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Chapter

A Novel Approach for the Design
of Fault-Tolerant Routing
Algorithms in NoCs: Passage of
Faulty Nodes, Not Always Detour

Masaru Fukushi and Yota Kurokawa

Abstract

Due to the faults in system fabrication and run time, designing an efficient
fault-tolerant routing algorithm with the property of deadlock-freeness is crucial
for realizing dependable Network-on-Chip (NoC) systems with high communica-
tion performance. In this chapter, we introduce a novel approach for the design of
fault-tolerant routing algorithms in NoCs. The common idea of the fault-tolerant
routing has been undoubtedly to detour faulty nodes, while our approach allows
passing through faulty nodes with the slight modification of NoC architecture.

As a design example, we present an XY-based routing algorithm with the passage
function. To investigate the effect of the approach, we compare the communication
performance (i.e. average latency) of the XY-based algorithm with well-known
region-based algorithms under the condition of with and without virtual channels.
Finally, we provide possible directions of future research on the fault-tolerant
routing with the passage function.

Keywords: network-on-chip (NoC), fault-tolerant routing, two-dimensional mesh,
passage, dependability

1. Introduction

Demand for computation power will never stop, and it is ever increasing year by
year in a variety of scientific research fields. As can be seen in the modern multi-
processor system-on-chips and many core systems [1-3], this makes computing
hardware devices equip with hundreds or thousands of processor cores for provid-
ing high computation power by parallel processing on a chip. For the implementa-
tion of such highly-integrated parallel systems, Network-on-Chip (NoC) has
emerged as a promising paradigm. In NoCs, each node (i.e. a processor core with a
router) is connected by an on-chip network and communication among them are
done by transferring packets on the network. Using global interconnection struc-
ture reduces the difficulty of wiring design and latency of signal transmission and
offers high scalability, in comparison with point-to-point signal wires or shared
busses [4].

One of the most important and fundamental issues that must be addressed for
NoCs is fault-tolerant routing. Definitely, routing of packets plays a key role in
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parallel systems because it has significant impact on the overall system perfor-
mance. Meanwhile, the occurrence of faults during system fabrication and run time
is inevitable, and it is almost impossible to completely remove their adverse effects
from the systems even if some redundancy is incorporated. A single faulty node
disrupts packet routing between many pairs of nodes, resulting in the failure of the
entire system. Besides, a deadlock (i.e. circular waiting of packets) will occur if an
adopted routing algorithm is imperfect. Once the deadlock occurs, packets can
never proceed to the destinations, and thus resulting in the malfunction of the
entire system. Therefore, designing an efficient fault-tolerant routing algorithm
with the property of deadlock-freeness is crucial for realizing dependable NoC
systems with high communication performance.

So far, extensive research has been devoted to fault-tolerant routing not only for
NoCs but for traditional parallel computers. Although there exist several basic
approaches, as we reviewed in Section 2, the common idea of the fault-tolerant
routing remains unchanged from the earliest, and it has been undoubtedly to detour
faulty nodes. This is quite natural because the purpose of the fault-tolerant routing
is to route packets from source to destination nodes without entering faulty parts.
Meanwhile, it is also obvious that detouring faulty nodes increases the communica-
tion latency as the packet is misrouted apart from the minimal path to the destina-
tion. One may consider that the increase in the communication latency is very little.
This is true if packets are routed without interfered by other packets. However, it
can be substantial increase under the situation where a number of packets are
routed simultaneously and thus frequently blocked by others.

In this chapter, we introduce a novel approach for the design of fault-tolerant
routing algorithms. In contrast to the common idea of detouring faulty nodes, our
approach allows passing through them with the slight modification of NoC archi-
tecture. We provide a general methodology for designing a fault-tolerant routing
algorithm with the passage of faulty nodes. As a design example, we describe an
XY-based routing algorithm with the passage function. By computer simulations,
we reveal the communication performance of the algorithm under the condition
of with and without Virtual Channels (VCs), in comparison with well-known
region-based routing algorithms.

