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Chapter

A MATLAB-Based Symbolic
Approach for the Quick
Developing of Nonlinear Solid
Mechanics Finite Elements
Antonio Bilotta

Abstract

A symbolic mathematical approach for the rapid early phase developing of finite
elements is proposed. The algebraic manipulator adopted is MATLAB® and the
applicative context is the analysis of hyperelastic solids or structures under the
hypothesis of finite deformation kinematics. The work has been finalized through
the production, in an object-oriented programming style, of three MATLAB® clas-
ses implementing a truss element, a tetrahedral element and plane element. The
approach proposed, starting from the mathematical formulation and finishing with
the code implementation, is described and its effectiveness, in terms of minimiza-
tion of the gap between the theoretical formulation and its actual implementation, is
highlighted.

Keywords: FEM, nonlinear solid mechanics, MATLAB®, Symbolic Math
Toolbox™, object oriented

1. Introduction

The developing of finite element formulations, standard or new ones, requires a
lengthy process which involves several steps.

The typical starting point is the formulation of a mathematical model where the
main physical or real world phenomena to be described are established. At present
time the definition of a mathematical model is at the basis of any serious attempt
to obtain previsions in any engineering application [1–3], but not only in the
engineering field [4, 5].

The subsequent step is the introduction of a numerical approximation technique.
The most popular technique is the Finite Element Method (FEM), see [6–8], but
now the number of computational approximation techniques is very large and a
synthetic summary can be tried only by citing some of these less conventional
methods: mixed finite element methods [9–13]; partition of unity-based discontin-
uous finite elements [14, 15]; meshless methods [16]; discontinuous Galerkin
methods [17]. This operation leads to the identification of the needed discrete
operators which define the computational model. For example, in the case of the
analysis of solid mechanics problems by FEM, important discrete operators are the
mechanical response vector of the finite element and its tangent stiffness matrix.
This phase is characterised by the evaluation and the analysis of these operators
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through an algebraic manipulator such as MATLAB® [18]. MATLAB® is certainly
one of the state-of-the-art mathematical softwares available for performing
numeric or symbolic analyses, but it is not the only one and a quite long list, see
[19], of packages offering very similar features is available.

The discrete model so defined is usually inserted into a prototype code, often by
using again an algebraic manipulator but the use of compiled programming lan-
guages is also possible if not common. This prototype code allows to perform basic
tests with the aim to check the effectiveness of the adopted model with respect to
well known situations and to check for the presence of bugs. Often this phase can
highlight also flaws in the mathematical model or in the discretization technique. In
any case it is necessary to go back and to repeat the process just described.

The additional last step can be the production of an executable by using com-
piled programming languages such as C/C++ or fortran. This makes possible to
extend the validation of the conceived numerical model by performing the analysis
of larger sized problems.

As already said, the previously described work-flow is lengthy and it is often
characterised by a gap between the theoretical formulation and its implementation
in a numerical code. However some solutions capable to assist the developer in this
process already exist ant it is worth to mention some ones. Such solutions typically
refer to a specific context by keeping fixed the physical problem but letting open
the specific instance of discretization technique which, however, is fixed too. This is
the case of open source FEM libraries or commercial packages listed in [20]. In both
cases the user must define the procedures or functions needed in order to assign the
desired new finite element to be used within the analysis framework already avail-
able in the library. Other packages instead solves a generic system of Partial Differ-
ential Equations (PDEs) subjected to boundary and initial conditions. Inside this
generic form the specific differential problem to be solved must to be fitted by the
user, see for example [21, 22], but usually with no control over the discretization
technique used by the solver.

The present work, quite far from being an alternative to the hugely developed
and rich packages previously cited, proposes a basic approach for the quick early
phase developing of solid mechanics finite elements formulation. Its intent is to
show how to use MATLAB®, in particular by exploiting the capabilities of the
Symbolic Math Toolbox™ [23], to produce numerical approximations of a given
solid mechanics problem in a way that the usual gap between the theoretical for-
mulation and its actual implementation in a code is not perceived. This result is
obtained by condensing the development process going from the mathematical
formulation to the prototype code implementation in a few lines of MATLAB®
symbolic instructions. The applicative context is the nonlinear analysis of solids and
structures, see [24, 25], by showing the formulation and the subsequent MATLAB®
coding of some typical structural and solid finite elements. The mechanical formu-
lation is based on the kinematics of finite deformation and, for the description of
the material behaviour, on isotropic hyperelasticity, i.e. the stress solution is found
as a derivative of some potential energy function. This allows to express the
mechanical problem at hand in terms of the stationary condition of the Total
Potential Energy (TPE). The stationary condition, assuming a fem discretization of
the given domain, is then easily translated into a nonlinear algebraic problem whose
unknowns are the position vectors of the nodes of the mesh used in the
discretization.

