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Chapter

Cement-Based Piezoelectricity
Application: A Theoretical
Approach

Daniel A. Triana-Camacho, Jorge H. Quintero-Orozco
and Jaime A. Perez-Taborda

Abstract

The linear theory of piezoelectricity has widely been used to evaluate the
material constants of single crystals and ceramics, but what happens with amor-
phous structures that exhibit piezoelectric properties such as cement-based? In this
chapter, we correlate the theoretical and experimental piezoelectric parameters for
small deformations after compressive stress—strain, open circuit potential, and
impedance spectroscopy on cement-based. Here, in detail, we introduce the theory
of piezoelectricity for large deformations without including a functional for the
energy; also, we show two generating equations in terms of a free energy’s function
for later it will be reduced to constitutional equations of piezoelectricity for infini-
tesimal deformations. Finally, here is shown piezoelectric and electrical parameters
of gold nanoparticles mixed to cement paste: the axial elasticity parameter Y =
323.5 + 75.3 [kN /m?], the electroelastic parameter y = —20.5+ 6.9 [mV /kN], and
dielectric constant ¢ = (939.6 & 82.9)¢( [F/m], which have an interpretation as
linear theory parameters sf]?kl, i and sl.a discussed in the chapter.

Keywords: piezoelectricity, cement-based, nano-composites,
constitutional equations, impedance spectroscopy

1. Introduction

The direct piezoelectric effect creates an electric polarization on a continuum
medium due to applied stress. The polarization can be macroscopic (effect over
continuum medium) and nanoscopic and microscopy scales (effect over atoms,
molecules, and electrical domains). Once the Curie brothers discovered the piezo-
electric effect in 1880 [1], piezoelectricity investigations led to more data and
constructed models based on crystallography to explain the electricity generation
since electro-optics and thermodynamic. Voigt in 1894 proposed a piezoelectric
parameter related to the strain of material; since the thermodynamic theory, he
constructed a non-linear model and expressed the free energy of a piezoelectric
crystal in terms of the electric field, strain, electric and elastic deformation poten-
tials, temperature, pyroelectric and piezoelectric parameters [2]. Currently, we can
see these constants in the constitutive equations of piezoelectricity. During 1956 and
1963, Toupin and Eringen used a variational formulation to construct a functional in
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terms of internal energy and derive the constitutive equations [3, 4]. Then, in 1971
Tiersten proposed to use the conservation equations of mass, electrical charge,
linear momentum, angular momentum, and energy, adding a Legendre transfor-
mation to include a thermodynamic functional in terms of the free energy, achiev-
ing a reduction of the number of constitutive equations from 7 to 4 to facilitate
theoretical calculations [5]. These constitutional equations and their linear approach
gave support to the theoretical calculus of piezoelectric parameters of crystalline
structures, e.g., zinc-blende [6, 7], zinc oxide [8, 9], and other crystals with similar
symmetric of quartz [10, 11]. Finally, between 1991 and 2017, Yang has proposed
modifications for the Legendre transformation of Tiersten, and he has included two
models to describe the polarization in a deformable continuum medium [12, 13].

According to electrostatic theory, the macroscopic polarization P can be written

in terms of electric charge distribution likewise with the electric field E induced into
the continuum medium. Besides, the polarization starts with continuum medium

deformation S for applied stress. Considering: (i) Uniqueness for the parameters
that relate the polarization and the electric field, (ii) Stress produces equal defor-
mations in each cell of crystal, (iii) The deformations lead dipole and quadrupole
moments affecting the piezoelectric parameters directly. Based on the above con-
siderations, the linear constitutive equations of piezoelectricity can be written, as
Martin said [6].

This chapter book is thought to be a working example that connects the piezo-
electricity theory and experimental data of electromechanical and electrical prop-
erties. These data were obtained on cement paste mixed with gold nanoparticles.

2. Constitutional equations in detail and correlation with the
piezoelectricity of cement-based composites

In this section, we have selected Yang’s differential approach to obtain the
constitutional equations of piezoelectricity. The differential derivation shows the
physics involved in the conservation laws differently. For example, it shows that the
electric body couple and the Cauchy stress tensor are asymmetric. Also, it relates
the local electric field with the electric interaction between the differential elements
of the lattice continuum and the electronic continuum.

