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Abstract

Surface plasmon resonance (SPR) based biosensors have been enormously 
 studied in the last decade for their better sensitivity. In recent years hybrid 
 heterostructures are getting popularity to implement these SPR biosensors for their 
superior sensing capability. This chapter demonstrates the details of SPR technol-
ogy with two recently studied prism-based hybrid heterostructures. These hetero-
structures are made up of conventional SPR biosensors with two additional layers 
of recently invented transition metal dichalcogenides, platinum di-selenide (PtSe2), 
and highly sensitive 2D material, tungsten di-sulfide (WS2). Angular interrogation 
method is discussed to investigate the sensing capabilities of the sensors which 
prove the superiority of the Ag-PtSe2-WS2 structure. The sensing capability of this 
structure has been found at least 1.67 times higher than that of the conventional 
non-hybrid structures, respectively, with comparable FOM and QF. A comparison 
table has been provided at the end of this chapter which also shows the impressive 
performance of the hybrid heterostructures for SPR biosensors. Proper demonstra-
tion with a suitable example of this chapter will emphasize the potential use of 
hybrid heterostructure based SPR biosensors in prospective medical diagnostics 
and biomedical detection applications.

Keywords: biosensor, hybrid heterostructure, sensitivity, surface plasmon resonance

1. Introduction

Surface plasmon resonance (SPR) biosensors have become one of the most 
promising, standard, and affordable technology due to prompt research and 
expansion of SPR phenomenon in the last two decades. Nowadays, SPR sensors are 
broadly implemented for numerous biological and biochemical analytes identifica-
tion and characterization due to its high sensitivity, real-time monitoring, level free 
detection assay, small sample size, and reusable sensor chip [1–5]. To be detailed, 
the SPR biosensors are adopted to agriculture and food quality monitoring [6], 
security and safely analysis [7], in need of medical diagnostics, environmental 
monitoring, bio-imaging [8–10], cancer detection [11, 12], DNA hybridization 
[13, 14], enzyme detection [15], protein-protein, protein-DNA, and protein-virus 
hybridization [16, 17], microorganisms identifying [18], industrial appliance’s 
condition monitoring, temperature monitoring [19], gas sensing [20, 21], chemical 
and biochemical analysis [22, 23], pharmaceutical and biological molecule analysis 
[24, 25], oil condition monitoring [26], and so on. In the year 1902, Wood [27] first 
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observed unexpected optical power attenuation characteristic at the time of mea-
suring the reflection of light from metallic gratings. This phenomenon occurs due to 
absorbance and conversion of photon energy to surface plasma wave (SPW) which 
is the result of combined oscillation of excited electrons called surface plasmon 
polaritons (SPPs). This oscillating electron consumes maximum energy at a certain 
wavelength for a specific angle of incidence of light which is called resonance condi-
tion. That is why this phenomenon is named surface plasmon resonance (SPR). 
In 1968, Otto [28] and Kretschmann [29] introduced attenuated total internal 
reflection (ATR), which encouraged scientists and researchers to concentrate on 
the implementation of SPR sensing technology practically. In 1982, the SPR sensing 
technique was first demonstrated by Nylander and Liedberg [4, 30] for the practi-
cal application of gas sensing. After that, SPR sensing technology has been getting 
ceaselessly developing consideration from the scientific and academic network. In 
1990, the SPR sensing instrument was first commercially produced and introduced 
to the market by Biacore AB. Since then a considerable number of manufactur-
ers e.g. IBIS Technologies B.V., Graffinity pharmaceuticals, GWC Technologies, 
Bio-Red, AutoLab, Farfield Sensors, Genoptics Bio Interactions, Microvaccum, 
Biosensing Instrument, and SPR Navi have launched their SPR instruments to the 
market [17, 31].