The following finite elements are discussed: a truss element, a 3D tetrahedral
element with four nodes and a four nodes quadrangular element subjected to plane
strain condition. The choice allows to discuss gradually the main ingredients present
in a finite element formulation and how these can be framed inside the proposed
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MATLAB® approach. The latter is based on the definition of MATLAB® classes
which share the same structuring and which differ only for the particular mechan-
ical response to be implemented. In particular the generic class is structured as
shown by the following instructions (Listing 1.1).

Listing 1.1. Generic class.
classdef Element

properties (SetAccess = private)
% symbolic properties

% numeric properties
end

methods
function E = Element()
end

function E = Initialize (E,D, i)
end

function E = Compute(E)
end

function sig = Stress(E,gx)
end
end

end

The properties section contains a group of symbolic properties devoted to handle
the unknowns and the quantities depending on them used in the description of the
element mechanical behaviour. The other group of numeric properties are used to
handle quantities that are known and then they can have a numeric value. Beyond
the constructor, that must to be present in any class, we have the function Initialize,
belonging to the pre-processing phase of a FEM code, whose main task is the
inizialization of the i-th element on the basis of the assigned data structure D. This is
the moment also for evaluating the element operators, in a symbolic format, needed
to the analysis. In the subsequent analysis phase, the function Compute evaluates the
numeric instances of the symbolic operators previously prepared. The function
Stress is typical of the post-processing phase of any FEM code and its task is to
compute the stress solution inside the generic element starting from the kinematic
global solution represented by vector gx.

Before proceeding with the description of the proposed work, it is noteworthy to
observe that the use of MATLAB® to performmathematical and numeric analyses is
not certainly new and several books are dedicated to this subject, see [26–28] just to cite
a few. Moreover the already cited book [24] employs MATLAB® for the implementa-
tion of a FEM software. However the present less comprehensive work is different
because it carry out the formulation of the FEM operators by exploiting the potentiality
of the symbolic manipulator and advising an object-oriented programming style.

A last further annotation regards the use of the symbolic approach which, with
respect to the expected performance of final codes, represents a weakness. This
aspect however is to be considered less important in a work regarding the early
phase developing of a FEM formulation. Nevertheless techniques, [29–31], for the
automatic generation of efficient and highly compressed code is a research theme
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which is attracting increasingly interest, making viable the up-scaling of the pro-
posed approach.

The chapter is organised as follows. Section 2 presents the FEM formulation of
the Total Potential Energy for a generic structure or solid, showing also the evalua-
tion of the gradient needed to define the discrete equilibrium equations and the
evaluation of the Jacobian necessary for their solution. Sections 3, 4 and 5 describes,
respectively, the truss element, the tetrahedral element and plane quadrangular
element. The closing section furnishes some additional final comments.

2. Total Potential Energy

An effective description of a generic mechanical problem can be obtained
through the stationary condition of its Total Potential Energy (TPE) which, see for
example [24], can be expressed as follows

Y

xð Þ �
Y

int

xð Þ þ
Y

ext

xð Þ ¼ stat: (1)

x is the global vector of the current positions of the nodal points defining the
mesh used to describe the geometry of the solid.

Q

int xð Þ, excluding dynamic and
dissipative effects, is given only by the strain energy obtained by summing all the
contribution from all the finite elements, i. e.

Y

int

xð Þ ¼
X

e

Ψe xð Þ, (2)

being Ψe xð Þ the hyperelastic strain energy relative to the generic finite element.
Q

ext xð Þ is the potential energy of external forces. For simplicity the case of a solid
body subjected only to external punctual forces will be considered, in this case the
potential energy can be written as

Y

ext

xð Þ ¼ �f � x, (3)

where f is the global vector of the applied forces in each node of the mesh. f has
the same length of x, however it is mainly composed by null entries.

