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Abstract

Zika virus (ZIKV), an arthropod-borne flavivirus, was classified as reemerging 
infectious disease and included as neglected tropical disease. During the recent 
ZIKV outbreak in South America, it has been demonstrated that ZIKV infection 
during pregnancy is strongly associated with fetal loss, malformations and neu-
rological disorders in newborns. Despite the first line of host immune defense is 
related to innate immunity activation, the immunological homeostasis is essential 
for pregnancy success. Although the dynamic changes in maternal-fetal immunity 
is not completely understood and poorly investigated, the knowledge of immune 
responses during gestation is very important for infectious disease prevention and 
control, as ZIKV. Here, we put together more and new information about the innate 
immunity during gestation, highlighting three parts probably involved with clinical 
outcome and/or not well explored in literature: 1) type III interferon; 2) innate 
regulatory cells; and 3) cell death pathways modulation. Additionally, we will be 
focused on discussing how the dynamic responses of innate immune system during 
pregnancy and its effects in newborns, could be modulated by ZIKV, as well as how 
efforts on development of new/old drugs and vaccines could be effective for ZIKV 
prevention and control to provide a successful pregnancy.

Keywords: innate immunity, pregnancy, zika, technological development

1. Introduction

Zika virus (ZIKV) is an arthropod-borne flavivirus, considered a reemerging 
infectious disease as well as a neglected tropical disease [1]. Moreover, ZIKV was 
also classified as sexually transmitted disease (STD), since viral RNA and infectious 
particles were detectable in reproductive organs and others described some cases 
related to sexual transmission [2, 3]. Although the major concern about ZIKV infec-
tion is the intrauterine transmission [4–6].
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Innate immunity during pregnancy still needs attention when some infection 
compromises pregnancy success. Recently, the world testified a huge public health 
problem during Zika virus (ZIKV) outbreak in Latin American countries [7–9], in 
which poor outcomes were observed firstly in Brazilian newborns from mothers 
infected on early pregnancy phase (1st -2nd trimester) [7, 8]. Consequences of 
viral infections on newborns are irreversible and public health and social costs are 
immensurable [10], making World Health Organization consider Zika infection a 
public health emergency in 2016 February [11].

Due to its neurotropic features, the infection caused by ZIKV has been evi-
denced [12–14], which show a correlation between clinical manifestations based on 
its tropism by brain neuronal cells of fetuses and neonates born from infected preg-
nant women, with a strong association to neurological damage, including micro-
cephaly and other fetal neurological disorders, collectively named as Congenital 
Zika Syndrome (CZS) or Zika Associated with Birth Defect (ZABD) [15–18].

The immune system is composed of a set of flexible mechanisms that are 
fundamental to maintain homeostasis, allowing many interactions and coexistence 
between different populations of microorganisms and the host. The imbalance of 
homeostasis can be caused by a microorganism because of its pathogenic behavior. 
With the establishment of an active infection and consequent immune response, 
inflammatory mediators, produced initially, collaborate to activate cellular popula-
tions of the innate immunity, promoting antiviral and cytotoxic responses, for 
example. At first, these effector responses would influence the viremia resolution 
with the re-establishment of homeostasis. However, the loss or dysfunction of this 
immune response can generate a harmful environment that triggers an uncontrolled 
damage inflammation and consequent cell death due to a direct cytopathic effect 
caused by the microorganism [19].

Some studies were conducted to understand the mechanisms involved in vertical 
transmission. During pregnancy, the transfer of ZIKV to the placenta occurs after 
an infection of decidua, the placenta maternal region, since studies have shown that 
decidua cells are permissive to ZIKV infection and remain permissive throughout 
pregnancy [20, 21]. From the infection of the decidua, there are two routes by which 
ZIKV reaches the fetus: infection of syncytiotrophoblasts (SBTs) through capillar-
ies containing maternal blood or infection of Extravilous Trophoblast (EVTs) by 
cell-to-cell propagation [4]. In vitro studies have shown that ZIKV can infect first-
trimester cytotrophoblasts CTBs and EVTs [4, 20, 21]. On the other hand, STBs are 
high producers of type III interferon and remain relatively resistant to viral infection 
throughout pregnancy, therefore, the main route hypothesis for transplacental 
transmission of ZIKV is that of the spread of decidua to EVTs [21, 22]. Additionally, 
infection of placental macrophages, the Hofbauer cells by ZIKV may contribute to 
both intrauterine transmission and immunomodulation [23, 24]. Further, transpla-
cental transfer of ZIKV is more likely to occur in the pro-inflammatory environment 
and tolerant to placental immunity in the first trimester.

Histopathological and immunological studies in placentas have shown that 
infections by ZIKV lead to an increase in important inflammation markers such as 
TNF, CCL5, and altered vascular permeability such as metalloproteinases [25]. In 
addition, in vitro experiments demonstrate that trophoblastic cells become progres-
sively more resistant to infection by ZIKV during pregnancy, partly through the 
secretion of IFNs [26]. In this context, a lot of efforts were raised to provide funds 
to deeply investigate how to avoid another spread of Zika virus infection, as well 
as drugs tests and vaccine development based on viral proteins, DNA vaccines, 
Virus Like Particles (VLP), chimeric viruses, among other strategies [27–30]. 
Therefore, there are few studies to investigate the pregnancy immunity and how the 
immune interface mother-to-child could contribute to infection spread with drastic 
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consequences to fetus [21, 31–34]. To our knowledge, the imbalance of normal 
pregnancy immunity is already cause of metabolic disorders and the poor outcome 
is related to abortion [35–37]. Then, a viral infection can make this picture worst 
and tragic [8, 13, 15, 38, 39].

Like other Flaviviruses, ZIKV life cycle modulates machinery and functions of 
target immune host cells, making essential virus-cells interactions for pathogenesis 
development. Moreover, while several human and animal models’ studies have 
argued and proved ZIKV neurotropism, there are still many answers regarding viral 
pathogenesis in mother and its influence the fetal neural system and persistence, 
and clinical outcome. In this chapter we will put together the information about 
innate immunity during gestation, highlighting three parts probably involved with 
clinical outcome: 1) interferon type III; 2) innate regulatory cells; and 3) cell death 
pathways modulation. Additionally, we will focus on discussing how the dynamic 
responses of innate immune system during pregnancy and its effects in newborns, 
could be modulated by ZIKV, as well as how efforts on development of new/old 
drugs and vaccines could be effective to help pregnancy success.

