenumber k ¼ kkk and frequency ω (here, e.g., in Cartesian geometry,

r ¼ x, yð Þ and k ¼ kx, ky
� �

). Then, it can readily be found that these plane waves are
characterized by the following dispersion relation:

ω2 ¼ u0j j2k2

1þ dk2
þ 1

4
k4: (16)

From the above equation we can obtain the following information. First, it is
observed that ω∈ ∀k∈, which indicates that the steady-state solution is
modulationally stable. This result is important since, below, we will seek for soliton
solutions on top of the stable cw background (7). Second, in the long-wavelength

limit, such that dk2 ≪ 1, Eq. (16) can be reduced to the following Bogoliubov-type
dispersion relation:

ω2 ≈ k2C2 þ 1

4
αk4, (17)
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where

C2 ¼ u0j j2, (18)

is the squared “speed of sound”, namely the velocity of linear waves propagating
on top of the cw solution. In addition, parameter α is given by:

α ¼ 1� 4d u0j j2, (19)

and plays the role of an effective surface tension for our original system. Indeed,
as discussed in Ref. [21], this can be inferred by the fact that Eq. (17) is reminiscent
of the dispersion relation for shallow water waves [4]:

ω2 ≈ k2c20 þ
1

3
3T̂ � 1
� �

c20h
2k4: (20)

Here, c20 ¼ gh is the velocity (g is the acceleration of gravity and h the depth of

water at rest), while T̂ ¼ T= ρgh2
� �

, where ρ is the density and T the surface tension.

Comparing Eqs. (17) and (20), one can identify the correspondence: 3T̂ ! 4d u0j j2,
which indeed suggests that a surface tension analogue in our problem is ∝ d u0j j2,
depending on the nonlocality parameter d and the cw intensity u0j j2.

Obviously, regarding the magnitude of the effective surface tension, one may
identify the following two regimes:

• α<0 ) 4d u0j j2 > 1: weak surface tension – strong nonlocality (for fixed u0j j2),

• α>0 ) 4d u0j j2 < 1: strong surface tension – weak nonlocality (for fixed u0j j2).

Below it will be shown that these two regimes correspond, respectively, to a KP-
II and a KP-I equation, with the former giving rise to complex interactions of line
solitons (that we will study in detail).

2.2 The nonlinear regime – asymptotic analysis

2.2.1 The intermediate stage – Bousinesq/Benney-Luke equation

We now proceed by analyzing the fully nonlinear regime. We start by seeking
solutions of Eqs. (7)–(9) in the form of the following asymptotic expansions:

ρ ¼ 1þ ερ1 þ ε2ρ2 þ⋯, (21)

ϕ ¼ � u0j j2tþ ε1=2Φ (22)

n ¼ u0j j2 þ εn1 þ ε2n2 þ⋯, (23)

where 0< ε≪ 1 is a formal small parameter and the unknown functions ρ j, Φ

and n j (j ¼ 1, 2, … ) depend on the following stretched variables:

X ¼ ε1=2x, Y ¼ ε1=2y, T ¼ ε1=2t, (24)

R ¼ ε1=2r, θ ¼ θ, T ¼ ε1=2t, (25)
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for the Cartesian and polar geometry, respectively (the angular coordinate θ in
the polar geometry remains unchanged). By substituting the expansions (21)–(23)
into Eqs. (7)–(9), and equating terms of the same order in ε, we obtain the follow-

ing results. First, Eq. (13), at O ε3=2
� �

and O ε5=2
� �

, yields:

ρ1T þ ~ΔΦ ¼ 0, ρ2T þ ~∇ � ρ1
~∇Φ

� �

¼ 0: (26)

Furthermore, Eq. (14) at O εð Þ and O ε2ð Þ leads to the equations:

n1 ¼ u0j j2ρ1, d~Δn1 � n2 þ u0j j2ρ2 ¼ 0, (27)

which connect the amplitudes ρ1,2 and n1,2 with the phase Φ; note that, here,

~Δ � ∂
2
X þ ∂

2
Y , ~∇ � ∂X, ∂Yð Þ, or ~Δ � 1

R
∂R R∂Rð Þ þ 1

R2 ∂
2
θ, ~∇ � ∂R,

1

R
∂θ

� �

, (28)

in Cartesian and polar coordinates, respectively. In addition, Eq. (14) yields:

ΦT þ n1 þ ε
1

2
∂T

~∇Φ
� �2 þ n2 �

1

4
~Δρ1

� �

¼ O ε2
� �

: (29)

