
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

137,000 170M

TOP 1%154

5,600



1

Chapter

Polybrominated Diphenyl 
Ethers (PBDEs) as Emerging 
Environmental Pollutants: 
Advances in Sample Preparation 
and Detection Techniques
Japheth M. Nzangya, Elizabeth N. Ndunda, 

Geoffrey O. Bosire, Bice S. Martincigh and Vincent O. Nyamori

Abstract

Environmental pollution has been a challenging phenomenon in most developing 
countries, due to the weak enforcement of environmental regulations. As a result, 
humans and animals are exposed to different environmental pollutants, which 
threaten their very existence. Some of the emerging pollutants of great concern are 
polybrominated diphenyl ethers (PBDEs) since they are categorized as probable 
human carcinogens and are also known to bioaccumulate in fatty tissues of animals 
and humans, reaching toxic levels upon continued exposure. Monitoring of these 
pollutants is therefore paramount as it contributes to addressing the problem of 
human exposure and environmental pollution. Their monitoring involves sample 
preparation methods followed by quantification with various detection techniques. 
Sample preparation methods that aim at reducing matrix interferences, enriching 
analytes and transfer of analytes to a desirable solvent, have evolved from conven-
tional methods to advanced methods that facilitate the detection of these chemicals 
at very low concentrations. Likewise, detection techniques have advanced from 
chromatographic detection techniques to miniaturized systems that involve sensors. 
This chapter discusses PBDEs as emerging pollutants, their sources, and toxicologi-
cal implications on humans, as well as advances in sample preparation methods and 
detection techniques in the determination of PBDEs.

Keywords: polybrominated diphenyl ethers, persistent organic pollutants, pollution, 
emerging pollutants, detection techniques

1. Introduction

The preservation and conservation of the environment are of great signifi-
cance for healthy living. However, efforts to conserve the environment have been 
futile due to escalated pollution from biogenic and anthropogenic sources, which 
constantly release pollutants to the environment [1]. In the recent past, increased 
industrial and agricultural activities have immensely contributed to the pollution 
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of aquatic environments such as rivers and streams, which pose major detrimental 
environmental problems to humans [2]. It is evident that industrial development 
has generated a myriad of new chemicals produced and applied in daily activity, 
which is becoming a major concern for citizens, the research community, and 
authorities [3]. Among the pollutant chemicals that have been introduced into 
the environment are polybrominated diphenyl ethers (PBDEs). PBDEs are toxic, 
lipophilic, hydrophobic, and persistent artificial chemicals characterized by high 
physical and chemical stability [4]. They are commonly applied as flame retardants 
in polymer products such as electronics, plastics, textiles, and building materials 
[5, 6]. PBDEs have become a growing concern over the last two decades due to their 
ubiquity, persistence and accumulation capacity in the environment, as well as their 
potential risks to human health and wildlife [7, 8]. PBDEs are normally additive 
compounds, meaning they are not covalently bound to the polymeric products 
[9]. Therefore, they may leach out into the surrounding environment during their 
production, usage, disposal, or recycling process [10]. PBDEs can be transported 
away from their sources for long-ranges through aqueous and/or terrestrial envi-
ronmental compartments [11, 12]. In this context, monitoring and assessment of 
environmental pollution by these compounds are very important.

Their determination involves a series of steps from sample pre-treatment to 
quantification of analytes using various detection systems. Different sample prepa-
ration strategies that range from conventional to advanced strategies have been 
applied for the determination of PBDEs in environmental samples. Some of the 
conventional sample enrichment methods include Soxhlet extraction [13, 14] and 
liquid-liquid extraction (LLE) [15]. More recently, ultrasound-assisted extraction 
(UAE) [16, 17], pressurized liquid extraction (PLE) [18, 19], microwave-assisted 
extraction (MAE), solid-phase extraction (SPE), and solid-phase microextrac-
tion (SPME) have exhibited successful extraction of PBDEs from environmental 
samples [20, 21]. The application of SPE and SPME has advanced from conven-
tional adsorbent formats to the most improved formats which allow easy transfer 
of analytes from their complex matrices. This has been achieved by using novel 
adsorbent materials to replace conventional silica-based adsorbents which exhibit 
low selectivity towards targeted analytes [22]. Similarly, analytical techniques 
for the qualitative and quantitative determination of PBDEs have advanced from 
well-known gas chromatography-electron capture detection (GC-ECD) to sensor-
based techniques that are more advantageous in terms of excellent selectivity, 
with opportunities for in-situ application. The following sections provide detailed 
information on PBDEs, advances in sample pre-treatment methods and detection 
techniques with a view of providing the current state-of-the-art as far as their 
monitoring is concerned.

