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Protagonist of Mineral Nutrients 
in Drought Stress Tolerance of 
Field Crops
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Abstract

The food demand is increasing hastily, that is inducing continuous pressure 
on agriculture sector and industries to fulfill rising dietary needs. To meet with 
increasing demand, the food production must be elevated up to 70% until the year 
2050. On the other hand, changing climate is disturbing crop production around 
the World. Crops grown under field conditions are affected by more than one 
abiotic stress. It is continuous task and challenge for agronomists to make crops 
environment hardy to obtain maximum yield. It is considered that different agro-
nomic managements, if done appropriately, could be beneficial for increasing crop 
production. The optimal provision of plant nutrients can assist the crops to fight 
in better way with environmental stress like drought; it can help them to continue 
their normal metabolism even under hostile abiotic circumstances. The regions 
that have reduced availability of water for crop production, a balanced nutrient 
management can assist crops to give adequate production. Some of nutrients have 
potential of not only maintaining plant metabolism but also to enhance the quality 
of product. This chapter highlights the protagonist of plant nutrients in alleviation 
of drought stress in field crops.

Keywords: drought, physiology, consequences, alleviation, macronutrients, 
micronutrients, mechanisms

1. Introduction

Water shortage is an emerging limitation to crop production due to climate 
change. It critically influences development and growth of crops and results in signif-
icant production loss. It is important to recognize morphological, physiological and 
bio-chemical effects of drought in relation to nutrient uptake in crops [1]. Drought 
impairs mineral transport and effects stomatal conductance. By considering 
nutrients role in plants growth, negative consequences of drought can be avoided 
by management strategies [2, 3]. Previously, many scientists have worked to 
understand the role of mineral nutrients in alleviation of drought stress, but more 
is to be done. Among minerals that are essential for plant growth, macronutrients 
has significant importance because their shortage lead to quick response and plants 
become more susceptible to other abiotic and biotic stresses. On the other hand, 
micronutrients deficiency effect at molecular level and results in altered enzymatic 
activity and blockage in signal transduction pathways [4]. Those plants that have 
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capability to attain and retain water in large amount, as well as better water usage 
efficiency, are more tolerant to drought stress. Response in the direction of water 
stress depends upon crop growth stage, intensity and severity of drought [5, 6].

There are many reports available previously that addresses the consequences 
of drought on different physiological parameters like photosynthesis, respiration, 
homeostasis and assimilates transportation but very few discourses the drought effects 
on mineral in crops. Albeit, if crops are grown on mineral-rich soils, water limitations 
can be the reason of disruption in nutrient uptake. Minerals are taken up by plants in 
inorganic ionic forms. When a plant is subject to drought, due to low soil moisture, the 
diffusion of minerals is disrupted and ultimately transport is affected [3, 7, 8].

2. Effect of drought stress in crops

Field crops are simultaneously subjected to more than one abiotic stress during 
their complete life cycle. Drought and high temperature are the most detrimental 
abiotic stresses. It is continuous task for scientists to make crops hardy against biotic 
and more importantly abiotic stresses to increase food productivity. The simulation 
model predicts that to cope with rising food demand, supply must be increased to 
70% till the year 2050 [9–12].

Drought stress influences crops by disturbing their physiological and biochemical 
functioning [13–16]. Previously, work is done making crops vigorous to deal with 
climatic challenges [9, 16–18] but more is still to be done.

Early droughts due to changing climate can reduce crop productivity [19]. The 
struggle of water use among domestic, industrial and agricultural sector is making 
situation worse for irrigated agriculture [20]. This problematic situation is shift-
ing agriculture from irrigated to rainfed areas where periodic drought events are 
occurring due to disturbed rainfall pattern [21, 22].

2.1 Impact of drought on morphological traits

Crops when subjected to drought stress show different behavior. Some crops are 
resistant to drought while others are susceptible [23]. Those crops that have taproot 
system are more tolerant to short term drought events. They can stand with mild to 
moderate drought condition. On the other hand, prolonged drought can affect all 
crops likewise and can cause significant yield loss [24].