The rest of this chapter is organized as follows: Section 2 presents the architec-
ture of NoC, the basis of packet routing, and the related works of fault-tolerant
routing algorithms. Section 3 presents the basic idea of the proposed approach and
XY-based fault-tolerant routing algorithm, inclusive of the proof of the deadlock-
freeness. Section 4 presents the results of the performance evaluation. Finally,
Section 5 concludes the chapter with some possible direction of future research.

2. NoC architecture and fault-tolerant routing
2.1 2D mesh NoC

Target NoC topology in this chapter is a popular 2D mesh which has nodes of m
rows and z columns. Figure 1 shows the general architecture of the 2D mesh NoC.
Each node is composed of a processor core and a router. The processor core runs
assigned computation tasks, which can be either independent one or a part of
parallel programs, while the router forwards packets to one of the neighbor routers
or its local processor core to support the communication among cores. Each node
has a unique address (i,j), whereieX = {1,2,---,m} andjeY = {1,2,---,n}. In the
2D mesh NoC, a node (i,5) is connected to at most four neighbor nodes, (i +1,5) and
(i,j £1), via two unidirectional links, ifi £ 1€ X andj + 1€ Y. For the ease of
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Figure 1.
Avchitecture of 2D mesh NoC.

explanation, positive/negative directions of x (row) and y (column) axes are called
east/west and north/south, respectively.

Figure 2 shows the block diagram of the router. In the typical wormhole routing
adopted in NoCs, a packet is divided into a sequence of fixed-size units of data,
called flits, and transferred by routers one after another. Each router consists of five
input/output units, five routing circuits, a VCs allocator, a crossbar switch, and a
switch allocator. When a head flit (i.e. a flit having routing information) is trans-
ferred to a router and stored into a buffer in the input unit, the following processes

are applied.

1. An output port to which the flit is forwarded is determined by the routing
circuit.

2.A VC (i.e. buffer) to be used is determined by the VC allocator.

> VC
Routing allocator
circuit Switch

2 I" allocator
A 4 A 4

[ control H
East = — Fast
Input unit Output unit
West West
1 1
South | I | I South
North North
Core Core

Crossbar switch

Figure 2.
Avchitecture of router.
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3.The crossbar switch is set up by the switch allocator to connect the input unit
and the output unit associated with the determined output port.

4.The flit is moved from the input to the output units.
5.Finally, the flit is forwarded to the corresponding input unit of the next router.

The incoming head flit moves to the next router at the fifth cycle if there are no
contentions, and the subsequent flits follow it in a pipeline fashion. This is a
standard five-cycle router [5]. If no VC is used in an adopted routing algorithm, the
router is reduced to a four-cycle router, as the second process (i.e. VC allocation) is
omitted.

2.2 Deadlock

In routing packets in accordance with a routing algorithm, the algorithm must
care about the occurrence of deadlocks. Deadlock is a situation where packets wait
on one another to release the buffers. Figure 3 shows an example of a deadlock. In
this example, a packet A is routed to the node (2, 1) via (1, 1), which is blocked by a
packet B at (1,1). The packet B is also routed to (2, 2) via (2, 1), which is blocked by
a packet C. The packets C and D are also routed similarly, but blocked by the
packets D and A, respectively, resulting in circular waiting of packets. Once a
deadlock occurs, packets involved in the circular waiting cannot proceed toward the
destinations forever. Therefore, deadlock-freeness must be guaranteed in the
routing algorithm.

There have been two approaches to preventing deadlocks; approaches with and
without VCs. In the approach with VCs, the original network is multiplexed into
several virtual networks by VCs. For example, in Figure 3, if packets A and C are
supposed to be routed on a virtual network with a VC and packets B and D are on a
different virtual network with other VC, then the circular waiting is decomposed
and packets get to proceed to the destinations. In the approach without VCs, a
routing algorithm is carefully designed so that deadlocks never occur in the original

packet A

A

packet D

packetB | (1,17 @7

v

packet C

Figure 3.
Example of a deadlock.
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physical network. For example, in Figure 3, if packets A and C are routed via (2,2)
and (1, 1), respectively, i.e., forced to move in x-direction first, then no deadlocks
occur. This approach has an area advantage over the former approach because the
implementation of VCs involves the replication of buffers and control circuits in all
input/output units in all routers.