On this basis the equilibrium equations can be easily formulated with respect the
degrees of freedom involved in the FEM description of the body. In particular, by
imposing the stationary condition (1), the equilibrium equations can be derived,
obtaining

A
e
ge xð Þ � f ¼ 0: (4)

where the assembly operator A is used to build up the global response vector by
using the gradient vector of each finite element strain energy contribution, i.e.

ge xð Þ ¼
∂Ψe xð Þ

∂x
: (5)

The solution of Eq. (4), a typically nonlinear algebraic system whose unknowns
are the components of vector x, is based on a Newton–Raphson iteration which can
be formulated as follows

4

Finite Element Methods and Their Applications



A
e
Je x j

� �

x jþ1 � x j

� �

¼ � A
e
ge x j

� �

� f
� �

, (6)

where xj and x jþ1 are the estimated solutions at j-th and (j + 1)-th iterations and
Je xð Þ is the Jacobian matrix of the finite element given by

Je xð Þ ¼
∂ge xð Þ

∂x
: (7)

The gradient vector ge xð Þ and the Jacobian matrix Je xð Þ can be used as basic
building blocks for the finite element formulation. This is the approach at the basis
of the MATLAB® implementations to be described in the following sections.

3. Truss element

The strain energy of the truss element is defined, see [24], as follows

Ψe xð Þ ¼
1

2
Eε2V, ε ¼ ε xð Þ ¼ ln

l

L

� �

, (8)

where E is the Young modulus, L and V are the length and the volume of the bar
in the reference configuration, l is the length of the bar in the current configuration.
The geometric quantities just described are depicted in Figure 1 where the coordi-
nate vectors of the nodal points are also shown.

The implementation of the MATLAB® class Truss can stem from the properties
reported in Listing 1.2. Some of them, those describing the reference configuration,
can be numeric because are fixed. The other properties, which describe the current
configuration, are expressed in symbolic form in order to be used as quantities
whose the strain energy of truss element depends on.

Listing 1.2. Truss class: properties.
properties (SetAccess = private)

% symbolic properties
xa % current coordinates of node a
xb % current coordinates of node b
xe % current element coordinates
ge % gradient g (xe)
Je % Jacobian J (xe)
eps % strain eps (xe)
N % axial force N (xe)

% numeric properties
a % node a global index
b % node b global index
Xe % reference element coordinates
% …

end

During the pre-processing phase the numeric properties of the class are appro-
priately assigned and the symbolic properties are evaluated as shown in the follow-
ing listing (Listing 1.3). This happens inside the function Initialize belonging to the
methods of the class.
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Listing 1.3. Truss class: function Initialize.
function T = Initialize (T,D, i)

% D brings all the problem data and its use
% is not shown here
T. xa = sym ('xa', [3 l], 'real');
T. xb = sym ('xb', [3 1], 'rea1');
T. xe = [T. xa; T. xb];

% reference configuration
L = dot(Xb–Xa, Xb–Xa);
L = sqrt(L);

% current configuration
1 = dot (T. xb–T. xa, T. xb–T. xa);
1 = sqrt(1);

T. eps = log(1/L);
Psi = 1/2 * E * T.eps^2 * (L*A);
T. ge = gradient(Psi, T.xe);
T. Je = jacobian (T.ge, T.xe);

% preliminary symbolic evaluation of N
T .N = E*A*T. eps;

end

Listing 1.3 shows that, after the computation of the strain energy using Eq. (8),
symbolic properties ge and Je are evaluated on the basis of Eqs. (5) and (7), respec-
tively, by simply calling the function gradient and the function jacobian both
belonging to the Symbolic Math Toolbox™. This highlights the short distance
between the formulation and its code implementation.

After having prepared each Truss object in the way described above, it is possible
to evaluate, whenever it is needed during the solution of the nonlinear equilibrium
equations, the gradient and the Jacobian of the generic element with respect to
estimated solution xj, see Eq. (6), by calling the following class method (Listing 1.4).