2.1.1 Effect of drought on seedling emergence

Seed germination is the most critical stage in complete life cycle; it is influenced 
by water availability for imbibition [25]. Drought stress at this stage can results in 
irregular germination and deprived seedlings [26, 27]. In rainfed areas, absence of 
shower at seedling establishment stage critically reduces field emergence [28, 29].

2.1.2 Growth phase affected by drought

Water shortage at vegetative stage disturbs growth and development through 
impaired turgor and stomatal conductance [30]. The reduction of water potential 
inside cytosol increases solute level. This leads to damage of cell structure and func-
tioning. Cell division and expansion is also inhibited [31]. Under drought stress, 
nutrient uptake is also exaggerated that primes to reduction in leaf area and photo-
synthesis [32, 33]. Several traits of crops that are affected by drought at vegetative 
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stage include leaf area, assimilation rate, total dry matter and chlorophyll [34, 35]. 
Root length and dry weight of leaves and stem is also reduced [36].

2.1.3 Effect of drought on crop yield

The loss of crop yield due to drought stress is decided by many factors like 
intensity, duration and ability of crop to tolerate drought stress. In higher plants, 
anthesis is the most drought susceptible stage [37]. Water shortage at that stage can 
results in substantial yield loss [30].

In oilseed crops, almost all yield related traits are affected by drought [38–40]. 
Severity of drought is also an important aspect; it distresses all growth stages 
regardless of crop, eventually results in considerable yield loss [41–44].

2.1.4 Effect of drought on crop quality

Among oilseed crops, sunflower has significant importance because it is rich 
in linoleic acid. Drought stress at reproductive stage reduces oil quality in oilseed 
crops and deteriorates its texture [45]. Drought stress also reduces quality of 
end products. It disturbs biochemical enzymes [46] and gene regulation that are 
responsible for oil constituents in sunflower [47].

2.2 Effect of drought on physio-biochemical traits

Crops are responsive to abiotic stresses from molecular to morphological level. 
Those crops that are tolerant to drought stress modify their cells at molecular 
level like increasing concentration of osmolytes in cytosol under harsh environ-
ment [48–52]. However, in susceptible crops, drought can affect at biochemical 
level [53–56].

2.2.1 Water relation disturbance

The key phenotypic adoption in drought tolerant crops is tap root system. They 
can extract water from deeper soil layer even under severe environment. Those 
plants that have shallow root system, when subjected to drought, it affects their 
water potential inside cell [57]. The low water potential leads to turgor loss and 
interrupted stomatal conductance [36, 41]. Transport of nutrients through xylem is 
concerned under drought [58, 59].

2.2.2 Photosynthesis reduction

The metabolic process of carbon fixation that occurs in leaves in the presence 
of light is called as photosynthesis. This is the main energy harvesting phenom-
enon that is accountable for growth and development. It is affected by different 
environmental factors like, availability of moisture, sunshine, humidity and 
temperature [60].

The plants that have C4 carbon fixation pathway are more efficient in carbon 
harvesting [61], but under drought, they perform in the same way as C3 plants. 
Stomatal closure is triggered by water deficit condition that eventually restricts 
CO2 diffusion [62], thus diminishes photosynthesis [36]. Ribulose bisphosphate is 
a vital enzyme in carbon fixation. The activity of RuBP is affected under drought 
stress. Those crops that can maintain RuBP production are more resistant to 
drought stress [63–68].
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2.2.3 Disrupted uptake of nutrients

Under drought, absorption capacity of roots is affected that condenses nutrient 
uptake. Nitrogen, being a vital constituent of plants, is required in high quantity. 
The reduction of soil moisture reduces ability of roots to absorb adequate mois-
ture. Phosphorus uptake, transport and translocation are also affected in drought 
conditions [6]. It lessens NPK uptake in sunflower [41].