2. Polybrominated diphenyl ethers

2.1 The chemistry of PBDEs

PBDEs comprise of two halogenated aromatic rings bonded by an ester bond 
and are classified in relation to the number and position of bromine atoms in a 
particular molecule [23]. They have a general molecular formula of C12H(10 - x) 
BrxO, where x is the number of bromine atoms in a molecule with numerical values 
[x = 1, 2, 3, …, 10 = m + n] (Figure 1). Substitution of bromine atoms can take 
place at 10 possible positions on the two benzene rings resulting in 209 possible 
congeners [24].
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Different congeners are easily identified by their corresponding IUPAC numbers 
ranging from 1 to 209. In this case, 2,2′,4,4′-tetrabromodiphenyl ether is BDE-47, 
with bromine atoms in ortho and para positions on the first and second benzene 
rings, respectively (Figure 2).

Molecules with one to four bromine atoms are classified as low molecular mass 
PBDEs, whereas the ones with five to ten bromine atoms are categorized as high 
molecular mass PBDEs. Less brominated PBDEs are more persistent and toxic than 
highly brominated diphenyl ethers [25]. The substitution pattern also affects the 
physicochemical properties of PBDEs, whereby the solubility of PBDEs decreases 
significantly with an increase in bromine substitution. The aqueous solubility (SW) 
of low molecular mass PBDEs at room temperature ranges from 6.57 × 10−7 to 7.82 × 
10−11 mol L−1 while those of high molecular mass have aqueous solubility values lower 
than 7.82 × 10−11 mol L−1 [26]. A wide range of PBDE congeners exhibit high lipophilic 
capacity and high resistance to degradation; a property that makes them bioaccumu-
late and magnify in biota [7]. PBDEs are also associated with high octanol-air parti-
tion coefficients (KOA) with values ranging between 9.3 and 12.0 from BDE-17 to -126, 
which is approximately 1 to 2 orders of magnitude greater than PCBs [27]. Therefore, 
PBDEs are easily transported through air from one point to another, increasing their 
chances of exposure to humans. Dissolved organic matter has shown a high tendency 
to interact with hydrophobic compounds such as PBDEs, which hinders their mobility 
and degradation in the environment [28]. Reported binding coefficients of PBDEs 
(log KDOC) towards organic matter range from 5.1 to 7.14, which implicates the high 
capability of PBDEs to adsorb and partition on organic matter [29].

2.2 Global production and regulation of PBDEs

PBDEs were commercially produced in three technical mixtures, typically 
known as pentaBDE, octaBDE, and decaBDE, basing on the number of bromine 
atoms [10]. By early 2000, the global production of commercial PBDE formula-
tions was approximately 67,000 tons in the ratio 1:1.98:14.8 for octa-BDE, penta-
BDE, and deca-BDE respectively, of which the United States production was 

Figure 1. 
General structural formula of PBDEs.

Figure 2. 
Chemical structure of 2,2′,4,4′-tetrabromodiphenyl ether (BDE 47).
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approximately 50% of the global production [30]. Several governmental regulations 
and international environmental agencies have restricted and completely banned 
the use and production of some PBDE congeners [31]. In 2004, the European Union 
phased out the use and production of penta-BDE and octa-BDE. Consequently, 
in December 2004, Great Lakes Chemical Corporation, a sole manufacturer of 
penta-BDE and octa-BDE in North America, voluntarily phased out the produc-
tion of these BDE formulations [32]. These efforts were boosted by the Stockholm 
Convention in 2012 when it listed commercial octa-BDE and penta-BDE among 
persistent organic pollutants that need to be eliminated. Despite the ban in the 
production of most PBDEs, they are still reported in air, soil and aquatic environ-
ments, which is attributed to their stability and subsequent release from techno-
ecosystems, and production of deca-BDE, which still continues to be produced in 
some countries [33, 34].