2.1 Conservation laws applied to a polarized continuum from differential
approximation

Regarding the study of the piezoelectric properties of cement paste, it is neces-
sary to describe the material separately as two continua medium, as from the
piezoelectric phenomenon, the crystal and their symmetry would have a lattice
(positive charge) and an electronic component (negative charge) Those continua
can be separated by mechanical stress. Their physical properties could change
according to the coordinate systems or states. Therefore, the body will study in two
states (reference state and current state), as is shown in Figure 1.

2.1.1 Electric charge conservation

The conservation electric charge in the body takes importance with an infinites-
imal displacement on the medium’s current state to get polarization. For this reason,
the phenomenon described in the above state is known as the two continuum
medium model. The electronic continuum comes under an infinitesimal
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Figure 1.

States of a deformable and polarizable continuum.

/

displacement 7 respect to the lattice. It is produced by body deformation, as
described in Figure 2. From the assumption of the lattice and electronic continuum,
the medium have equal volumes, some variation of infinitesimal displacement
respect coordinates in the current state should be zero and can be written as

0
M = ;gjv(:) =0 (1

Furthermore, if it is taken the two continuous mediums, the electric charge
density must be neutral to consider only the piezoelectric effect.

() +u(y+i) =0 )
We can show that the gradient of infinitesimal displacement Eq. (1) and the

neutrality condition of electric charge density Eq. (2) are sufficient to explain the
polarization in a deformable continuum

P=i(y)[-i(7)] = (5 +7)imn (5)i G)
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Figure 2.
Volume elements of electronic and lattice continuum medium.
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2.1.2 Energy conservation

Once the body is deformed, electronic and lattice continua electric charges apply
a quasi-static electric field. Tiersten et al. called it Maxwelliam electric field Ej. It is
interacting on two continuum mediums producing an electrical force on each one.
The other forces acting on the body are traction and body forces. The traction force
t; per unit, the area is working on the surfaces of volume elements of the lattice (see
Figure 2). Also, it can be written in terms of Cauchy stress tensor zj, as t, = n;zj,
where 7; is the normal vector. Moreover, body force refers to an external force
acting on the body, for example, gravity. The previous three forces are necessary to
get the conservation laws, including energy.

From the three forces above, it is possible to construct the Egs. (4) and (5),
linear and angular momentum conservation, respectively.

Py, = ff + Tk + S, (4)

Cf + Eijk Tk ()7) =0 (5)

where f f is the electric force on the body and start from the dot product of
polarization P; with the electric field gradient Ej, ;; Besides, cf is called electric
coupling, and it is the cross product of P; with Ey; finally, f, is the external force on
the body per unit mass.

Then, replacing the electric coupling c¥ by the cross product between P; and E,
we can rewrite Eq. (5) as follow

&L iEy, (y) + Eijk Tk <)7> =0 (6)
Factoring the permutation tensor &,

The term in square brackets from Eq. (7) is a symmetry tensor that can be
written as

Tsjk = PjEk + Tik (8)

The term P;E}, is called the Maxwell stress tensor TEjk. On the other hand,
multiplying Eq. (5) by &, is obtain

EigrCi F EigreihTi (} > =0
g Orr Tik <)7> — 0jrOrqTik (i) = —EigC} 9)
— — o E
Tqr <J’> ~ g (J’) = ~EigrC;
From Eq. (9) we can conclude that the Cauchy stress tensor (f;, = n;73) is
asymmetry. Now, we get the total energy inside the continuum medium as a

combination of kinetic and internal energy ¢” [13], both per mass unit. Here is
performed the powers added due to the three forces above.
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% (% upuppdv + ei”pdv> =4 (f)Ek (i)uk (f)dv
+ ()7 + ﬁ)Ek (37 + ﬁ) [uk <)7> + ﬁk}dv + tpupds
+ pf yurdv
(10)

The following steps from Eq. (10) conduct to develop conservation energy law.
In the first step, we work on the total energy term. Then, the product rule to the
total energy term is applied:

d /1 in -\ d (1 in 1 in d
o (iukukpdv +é€ Pdv) = pdv% (Eukuk +e& ) + <§”k“k te ) ar (pdv) o)

d 1 in 1 in d
= pdv% (iukuk + & ) + <§ukuk + & ) %(pdv)

The term 4 (pdv) represents the mass conservation. Therefore, this term is null
in Eq. (11).

d (1 in o d (1 in
p <§ukukﬂd7) + £ pdy> = pdv% (Eukuk + € ) (12)

Then, here is writes the add of derivatives from kinetic and internal energies

d (1 in o d d in
p (iukukpdv + ¢ pdv) = pdv uy, P (e) + Pdv% (€") (13)

In the second step, the electric power term will be developed by Taylor’s
expansion.

