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Chapter

Non-equilibrium Equation of State
in the Approximation of the Local
Density Functional and Its
Application to the Emission of
High-Energy Particles in Collisions
of Heavy Ions
A.T. D’yachenko and I.A. Mitropolsky

Abstract

The non-equilibrium equation of state is found in the approximation of the
functional on the local density, and its application to the description of the emission
of protons and pions in heavy ion collisions is considered. The non-equilibrium
equation of state is studied in the context of the hydrodynamic approach. The
compression stage, the expansion stage, and the freeze-out stage of the hot spot
formed during the collisions of heavy ions are considered. The energy spectra of
protons and subthreshold pions produced in collisions of heavy ions are calculated
with inclusion of the nuclear viscosity effects and compared with experimental data
for various combinations of colliding nuclei with energies of several tens of MeV per
nucleon.

Keywords: local density functional, hydrodynamics, non-equilibrium equation of
state, heavy ions, hot spot, nuclear viscosity, protons, subthreshold pions

1. Introduction

The main object of studying heavy ion collisions is to study the equation of state
(EOS) of nuclear matter. Along with molecular dynamics and the Vlasov dynamic
equation, nuclear hydrodynamics is an effective method for describing the interac-
tion of heavy ions with medium and intermediate energies (see, e.g., [1]). Typically,
the equilibrium EOS is used [1]; it involves the local thermodynamic equilibrium in
the system. A hybrid model was proposed for use at high energies in [2, 3]. It
includes a fast non-equilibrium stage and the subsequent description of the dynam-
ics of a nucleus-nucleus collision based on equilibrium relativistic hydrodynamics of
an ideal fluid. We showed in our works [4–11] that local thermodynamic equilib-
rium is not immediately established in the process of collisions of heavy ions, since
the non-equilibrium component of the distribution function, which leads to the
formation of a collisionless shock wave, is important at the compression stage.
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The kinetic equation for finding the distribution function of nucleons is used in
this paper. It is solved in conjunction with the equations of hydrodynamics, which
are essentially local conservation laws of mass, momentum, and energy. As a result,
the non-equilibrium equation of state is found in the approximation of the func-
tional on the local density. Since the emitted secondary particles (nucleons, frag-
ments, and pions) contain the basic information about the EOS, it is necessary to
know the differential cross sections for the emission of these particles. The energy
spectra of protons and subthreshold pions with allowance for nuclear viscosity are
analyzed in this paper as a follow-up to our works [11–13] devoted to the energy
spectra of protons and fragments in which viscosity was neglected.

By subthreshold production, we mean the generation of π mesons with energies
lower than the threshold for the production of pions ENN in free nucleon-nucleon

collisions. The absolute thresholds for pion production are ENN ¼ 2mπ þ m2
π

2m ≈ 290

MeV in nucleon-nucleon collisions, ENA ≈mπ ≈ 140 MeV in nucleon-nucleus

collisions, and EBA ¼ m2
πþ2 AþBð Þmπm

2ABm ≈ 20 MeV in nucleus-nucleus collisions at A ¼
B ¼ 12, where mπ is the pion mass and m is the nucleon mass. This expression for
the absolute threshold energy is obtained from a comparison of the relativistic

invariants J ¼ E2 � P2 before and after the collision, neglecting the binding energy
of pion (E is the total energy; P is the total momentum).

The pion production threshold during the collision of heavy ions decreases
owing to collective effects and the internal motion of nucleons. These effects are
naturally taken into account using the hydrodynamic approach, which explicitly
includes the many-particle nature of colliding heavy ions. In the case of low
energies, the hydrodynamics should be modified to take into account the non-
equilibrium EOS, which describes the transition from the initial non-equilibrium
state to the state of local thermodynamic equilibrium.

Such an approach to describing the temporal evolution of the resulting hot spot
includes a compression stage and an expansion stage taking into account the nuclear
viscosity that we found. The calculated energy spectra of protons and pions pro-
duced in nuclear collisions (both identical and different in mass) at an energy of
92 MeV per nucleon in the case of protons and 94 MeV per nucleon in the case of
subthreshold pions are in agreement with the available experimental data [1, 14],
respectively.

