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Chapter

ZnO Nanowire Field-Effect 
Transistor for Biosensing: A 
Review
Nonofo Mathiba Jack Ditshego

Abstract

The last 19 years have seen intense research made on zinc oxide (ZnO) material, 
mainly due to the ability of converting the natural n-type material into p-type. For 
a long time, the p-type state was impossible to attain and maintain. This chapter 
focuses on ways of improving the doped ZnO material which acts as a channel 
for nanowire field-effect transistor (NWFET) and biosensor. The biosensor has 
specific binding which is called functionalization that is achieved by attaching a 
variety of compounds on the designated sensing area. Reference electrodes and 
buffers are used as controllers. Top-down fabrication processes are preferred over 
bottom-up because they pave way for mass production. Different growth techniques 
are reviewed and discussed. Strengths and weaknesses of the FET and sensor are 
also reviewed.

Keywords: zinc oxide (ZnO), semiconductor device, nanosensor,  
nanowire field-effect transistor (NWFET), biosensors, growth techniques

1. Introduction

Zinc oxide (ZnO) material has been known as a semiconductor for over 70 years, 
with some of the first literature being reported as early as in 1944 [1]. It was never 
put to use like other semiconductors (GaN, Si) because it is difficult to dope. The 
past 19 years have seen a revival on the research and use of material because of new 
and emerging ways of doping it. The material is naturally n-type [1–4], and by 
controlling the conditions of growth, the donor concentration can be controlled. 
The growth conditions include temperature, diethyl zinc (DEZ) reactant, O2 or 
H2O reactant, and pressure. P-type material [1–4] is difficult to grow and tends to 
slowly revert back to n-type. Researchers [5–14] who managed to deposit the p-type 
material have shown that it converts back to n-type within a few days. Maximum 
time period shown on p-type ZnO was a few months [5–14].

ZnO is a wide bandgap semiconductor [e.g., (0 K) = (3.441 ± 0.003) eV; 
(300 K) = (3.365 ± 0.005) eV]. It belongs to the group of IIb-VI compound semicon-
ductors which crystalize exclusively in the hexagonal wurtzite-type structure. The 
lattice parameters of the wurtzite crystal structure are: a = 3.24 Å and c = 5.21 Å. 
Related to similar IIb-VI (e.g., CbS, CbSe, ZnSe, and ZnS) or III-V (e.g., AlSb, Bas, 
GaN, and InSb) semiconductors, it has comparatively strong polar binding and 
large exciton binding energy of (59.5 ± 0.5) meV. Its density is 5.6 g cm−3, a value 
which corresponds to 4.2 × 1022 ZnO molecules per cm−3 [1, 2].
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ZnO has practical advantages that make it an attractive semiconductor from an 
industrial point of view. It has low cost; is abundant, nontoxic, and transparent; has 
large excitonic binding energy of 60 meV; is soluble, compatible with intercellular 
material; and has wide and direct bandgap of 3.37 eV, making it highly sensitive. It 
is well known that semiconductors have a small bandgap which allows switching 
between conduction and off-states. The larger the bandgap, the better the semi-
conductor is able to switch states and insulate leakage currents. Bandgap affects 
sensitivity because a device that possesses a wider bandgap allows for higher currents 
to travel but also prevents leakage currents, which results in more sensitive and 
accurate readings. With low-temperature fabrication processes, high-quality devices 
can be fabricated using the conventional processing technology, thereby making 
it suitable for low-cost mass-production. It has potential applications in optoelec-
tronics, transparent electronics, and spintronics. ZnO and its alloys have versatile 
electrical and optical properties for applications in thin film or nanowire transistors, 
light emitters, biosensors, and solar cells. The nanowire biosensor has a high surface-
to-volume ratio, enabling real-time and label-free detection [1–4, 15–17].

Currently, the main commercial application for ZnO (and/or IGZO) material 
is in displays, with companies like Sharp and Samsung putting IGZO into mobile 
phone displays [18–20]. IGZO displays outperform other semiconductor displays 
such as amorphous silicon and organic semiconductors by providing improved 
resolution and reduced power consumption. This is possible because IGZO has 
a 20× to 50× times higher mobility than amorphous silicon and polymers, which 
allows for device scaling without affecting performance [18–20]. Higher mobility 
values can also be achieved with amorphous silicon technology, but it needs to be 
laser annealed which is expensive.

