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Chapter

Gums—Characteristics and 
Applications in the Food Industry
Diego Aires da Silva, Giselle Cristine Melo Aires  

and Rosinelson da Silva Pena

Abstract

Gums, or polysaccharides, are complex carbohydrates, soluble in water, which 
can form gels and mucilages. They have high molar mass and can be formed by 
galactose, arabinose, rhamnose, xylose, galacturonic acid, among others. They have 
gelling characteristics, thickening, moisture retention, emulsification and stabiliza-
tion. Polysaccharides are widely used in the formulation of food products, due to 
their wide versatility. Its diversity of applications is closely linked to its chemical 
structures. The characterization of structural molecules allows the knowledge of 
the properties of polysaccharides or glycoconjugates. In this sense, this chapter 
addresses knowledge about chemical, molecular, rheological, thermodynamic 
characteristics that are extremely important to identify the use and applications of 
polysaccharides in the context of elaboration and innovation in the food industry.

Keywords: gum, hydrocolloids, carbohydrate

1. Introduction

The food and beverage industries face increasingly challenging scenarios, as 
they need to meet consumers’ desires, and use ingredients that are natural, and that 
fulfill their technological roles in processed foods. Among these ingredients, gums 
and hydrocolloids are the compounds most widely used as agents of innovation in 
the food industry.

Gums, also known as hydrocolloids or polysaccharides, are very versatile 
biopolymers, extensively used in the food sector as ingredient or additive, which 
fulfill several technological and, sometimes, nutritional functions. This versatility is 
intrinsically related to their molecular composition, which gives these polysaccha-
rides certain properties such as gelling, thickening, moisture retention, emulsifica-
tion, and stabilization. In the food industry, they are widely used in confectionery, 
as ice cream stabilizers, food emulsions, in the microencapsulation of flavors and 
dyes, clarifiers, and beverage stabilizers.

Therefore, information on the molecular structure, thermal stability, interac-
tion with water, and rheological behavior are essential knowledge for prospecting 
and developing applications for each type of polysaccharide, whether isolated or in 
mixtures.

Another important fact, in this sense, is the constant search for new sources of 
polysaccharides that might have similar and/or better effects than those already 
known. This is important because it also shows regional valorization, source of 
income, and new business opportunities.
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Thus, this chapter aims to discuss the physical, chemical, and molecular knowl-
edge of polysaccharides, in addition to their versatility of applications in the food 
industry.

2. Gums: origin and definition

The term gum is generally used to define hydrophilic or hydrophobic molecules 
of high molar mass, which have colloidal properties [1]. Classified according to 
origin, behavior, and chemical structure, gums can be derived from plant seed 
endosperm (guar gum) [2], plant exudates (tragacanth), shrubs or trees (gum 
arabic, karaya gum, cashew gum) [2–5], algae extracts (agar) [6], bacteria (xanthan 
gum), animal source (chitin), and others [7–10].

Vegetable exudates are fluids that flow spontaneously from trees, due to adapta-
tions to climatic conditions (physiological gummosis) or in response to any injury 
suffered, whether mechanical, such as cutting, or by the action of microorganisms, 
which dry out when exposed to air [11].

Hillis [12] describes in detail the differences between exudates from tree trunks, 
specifically the differences between resins and gums, and their formation. The 
author defines resins as materials composed largely by terpenoids, and that may 
contain phenolic compounds (coumaric, caffeic, and ferulic acids), with few fatty 
acids and glycerides. They may be formed within plastids present in epithelial cells 
of plants [13] or even synthesized in spherosomes, both in resin duct cells and in 
parenchymal cells [14].

Hillis [12] also defines gums as products composed mainly of complex carbohy-
drates, soluble in water, which can form gels and mucilages. They have high molar 
mass and can be formed by galactose, arabinose, rhamnose, xylose, galacturonic 
acid, and other compounds. In some species, they are secreted by organelles present 
in the bark or between barks, whose main function is protecting the plant from 
injuries caused by cuts or microbial attack [15–17].