2. Non-equilibrium equation of state in a local density approximation

If the energies of colliding heavy ions are less than 300 MeV per nucleon (pion
production threshold in free nucleon-nucleon collisions), we use the kinetic equa-

tion to find the nucleon distribution function f r
!
, p
!
, t

� �

( r
!

x1, x2, x3ð Þ is the spatial
coordinate; p

!
p1, p2, p3
� �

is the momentum; t is the time) [11, 12]:

∂f

∂t
þ pi
m

∂f

∂xi
� ∂W

∂xi

∂f

∂pi
¼ f 0 � f

τ
, (1)

where f0 r
!
, p
!
, t

� �

is a local equilibrium distribution function; τ is the relaxation

time;W ρð Þ (W ρð Þ ¼ αρþ βργ) is a one-particle Skyrme-type self-consistent potential
depending on the density ρ, where three parameters α α<0ð Þ, β β>0ð Þ, and γ γ> 1ð Þ
are determined by setting the equilibrium density ρ0= 0.145 fm�3, binding energy
Eb = �16 MeV, and compression modulus K = 210 MeV; and m is the nucleon mass.
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Equation (1) with allowance for the hydrodynamic equations obtained from (1)

by taking the corresponding moments with a weight of 1, p
!
, and p2

2m [11, 12]

describes the dynamics of nuclear collisions and forms the basis of our approach.
The solution of Eq. (1) can be simplified if we work out the distribution function

f r
!
, p
!
, t

� �

determining EOS in the form

f r
!
, p
!
, t

� �

¼ f1qþ f0 1� qð Þ, (2)

where the distribution function f1 r
!
, p
!
, t

� �

is defined in momentum space as an

axially symmetric Fermi ellipsoid, which is a convenient form for describing exci-
tations in the Fermi liquid theory and is assumed to be blurred along the axis p1 with
the temperature T1 and frozen in the transverse directions p2 and p3. The function

f0 r
!
, p
!
, t

� �

is represented in the momentum space by the equilibrium Fermi sphere

blurred with temperature T; q is a relaxation factor (q ¼ exp �
Ð

t

t0

dt=τ

 !

), where

t0 r
!
, t

� �

is the start time of the relaxation process in the system; τ is the relaxation

time, which can be specified as in [15]. However, we define τ more traditionally as
τ ¼ λ=υT, where λ is the mean free path of nucleons at a given nucleon density,
which is assumed to be equal to the mean distance between nucleons, and υT is the
mean speed of the thermal Fermi motion of nucleons. This expression for τ in the
energy range under consideration is close in magnitude to the value proposed in
[15], but it turns out to depend on temperature and compression ratio and seems to
us more realistic. All calculations are carried out precisely for such τ. The equation

for finding the relaxation factor q r
!
, t

� �

is obtained by taking the moment for the

kinetic equation with a weight of p21 � p22 þ p23
� �

=2 that determines the degree of

anisotropy of the distribution function f r
!
, p
!
, t

� �

in momentum space.

So, the initial moments
Ð d3 p

!

2πℏð Þ3 with weights 1, p
!
, p2

2m, p
2
1 � p22 þ p23

� �

=2 from

kinetic equation (1) provide the corresponding hydrodynamic equations [11, 12] for

finding nucleon density ρ r
!
, t

� �

, velocity field υ
!

r
!
, t

� �

, internal energy density e ¼
εþ I þ eint, and pressure tensor Pij ¼ P kinð Þij þ Pintδij (the repeated indices imply the

summation, δij is the Kronecker symbol). The terms of interaction for energy
density eint and pressure Pint are, respectively,

eint ¼
ð

ρ

0

W ρð Þdρ,Pint ¼ ρ2
d eint=ρð Þ

dρ
:

The kinetic terms are.

ε ¼ 3
10

ℏ
2

m
3
2 π

2ρ
� �2=3

ρ, ε1 ¼ ℏ
2

10m
3
2 π

2ρ0
� �2=3 ρ3

ρ20
, ε2 ¼ ℏ

2

10m
3
2 π

2ρ0
� �2=3

ρ,

P∣ ∣

kin ¼ P kinð Þ11 ¼ 2 ε1 þ I1ð Þqþ 2
3 εþ Ið Þ 1� qð Þ,

P⊥
kin ¼ P kinð Þ22 ¼ P kinð Þ33 ¼ 2ε2qþ 2

3 εþ Ið Þ 1� qð Þ,
which corresponds to diagonal tensor of pressure P kinð Þij ¼ 0 i 6¼ jð Þ, and heat

terms I and I1 are associated with temperatures T and T1, respectively. Since we

assume that the integrals of motion (density ρ, momentum density mρυ
!
, and
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energy density (εþ I ¼ ε1 þ 2ε2 þ I1)) are conserved during relaxation, hydrody-
namic equations have no right-hand sides.