2.2.4 Drought induced oxidative stress

Free radicals of oxygen, that are also known as reactive oxygen species has sig-
nificant role in cell signaling. Their production remains continue unceasingly inside 
cell in controlled amount. When a plant is subjected to any environmental stress, 
its production increases. This augmented concentration induces oxidative stress to 
crops. They are highly reactive in action; they can cause injury to cellular structure 
[69]. In oilseeds like sunflower, drought overproduces ROS [70]. Malondialdehyde 
is an indicator of cell membrane damage in plants. Water deficiency increases MDA 
production that specifies increment in cellular injury [71–73].

3. Role of nutrients in drought stress alleviation

Optimum nutrient supply not only improves growth of crops but is also helpful 
for plants under adversative climatic conditions. There are seventeen nutrients that 
are crucial for plant growth [74]. Upon their requirement, these are grouped as 
macronutrient and micronutrient. This review deals with role of essential nutrients 
in drought stress mitigation.

3.1 Macronutrients

3.1.1 Nitrogen

Under dry climatic conditions, water use efficiency and growth of crops is 
restricted due to less accessibility of water. Efficient nitrogen application can serve the 
purpose under drought stress [75, 76]. Plants facing drought stress are more suscepti-
ble to heat tremors as well. Nitrogen deficiency in drought stress outcomes as biomass 
reduction in crops [77, 78]. Previous studies have suggested that shoot biomass is more 
affected under drought-cum-nitrogen stress, while root biomass is not much exagger-
ated primarily [79]. On the other hand, plants become drought hardy under sufficient 
soil nitrogen availability [75, 80, 81]. Increasing nitrogen significantly improved crop 
performance under drought stress. Nitrogen also play significant role in prevention 
of plasma membrane damage and osmotic adjustment. Application of N under water 
deficiency also enhances other major nutrient uptake like potassium and calcium [82].

Nitrogen availability diminishes malondialdehyde content that alleviates in 
drought stress [80]. It recovers photosynthetic contents and improves cell division 
that lead to leaf area increment [83]. At molecular level, drought stress greatly 
influences photosystem-II efficiency that is recovered by optimum nitrogen 
accessibility [51, 84–93].

3.1.2 Phosphorus

Previously, many researchers have testified that phosphorus application under 
water deficiency in many crops significantly enhance their water usage ability and 



5

Protagonist of Mineral Nutrients in Drought Stress Tolerance of Field Crops
DOI: http://dx.doi.org/10.5772/intechopen.94135

helps in drought resistance [74, 94, 95]. It is also well known that optimum phos-
phorus in crops improves root growth and stomatal activity [96, 97]. Phosphorus 
availability also optimizes leaf area [98], plasma membrane stability and water use 
efficiency [99–102]. It was observed that phosphorus in leaves was relatively higher 
under drought condition as compared to optimum water availability which suggests 
that phosphorus has contribution in drought tolerance [94, 96].

Phosphorus also improves nitrogen mobility under water deficiency [103]. 
Morphological and physiological parameters were also improved when phosphorus 
was applied at high rate in drought such as, plant height, leaf area, dry weight and 
water use efficiency [102, 104]. Application method of phosphorus also influences 
crop growth in drought, deep phosphorus placement (DPP) method works excel-
lently for drought affected areas that ultimately promotes root growth [101, 105].

3.1.3 Potassium

Potassium is well-known for its osmoregulatory functions in crops. It regulates 
stomatal conductance and water uptake; the optimum K application increases 
WUE [106, 107]. Potassium soothes aquaporins and osmotic pressure that regulates 
water uptake, stomatal regulation, carbon intake, cell elongation and ROS detoxi-
fication [108, 109]. In grasses like sorghum, K application under drought improves 
photosynthesis which leads to growth and yield [106, 110]. In maize, potassium 
plays role photosynthates assimilation [111]. Potassium availability is correlated 
with aquaporins activity and stem cell expansion [112].

The hydraulic conductivity of root and anatomical traits has great influence 
on crop performance. The increment in hydraulic conductivity is associated with 
drought tolerance [113]. In higher plants, reduction in K influences aforementioned 
traits, hence compromised yield. Drought simulates ethylene production that in 
return hinders abscisic acid activity. The starvation of K further worsen the situa-
tion, it delays stomatal conductance [109]. Potassium also play role in ROS detoxifi-
cation and promotes photosynthesis process [114, 115].