2. Type III interferon

The success of pregnancy is dependent on a coordinated balance between the 
“invading” fetal trophoblast and a receptive maternal decidua in the placenta, 
maintaining a dynamic and responsive immune system. The longest period of the 
pregnancy, fetal growth, demands a symbiotic and tolerogenic environment, but 
congenital viral infections can disrupt this equilibrium. In order to avoid infection 
severity placenta actively modulates the immunologic profile of the maternal-
fetal interface [40, 41]. In this context, recent studies demonstrated that placenta 
responds to ZIKV infection by production of the newest interferon group type III 
interferons [21, 42, 43].

Type III interferon (IFN-λ 1–4) comprising a group of cytokines with action 
pathways under strengthen discovery [44–46], basically acting with shared inflam-
matory regulation and antiviral properties [47]. IFN-λs receptor was identified as a 
complex composed of two subunits: IFN-λR1 and IL-10R2, which is also a receptor 
subunit of the regulatory cytokines IL10, IL22, and IL26 [48]. In contrast with the 
classical pro-inflammatory type I interferons which receptors are expressed in 
almost all cell types, the IFNLR1/IL10RB complex is expressed primarily in cells of 
epithelial origin and few immune cells conferring selective IFN-λ responsiveness 
to them: neutrophils [49], myeloid dendritic cells (DCs) [50, 51] and plasmacytoid 
dendritic cells (pDC) [52]. Because of the restricted cell types producing IFN-λs, 
this cytokine acts locally as an immunologic barrier in organs with suppressing 
innate pro-inflammatory responses and limiting host damaging effects associated 
with inflammation [53]. Moreover, IFN-λs utilize mechanisms to suppress viral 
infections which induce a strong antiviral state following receptor binding with 
non-translational and translational processes [49, 54].

Between the different inflammatory regulation actions already described for 
IFN-λs, the suppression of neutrophil gains prominence because they are the 
immune cells that present higher expression.

of IFN-λR1 at the steady-state [55–57]. Neutrophils contribute to various stages 
of the reproductive process since conception and implantation, ensuring fetal 
wellbeing during pregnancy and finally contributing to parturition and postpartum 
maternal health. On the other hand, aberrant neutrophil activity is associated 
with severe pregnancy-related disorders such as pre-eclampsia, recurrent fetal loss 
or gestational diabetes mellitus [58–60]. In murine models, it was demonstrated 
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that neutrophil exposed to IFN-λ can induce antiviral interferon-stimulated genes 
(ISGs); and IFN-λ (but not IFN-β) specifically activated a translation-independent 
signaling pathway that diminished the production of reactive oxygen species and 
degranulation in neutrophils, which might permit a controlled development of the 
inflammatory process [49].

Studies utilizing a cellular model of collagen-induced arthritis demonstrated 
that IFN-λ2 was protective and could stop the progression of the disease, diminish-
ing infiltration of neutrophils to the inflamed joints as well as the production of 
IL-1β upon treatment with pegylated recombinant IFN-λ2 [57]. Ex vivo experiments 
with cardiopathic patients` cells demonstrated that IFN-λ inhibits Neutrophil 
Extracellular Traps (NETs) [61]. NETosis has been appointed as critical agents 
during pregnancy, particularly involved an auto-inflammatory process involv-
ing the release of placental micro-debris in preeclampsia and recurrent fetal loss 
[62]. In collagen-induced arthritis murine models, it was demonstrated that IFN-λ 
exerts its anti-inflammatory effect by restricting recruitment of IL-1β–expressing 
neutrophils, which are important for amplification of inflammation, and reducing 
IL-17–producing Th17 and γδ T cells in the joints and inguinal lymph nodes, with-
out affecting T cell proliferative responses [57].

IFN-λ is strongly associated with DCs activity inducing an effector adaptive 
immunity response [63, 64]. Studies with a mice model of influenza A virus 
infection demonstrated that IFN-λ directed acts in the migration and function 
of CD103(+) dendritic cells, also regulating DC IL-10 network [65]. Migratory 
CD103(+) DCs derived from skin, lung, and intestine, efficiently present exog-
enous antigens in their corresponding draining lymph nodes to specific CD8(+) 
T cells through a mechanism known as cross-presentation, demonstrating the 
IFN-λ importance for the development of specific CD8+ T cell responses [65, 66]. 
Moreover, IFN-λ contributes to the formation of tolerogenic DCs cell, contributing 
to control inflammatory responses and homeostasis by fostering the conversion of 
naive T cells into induced Foxp3(+) regulatory T cells [66]. In vitro studies demon-
strated that IFN- λ directs DCs to a regulatory phenotype with diminished capacity 
to stimulate T cell proliferation in a PD-1/PD-L1 dependent manner with contribu-
tion from the imbalanced cytokine milieu, such as low IL-12 and IL-2 and/or high 
IL-10 production [50]. Another study using mixed lymphocyte cultures demon-
strated that IFN- λ -treated DCs specifically induced IL-2-dependent proliferation 
of a CD4(+) CD25(+) Foxp3(+) T-cell subset with contact-dependent suppressive 
activity on T-cell proliferation initiated by fully mature DCs [51].

Plasmacytoid dendritic cells (pDC) are rare cells found in peripheral blood and 
lymphoid tissues, considered to be “professional” type I IFN-producing cells and 
produce 10- to 100-fold more IFN-α than other cell types in response to enveloped 
viruses. However, in vitro IFN-λ treatment of pDC resulted in increased virus-
induced expression of both IFN-α and IFN-λ, indicating that pDC are high produc-
ers of IFN-λ1 and -λ2 in response to viral stimulation and the consequences of this 
high IFN-λ production by pDC should be further explored [52].