7)o 5 Y 5+ )55 )i )
w0 7)o 55+ EG) 2O 5) e

From Eq. (14), it will solve the dot product between the electric field and
velocity,

) (5 o
4 (541 [Ee (5 ) () + B (5 )i+ B (3 ) maw () + B (3 ) o o

(15)

The second-order term #;iy, = n;17; = 14 5,2 ~ 0 is zero, taking into account the

infinitesimal displacement. Then, factorize E}, (i) uy, <)7> dv in Eq. (15), it takes a

form:

= 0) e (54 ) B ) (5 (B (5 s (5 ) (5)

(16)
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Replacing Eq. (2) in Eq. (16), we obtain:
e (y n ﬁ)Ek (;) v + e (i + ﬁ)Ek,i (j) Nk (y)dv (17)
With Eq. (3), Eq. (17) takes the form:
=4 (5 + 7 ) B (3 )indo + PiBi (3 ) (3 ) o (18)
In Eq. (18), the term u (i + 7 ) B ) i s called the electric power of the body

w® And the term P;E}; is the electric force between the lattice and electronic volume
elements. It was defined in Eq. (4) above.

ﬂl@)Ek(j)uk(j)dv +ye<7+ﬁ)Ek<i+ﬁ> [u (y) +nk}dv = whdv + f, uk< )dv

(19)

In the third step, we will solve the traction force in terms of Cauchy stress
tensor. Then, the power due to the traction force takes the form:

tkukds = rmknmukds
— 1 2 — 1 o
= Ty <y + idylh) uy, (y + idylm) dy,dy,
— 1 0 — 1 0
— T (y — idy111>uk (y — idyll1>dy2dy3
+ 72 (5’ + 50 (7 3 dyz”)d%dyl (20)

— 1 %
e (y - Edyzzz)dygdyl

— Tk (5 - —d)’zlz
+ T3, (? ¥ dy313>uk (7 +3 dyala)dyldyz

— 1 2 — 1 n
— 13 (y — idy3z3> uy, (y — idy313)dy1dy2

Now, we apply Taylor’s expansion to Cauchy stress tensor 745, and velocity u,.
Next, the last result will be implemented in the components: two 7, and three 73,

2" (E’ +%dy15'1> e (? + %dylfl)dyzdya ~ i (5’ - %dyﬁ) e (? - %dylfl)dyzdys
~ [le (7’) + %dylr1k,1 (yﬂ [uk <J7> + %dhuk,l (?)} dy,dys
- lﬁk ()7) - %d)ﬁﬁk,l (7)} [“k (?) - %dyluk,l (7)} dy,dys

(21)
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The products give

1 1 1
R {ﬁkuk + Tk Edylukg + idylflk,luk + Zdy1211k,1uk,1] ay,dy,

(22)
1 1 1
— {ﬁkuk — a5 Ay Ut — 5 AV Tkt + Zdylzflk,luk,1:| dy,dys
Adding similar terms:
~ [’ﬁk <§> dyluk,l <y> + dylflk,l <i> Up <J7> } d)’zdy3 (23)

Factorizing dy, that multiply to dy, and dy, it will transform into the volume
element dv.

R T ()7) Uk <)7) av + t1.1 ()7) up, ()7) dv (24)
Reply the proceeding since Eq. (21) to Eq. (24) for the components 7, and 73, yield
teupds = Ty, ()7) Up <)7> dv + T2 <)7> up, ()7) dv + 7o, <37> Up.2 <37> dv
o (3 e (5 ) + 7 (3 s (5 )l + 730 (7 ) (5 )o - (25)

Each one of the components has information about two opposite faces of the
volume element. Then, adding index m it reduces the Eq. (25) to:

turds = T <;> Uk (?)dv + Tinkem <;> Uy (j)dv (26)
From the results of Eq. (13), Eq. (19), and Eq. (26) into Eq. (10), we obtain

v ) €)= 1 Yo (3o (7

dt dt
+ Tk <J7> Uy, (}7) v + pf ,urdv (27)

Here is factoring the terms that contain %y, <§'> dv to the left side and the terms
with the volume differential dv to the right side.

b+ £ () (5 o = {7 167 (3o ()
(28)

From Eq. (28), the term in the square bracket is null by Eq. (4). Then, we obtain
Eq. (29) for energy conservation that depends on internal energy.

pe" = wt + 1, (7)) Uk (f) (29)