3.1.4 Magnesium

Magnesium has central place in chlorophyll molecule, thus has significant 
importance. It has great role in dry matter partitioning from sink to source. Passable 
Mg is required at reproductive stage to avoid flower sterility. Foliage application also 
improves nutrient mobility and helps in growth maintenance under stressful envi-
ronment [116, 117]. Magnesium is highly mobile nutrient. It has positive correlation 
with nitrogen and potassium. Adequate magnesium increases their mobility; they 
are helpful in stress tolerance [118].

Drought stress in field crops affects magnesium uptake from soil. This defi-
ciency can be fulfilled by foliar Mg application [119]. Earlier, it is known that 
foliage applied Mg can satisfy plant’s need [120]. The mechanisms of Mg that are 
responsible for drought stress induction include growth of root, NPK uptake and 
improvement of WUE [74].

3.1.5 Calcium

Drought stress leads to overgeneration of ROS that result in cell damage 
[121–124]. Calcium has its role in detoxification of ROS [125]. It is known that in the 
activity of aquaporins, pH and calcium are of significance importance [126, 127]. 
Exogenous application of Ca induces drought resistance in wheat cultivars. Calcium 
has cell signaling mechanism, which simulates proline accumulation.
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Calcium, when it is applied under drought stress, it improves chlorophyll and cata-
lase activity and decreases plasma membrane damage. It also maintains osmolytes like 
proline and other soluble antioxidants [128, 129]. Foliage applied Ca under drought 
stress helps to improves drought stress alleviation by refining catalase, peroxidase and 
superoxide dismutase activity [130].

3.1.6 Sulfur

The role of sulfur application in mitigation of drought stress is very little known 
previously. It has a substantial role in stress signaling pathway. It improves crop 
growth, morphological parameters and nutrient contents [131]. In counter stress 
mechanism, increment in glutathione also has significant importance. It aids in ROS 
detoxification [132]. The uptake of sulfur in adequate amount helps crops to stand 
with drought events. Its transport and assimilation is among one of the drought 
stress responses [133, 134].

3.2 Micronutrients

3.2.1 Zinc

Zinc has role in various physiological processes like activity of catalytic, car-
boxypeptidase, superoxide dismutase, RNA polymerase and alkaline phosphates 
[4, 118, 135, 136]. Under water shortage, zinc has been known to improve drought 
resistance by improving WUE and water activity [4, 137, 138]. The reduction in 
zinc uptake, that is caused by water shortage, leads plants toward stress condition. 
Under limited soil moisture, zinc is immobile [118].

In cereals like wheat, when drought is subjected at anthesis and grain filling, 
it constrains nutrient uptake which become cause of stunted growth [139]. The 
process of photosynthesis and water activity is affected under zinc-cum-drought 
stress, however, when zinc is present in optimum amount, it helps crop to stand 
with drought. It aids in deactivation of ROS [4, 140]. At reproductive stage, 
plants are highly susceptible to Zn shortage [141]. When plants are subjected to 
prolonged drought, it impairs activity of different cell metabolic contents like 
NADPH. Zinc application inhibits photooxidative damage, reduces ROS genera-
tion, and promoting osmolytes concentration like SOD [74, 142–145].

3.2.2 Manganese

It is vital micronutrient that has several functions in plants. It assists in 
activation of various metabolic enzymes of tricarboxylic cycle. It is the part of 
photosystem-II, also aids in ATP synthesis and RuBP carboxylase activity. It helps 
to maintain balance among superoxide dismutase activity and chlorophyll contents, 
even under water stress [130].