In human congenital ZIKV infections, it was demonstrated that ZIKV infection 
leads to a typical inflammatory response in the placenta, including the expression 
of anti-viral Type I interferon genes (IFIT5, IFNA1, and IFNB), type II interferon 
(IFI16), cytokine signaling (IL22RA and IP10), and interferon regulatory factors 
(IRF7 and IRF9). Furthermore, the CZS cases present a gene expression profile with 
impaired IFNL2 response, accompanied by an exacerbated type I IFN response; 
with an increased expression of IFIT5, parallel to a decrease in ISG15 mRNA [67], 
which was already identified as negative modulator of type I IFN and protective 
against ZIKV ocular manifestations [68]. These results are corroborated by in vitro 
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studies that showed induction of IFNL1 expression by susceptible placental cells 
after ZIKV infection, acting as an antiviral agent [43], reinforcing that IFN-λs are 
protective factors in ZIKV congenital infections. Studies with ex vivo placental 3D 
cultures from a different trimester of healthy pregnant volunteers showed that 
IFN-λs are expressed mostly by deciduous (the maternal portion of the placenta), 
already indicating that mothers are the agents on the immunoregulation of CZS 
outcome (Figure 1) [21].

3. Innate regulatory cells - myeloid-derived suppressor cells (MDSC)

Immunity during pregnancy is very important to be explored since successful 
pregnancy requires that immunoregulatory mechanisms are triggered to suppress 
activated fetal-specific T cells lymphocytes [36, 37]. Maternal immune cells can 
recognize paternal antigens on fetus. Thus, it has been very well described that 

Figure 1. 
Summary of Interferon lambda (IFN-λ) function during normal pregnancy (A), Healthy Congenital Zika 
infection (B), and Zika-Associated Birth Defects (C). (A) In normal pregnancy, trophoblasts exhibit a 
constitutive IFN-λ production, contributing to the general tolerogenic environment demanded by pregnancy 
(A1); Considering the peripheral blood tissue IFN-λ Interact with: (A2) neutrophils leading to a decrease 
in ROS and IL1β, and (A3) migratory CD103+Dendritic cells (DC) that present low levels of PD1, IL2 and 
IL12 together with high IL10. These CD103+DC foster the conversion of naive T cells into induced Foxp3(+) 
regulatory T cells (Treg) (A4). In the placenta, the constitutive IFN-λ is accompanied by decreased type I 
IFN pathway: low expression of IFIT5, IFNA, and IFNB, and high expression of type I IFN the negative 
regulator ISG15 (A5). In the lack of viral infection, the interferon regulatory factors IRF7 and IRF9 present low 
expression levels (A7). (B) In healthy congenital Zika infections, the placenta expresses high levels of IFN-λ 
to protect the fetus from congenital defects (B1). In this low damage antiviral response, high levels of IFN-λ 
elicits the production of ISGs and the decrease of ROS and IL1β by circulating neutrophils (B2), meanwhile the 
CD103+ DC presents an accented regulatory profile (B3), with induction of high specific anti-ZIKV response 
by Treg (B4) and TCD8+ cells (B5). In the placental level type, I interferon pathway shows a slight increase, 
together with the enhance of IRF7 and IRF9, forming a balanced antiviral response. (C) In Congenital Zika 
Syndrome (CZS) the lack of IFN-λ contributes to a damaging outcome (C1). Diminished levels of IFN-λ could 
not control the neutrophil activity, culminating in augmented ROS and IL1β (C2), and presence of aberrant 
activation forms as well as degranulation, migration, and NETosis (C3). Without IFN-λ the Dendritic Cells 
(DC) present a prό-inflammatory profile, with augmented PD1, IL2, and IL12 and diminished IL10 (C4). 
The placenta shows an exacerbated type I interferon response, which together with low IFN-λ levels (C5), leads 
to an imbalanced damaging antiviral response. Grey arrows represent the production or expression levels  
(up = high, down = low). Double arrows represent a high magnitude of production or expression. Red dashed 
arrows represent the direction of function/induction events that have been known and those suggested. Figure 
created using Biorender software (https://www.biorender.com).
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dysfunction of immune cells during pregnancy can lead to immunologic fetal rejec-
tion by mother, in which the consequences are related to abortion, preterm delivery, 
or other severe complications [35–37].

Then, maternal-fetal tolerance involves the regulation of mother’s immune 
system to tolerate the semi allogeneic fetus expressing paternal antigens without 
immune rejection. Even though, some studies showed that regulatory T cells are 
the main cells which plays an important role in suppressing activated T cells during 
gestation; since then innate immunity system is poorly investigated [69–71].

Considering infections during pregnancy, it is also important to know that 
changes on maternal immune responses are required to induce limited immunosup-
pression without loss of host defense, in which a balance between activated and 
immunosuppressed cells needs to be regular [35].

Myeloid-derived suppressor cells (MDSC) are a heterogeneous mixture of 
immature myeloid cells, been part of innate immune cells, having a crucial role 
in immunomodulatory mechanisms during pregnancy [36, 72, 73]. There are two 
subtypes of MDSC, a monocytic and granulocytic. Phenotype is characterized by 
expression of CD33 and CD11b in humans, CD14 by monocytic MDSC and CD15 by 
granulocytic MDSC cells but lacks the maturation marker HLA-DR. But both sub-
types share the characteristic of immune-suppressive function inhibiting activated 
NK and T cell expansion [73, 74].

Normally, immature myeloid cells as MDSC are scarcely found in peripheral 
blood, and their maturation includes macrophages, dendritic cells, and granulo-
cytes formation. Nevertheless, the MDSC are also recognized by their role in some 
pathological conditions, like cancer, sepsis, stress, autoimmune disorders and 
infectious diseases [38, 75, 76].

Several studies have been reported that a decrease of MDSC during pregnancy 
may lead to poor outcomes, as miscarriage [77]. Also, it has been shown that 
progesterone levels increase MDSC during pregnancy in mice, as well as high levels 
of TNF and IL-1β, pro-inflammatory cytokines [38, 78].