2.3 Related works

Fault-tolerant routing has been the subject of extensive research not only for
NoCs but for traditional parallel computers over the past few decades. Most of
the existing fault-tolerant routing algorithms for 2D mesh networks fall into the
following three categories: (1) those employ a routing table, (2) those relax the
constraints of guaranteed delivery or deadlock-freeness, and (3) those define
some form of fault information on routers and detour paths.

In the first category, a routing table is employed in each router to route packets
to the destinations. Routing tables contain routing information such as next hops for
destinations, status of the network, and/or fault information. Hsin et al. [6] pro-
posed an algorithm which employs ant colony optimization for traffic balancing.
Liu et al. [7] proposed an algorithm which introduces coarse and fine-grained look-
ahead schemes to obtain the information of other routers within the range of four
hops. This algorithm requires two VCs for each input/output port to route packets.
Zhao et al. [8] proposed an algorithm to provide minimal paths using the informa-
tion of whole network. In general, those algorithms offer flexible route selection;
however, they require a large amount of circuits to implement a routing table and
complex calculation mechanism to create/update the table in all routers.

In the second category, constraints of guaranteed delivery or deadlock-freeness
is relaxed to ease the design of routing algorithms. Janfaza et al. [9] proposed an
adaptive routing algorithm which employs timeout and packet reinjection. Infor-
mation of intermediate nodes is recorded in each packet and two VCs are used to
route packets. Sinha et al. [10] proposed an algorithm based on the common XY and
YX routing. This algorithm allows U-turn using several VCs. Wang et al. [11]
proposed an algorithm which relaxes transmission accuracy for the applications that
allow lossy communication. This algorithm discards conflicting approximate flits
without retransmission and recovers them after packet transmission. Those algo-
rithms are imperfect in that 100% packet reachability or deadlock-freeness are not
guaranteed by the routing algorithms. Retransmission of packets generally results in
a high communication latency.

In the third category, some form of fault information is defined for routers to
detour faulty parts. Usually, clusters of faulty nodes, called fault blocks, are defined
in the networks with the detour paths. Chen et al. [12], Holsmark et al. [13], Fuetal.
[14], and Fukushima et al. [15] proposed routing algorithms which generate rect-
angular fault blocks and detour them without using VCs. Wu [16] and Chalasani
et al. [17] proposed routing algorithms which can deal with convex and nonconvex
fault blocks, respectively. In [17], four VCs are used to choose shorter detour paths.
Those algorithms called region-based algorithms provide simple but strict routing
rules to guarantee the deadlock-freeness and 100% packet reachability, and thus,
they can be implemented as a small circuit in the routing circuit of each router.
They are practical and suitable for NoCs. However, one drawback is that fault
blocks may include several non-faulty nodes, which are to be deactivated (i.e.
unused nodes); therefore, the number of unused nodes and the length of detour
paths are prone to increase if there exist a number of faulty nodes in the network.

Although extensive research has been devoted to designing fault-tolerant
routing algorithms inclusive of the above ones, the common idea remains
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unchanged from the earliest, and it has been undoubtedly to detour faulty nodes.
If a packet must detour a faulty node (i,5), the hop count between (i — 1,5) and

(i +1,j) is increased by two, which increases the communication latency by at least
ten cycles in an NoC with five-cycle routers. This can be substantial increase in the
situation where the network gets congested (i.e. by packet blocking) or includes a
number of faulty nodes (i.e. by detouring). This is a serious problem for a
large-scale parallel system on a single VLSI chip.

3. Proposed method
3.1 Basic approach and NoC architecture

Motivated by the problem presented in the previous section, we introduce a
novel approach based on the opposite idea of the common approach; our approach
allows packets to pass through the faulty nodes with slight modification of NoC
architecture (originally proposed in [18]). Basic idea behind this approach is to
reduce communication latency by saving detouring as much as possible.