The interest in gums exuded from plants is due to their structural properties 
and respective functions in food, pharmaceutical, cosmetic, textile, and biomedical 
products [18]. Water-soluble gums, also known as hydrocolloids, can have various 
applications such as: dietary fibers, texture modifiers, gelling agents, thickeners, 
stabilizers, emulsifiers, coatings, films, and as encapsulants [19, 20]. There has been 
a strong trend towards replacing synthetic materials by natural gums due to their 
non-toxicity, low cost, safety, and availability [21].

3. Structural aspects of gums

All the properties and applications of gums are closely linked to their chemical 
structures. Gums can be formed by numerous sugars, in their main chains and/or 
side chains, and can be more or less branched, which determines, in general, their 
complexity [15].

Among the most well-known and commercialized gums [22], the gum arabic, 
produced by the species Acacia senegal, presents in its structure a main chain formed 
by β-D-galactopyranose joined by bonds (1➔3), alternated by highly branched bonds 
(1➔6), and shows lateral chains constituted by 4-O-methyl-glucuronic acid (1.5%), 
glucuronic acid (17.5%), galactose (39%), arabinose (28%), and rhamnose (14%) 
[23]. Anderson; Hirst; Stoddart [24] proposed the structure presented in Figure 1 
for acacia gum. The authors indicated, as possible replacement units, those repre-
sented by the radical “R”: (L-Araf); (L-Araf 1➔3 L-Araf); (β-L-Arap 1➔3 L-Araf); 
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(L-Araf 1➔3 L-Araf 1➔3 L-Araf); (β-L-Arap 1➔3 L-Araf 1➔3 L-Araf); (β-D-Galp 
1➔3 L-Araf). Arabinofuranoside is Araf, arabinopyranoside is Arap, and galactopy-
ranoside is Galp. The radicals “R” are not shown in Figure 1B.

Gum ghatti is also important among exudate gums because of its high emul-
sifying capacity [25]. It is extracted from the trunk of Anogeissus latifolia, an 
abundant tree in India [26]. Its molecular structure is formed by a main chain of 
(1➔6)-β-Galactose bonds, whose branches at positions O-3 and O-4 are replaced, 
consisting of ➔2)-Araf-(1➔4)-GlcpA-(1➔6)-Galp-(1➔6)-Galp-(1➔. The terminal 

Figure 1. 
Structural fragment of gum arabic (Acacia senegal). (A) Scheme and (B) three-dimensional structure 
referring to the fragment shown.
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lateral chains are formed by residues of arabinofuranoside (Araf) and occasion-
ally by rhamnopyranoside (Rhap), arabinopyranoside (Arap), galactopyranoside 
(Galp) or glucuronopyranoside (GlcpA) [27, 28]. The structure of gum ghatti is 
shown in Figure 2.

Karaya gum is also on the list of exudates from commercially interesting plants, 
and is extracted from Sterculia urens tree. Structurally, it is a complex, partially 
acetylated polysaccharide, composed of 55–60% of rhamnose and galactose, 8% of 
acetyl groups, and 37–40% of uric acid residues (galacturonic and glucuronic acids) 
[29]. Its structure can be seen in Figure 3.

3.1 Gum structure of exudates from arecaceae family species

The Arecaceae (Palmae) family consists of a large variety of monocot plants 
found predominantly in tropical and subtropical environments, mostly in South 
America, and contains 457 palm species distributed in 50 genera [30, 31].

Nussinovitch [26] described, in general, three types of gum from plants of the 
Arecaceae family, with sensory information about them. According to the author, 
Borassus flabellifer palm gum is a black glassy exudate, which swells and is insoluble 
in water; Cocos nucifera L. gum has coloration ranging from light brown to red, and in 
water, it presents certain insolubility, forms gel, and has low adhesiveness; Corypha 
utan Lam. gum has sweet odor and brown coloration, being used in medicine.

Figure 2. 
Structural fragment of gum ghatti. (A) Scheme and (B) three-dimensional structure referring to the fragment 
shown.
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Gums from exudates of Chinese fan palm trunk (Livistona chinensis) [32] and 
jerivá (Syagrus romanzoffiana) [33] were presented as heteroxylans, whose main 
chain is joined by β-(1➔4) bonds, highly substituted at O-2 and O-3 positions by 
units of arabinose, xylose, and terminal fucose, as shown in Figure 4.