To this end, combining Eq. (29) with Eqs. (26) and (27), yields the following
biderectional nonlinear dispersive wave equation for Φ:

ΦTT � C2 ~ΔΦþ ε
1

4
α~Δ

2
Φþ 1

2
∂T

~∇Φ
� �2 þ ~∇ � ΦT

~∇Φ
� �

� �

¼ O ε2
� �

, (30)

where C2 is the squared speed of sound given by Eq. (18) and the parameter α is
given by Eq. (19). Here it is worth observing the following. First, at the leading-order
in ε, Eq. (30) is the standard second-order wave equation, while at order O εð Þ, the
linear part of Eq. (30) corresponds to the dispersion relation (16) for the small-
amplitude linear waves of Eqs. (2) and (3) propagating on top of the steady state with

∣u∣ ¼ ∣u0∣ and n ¼ u0j j2. The full Eq. (30), incorporates fourth-order dispersion and
quadratic nonlinear terms, resembling the Boussinesq and Benney-Luke [24] equa-
tions. These models, are used to describe bidirectional shallow water waves, in the
framework of small-amplitude and long-wave approximations [4].

2.2.2 Long-time behavior – KP equation

Using a multiscale expansion method, similar to the one employed in the water
wave problem [4], we now derive the KP equation, which is obtained under the
additional assumptions of quasi-two-dimensionality and unidirectional propagation.
In particular, we introduce the asymptotic expansion:

Φ ¼ Φ0 þ εΦ1 þ⋯, (31)

where the unknown functions Φℓ (ℓ ¼ 0, 1, … ) depend on the variables:

χ ¼ X � CT, ~χ ¼ X þ CT, Y ¼ ε1=2Y, T ¼ εT, (32)

ϱ ¼ R� CT, ~ϱ ¼ Rþ CT, Θ ¼ ε�1=2θ, T ¼ εT, (33)

for the Cartesian and polar geometry, respectively. Substituting the expansion
(31) into Eq. (30), at the leading-order in ε, we obtain the equations:

6
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Φ0χ~χ ¼ 0, (34)

Φ0ϱ~ϱ ¼ 0, (35)

in Cartesian and polar coordinates respectively. The above equations imply that
Φ0 can be expressed as a superposition of two waves. In the Cartesian geometry,

these waves are a right-going one, Φ Rð Þ
0 , which depends on χ, and a left-going one,

Φ
Lð Þ
0 , depending on ~χ. Similarly, in the polar case, Φ0 can be expressed as superpo-

sition of a radially expanding wave (depending on ϱ), and a radially contracting one
(depending on ~ϱ). Thus, the solutions of Eqs. (34) and (35) read:

Φ0 ¼ Φ
Rð Þ
0 χ,Y, Tð Þ þΦ

Lð Þ
0 ~χ,Y, Tð Þ, (36)

Φ0 ¼ Φ
Rð Þ
0 ϱ,Θ, Tð Þ þΦ

Lð Þ
0 ~ϱ,Θ, Tð Þ: (37)

In addition, at order O εð Þ, we obtain the following equations:

4C2Φ1χ~χ ¼  �C Φ
Rð Þ
0χχΦ

Lð Þ
0~χ �Φ

Rð Þ
0χ Φ

Lð Þ
0~χ~χ

	 


þ ∂χ �2CΦ
Rð Þ
0T þ α

4
Φ

Rð Þ
0χχχ �

3C

2
Φ

Rð Þ2
0χ

� �

� C2Φ
Rð Þ
0YY

� �

þ ∂~χ 2CΦ Lð Þ
0T þ α

4
Φ

Lð Þ
0~χ~χ~χ þ

3C

2
Φ

Lð Þ2
0~~χ

� �

� C2Φ
Lð Þ
0YY

� �

,

(38)

for the Cartesian geometry, and

4C2Φ1ϱ~ϱ ¼  �C Φ
Rð Þ
0ϱϱΦ

Lð Þ
0~ϱ �Φ

Rð Þ
0ϱ Φ

Lð Þ
0~ϱ~ϱ

	 