In murine models, it was demonstrated that MDSC can produce TGF-β and 
IL-10, as immunosuppressive cytokines, similarly to regulatory T cells. Adding 
to that, MDSC can suppress T cell activation and function by arginase-1 (Arg-1) 
secretion, as well as nitric oxide synthase and indoleamine 2,3 dioxygenase aimed to 
deplete nutrients for T cell proliferation, as I-arginine (I-Arg). According to Ismail 
2018, arginine is also involved in replication, and virulence of several agents, as 
viruses and bacteria. Then, it is suggested that an accumulation of MDSC in pla-
centa could influence an increase of arginase activity, and it would serve for a dual 
purpose, inhibiting the adaptive immune system whilst also providing potential 
protection against infection by arginine auxotrophic pathogens [79].

Nitric oxide (NO) has been related to embryo successful implantation during 
early pregnancy, but excessive NO production by decidual macrophages seems to be 
harmful and was linked with early pregnancy loss [37, 80, 81]. Another study sug-
gests that in early pregnancy in decidua CD33+ cells express nitric oxide synthase, 
playing an important role to maintained pregnancy during this phase, while in later 
pregnancy CD33+ cells lose the expression of this enzyme [35, 37].

Kostlin-Gille et al 2019 showed that hypoxia condition is important to normal 
placenta development and its driven by a hypoxia-inducible factor 1 (HIF-1), a key 
regulator responsible for initiate transcription of several genes. The subunit HIF-1α 
is highly expressed in placenta during early gestation period, characterized by 
low oxygen pressure conditions. This study used myeloid HIF-1 knockout mice to 
evaluate the role of HIF-1α on myeloid-derived suppressor cell function, showing 
that HIF-1α deficiency in myeloid cells leads to diminished suppressive activity of 
MDSC in uterus from pregnant mice, but the expression of chemokine receptor or 
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integrins was not altered. Despite MDSC recruitment to uterus was not altered, it 
was observed a lower MDSC accumulation as well as an increase of MDSC apopto-
sis, contributing to an elevated abortion rate in knockout mice [73].

Regarding Zika virus, there are few studies showing the presence of MDSC 
on women blood and during pregnancy, and considering the facts, it will be very 
important to know any relationship of their presence with congenital syndrome, as 
observed in 2016, Brazil [82, 83]. A study with 10 non-pregnant women with Zika 
infection showed that frequencies of circulating MDSC did not change over time 
[84]. Another study with pregnant monkeys infected with Zika virus showed that 
an imbalance on blood frequencies of MDSC and activated CD8 T cells in the acute 
phase may lead to poor outcome to the fetus. Adding to that, the high frequency of 
MDSC on placenta from pregnant monkeys showed a positive effect on pregnancy 
outcome, even more if a drug antiviral treatment was used [85].

Furthermore, it is worth to note that immune signature, sometimes is the key 
factor to explain some diseases progressions. Despite Dengue viruses is more related 
to signals and symptoms with Zika virus infection [86, 87], some similarities with 
hepatitis C virus (HCV) were also noted, and mechanisms of immune evasion have 
been described, as inhibition of interferon pathway, allowing virus life cycle for a 
long-term period, up to 100 days [88, 89]. To note, ZIKV infection is also classified 
as an immune-mediated viral disease, like Dengue and other viruses [86, 87, 90]. 
Disease progression in HCV patients to chronic infection has been associated to an 
increase of MDSC phenotype in peripheral blood mediated by viral proteins [38]. 
Wang et al., 2017 examined Japanese encephalitis virus (JEV) infection leading 
acute encephalopathy depending on suppression of adaptive immune response, 
especially T follicular helper cells, mediated by enhanced MDSC populations, such 
as an involvement of MDSC on splenic B cells reduction, and in lower levels of total 
IgM JEV-specific neutralizing antibodies in mice models [39]. Burrack et al., also 
suggests that MDSC has an important suppressive T cells activity and may contrib-
ute to reduce the immune-mediated disease during Chikungunya infection [90].

Otherwise, the immunosuppressive activity triggered by RNA viruses, MDSC 
has been associated with metabolic regulation of immunopathology induced by 
DNA viruses, like hepatitis B virus (HBV) [91]. Pallett et al., 2015 showed that 
frequencies of MDSC on liver from HBV patients without liver damage, monitored 
by levels of liver transaminase enzymes, were higher in comparison with patients 
with liver damage, showing a protective effect for patients with immune-mediated 
viral disease, as hepatitis B [91].

In the new coronavirus pandemic (COVID-19), the MDSC have been reported to 
play an important role in the early phase of symptoms, increasing their frequency 
on blood in the first days of signals and symptoms, and it was related to poor 
outcome in severe acute respiratory syndrome in hospitalized patients. Pregnancy is 
a risk factor for COVID-19 severity, given the Brazilian high mortality rate of 12.7% 
in June 2020 withing pregnant, which may be associated with the change of the 
immunity [92–94].

Although few studies involving MDSC frequencies on blood during Zika infec-
tion were published yet, those cell type needs to be investigated, even though in 
animal models for medical science breakthroughs. The technique to characterize 
this cell phenotype is simpler than to characterize regulatory T cells, once the 
procedure does not require intracellular staining [95].

If those MDSC are crucial to maintaining a healthy pregnancy, any adverse 
effects, as Zika virus infection could trigger an imbalance between MDSC and T 
cells. This dysfunction may induce a deactivation of functional MDSC on blood 
and placenta with failure to attempt to eliminate viral infection. In addition, T cell 
function during ZIKV infection is known to be delayed throughout interferences 
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on interferon pathway, as described above. Then, this scenario may contribute to 
immune evasion of ZIKV, in which viral replication on maternal-fetal environment 
is unavoidable, inducing poor outcomes during pregnancy: fetal death, congenital 
syndrome, abortion, neurological disorders, etc. (Figure 2).

4.  Programmed cell death: A host innate immune protection or a virus 
evasion strategy

It has been described that a protective response by innate immune cells to viruses 
is triggered by several distinct mechanisms including apoptosis, necrosis, parapto-
sis, pyroptosis, autophagy cell death, and others. Each one is depending on several 
aspects of infection, including where the microorganism was detected, susceptible 
target-cells, through signaling systems discharging the death signal, and its inten-
sity. During the innate immune response to infections, programmed cell death 
may occur as a direct pathogenic mechanism of viral spread and escape from the 
immune system or represents an appropriate host response to limit pathogen repli-
cation. Apoptosis of lymphocytes and monocytes also plays an important role in the 
control of inflammatory responses, as well as in the development of maternal-fetal 
tolerance [96–99].