The exudate from Uricuri palm (Scheelea phalerata) was also identified by 
Fernanda F. Simas et al., [34]. The authors found a water-insoluble polysaccharide 
with a branched structure. Units of Xylp (~8%) were replaced at O-2, whereas 
Araf units (12%) were replaced at O-3. They also found non-reducing units of 
Araf (15%), Fucp (fucopyranose - 10%), Xylp (4%), and Arap (6%) as side chains 
attached to the main chain composed of Xylp units joined by β-(1➔4) bonds, which 
were replaced at 3-O-(9%), 2-O-(13%), and 2,3-di-O-(13%) positions.

The structure of the gum obtained from coconut tree trunk exudate (Cocos 
nucifera) was elucidated by Simas-Tosin et al., [35]. This gum is a glucurono-
arabinoxylan composed of Fuc, Ara, Xyl, and GlcpA at molar ratio of 7:28:62:3. 

Figure 3. 
Structural fragment of karaya gum. (A) Scheme and (B) three-dimensional structure referring to the fragment 
shown.

Figure 4. 
Three-dimensional representation of the heteroxylan present in Scheelea phalerata (Uricuri) palm gum, with 
β-(1➔4) bonds. Main chain branches are substituted at O-2 or O-3 positions by arabinose and xylose units.
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Non-reducing units substituted at 3-O (Araf - 8%); 3,4-di-O-(15%); 2,4-di-O (5%); 
and 2.3.4-tri-O (Xylp 17%) positions were also found, attached to a main chain 
composed of Xylp joined by β-(1➔4) bonds.

4. Gum characterization

4.1 Spectroscopic methods for gum characterization

“Structure is the key to everything in chemistry. The properties of a substance 
depend on the atoms it contains and how these atoms are bound. Less obvious, but 
very powerful, is the idea that someone with knowledge of chemistry can look at the 
structural formula of a substance and say several things about its properties” [36]. 
“Looking at the structural formula” inevitably refers to the use of techniques that assist 
in the chemical and structural knowledge of organic molecules, and in this context, 
spectroscopic techniques can be a very important tool to fulfill such function [37].

In order to know the properties of polysaccharides or glycoconjugates, it is 
essential to elucidate and characterize the structural and dynamic aspects of their 
molecules [38]. Carbohydrate chemistry can rely on one of the most efficient 
spectroscopic techniques for investigating organic compounds in solution: Nuclear 
Magnetic Resonance (NMR), which has advanced methods, and becomes essential 
in the characterization of polysaccharides with complex structures [39, 40].

The commonly used NMR techniques are hydrogen (1H), carbon-13 (13C), 
homonuclear correlations (1H-1H), COSY (homonuclear Correlation Spectroscopy), 
and 13C-1H HMQC (Heteronuclear Multiple Quantum Coherence) [41].

The elements that are most common in organic molecules (carbon and hydro-
gen) have isotopes (1H and 13C) capable of providing NMR spectra rich in structural 
information. A proton nuclear magnetic resonance spectrum (1H NMR) provides 
information about the environments of the various hydrogens present in a mol-
ecule. A carbon-13 nuclear magnetic resonance spectrum (13C NMR) does the same 
for carbon atoms [36, 38].

NMR spectrum of coconut trunk gum (Cocos nucifera), obtained by alkaline 
extraction, presented approximately 10 signs in the anomeric region, which reveals 
a complex structure. The signals made reference to the presence of L-Araf  
(δ 108.6–107.0); α-Arap (δ 103.1); β-Xylp (δ 101.6), and also α-Fucp and α-Glcp 
units (δ 100.5–99.2), bonded to C-4. Reducing terminals were bonded to C-5 [35].

Peach gum (Prunus persica) was also considered as a complex molecule, as it 
shows 8 signs in the anomeric region (δ 110–90). The main sign in δ 103.2 refers to 
β-D-Galp units in the main chain, and the sign in δ 102.8 suggests the presence of 
β-D-GlcAp. In the substituted carbon region, the signs in δ 84.1 and δ 82.0–82.5 
refer to C-3 of the replaced units α-L-Araf and β-D-Galp 3-O-, respectively [42]. 
These are examples that demonstrate that the NMR technique is an indispensable 
tool for the knowledge of polysaccharides and their properties.