Listing 1.4. Truss class: function Compute.
function T = Compute(T)

Figure 1.
Truss element: definition of the geometric quantities relative to the reference configuration (upper-case letters)
and the current configuration (lower-case letters).
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T.se = subs (T.ge, T.xe, T.xxe);
T.Ke = subs (T.Je, T.xe, T.xxe);

end

The function Compute uses the numeric property T.xxe previously filled with
the current nodal coordinates values and it stores the resulting numeric expressions
of the gradient and Jacobian in the class properties se and Ke. The desired result is
obtained by calling MATLAB® function subs which substitutes the symbolic vari-
able T.xe with its numeric value T.xxe.

The post-processing phase of any FEM codes certainly comprehends the evalua-
tion of the stress solution. In the case of the truss element, the axial force must to be
computed with respect to each vector x calculated by the solution of the equilibrium
Eqs. (4). Listing 1.5 shows the very simple function implementing the required
computation.

Listing 1.5. Truss class: function Stress.
function N = Stress (T,gx)

% extraction of local vector lx from global gx
N = subs(T.N, T.xe, lx);

end

The complete listing of the class can be found in [32].

4. Tetrahedral element

The discussion of the implementation of a tetrahedral element, in particular a 4
nodes tetrahedron, allows to introduce an important ingredient of all finite element
formulations: the interpolation chosen for the kinematic description. Standard
approaches are hinged on the interpolation of the displacement field, in the present
approach the focus is on the interpolation of the element coordinates in the refer-
ence configuration and in the current one. In the previous section regarding the
truss element, this aspect remained hidden because the element elongation is easily
formulated with respect to the element nodal coordinates.

Another important aspect which the tetrahedral element bring into play is the
use of the continuum mechanics instruments, see [24, 25], and how these can be
smoothly framed inside the proposed MATLAB® implementation.

Let us consider the geometry of the 4 node tetrahedron as illustrated in Figure 2.
The description of the reference and current configurations of the tetrahedron are
as follows.

X ζ1, ζ2, ζ3, ζ4ð Þ ¼ N1X1 þN2X2 þN3X3 þN4X4

¼ ζ1X1 þ ζ2X2 þ ζ3X3 þ ζ4X4,
(9)

x ζ1, ζ2, ζ3, ζ4ð Þ ¼ N1x1 þN2x2 þN3x3 þN4x4

¼ ζ1x1 þ ζ2x2 þ ζ3x3 þ ζ4x4:

(10)

The element local coordinates ζ ¼ ζ1 ζ2 ζ3 ζ4½ �T are the standard tetrahedral
coordinates whose definition can be found in several resources, for example [6, 8].
On this basis the description of the deformation gradient over the tetrahedron can
be formulated as follows

7

A MATLAB-Based Symbolic Approach for the Quick Developing of Nonlinear Solid Mechanics…
DOI: http://dx.doi.org/10.5772/intechopen.94869



F ¼
∂x

∂X
¼

∂x

∂ ζ

∂ ζ

∂X
¼

∂x

∂ζ

∂X

∂ ζ

� ��1

¼ F xð Þ, (11)

with the operator

∂x

∂ζ
¼ x1x2x3x4½ � (12)

containing in its columns the four coordinate vectors relative to the current
configuration, unknown vectors to be expressed in MATLAB® symbolic format,
and the operator

∂X

∂ζ
¼ X1X2X3X4½ � (13)

containing the four coordinate vectors relative to the reference configuration to
be evaluated numerically for each tetrahedron of the mesh. The apparent problem

represented by the evaluation of inverse ∂X
∂ ζ

� ��1
starting from a 3 � 4 matrix is a

standard matter in FEM procedures, see for example [6], and it can be easily
calculated as shown in Appendix A.

The geometric formulation described above is directly inserted inside the Tetra4
class which can be implemented by following the same scheme already adopted for
the class Truss. In particular the geometrical properties of the class are listed below
(Listing 1.6).

Listing 1.6. Tetra4 class: properties.
properties (SetAccess = private)

% symbolic propetries
xl % current coordinates of node 1
x2 % current coordinates of node 2
x3 % current coordinates of node 3
x4 % current coordinates of node 4
xe % current element coordinates
Fe % deformation gradient

Figure 2.
Tetrahedral element: definition of the geometric quantities relative to the reference configuration (upper-case
letters) and the current configuration (lower-case letters).
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% numeric properties
Xe % reference element coordinates

end

On this basis the evaluation of the deformation gradient can be performed
during the initialisation of the generic element by carrying out the following
instructions (Listing 1.7).