2. Growth techniques of ZnO

ZnO films can be grown using three methods: gas transport (vapor phase depo-
sition), hydrothermal synthesis, and/or melt process. Melt growth techniques are a 
problem due to high vapor pressure of ZnO. Growth using gas transport is difficult 
to control for large film layers and is normally used for bottom-up ZnO nanostruc-
tures. Hydrothermal synthesis is therefore preferred as a method of growth. Thin 
films can be produced through chemical vapor deposition, metalorganic vapor 
phase epitaxy, electrodeposition, pulsed laser deposition, sputtering, sol–gel syn-
thesis, atomic layer deposition, spray pyrolysis, etc. All the mentioned techniques 
fall under hydrothermal synthesis, and one of the preferred methods is atomic layer 
deposition (ALD). The ALD process is capable of producing highly conformal and 
quality films [21]. The process is cyclic and is based on the number of reactants. 
Figure 1 shows that the ALD process for ZnO films is cyclic and depends on two 
reactants: metallization and oxidation.

Metallization uses diethyl zinc (DEZ) as the zinc (Zn) metal precursor. Purge 
and pump steps are used to separate the execution of the reactants and to remove 
by-products. Before deposition, the wafer (substrate) is preheated at a temperature 
that will be used for deposition and it is also cleaned with O2 plasma so as to remove 
any polymer layer. During the metallization step, the DEZ (Zn (C2H5)2) is absorbed 
onto the surface of the wafer and the residual Zn (C2H5)2 is removed from chamber. 
“R” in Figure 1 represents C2H5.Then on another step, water or O2 is delivered to 
react with the absorbed DEZ [23–25]. These steps are executed separately, and to 
ensure this, purge steps are introduced in between the steps.

When water is used instead of O2 for oxidation, the process is called thermal ALD. 
This process tends to produce films similar to chemical vapor deposition (CVD) 
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techniques [25–27]. When O2 is used instead of water, then the process needs plasma 
energy. Remote plasma atomic layer deposition (RPALD) is a fairly new process 
which is why it is still not in used. It is better than the other deposition techniques as 
it tends to produce films close to epitaxial layers. The layers are crystalline but tend 
to be nonuniform to the underlining layer which is why they are not called epitaxial 
layers. It is a process with great potential for depositing highly conformal and quality 
films. The process is better than thermal ALD in terms of conformity and quality, but 
both processes do not generally produce epitaxial layers due to nonuniformity to the 
underlining substrate. The plasma-assisted ALD method has the following advan-
tages: reduction of OH impurity, allows more freedom in processing conditions, and 
provides wider range of material properties. The OH impurity is not desired as it 
affects the conductivity of the semiconductor and induces defects in the dielectrics.

Table 1 compares various growth techniques and how they affect NWFET 
output characteristics. Chemical vapor deposition (CVD) is the most popular 
technique for bottom-up nanowire processes. There are two growth techniques 
classified under CVD which are vapor–liquid–solid (VLS) and vapor–solid (VS) 
deposition techniques. CVD normally give the highest mobility as they produce 
crystalline wires with the only flaw being from the catalysts that guide the growth. 
VS produces better quality nanowires than VLS as it uses no catalysts but instead 
uses very high temperatures (>900°C). The problem with VS is that it is usually 
harder to control the size and morphology of the nanowires.

Figure 1. 
Schematic diagram illustrating a single cycle of ZnO deposition using the ALD tool (A) metallisation and 
oxidation step, (B) Purge and pump step (C) Cleaning with O2 plasma step, (D) Removing non-used products 
with Ar step [22].
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No Processing 

route

Synthesis 

method

Starting materials Synthesis 

temp. (°C)

Morphology Diameter of ZnO 

nanostructure (mm)

Length of ZnO 

nanostructure

Ref.