Another technique widely used for the structural identification of polysac-
charides, even before the advent of NMR, is the Fourier-Transform Infrared 
Spectroscopy (FTIR) [36]. Although NMR gives more information about the 
structure of an unknown compound, infrared is important because it can identify 
certain functional groups. Structural units, including functional groups, vibrate 
in characteristic ways, and this sensitivity to group vibrations forms the basis of 
infrared spectroscopy [43].

Molecular movements are described by two types of vibrations: deformation 
and stretching (Figure 5). The deformation causes a bond angle change that can 
occur in or out of the molecular plane of symmetry; and the stretching is a linear 
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intermittent movement so that the interatomic distance changes constantly. It can 
be symmetrical or asymmetrical [44].

When irradiated by infrared light, the atoms of the molecular structure of a 
given sample absorb it. The vibration or rotation will depend on the type of chemi-
cal bond formed by these atoms B [45, 46]. Table 1 shows some bands of infrared 

Figure 5. 
Aspects of the molecule vibrations observed in infrared spectroscopy.

Bands Associated 

vibrations

Possible assignments to bands References

≈1650 and 1550 cm−1 v(C═O)
γ(CN)
δ(NH)
(CCN)deform.

v(C═C)
v(COO−)

Amide I and II of proteins, respectively [47–50]

1640–1600 and 
1420 cm−1

Carboxylic acids deprotonated in uronic 
acid

[48, 50]

1444, 1371, 975–978, 
and 923 cm−1

δ(CH3)
(CH)deform.

δ(CO)
δ(NH)
δ(C▬O)
δ(OH)COOH

v(C▬O▬C)
v(CN)

Methyl ester groups (CH3) in pectins [51]

1280 and 1220 cm−1 Methyl ester groups (CH3) in pectates [51]

1280–1260 cm−1 Phenolic esters bonded to cell walls groups [52]

≈1230 cm−1 Amide III of protein secondary structures [49, 52]

Fingerprint region in polysaccharides [53]

1155–1038 cm−1 v(C▬O▬C)
v(C▬OH)
v(C▬O)
v(C▬C)
v(O▬CH3)
(CH3)
(C1▬H)
δ(OH)
δ(CCH)
δ(COH)

Galactan attached to main chain β 1➔6 Galp [53]

1141–1039 cm−1 Arabinans connected to the main and side 
chains of Araf

[53]

1139–985 cm−1 Arabinogalactans linked to the main chain 
of β 1➔3 Galp, and side chain of α 1➔3 Araf 
(8%) and β 1➔6 Galp (92%)

[53]

1140–975 cm−1 Arabinogalactan-rhamnoglycan attached 
to the main chain β 1➔6 Galp (24%) and α 
1➔4 Rhap (42%), and side chain of α-Araf 
and α 1➔5 Arap (34%)

[53]

900–870 cm−1 Β-type bonds between monosaccharides [54, 55]

Table 1. 
Infrared Fourier transform bands in plane (δ); out of plane (γ) and stretching (v), and assignments related to 
functional groups.
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spectroscopy and their respective functional groups present in polysaccharides. It 
is also possible to see that FTIR can provide information on important functional 
groups in polysaccharides in the fingerprint region [44, 46].

In polysaccharides, the infrared spectroscopy can be used to qualitatively 
observe possible structural changes. Quelemes et al., [56] demonstrated the struc-
tural change in cashew gum when submitted to quaternary ammonium reagent, 
which also improved some properties such as biocompatibility and antimicrobial 
action. FTIR was also efficient to demonstrate that the interaction of gum arabic 
and chitosan was formed by electrostatic complexes, a result of the interaction 
between functional groups (NH3+ and ▬COO-) of both macromolecules. Also, it 
improved viscoelastic characteristics at different pH’s, demonstrating its complex 
versatility for use as food additives [57].

4.2 Thermal analysis of gums

Most polymers, synthetic or natural, suffer degradation when subjected to 
thermal stress [58]. This is attributed to chain depolymerization, point splits, or 
even the elimination of low molecular weight fragments, which cause mass loss due 
to the increase in temperature [59]. They cause thermal effects related to physical 
or chemical changes, and are associated with thermodynamic events [58]. These 
changes in energy and mass can be measured by thermogravimetry (TG), deriva-
tive thermogravimetry (DTG), differential thermal analysis (DTA) and differential 
scanning calorimetry (DSC), which make it possible to obtain information such as 
changes in the crystalline structure, reaction kinetics, melting and boiling point, 
glass transition, and others [60]. Changes in mass as a function of temperature  
and/or time [61] and continuous registration of mass subjected to heating or 
 cooling [62] are definitions attributed to thermogravimetry.