Listing 1.7. Tetra4 class:function Initialize (evaluation of the deformation
gradient).

function T = Initialize (T,D, i)
% D brings all the problem data and its use
% is not shown here …

% reference configuration
dXdzeta = [X1 X2 X3 X4];
A = [1 1 1 1; dXdzeta];
V = det(A)/6;
iA = inv(A);
dzetadX = iA(1:4 ,2:4);

% current configuration (symbolic)
dxdzeta = [T.xl T.x2 T.x3 T.x4];

% deformation gradient
T.Fe = dxdzeta*dzetadX;

% …

end

It is now possibile to discuss the strain energy of the tetrahedral element. The
choice is for a compressible neo-Hookean material, see [25], which allows to express
the strain energy of the generic tetrahedron as follows

Ψe xð Þ ¼

ð

Ωe

Ψ Cð ÞdV ¼
μ

2
I1 � 3ð Þ � μ ln J þ

λ

2
ln Jð Þ2

� �

V: (14)

C ¼ C xð Þ ¼ FTF is the right Cauchy strain tensor and I1 its first invariant, J = det
F, λ and μ are the Lamè parameters of the material. Thanks to the constant pattern of
F over the element domain Ωe, the strain energy of the element is simply given by the
product between the strain energy density and the reference volume of the element.
Such a evaluation, together with the derivation of the gradient vector and Jacobian
matrix is implemented inside the function Initialize as shown in Listing 1.8.

Listing 1.8. Tetra4 class: function Initialize (strain energy).
function T = Initialize (T,D, i )

% …

C = T. Fe.'*T.Fe;
Il = trace (C);
J = det (T.Fe);

Psi = (mi/2*(Il-3)-mi*log(J) + lam/2*log (J)^2) *V;
T.ge = gradient(Psi, T.xe);
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T.Je = jacobian(T.ge, T.xe);
% …

end

The symbolic gradient vector and Jacobian matrix evaluated in the initialization
phase are then numerically computed during the analysis using a function identical
to the function already presented in Listing 1.4 for the Truss class.

The basic operation of the post-processing is the computation of the Cauchy
stress solution which, as F, is constant over the element domain. This step requires
the evaluation of the second Piola-Kirchhoff stress tensor

S ¼ 2
∂Ψ

∂C
¼ S Cð Þ (15)

and, by applying a push-forward operation to S [24, 25], the computation of the
Cauchy stress tensor is

σ ¼ J�1FS Cð ÞFT
: (16)

The MATLAB® implementation of Eqs. (15) requires the introduction of a
symbolic matrix for C to be used to perform another evaluation of the strain energy
depending, this time, from the components of C. The obtained expression, Ψ Cð Þ,
can be derived in order obtain S. This step can be performed only one time during
the initialisation of the Tetra4 class. Listing 1.9 shows these instructions together
with the declaration of the necessary symbolic properties.

Listing 1.9. Tetra4 class: function Initialize (second Piola-Kirchhoff stress
tensor).

properties (SetAccess = private)
% …

% symbolic properties
Se % second Piola-Kirchhof stress tensor S(C)
Ce % symbolic tensor C from which Se depends

end

function T = Initialize (T,D, i )
% …

T.Ce = sym ('C', [3, 3], 'real');
I1 = trace (T. Ce);
I3 = det (T.Ce);
Psi = mi/2*(Il – 3)–mi*log ( sqrt (I3))+ …

lam/2*log (sqrt( I3))^2;
T.Se = reshape (2* gradient (Psi ,T.Ce (:)) ,3 ,3 );

end

Eq. (16) is used to compute the stress solution for each tetrahedron with respect
to all the solutions x found by means of equilibrium equations (6). The class
function implementing the required operations is reported in Listing 1.10.

Listing 1.10. Tetra4 class: function Stress.
function sig = Stress (T,gx)

% extraction of local vector lx from global gx
F = subs (T.Fe, T.xe, lx);
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C = F.'*F;
sig = F*subs (T.Se, T.Ce, C)*F.'/det(F);

end

The complete listing of the class can be found in [33].