Different optical techniques are currently proposed for sensing purposes, 
including Ramman scattering based sensors [32, 33], grating coupled sensors 
[34, 35], prism coupled sensors [36, 37], optical fiber-based sensors [38, 39], 
planner waveguide-based sensors [40, 41] etc. The optical biosensors basically 
work with the measurement of change in input incident light and detected light at 
the output terminal. To be specific, the change in phase, amplitude, wavelength, 
frequency, or polarization of light is measured at the output terminal of the sensors 
and the changes in these parameters are observed. Among them, the commonly 
used technique is observing the reflected light angle where maximum light is 
attenuated. This method is called angular interrogation approach with attenuated 
total internal reflection (ATR) that is applied usually in prism coupled devices. The 
performance of an optical sensor is basically measured in terms of its sensitivity, 
detection accuracy or detection limit, the figure of merits (FOM) and quality factor 
(QF), etc. The researchers and scientists are continuously working for the improve-
ment of the performances of the SPR sensors [31, 42–44].

In SPR biosensors, the most crucial parameters determining the characteristics 
of the sensors are plasmonic materials. Materials with adequate free electrons at 
their valance bands can be used as plasmonic materials. To be specific, metals e.g. 
gold (Au), aluminum (Al), silver (Ag), copper (Cu), etc. are a good candidate to be 
used as a plasmonic material [45, 46]. Al and Cu have not gained much interest to 
be used because of their high damping nature, prone to oxidation, corrosion, and 
interband transition characteristics. But Silver (Ag) can be nominated as a potential 
candidate for SPR sensors as it attributes outstanding optical properties, such as no 
interband transfer at the visible light frequency, small optical damping, and sharper 
resonance peak [46–48], etc. Using Ag in SPR sensors, better sensitivity can be 
captured, but it shows poor chemical stability as it creates brittle oxide layers with 
liquid analyte [49]. Some researchers have reported that applying bimetallic layer 
on the Ag surface can resolve this problem [50, 51]. On the other hand, Au is more 
chemically stable compared to Ag and free of corrosion and oxidation problems. 
But, gold offers a slightly higher damping loss and widen SPR curve that restricts 
the detection accuracy and figure of merits (FOM) of the sensors [52]. The sen-
sitivity of Au-based sensors is also slightly lower because of the low biomolecular 
adsorption characteristics of the gold surface. In order to improve the sensitivity of 
the sensors, researchers recommended various approaches in which the application 
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of hybrid structures (multilayer structures) are widely used [53–56]. Various 2D 
materials are used in the hybrid configuration of SPR based sensors. A single atom 
thick carbon nanostructure (graphene) is often applied on the top of the plasmonic 
materials to avoid oxidation problems and increase the performance of the sensors 
because of its chemical inertness and high adsorption characteristics [57, 58]. There 
are also some other nanomaterials e.g. graphene oxides, graphene carbon nitrite 
(g-C3N4), transition metal dichalcogenides (TMDCs: MoS2, MoSe2, WS2, WSe2, 
PtSe2, SnSe2, etc.), transition metal chalcogenides (NbSe3, TaSe3), transition metal 
oxides (TMOs: LaVO3, LaMnO3), Black phosphorene (BP), hexagonal boron nitride 
(hBN), group IV elements [59, 60] and so on which are summarized in the Figure 1.

This chapter mainly focuses on the recent trends applied for enhancing the 
performance of the Kretschmann configuration based prism coupled SPR sensors 
and their potential applications. The fundamental theory of SPR phenomena is 
presented first. Then, the method of angular interrogation utilizing attenuated total 
internal reflection and the performance measuring parameters of the SPR sensors 
are narrated. Finally, with their compressive architectures, recent developments of 
the prism coupled SPR sensors are discussed.

2. Principle of SPR phenomena

Metals are composed of positively charged nuclei with a lot of free electrons in 
their conduction band (surface of the metal). If an external electric field is applied 
close to the metal surface, free electrons are dislocated, resulting in an electric 
dipole [61]. A longitudinal oscillation has resulted from such electron transporta-
tion in a metal surface known as surface plasmons (SPs) [49]. To support the 
generated SPs a metal and dielectric interface is needed [46] whereas excitation 
of these SPs leads to an enhanced electromagnetic field resulting in a collective 
oscillation of free electrons or electron plasma [46, 61, 62]. The basic principle of 
the construction of SPR based sensors lies in the generation and propagation of 
electromagnetic waves called surface plasmon wave (SPW) due to the interaction 
of irradiating electric fields and the generated fields for dislocation of the electrons 
between the metal-dielectric interface [4]. The SPWs can only be produced by the 
incidence of a transverse magnetic (TM-) or plane (p-) polarized field as Maxwell’s 
equations supports no solution for transverse electric (TE-) polarized case [46]. 
Furthermore, the fact that electron oscillation means resistive losses. Thus, when 
an optical field appears at the metal-dielectric boundary, the SPW produces due to 