þ ∂ρ �2CΦ
Rð Þ
0T þ α

4
Φ

Rð Þ
0ϱϱϱ �

3C

2
Φ

Rð Þ2
0ϱ � C

T
Φ

Rð Þ
0~ϱ

� �

� 1

T
2 Φ

Rð Þ
0ΘΘ

� �

þ ∂~ϱ 2CΦ
Lð Þ
0T þ α

4
Φ

Lð Þ
0~ϱ~ϱ~ϱ þ

3C

2
Φ

Lð Þ2
0~ϱ � C

T
Φ

Lð Þ
0~ϱ

� �

� 1

T
2 Φ

Rð Þ
0ΘΘ

� �

,

(39)

for the polar geometry. Here, it is important to observe the following. Once
Eq. (38) is integrated in χ or ~χ [and, similarly, Eq. (39) in ϱ or ~ϱ], secular terms arise:
the secular therms are those in the square brackets in the right-hand side, because
are functions of χ or ~χ (ϱ or ~ϱ in polar) alone, not both. Removal of these secular

terms leads to two uncoupled nonlinear evolution equations for Φ Rð Þ
0 and Φ

Lð Þ
0 in

both geometries. Furthermore, using the equation ΦT ¼ �n1 (i.e., the linear part of
Eq. (29), together with Eqs. (26) and (27), it is found that the amplitude ρ1 can also
be decomposed to a left- and a right-going wave; this means that

ρ1 ¼ ρ
Rð Þ
1 þ ρ

Lð Þ
1 ,

with the fields ρ Rð Þ
1 and ρ

Lð Þ
1 satisfying a pair of two uncoupled KP equations.

In the Cartesian geometry, the KP equations are of the form:

∂χ ρ
Rð Þ
1T � α

8C
ρ

Rð Þ
1χχχ þ

3C

2
ρ

Rð Þ
1 ρ

Rð Þ
1χ

� �

þ C

2
ρ

Rð Þ
1YY ¼ 0, (40)

∂~χ ρ
Lð Þ
1T þ α

8C
ρ

Lð Þ
1~χ~χ~χ �

3C

2
ρ

Lð Þ
1 ρ

Lð Þ
1~χ

� �

� C

2
ρ

Lð Þ
1YY ¼ 0, (41)
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while in the polar geometry, the relevant equations take the form of the so-called
cylindrical KP (cKP), or Johnson’s equations (see Refs. [22, 23]):

∂ϱ ρ
Rð Þ
1T � α

8C
ρ

Rð Þ
1ϱϱϱ þ

3C

2
ρ

Rð Þ
1 ρ

Rð Þ
1χ þ 1

2T
ρ

Rð Þ
1

� �

þ 1

2CT 2 ρ
Rð Þ
1ΘΘ ¼ 0, (42)

∂~ϱ ρ
Lð Þ
1T þ α

8C
ρ

Lð Þ
1~ϱ~ϱ~ϱ �

3C

2
ρ

Lð Þ
1 ρ

Lð Þ
1~ϱ � 1

2T
ρ

Lð Þ
1

� �

� 1

2CT 2 ρ
Lð Þ
1ΘΘ ¼ 0: (43)

2.2.3 Versions of the KP equations

It is now convenient to further simplify the equations above, namely the KP and
the cKP equations, in order to express them in their standard form [4]. We consider
right-going waves in the Cartesian geometry, and radially expanding ones in the
polar geometry, and introduce the following transformations,

Y↦

ffiffiffiffiffiffiffiffi

3∣α∣

4C2

r

Y, Θ !
ffiffiffiffiffiffiffiffi

3∣α∣

4

r

Θ, T ↦ � α

8C
T , ρ

Rð Þ
1 ¼ � α

2C2 U, (44)

which cast the respective KP and cKP equations into the following form:

∂X UT þ 6UUX þ UXXXð Þ þ 3σ2UYY ¼ 0, (45)

∂ϱ UT þ 6UUϱ þUϱϱϱ þ
1

2T
U

� �

þ 3σ2

T
2 UΘΘ ¼ 0: (46)

Here, the parameter σ2 is defined as:

σ2 ¼ � sgn α ¼ sgn 4d u0j j2 � 1
	 


: (47)

It is now clear that, in the Cartesian case, Eq. (45) includes both versions of the

KP equation, KPI and KPII [33]. Indeed, for σ2 ¼ 1 ) α<0, i.e., for u0j j2 > 1= 4dð Þ or
d> 1= 4ju0jð Þ2, Eq. (45) is a KPII equation; this corresponds to a small effective

surface tension. On the other hand, for σ2 ¼ �1 ) α>0, i.e., u0j j2 < 1= 4dð Þ or
d< 1= 4ju0jð Þ2, Eq. (45) is a KPI equation; this corresponds to the case of large
effective surface tension (see end of Section 2.1 and discussion below).