1 Vapor phase 
processing

Thermal 
evaporation

Zn metal, O2, and Ar 650–670 Nanowire 100 Several microns [29]

2 Route Zn metal pellets, O2, Ar 900 Nanowire 20 — [30]

3 Zn powder, O2, Ar 600 Nanowire 80 1 μm [31]

4 Vapor phase 
transport

ZnO powder, graphite, Cu catalyst 930 Hierarchical 
dendrite

60–800 — [32]

5 Aerosol Zn powder, N2 gas 500–750 Fiber-mat 100–300 — [33]

6 Cauliflower 20–30 —

7 RF sputtering ZnO deposited over Pt sputtered 
interdigitated alumina substrate

— Nanobelt — Few micrometer [34]

8 Molecular beam 
epitaxy

Zn metal, O3/O2 plasma discharge, 
Au coated substrate

600 Nanorod 50–150 2–10 μm [35]

9 Solid-state 
processing

Carbothermal 
reduction

ZnO powder, graphite powder, Ar 
gas flow, Au coated silicon substrate

900–925 Nanowire 80–120 10–20 μm [36, 
37]

10 Route Solid-state 
Chemical

ZnCl2, NaOH, polyethylene Glycol, 
Na2WO4.2H2O

RT Nanorod 40–60 200 nm [38]

11 Reaction 20–40 100 nm

12 Wet 
processing

Hydrothermal ZnAc2, NaOH, absolute ethanol, 
distilled water

180 Nanorod — — [39]

13 Route Zn(CH3COO)2·2H2O, C6H8O7·H2O, 
absolute ethanol, distilled water

400 Nanorod 
(vertically 
aligned)

50 500 nm [40]

14 Zn(NO3)2·6H2O, NaOH, 
cetyltrimethyl ammonium bromide, 

ethanol

120 Nanorod — — [41]
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No Processing 

route

Synthesis 

method

Starting materials Synthesis 

temp. (°C)

Morphology Diameter of ZnO 

nanostructure (mm)

Length of ZnO 

nanostructure

Ref.

15 Zn(NO3)2·6H2O, NaOH, 
cyclohexylamine, ethanol, water

200 Nanorod 150–200 2 μm [42]

16 Zn(SO4)·7H2O, NH4OH, deionized 
water

75–95 Nanorod — — [43]

17 ALD DEZ (Zn (C2H5)2), H2O — Nanowire 70–100 5 μm [44]

18 Plasma ALD DEZ (Zn (C2H5)2), O2 150–190 Nanowire 36–100 2–20 μm [22]

Table 1. 
Summary of various methods used for the production of 1-D ZnO nanostructures, adopted from [28].
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Table 1 also shows that atomic layer deposition (ALD) is an attractive technique 
because it deposits high quality films at low temperatures between 120 and 210°C 
[22, 45]. The problem with ALD is that it has only this window for good quality 
conducting films. At temperatures below 120°C, the deposition can be incomplete 
or experience condensation depending on growth rate. At temperatures above 
210°C, the deposition tends to experience desorption or it decomposes toward CVD 
deposition. Nonetheless, it is one of the best techniques toward growing films close 
to epitaxial growth (crystallinity is achievable whereas uniformity is still difficult 
to achieve) [22, 45]. The tool has shown potential by achieving high values of field 
effect mobility >30 cm2/Vs with excellent crystallinity.

2.1 Native point defects

There are three types of defects in a crystal lattice: point defects, area defects, and 
volume defects. Point defects which are caused by native elements and impurities 
are the major problem for ZnO semiconductor. Native point defects for ZnO include 
the following: zinc interstitial (Zni), zinc antisite (Zno), zinc vacancy (VZn), oxygen 
interstitial (Oi), oxygen antisite (OZn), and oxygen vacancy (Vo). Over the years, a 
lot of research advocated them as the major cause for the n-type behavior. Oxygen 
defects are seen as the main contributors toward the n-type behavior [3, 15]. There 
are some researchers [1–4] who hypothesize that impurities (not the native point 
defects) are the main cause of the n-type behavior because they tend to be shallow 
donors whereas Zn and O2 defects tend to be deep donors [1–4]. The two theories 
have not been proven so currently the main cause of the natural n-type behavior of 
ZnO [1–4] is not certain.