Being the combination of an electronic microbalance and an oven, associated 
with a linear temperature programmer, thermogravimetric analysis consists of sub-
mitting a known mass of sample inside a crucible, suspended by a platinum wire, to 
a programmed temperature gradient, for a predefined time, which is automatically 
registered, simultaneously with the sample mass [63].

In DTG, the mass variation derivative (dm/dt) is registered as a function of 
temperature or time. In this method, the levels observed in TG are replaced by 
peaks that delimit areas which are proportional to the changes in mass suffered by 
the sample and can indicate the exact initial temperatures and maximum speed of 
reactions. DTG allows a clear distinction of successive reactions (not detected by 
TG), by quantitative determinations of loss or gain of mass which are associated 
with the peak areas [60].

DSC and DTA are analyses that measure energy gradients between the sample 
and a reference material subjected to controlled temperature. DSC is a calorimetric 
method in which energy differences are measured, whereas in DTA, temperature 
differences between the sample and the reference material are registered [59]. DTA 
provides a qualitative analysis of the thermal events experienced by the sample, 
whereas DSC is able to quantify such events because it measures the heat flow 
through a temperature gradient [64].

Changes in composition, food processing temperatures or ingredients result in 
changes in phase transitions of the product [65]. Quantifying the variables involved 
in these phenomena, such as temperature or thermodynamic quantities, is important 
for understanding processes such as evaporation, dehydration, and freezing [66]. 
Being the responsible for plasticizing effects and important component of food, 
water and its state transitions (gaseous or crystalline) guide such processes, and can 
also be used to describe the effects of temperature on physical properties [59].
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4.3 Gum rheology

Natural polymers are of particular interest in rheological studies [67]. Their thick-
ening, emulsifying, gelling, and stabilizing properties, which enable them to be used 
in food, pharmaceutical, and cosmetic industries are supported by a series of inter 
and intramolecular association mechanisms inherent to each polymer. Such mecha-
nisms lead them to particular applications in different processes and products [68].

Gum arabic (Acacia senegal) 3% (m/v), originating from African regions such 
as Sudan, Senegal, and Mali, has typical behavior of a liquid. Sanchez, Renard, 
Robert, Schmitt, & Lefebvre, [69] investigated G’ and G“ in gum arabic, where G’ 
is the storage modulus and indicates the portion of energy (from the applied volt-
age) that is temporarily stored during the test, and it provides information on the 
elastic characteristic of the fluid. On the other hand, G” is the loss modulus, which 
indicates the portion of energy used to initiate flow. It is irreversibly transferred in 
the form of heat and provides information on the viscous characteristics of the fluid 
[70]. The authors state that gum arabic presented a viscous modulus (G’) greater 
than its elastic modulus (G’), but after 5 hours of rest, gel characteristics were 
identified, consequently showing a more elastic structure [69].

Acacia tortuosa gum, originating from species located in South America 
(Venezuela) (15% m/v), presented elastic modulus (G’) greater than its viscous 
modulus (G”), indicating the occurrence of a gel material that became progressively 
weaker with increasing temperature [71]. In both studies, gums showed transition 
from Newtonian to non-Newtonian behavior with increasing concentration. Also, 
the influence of inter and intramolecular structural interactions as agents respon-
sible for rheological changes was observed [69, 71].