Figure 2. 
Myeloid-derived suppressor cell (MDSC) activation and regulation triggered by normal pregnancy and by 
Zika virus infection. Summary of MDSC functionality during normal pregnancy (A) and during acute phase 
of Zika virus infection (B) as suggested by others into an innate immunity dysregulation observed in abnormal 
pregnancies on monkeys [35, 37, 38, 73, 77–81, 85]. Hormone and cytokines produced in normal pregnancy 
induce an equilibrium in peripheral blood maintaining frequency of MDSC elevated (1.A), as well as levels 
of IL-10 and TGF-beta. Meanwhile, circulating levels of T cell frequencies are reduced and controlled. In 
placenta, Hofbauer cells (macrophages) are responsible for immune surveillance also intermediating the 
cross-talking between fetus-maternal interface, with equilibrium of MDSC and T cells to maintain a healthy 
pregnancy. In abnormal pregnancy, also suggestive for Zika virus infection during pregnancy of non-human 
primates, the equilibrium is broken. Once ZIKV is circulating, there is a reduction of MDSC frequency 
(B), compromising pregnancy immunosuppression, with elevation of activated T cells, attempting to virus 
elimination. In the placental parenchyma, MDSC has a reduction in their frequency. This scenario also suggests 
an immune dysfunction in fetus-maternal environment, diminishing functional macrophages (Hofbauer 
cells), which are infected by virus. All events together can induce several poor outcomes (abortion, neurological 
disorders). Black arrows filled with white color represent the frequency of cells (up = high, down = low). Grey 
arrows represent levels of cytokines (up = high, down = low). Red dashed arrows represent the direction of 
function/induction events that have been known during Zika infection during pregnancy. Figure was created 
using Biorender software (https://www.biorender.com).
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Type 1 programmed cell death, also known as apoptosis, is defined by inter-
nucleosomal DNA fragmentation, marked irreversible apoptotic characteristic 
indicating chromatin condensation, degradation of cytoskeleton and nuclear 
proteins, protein crosslinking, apoptotic bodies’ formation baring ligands for recep-
tors of phagocytic cells and, finally, the uptake by these phagocytes [97–99]. Type 
2, or autophagic cell death, presents unique characteristics organelles formation 
including autophagosomes and autophagolysosomes in the dying cell, sources of 
self-degradation, and recycling [100].

Two pathways can regulate the apoptosis program in different aspects: extrinsic 
and intrinsic. Extrinsic pathway is activated by a transduction signal through death 
receptors, in which TNF, Fas ligand, or TRAIL bind to their respective recep-
tors, such as TNF receptor family: TNFR1, Fas (CD95/APO-1) and TRAIL-R1/2. 
A complex signal mediated by this binding leads to an enzymatic cascade of cell 
degradation, and at this point caspase-3 is activated promoting DNA damage [101]. 
Intrinsic pathway involves intracellular mitochondria, which its membrane is the 
local for many Bcl-2 family members and their activity in inducing / inhibiting the 
mitochondrial apoptosis program implies in those proteins lead to membrane col-
lapse as well as a transition from mitochondrial permeability promoting apoptosis 
process [96, 101–105].

Taking together, type 2, or autophagic cell death, consists of a conserved cata-
bolic process that contributes to degradation and recycling of many intracellular 
substances, through lysosome activity. In this sense, many studies have shown 
its importance in immune responses, including degradation of microbes, direct 
viral peptides MHC class I presentation [106] and even altering T-cell signaling 
and tolerance [107, 108]. At first, autophagy is necessary to keep the cell alive 
under stress conditions that precede their demise. Such kind of cell death could 
be achieved by several mechanisms, including prolonged hypoxia or digestion of 
vital factors, regulatory molecules or essential organelles. In a stress situation, 
caused by virus, an infected cell can induce intracellular signals of autophagy, 
inhibiting cell proliferation, arresting cell cycle and eventually leading to cell 
death [106–111].

In the acute ZIKV infection during pregnancy, macrophages and dendritic cells 
are involved in inflammatory cytokines production, in which CARD9 expression, 
an important regulator of caspase activity playing an important role in cell apopto-
sis regulation, is elevated allowing that pattern recognition receptors (PRR) induce 
pro-inflammatory cytokines cascade, as the first step on CZS, as suggested [67]. 
According to Quicke et al., Hofbauer cells infected with ZIKV in placenta induces 
IFN type I activation, reactive oxygen species production, as well as pro-inflam-
matory cytokines, but with minimal cell death, showing a scape of innate immune 
response [23]. Recently, Cao et al., showed that ZIKV could activate and increase an 
autophagic process in pregnant mice, suggesting an imbalance of trophoblastic cells 
in placenta, and relation with fetal loss [112]. Corroborating, Ribeiro et al. using a 
human model of placenta explants for in vitro infection demonstrated tissue injury 
as consequence of the association between fetal pro-inflammatory responses medi-
ated by IL-1β, IL-6 and TNF and extrinsic caspase 3 dependent apoptosis (TNF-
TNFR pathway). Together data suggest that ZIKV infection corroborates to placenta 
innate immune and hormonal dysfunction, increasing loss barrier integrity [42] 
Thus, this inflammatory status could trigger cell death and barrier loss, allowing 
ZIKV cross placenta and infect fetuses’ neural stem cells (Figure 3) [23, 113–115]. 
Interesting, autophagosomes are present in neural stem cells and it could facilitate 
ZIKV replication [116], although inflammation generated as well as the cytopathic 
effect itself culminate in extensive caspase-dependent neuronal cell death.



Cell Interaction - Molecular and Immunological Basis for Disease Management

10

Corroborating, Lum et al. has shown that ZIKV mainly infects fetal microglia and 
induces high levels of pro-inflammatory cytokines that could be harmful to the fetus 
[117]. In addition, the analysis of in vitro culture, fetal brain histology and ex vivo 
studies with children presenting evidence of congenital infections demonstrated that, 
in fact, ZIKV promotes microglial activation, suggesting viral disseminating, neuro-
nal death and an abnormal increase of astrocytes due to neurons destruction [117].