In other words, for a fixed degree of nonlocality d, a larger (smaller) background
amplitude ∣u0∣, as defined by the sign of α, corresponds to KPII (KPI); similarly, for
a fixed background amplitude ∣u0∣, a strong (weak) nonlocality, as defined by the
above regimes of d, corresponds to KPII (KPI). Notice that in the local limit of d ¼ 0,
the asymptotic analysis leads only to the KPI model, in which line solitons are
unstable; this fact was used to better understand self-focusing and transverse insta-
bility of plane dark solitons of the defocusing NLS Equation [19, 20]. Notably, the
same parameter α can also been shown to distinguish solutions in 1D [34] and
radially symmetric [35] systems; a similar case, pertinent to the polar geometry, will
be considered below.

Once again, it is important to highlight the fact that the existence of these
regimes resembles the situation occurring in shallow water. In this context, weak
surface tension corresponds to σ2 ¼ 1 in Eq. (45) (i.e., KPII), while strong surface
tension is pertinent to σ2 ¼ �1 (i.e., KPI). Thus, there exists an immediate connec-
tion between the original problem with the one of shallow water waves: relatively
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large (small) background amplitude or nonlocality corresponds to weak (strong)
surface tension, leading to KPII (KPI).

3. Approximate soliton solutions

We now employ the results of the above analysis and construct the solution of
our original problem. This can be done as follows. Once a solution of Eq. (45)
[or (46)] is known, an approximate solution of Eqs. (2) and (3) has the form:

u≈ u0 1� ε
α

2 u0j j2
U

 !1=2

exp �i u0j j2tþ i

2
αε�1=2

ðT

0
UdT 0

� �

, (48)

n≈ u0j j2 � 1

2
εαU: (49)

It is important to note that Eq. (48) describes two different types of solitons,
namely dark and antidark ones. Indeed, for α<0, i.e., for solutions satisfying the
KPII equation (corresponding to the strong nonlocality regime) the solution (48) has
the form of a hump on top of the cw background and is, thus, an antidark soliton. On
the other hand, for α>0, i.e., for solutions satisfying the KPI equation
(corresponding to the weak nonlocality regime) the solution (48) has the form of a
dip on top of the cw background and is, thus, a dark soliton. Note that in the local
limit, with d ¼ 0, it turns out that α ¼ 1 and the solutions have always the form of
dark solitons. In other words, antidark solitons are only supported by a sufficiently
strong nonlocality.

Below, we will use known solutions of the KP and cKP equations and present
corresponding solutions of the nonlocal NLS. In addition, we will perform direct
numerical simulations to examine the evolution and – in some cases – the interac-
tion dynamics of the approximate soliton solutions (48).

3.1 Antidark stripe solitons and their interactions

We start with the Cartesian geometry and consider, in particular, the simplest
soliton solutions of the KP equation, the so-called line solitons. Specifically, the one-
line soliton solution of Eq. (45), traveling at an angle to the Y-axis, reads [33]:

U X ,Y, Tð Þ ¼ 2κ2sech2 Zð Þ,
Z � κ X þ λY � κ2 þ 3λ2

� �

T þ δ
� �

,
(50)

where κ, λ and δ are free parameters. We are particularly interested in the case
where the corresponding solution of the NLS takes the form of an antidark soliton,
with U obeying the KPII equation: since, in this case, line solitons are stable, we may
expect that their interactions will give rise to patterns resembling those observed in
shallow water [5]. An example of such an antidark soliton is ahown in Figure 1, for

t ¼ 0. For this example, the following parameter values were used: u0 ¼ 1 and d ¼
1=

ffiffiffi

3
p

(leading to α ¼ �1=3<0), as well as κ ¼ λ ¼ 1, δ ¼ 0, and ε ¼ 0:2. These
values will also be used below.

In what follows, we choose line solitons with specific parameters, so that their
angle during interaction will determine the type of pattern. In the simulations, we
evolve the initial configuration up to t ¼ 600, so that solitons have enough time to
interact and generate interesting interaction patterns. In all cases, the numerical
integration of Eqs. (2) and (3) is performed via a high-accuracy pseudo-spectral

9

Water Waves and Light: Two Unlikely Partners
DOI: http://dx.doi.org/10.5772/intechopen.95431



method in space and fourth-order in time. To adjust to the periodic boundary
conditions, the scheme requires we place the solutions on top of a wide super-
Gaussian background that decays at infinity and makes the initial condition peri-
odic. As it will be seen below, interacting antidark NLS solitons follow closely the
KP dynamics, giving rise to patterns that are usually observed in water.