Figure 4 shows the modified NoC architecture for supporting the proposed
approach. Four electrical switches, bypass links, buffers to store one flit are added
around each router. Each switch has two states, either normal or passage, as shown
in this figure. In the state of passage, packets from the neighbor node are input to
the bypass link not to the node. The switch states can be determined easily, once the
node is tested and judged as faulty or not. In other words, they are determined so
that the node becomes passage state if it is faulty or remains normal state otherwise.
It is worth to note that buffers can be removed if packets are transmitted between
routers in an asynchronous way.

3.2 Design methodology for fault-tolerant routing algorithms

Here, we provide a design methodology for fault-tolerant routing algorithms
based on the passage of faulty nodes.

First, we clarify the fault model. A common assumption is made for faults
[6, 12-16, 18, 19]; that is, permanent faults are considered to be associated only with
nodes. In practice, the probabilities of links, switches, and buffers being faulty are
not zero, though they will be substantially small because of the simplicity of their

switch states
buffer bypass link bypass
“u / _é_ neighbor _6_
node node
normal passage
— Router | node states
]
Core — —
switch i
| normal passage

Figure 4.
Modified NoC architecture.



A Novel Approach for the Design of Fault-Tolerant Routing Algorithms in NoCs: Passage...
DOI: http://dx.doi.org/10.5772/intechopen.94773

circuits [19]. For the faults on those circuits, one can employ some popular
redundancy technique such as duplication and triplication if necessary.

Below is the general methodology for designing fault-tolerant routing algorithms
with the passage function.

Step 1 Choose a base routing algorithm from the existing algorithms or design a
new one. This algorithm is not necessary to be fault-tolerant, but should be
deadlock-free.

Step 2 Decide which faulty nodes can be passed through and define routing rules
for the remaining faulty nodes to be detoured. The resultant routing algorithm,
denoted by R, is a candidate for the final algorithm.

Step 3 Verify if the candidate routing algorithm R is deadlock-free or not. If not,
return to Step 2 to modify R.

Step 4 Repeat Steps 2 and 3 until a fault-tolerant and deadlock-free routing
algorithm R is obtained.

3.3 Routing algorithm based on XY routing

As a design example, we introduce a new fault-tolerant routing algorithm based
on the popular dimension order routing (i.e. XY routing for 2D meshes) [18]. In the
following, we explain the details of each step in the design methodology.

In Step 1, we choose XY routing as a base routing algorithm. In XY routing,
packets first proceed along x-direction until they reach the nodes having the same
x-coordinates as the destinations, then proceed to the destinations along y-direction
without changing the x-coordinates.

In Step 2, we must consider the case where passage must be restricted. For
example, suppose that a packet moves from node (i — 1,§) to (i 4 1,5) passing
through a faulty node (i,5). If the destination node is (7, j') where ;' # j, the packet
keeps moving between (i — 1,5) and (i + 1,j) because the x-coordinate of the cur-
rent node will never be the same as that of the destination node. The same kind of
thing never happens in the y-direction. Therefore, we allow packets passing
through faulty nodes only in the y-direction and let them detour faulty nodes
through the south side in the x-directional movement. (This restriction is relaxed a
bit in the final routing algorithm).

Then, we need to consider the case where a faulty node is on the south boundary
of the network. In this case, packets cannot detour it through the south side, as they
face the south boundary. To cope with this, we give the following definitions.

Definition 1 A faulty node (7,5) which is on the south boundary of a mesh
network is defined as a South Faulty (SF) node, wherej = 0.

Definition 2 A faulty node (i,j) which exists in the eight neighbor of any SF
node (7', j') is also defined as an SF node, where (i’ — 1<i <7 + 1) and i €X, and
(j/—1<j<j +1)andj€eY.

The process in Definition 2 is repeated until no SF nodes are generated. For SF
nodes, we give a new routing rule such that packets must detour them through the
north side.