To find density ρ, velocity field υ
!
relaxation factor q, and temperatures T and T1,

we thus have the closed system of equations that considers expressions for terms of
interaction and kinetic terms. These equations allow us to find distribution function

f r
!
, p
!
, t

� �

in form (2). Relaxation factor q 0≤ q≤ 1ð Þ allows us to describe the

dynamics of the Fermi surface variation from the state with q ¼ 1, where function

f r
!
, p
!
, t

� �

in the momentum space is maximally anisotropic, to the state with q ¼ 0,

where it is completely isotropic.

3. Hydrodynamic stage

We simplify the description of the time evolution of colliding nuclei
distinguishing the compression stage, the expansion stage, and the freeze-out stage
of the resulting hot spot. We reduce the interaction between two nuclei to the
interaction between their overlapping regions. This can be interpreted as a hot spot
formation process. In this case, we take into account the conservation laws. Shock
waves with changing front diverging in opposite directions are formed at the stage
of compression during the interaction between overlapping regions of colliding
nuclei [5–9].

In the process of compression, when the shock wave reaches the boundaries
of the hot spot, the density reaches its maximum value. The dependence of the
maximum compression ratio ρ=ρ0 at the shockwave front (solid line) on the
collision energy of nuclei E0 is shown in Figure 1. It hardly depends on the
composition of colliding nuclei, since we consider the interaction of the same
overlapping regions in the system of equal speeds of the colliding nuclei. The
dependence of ρ=ρ0 on the energy E0 for the distribution function corresponding
to the equilibrium EOS with q ¼ 0 is shown by a dashed line, and such a
dependence for a completely non-equilibrium EOS with q ¼ 1 is shown by a
dash-dotted line.

The relaxation factor at the energy region of E0 < 100 MeV per nucleon is
maximal (q ¼ 1), and it decreases with increasing energy, leading to a greater
isotropy of the distribution function. We calculated the dependence of the maxi-
mum compression ratio on energy for E0 > 100 MeV per nucleon. It is found in
between the extreme cases with q ¼ 0 and q ¼ 1. At E0 < 100 MeV per nucleon, the
dependence ρ=ρ0 on energy coincides with the dash-dotted curve corresponding to
the case with q ¼ 1 (i.e., completely non-equilibrium EOS) and is located above
the dashed curve corresponding to the case with q ¼ 0 belonging to traditional
hydrodynamics and the onset of local thermodynamic equilibrium.

A compressed and heated hot spot (a ball with radius R) expands when the
shock wave reaches the boundaries of the system. The hot spot expands in accor-
dance with the equations of hydrodynamics for radial motion of nucleon density
ρ r, tð Þ, velocity υ r, tð Þ, energy density e r, tð Þ, and pressure P r, tð Þ, following from (1)
[11, 12]:

∂ρ

∂t
þ ∂ r2ρυð Þ

r2∂r
¼ 0, (3)

∂ mρυð Þ
∂t

þ ∂ r2mρυ2ð Þ
r2∂r

þ ∂P

∂r
¼ 0, (4)
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∂ mρυ2=2þ eð Þ
∂t

þ ∂ r2υ mρυ2=2þ eþ Pð Þð Þ
r2∂r

¼ 0: (5)

The heat flux for a local equilibrium distribution function is Q ¼ 0. Here, the
internal energy density is e ¼ ekin þ eint and pressure is P ¼ Pkin þ Pint, where ekin
and Pkin are the kinetic terms, and the interaction terms eint and Pint are.

eint ¼
ð

ρ

0

W ρð Þdρ,Pint ¼ ρ2
d eint=ρð Þ

dρ
: (6)

The velocity field is found from Eq. (3) in the approximation of a homogeneous
but time-dependent density of hot spot ρ r, tð Þ ¼ ρ tð Þ:

υ r, tð Þ ¼
_R1

R1
r, 0≤ r≤R1, (7)

υ r, tð Þ ¼
_R r� R1ð Þ � _R1 r� Rð Þ

R� R1ð Þ ,R1 ≤ r≤R, (8)

where R tð Þ is the radius of the hot spot; R1 tð Þ is the radius of the velocity field

kink determined from the solution of equations; and _R tð Þ and _R1 tð Þ are the deriva-
tives in time (speed), which are also found from the Eqs. A system of ordinary
integro-differential equations is obtained after integrating Eqs. (4) and (5) over the
hotspot volume. It is solved numerically.