Thus, once in fetus central nervous system, ZIKV may contribute to extrinsic 
(Fas/Fas-L) and intrinsic (Bcl-2) pathways activation for programmed cell death, 
reducing number of neuronal cells. Thus, the risk of congenital syndrome is 
eminent, mainly in the first trimester, as well documented (Figure 3) [67, 118–123]. 
Some studies with fetuses’ autopsies and infants with microcephaly have been 
demonstrated a broad spectrum of microscopic neuropathological abnormalities 
and brain damage, with direct virus cytopathic effects in neural glial cells. In this 
way, these data support the strong association with apoptotic cell death and micro-
calcifications [13, 23, 124].

5.  Prevention and control of ZIKV infection: Potential candidates in 
pregnant women

In general, pregnancy is a challenge for prevention and control infectious diseases 
regard to a safe drug or vaccine development to do not disturb the innate/adaptive 

Figure 3. 
Programmed cell death activation during normal pregnancy and abnormal pregnancy induced by Zika virus. 
Normal pregnancy equilibrium is driven by regulation of number of innate immune cells in placenta leading 
by programmed cell death. In this situation, caspase activity starts on CARD9 expression with cytokines 
production by Hofbauer cells (1.A), which oxide nitric (NO) regulates trophoblasts autophagy (2.A, 3.A). 
Products of Hofbauer cells activity in the surveillance in placental parenchyma contributing to extrinsic  
(Fas/Fas-L) and intrinsic pathway (BCL2/BAX) activation in fetus brain with low expression of pro-
inflammatory cytokines, regulating number of neural stem cells and microglia by apoptosis (4.A), maintaining 
the healthy pregnancy. Acute ZIKV infection during pregnancy suggests that macrophages and DCs are involved 
in pro-inflammatory cytokines production, in which CARD9 is upregulated, increasing caspase activity, 
allowing pro-inflammatory cytokines and reactive species cascade (1.B, 2.B), exacerbating autophagy in 
placenta (3.B). Taking together this innate immune dysfunction, fetus brain is affected by high activation of 
apoptosis pathway (4.B), provoking a cascade of cell death with an abrupt reduction of neural cells, causing 
severe damage [113–115]. Grey arrows represent the production or expression levels (up = high, down = 
low). Double arrows represent a high magnitude of production or expression. Red dashed arrows represent 
the direction of function/induction events that have been known and those suggested. Figure created using 
Biorender software (https://www.biorender.com).
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immunity homeostasis, however, there were no drugs approved for ZIKV infection 
treatment [28–30]. Here, drugs and vaccines candidates tested in animal models or in 
newborns will be described with details (Table 1).

5.1 Type III interferon: Potential efficacy and safety for immunotherapy

Type III interferon has been emerging as an efficient and low damaging 
therapeutic agent not only directed for the virus but also for fungal and bacterial 
infections, as well as cancer, autoimmune, and vascular diseases [54]. The more 
restricted expression of IFNLR1 likely contributes to the improved safety profile 
of IFN-λl in clinical studies compared to type I IFN. Pegylated IFN-λ1 have already 
been tested in phase 2b clinical trial to chronic hepatitis C treatment and hepatitis 
B, associated with improved rates of virologic response with fewer extrahepatic 
adverse events compared to pegylated IFN-α [125]. Even though it was deemed 
less effective than alternative treatments for these infections, pegylated- IFN- λ 
can be potential candidate ready for deployment if new indications are identified 
[126]. There are other viral targets for IFN- λ therapy been tested in murine models: 
norovirus [127], and influenza virus [128], and west nile virus – last one is another 
member of Flaviviridae family. It is noteworthy the effect of IFN-λ on infection 
with west nile virus, an encephalitic flavivirus: Treatment of IFNLR1 knockout 
mice with pegylated IFN-λ2 resulted in decreased blood–brain barrier permeabil-
ity, reducing west nile virus infection in the brain without affecting viremia, and 
improved survival against lethal virus challenge [129].

The effectiveness and low damage treatments for other correlated viral 
infections, combined with the protagonist of IFN-λs as immunoregulatory and 
antiviral agent in ZIKV raise the idea of IFN-λs as ZIKV therapy, and some groups 
already achieve exciting good results. Concerning ZIKV infections, Jagger, et 
al., (2017) suggest that IFN-λ2 treatment could be a safe solution to minimize 
Congenital Zika Syndrome severe outcomes. Using a type III interferon-deficient 
mouse model, authors showed that these animals had an increase of ZIKV replica-
tion in the placenta under ZIKV infection, and treatment of pregnant mice with 
IFN-λ2 reduced ZIKV viremia [26]. Considering the vaginal epithelium as the first 
line of defense against sexually transmitted ZIKV, treatment of primary human 
vaginal and cervical epithelial cells lineages with IFN-λ induces host defense tran-
scriptional signatures with augmented expression of ISGs (IFI44L, OASL, OAS1, 
and MX1) and inhibition of ZIKV replication. Female mice submitted to treat-
ment with IFN-λ and intravaginal ZIKV transmission showed low levels of virus 
replication in the female reproductive tract with a hormonal stage-dependent 
role [130].