Remember from Eq. (19) that electric power can be written as:

o=+ = 6) [ ] -2
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o= (5) o5 )

Another form of electric charge conservation is i ()7 + ﬁ) + uf ()7 + ﬁ) ui; =0,
it will simplify the Eq. (30) to:

w” = E, (?) {Pm + 4 (? + ﬁ) ui,mm} (31)
The mass conservation p + pu;; = 0 has a similar mathematical structure as

charge conservation. Therefore, the gradient of the speed #;; in Eq. (31) was

replaced

wf =E, (f)Pm + E, <)7>,ue <} + ﬁ) %pnm =E,P, — [é)Eum
wt = E7’” (PP — pPo] (32)

Eq. (32) has been used on Eq. (29)
in Ei D - - o
per = (PP = PP + Tk (y)uk,m (y) (33)

With Legendre transformation showing in Eq. (34), Tiersten replaced the inter-
nal energy &” by free energy y [5]. This transformation diminishes the number of
constitutional equations. Besides, it offers a quantitative interpretation that can not
get from the internal energy resulting in more useful for those who perform piezo-
electricity experiments. After Section 2.3, we could see the y will depend on the
gradient of potential in the reference state and deformation tensor.

. P
y =¢€&" —E, 77” (34)

Upon differentiating respect to time the Eq. (34).

P b, P

=" — By —Ep—"+En—3p (35)
P p p
Clear the term pé™
.in . . Py, .

Using Eq. (36) on Eq. (29), we obtain:
p)(+Eum + EnP _Em7p _7 [,OPm _me} +ka(y>uk,m<y>

P b (37)

The similar terms E,,P,, and —Emp%’” in Eq. (37), are clear. Finally, we have

rewritten energy conservation in terms of free energy, electrical (electric field and
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polarization vector), and mechanical (Cauchy stress tensor) components, as is
shown in Eq. (38).

PX = Tmk (?) Wem ()7) — E,,P, (38)

2.2 Transformation of fundamental physical quantities in piezoelectricity to
the reference state

There are several reasons to consider two coordinate systems (reference and
current state) for continuum. Firstly, it is not mathematically simple to describe the
movement of each particle that compounds a continuum as seen on the gradient of
velocity u;,,, in Eq. (38); it is more appropriate to propose a coordinate system that
describes the continuum in the reference system. The material behavior could be
affected by the characteristics of the current state, too. For example, fluids and
solids can change their mechanical behavior while changing the shape [14]. Hence,
we refer to our study material (cement-based composites) whom we know the
physical properties in the reference state X;,. To explain the behavior of a material,
we must include physical quantities respect the reference state X;.: potential
gradient W, polarization Py, electric displacement Dy, volume free charge
density pF, mass density p° and the second Piola-Kirchhoff stress T, [15]. It raises
by the transformation of symmetric tensor 75, in the current state to reference
state, and relate the traction force with areas, both in the reference state. While the
first Piola-Kirchhoff stress is connecting the traction force and electric force in the
current state with regions in the reference state.

This section will describe the transformation of energy conservation from the
current state to the reference state, using Eq. (8), the symmetric tensor modifies
Eq. (38).

¥ = T mithen — PrEpthem — EmPr (39)

2.2.1 Electric field and gradient of potential
To transform the electric field to a reference state, here will use follow:
Wy = Emym,K (40)

The gradient of the potential W is multiplying both sides by Xk,

WiXkm = EnY,, xXkm = Em %% (41)
Therefore,
Ey = WgXkm (42)
The derivative respect to time of E,, becomes
E, = 4 (WrXgm)| = 4 (Wi)Xkm + Wk 4 (Xkm) (43)
dt dt dt

The term Xk, from Eq. (43) is developed as follow
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oX
Xrm = 0xiXrm = %?:XLM
Derivative Xk ,, respect to time
2 X)) =2 (DR :—( X Xm)
5 Xxm) = = (aXL 5, b 77 Vi XXl

d d

dt dt dt

Partial derivate of y and X are written in Leibniz notation.

d d o, X, d 9y, Xk
2 (X)) = ue s Xk Xim + o (Xp) ok 2L 2 (5, ) Dk 02K
dt( Kom) = U LXK e XLm +dt( K,k)aXL & +dt( L””)aXL ,

The products of partial derivate are reduced to Kronecker delta.

d d d

7 Xrm) = e 1 Xk ke X1m + 7 (Xkk)Okm + 7 (XLm)OkL

The index into Xk and X} ,, were exchanging due to commutation
Kronecker deltas.