Figure 1.
The dependence of the maximum compression ratio ρ=ρ0 on the collision energy E0 achieved during the
interaction of the overlapping regions of colliding nuclei for the case of the relaxation factor q calculated by us
(solid line), for the case where the factor q ¼ 0 (dashed line) and for the case where q ¼ 1 (dash-dotted line).
All dependences correspond to the value of the compression modulus K ¼ 210 MeV.
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However, the deviation of the distribution function f r
!
, p
!
, t

� �

from the local

equilibrium function f0 r
!
, p
!
, t

� �

is not taken into account in these equations.

Expressing f r
!
, p
!
, t

� �

from the right side of Eq. (1) through its left side, we find

f ¼ f0–τ 3� 5

3
I
∂

∂I

� �

f0
∂υ

∂r
, (9)

where I is the thermal term depending on the temperature T. When obtaining

(9), we substituted f0 ρ r, tð Þ,U r, p
!
, t

� �

,T r, tð Þ
� �

into the left part of Eq. (1) instead

of f r, p
!
, t

� �

, taking into account Eqs. (3)–(5), where U ¼ p
!�mυ

!ð Þ2
2m . In this case, the

hot spot was averaged over the volume to derive Eq. (1), and at the expansion stage,
the density ρ r, tð Þ, the temperature T r, tð Þ, and the thermal term I r, tð Þ were consid-
ered to be homogeneous functions of time t and independent of the radius r.
Substituting expression (9) into the equations of hydrodynamics [11, 12], we find
the corrections to kinetic terms of the energy density ekin and pressure Pkin:

ekin ¼ e0,kin � τ
4

3
e0,kin þ

5

4
eF

� �

∂υ

∂r
¼ e0,kin �

3

2
η
∂υ

∂r
, (10)

Pkin ¼ P0,kin � τ
4

3
P0,kin þ

5

6
eF

� �

∂υ

∂r
¼ P0,kin � η

∂υ

∂r
: (11)

where e0,kin ¼ eF þ I and P0,kin ¼ 2
3 e0,kin are the equilibrium kinetic parts of the

energy density and pressure density, eF ¼ 3
10

ℏ
2

m
3
2 π

2ρ
� �2=3

ρ, and η ¼ 4
3 P0,kin þ 5

6 eF
� �

τ is

the viscosity coefficient. The following correction terms turn out to be an order of
magnitude smaller and they are not taken into account. The heat flux is Q ¼ 0. The
corrections to kinetic terms significantly affect the hotspot expansion and slow it

down, because the Reynolds number is not large Re ¼ mρυl
η

� 1 for the viscosity

coefficient η found by us (formula (10)) in the energy range under consideration of
E0≈ 100 MeV per nucleon with a characteristic nuclear size of l ≈ 3 fm. In our case,

the temperature is T ≈ 20 MeV; P0,kin ≈ ρT; τ≈ 3 � 10�23 s; the viscosity coefficient is

η≈4 � 1010 kg m�1 s�1. It coincides in the order of magnitude with the gas estimate

η �
ffiffiffiffiffiffiffiffi

mT
p

=σ [16] if we take σ≈ 40 mb for the elementary cross section. Moreover,
ηs> > ℏ

4π, where s is the entropy density (s � ρ). That is, in our case, the ratio η

s is

more than an order of magnitude higher than the limiting value of ℏ

4π [17] (achievable,

e.g., in the state of a quark-gluon plasma). Thus, the viscosity coefficient is quite large
in the energy range under consideration. This reduces the expansion speed of the hot
spot and increases its temperature. Secondary particles (nucleons, fragments, and
pions) form and freeze out when the expanding nuclear system reaches a critical

density (freezing density) ρ ∗ determined from the condition dPint

dρ ¼ ρ dW
dρ ¼ 0.