5.2  Direct-acting antiviral therapy based on RNA-dependent RNA polymerase 
inhibitors

Some studies were driving to evaluate effects of independent direct-acting 
antiviral drugs on Zika virus infection (Table 1), as sofosbuvir, an FDA-approved 
nucleotide analog inhibitor of the hepatitis C (HCV) RNA-dependent RNA poly-
merase (RdRp) [131, 132]. In vitro and in vivo studies have been demonstrated 
effectiveness of sofosbuvir as antiviral drugs to treat Zika and Dengue virus infec-
tion [133–135]. Mesci et al., 2018 reported that sofosbuvir was promisor to block 
vertical transmission of Zika virus in pregnancy using mice models [136]. Again, 
sofosbuvir shows to play a role in virus replication inhibition. Another flaviviral 
inhibitor NITD008, an adenosine analog inhibiting the RNA-dependent RNA 
polymerase activity through chain-termination [137], has been shown to reduce the 
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Therapy classification Mechanism of action Immune effect Pregnancy 

safety

References

Peg Interferon-λ2 Not approved Antiviral immunobiological Enhance IFNL-λ pathway activity Yes/Mice 

models

Jagger et al.,  

2017 [26]

Sofosbuvir Category B/Approved for hepatitis C 

treatment

Direct-acting antiviral drugs Not explored Yes/Mice 

models

Mesci et al.,  

2018 [136]

NITD008 Not approved Direct-acting antiviral drugs Not explored Yes/Mice 

models

Watanabe  

et al., 2019 [27]

Hydroxycloroquine Category C/Approved for malaria and 

autoimmune diseases therapy

Cell membrane interaction to 

induce cell death

Reduction of autophagy activity Yes/Pregnant 

women

Cao et al.,  

2017 [112]

rVSV vaccine Not approved Recombinant viral vector 

vaccine

Increases in CD8+/CD44high/IFN-γ + T cell 

populations on spleen

Yes/Mice 

models

Betancourt  

et al., 2017 [147]

VRC5283 Clinical trial phase II 

(VRC-ZKADNA090–00-VP)

DNA plasmid vaccine Induce antigen-specific antibody 

production/ induce of CD8+ T cells response

Yes/Mice 

models

Richner  

et al.,2017 [155]

mRNA-LNP vaccine Clinical trial phase I (NCT03014089) mRNA vaccine Induce antigen-specific antibody 

production/ induce of CD8+ T cells 

response/Minimizes ADE

Yes/Mice 

models

Richner  

et al.,2017 [156]

Table 1. 
Therapeutic agents or vaccine candidates targeting virus or immunity with promisor potential to use during ZIKV infection in pregnant women.
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Zika virus replication in placenta, and fetal infection, thus minimizing the risk of 
maternal-fetal transmission of ZIKV [27].

There are few studies investigating innate immunity during antiviral therapy, 
especially when its concern to Flaviviridae family [38, 135, 138, 139]. Scarce lit-
erature revealed knowledge about antiviral therapy immune effects only during 
hepatitis C infection [138, 139]. Antiviral drugs, as pegylated interferon (PEG-
IFN), ribavirin, and direct-acting antiviral agents (DAA) have been related with a 
reduction of innate regulatory cells, as MDSC, in peripheral blood from hepatitis C 
chronic patients, in which T cells were increased and immune function was reestab-
lished [138, 139]. Nevertheless, all those drugs are aimed to interrupt viral replica-
tion and any dysregulation of immune cells during pregnancy is not safe, then those 
drugs are not recommended to be used during gestational period [140]. Besides no 
immune response evaluation was related to DAA therapy, it has been known that 
small molecules with specific activity should not induce any immune alterations in 
maternal-fetal immunity [140].

Safety and effectiveness of sofosbuvir on Zika virus infection should be 
addressed to immune response evaluation, which is poorly explored, even more in 
pregnant animal models. More studies and investments are needed for non-clinical 
and clinical studies, to get safety therapeutic protocols aimed to pregnant women 
with Zika virus or other flavivirus infection.

5.3 Cell death modulation during antiviral therapy

Genetic manipulation has been proven to be a promising tool for vaccine and 
therapy development. Considering the type 2 of programmed death, autophagy is 
activated by ZIKV in placental parenchyma and is involved in poor outcome during 
pregnancy, this cell death pathway has been a target for therapies [112, 141–143].

Recently, a study showed the role of an autophagy gene (Atg16I1) during ZIKV 
infection in pregnant mice model, in which inducing a deficiency in this gene 
limited ZIKV vertical transmission, as well fetal damage, improving placental and 
fetal outcomes [112]. In addition, an antiviral compound approved to be used by 
pregnant women for malaria and autoimmune diseases [141], hydroxychloroquine 
(HCQ ), has been used to dampen autophagic activity in vivo [142]. Thus, Cao et al., 
showed that HCQ administered with a dose of 40 mg/kg/day has in vivo inhibitory 
effects on autophagy sustained lower levels of ZIKV RNA compared with saline 
buffer treatment [112].

Based on the knowledge of ZIKV infection that can trigger a caspase-3 activa-
tion contributing to cell death of neural progenitor cells during pregnancy, it is an 
extremely relevant approaches targeting cell death pathways for antiviral treat-
ments even though for therapeutic vaccines.

5.4 Recombinant viral vectors as vaccine candidate

Recombinant viral vectors have been highlighted as therapeutic alternatives to 
prevent and treat infectious disease [144, 145], considering its specificity and the 
adverse effects of antiviral drugs and some vaccines [140, 146]. Betancourt et al., 
2017 showed that a recombinant viral vector from vesicular stomatitis virus (rVSV) 
anti-ZIKV vaccine increased IFN-γ production by splenic CD8+ T cells as well as 
high neutralizing anti-ZIKV antibody titers from pregnant mice. This study also 
demonstrates that neonatal mouse from vaccinated dams was partially protected 
against neurological manifestations of ZIKV infection following wild-type virus 
challenge [147]. This rVSV using pre membrane and envelope region together 
obtained from a ZIKV strain as reference had the potential to protect from ZIKV 
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infection during prenatal and neonatal development, likely through the transmis-
sion of maternal IgG. Despite rVSV vaccine induces IFN-γ production in pregnant 
mice, this vaccine needs to be evaluated for other types of interferon, mainly its 
effects on placental tissues .

5.5 Potential DNA and mRNA vaccines

mRNA vaccines as well as DNA-based vaccines represent a versatile vaccine 
platform and an alternative to conventional vaccine approaches because of their 
high potency, capacity for rapid development and potential for low-cost manufac-
ture and safe administration [148]. Recent technological advances have allowed 
mRNA vaccines to demonstrate encouraging results in both animal and human 
models. Regarding prophylactic mRNA vaccines, a number of reports have demon-
strated the potency and versatility of mRNA to elicited protective immunity against 
a variety of infectious agents in animal models against, including influenza virus, 
Ebola virus, Zika virus, Human Immunodeficiency virus 1 (HIV-1), herpes simplex 
virus, cytomegalovirus, hepatitis C and respiratory syncytial virus [149–151]. It has 
been noted that approximately ten mRNA vaccines programs have entered clinical 
trials [152].