Figure 1. 
2D materials library where blue shaded materials are stable at ambient condition, green-shaded are probably 
stable, pink shaded are unstable at ambient condition but stable at inert condition. The gray shaded mistrials 
are 3D but can be exfoliated down to monolayers [60, 61].
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optical absorption of exponentially decaying evanescent waves. Mathematically, 
when the wave vector of the SPW is equal to the propagation constant of the 
irradiating lightwave, maximum absorption of evanescent field is observed leading 
to a strong SPW generation [63, 64]. This condition is called resonance condition. 
The propagating evanescent wave can be characterized by propagation constant βev 
as follows [10, 65]:

 
2

sin= ×ev n
πβ θ
λ

 (1)

Where λ, n, θ indicate the incident light wavelength, refractive index of the 
medium, and angle of incident of light at the metal surface, respectively. The equa-
tion as follows characterizes the SPW [66]:

 =
+
m d

SPW f

m d

ε ε
β β

ε ε
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2
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πβ
λ

, is the wave vector of light at free space. Also, εm and εd indicate 

the dielectric constants of plasmonic material and dielectric medium, respectively. 
Eq. (2) can also be rewritten in terms of the refractive index as follows [31]:

 
2 2

2 2
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Where the RI of plasmonic material ( mn ) and sensing medium ( dn ) are related 

to the dielectric constants as 2 =∈m mn  and 2 =∈d dn , respectively. The resonance 
condition is located in SPR based sensor, where the propagation constant of inci-
dent light (βev) is matched with the SPW’s wave vector βSPW [67]. From Eqs. (1) and 
(3), it can be related that by controlling the incident angle for a particular frequency 
of light, the resonance condition can be achieved. This method is called the angular 
interrogation method. Similarly, the light wavelength can be modified to achieve the 
SPR condition for a particular angle of incident light for the wavelength interroga-
tion method [68]. At this condition, the electrons start to resonate triggering the 
generation of SPW on the metal-dielectric interface where a sharp loss peak called 
the SPR point appears. The SPR point is extremely responsive to the refractive index 
(RI) of the surrounding medium where a minor change in RI of the dielectric 
(sensing) medium shifts the SPR point to a new state [69].

3.  Angular interrogation approach and performance parameters of the 
sensor

Due to its outstanding performance characteristics, commercial standardization, 
and ease of manufacturing technology, the angular interrogation method using 
ATR has become more popular today among various SPR based sensors. When 
light is directly coupled to the metal-dielectric interface, due to a mismatch of 
momentum, the SPs are not sufficiently excited to generate SPWs [70]. Researchers 
have suggested several special arrangements called Otto configuration [71], 
Kretschmann configuration [72, 73] as visualized in Figure 2 to alter the momen-
tum of the photon to couple with the SPPs leading to propagation of SPW. In prism 
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based Otto configuration, there is a distance where a dielectric layer with a smaller 
RI is used between the prism and metal sheet on which the light is employed. On 
contrary, Kretschmann configuration the metallic layer is in direct contact with the 
prism. Among them, the Kretschmann configuration is the most popular solution to 
ensure the coupling of the strongest evanescent wave passing through the metal and 
generate SPW [53, 74–76]. In the Kretschmann configuration, the light is incident at 
the metal-dielectric interface through a high index prism [77].