4. Double differential cross sections of the emission of protons and
pions: comparison with the experimental data

Protons and pions are emitted when the nuclear system reaches a critical
density. The cross section of the emission of protons (pions) is found from the

condition that the number of particles fd3p
!
and the value d3p

!
=E of are relativistic

6
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invariants [18, 19]. As a result, the inclusive double differential cross section of
reaction A + B ! p(π) + X is

d2σ

dEdΩ
¼ 2Sþ 1ð Þ 2π

2πℏð Þ3
ð

G bð Þbdb
ð

d r
!
γ E� p

!
υ
!

� �

pf r
!
, p
!
, t

� �

, (12)

where b is an impact parameter and the distribution function of protons (pions)
has the form

f r
!
, p
!
, t

� �

¼ exp
γ E� p

!
υ
! � μ

� �

T

0

@

1

A� 1

2

4

3

5

�1

: (13)

Here E and p
!
are the total energy and momentum of the proton (pion), respec-

tively; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p πð Þ

q

; Ω is the solid angle; S is the spin; υ
!

r
!
, t

� �

and T r
!
, t

� �

are

the velocity field and temperature at the time of freeze-out (they are solutions of the

equations of hydrodynamics); γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� υ=cð Þ2
q

is the Lorentz factor; μ is the

chemical potential (for pions μ ¼ 0, because the number of pions is not specified).
The factor G bð Þ ¼ σt bð Þ=σg bð Þ introduced in (12) takes into account the difference
between the total cross section and the geometric cross section, where σt bð Þ is
defined as the cross section of the formation of a hot spot for a given impact
parameter b from two overlapping regions in colliding nuclei, and σg bð Þ is equal to
the geometric cross section of these overlapping regions. Here, the total cross sec-
tion is always greater than geometric one, as in the case of the fusion of two nuclei

comparable in size. In addition, the function f r
!
, p
!
, t

� �

included in Eq. (12) was

modified in comparison with Eq. (13) according to relation (2): the sign “+” refers to
protons, and the sign “�” refers to pions. Expressions (12) and (13) refer to protons
(pions) emitted from a hot spot as a result of the interaction of the overlapping
regions of colliding nuclei. In addition to this contribution, we took into account the
contribution from the emission of protons (pions) as a result of the fusion of non-
overlapping regions of colliding nuclei. The calculated double differential cross
sections of proton emission (energy spectra) were compared with similar calcula-
tions obtained by solving the Vlasov-Uling-Uhlenbeck (VUU) kinetic equation [1]
and with available experimental data. Our calculations corresponded to the equation
of state with selected compression modulus equal to K = 210 MeV, i.e., with the
same which was taken for the best description of the experiment in the calculations
that we performed in [8, 9] at energies of 250 and 400 MeV per nucleon for
colliding Ne and U nuclei.

We present the proton spectra in the 40Ar + 40Ca! pþ X reaction at the angles
of 30° (1), 50° (2), 70° (3), and 90° (4) for the energy of projectile nuclei of 40Ar of
92 MeV per nucleon (Figure 2). In Figure 2, the solid curves correspond to our
calculation, the histograms correspond to the calculations performed by the method
of solving the VUU equation [1], and the dots are the experimental data from [1].

As can be seen, our calculation (this is not the Monte Carlo method and not
histograms) is in good agreement with the experimental data. This is especially true
for small angles of emission of protons (30°, 50°, and 70°). Our approach has an
advantage over the more detailed method of solving the VUU equation [1], since
the solid curves (but not histograms) are the result of the calculation. Note here that
simple cascade models, as mentioned in [1], cannot describe these experimental
data at all.
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Figure 2.
Spectra of protons emitted in the reaction 40Ar + 40Ca with the energy of 40Ar ions of 92 MeV per nucleon at
angles of 30° (1), 50° (2), 70° (3), and 90° (4). The solid lines are the results of calculations according to this
model with the calculated q corresponding to K ¼ 210 MeV; the histograms are the results of calculations
obtained from the solution of the VUU kinetic equation (1); the dots are the experimental data from [1].

Figure 3.
The calculated (solid lines) and experimental (dots) [14] inclusive double differential cross sections of the
emission of mesons at the observation angle of 90° in the reactions 16O + 27Al (1), 16O + 58Ni (2), and
16O + 197Au (3) with energy of 16О ions of E0 ¼ 94 MeV per nucleon.