We start with the interaction of two solitons, and express the two-line soliton
solution of KPII as follows:

U X ,Y, Tð Þ ¼ 2∂2X lnF X ,Y, Tð Þ,
F � 1þ exp Z1ð Þ þ exp Z2ð Þ þ exp Z1 þ Z2 þ A12ð Þ,

exp A12ð Þ ¼ κ1 � κ2ð Þ2 � λ1 � λ2ð Þ2

κ1 þ κ2ð Þ2 � λ1 � λ2ð Þ2
,

(51)

with Zi � κi X þ λiY � κ2i þ 3λ2i
� �

T þ δi
� �

.

We first focus on interacting line solitons that form Y- and X-shaped wave-
forms, and proceed with more complex ones later in the text. In Figure 2, we show
a typical Y-shaped pattern, whereby the resonant two-soliton interaction gives rise
to the emergence of one soliton, with its maximum height being four times that of
the incoming solitons (this resonant Y-shaped solution was originally found by

Figure 1.
A typical single antidark soliton solution of the nonlocal NLS (u x, y, 0ð Þ), with κ ¼ λ ¼ 1, δ ¼ 0; other
parameter values are: u0 ¼ C ¼ 1, d ¼ 1=

ffiffiffi

3
p

, and ε ¼ 0:2.

Figure 2.
A typical Y-type interaction, u x, y, 0ð Þ, whereby out of two incoming colliding solitons, a single line soliton
emerges. Parameter values are: κ1 ¼ κ2=2 ¼ 1=2, λ1 ¼ 3λ2 ¼ 3=4.
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Miles [7, 8]). This feature is clearly observed in the figure. Parameter values in this
case are: κ1 ¼ κ2=2 ¼ 1=2, λ1 ¼ 3λ2 ¼ 3=4 (and for all cases, also pertaining to X-type
interactions below, δ1 ¼ δ2 ¼ 0).

Next, we proceed with the X-type interactions, which can be discriminated
according to the resulting “stem”: an interaction with a short stem (Figure 3-left), an
interaction with a long stem where the stem height is higher than the incoming line
solitons (Figure 3-middle and right respectively).

In the same category falls an X-type interaction with a long stem, with the stem
height being lower than the tallest incoming line soliton, which we refer to here as
an H-interaction. A typical such interaction is given in Figure 4, and parameter

values: κ1 ¼ κ2=2 ¼ 1=2, λ1 ¼ 1=2� 10�7, and λ2 ¼ 0.
An immediate generalization of the above is a three-wave interaction, where

now

F ¼ 1þ
X

1≤ i≤ 3

eηi þ
X

1≤ i< j≤ 3

eηiþη jþAij þ eη1þη2þη3þA12þA13þA23 , (52)

and

exp Aij

� �

¼ κi � κ j

� �2 � λi � λ j

� �2

κi þ κ j

� �2 � λi � λ j

� �2 , (53)

so that the resulting interaction is as in Figure 5, for t ¼ 200. Here,
κ1 ¼ 1, κ2 ¼ 2, κ3 ¼ 3, λ1 ¼ λ2=2 ¼ λ3=5 ¼ �1=3 and, as before, δ1 ¼ δ2 ¼ δ3 ¼ 0.

Figure 3.
X-type interactions, u x, y, 0ð Þ, with: κ1 ¼ κ2 ¼ 1=2, λ1 ¼ �λ2 ¼ �2=3 (left), κ1 ¼ κ2 ¼ 1=2, λ1 ¼
1=4� 0:01, λ2 ¼ 3=4 (middle), κ1 ¼ κ2 ¼ 1=2, λ1 ¼ 1=2, λ2 ¼ �1=2� 10�10 (right). Observe that the
length of the stem is increased from left to right (see also text).

Figure 4.
An H-type interaction, u x, y, 0ð Þ, with κ1 ¼ κ2=2 ¼ 1=2, λ1 ¼ 1=2� 10�7, λ2 ¼ 0.
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More intricate structures may still form whose mathematical description is more
complex. Such novel weblike structures for the KP equation, termed N-in M-out,
have been found using Wronskian methods [11, 13, 15] and the so-called τ-function.
We illustrate the basic construction of these solitons but do not go into further
detail as this is beyond the scope of this work. The most convenient way to write the
line soliton solutions of the KPII system is through the Wronskian, or τ-function,
which replaces the F function above. Now, the solutions of the KPII equation are
written in a similar manner as above, as