2.2 Deep donors versus shallow donors: ZnO

ZnO impurities (foreign atoms) are normally incorporated in the crystal 
structure of the semiconductor. There are two reasons of impurity incorpora-
tion: they can either be unintentionally introduced due to lack of control during 
growth processes or they are intentionally added to increase the number of free 
carriers in the semiconductor. Impurities in the ZnO should have the ability to 
be ionized; which is desirable as it increases conductivity. This means that the 
impurity atoms should be able to give off electrons to the conduction band. If the 
impurities were acceptors—they should be able to give off holes to the valence 
band [3, 16].

Donor Impurities for the n-type ZnO can either be shallow or deep. Figure 2 
shows shallow donors compared to deep donors. Shallow impurities require little 
energy to ionize (this is energy typically around the thermal energy or less). These 
donor impurities possess energy close to the band edge—the extra valence electron 

Figure 2. 
Shallow versus deep donors [1–4].
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of these impurities are loosely bound and occupy effective-mass states near the 
conduction band maximum- CBM- at low temperatures. Deep impurities on- 
the-other-hand require energy greater that the thermal energy to ionize. These 
donor impurities possess energy far from the band edge (CBM) making them very 
hard to ionize. Their presence within the semiconductor tends to contribute only 
a small fraction of free carriers. Deep donors are also called traps because they act 
as effective recombination centers in which electrons and holes fall and annihilate 
each other. Grain boundaries (GB) are main source of deep state impurities and 
they adversely affect transistor performance. ZnO is a wide bandgap material and 
research suggests [3, 4, 16] that there exist possible deep-level traps in GBs. The 
examples of deep donors are Zn and O ions. Zn acts as a deep donor when there is 
a vacancy and O acts as a deep donor in any defect state. An example of a shallow 
donor is the H ion.

2.3 Top-down fabrication of ZnO nanowire FETs

There are four main methods capable of producing nanometer features using 
top-down approaches: UV stepper lithography, e-beam lithography [46], focused 
ion-beam lithography [47], and spacer method [45, 48]. UV lithography is the 
standard industrial method for fabricating nanodevices. E-beam and focused 
ion-beam lithography are often used and can pattern devices down to 5 nm, but 
the equipment is very expensive and the pattern writing is very slow. These two 
instruments resemble scanning electron microscope (SEM) in terms of opera-
tion. Whereas SEM is used to focus a beam of electrons to image samples within 
a chamber, these instruments are used to create patterns on the samples. The 
difference between e-beam and focused ion-beam is that the latter uses an ion 
beam to pattern wafers and hence does not require photoresist. Their advantage 
over optical UV lithography is the small features they reach. For low-cost applica-
tions such as biosensors, the problem with these two methods is that they are 
expensive.

The spacer technique is a low-cost fabrication method for fabricating nanowires. 
It was first reported in 2005 by Ge et al. [49], and other researchers [44, 50, 51] 
have since carried it forward. The technique has great potential in shaping nano-
meter features using conventional, low-cost photolithography. Figure 3 shows the 
concept of the spacer technique. It uses first anisotropic etch to create a vertical 
pillar on an insulating layer (SiO2), then after deposition of a semiconductor layer 
(ZnO) and a second anisotropic etch, to create nanowires made up of the semicon-
ductor layer. This method allows nanowire features with controllable dimensions 
to be developed. The ICP tool is usually used for anisotropic etching and produces 

Figure 3. 
Novel spacer technique used to pattern nanowire features. Cross-sectional schematic of nanowire formation  
(a) before dry etch and (b) after dry etch [22].
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surface roughness <1.5 nm. Other tools such as RIE and ion beam etch produce 
roughness >5 nm. The fabrication process for the complete ZnO NWFET structure 
is as outlined in [52].

3. Background on FETs

The ZnO field-effect transistor (FET) has been around for decades. The success 
of the device in meeting the technological demands has largely been dominated by 
the shrinking size of its physical geometry. It has an advantage as a junctionless (no 
p-n junctions) FET compared to conventional FETs [17, 21, 23–27, 53, 54]. There has 
been an introduction of new materials and heterojunction structures developed so 
as to move away from conventional silicon devices. High-K dielectrics have been 
introduced to replace the conventional SiO2 which should help maintain acceptable 
dielectric thicknesses while keeping gate leakage currents low [17, 21, 23–27, 53, 54].