d d d

dt( km) = Ui 1. Xk kX1, +dt< K, )+dt( K.m)

In Eq. (48) was delete the term % (Xk,m) in both sides

d
0= Xk pXrm+ 7 (Xrm)

Clearing % (Xk,m) we obtain

d
PR (Xrm) = =t LXK ke X1m

Substituting Eq. (50) into Eq. (43) becomes

. d ;
Ep = dr (WiXim] = WiXkm — e . XKk XLm Wi

Then, we replace the Eq. (51) into Eq. (39).
Pi = T mithieyn — PonErtttem — P (WieXiem — a1 Xk X1,m W)
The index L was changed by &, into u; 1, due to X ,,

P = T mittien — PnErthien — P (WX m — e mXicp W)

d d
. (XK,m) - 5 (yk,L>XK,kXL,m + i (XK,k)yk’LXL,m + % (XL,m>yk,LXK,k

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

In Eq. (53), the term X » W is the electric field concerning the current state.

p¥ = T ithen — PnEtbom — P WX + Pontho mEp

10
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From Eq. (54) the term P, Euy ,, was removes to get

p){ = Tsmkuk,m - PmWKXK,m (55)

2.2.2 Polarization vector

In this subsection, we will perform the transformation of the polarization vector
to the reference state.

Py, = JX1;P; (56)

Where ] is the Jacobian, multiplying Eq. (56) by J 71ym’L we obtain
]_1)/m,LPL =]_1ym,L]XL,iPi = OmiP; (57)
To get
Pp=]",,PL (58)
From Eq. (58) into Eq. (55) results in

Py = e — ] _1)/m’LPLWKXK,m

. s “p tir W 0Xk
Y =T mklhien — ] PLWg—5-——
0X1. 9y, (59)

pi = e — ] "PLWigy,
px = T pithiem — ] "PrWi

Until now, in Eq. (59), we have obtained a partial transformation, and still
missing transform the symmetric Cauchy stress tensor 5 k.

2.2.3 Second Piola-Kirchhoff stress

The symmetric tensor 75, is related with second Piola-Kirchhoff stress TSk
through a reverse transformation as follow:

Tsmk :]_1ym,[(yk,LTSKL (60)
Eq. (60) into Eq. (59) results in
07 =T YmiVer T kLthiem — ] P Wi (61)

The gradient of velocity #y , can be separated on antisymmetric tensor w,,, =
3 (Wheyn — Umye) plus a symmetric tensor dyy, = 3 (g + U )

P8 =T Y i T kL (@ + di) =] Pk W
(62)
px = jilym,Kyk,L TSKLa)mk ‘|’]71ym,1(yk,]d TSKLdmk - ]71PKWK

From Eq. (61), the product between symmetric tensor TSk and antisymmetric
tensor w,,;, result be null

11
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px =] ‘1ym,1<yk,L TSkt dmi. — ] "PxWi (63)
The term y,, ¢9), ; dme Will be solved as following

1 1
)’m,KJ’k,Ldmk = Vm kL 5 (Ukm + Ump) = 5 <”k,m3’m,1<yk,L + ”m,k)’m,KJ’k,L>

d _} éuk a)m a)k aum @m @k _ 1 éuk (bk dllm @m
Y,k ke, L Fmk = + = +
2\0y, 0XxoX, ' dy, oXx X, 0Xx 0X; Xy 0Xx

2

1
J’m,KJ’k,Ldmk =5 (”k,KJ’k,L + ”m,LJ’mJ()

(64)
We interchange the index k to m in u;, k.
1 1/. )
ym,Kyk,LdWlk =5 (um,Kyk,L + um,L)’rrz,K) =5 ()’m,K)’k,L +ym,Lym,K>
(65)
1d d |1
J’m,KJ’k,Ldmk By (ym,I(yk,L> ~ 2 (J’m,KJ’k,L - 5KL>

With m = k the term % (ym el — 6KL) is known as the finite strain tensor Ey, in

the reference state, and E whit an uppercase index will represent the electric field
vector in the reference state. Then, we reduce y,, .y, ; dmi to:

Vg, Bk = %(EKL) = Ex, (66)
Substituting Eq. (66) into Eq. (63), we obtain
px =] TSk Exy — J 'Pr Wi (67)
Factoring the inverse of Jacobian, we get
pi =] N (T’kiExy — PxWk) (68)
Multiplying both sides into Eq. (68) by the Jacobian gives
Jpi =] H(T xiExi, — PxWk) (69)

Using mass transformation to the reference state p° = pJ into Eq. (69), we get a
new equation for energy conservation in terms of physical quantities in the refer-

ence state. Symmetric tensor TSk., strain tensor E;,, polarization Pk and gradient
of potential Wk.