2.3 PBDEs in the environment and their toxicological implications

There are diverse pathways by which PBDEs enter the environment. Major 
environmental sources of PBDE pollution comprise of leakage from consumer 
products and industrial facilities that synthesize PBDEs or PBDE-containing 
products [5]. Besides, PBDEs may enter the aquatic environment from illegal 
disposal of obsolete electrical appliances and electronic devices flame-retarded with 
PBDEs or other PBDEs-containing products [7]. They can also enter the aquatic 
environment through raw sewage and into the surrounding air through volatiliza-
tion from products containing PBDEs and toxic fumes from e-waste recycling 
plants [35]. Since the first discovery of PBDEs in the aquatic environment on the 
West coast of Sweden in 1981, several studies have reported the presence of PBDEs 
in the environment [36]. This is despite the strict regulatory measures imposed by 
some governments and international environmental agencies to phase out some 
PBDE congeners and subsequent reduction in the production of particular PBDEs. 
BDE-47, 99, 100, and 153 are the ones that are frequently investigated because they 
are primary components of commercial mixtures, therefore, their ratios in the 
environment are expected to be significantly high. Moreover, less substituted BDE 
congeners such as BDE-28 and 47 are more toxic and non-biodegradable, hence 
their investigation in the environment and biota is of great significance in the moni-
toring of these pollutants [37]. Soil and sediment harbour higher concentrations of 
PBDEs, which is attributed to the organic carbon content, which makes them a sink 
for most organic pollutants [38]. Elevated levels of PBDEs have since been reported 
in agricultural soils after the application of sewage sludge at a concentration of 21 
to 690 ng g−1 dry weight (dw) [39]. From statistics, human beings spend more than 
70% of their lifetime indoors, in occupational offices, homes, learning institutions, 
and transport vehicles, and are therefore exposed to an array of contaminants from 
indoor dust [40]. The highest levels of PBDEs in dust samples have been reported 
in major industrialized cities in China and Europe at a concentration of 397–40,236 
ng g−1 and 950–54,000 ng g−1, respectively [41, 42], with comparably lower levels of 
1710 ng g−1 in African regions [43]. Table 1 presents a summary of reported PBDE 
levels in selected environmental matrices.

The principal route for PBDE exposure to humans was thought to be through 
food consumption [58]. However, inhalation of contaminated indoor and outdoor 
dust is also a significant pathway via which human beings may be exposed to 
PBDEs [46, 59]. Dermal absorption is another potential route for PBDE exposure 
[60]. Numerous studies have reported levels up to 160.3 ng g−1 of PBDEs in human 
samples, such as serum and milk. Increased application of PBDEs in electronics has 
significantly aroused more research work on the concentration of these pollutants 
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in the blood of workers in e-waste processing plants and other exposed populations 
[61]. BDE 47, 153, and 209 are the most predominant congeners reported in human 
serum and milk [55, 62]. The toxicity of PBDEs is backed up by numerous epidemi-
ological studies. Scientific research has linked PBDE exposure to an array of adverse 
health effects [63]. To mention a few, penta- and octa-BDEs at a concentration of 
10,000 ng g−1 have been associated with disruption of thyroid hormone homeosta-
sis [7]. Moreover, penta- and tetra-BDEs, within the range of 8000–18,000 ng g−1, 
have been reported to affect the neurodevelopment of mice [64]. Exposure to high 
levels of deca-BDEs is likely to cause breast cancer [7]. PBDEs have been linked 
to developmental neurotoxicity and hence leading to severe effects on cognitive 
ability, behaviour, and health of both animals and humans [65, 66]. Several studies 
have also linked PBDEs with adverse effects on the human reproductive system. 
In particular, BDE-47, BDE-153, and BDE-154 in the range of 0.2–1.6 ng g−1 have 
been confirmed to have negative impacts on testosterone, luteinizing hormone, and 
estradiol [67]. Therefore, there is a need to have robust, accurate and reproducible 
methods to quantify PBDEs in different environmental matrices. The sections that 
follow will discuss these aspects with a particular focus on aquatic media.

3. Sample pre-treatment methods

Sample pre-treatment steps such as pre-concentration and clean-up are para-
mount before instrumental analysis [2, 68]. These steps ensure that analytes are 
enriched and converted into the right form/state to achieve their detection and any 
matrix that may interfere with the determination of the analytes is removed [69].  