The emulsifying and rheological characters of chemically modified gum arabic 
(Acacia senegal) (esterified with octenyl succinic anhydride (OSA) at different 
concentrations) was measured by [72]. The study revealed that the gum presented 
an increase in its emulsifying capacity and a gradual increase in apparent viscosity 
with increasing OSA content, indicating satisfying emulsion stability and potential 
use as microencapsulant. The electrostatic interaction between gum arabic and soy 
protein β-conglycinin was the mechanism that improved the flocculating action of 
Acacia senegal, in addition to providing greater elasticity at the oil/water interface 
of the gum, consequently improving its emulsifying capacity [73]. The interaction 
of gum arabic with native tapioca starch also provided improved product  elasticity 
and adhesiveness [74]. Chenlo, Moreira, & Silva, [75], studied the rheology of 
aqueous dispersions of tragacanth gum and guar gum (10 g/L) during storage 
for 47 days. In general, the apparent viscosity decreased significantly (α = 0.05) 
for both systems at low values of γ ̇ (< 10s−1) and remained constant above this 
value. The decrease in viscosity was lower for tragacanth gum and lasted until the 
15th day, whereas for guar gum, the decrease occurred until the 20th day.

Mixtures of corn starch (5% m/m) and locust bean gum (0; 0.125; 0.25; 0.50; 
and 1% m/v) were rheologically evaluated by Hussain, Singh, Vatankhah, & 
Ramaswamy, [76], who found that the addition of locust bean gum at low concen-
trations (0.125%) made the mixture behave as a liquid at low oscillatory frequencies 
(0.1 to 10 rad/s). It also presented increased elasticity, with typically solid behavior 
at concentrations of 0.5 to 1%, at higher frequencies (15 to 100 rad/s). Thus, locust 
bean gum has potential to specifically modify the structure and texture of corn 
starch products.

The research results showed that there are many variables that influence the 
rheological characteristics of gums. Among them, the fine chemical structure of the 
polysaccharide, their interactions, and molecular conformations can be highlighted, 
which confirms the importance of characterizing the structure of new gums.
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5. Thermodynamic relations between gums and water

The functions derived from the physical and chemical properties of gums are 
closely related to the interactions of polysaccharides with water. The relationship 
between the water content of a product and its relative humidity at equilibrium, at con-
stant temperature, can be expressed by characteristic curves called moisture sorption 
isotherms [77, 78]. In fact, the thermodynamic properties of sorption, such as water-
solute affinity and spontaneity of the sorption process provide a better understanding 
of the water-solute equilibrium that is present in the product [79]. In addition, they 
facilitate the definition of order and disorder existing in water-solute systems [80].

The differential enthalpy or isosteric heat of sorption defines the amount of 
heat released or absorbed in the sorption process at constant pressure, and is used 
as an indicator of the binding force between the water and solutes of the product 
[81]. When the free water latent heat of vaporization is added, the integral isosteric 
heat of sorption is obtained, which is the total energy necessary to transfer the 
water molecules in the vapor state to a solid surface, or vice versa [79, 82]. Also, the 
differential entropy of a material is proportional to the number of available sorp-
tion sites, corresponding to a specific energy level, and indicates the mobility state 
of the water molecules present in the product [81]. Entropy describes the degree of 
disorder and randomness in the movement of water molecules, and has been used 
to explain how water sorption in biological materials occurs [83].

Thermodynamic properties, such as enthalpy and entropy, are necessary to 
design a process and to qualitatively understand the water state at a certain food sur-
face. Alterations in enthalpy provide the energy variation of the interaction between 
water molecules and the adsorbent. Entropy, in contrast, may be associated with the 
binding or repulsion of forces and, consequently, with the spatial arrangement of 
the water-adsorbent relationship. Thus, entropy characterizes the degree of order 
or disorder existing in the water-adsorbent system [84]. Gibbs free energy, in turn, 
is influenced by the thermodynamic properties enthalpy and entropy, and indicates 
the energetic spontaneity of the water-adsorbent interaction, providing the avail-
ability of process energy. If the value of this property is negative, the process is spon-
taneous, and if it is positive, the process is nonspontaneous. In systems with many 
constituents, such as food and polysaccharides, Gibbs-free energy depends not only 
on pressure and temperature, but also on the amount of each component [80].

6. Gum applications

The applications of gums from plant exudates are very diversified, and can be 
present in various areas of the food industry: confectionery (lollipops, chocolates, 
jelly beans, pastilles, and others), in which there is a high sugar content and low 
humidity; to prevent sugar crystallization; in salad dressings (thickeners and 
emulsion stabilizers) [85]; in frozen products (pasta, popsicles, ice cream) [1]; in 
dehydrated products, such as juices obtained by spray drying, protecting impor-
tant compounds such as vitamin C, anthocyanins, and improving solubility, or also 
as microencapsulants for colors, flavors, and oils [86]; in wine clarification; flavor 
fixatives and emulsifiers; and in beverages and meat products [87, 88] (Table 2).