P’y = TS Exy — PxWg (70)
2.3 Constitutional equations from free energy
The conservation laws are valid for any piezoelectric material, including cement-
based composites. However, a specific material’s piezoelectric properties are deter-

mined by a set of functions that describes free energy, symmetric tensor, and
polarization. Once we replace these functions into Eq. (70), we will get the

12
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piezoelectricity’s constitutional equations. Take into account Eq. (70), we can
propose the next dependence to the functions

x = x(Exr, W)
TSkt = TSk1(Exr, Wk) (71)
Px = Px(Ek, Wk)

Derivation respect to time the free energy into Eq. (71) as follow

— E — W 2
X OEg LK + oW VK (72)

Substituting Eq. (72) into Eq. (70), we obtain

dy - dy
0 Ex +p°

W= TSx.Ex, — PxW.
Exs oWy VK kLExr — PxWk (73)

p

Both sides of Eq. (73) were compared to deduce two transformations, which

resulting symmetric tensor TSk, and polarization Pk. The transformations use free
energy as a generating function, as shown in Eq. (75).

oy
TSxr = p° (74)
KL =P O,
oy
Pr = —p° 2
K P W (75)

The mathematical structure of the free energy function will define the order of
constitutional equations. There are functions for the free energy of piezoelectric
materials from order 1 to order 3 [15]. It means that piezoelectric material behavior
depends on the free energy function and its parameters. Here is an example of free
energy function with order three

1 1 1
po)( = ECABCDEABECD — eABCWAEBC - QXEABWAWB + ECABCDEFEABECDEEF

1 1 1
+ > dapcpEW aEpcEpE — > bapcpWaWBgEcp — EZE aBcWaWpWc

1
+ 2 caBcperGHEABEcDEEFEGH + G dapcperGW aEpcEpeEFG

1 1
+ 7 AABCDEF WaWBgEcpEgr + 3 dapcpEWaWW cEpE

1
— 2_4)(EABCDWAWBWCWD =+ ... 5
(76)

The parameters are called elasticity c, piezoelectric e, electric permeability y~,
odd electrolytic d, electrostrictive b, and electroelastic force even a.

2.3.1 The linear approach of piezoelectricity

We take on order one approach from Eq. (76) to free energy y. Then, replacing it
in Eq. (74) and Eq. (75) to obtain

13
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0 1 1

TS up = ~capcpEasEcp — eapcWaEpc — = 5 augWaWp (77)
0E 5 \2 2
0 1 1

Py = ———— | ZcapcpEasEcp — eapcWaEpc — S 1" agWaWp (78)
oW, \2 2

The approximation is possible if we consider an infinitesimal deformation, weak
electric field, and low amplitude displacements around the reference state. Hence, it
approaches require a nomenclature exchange for physical quantities. Thus, second
Piola-Kirchhoff stress will be replaced by infinitesimal Cauchy stress tensor
TSk — Tj; finite strain tensor will be exchanged by infinitesimal strain tensor
Exr — Sw; potential gradient, polarization, and displacement electric vector are

similar either reference or current state: Wy — Ej, P — P;, and D;, — D;. Then,
Egs. (77) and (78) follow:

0 (1 1

Tj = %5 (icijklsijskl — €ijeEiSje — i)(E iEiE j) (79)
0 (1 1

P = — B (i CirSiiSi — eiEiS — 5 ;(EI-J-E,-E]-) (80)

Here is considering symmetry to parameters elastic c;i;, piezoelectric e;, and
electric y;;, when they have odd permutations. Differentiating the Eq. (79) and
Eq. (80), we obtain

Tij = CijtaSk1 — erijEx (81)
P; = €St + "B (82)

The polarization can be written in terms of electric displacement vector too.
P; = D; — &E; (83)

From Eq. (83) into Eq. (82) gives

D; — eoE; = emiSi + 1" Er (84)
Solving D;,
D; = ejuSu + €0E; + ¥" 1 Ex = €maSu + €08 Ei + 1" i En (85)
Factoring Ej,
D; = ejaSu + (€08 + 1 ix ) Ex (86)

where the term €08y, + ¥, is defined as dielectric constant &;,. Finally, we have
the linear constitutional equation for the electric displacement vector.