Country Sample matrix Concentration Reference

South Africa River water 2.60–4.83 ng L−1 [44]

North America River water 0.00013–0.01 ng L−1 [45]

Great Britain Indoor dust 950–54,000 ng g−1 [46]

South Africa Home dust

Office dust

1710 ng g−1

1520 ng g−1

[43]

Nigeria Indoor dust 3700–19,000 ng g−1 [47]

China Indoor dust 397–40,236 ng g−1 [41]

Uganda Air 0.00340–0.00984 ng m−3 [48]

Kenya Soil 0.19–35.64 ng g−1 [49]

China Soil 4.8–533 ng g−1 [50]

China Sediment 0.03- 5.22 ng g−1 [51]

China Sediment 0.13–1.98 ng g−1 [52]

Sweden Sewage sludge nd-450 ng g−1 [53]

Spain Sewage sludge 197–1185 ng g−1 [39]

Kuwait Sewage sludge 52.5–377* ng g−1 [54]

USA Serum 5.0–27.9 [55]

South Africa Tigerfish 5.8 [56]

Uganda Breast milk 0.59–8.11 [57]

nd, not detected.
*Mean concentration.

Table 1. 
Levels of PBDEs reported in the environment and biota from different locales worldwide.
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The choice of sample pre-treatment step is dependent on the physicochemical 
properties of the targeted analytes, their concentration in the environment, and 
the complexity of matrix interference [70, 71]. Soxhlet extraction, a traditional 
liquid-solid extraction method, has been used for decades in the extraction of 
analytes from their complex solid matrices. With the combination of polar and non-
polar solvents, the Soxhlet extraction strategy has been proved to be efficacious, 
achieving extraction efficiencies greater than 70% [72, 73]. However, this method 
is hindered by several factors such as long extraction duration, excessive solvent 
consumption, and the need for subsequent clean-up steps [74]. With increasing 
demand for economical and fast sample extraction strategies with high enrichment 
factors, coupled with SPE clean-up procedures, techniques such as UAE, PLE, 
MAE, and supercritical fluid extraction (SFE) have been adopted in enrichment of 
analytes from solid matrices.

UAE encompasses the introduction of a finely divided sample contained in 
a sample holder in an ultrasonic bath with solvent and subjected to ultrasonic 
radiation. UAE is a vital technique in achieving sustainable green chemistry and 
is primarily employed in the extraction of analytes from solid sample matrices 
[75, 76]. This technique can achieve complete extraction with high reproducibility 
within a short duration. Moreover, small quantities of extraction solvents are 
used as compared to conventional Soxhlet extraction [77]. Methanol, acetonitrile, 
ethanol, and acetone are typical extractants used in this method in minimal volume. 
UAE based on ultrasound assisted-dispersive solid phase extraction (UAE-DSPE) 
coupled to GC-MS has been reported to achieve exemplary limits of detection and 
extraction efficiencies for 7 BDE congeners from dust samples collected from air 
conditioning filters in the range of 1.4–8.4 ng g−1 and 90–102%, respectively [78]. 
Some of the benefits of UAE include faster kinetics and an increase in extraction 
yield. Ultrasound can also reduce the operating temperature allowing the extraction 
of thermally labile compounds [79].

Unlike traditional Soxhlet extraction that consumes a large volume of solvent, 
PLE, also referred to as pressurized solvent extraction, has been of great interest 
due to its extraction effectiveness. Extraction of analytes from their environmental 
matrices is achieved via a synergistic mechanism that proceeds through liquid 
solvents at elevated temperature and pressure, which altogether enhance extraction 
throughput as compared with other techniques performed at ordinary atmospheric 
conditions [80]. PLE is viewed as another 'green' option for traditional sample 
extraction methods. High temperature accomplishes a higher dispersion rate, while 
high pressure keeps the extraction solvent below its boiling point. During the deter-
mination of brominated flame retardants in e-waste samples, PLE and UAE were 
evaluated in regard to extraction efficiencies. PLE demonstrated high extraction 
efficiencies of 95–100% as compared to 10–50% for UAE [81]. When contrasted 
with the conventional methods, PLE shows a decrease in extraction time and a 
significant decrease in the overall consumption of organic solvents [82].