Even with so many improvements being made to the device, the limits of FET 
scaling are approaching. The thickness of the oxide (tox) cannot be less than 1 nm 
due to high tunneling current and significant operational variation. The substrate 
doping is also very high which creates leakage and tunneling currents that are 
unacceptable to device operation.

3.1 ZnO thin film transistors (TFTs)

TFTs have also been fabricated using ZnO, mainly as thin film transistors for 
application in displays. Figure 4 compares 20 ZnO TFTs fabricated by different 
authors [27, 53–71] using a variety of fabrication methods over the last 5 years. 
The graph is a plot of field effect mobility versus subthreshold slope which are 
two of the main parameters that describe the performance and efficiency of a 
device. The best device was fabricated by Bayraktaroglu et al. [70] with a SiO2 
insulator and pulsed laser-deposited ZnO active channel layer. The device had a 
field effect mobility 110 cm2/Vs and an excellent subthreshold gate voltage swing 
of 109 mV/decade. This value of mobility is much higher than the value of around 
1 cm2/Vs that is typically achieved with amorphous silicon TFTs in production 
displays. It is clear therefore that ZnO TFTs have considerable potential for 
application in high performance displays.

Figure 4. 
General literature review on TFTs looking at field effect mobility versus subthreshold slope of as-deposited and 
doped ZnO films.
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3.2 Nanowire field-effect transistors (FETs)

Emerging nonplanar devices [17, 21] are being researched to prolong the future 
progress for FETs. Devices based on quasi-one-dimensional (1-D) nanostructures 
are still at an embryonic stage from an industrial point of view. These nanostruc-
tures include the following: nanowires, nanobelts, nanoribbons, and nanoneedles 
[72, 73]. This review is interested in nanowire FETs which are also being researched 
for application in biosensors because the high surface-to-volume ratio provides high 
sensitivity.

3.3 Comparing ZnO NWFETs

Figure 5 compares 15 different ZnO NWFETs fabricated by different authors 
using a variety of methods [22, 74–86]. The graph is plotted with field effect mobility 
against the subthreshold slope, which are two important device parameters that deter-
mine ZnO NWFET performance. The nanowires were fabricated using top-down and 
bottom-up (self-assembled) processes. Self-assembled processes tend to display very 
high field effect mobility which is normally above 200 cm2/Vs; whereas the top-down 
have lower mobility values. Most of the top-down fabricated devices have mobility 
<1.0 cm2/Vs with around three papers giving a mobility >10.0 cm2/Vs. The difference 
in the mobility may be due to the fact that self-assembled nanowires are single-crystal, 
whereas top-down nanowires are polycrystalline. Nonetheless, top-down techniques 
are desirable as they currently pave way for mass production and will be pursued in 
this research investigation.

4. Biosensors

A biosensor is defined by the International Union of Pure and Applied Chemistry 
(IUPAC) as “a self-contained integrated device that is capable of providing specific 
quantitative or semiquantitative analytical information using a biological recogni-
tion element (biochemical receptor), which is retained in contact direct with a 
transduction element” [87]. A biosensor is a “more-than-Moore device” because it 

Figure 5. 
Literature review on nanowire FETs looking at field effect mobility versus subthreshold slope of as-deposited 
and doped ZnO nanowires.
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incorporates functionalities that do not necessarily scale according to Moore’s law. 
Under the roadmap, the device falls under the category of sensors and actuators. 
Other categories include analogue/RF, passives, HV power, and biochips [88, 89].

Figure 6 shows a typical structure of a biosensor [90–92]. The biomolecules are 
contained within an analytic solution and attach themselves to immobilized enzymes 
or immune-agents on the linkers. Linkers in turn are attached to the transducer. The 
transducer then converts the charge on the analyte into an electrical signal which 
is then transmitted for data processing. Biosensors can be considered as part of the 
research field known as “chemical sensors” in that a biological mechanism is used 
for analyte detection within an analyte solution [93–95]. Quasi-one-dimensional 
nanostructures have a greater surface-to-volume ratio compared to planar structures 
and are therefore expected to be more sensitive than planar sensors [93–95].