D; = eipiSp + iR Ep (87)

We have seen several forms to present the linear constitutional equations in
piezoelectricity. Next, we include another form of constitutional equations shown
in the IEEE standard for piezoelectricity. It can be obtained inverting the matrix
formed by Eq. (81) and Eq. (82).

14



Cement-Based Piezoelectricity Application: A Theoretical Approach
DOI: http://dx.doi.org/10.5772 /intechopen.95255

D; = diSu + e Ex (88)
Sij = Siga Tkt + 81D (89)

The electromechanical properties are defined by piezoelectric charge dj,; and
voltage 8yj constants. Unlike parameters c;; and ¢;;; These new piezoelectric

constants are taken out directly from experiments, as shown in the next section.

2.4 Electromechanical and electrical properties of cement-based composites

Incorporating piezoelectric nanocomposites into cement paste improves its pie-
zoelectric and mechanical properties [16] due to increased deformable crystal
structures. Zeolites, oxides, and carbon nanotubes are the most used cement-based
composites to improve these properties [17]. Chen et al. also report some piezo-
electric parameters of cement-based composites such as piezoelectric charge ds3,
voltage g,;. And the coupling factor K;. As was mentioned in the previous section,
these piezoelectric parameters come from linear piezoelectricity theory. However,
the crystalline structure of Calcium Silicate Hydrate (C-S-H) that compose the
cement is a complex system described by linear theory. It could also be combined
with statistical physics and mean-field homogenization theory tools to get the
macroscale properties [18]. Here are show piezoelectric and electrical parameters of
gold nanoparticles mixed to cement paste, which we hope to lead to our system’s
constitutional equations.

Next, we introduce a brief description of the gold nanoparticles’ physical syn-
thesis [19, 20]. They are produced by laser ablation at 532 nm. A gold plate at
99.9999% purity is put inside a beaker filled with 50 mL of ultrapure water. Then,
the pulse laser spot with an energy of 30 m]J beats the gold plate by 10 minutes, as
shown in Figure 3.

At the time, the gold nanoparticles were brought to be characterized by dynam-
ical light scattering (DLS). If not done quickly, the gold nanoparticles were
agglomerated. These measures are required because the gold nanoparticles directly
affect the piezoelectric properties of cement cylinders. Some results of gold nano-
particle sizes are shown in Figure 4.

Also, the gold nanoparticles in water must be mixed quickly with the cement.
The ratio of water/cement used was 0.47 mL/g. Then, the admixture was poured
into cylindrical molds that contained copper wires as follows in Figure 5.

Laser Ablation 50mL  Ultrapure water

4g  Au99.9999 % Purity

Figure 3.
Scheme of nanoparticle physical synthesis by laser ablation.
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Figure 4.
The particle size distribution of gold nanoparticles suspended in water to concentration 442 ppm.

Figure 5.
Molds and dimensions of cement cylinders.

The cement cylinders were dried one day. Then it leaves curing for 28 days
and finally to thermal treatment one day more. After 14 days, electromechanical
measurements were performed, as shown in Figure 6.

Electromechanical measurements consist of two measurements performed in
parallel: the cement cylinders under compressive strength test in the axial direction,
open circuit potential (OCP) measurements in the electrodes of cement cylinders.
From mechanical and electrical data, we calculated an electroelastic parameter with
units [mV /kN], it has the same interpretation of piezoelectric parameter e in linear
theory. From Figure 7, an example of voltage-force curves for identically cement
samples with gold nanoparticles is shown. We did get from the above measure-
ments the axial elasticity parameter:

Y =323.5+753 [kN/m?] (90)
The axial piezoelectric parameter:

y =—20.5+6.9 mV/kN]. (91)
For a total deformation S = 0.57 & 0.09 [mm)] in the axial direction.

The electrical properties of cement cylinders were obtained from the imaginary
part of impedance; an example of these curves in Figure 8. From impedance data
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Figure 6.
Experimental setup of electromechanical measurements.

25

OCP [mV]

—~100 4

-1254 « Sample 14
— m= —13.598191[mW/kN), b = —5.23194[mV],r? = — 0.99586
+  Sample 15
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— m= —27.350169[mW/kN], b= — 32.60410[mV], r? = — 0.99258

0.00 0.25 0.50 0.75 1.00 125 150 175 2.00

Force [kN]

Figure 7.
OCP-force curves from cement cylinders with gold nanoparticles concentrated to 658 ppm.

can perform a transformation to get a real part of the capacitance C'. It has
frequency dependence as follow

1

Clw) =z

(92)

The geometry of copper electrodes (an approximation to parallel plates) is
related to capacitance. Therefore, we can calculate the dielectric parameter ¢
since 1 MHz; this parameter is a real number that depends on the frequency and
is given by

d«+C
A

(93)

e(w)eg =

where ¢ is the electric permittivity of free space, A is the transversal section,
and 4 is the thickness between electrodes.