Another type of extraction technique that enables a three-fold reduction in 
extraction time and solvent is MAE. This is a sample extraction method that 
employs microwave energy to extract analytes from solid sample matrices in 
contact with extraction solvents. Microwave energy directly generates heat which 
initiates molecular motion of the analytes in the solid-solvent complex mixture, 
hence facilitating the mass transfer of the target analyte from the solid matrix to 
the extracting solvent [83, 84]. MAE has been reported to achieve good recoveries 
of 80–106%, 72.4–108.4%, and 80–110% in the extraction/pre-concentration of 
PBDEs from airborne particulate matter [85], e-waste materials [86], and sewage 
sludge samples [87], respectively. Compared with Soxhlet extraction, MAE achieves 
better recoveries and uses small amounts of solvents (30 mL versus 200 mL for 
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Soxhlet extraction), at the same time allowing control of extraction parameters, 
such as extraction time and temperature [88]. However, MAE has some shortcom-
ings, whereby the extracted sample usually contains some matrix interferences, 
such as lipids and lipophilic compounds, therefore, filtration and clean-up steps are 
required, which subsequently consume extra organic solvents.

Supercritical fluid extraction (SFE) is another method employed to extract 
PBDEs from solid matrices. Supercritical CO2 is often used as an extracting solvent, 
which has the capability of attaining recoveries above 97%. Moreover, the extrac-
tion efficiency of SFE can be further improved by the use of modifiers such as 
acetonitrile, toluene, and tetrahydrofuran [89]. A successful application of SFE in 
the extraction of PBDEs from polymeric materials was reported by Peng et al. [90]. 
The authors used supercritical CO2 as a solvent and SFE operating parameters such 
as temperature and pressure were optimized at 65°C and 20 MPa, respectively, 
achieving 97.6% extraction efficiency. This technique is a greener alternative to 
other techniques that use a large volume of solvents.

Numerous methodologies have been adopted in the determination of PBDE pol-
lutants in liquid matrices. SPE and conventional LLE have been embraced as routine 
extraction techniques for PBDEs in liquid samples. The extractive capability of 
LLE is based on the transfer of analytes from an aqueous polar phase to a non-polar 
organic phase [91]. LLE coupled with GC-MS has been applied in the determination 
of 13 PBDEs and their metabolites in water, with recoveries of 77%-102% [92]. LLE 
has also been a desirable extraction method in the preparation of biota samples for 
the determination of PBDEs. Recently, a study aimed at assessing in utero exposure 
of 24 tri- to deca- BDE congeners on primiparous mothers in Kampala, Uganda 
reported a successful application of LLE, with appreciable recoveries of 81–91% 
[93]. However, LLE has some shortcomings; it suffers from low recovery, poor 
selectivity, high matrix interference in chromatographic analysis and increased 
sample loads [94]. In addition, the extraction of PBDEs from water samples requires 
extremely large volumes of solvents due to their hydrophobic character and low 
concentration in water, thus limiting its applications [95]. To overcome these 
challenges, different configurations of SPE have been adopted in sample enrich-
ment strategies. SPE is a modern sample pre-treatment technique employed to 
concentrate analytes from liquid samples and to remove matrix interferents during 
the clean-up step, achieving exemplary recoveries and reproducible results over 
LLE [96, 97]. SPE protocols are usually performed by the use of a small column or 
separation cartridge packed with an appropriate sorbent material [98, 99]. Target 
analytes are adsorbed by the sorbent materials and later eluted with a solvent that 
has a greater affinity for the analytes. The chemistry behind this separation is based 
on intermolecular forces between the analytes, active sites of the adsorbent, and 
the liquid phase of the matrix [100]. SPE can be performed through an on-line or 
off-line approach. The on-line SPE configuration, which may enable automation, 
is directly coupled with specific analytical systems such as gas chromatography 
(GC) or high-performance liquid chromatography (HPLC). Whereas in the off-line 
protocol, a pre-concentration step is done separately using cartridges and further 
eluting the adsorbed analyte with an appropriate solvent for eventual chromato-
graphic analysis [101]. Because of its robustness and flexibility, SPE has been widely 
employed in different analytical procedures in pre-concentration and clean-up 
steps in the determination of PBDEs [96, 102].