In Step 3, we check the deadlock-freeness of the resultant routing algorithm
R where packets detour faulty nodes/SF nodes through south/north side in the
x-directional movement of XY routing and always pass through faulty nodes in the y-
directional movement. Unfortunately, it is not hard to find the case where a deadlock
occurs. Figure 5 illustrates the example of a possible deadlock. Packets generated at
nodes S1/S2 detour faulty and SF nodes in accordance with the routing algorithm R,
but finally they are blocked by each other, resulting in circular waiting. Note that,
generally, the deadlock in Figure 5 can be occurred by more than two packets.
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% D2

| SF node . faulty node

Figure 5.
Example of a possible deadlock.

(b)

| SF node . faulty node | | SF area

Figure 6.
SF area for xy-based routing algorithm.

To cope with the deadlock, we give the following definitions.

Definition 3 Let (7', j') be the coordinates of the north most SF node generated
by repeating Definition 2. SF area is defined as the area consisting of all nodes (i, )
such thatj < j' for any i € X. All faulty nodes in the SF area are changed to SF nodes.

For the newly generated SF nodes in Definition 3, the processes in Definitions 2
and 3 are repeated until no SF nodes are generated.

Figure 6 illustrates examples of the SF area. In the case of Figure 6 (a), faulty
node (2, 0) is changed to an SF node by Definition 1 and subsequently (3, 1) is
changed to an SF node by Definition 2. Then, faulty node (0, 1) on the west
boundary is included in the SF area and thus changed to an SF node by Definition 3.
Finally, faulty node (0, 2) is changed to an SF node by Definition 2. According to the
above processes, the SF area is configured as shown in the figure. In the case of
Figure 6 (b), faulty node (4, 1) is not included in the SF area; hence, faulty nodes
(0,1) and (0, 2) are not changed to SF nodes.

By the above definitions, the deadlock in Figure 5 can be solved. By Definition 3,
two faulty nodes in Figure 5 are changed to SF nodes and the SF area is defined as
shown in Figure 7. Then, two packets detour the SF nodes, not faulty nodes,
through the north side and get to proceed to the destinations as shown in the figure.

Figure 8 describes the finally obtained proposed routing algorithm. In this
figure, C and D represent a current and a destination node, respectively. The
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Figure 7.
Routing example without deadlocks.

proposed routing algorithm allows packets to pass through faulty and SF nodes in
the movement of x-directions only if C and D are on the same row (i.e. lines 8 and
18 in Figure 8), while it always allows passage in the movement of y-directions.

Next, we prove the deadlock-freeness of the proposed algorithm described in
Figure 8. First, we define turns of packets.

Definition 4 ES turn is a turn in which an incoming packet from the East
neighbor is sent to the South neighbor at a router. Other seven turns are also defined
similarly as shown in Figure 9.

Theorem 1 The routing algorithm in Figure 8 is deadlock-free.

Proof. We prove that circular waiting of packets never occurs in both clockwise
and counter-clockwise directions.

For the clockwise direction, we show that an SW turn is never aligned with an
NE turn. The SW turn occurs in a non-SF area; however, the NE turn never occurs

1 XY—based fault—-tolerant routing(C, D)
2 if (C is D)

3 consume the packet

4 elsif (D is to the west of C)

5 if (west neighbor is faulty)

6 if (west neighbor is an SF node)

7 Next Route = North

8 elsif (C and D are on the same row)
9 Next_Route = West

10 else

11 Next Route = South

12 else

—
(#5)

Next_ Route = West
elsif (D is to the east of C)
if (east neighbor is faulty)
if (east neighbor is an SF node)
Next_Route = North
elsif (C and D are on the same row)
Next_Route = East
else
Next_Route = South
else
Next_Route = FEast
elsif (C and D are on the same column)
if (D is to the north of C)
Next_Route = North
else
Next_ Route = South

BRI RN R R M) R R s s s e
NN U UGN —m OO N oy G

Figure 8.
A pseudo-code of the proposed routing algorithm.
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Figure 9.
Possible eight turns of packets.

in the area because it only occurs in an SF area. Conversely, the NE turn occurs in an
SF area; however, the SW turn only occurs in a non-SF area. From the above,
circular waiting never occurs in the clockwise direction.

For the counter-clockwise direction, we omit the proof because it is symmetrical
to the proof for the clockwise direction.