U X ,Y, Tð Þ ¼ 2∂2X ln τ X ,Y, Tð Þ, (54)

where this new τ-function represents the Wronskian determinant

τ X ,Y, Tð Þ ¼

f 1 f 2 ⋯ fN

f 01 f 02 ⋯ f 0N

⋮ ⋮ ⋯ ⋮

f
N�1ð Þ
1 f

N�1ð Þ
2 ⋯ f

N�1ð Þ
N

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (55)

Here superscripts denote differentiation with respect to X, and the set of f n
functions constitute the set of linearly independent solutions of the system:

f
Y
¼ f

XX
, f

T
¼ f

XXX
: (56)

In particular, for line solitons these are defined as:

f n X ,Y, Tð Þ ¼
X

M

m¼1

anme
θm , n ¼ 1, 2, … ,N, (57)

where θm ¼ kmX þ k2mY þ k3mT þ θ0m with distinct real parameters km ‘s with
the property: k1 < k2 <⋯< kM. The parameters θ0m are real constants. Importantly,
the coefficients anm define an N �M matrix of rank N, due to the linear indepen-
dence of the functions f n, such that anm≕Að Þ. Below we provide two examples, and
their evolution for a 2–2 and 3–3 interaction (see Figures 6 and 7, respectively).

Figure 5.
A 2–3 wave interaction, u x, y, 0ð Þ, with κ1 ¼ 1, κ2 ¼ 2, κ3 ¼ 3, λ1 ¼ λ2=2 ¼ λ3=5 ¼ �1=3
and δ1 ¼ δ2 ¼ δ3 ¼ 0.
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We start with a 2–2 interaction, by defining the matrix A, such that

A ¼
1 0 �1 �1

0 1 1 1

� �

, (58)

and the relative real parameters k1 ¼ �1, k2 ¼ 0, k3 ¼ 1 and k4 ¼ 2

corresponding to the relative θmj4m¼1. Then, the evolution of this interaction is
depicted in Figure 6.

Similarly, for a 3–3 wave interaction one has:

A ¼
1 0 �1 �1 0 2

0 1 2 1 0 �1

0 0 0 0 1 1

0

B

@

1

C

A
, (59)

and k1 ¼ �1, k2 ¼ �1=2, k3 ¼ 0, k4 ¼ 1=2, k5 ¼ 1 and k6 ¼ 3=2 to produce the
following interaction pattern of Figure 7.

It is important to note here that the matrices A for the 2–2 and 3–3 solitons, are
not arbitrarily chosen. The N �N maximal minors of A must be non-negative in
order for the KP solution q to be regular for all X, Y and T. In the literature, such
matrices are called totally non-negative matrices.

3.2 Dark lump solitons

So far, we have focused on structures obeying the effective KPII equation. These
structures, namely the antidark stripe solitons, are quasi one-dimensional (1D)
states, which are stable. The respective states that satisfy the effective KPI equation,
namely dark stripe solitons, are expected to be transversely unstable – see, e.g., Ref.
[36] for a stability analysis of KP line solitons.

Figure 6.
A typical 2–2 wave evolution for t ¼ 0 (left), t ¼ 200 (middle) and t ¼ 400 (right). All figures refer to the
variable u x, y, tð Þ.

Figure 7.
A typical 3–3 wave evolution, for t ¼ 0 (left), t ¼ 400 (middle), and t ¼ 600 (right). All figures refer to the
variable u x, y, tð Þ.
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Nevertheless, the KPI equation, that corresponds to the weakly nonlocal regime,
supports stable, purely 2D, soliton states known as lumps. These solitons are weakly
localized, namely they decay algebraically as ∣x∣, ∣y∣ ! ∞. The respective solitons of
the nonlocal NLS, which are of the dark type, i.e., they have the form of dark lumps,
can be effectively described as solutions of Eq. (45) for the field U:

U X ,Y, Tð Þ ¼ 16
16q2η2 � 4 ξ� 2kηð Þ2 þ 1=q2

16q2η2 þ 4 ξ� 2kηð Þ2 þ 1=q2
h i2 ,

ξ ¼ X � 12 k2 þ q2
� �

T , η ¼ Y � 12kT ,

(60)

where q and k are free real parameters. Notice that solutions of this type have
not yet been observed in water due to the fact that the surface tension is small.