17
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From the data in Figure 8 and Eq. (92) and Eq. (93), we obtain the dielectric
constant:

e = (939.6 = 82.9)eg (94)

Where ¢ has unit [F/m]. The piezoelectric and electrical properties of cement
paste mixed with gold nanoparticles exhibit reproducibility and linearity of the
piezoelectric parameter.

2.5 Future studies and remarks

The Piezoelectric parameters are an initial point to beginning a new connection
with piezoelectricity theory by inverse modeling and constructing new free energy
functions and constitutional equations. To catch out with researchers in this scope,
we suggest thinking about the next research questions; how is the piezoelectric
parameter presented related to the piezoelectric parameter formulated by linear
theory for piezoelectricity? Is the free energy function of order one sufficient to
describe cement paste’s piezoelectric with gold nanoparticles? How to develop a
new function for free energy that models cement paste’s piezoelectric behavior of
cement paste with gold nanoparticles?

In this chapter, we have intended to contribute to the theory of piezoelectricity
for large deformations without including an energy function. Figure 9 shows a
possible use around IoT as intelligent sensing of devices based on cement-based
composites’ piezoresistivity. Without reaching into depth in the technical and engi-
neering aspect that smart construction, active sensing system entails; we highlight
how the Egs. (88) and (89) that relate the electromechanical properties and that are
defined by piezoelectric charge d;; and voltage g, constants are present as indica-

tors to improve the detection resolution in large structures with large deformations.
The sensors analyze the deformations, temperature, relative humidity, and other
critical parameters of the concrete in real-time. This data is captured via wireless
communication (WAN/BLE) and deployed on a secure and scalable platform
(Cloud) capable of collecting data to facilitate remote decision making with

> e 20191016_m_e/Z_pl4_
20191016_m_e/Z_pl5_

Z" [kQ]

aiii

&
*®%0pa, cooens®®

LB LA | T vrrrrom Ty Trrrog oo LENLLE AL AL LA L ALY | ¥
10-1 100 10! 102 103 104 10% 106

Frequency [Hz]

Figure 8.
The imaginary part of electrical impedance vepresented in a Bode plot was performed on two cement cylinders
with gold nanoparticles concentrated to 658 ppm.
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Figure 9.
The image shows a network of IoT sensors based on cement-based composites piezoresistivity as an active part of
smart construction.

information from deep within the concrete. The experimental control of the NPs
embedded within the cement paste’s dispersions and piezoresistive responses is
essential to have a good signal-to-noise ratio within the sensing. Knowing the
coupling between the electromechanical equations from a theoretical approach is
another crucial factor in making viable these technological solutions.

3. Conclusions

This chapter proposed a mathematical physicist construction of the linear theory
of piezoelectricity since classical movement laws and the conservation of their
physical quantities (mass, charge, linear momentum, angular momentum, and
energy) over time. This construction takes parts of Eringen, Tiersten, and Yang’s
research without including the variational formulation or energy functional to
deduce the constitutional equations. We have also presented some results of piezo-
electric and dielectric constants obtained for cement mixed to gold nanoparticles.
We got the axial elasticity parameter Y = 323.5 + 75.3 [kN /m?], the electroelastic
parameter y = —20.5 £ 6.9 [mV/kN], and dielectric constant € =
(939.6 £ 82.9)¢o [F'/m], which can be compared with parameters sf]?kl, g1 and el

respectively presents into constitutional equations discussed in the chapter.
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Appendices and nomenclature

In the reference state, the continuum has a volume V, and mass density P°.

In the current state, the continuum has a volume v, mass density p, electronic
charge density u¢ and lattice charge density 4. Besides, In the current state with
infinitesimal displacement #, the electronic charge does not change its volume.

The capital letter in the index is for the reference state Xx And the lowercase
letters to the current state y.. Also, the index in the physics quantities can denote a
vector. For example X, y;, u;; or a tensor, for example Ex;, 7. Another form to

present a vector quantity is the right-pointing arrow .

The velocity of the continuum is denoted by lower case letter #, and just makes
sense in the current state.

The partial derivate is denoted by comma separation in the indexes.
For example y; ;.
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