Thus, the proposed routing algorithm is proved to be deadlock-free. O

4, Performance evaluation
4.1 Evaluation condition

To investigate the effect of the proposed approach, we have conducted
computer simulations with a cycle-accurate custom simulator developed in C.
This simulator accurately simulates the behavior of flits in all routers in a 2D mesh
NoC. As explained in Section 2, if there are no contentions, each flit takes five
(or four) cycles to move to the next node when VCs are used (or not used) in the
adopted routing algorithm. Note that, as flits are transmitted in a pipeline fashion,
a subsequent flit moves to the next node one cycle after the movement of the
precedent flit if buffer space is available in the input unit of the router. It also takes
one cycle to pass through a faulty node, as a buffer is placed on the bypass link.

Following three methods are evaluated in the simulations with the parameters
listed in Table 1.

* Fukushima’s method [15]: packets detour rectangular fault blocks with no
additional VCs (denoted by M,).

Parameter Value Unit
Network size 10x10 Nodes
Fault rate (f) 2,4,6,8,10 %
Packet length 16 Flits
Packet generation rate (p) 0.05~ 1.0 Packets/cycle/network
Input (Output) buffer depth 8 (1) Flits
Simulation (Stabilization) cycle 50,000 (5000) Cycles

Table 1.

Simulation parameters.

10
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* Chalasani’s method [17]: packets detour nonconvex fault blocks, such as L, T,

and + shapes, as well as rectangular one using four VCs per link (denoted
by My.).

* Our method [18]: packets can pass through or detour faulty nodes with no
additional VCs (denoted by M,,).

The number of VCs required for each algorithm is different, and VCs can also be
employed in the algorithms which require no VCs for the purpose of congestion
avoidance. We use the notation of M-z to indicate the number of VCs (i.e. buffers),
where M is either M,, M, or M, and n represents the number of VCs. For example,
M,,.-4 denotes Chalasani’s method with four VCs; M,,-1 denotes our proposed
method with one buffer (i.e. no additional VCs).

In the simulations, faulty nodes are generated randomly according to the fault
rate f, and packets are also generated randomly at each cycle according to the
packet generation rate p during the simulation time of 50,000 cycles. Latency is not
measured up to 5000 cycles to stabilize the network. The same fault patterns are
used for all methods for fair comparison. The above trial is repeated 1000 times and
the following metrics are measured.

Average latency is defined by the average cycles required for packets from the
generation to the arrival.

Average node utilization rate is defined as the percentage of available nodes
among all non-faulty nodes, i.e., given by {mn(1 —f) —u}/mn(1 —f), where m and
n is the number of rows and columns, respectively, f is the fault rate, and « is the
number of unused nodes.

To make a quantitative evaluation of average latency, we define maximum
latency reduction rate of an algorithm M, for an algorithm M, by

R(M,, My) = max , ry(Mg, My), (1)

where 7, (M,, M},) represents latency reduction rate of M, for M), at the packet
generation rate p and is defined by the following expression.

Lh_La

—F X x 100, 2
max (L,,Ly) x @)

Vp (MaaMb) T

where L, and L, is the average latency of M, and M), at p, respectively, and
max (L4, L) is a function to return the larger of L, and Ly,

4.2 Evaluation results
4.2.1 Overall trend

Figures 10-14 show the average latency as a function of packet generation rate

p for each fault rate f. In the figures, x axis represents p, and a larger value indicates
a higher request load; meanwhile, y axis represents average latency, and a larger
value indicates higher delay in delivery of packets. When p is relatively low, the
average latency of three algorithms is almost the same. On the other hand, when it is
high, the difference becomes significant. The average latency of M,, and M, is
smaller than that of M, and M,, respectively, regardless of f and the number of
VCs. M, outperforms M, without using VCs, indicating that passage of faulty
nodes has a significant impact on reducing average latency. As f increases, the

11



Network-on-Chip - Architecture, Optimization, and Design Explorations

w

Q

— 4
@]

S

9]

5 [ ]
o] 7
g :
Q ;

E
— A
Q ‘ ]
o w

@

g _
O

>

[k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet generation rate [packet/cyecle/network]

Figure 10.
Average latency for f = 2%.
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Figure 11.
Average latency for f = 4%.