While SPE continues to be used because of its affordability and ease of use, 
other formats that offer high enrichment factors and shorter extraction times, such 
as SPME, stir-bar sorptive extraction (SBSE) and dispersive solid-phase extraction 
(DSPE), have been introduced [103]. SPME is an innovation and improvement of 
conventional SPE. Its stationary phase comprises of fused-silica fibers coated with a 
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polydimethylsiloxane (PDMS) layer which are reusable. With this new formulation, 
the application of SPE has become versatile such that it can accommodate small 
volumes of samples. Furthermore, SPME has been considered an almost solvent-
free extraction technique and can be easily automated as compared to conventional 
SPE [104, 105]. A miniaturized SPME has been applied in the extraction of PBDEs 
in environmental water samples followed by GC-MS quantitation, with low limits 
of detection and appreciable recoveries of 76.5–125.4% [106]. SBSE is a similar 
technique to SPME that has been adopted in the enrichment of PBDEs in liquid 
samples due to its improved extraction efficiency. The stir bars are coated with a 
thinner PDMS layer, as opposed to a thicker layer in SPME, a factor that allows 
improved enrichment efficiency [107, 108]. DSPE is another format of SPE based on 
the dispersion of solid sorbent materials in liquid samples to facilitate the isolation 
and extraction of target analytes from the complex sample matrix. In this process, 
matrix interferences remain embedded in the supernatant, which is later discarded 
while the target analyte is bound to the sorbent material and which is eventually 
eluted with a viable solvent [109]. DSPE has been employed in the enrichment and 
determination of PBDEs with recoveries within the range of 60–140% [110].

3.1 Advances in SPE sorbents

Complexity and matrix interferences encountered during sample preparation 
steps have attracted the invention of more selective sorbents to replace conventional 
silica sorbents that are associated with a number of drawbacks, such as instability at 
extreme pHs and low extraction efficiencies [111]. The new sorbents that include, 
nanocomposite materials, metal-organic frameworks, and molecularly imprinted 
polymers, among others, are characterized with high sensitivity and selectivity 
towards various environmental organic pollutants. They achieve fast dispersion and 
efficient recycling when applied in complex sample matrices [112, 113]. Reported 
nanocomposite sorbents in SPE for PBDE-containing samples include carbon 
nanotubes, graphene oxide (GO) [114, 115], and magnetic nanocomposite materi-
als [113]. However, nanocomposite sorbents in classical SPE schemes have been 
associated with various drawbacks. A few of these challenges have been described 
in flow as well as batch systems, which originate from a slow flow rate of the sample 
through the packed SPE column and difficulty in separating the sorbent from the 
large volume of aqueous sample [113].

Other sorbent materials with fascinating properties are metal-organic frameworks 
(MOFs). These are hybrids of organic and inorganic materials characterized by a 
porous structure, large surface area, uniform nanoscale cavities, high adsorption 
capacity, and high thermal and chemical stability. Due to these advantageous proper-
ties, this class of materials has recently attracted enormous attention in the field of 
sample preparation [116]. The development of MOF adsorbents is still at its infancy 
stages, therefore, a limited number of studies have reported their application particu-
larly in enrichment and determination of environmental PBDEs. A zirconium-based 
metal-organic framework material (UiO-66-OH) is a good example of a MOF. It has 
been synthesized and successfully applied as an adsorbent in SPME for enrichment 
and detection of 5 BDE congeners in milk samples using GC-MS, with low limits of 
detection in the range of 0.15–0.35 ng L−1 and excellent recoveries of 74.7%–118.0% 
[117]. A contrast study using silica-based sorbents in SPE for determination of 12 
PBDEs in human serum, achieved mean recoveries of 64–95% and limits of detection 
in the range of 0.1–4.0 ng g−1 by using GC-MS [102], an evidence that MOF sorbents 
offer promising analytical results as compared with conventional sorbents.