Usually, the incident light bounces back from the interface while the evanescent 
field is induced by a portion of light penetrating through the metal. For a particular 
sensor configuration and light frequency, the momentum of the evanescent field is 
aligned with the wave vector of SPW at a specific angle called resonance angle [76]. 
Maximum light is coupled to the oscillating electrons at this resonance condition, 
leading to minimum reflection. If the reflected light is plotted concerning the 
incident angle, then a resonance dip of reflection spectrum is observed called SPR 
point which is highly responsive to the RI of the sensing medium. By interrogating 
this SPR point the analyte can be detected easily. The performance measuring 
parameters e.g. sensitivity, detection accuracy, FOM, and QF should be as high as 
possible to eliminate false positive detection. The sensitivity of the sensor operating 
on the angular interrogation approach depends on the change in the SPR point or 
resonance angle with a change in RI of the sensing medium. Figure 3 illustrates the 

Figure 2. 
Special Arrangements [74] e.g. (a) Kretschmann configuration, and (b) Otto configuration to match the 
momentum of incident photon and SPW.

Figure 3. 
Illustration of the SPR curve variation due to change in sensing medium RI.
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SPR curve variation due to change in sensing medium RI where the resonance point 
is found at a

resθ  and +∇a a
res resθ θ  for sensing medium RI of na and +∇a an n . Due to 

change in RI of ∇ an  the shift in SPR is observed as ∇ a
resθ . Thus, the sensitivity (Sa) 

of the sensor with the angular interrogation approach can be measured as [78]:

 
∇

=
∇

a
res

a

a

S
n

θ
 (4)

A sensor’s detection accuracy, which depends on the width of the SPR curve, 
determines how quickly and accurately the SPR point can be measured by the 
sensor. It is inversely proportional to the width of SPR. If 

0.5
∇θ  is the width of the 

SPR curve corresponding to 50% reflection then the detection accuracy (D.A.), 
FOM, and QF can be defined as [15, 79, 80]:
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4. Recent trends to enhance the performance of the SPR sensors

Nowadays, the prime concern of scientists, researchers, and academicians are 
to enhance the performance of the SPR based sensor. To date, several attempts have 

Figure 4. 
Schematic Illustration of SPR biosensor employing hybridization of 2D materials with Ag/Au [86].
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been reported to attain highly sensitive sensors where the use of bimetallic coating 
and hybridization of numerous 2D materials along with plasmonic materials are 
the most popular approach to accommodate the angular interrogation approach. 
Benaziez S. et al. [81] reported a sensor where Ag is considered as an SPR active 
material. They showed that the addition of mostly used 2D material graphene on Ag 
surface enables to reduce the oxidation problem as well as increase the sensitivity up 
to 9.3%. Yet, the detection accuracy of the sensor is slightly reduced. Also, Rouf H. 
K. and Haque A. [82] proposed a hybrid structure using InP and Ti with the Ag-Au 
bimetallic configuration. Their sensor shows maximum sensitivity of 70.90 deg/
RIU. Similarly, Mishra S. K. and their team [83] have demonstrated a configuration 
with excellent sensor sensitivity of 229 deg/RIU. They used a rarely used material 

Figure 5. 
Sensitivity variation due to change in the thickness of PtSe2, and number of (a) Graphene layer (b) MoS2 
layer, (c) WS2 layer for BK7/Ag (50 nm)/PtSe2/2D materials (Graphene/MoS2/WS2) hybrid structure; and 
number of (d) Graphene layer, (e) MoS2 layer, and (f) WS2 layer for BK7/Au (50 nm)/PtSe2/2D materials 
(Graphene/MoS2/WS2) hybrid structure [86].
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Rhodium (Rh) with Ag to realize bimetallic configuration. Also, they used a silicon 
layer on the bimetallic layer to lessen the limitations of Ag. Likewise, N. Mudgal 
et al. [3] proposed a four-layer hybrid structure that consists of Au, molybdenum 
disulfide (MoS2), h-BN (hexagonal boron nitride), and graphene to detect urine 
glucose. The structure can enhance the sensor sensitivity up to 194.12 deg/RIU with 
the detection accuracy of 16.04/RIU. In the same way, Hailin Xu et al. [84] proposed 
an optical sensor with the graphene-Al-graphene sandwich structure where gra-
phene prevents the oxidation issue of Al as well as enhances the sensor sensitivity 
3.4 times more than only Al-based sensor. Besides, Wang M. et al. [85] suggested 
a sensor consisting of graphene, Tungsten disulfide (WS2), and Au-Ag bimetal-
lic film. They observed that hybridization of single layer graphene and WS2 with 
Au-Ag bimetallic nanostructure leads to sensitivity up to 182.5 deg/RIU which is 
superior to Au-only based sensor. Incorporating the advantages of hybrid structure 
and bimetallic configuration, very recently Rahman M. et al. [86] also proposed a 
new configuration of SPR biosensors utilizing the newly emerged TMDC (PtSe2) 
embedded 2D materials as illustrated in Figure 4.