5. Plane strain 4 nodes element

The use of finite elements specifically formulated for the analysis of problems
which admit a 2D reduction is very common and quadrangular elements play an
important role in the case of simple geometries. In this section a 4 nodes quadran-
gular element subjected to plain strain condition is discussed. The element is very
basic but it allows to discuss also the use of the Gauss integration points in the
calculation of the required FEM operators. The use of the Gauss integration point is
an important cornerstone for all finite element formulations.

Plane strain condition stems from the following assumption on the transforma-
tion defining the new configuration of each point of the body

x1 ¼ x1 X1,X2ð Þ, (17)

x2 ¼ x2 X1,X2ð Þ, (18)

x3 ¼ X3: (19)

Consequently, the associated deformation gradient takes the following form

F ¼

F11 F12 0

F21 F22 0

0 0 1

2

6

4

3

7

5
,F2�2

F11 F12

F21 F22

� 	

: (20)

Eqs. (18)–(20) allow the dealing with a 2D kinematic description. The stress
solution, however, is not strictly plane because Eq. (19) constitutes an internal
constraint determining also the presence of the component σ33. This component
anyway depends only from the 2D kinematic solution as it will be shown in the
following.

The standard shape function of the four nodes plane element are

N1 ¼
1

4
1� ζ1ð Þ 1� ζ2ð Þ,N2 ¼

1

4
1þ ζ1ð Þ 1� ζ2ð Þ

N3 ¼
1

4
1þ ζ1ð Þ 1þ ζ2ð Þ,N4 ¼

1

4
1� ζ1ð Þ 1þ ζ2ð Þ

(21)

being ζ ¼ ζ1ζ2½ �T the element local coordinates used for quadrangular elements,
see for example [6]. Shape functions (21) can be properly used to describe, see
Figure 3, the reference configuration and the current configuration of the element
giving

X ζ1, ζ2ð Þ ¼ N1X1 þN2X2 þN3X3 þN4X4: (22)

x ζ1, ζ2ð Þ ¼ N1x1 þN2x2 þN3x3 þN4x4: (23)

We have exactly the same pattern of the tetrahedron element, see Eqs. (9) and
(10), except for the meaning of the shape function and the 2D dimension of the
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symbolic vectors xi i ¼ 1… 4ð Þ and numeric vectors Xi i ¼ 1…4ð Þ. The deformation
gradient can be evaluated using always Eq. (11) where now the operators are

∂x

∂ζ
¼ �

1� ζ2ð Þ

4
x1 þ

1� ζ2ð Þ

4
x2 þ

1þ ζ2ð Þ

4
x3 �

1þ ζ2ð Þ

4
x4

� ��

�
1� ζ1ð Þ

4
x1 �

1þ ζ1ð Þ

4
x2 þ

1þ ζ1ð Þ

4
x3 þ

1� ζ1ð Þ

4
x4

� �	

(24)

and

∂X

∂ζ
¼ �

1� ζ2ð Þ

4
X1 þ

1� ζ2ð Þ

4
X2 þ

1þ ζ2ð Þ

4
X3 �

1þ ζ2ð Þ

4
X4

� ��

�
1� ζ1ð Þ

4
X1 �

1þ ζ1ð Þ

4
X2 þ

1þ ζ1ð Þ

4
X3 þ

1� ζ1ð Þ

4
X4

� �	

(25)

are 2 � 2 matrices depending on the local coordinates of the element. Then the
necessity to use the Gauss integration points in the evaluation of the strain energy of
the element and, as a consequence, of the gradient and Jacobian of the element, see
Eqs. (5) and (7). In particular four Gauss points are used, their coordinates and
weights can be found in any FEM text book and are also shown in the complete
listing of the class available in [34].

Previous discussion introduces the implementation details of the MATLAB®
class PF4, PF stays for Plane F, whose kinematic properties, see Listing 1.11,
are similar to those used for the class Tetra4 plus other properties required
for the Gauss integration points. These properties are used to implement
Eqs. (11), (24) and (25) which must to be evaluated in each Gauss point
(bulky details are not shown but they can be found in the complete listing of the
class, see [34]).