The importance of mRNA-based vaccines and therapies is emphasized when 
mRNA-based biopharmaceuticals are entering the market with guidance of new 
biopharmaceutical companies. Modern Therapeutics, an mRNA therapy company 
evaluated various mRNA vaccine technologies to identify immunogenic and 
scalable candidates. The pipeline of this company shows different investigative 
stages mRNA vaccines of the following vaccines Respiratory Syncytial virus (RSV), 
Cytomegalovirus (CMV), human metapneumovirus (hMPV) + Parainfluenza virus 
Type 3 (PIV3), Influenza A subtypes H10N8, and H7N9, Zika, and Chikungunya. 
Curevac is the first biopharmaceutical company that developed the first prophy-
lactic mRNA vaccine in the clinics, recently they showed that RNActive® vaccines 
induced long-lived and protective immunity to influenza A virus infections in 
various animal models [153].

Thus, big pharmaceutic companies, such as Merck & Co., have been invested in 
Modern Therapeutics aiming to expand the field of mRNA vaccine (https://www.
modernatx.com/). Indeed, nucleic acid vaccine platform has been presented to 
combat the emergence of acute viral diseases, mainly to rapidly contain emerging 
outbreaks before they spread out of control. In this context, two vaccines were 
developed to combat the ZIKV outbreak (1) DNA plasmid vaccine encoding the 
prM-E genes of ZIKV and (VRC5283) (2) mRNA vaccine (mRNA-LNP), both vac-
cines mediate protection from ZIKV infection in mouse models. The DNA plasmid 
vaccine is in phase 2 human clinical trials (VRC-ZKADNA090–00-VP) and vaccine 
mRNA-LNP is in phase 1 clinical trial (NCT03014089) [154–156].

Considering that vaccine trials might not be performed in pregnant women and 
have not yet tested vaccines against ZIKV vertical transmission, there is a need for 
establishing the efficacy of ZIKV vaccines against mother-to-child transmission in 
animal models. In order to address those questions, it has been shown that vaccina-
tion with DNA plasmid encoding Zika virus prM-E and a lipid-encapsulated mRNA 
vaccine-elicited antigen-specific antibody and CD8+ T cell responses in mice, being 
able to generate a high level of protection against vertical transmission. Moreover, the 
mRNA-LNP vaccine not only inhibited vertical transmission but also ensured that 
fetuses are protected therefore, reinforcing its potential as promising vaccine for preg-
nant women [155]. Since there are few studies in the field of ZIKV vaccine candidates 
that evaluated vertical transmission, intrinsic maternal factors as well as fetal health, 
nucleic acid vaccines are pointed as a great opportunity to contain ZIKV infection.
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6. Conclusion

Considering the normal pregnancy, the innate immunity balance is conduct by 
downregulation of effector T cells and NK cells leading by innate regulatory cells 
(MDSC) and upregulation of pro-inflammatory cytokines. This innate immune 
modulation that occurs mainly at the placenta, includes interferon pathway and 
cell death modulation as shown in Figure 4A. Gestation has its own difficulties 
to successful outcomes regarding maternal immune tolerance. Zika virus infec-
tion becomes classified as disease-causing birth defects, developing an abnormal 
pregnancy, as consequence of immune dysregulation (Figure 4B). Thus, antiviral 
therapy is the key to control this immune imbalance showing positive effects in 
innate immunity on pregnant mice models. It has been known that efforts through 
vaccines development targeting pregnant women will be the solution for ZIKV 
prevention, as well as for other arboviral infections, to maintain immune homeo-
stasis and generate healthy babies. Finally, this chapter brings some new thoughts 
that help for targeted improvements in medical science considering Zika infection 

Figure 4. 
Summary of innate immunity functionality during normal pregnancy and in Zika virus infection focus on 
interferon III, myeloid-derived suppressor cells, and programmed cell death activities. During pregnancy, 
initial signal is dependent on nidation process and placenta formation leading by trophoblasts expansion and 
activation. Following this process, innate cells, such as neutrophils, DCs, and cytokines are activated (1.A, 
2.A) with IL10 and TGF-beta production in periphery, allowing immunosuppressive functionality triggered 
by regulatory cells (MDSC and Treg) (3.A). This condition facilitates suppression of effector cells (NK and 
lymphocytes) in peripheral blood and in placenta triggered by MDSC (4.A), whereas Hofbauer cells maintain 
reactive species (NO) balanced (5.A) as well as the IFN-λ downregulation, IFN type I upregulation, and 
trophoblast autophagy (6.A), contributing to the cross-linking in the fetus-maternal interface. Adding to 
that, programmed cell death contributes to control the accelerated growth of neural cells in fetus brain (7.A), 
corroborating with a successful pregnancy. Zika virus has been related to abnormal pregnancy, leading to 
massive innate immune alteration, causing severe brain damage to fetus. Given that, when the virus is in 
the blood, there is a gross activation of innate cells, elevation of cytokines and chemokines (1.B, 2.B), and 
suppressive activity by regulatory cells is compromised (3.B), generating early activation of NK and T cells in 
blood (4.B) and macrophages in placenta (5.B). Virus invasion in placenta through Hofbauer and trophoblast 
cells results in high autophagy activity with interferon type I gene highly expressed combined with super 
downregulation of interferon type III (6.B). This imbalance also contributes to fetal brain damage, orchestra 
by high activation of apoptosis pathway, avoiding neural cells growing progress. Thus, Zika provides severe 
damage to fetus, in which drugs, vaccines and immunotherapies have been designed suggesting a modulation of 
three important keys of innate immunity to control virus replication and spread into fetus-maternal interface: 
interferon type III expression, MDSC frequency, and autophagy process (highlighted with red rectangles) to 
avoid severe fetus brain damage, allowing a healthy pregnancy. This figure was made based on the information 
from Figures 1–3. Figure created using Biorender software (https://www.biorender.com).
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