In this configuration, a heterostructure of PtSe2/2D material (e.g., graphene, 
MoS2, WS2) has been employed to realize the hybrid configuration whereas BK7 
prism is used as a coupler that increases the momentum of the evanescent wave 
to match with the wave vector of the SPW. The sensor comprises a thin layer 
(50 nm) of Au or Ag as an SPR active material between the prism coupler and 
PtSe2/2D material heterostructure. A monochromatic He-Ne laser source having 
a wavelength of 633 nm have been incorporated to excite the SPPs. The sensor 
parameters are altered and optimized varying the thickness of PtSe2 and number 
2D material’s layer to get better performance where the results are revealed in 
Figure 5.

The effects of alteration of different parameters of PtSe2, and 2D materials have 
been analyzed comprehensively and two new sensors have been introduced with 
excellent performance characteristics. The details of optimized design parameters 
and performances are listed in Table 1. As well, Table 2 shows the performance 
comparison of different SPR biosensors based on Kretschmann configuration with a 
hybrid structure.

Sl. no. Proposed SPR sensors with optimized 

structural parameters

Operating 

range of 

sensing 

medium RI

FOM 

[RIU–1]

QF 

[deg/

RIU]

Sensitivity 

[deg/RIU]

01. Ag/PtSe2/WS2 Thickness of 
Ag (nm)

50 1.33-1.38 17.64 34.22 194

Thickness of 
PtSe2 (nm)

02

Number of 
WS2 Layers

04

02. Au/PtSe2/WS2 Thickness of 
Au (nm)

50 1.33-1.38 15.72 29.39 187

Thickness of 
PtSe2 (nm)

02

Number of 
WS2 Layers

02

Table 1. 
Details of optimized design parameters and results of the proposed SPR biosensors [86].
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5. Conclusion

This chapter provides a detailed description of the surface plasmon resonance 
phenomenon with the recent trends that are being applied in the advancement of 
SPR based sensors where the application of hybrid structures as well as bimetal-
lic configurations are found to be potential techniques to enhance the sensor 
performances. Besides, it demonstrates different 2D materials applied for sensing 
capability enhancement of the hybrid SPR biosensors. Also, two 5 layer prism based 
hybrid heterostructures (Prism-Au-PtSe2-WS2 and Prism-Ag-PtSe2-WS2) have been 
comprehensively discussed here to show the effectiveness of hybrid technology.

Ref. Configuration of the sensors Sensitivity (deg/RIU)

[83] Prism/Air/Titanium (Ti)/Ag/Au/InP 70.90

[84] Prism/Rh/Ag/Si 229

[3] Prism/MoS2/h-BN/graphene 194.12

[85] Prism/Ag/Au/WS2/graphene 182.5

[86] Prism/Ag/PtSe2/WS2 194

[86] Prism/Au/PtSe2/WS2 187

[87] Prism/Au/Black Phosphorous (BP) 180

[2] Prism/Au/Graphene/MoS2 89.29

[1] Prism/Au/MoS2 75.34

[88] Prism/ZnO/Ag/Au/graphene 66

[89] Prism/Au/MoS2/WS2/WSe2 142

[90] Prism/Au/MoS2/Au film/graphene 182

[55] Prism/MoS2/aluminum (Al) film/MoS2/
graphene

190.83

[91] Prism/Ag/PtSe2 162

[91] Prism/Au/PtSe2 165

Table 2. 
Sensitivity comparison of Kretschmann configuration based SPR biosensors comprising hybrid structures.
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