500

M If4 %gf
[ T Y
-12--0--
-16

[cycles]

Average latency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet generation rate [packet/cyele/network]

Figure 12.
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Average latency for f = 8%.

rate

[packet/cycle/network]

500 % — .
= i -
1] P ' i
o i i
o 400 h ‘ * |
1) io P
- :j,' ,-"( :' My-4 —e—
5, 300 : i M-8 o
0 fo M,-12--@--
5 [ m M_-lea
@ i .
= | My -1 —a—
T 200 ;o ]
— I M, =2 ool
Q S Mpo-3--4--
o) M -4
E 100 M-l —m—
o T
=
IS b M3 --m--

M, -4
I I ! P |

0 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.° 1

Packet generation rate [packet/cycle/network]

Figure 14.
Average latency for f = 10%.
average latency of those algorithms is increased due to the increased number of

faulty nodes.
Figure 15 shows the average node utilization rate. M, and M, generate rectan-

gular and nonconvex fault blocks, and accordingly, about 7% and 3% of non-faulty
nodes become unused nodes, respectively. This is a cause of longer detour paths.
Meanwhile, M,, does not generate any fault blocks and always keeps 100%
utilization rate.

For the results shown in Figures 10-14, we make performance comparison of
the routing algorithms in the following three conditions.

4.2.2 Performance comparison of the original routing algorithms

The average latency of the original routing algorithms is compared numerically
(i.e. comparison of M,-1, M,,.-4, and M,-1). Table 2 shows the maximum reduction
rate of M,-1 and M,,-1 for M,,.-4. The value of p at which the maximum reduction
rate is attained is noted in parenthesis. As we saw in Figures 10-14, average latency
of M, is higher than that of M,,; hence, all rates of R(M,-1, M,,.-4) are negative
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Figure 15.
Average node utilization rate vs. fault rate.

f
M, M, 2% 4% 6% 8% 10%
M,-1 M,.-4 —94 (0.55) —93 (0.45) —92 (0.40) —91 (0.35) —89 (0.30)
M,-1 M,.-4 82 (0.75) 82 (0.60) 79 (0.50) 81 (0.45) 83 (0.40)

Table 2.
Maximum latency reduction rate R(M,, M,) for the original algorithms.

values for any f. From this table, we found that M,-1 reduces the average latency of
M,,.-4 by about at least 79% without using additional VCs.

4.2.3 Performance comparison of routing algorithms with increased VCs

Next, the average latency of the three algorithms is compared by increasing the
number of VCs twofold, threefold, and fourfold from the original (i.e. comparison
of M.-n,M,-2n, M ,-3n,and M . -4n). Table 3 shows the results. The following can
be found in the evaluation results:

1. With twofold VCs, the average latency can be reduced by about at least 66%
and 33% for f = 2 and 10, respectively, compared with the original.

2.Fourfold increase in the number of VCs have only a marginal effect in
reducing average latency.

3.Effect of latency reduction is higher in the algorithms with no VCs (i.e. M, and
M,), and M,, shows the highest reduction rate for any f.

4.2.4 Performance comparison of routing algorithms with fixed number of VCs
Finally, the average latency of the three algorithms is compared under the same

number of VCs (i.e. comparison of M,-4, M,,.-4, and M,-4). Table 4 shows the
maximum reduction rates of M,-4 and M,,-4 for M,,.-4. By using four VCs, the
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f
M, M, 2% 4% 6% 8% 10%
M,-1 M,-2 67 (0.40) 63 (0.40) 55 (0.30) 55 (0.30) 55 (0.25)
M,-3 81 (0.45) 75 (0.40) 69 (0.35) 67 (0.30) 65 (0.30)
M,-4 84 (0.45) 78 (0.40) 73 (0.35) 71 (0.30) 69 (0.30)
M,.-4 M,,-8 66 (0.70) 54 (0.60) 40 (0.45) 35 (0.45) 33 (0.35)
M,,.-12 73 (0.75) 60 (0.60) 47 (0.50) 38 (0.45) 41 (0.35)
M,.-16 76 (0.75) 62 (0.60) 49 (0.50) 40 (0.45) 44 (0.35)
M,-1 M,-2 88 (0.95) 82 (0.75) 78 (0.70) 76 (0.60) 75 (0.55)
M,-3 92 (1.00) 90 (0.80) 85 (0.70) 85 (0.65) 82 (0.55)
M,-4 92 (1.00) 91 (0.80) 89 (0.70) 87 (0.65) 86 (0.55)