With growing interest in sorbents that offer extraordinary extractive capability 
in SPE, molecularly imprinted polymers (MIPs) have been extensively explored 
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as attractive options due to their robustness and selectivity towards particular 
target analytes providing exemplary substitute sorbents in sample clean-up and 
pre-concentration steps, especially in SPE and SPME [118]. MIPs are synthesized 
through molecular imprinting technology that involves polymerizing functional and 
cross-linking monomers in the presence of a target analyte, followed by the removal 
of the analyte to leave behind analyte-specific cavities. Their selectivity enables 
substantive removal of matrix interferents during the sample pre-treatment step 
[119]. MIP-based sorbents are readily available substitutes to silica-based adsorbents, 
which are reported to suffer from matrix interference, low selectivity, and sensitivity 
towards organic pollutants and may involve multiple steps that are labour-intensive 
for complete removal of interferences [120]. For example, commercial molecularly 
imprinted solid-phase extraction (MISPE) cartridges alongside alkaline extraction 
have been applied in aqueous enrichment and quantitation of PBDEs using GC-MS 
[121]. The extraction of PBDEs using MISPE gave recoveries above 60% compared to 
alkaline extraction which was below 60%. This confirms the selectivity capability of 
MIPs towards PBDEs from a complex environmental matrix. A more recent study has 
also reported recoveries of 60–87% in clean-up of soil and sediment samples using 
dummy molecularly imprinted polymers as SPE sorbent materials during determina-
tion of BDE-47 and BDE-99 [122].

Sample 

preparation 

technique

PBDE congeners Sample 

analyzed

Analytical 

technique

% 

Recoveries

Reference

SPE BDE-28, 47, 49, 
66, 85, 99, 100, 
138, 153, 154,  

183 & 209

Human 
serum

GC-ECD 64–95 [102]

BDE-47 and 99 Soil and 
bottom 

sediment

GC-MS 60–87 [125]

PLE BDE-28, 47, 99, 
100, 153, 154  

& 183

Soil GC-MS 95 ± 9 [68]

BDE-28, 47, 99, 
100, 154, 155 & 

183

Soil and 
sediment

GC-MS 84–103 [92]

LLE BDE-17, 28, 47, 
66, 71, 85, 99, 

100, 138, 153, 154, 
183 & 190

Soil and 
sediment

GC-MS 85–103 [92]

Soxhlet 
extraction

42 mono- to 
deca-BDEs

Indoor dust 
sample

GC-MS ≥ 70 [72]

UAE BDE-1, 3, 7, 8,  
28 & 47

Industrial 
effluent

HPLC 98.7 [126]

SPME BDE-49, 99, 100, 
153 & 154

Milk and 
water

GC-ECD 90–119 [127]

MAE BDE-47, 99, 100, 
138, 153, 154, 184 

& 209

Sewage 
sludge

GC-MS 80–110 [87]

Table 2. 
Examples of sample preparation strategies.
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However, a wide range of limitations still exist in MIPs, especially their poor 
water compatibility. Consequently, since MIPs and target analytes mainly interact 
through hydrogen-bonding, their recognition capability would be easily disturbed 
by polar solvents such as water. Therefore, the adsorption process is normally per-
formed in non-polar or low-polar solvents such as dichloromethane and n-hexane 
rather than polar solvents. Additionally, polar solvents have a tendency to occupy 
binding sites, which affects the recognition capacity for the target analytes. In this 
context, it is necessary to continually invent new synthesis strategies for water-
compatible MIPs [123, 124]. A summary of some of the sample pre-concentation 
strategies and their extraction efficiencies is presented in Table 2.