The role of manganese is well known for detoxification of ROS like superoxide 
and hydrogen peroxide [146]. On the other hand, manganese shortage leads 
to oxidative stress in plants that causes chlorophyll damage thus stunted pho-
tosynthetic activity [4]. Water shortage can also be responsible for manganese 
deficiency. Low soil availability of manganese as it occurs under dry conditions 
makes it unavailable for plants [147]. The starvation of manganese leads to WUE 
reduction. In cereals like barley, lower WUE is correlated with abrupt stomatal 
control during the day and imperfection in stomatal closure during night. This 
leads to degradation of waxy layer of plasma membrane that is consequence of 
ROS activity [148].
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3.2.3 Iron

It is involved in chlorophyll pigments production. It is the part of enzymes that 
are involved in transfer of energy, reduction of nitrogen and formation of lignin. 
It creates compounds along with sulfur that are the catalysts for other vital bio-
chemical procedures in plants. The iron deficiency results in chlorosis which is the 
consequent of low chlorophyll concentration. Severe deficiency of iron turns leaf 
color from yellow to white that is sign of leaf death. Under high soil pH, iron uptake 
is affected. It also has antagonistic effects with phosphorus and manganese [149].

The moisture in soil greatly inhibits iron uptake [150]. The iron has vital pro-
tagonist in oxidative damage protection of leaves under stress. Its deficiency is 
highly dreadful for plants growth [4]. Sufficient iron amount in plant is essential for 
activities of antioxidants [151].

3.2.4 Boron

Boron is unavailable in soil barring basic pH and low moisture. It is highly 
immobile in pedosphere as well as plant. The continuous supply of boron can 
prevent crops from its deficiency and detrimental effects [152].

Low soil moisture greatly hampers boron uptake from rhizosphere. Its uptake 
via roots involve passive uptake frequently that is maintained by water uptake. As 
the water decreases in soil, its uptake is compromised [153]. Main function of boron 
is to take part in synthesis of cell wall and its extension. It also recovers biosynthesis 
of lignin and differentiation of xylem. It increases photosynthetic activity and 
plasma-membrane integrity. It facilitates assimilate transportation [4, 74].

It is necessarily required for H-ATPase activity and the coding involved for it. It 
also influences uptake of other nutrients like K and deteriorate cell expansion [4]. 
Boron is also involved in lessening of photochemical damage of cell. Among reasons 
for low photoinhibition, boron deficiency and drought are well known [153].

3.2.5 Copper

Among micronutrients, copper is essential for growth of plants. It has vital 
role in electron transport chain and cell wall loosening. It also involves in sensing 
ethylene, metabolism of cell wall and oxidative stress protection [154, 155]. The 
well-known function of copper is its involvement in formation of pollens and 
upholding their viability [4, 155].

There are many enzymes in which this metal acts as cofactor like ascorbic 
oxidase, laccase, amino oxidase and polyphenols. At molecular level, copper is also 
involved in cell signaling, trafficking of proteins, mobilization of iron and oxidative 
phosphorylation. The reproductive parts of plants are more susceptible to cooper 
deficiency [155, 156].

4. Conclusion

The changing climate is making situation worse for field crop production. 
Abrupt variations in rainfall and temperature is limiting crop yield. Under field con-
dition, more than one abiotic stresses are disturbing plant growth simultaneously. 
Drought stress is among the major agricultural yield limiting factor worldwide. 
Different agronomic practices like optimum plant nutrition management are greatly 
obliging for crops under drought stress. It can alleviate drought consequences 
affectively. Drought stress greatly inhibits different physiological functions and 
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biochemical processes. It leads to ROS over-generation that significantly damages 
cell structure. Optimal nutrients supply like NPK and Ca be accommodating for 
ROS detoxification and maintenance of cell functions. Under drought stress, they 
also facilitate in antioxidant generation like catalase, superoxide dismutase and 
peroxidase. They inhibit photooxidation of vital cell molecules and maintain cell 
membrane integrity. Likewise, micronutrients such as Zn and Mg also play role 
in antioxidant generation. Other mechanisms that are maintained by nutrients 
to induce drought stress are water uptake and stomatal conduction regulation. 
Optimum supply of K and Ca helps to regulate water activity and aquaporin func-
tion. In a nutshell, efficient nutrient management will be helpful in mitigation of 
drought stress in field crops. The best practice should be adopted to increase their 
availability to plants. Effective nutrient utilization cultivars need to be focused on.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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