Nanowires are the same as nanorods. The words can be used interchangeably [80]. 
These have received enormous attention due to their suitable properties for designing 
novel nanoscale biosensors. For example, the dimensions of ∼1–100 nm are similar 
to those of many biological entities, such as nucleic acids, proteins, viruses, and 
cells [79]. In addition, the high surface-to-volume ratios for nanomaterials allow a 
large proportion of atoms in the bio-analyte to be located at or close to the surface. 
Moreover, some nanowire materials have surfaces that can easily be chemically 

Figure 6. 
Typical structure of a biosensor. The biomolecules are contained within an analytic solution and attach 
themselves to immobilized enzymes or immune-agents on the receptors. The transducer then converts the energy 
signal produced into an electrical signal which is then transmitted for data processing. [22].
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modified which makes them significant candidates for biosensors [79, 80]. There 
are a number of nanostructure-based electrical biosensors which include single-wall 
carbon nanotubes (SWCNT), nanowires, nanogaps, nanochannels, and nano-
electromechanical (NEM) devices. The project will focus on nanowire-based devices 
as they have considerable potential for electrical biosensing that offer the possibility 
of portable assays in a variety of point-of-care environments [48, 90, 96].

4.1 Silicon biosensors

Over the past decade, silicon nanowires have been the most researched for 
application as biochemical sensors [97–108]. Silicon nanowires are of interest for a 
number of reasons, for example, the material is well known and is compatible with 
CMOS integrated circuits for the development of sensor systems [97–108]. The 
nanowire is expected to have high surface-to-volume ratios which give high sensi-
tivity and the electrical sensing will give real-time label-free detection without the 
use of expensive optical components. Mass manufacturing is also a main advantage 
for silicon and is critically important for nanowire biosensor applications because of 
the widespread uptake of biosensors in “point-of-care” settings, the biosensor needs 
to be disposable [97–108].

A number of fabrication methods are well established for silicon nanowires 
which utilize both bottom-up and top-down methods (these methods are called 
hybrids). It still remains that bottom-up techniques have the advantage of simplicity 
[97–108]. Bottom-up methods are still limited due to the alignment problem. The 
hybrid methods require further nanowire technologies to achieve alignment, such 
as electric field or fluid-flow-assisted nanowire positioning to locate the nanowires 
between lithographically defined source and drain electrodes. The technique is 
interpreted as a hybrid between bottom-up and top-down. Top-down methods 
overcome these problems, and several researchers have used advanced lithography 
techniques to fabricate single-crystal silicon nanowires on silicon-on-insulator 
(SOI) substrates. SOI wafers are expensive and to overcome the problem some 
researchers [109] have devised alternatives to SOI. The electrical output character-
istics of silicon nanowires are good and they are well suited for biosensing applica-
tions. The sensitivity range for most silicon-nanowire based biosensors is between 
50 and 400 mV [97–134].

4.2 Comparing ZnO nanowire biosensors

ZnO is investigated as it is expected to be more sensitive than Si due to its wider 
bandgap [109]. This is observed by comparing Table 2 with Table 3. ZnO devices 
show results comparable to silicon devices; especially looking at response time and 
limit of detection. It is required that biosensors should have the liquid reference 
electrode. There are many different types of ZnO nanostructures being used for 
sensing application and Table 2 compares the ZnO nanostructures such as nanotet-
rapods, nanocombs, and nanorods used for biosensing [110, 121]. Nanotetrapods 
[123] are like nanorods but with four single crystalline legs. Most of the ZnO devices 
were synthesized by vapor phase method and then transferred on Au electrode to 
form a multiterminal network for the sensor receptors. Like all other bottom-up 
ZnO nanostructures discussed here, they are transferred to a surface of a work-
ing electrode to form a thin layer to modify the transducer. The devices have low 
sensitivity but the nanotetrapods exhibit good detection limit down to ~1.0 nM. The 
researchers [123] did not explain why the nanostructures possess low sensitivity but 
its three-dimensional features have the potential for multiterminal communication 
applications [123].
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In nanocombs [116] design, each comb has between 3 and 10 rods connected to one 
another by a single rod. ZnO nanocombs were used as the channel for sensing glucose 
[116] and as label-free uric acid biosensor based on uricase [124]. The functionalized 

No. Reference 

electrode

Type of 

sensor

Channel 

material

ZnO 

fabrication 

process

LOD 

(pM)

Response 

time (s)

Ref.