Table 3.
Maximum latency reduction rate R(M,, M) for the algorithms with increased VCs.

f
M, M, 2% 4% 6% 8% 10%
M,-4 M,,-4 —76 (0.60) —75 (0.45) —76 (0.40) —75 (0.35) —69 (0.35)
M,-4 M,,-4 96 (0.90) 96 (0.75) 94 (0.70) 94 (0.60) 94 (0.50)

Table 4.
Maximum latency reduction rate R(M,,M,) for the algorithms with four VCs.

maximum reduction rates of M,-4 and M,,-4 can be improved from the rates shown

in Table 2, and M, -4 always achieves more than 94% reduction rates for any f.
From the above results, we can conclude that, for reducing average latency of

packet transmission, the reduction of hop count by the passage of faulty nodes,

not always detour, is more effective than the avoidance of congestion using
additional VCs.

4.3 Circuit amount

To evaluate the overhead of additional circuits such as switches, buffers, and
links in the proposed approach, we designed two routers for M,-1 and M, -1 with
Verilog HDL. In those routers, M, and M, are implemented into the routing circuits
and the depth of input/output buffers is eight/one flits, respectively, as in the
simulation setting. We used Xilinx Vivado EDA tool for synthesizing the routers for
the target FPGA device of Vertex 7 xc7vx485tffgl1761-2.

From the EDA tool, the router for M, needs 1865 Look Up Tables (LUTs) in the
FPGA device, while that for M, needs 664 LUTs, which indicates about 64% LUT
reduction. This is mainly because of the difference in the routing circuit; one
routing circuit costs 193 LUTs for M, and 18 LUTs for M,. The small routing circuit
is also benefit from the passage function. The additional circuits require only 27
LUTs, which is substantially small compared with the overall router circuit.

5. Conclusion and future work

We have introduced a novel approach for the design of fault-tolerant routing
algorithms in 2D mesh NoCs. In contrast to the common idea of detouring faulty
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nodes, our approach allows passing through them with the slight modification of
NoC architecture. We have provided a general methodology for designing fault-
tolerant routing algorithms with the passage of faulty nodes, and as a design exam-
ple, we have described the XY-based routing algorithm, showing how to prevent
deadlocks in the routing rules. The XY-based routing algorithm allows passage of
faulty nodes in the x-directional movement if the current and destination nodes are
on the same row, while always allows in the y-directional movement.

To demonstrate the effect of the XY-based routing algorithm, we measured the
average latency of packet transmission by computer simulations and compared with
those of the well-known region-based algorithms proposed by Fukushima et al. and
Chalasani et al. The results revealed that the XY-based algorithm reduced average
latency of Chalasani’s algorithm by about 79% without additional VCs and 94% with
the same number of VCs. From the evaluation, we have found that passage is highly
effective approach to reducing the average latency rather than employing VCs for
congestion avoidance. We have also designed router circuit for the XY-based algo-
rithm and showed that the overhead of additional circuit required for the proposed
approach is substantially small compared with the overall router circuit.

As the passage of faulty nodes is a simple but effective approach, we have even
more room to fully investigate the effect. For example, in this chapter, we selected
popular XY routing as a base algorithm, which is a deterministic routing algorithm.
Designing a new routing algorithm with the passage function based on some adap-
tive routing algorithm is a possible future research. As the passage is not limited to
2D mesh NoCs, designing passage-based fault-tolerant routing algorithms for other
popular topology such as 2D torus, 3D mesh/torus is also one of the interesting
future researches.
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