In adhesion functions, gums are used as fixatives of skin bioelectrodes, dentures, 
ostomy devices, and transdermal membrane systems, which perform controlled 
release of drugs through the skin [7, 89, 90]. They are used as adhesive materials in 
wood-based industry, and obviously, in adhesive industries in general [91]. Gums 
have applicability in the pharmaceutical area as emulsifiers and reducing agents for 
suspended particles, laxatives, in the preparation of antiseptics, binders for tablets 
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Common 

name

Scientific 

name

Main chemical 

compounds

Application Reference

Gums from fruits

Date palm 
mucilage

Phoenix 

dactylifera

Fructose, sucrose, 
mannose, glucose, and 
maltose

Anti-cancer action [105]

“Erva Baleeira” 
Mucilage

Cordia obliqua Arabinose, galactose, 
and pyrralinose

Expectorant, tablet 
binder, emulsifier

[106]

Jackfruit Artocarpus 

heterophyllus

Galactomannan, starch Suspension 
stabilizer, 
emulsifier, binder, 
mucoadhesive

[107, 108]

Gums from seeds

Tamarind gum Tamarindus 

indica

Glucose:xylose:galactose 
(3:2:1)

Tablet 
formulation, 
biodegradable 
support for 
controlled drug 
release (colon), 
bioadhesive

[109, 110]

Fenugreek 
mucilage

Trigonella 

foenum-graceum

Galactomannan Textural and 
sensory properties 
of soup powder/ 
anthocyanin 
encapsulation

[111, 112]

Locust bean 
gum

Ceretonia 

Siliqua

D-galacto-D-
manoglycan, cellulose, 
galactomannan

Superdisintegrant 
in controlled 
drug delivery 
system

[113, 114]

Tara gum Caesalpinia 

spinosa

Mannose:Galactose (3:1) Smart food 
packaging

[115]

Gleditsia 

triacanthos gum
Gleditsia 

triacanthos

Galactomannan Matrix formulation 
for tablets

[116]

Cassia tora 
Mucilage

Cassia tora Arabinose and glucose Suspension 
stabilizer, binder

[117]

Flamboyant 
gum

Mimosa 

scabrella

Mannose:Galactose 
(3.65:1)

Dietary fiber, 
probiotic viability 
in milk drink

[118]

Guar gum Ocimum 

americanum

Xylose, arabinose, 
rhamnose, and 
galacturonic acids

Guar gum 
nanocomposite 
films

[119]

Gums obtained from tree trunks exudates

Albizia 

stipulata Boiv. 
gum

Albizia stipulata 
Boiv.

Arabinose, galactose, 
and rhamnose

Antioxidant 
properties

[120]

Almond gum Prunus 

amygdalus

Aldobionic acid, 
L-arabinose, 
L-galactose, and 
D-mannose

Emulsifier, 
suspension 
stabilizer, binder, 
thickener

[121]

Cashew gum 
and cashew nut 
gum

Anacardium 

occidentale

Galactose, arabinose, 
rhamnose, glucose, 
glucuronic acid

Encapsulation 
of a lipid shrimp 
waste extract, 
anti-inflammatory 
effect

[86, 122]
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Common 

name

Scientific 

name

Main chemical 

compounds

Application Reference

Cherry gum Prunus avium Arabinogalactan Coating film [123]

Raphia hookeri 
gum

Raphia hookeri Mannose and galactose Aluminum 
anti-corrosion 
agent in acid 
medium

[124]

Tragacanth 
gum

Astragalus 

gummifer

D-galacturonic acid, 
D-galactose, L-fucose 
(6-deoxy-L-galactose), 
D-xylose, L-arabinose, 
and L-rhamnose

Catalyst in the 
production of 
nanoparticles

[125]

Gum 
kondagogu

Cochlospermum 

gossypium

Rhamnogalacturonan Production of 
biocompatible 
and antimicrobial 
scaffold for 
bandages

[126]