1 No reference 
electrode

Biosensor Si NW nanocluster-
mediated 

vapor–liquid–
solid growth 

method

10 <10 [97]

2 Au Biosensor Si NW Chemical vapor 
deposition

0.002 <10 [98]

3 Platinum 
wire

Biosensor Si NW SNAP technique 10 <10 [101]

4 None Biosensor Si NW Reactive-ion 
etching (RIE)

0.01 <10 [106]

5 None Biosensor Si NW Synthesized by 
chemical vapor 

deposition

100 <10 [122]

Table 3. 
Summary of characteristics for various 1-D Si biosensors, adopted from [121].

No. Reference 

electrode

Type of 

sensor

Channel 

material

ZnO fabrication 

process

LOD 

(μM)

Response 

time (s)

Ref.

1 Au Biosensor ZnO 
nanorod 

array

Hydrothermal 10 <5 [111]

2 ITO Biosensor ZnO 
nanotube 

array

Hydrothermal/
chemical

10 <6 [112]

3 Au Biosensor Tetrapod-
like ZnO

CVD 4 6 [113]

4 Glass 
capillary

Biosensor ZnO 
nanoflakes

Hydrothermal 0.5 <4 [114]

5 GCE Biosensor Fork-like 
ZnO

Annealing 0.3 3 [115]

6 Au Biosensor Comb-like 
ZnO

CVD 20 <10 [116]

7 Ti Biosensor ZnO/C 
nanorod 

array

Hydrothermal 1 4 [117]

8 ITO Biosensor ZnO/
Cu array 
matrix

Hydrothermal 40 <6 [118]

9 GCE Biosensor ZnO/Au 
nanorods

Hydrothermal 0.01 <5 [119]

10 Pt Biosensor ZnO/NiO 
nanorods

Hydrothermal 2.5 <5 [120]

Table 2. 
Summary of characteristics for various 1-D ZnO biosensors, adopted from [110].
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ZnO nanorods showed thermal stability, anti-interference capability, and direct 
electron transfer (DET) between enzyme electroactive sites and external electrodes. 
The activity of the enzyme and the sensitivity can be increased by introducing a lipid 
film between the channel and the enzyme. Another uric acid biosensor [125] example 
is based on uricase-functionalized ZnO nanoflakes, which was hydrothermally 
prepared at low temperatures on Au-coated glass. The sensor produced a sensitivity 
based on subthreshold slope of ~66 mV/decade. Bottom-up ZnO nanorods [126] were 
also used as lactate oxidase (LOD) biosensor using glutaraldehyde cross-linkers. The 
device had a subthreshold sensitivity of ~41 mV/decade, with maximum detection of 
0.1 μM. To test for cholesterol, porous ZnO mirco-tubes [127] were constructed using 
3-D assembled porous flakes. ZnO nanorods [128] were grown on Ag electrode to 
make a cholesterol sensor.

5. Conclusion

Most researchers use bottom-up approaches to fabricate the ZnO biosensors 
because of the straightforward synthesis process. However, these bottom-up 
devices have variable electrical performance due to the lack of geometrical dimen-
sion control and addressing the nanostructures for sensing application. So far, 
there is limited research reported on top-down ZnO biosensors, and previous work 
demonstrated the viability of top-down ZnO NWFET for biosensor applications. 
In the work, however, there was no passivation layer on the ZnO nanowires, which 
led to the dissolution of the material. This made the device unstable and the sens-
ing results were not reproducible. There exists a need to develop a passivating layer 
technology and optimize the fabrication process for biosensor applications. That 
way, a reliable measurement of sensitivity for the nonspecific and specific sensing 
of lysozyme and bovine serum albumin (BSA) can be achieved.
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