4. Analytical techniques for the detection of PBDEs

Sample pre-treatment steps are followed by quantification of the analytes 
using various detection systems. The choice of detection system depends on the 
physicochemical properties of the target analyte and the required detection levels. 
Detection techniques for quantification of PBDEs have evolved from liquid chro-
matography to gas chromatography and recently, miniaturized systems that involve 
the use of sensors. For chromatographic techniques, it’s important to optimize 
the operational parameters to actualize reliable instrumental results. It is highly 
recommended to use a sample injector with programmed temperature vaporiza-
tion (PTV) to avoid degradation of thermally labile BDE congeners. Additionally, 
the temperature of injection should be accurately defined, especially when using 
a split/splitless injector, which minimizes chances of thermal degradation of 
higher BDEs congers as well as discrimination of lower brominated congeners 
[95, 128]. The choice of a column is another important aspect in the analysis of 
PBDEs where lower brominated congeners are well separated on longer columns, 
whereas higher brominated congeners are well separated on shorter columns. In 
the case of a mixture comprising of a wide range of BDE congeners, a short column 
is highly recommended, which well separates nona- and deca-BDEs [129]. HPLC 
coupled with mass spectrometry (MS), is one of the chromatographic techniques 
which has rarely been applied in the quantification of some PBDE congeners. The 
HPLC separation is hindered by several factors such as poor solubility of highly 
brominated diphenyl ethers in the polar solvents of the mobile phase, especially 
in reversed-phase, and, thus, requiring the sample to be enriched with an organic 
modifier. Normal phase HPLC has offered better separation of some PBDEs though 
it still results in incomplete separation, especially when an electrospray ionization 
detector is incorporated [130]. One group used an automated on-line sample pre-
concentration device coupled with HPLC-MS to determine decabrodiphenyl ether 
in human serum samples. This method achieved detection limits of 26.0 ng L−1 
[130]. Otherwise, better detection limits of 0.2-25 ng L−1 were tenable when similar 
samples were analyzed for 12 PBDEs including decabromodiphenyl ether using gas 
chromatography-electron capture detection (GC-ECD) [102]. However, GC-ECD 
exhibits low selectivity and suffers from matrix interferences originating especially 
from halogenated species, as compared to GC-MS, which overcomes these chal-
lenges [131]. Fontana et al. [16] employed a coupled system, ultrasound-assisted 
emulsification microextraction-GC-MS (UAEMA-GC-MS) to determine PBDEs 
in water samples, with appreciably low detection limits of 1–2 ng L−1. Moreover, 
lower limits of detection are achievable when tandem-mass spectrometry (MS2) is 
utilized. For example, GC-MS2 has been reported to achieve detection limits within 
the range of 0.002–0.0136 ng g−1 lipid weight (lw) in the determination of PBDEs 
in breast milk and serum samples [132].
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With the recent technological revolution, a more sensitive mass spectrometer, 
a high-resolution mass spectrometer (HRMS), has been found to be a promising 
alternative to a conventional mass spectrometer as it identifies the analyte without 
mass fragmentation and at the lowest mass unit [133]. With this new format of 
detection, very low detection limits of 0.000262–0.046 ng g−1 for 23 PBDEs in dust 
samples were achieved [134]. However, GC-HRMS is more expensive than conven-
tional GC-MS, compelling researchers to often rely on GC-MS since it is less expen-
sive and readily available. Besides, the demand for techniques that provide rapid 
results at minimal cost has resulted in the introduction of sensor technology in the 
determination of PBDEs. In this context, various detection systems have been fabri-
cated and shown a discerning capability in the detection of PBDEs. For instance, an 
immunoassay detection system based on graphene oxide-polydimethylsiloxane has 
demonstrated desirable limits of detection of 0.018 ng g−1 for PBDEs in a standard 
solution and environmental water samples [135]. Similarly, a novel electrochemical 
immunoassay sensor used for the detection of BDE-28, 47, 99, 100, 153, and 154 
in food samples, achieved a detection limit of 0.00018 ng L−1 [136]. These limits 
are comparable with those obtained by HPLC, GC-MS, or GC-HRMS. A surface-
enhanced Raman scattering-based sensor is another detection system that has been 
successfully applied for rapid detection of BDE 47 in aqueous media, with detection 
limits of 0.0364 ng L−1 [137]. The use of sensory techniques is cheaper and a low 
concentration of contaminants can be detected. Moreover, the analysis duration is 
reduced from 10 minutes to 3 minutes. Thus, these sensor methods offer scope for 
further evaluation.

5. Conclusion

This chapter has discussed PBDEs as emerging environmental pollutants, their 
sources, and toxicological implications on humans and their determination in the 
environment. Sample pre-concentration methods for PBDE-containing samples 
that include UAE, PLE, UAME, PLE, SFE, SPE, SPME, SBSE, and DSPE have been 
critically reviewed as preferred alternatives to LLE and Soxhlet extraction due to 
their enhanced extraction efficiency. Novel SPE and SPME sorbents that provide 
the desired selectivity in the determination of PBDEs have also been discussed. 
Though these sorbents are promising, their application in MISPE in the determina-
tion of PBDEs has been scantly employed and its dynamics are still at its infancy 
stages. Therefore, there is room for continuous introduction of highly selective 
materials for the quantification of PBDEs in the environment. Alongside the evolu-
tion of sample pre-treatment techniques for the detection of PBDEs, rapid sensor-
based techniques that achieve the desired figures of merit similar to traditional 
instrumentation techniques have demonstrated great potential.
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