Similarly to the case of antidark stripe solitons, once Eq. (60) is substituted into
Eq. (48) gives rise to the approximate dark lump soliton of the nonlocal NLS. Using
the relevant analytical expression, it is straightforward to prepare the
corresponding initial condition by setting t ¼ 0, and numerically integrate Eqs. (2)
and (3) to examine the evolution of dark lumps. In Figure 8, shown is the result of
such a simulation for the dark lump; for this simulation, we have used the parame-
ter values u0 ¼ 1, d ¼ 1=5 (so that α ¼ 1=5>0, corresponding to dark soliton
states), as well as k ¼ 0 and q ¼ 1. It can readily be observed that the dark lump
solitons propagate undistorted up to t ¼ 20, which is the “numerical horizon” for
this particular simulation. This result indicates that, similarly to antidark stripe
solitons, dark lumps can also be supported by the nonlocal NLS system.

3.3 Ring dark and antidark solitons

We now turn our attention to the cKP Eq. (46), and focus on radially symmetric
solutions that do not depend on Θ. In such a case, Eq. (46) reduces to a quasi-1D
equation, namely the cylindrical Korteweg-de Vries (cKdV), which is also a

Figure 8.
A typical dark lump solution, at t ¼ 0, with k ¼ 0, q ¼ 1 (top panel) and its evolution for t ¼ 0, 10 and 20.
The initial condition shown in the top panel is given by Eq. (60).
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completely integrable model. The cKdV is a generic equation that can been used to
describe cylindrical solitons in shallow water, plasmas, etc. [1]. As was shown in
Ref. [37], the cKdV equation admits an exact soliton solution which, in the frame-
work of Eq. (46), can be expressed as follows:

U ϱ, Tð Þ ¼ ϱ

12T
þ 2κ2

T
sech2 8κ3

ffiffiffiffi

T
p þ κϱ

ffiffiffiffi

T
p þ ϱ0

� �

(61)

where η and ϱ0 are free parameters of the soliton. It is clear that Eq. (61) has the
form of a sech2-pulse on top of a rational background. A clearer picture regarding
the structure of the cKdV equation, can be obtained by means of an asymptotic
asymptotic analysis [38, 39]. Indeed, as shown in these works, to leading-order, in
the regime ∣T ∣≫ ∣ϱ∣, the primary wave U ϱ, Tð Þ, decays to zero at both upstream and
downstream infinity. The primary wave has a form similar to that of Eq. (50), but
with the following change of variables: X ↦ ϱ and δ↦ ϱ0. However, there is a very
important difference: κ now becomes a slowly-varying function of T , due to the
presence of the term U= 2Tð Þ in the cKdV. Following the analysis of [38, 39], and
using the original coordinates, it can be concluded that:

κ2 ¼ κ20
t0
t

	 
2=3

, (62)

where κ20 is a constant setting the solitary wave amplitude at t ¼ t0. We can
know express an approximate solution of Eqs. (2) and (3), for the polar chase, and
for the primary solitary wave. This is of the form of Eq. (48), with the soliton

amplitude and velocity varying as t�2=3, and the width varying as t1=3, as follows
from Eqs. (50) and (62).

Notice that this approximate solution is a ring-shaped solitary wave, on top of
cw background, which can be either dark (for α>0) or anti-dark (for α<0).
Notice, also that ring dark solitons were predicted to occur in optical media
exhibiting either Kerr [40] or non-Kerr [41] nonlinearities, and were later observed
in experiments [42]. On the other hand, ring anti-dark solitons were only predicted
to occur in non-Kerr – e.g., saturable media [41, 43]. This picture is complemented

by this analysis, according to which a relatively strong [i.e., d> 1=4ju0jð Þ2] nonlocal
nonlinearity can also support ring anti-dark solitary waves.

As in the Cartesian case, we have performed direct numerical simulations to
examine the evolution of ring-shaped solitons in the nonlocal NLS model. First, in
Figure 9, shown are 3D plots depicting the profiles of the ring dark solitons and ring
antidark solitons. Here, we use d ¼ 1=5 for the dark soliton (α>0) and d ¼ 1=3 for

Figure 9.
(Color online) typical ring dark (left) and anti-dark (right) solitons.
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the antidark (α<0), while the rest of the parameters are set equal to unity except
ε ¼ 0:2 as before. Furthermore, both solitons have an initial radius of r 0ð Þ ¼ 10.

In addition, in Figure 10, we show the evolution of the ring solitons depicted in
Figure 9. Once again, it is observed, that both types of ring solitons propagate
undistorted up to end of the simulation (t ¼ 10), which indicates that these states
are also supported by the nonlocal NLS.