Listing 1.11. PF4 class: kinematic properties and evaluation of F.
properties (Constant)

Figure 3.
Four nodes plane element: definition of the geometric quantities relative to the reference configuration
(uppercase letters) and the current configuration (lower-case letters).
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nG = 4;
xiG = % Gauss coordinates , values not shown here
wG = [1 1 1 1];

end

properties (SetAccess = private)
% symbolic properties
xl % current coordinates of node 1
x2 % current coordinates of node 2
x3 % current coordinates of node 3
x4 % current coordinates of node 4
xe % current element coordinates
Fe % deformation gradient F(xe) (nGP times)

% numeric properties
Xe % reference element coordinates

end

function PF = Initialize (PF,D, i)
% D brings all the problem data and its use
% is not shown here

PF . Fe = sym( zeros (2 ,2 ,PF .nG));
for g = l:PF.nG
% dzetadX evaluation in g
% …

% dxdzeta evaluation in g
% …

% F in g
F = dxdzeta * dzetadX;
PF.Fe(:, :, g) = F;

% …

end
end

In each Gauss integration point the strain energy, the compressible neo-Hookean
form is used again, must to be evaluated by taking into account the simplification
determined by the plane form assumed by tensor F, then

J ¼ detF ¼ detF2�2, (26)

and by tensor C

C ¼

C11 C12 0

C21 C22 0

0 0 1

2

6

6

4

3

7

7

5

, C2�2 ¼
C11 C12

C21 C22

" #

, (27)
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from which

I1 ¼ trC ¼ trC22 þ 1: (28)

Then the expression of the strain energy density valid for the plane strain
condition is

ΨPF ¼
μ

2
I1 � 2ð Þ � μ ln J þ

λ

2
ln Jð Þ2, (29)

where I1 and J are calculated on the basis of the plane form of kinematic tensors.
The resulting strain energy of the generic element can be then evaluated by using
the following formula

Ψe xð Þ ¼

ð

Ωe

ΨPF dV ¼
X

4

g¼1

ΨPF½ �Ag thwg ¼
X

4

g¼1

Ψg, (30)

where Ag ¼ det ∂X
∂ζ

h i

g
is the part of the reference domain pertaining to the Gauss

point, wg is the Gauss point weight and th is the domain thickness usually assumed
unitary under plane strain condition. Using Eq. (30), (5), and (7) the following
results are valid for the generic element

ge ¼
X

4

g¼1

∂Ψg

∂x
¼

X

4

g¼1

gg, Je ¼
X

4

g¼1

∂gg
∂x

¼
X

4

g¼1

Jg, (31)

where gg and Jg are the gradient and Jacobian, respectively, pertaining to the
generic Gauss point.

The following MATLAB® instructions, Listing 1.12, implements, inside the
function Initialize of PF4 class, the operations required by Eq. (31).

Listing 1.12. PF4 class: evaluation of ge and Je.
function PF = Initialize (PF,D, i)

% …

PF. Je = sym (zeros (8 ,8 , PF .nG));
PF. Fe = sym ( zeros (2 ,2 ,PF .nG));
for g = l:PF.nG
% …

C = F.'*F;
I1 = trace (C);
J = det (F);
Psi = (mi/2*(Il–2)–mi*log(J) + lam/2*log (J)^2) …

A*PF.wG(g)*th;
PF.ge(: , 1, g) = gradient (Psi, PF. xe);
PF.Je(:, :, g) = jacobian (PF. ge(: , 1, g), PF. xe);
% …

end
% …

end

During the analysis the main task to be performed by the element is the numer-
ical evaluation of ge and Je that now must to be performed, see Eq. (31), on the basis
of the following implementation of the class function Compute.
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Listing 1.13. PF4 class:function Compute.
function PF = Compute(PF)

PF. se = zeros (8, 1);
PF. Ke = zeros (8, 8);
for g = l:PF.nG
PF.se = PF.se + subs (PF.ge(:, 1, g), PF.xe, PF.xxe);
PF.Ke = PF.Ke + subs (PF.Je(:, :, g), PF.xe, PF.xxe);

end
end

The last part of the class to be discussed regards the evaluation of stress solution.
As already observed in the beginning of this section, Eq. (19) constitutes an internal
constraint determining the presence of also the stress component σ33 to be evaluated
together with the plane part of the stress tensor. The plane part can be calculated
using Eqs. (15) and (16) where the plane version of C and F must be used starting
from the strain energy expression given by Eq. (29). The σ33 component, stems
from the plane solution, and is given by

σ33 ¼ J�1S33 ¼ J�1 λ

2
ln detCð Þ (32)

A simple derivation of this expression through MATLAB® is reported in
Appendix A. The implementation of the operations required for the evaluation of
the stress solution are reported below, Listing 1.14.