8
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We compared our data with the available experimental data on the emission of
pions. Figure 3 illustrates the comparison of our calculated (solid lines) and exper-
imental [14] (dots) double differential cross sections for the reactions of πþ-meson
production when 16O ions collide with 27Al nuclei (curve 1), 58Ni nuclei (curve 2),
and 197Au nuclei (curve 3) at energies of 16O ions of E0 ¼ 94 MeV per nucleon at an
angle of 90°. It can be seen that the calculation is in good agreement with the
experiment for chosen parameters of the nuclear interaction and taking into
account the viscosity of the medium η that is found by us and proportional to the
relaxation time τ within the experimental errors. In this case, the effect of viscosity
on the calculated cross section of emitted pions is stronger for more asymmetric
combinations of colliding nuclei, when the contribution of the emission of pions
from the hot spot prevails. Thus, inclusive pion spectra in asymmetric nuclear
collisions can be used to measure the viscosity of a nuclear medium.

Figure 4 illustrates the comparison of the calculations (solid lines) with the
experimental data [14] (dots) for the reaction 16O + 27Al ! πþ + X at energy of 16O
ions of 94 MeV per nucleon at pion emission angles of 70° (curve 1), 90° (curve 2),
and 120° (curve 3). The calculation is in agreement with the experimental data if its
parameters are constant. In all the illustrations under consideration, the agreement
of calculation with the experiment was achieved without introducing fitting
parameters and is more successful than our previous works [11, 19, 20].

5. Conclusions

Thus, the idea of using the hydrodynamic approach with a non-equilibrium
equation of state in describing collisions of heavy ions is further developed in this
work. The non-equilibrium equation of state is found in the approximation of the

Figure 4.
The calculated (solid curves) and experimental (dots) [14] inclusive double differential cross sections of the
emission of mesons in the reaction 16O + 27Al with energy of 16O ions of 94 MeV per nucleon at the observation
angles of 70° (curve 1), 90° (curve 2), and 120° (curve 3).
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functional on the local density. The differential cross sections of the emission of
protons and the production of subthreshold pions in heavy ion collisions are uni-
formly described with the same fixed parameters of the equation of state and in the
same approach as in the previous papers [11–13], which describe the differential
cross sections for the formation of protons and light fragments. It is shown that the
non-equilibrium equation of state included in the hydrodynamic equations allows
us to describe the experimental energy spectra of protons produced in collisions of
heavy ions with intermediate energies better than the equation of state
corresponding to traditional hydrodynamics, which initially implies the local ther-
modynamic equilibrium.

This simplified hydrodynamic approach including a description of the stages of
compression, expansion, and freeze-out of a substance during heavy ion collisions
turned out to be no worse than a more detailed approach based on the Monte Carlo
solution of the Vlasov-Uling-Uhlenbeck kinetic equation.

In comparison with previous works, the inclusion of the effects of nuclear
viscosity, which we found in the relaxation approximation for the kinetic equation,
is new. This did not add new parameters in describing the temporal evolution of
nuclear collisions. The relaxation time τ, which determines the nuclear viscosity
coefficient η, turned out to be close to the value found on the basis of the behavior
of nuclear Fermi liquid [15] and is not a fitting parameter. When describing the
emission of protons and fragments, the inclusion of the viscosity of the medium is
not so significant, and the pions are very sensitive to the viscosity.

The highlighting of proton (pion) emission after the temporal evolution of the
resulting hot spot and the contribution to the particle emission cross sections during
the fusion of “spectators” (non-overlapping regions of colliding nuclei) were sig-
nificant in calculating the cross sections. This made it possible to describe the
differential cross sections of the emission of protons (pions) for collisions of nuclei
in various combinations. Highlighting this feature of our approach can be useful in
comparison with other ways of pion production in heavy ion collisions, for example
[21, 22], based on the solution of the Vlasov-Uling-Uhlenbek equation. These works
include a range of higher energies of colliding heavy ions (more than 300 MeV per
nucleon) and the production of pions by means of Δ-isobar production. We
included this channel at low subthreshold energies, not limited to the production of
thermal pions. However, this channel appears on the higher energy tails of the
energy spectra of pions [23].

Studies of the formation of protons, fragments, and subthreshold production of
pions may be of interest for the development of a scientific program planned with
radioactive beams in Dubna using the COMBAS facility [24], which is designed to
study nuclear collisions in the energy range of 20–100 MeV per nucleon.
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