4. Conclusions and discussion

In conclusion, we have studied a 2D defocusing NLS model with a spatially
nonlocal nonlinearity. The considered model is relevant to optical beam propagation
in a variety of physical settings, including thermal media, plasmas, and nematic
liquid crystals. We have analytically treated this nonlocal NLS by means of a two-
stage multiscale analysis. This led to a Boussinesq/Benney-Luke-type equation, and
a KP equation (in both Cartesian and polar geometries), which are models arising in
the context of shallow water waves. This analysis revealed that the nonlocal NLS is
characterized by an effective surface tension, which is related to the degree of
nonlocality: small (large) effective surface tension corresponds to the strong
(weak) nonlocality regime, whereby the asymptotic reduction leads to a KPII (KPI)
equation.

Apart from the type of KP (KPII or KPI), the effective surface tension also
controls the type of soliton: antidark (dark) solitons on top (off) the cw pedestal can
only be formed in the strong (weak) nonlocality regime. We have thus found a
number of different soliton states that can be supported by the nonlocal NLS. These
include antidark stripe solitons, dark lump solitons, as well as ring dark and
antidark solitons (in the polar case). We also used numerical simulations to examine
the existence, evolution, as well as interaction dynamics. For the latter, we focused
on the case of antidark solitons, which were shown to form a plethora of patterns
coming out of their collisions. These include Y-, X-, H-shaped waveforms, as well as
more complicated patterns involving more than two solitons; all these, have been
observed in shallow water [5], a fact that highlights the deeper connection between
water waves and light! In addition, we examined, by means of direct simulations,
the existence and propagation of other soliton states, namely dark lump solitons, as

Figure 10.
(Color online) the evolution of the dark (top) and anti-dark (bottom) ring solitons of Figure 9.
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well as ring dark and antidark solitons. We found that all these states do exist in the
framework of the nonlocal NLS, and can propagate undistorted up to times set by
the simulations.

At this point, it is also relevant to comment on the possibility of observing the
predicted patterns in real experiments. In that regard, first we consider the case of
antidark solitons. The observation of these states took place some time ago, as it was
first reported in Ref. [44]; this fact indicates that the necessary experimental setting
is already available. As concerns the experimental set up needed for the observation
of the Y-, X- and H-waves and other related patterns, it may be similar to that of
Ref. [44]. In particular, one may employ at first a cw laser beam, which is split into
two parts via a beam-splitter. One branch goes through a cavity system to form a
pulse (as happens in typical pulsed lasers); this pulse branch undergoes phase-
engineering, i.e., passes through a phase mask so that the characteristic phase jump
of the antidark soliton is inscribed. Then, the cw and the phase-engineered pulse are
incoherently coupled inside the nonlocal medium, e.g., a nematic liquid crystal. This
process forms one antidark soliton, as in Ref. [44]. To observe the Y-, X- or H-
patterns predicted above, two such antidark solitons have to be combined inside the
crystal. The angle between the two incident beams, which should be appropriately
chosen so that a specific pattern be formed, can be controlled by a rotating mirror in
one of the branches of the beam-splitter.

As concerns the possibility of the experimental observation of the other soliton
states that were predicted by our analysis, we note the following. First, regarding
the weakly localized dark lump solitons, they can be experimentally observed as
follows. In a real experiment, it is straightforward to create a dark soliton by using,
e.g., a proper phase mask (see, e.g., the review [45] and references therein); this can
also be done even in the case of ring dark solitons [46]. Such structures are prone to
the transverse modulational instability in 2D, and are known to decay into vortices
[45]. However, as was predicted in Ref. [19], sufficiently weak gray solitons can
decay to dark lumps satisfying an effective KPI equation. This result suggests that,
to observe dark lumps, one only need to embed a shallow dark soliton (like the ones
we considered herein) into a 2D space, e.g., in a planar waveguide; then, the
transverse instability will set in, and dark lump solitons will emerge. Finally,
regarding the ring solitons, as mentioned above, they have already been observed in
a variety of experiments (see, e.g., Ref. [46] and the review [45]) and, thus they can
readily be created, e.g., in thermal media or in nematic liquid crystals. Thus, a
variety of patterns that can be observed in water may also emerge in optics.

The obtained results relied on the formal reduction of the nonlocal NLS model to
the KP (cKP) equation. It would be interesting to investigate if other types of
nonlocality, arising, e.g., in the context of chromium Bose-Einstein condensates
[47], or in defocusing colloidal media [48] can support relevant soliton states. Such
studies are in progress and pertinent results will be presented elsewhere.
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