Gums obtained from leaves

Cocculus 

hirsutus 
mucilage

Cocculus 

hirsutus

Polysaccharides and 
gelatinous materials

Binding agent, 
gelling agent 
(drugs)

[127]

Hibiscus 
mucilage

Hibiscus 

rosa-sinensis

L-rhamnose, 
D-galactose, 
Dgalactouronic
acid, and D- glucuronic 
acid

Controlled drug 
release

[128, 129]

Gums obtained from microorganisms

Curdlan gum Agrobacterium

spp.
Glucose Food additive, 

thickener, gelling 
agent

[130]

Gellan gum Sphingomonas

spp.
Glucose, rhamnose, and 
glucuronate

Emulsion 
stabilizer, 
ophthalmic 
hydrogel

[131, 132]

Cholic acid Escherichia coli Fucose, glucose,
glucuronate, and 
galactose

Viscosity enhancer [130]

Xanthan gum Xanthomonas 

spp.

D-glucose, D-mannose, 
and glucuronic acid

Carotenoid 
encapsulation for 
use in yogurts

[133]

K30 antigen Escherichia coli Mannose, galactose, and 
glucuronate

Viscosity 
enhancer/
controlled drug 
release

[130]

Gums obtained from tubers

Konjac 
glucomannan

Amorphophallus 

konjac

D-Glucose and 
D-mannose

Gelling agent, 
controlled drug 
release

[134, 135]

Taro Colocasia

Esculenta

Galactose and arabinose Gelling agent, 
mucoadhesives

[136]

Table 2. 
Applications of gums from various origins.
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and pills, and in the cosmetics area (perfume fixers, skin cleansers, and repellents) 
[92–95]. Also, in the medical field, gums are used to control osmotic pressure, in addi-
tion to having activity against Leishmania amazonensis and antifungal properties [96].

The most recent studies have shown that the versatility of gum use has increased. 
The beverage industry, for instance, is always seeking products with greater stabil-
ity. Some polysaccharides are excellent stabilizers, such as tara gum, which is often 
used to stabilize casein aggregation in dairy drinks, improving phase separation. 
This occurs because tara gum makes it difficult to approach casein molecules, pro-
viding greater stability and improving the sensory acceptance of the product [93].

Carrageenan gum, xanthan gum, guar gum, sodium alginate, carboxymethyl 
cellulose, gum arabic, and pectin were tested to prevent the formation of turbidity, 
caused by protein-polyphenol complexation, in packaged beverages. Among them, 
pectin, xanthan gum, and guar gum showed the best results [94]. These polysac-
charides, when present in low concentrations: 0.5, 0.05, and 0.01 mg/mL, compete 
with proteins to bind polyphenols, which decrease protein-polyphenol aggregation; 
or they can form a ternary complex (protein-tannin-polysaccharide) to increase the 
solubility of protein- polyphenol systems. This mechanism promotes the reduction 
of unwanted turbidity in such products [95].

The use of gums and polysaccharides in film production is also an area of great 
concentration of studies. Active, functional, and biodegradable packagings are 
examples which may have antibacterial activity.

Tragacanth gum, for instance, showed excellent results in the production of 
nanocomposite biofilms, and can be applied in the prevention of lipid oxidation 
in high-fat foods, with antimicrobial action and excellent responses to biodegrad-
ability tests [96][97]. In addition, chemically modifying the gums to improve their 
hydration control, gel formation, and swelling can also be an interesting way to use 
these polysaccharides to produce biodegradable films, which have a good response 
in prolonging food quality [98].

Gums can offer great innovation opportunities for the food sector. Its use is 
reported in wastewater treatment and in the production of nanoemulsions, and 
micro and nano encapsulation of dyes, essential oils, and probiotics [99–104].

Therefore, it is important to encourage the search for new sources of gums and 
polysaccharides from biodiversity, as their applicability and benefits can and, obvi-
ously, should be explored.

7. Conclusion

Gums have incredible versatility and are a rich source of innovation in food 
formulations and elaborations in the industry. They can be used both in isolation 
and in mixtures and can be modulated to deliver not only taste and nutrition, but 
also a new consumption experience, whether due to texture or applied technology. 
It is important that new sources of these carbohydrates are increasingly known, as 
there is still much to explore in this area.
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