Listing 1.14. PF4 class: function Stress.
function sig = Stress (T, gx)

% retrieve local vector lx from global
% solution gx
sig = zeros(3, 3, PF.nG);
for g = l:PF.nG
F = subs (PF.Fe(:, :, g), PF.xe, lx);
C = F.'*F;
sig(l:2, l:2, g) = F*subs (PF. Se, PF.Ce,C)*F.'/det(F);
sig (3, 3, g) = subs (PF.Se33, PF.Ce, C)/det (F);

end
end

Listing 1.14 shows the use of the symbolic properties PF.Se which is initialised in
way similar to the property T.Se shown in Listing 1.9 for the tetrahedral element.
Anyway the complete listing of the class can be found in [34].

6. Conclusions

The early phase developing of finite elements can be a lengthy and error prone
processes involving the use of different tools. The MATLAB® symbolic approach
here presented can be effectively used to test a produce new finite element formu-
lation reducing a lot the distance between the formulation and its actual implemen-
tation. In order to be more illustrative the presentation regarded basic solid
mechanics finite elements, a truss, tetrahedral and plane quadrangular element, but
the developing of finite elements for more specific engineering applications is an
objective worth to be pursued and it is the subject of the author’s current work.
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The weakness of the proposed approach is the low performance of the final
codes making difficult the analysis of real sized problems by using common hard-
ware resources which, however, are adequate if small but significative test cases are
chosen. A workaround, already tested by the author but not presented here, is the
generation and storing on files of MATLAB® functions for the evaluation of the
element operators. This must happens before, and one time for all, the execution of
the analysis. The MATLAB® functions so obtained can be called during the analysis
for evaluating the required finite element operators avoiding the calls to time-
consuming function subs. Anyway the tuning of this operation is less automatic
because the generation of the required MATLAB® functions can be, depending on
the size of the operator to be translated into a MATLAB® function, time consum-
ing, specially if the optimization flag is active. Then techniques quite common in the
field of the symbolic and /or algorithmic differentiation should be exploited for the
most intricate cases.

A. Appendix

A.1 Tetrahedron reference configuration operator inversion

The problem of the evaluation of the inverse of matrix ∂X
∂ ζ

present in Eq. (11) is

circumvented by evaluating the Jacobian of the following system of equations

1 ¼ ζ1 þ ζ2 þ ζ3 þ ζ4

X ζ1, ζ2, ζ3, ζ4ð Þ ¼ ζ1X1 þ ζ2X2 þ ζ3X3 þ ζ4X4
(33)

whose linearisation gives

0

dX

� 	

¼
1 1 1 1

X1 X2 X3 X4

� 	

dζ½ �: (34)

By inverting this relationship, i. e.

dζ½ � ¼
1 1 1 1

X1 X2 X3 X4

� 	�1 0

dX

� 	

¼

�
∂ζ1

∂X1

∂ζ1

∂X2

∂ζ1

∂X3

�
∂ζ2

∂X1

∂ζ2

∂X2

∂ζ2

∂X3

�
∂ζ3

∂X1

∂ζ3

∂X2

∂ζ3

∂X3

�
∂ζ4

∂X1

∂ζ4

∂X2

∂ζ4

∂X3

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

0

dX

� 	

: (35)

the evaluation of the desired 4� 3 matrix, ∂X
∂ζ

� ��1
, is obtained. Moreover the

volume of the tetrahedron in its reference configuration is an additional result
thanks to relationship

6V ¼ det
1 1 1 1

X1 X2 X3 X4

� 	

: (36)
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A.2 Out-of-plane normal component for the plane strain condition

The following MATLAB® instructions allow to find an explicit expression of the

S33 component, from which σ33 ¼ J�1S33.

syms lam mi 'real'
syms C [3 3] 'real'
C(l, 3) = 0; C(3, l) = 0; C(3, 2) = 0; C(2, 3) = 0;
I1 = trace(C); I3 = det(C);
Psi = mi/2*(I1–3)–mi*log(sqrt (I3))+ …

lam/2*log (sqrt (13))^2;
S33 = simplify (2*diff (Psi ,C(3, 3)));
S33 = subs(S33, C(3, 3), 1);
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